
AD-A1G3 751 RENSSELAER POLYTECHNIC INST TROY NY DEPT OF MATHEMAT--ETC F/G 9/2
A LAMBDA-CALCULUS MODEL FOR GENERATING VERIFICATION CONDITIONS(U)
JUN 81 S K ABDALI, F WINKLER N00014-75-C 1026

UNCLASSIFIED RPI-CS8104 NL

Accession ?ot

NTIS GRA&I
DTIC TAB
Unannounced [l
Justification

Di-stribut ton/

AAvailability Codesj

.Avail and/jr
Dist Special {

___________ Technical Report 1CS-81P4.

A A AMBDAt-ALCULUS MODEL FOR
GENEING -iIFICATION CONDITIONS,

0S. KamaI A b da li
FranzWinki~erj

Prepared for

U.S. Office of ,b3i Rsar... 7 ;
Contract Numnber' N004,C026

DTIC
ELECTE

SEP 4 1981

Mathematical Sciences Department D
Rensselaer Polytechnic Institute D

Troy, New York 12181

Allpproved for publ'ic release-, / ?''" -

Distribution Unlimited....] _ _ - -;. ;;...,I I ?,i

Introduction

The most well-known program verification technique is based
upon the Floyd-Naur idea of inductive assertions [4]: A programming
language command imposes certain fixed implications between the
relations holding among the values of program variables just before
and just after the execution of that command. The (partial) cor-
rectness of a program can thus be proved if the output specification
claimed at the program exit are derived from the input specifications

assumed at the entrance by following the chain of implications

mentioned above for all entrance-to-exit control flow paths in

the program. Usually, this requires 1) the invention of a number

of assertions associated with some key points ("cutpoints") in
the program 2) the generation of the implications mentioned above
("verification conditions") for every pair of adjacent points

chosen, and 3) the demonstration (possibly, using the services

of a theorem-prover) that each of these implications is true.

Of these, the second task -- the generation of verification condi-
tions is strictly a mechanical process requiring substitution and

simple arithmetical evaluation. The lambda-calculus has built-in

rules to carry out the process of substitution and can be easily

augmented with arithmetical evaluation rules. Thus, it seems

reasonable to seek a lambda-calculus-based method for the automatic

generation of verification conditions.

In this paper we develop such a method. It has been obtained

by extending an existing (1] lambda-calculus model of programming

languages in which programs are translated into lambda-expressions

such that the (numerical) execution of programs is modelled by the

lambda-calculus process of reduction. In the new model, a program

is effectively translated into a lambda-expression whose reduction
yields a list of all verification conditions. The extension from

the previous to the new model is non-trivial, for we are now

interested in a sense in the symbolic, rather than numerical,

evaluation of programs.

For generating verification conditions, one must have a

program as well as inductive assertions associated with certain

2
properly chosen cutpoints in the program. We specify a programmning
language in which inductive assertions are incorporated within

-. the program body by means of special assert statements. Equipped
with assignments, conditionals, compounds, ALGOL-type blocks,

and loops, this language is simple yet quite powerful. We then
present a set of translation rules mapping the statements of

the specified programming language into lambda-expressions.
Using these rules, a program can be effectively translated into

a lambda-expression, say by extending the compiler of (5].
Finally, we show that the model is correct in the sense that

the translation of any program produced by our rules does indeed

give all verification conditions.

3
Verification Conditions

Given a program, in the flowchart form, say, and the program

input and output conditions, the inductive assertion method to
prove the partial correctness of the program proceeds as follows

(14], explanation in 17]). First, cutpoints are chosen on the

flowchart edges such that there is at least one cutpoint in each

loop. Cutpoints are also placed on the start and halt edges.
Next, to each cutpoint is associated a predicate -- the inductive

assertion -- which is intended to express the relation holding

among the values of the program variables each time the control

passes that cutpoint. The desired input and output conditions of

the program serve as the assertions at the start and halt cutpoints,
respectively. Next, a verification condition is constructed for

each basic path -- a path which begins and ends at two (not neces-

sarily different) cutpoints but does not pass through any other
cutpoint. The verification condition for a basic path a from
cutpoint i to cutpoint j states that if the assertion at i is true

and the control traverses a, then the assertion at j will hold

(with the new values of variables attained at j). Finally, each

verification is proved to be true. By induction it is then the

case that the assertion at each cutpoint is true whenever control

reaches that cutpoint (assuming that the input condition on the
start edge is satisfied at the initiation of program execution).

In particular, the assertion at the halt edge is true whenever

control reaches this edge, that is, whenever the program halts.
Thus the program is partially correct with respect to the given

input and output conditions.

In constructing the verification condition for a given path,

one has to take into account the transformation in variable values

resulting from the execution of the statements in the path. For

example, let a path consist of a single assignment statement

x:-x+l and let the assertions at the beginning and the end of the

path be x2+2x+3>0 and x2+2>0, respectively. The verification con-

dition should be equivalent to the statement: If x2+2x+3 is true

for some value of x, and the assignment x:=x+l is executed, then

x 2+2>0 is true for the new value of x. Clearly this is not

4

equivalent to

x2+2x+3>0 x 2 +2>0,

for the predicates x2+2x+3>0 and x2+2>0 hold for different values

of x, namely those respectively before and after the execution

of x:=x+l. We can "normalize" the predicates so as to make them
refer to the same values of x, either before or after the execution

of the assignment statement. In terms of the values existing before

the execution, the predicates are x2+2x+3>0 and (x+1) 2 +2>0; in terms

22
of the values after the execution, they are (x-l)2+2(x-l)+3>0 and

x2+2>0. The verification condition can then be written in the

equivalent forms
x 2 +2x+3>0 D (x+l) 2+2>0

or, (x-l) 2+2(x-l)+3>0 x 2+2>0.

In general, suppose the assertions at the beginning and the

end of a path a are P and Q, respectively. Then the verification

condition for the path is a predicate P'&R Q', where R represents

the condition under which a is traversed (R=-true, if a does not contain

any conditional statement), and P', Q' are obtained from P, Q,

respectively, by making appropriate substitutions to reflect the

changes in variable values effected by the execution of statements

in a. The substitutions should be done so as to make P' and Q'

refer to the same values of variables. (R should be derived to also

correspond to the same values of variables.) In the special case

that the predicates are to be expressed in terms of the variable

values at the beginning of the path, P' is just P, and Q' is formed

from Q by "backward substitution" [6]: The path is traced backward

and for every assignment statement encountered, the assigned

expression is substituted for the assigned variable; the cumulative

effect of all such substitutions is to transform Q into Q'. On

the other hand, if the predicates are to be expressed in terms

of the variable values at the end of the path, then Q' is just Q,
and P' is obtained from P by an analogous process of "forward

substitution."

Since the lambda-calculus ([3,9]) contains built-in rules to

carry out the process of substitution, it is possible to use
a lambda-calculus-based method for the automatic generation of

5

verification conditions. The method to be described in this

paper has been obtained by modifying and extending the lambda-
calculus model of programming languages described in [1]. This

model is comprised of rules for translating programs written

in a large subset of ALGOL 60 (or a similar language) into
lambda-expressions in such a manner that if the result of ex-

ecuting a program P with inputs ~l*Fm consists of outputs

01,604. 'n', then the lambda-expression ({P}{ 1l...{im)) reduces

to the tuple or list <(o 11969{O n}I>. (Here, f...) denotes

the lambda-calculus representation of the enclosed object.)

Based upon these rules, a compiler has been constructed ([5))
to translate PASCAL programs into lambda-expressions. The goal

of the model to be presented in this paper is to provide rules
for translating any program suitably annotated with assertions
into a lambda-expression whose reduction yields a list of the

lambda-calculus representations of the verification conditions.

To distinguish the two models, we call the former the "execution

model" and the latter the "verification model".

~WIN =:E0 I

6

The Source Language

Before giving any translation rules for the verification model,

we must specify the language, call it PL, in which the programs

acceptable by the model can be written. This language contains

the following features:

1. Integer and boolean data types

2. The usual arithmetical, boolean, and relational operators

3. Assignment statements of the form variable :=expression

4. Input and output statements of the form

read variable list

write expression list

5. Conditional statements of the form

if condition then statement

if condition then statement else statement

6. Compound statements and blocks as in ALGOL 60.

Inductive assertions associated at chosen cutpoints in a flowchart are

incorporated directly in the body of a PL program by means of

the following statements:

7. Assert statement of the form

assert assertion

8. Maintain-while statement of the form

Maintain assertion while condition do statement

The features (1) to (6) have the usual ALGOL 60 semantics.

The effect of the execution of an assert statement is the following:

The assertion is evaluated. If it is true, then control passes

to the next statement; if false, an error exception occurs. The

effect of the execution of a maintain-while statement is the

following: The assertion is evaluated. If it is true, then the

while-do part is executed according to the usual semantics; if

false, an error exception occurs.

A variable occurring in any statement (3) through (8) (as

a left-hand part or an operand in any condition or expression)

must be a variable in whose scope the statement occurs, that is,

must be a variable in the "environment" of the statement (see(])

However, a variable occurring in an assertion in any statement

(7) or (8) may be a variable of the environment of the statement

7

or it may be one of the special variables o,il,.**,im where m
is fixed for each program. Of these variables, o is called the

output variable, and i. are called input variables. The needJ

for these variables will be clear later.

PL, the source language for our verification model, is much

simpler than the source languages used in the execution models

of [1,5], yet it contains more features than in [6,7], say. The

verification model can be easily extended to include in PL such

features as multiple assignments of ALGOL 60, collateral (parallel)

assignments of ALGOL 68, for and repeat statements of PASCAL,
array data type, and functions without side-effects. But the

incorporation of general procedures seems difficult.

8?

The Verification Model: Preliminaries

In the execution model [1,5], the lambda-expression repre-

sentation of each statement (of ALGOL or PASCAL, say) has been

derived using the following idea: Each statement in a program

may be thought of as manipulating 1) the variables accessible at

the time the statement is executed (these constitute the statement's
"environment"), and 2) an entity identifying the point in the

program that is being executed. This entity, called the "continua-

tion" or "program remainder", is nothing but an eventually re-

cursive description of the entire portion of the program not

executed so far. The statement can therefore be translated as an

abstraction with respect to the continuation (denoted by the

variable 0) and the indeterminates representing the program

variables. Referring the reader to 11,5] for the actual details

of representation, we give below some examples of translation in

the execution model.

Example. Some translations in the execution model

Environment: (x,y,x)

Statement Representation

y:=x+3; a--4xyz:0x(+x3)z

if y=l b-X~xyz:(=yl)cd~xyz, where
then

z :=0 c-=Xxyz:0xy0
else

-x :=z+l; d-- xyz:0(+zl)yz

while y>x do e-=Xxyz:(>yz)(ff)lxyz

x:=x+z; f- X xyz:f(+xz)yz

write x+3; g=X4xyzo: xyzo;(+x3)

read x,z; g=lXxyzoi1 i2 : ilyi 2o

The representation of variables, constants, operations,

relations, and expressions in the verification model is the same

as in [1,5]. But when translating statements, we need some other

constituents besides the continuation and the environment. These

are:

Variable Stacks. There is a fundamental difference between the

777-

9
execution of a conditional statement for a numerical result and
the symbolic evaluation for generating verification conditions.
Whenever a conditional statement is reached during a numerical
execution, some condition is evaluated and according to the
result of the evaluation, the first or the second branch of

the statement is taken. In the verification context, however,

we actually have to execute both branches of a conditional

statement, and moreover it is essential to start the computation

of each branch with the same values of the various program var-

iables. We solve that problem by keeping a stack for every

variable. Each time we encounter a conditional statement, the

current values of the program variables are pushed on the stack,

and when we pass the corresponding ELSE these values are retrieved.

Assertions. Essentially what we have to do in order to generate

the verification conditions for a program is to traverse every

basic path of the program between inductive assertions and output

the lemma:
"assertion at start point & path condition =)assertion at end

point with appropriately changed values of variables".

So we need some constituent which allows us to store the asser-

tion of the start point and successively add the path condition.

This leads us to the concept of an assertion constituent.

Verification conditions. Whenever a verification condition is

generated we want to store it in some constituent which finally

will be the output of the whole process.

Thus the translation of a statement into the verfication model if

of the following form:

*T a v 1al 0. v na noi.a: 'cva 1 .va0

program I lsser- /outlut
remainder Itions variable inputs new values to reflect the

verification stak effect of the statement
conditions program

variables

Following are some definitions and abbreviations that will

be used later:

IEAx:x (Identity, null list or triple)

10

Q (Xxy:xx)(Xxy:xx) (Undefined value)

<a,,..,an EXx:xai...an, n>P' (list or triple)

1 X:XI (Note: s 11 <a> -~ a)
s 21 Xx:x(Xxy:x) (Note: s 21 a,b> -a)

s 22 Xx:x(Xxy:y) (Note: s 22<a,b> +b)

a;b Xx:axb (Note: <a1,...,an>;b - <l..a~>

puash Xxy:<x,y> (Note: pus ab -~ <a,b> 4- a;b

s2 (Note: pop <a11...,a 1 b> - b)

add BXxy:push((s21)x(2 y

(Note: add a<b,c> -<b&a,c>)

ch Xx:push(s 21 (s 22 x))(push(s 21X) (s22 (s 22x))

(Note: ch<a,<b,c > <b,<a,c >)

comb Xx:push((s 21X)V(s 21 (s22x))) Cs22 (s 22x))

(Note: comb<a,<b,c - <avb,c>)

11

Translation Rules

Using the notation of [1] (to which the reader is referred
for motivation and explanation), we now list the translation rules

of the verification model. These rules have the form

{S} E the lambda-expression representing statement S
in environment E.

Assignment statement

{vi :=e (e is an expression)

- AtCIv a1.. Vnnc:TaVll"""Vi-li-l{e}ai ... a"n

Input-Output statement

{read vi I Vl,.. " Vn)

E X TaV Ill 1 ... VnCnOX: T aVlal .*.vi_iiixG i vi+lai+l*•.VnanO

{write e} ,. }vn)
X cv ... a 0n) __

= # el**'vnanTI vla*..v nano; {e}

Compound statement

{begin S1 ;S2 ;... ;S n end)}l,.. , vn)
--_ X : {S1}({S2}(... ({Sn}fl ...)

Blocks
{begin <type>u l ;...<type> um ;SI ;S2 ;... ;Sp end}(v l . . . v n)

A A Ta:{S1)({S 2 F(c..({Sp}F (XTaUla .u :ta))...))TcaIQI... I
1 2m m times

where F = (ul,...,um,vl,...,vm) = the environment extended

by the newly declared variables of the block.
Since in the verification model the current assertion a and the

list of verification conditions T precede the representation of
the variables, we have to include a and T in the specification of

a block.
For every new variable, which is introduced by the block,

we need a stack. This stack is initially empty (I) and has to

be deleted at the end of the block together with the variable.
Conditional StatementsUfb JnS 1 &=S 2)(Vi ,0...,1Vn)

12

E Xk:as({S 1 }(su({S2} (sc 0)).

Subsidiary definitions:

as I X V ... (PVnan: %(Push(s21a & b) (add(-b) a)

v1 (pUsh vlal)...vn(Push vnan)

This takes the first part of the assertion (which represents the

valid assertion at the point of the condition statement) s2 1 a and

creates two versions of it, which in addition to s2 1 a also

assume b or -b, respectively. Furthermore, the current values of

the variables are pushed onto their stacks. This is necessary,

because now we want to perform the statement {S1 }, which might

change the values of the variables. But we need these values

for the execution of {S2 later on.

su Ea ...Vnn:T(ch(add(V=v & ... & n= V) a))

(s2 1aI) (pEM al) ... (s2 1an) (pEp an)

This saves the results of the execution of {S1} by adding them

to the current assumption. Now we are ready to switch the first

two branches of the "assumption tree", which causes the version

containing -b to become the current assumption. For the following

execution of {S 2 we delete the action of {S1) on the variables

and restore their old values, which is achieved by unstacking them.

sc -- XTav 1 ...Vnan: T(cormb(add(=v & .. & Vn=vn)c))

v1a1... vna

This finally saves the results of the execution of {S2) by adding

them to the current assumption. Afterwards the assumptions for

the then and else clauses are combined to a single one by disjunction.

Since the results of both {S I and {S21 are now saved in the current

assertion and are denoted by vi , we make Vi the new value of vi -

Note: The second form of IF-statement

(if b then S}

is translated into

X : ({S 1 } (su (I(scs OM

13

Assert statements

{assert a(vl,... ,Vno)}
-E aVal ... VnnO' :OT; (s21 a') (sub a a)

V la .. Vn a no

where

a' = a(vi,...,vno)

sub = Xxy:push x (s 2 2y)
The lemma: "current assertion => a with the variables replaced

by their current values" is added to the verification conditions.
Afterwards the current assumption is replaced by the assumption

a and we delete the former values of the variables.

Maintain-while statement

{maintain a while b do SI
= X TaVl al... Vn a n :as_t a(_ l({S} (ast (ad 2))))TaVlC IVno n

where

ast X -T v'a 1...V' 0o' : T;(s 2 1 a a') (giQ a a)
v Ia1 .. Vnno

is a representation of the statement

assert a,

2 I _ XTaval...Vnan : (add b a) Vlol.Vna
adds the predicate b to the current assumption.

Now the statement {S) is performed and afterwards "ast" checks

whether the predicate a has been maintained. This procedure sets

up the necessary verification conditions for the maintain-while

statement. What remains to te done is to add -b to the current

assumption and examine the program remainder:

a a ... vnn:t(add(~b)a) Vlal...VnOn •RA-21 1... non T lal... non

i ~ ~ ~ ~ ~~~~~~~~.......... ' - . ,, .,...,l

14

Examples of Translations from PL into the Lambda-calculus

We now present some examples of translations of programs

obtained by using the rules presented above. The program statements

have been tagged with identifiers used as the names of the cor-

responding lambda-expressions. In writing lambda-expressions,

certain notational liberties have been taken in order to make

them human-readable; the intended correct form must be obvious in

these cases. Thus, expressions have been written in the usual

infix notation, rather than the proper postfix lambda-expressions.

Fcr example,

[gcd(n,m) = gcd(x,y) & x>O & y>0]

has been used as a shorthand for

(&(& ((gcd n mX gcd x y)) (> x 0)) (> y 0)).

The result of reductions given at the end of each example has

been obtained by means of a computer program [2] which reduces

lambda-expressions to their simplest (normal) forms. The actual

computer print-out is included with one example.

Example 1. Summation of a given number of consecutive integers.

Input condition: n>0 (n is input)
-n (n+l)

Output condition: output 2

begin integer m,s; p..

read m;(*The value n is assigned to variable m*) re
s-=0; al

begin integer j; ob1l
j "=i; a2

maintain mw

s=(j-l)*j/2 and m=n and j<_m+l......................ast

while j<m doadl,ad2

begin

s :=s+j;
j:=j+l

end

end;

write s; (* s is appended to the (currently empty) output..wr

file o. Thus, s *)

15

assert sil o =m*(m+l)/2

end

Final Result res

Translations

re 4~Tct momsa soi: -I0 ai a mss0

al X Trct MoYMSas:4rTamam~as
a2 X Tctj:OTctl

ast EX Tcj'G~' MGs'aS: (1&)j/ m'=n' & l +1)

(sub [s=(j-l) *j/2 & nr-n & j m l] a) ja CYo

a3 EXoTctja ima sao-Tj : i toma [s+j1Ga
a4 sXc -rajajo:OTcxj4-l]aj
bX.2 Xo:a3(a4 J')
mw XO:ast(adl(bl2(ad2))

wr X4Twwmmsaso: Tcama sas (o;s)
ter 4rTam'a s'O _1 T(~ lM*m+)2)

m s21 1
(sub Is 1 1 o=m*(m+l)/2]ct) mamsa o

p EXOrra:re(al(b9.1l(wr(ter(XvraMCF Sa OTct)))))TaRSI11I

res =-p(XcToo:) I -en>O,I> In

By lambda-calculus reduction, we obtain:

res -1, < [n>O =O = & n=n & 1<n+l] , Isi Ui) & Lin & i<t+l & i<1
2--

£ ~ s~i =(i+l) (i+l-l) & ~ +9+]~i (i-i) R=
S~i2 kn &i~~t~l, s=2 & n

& i<9A-l & i>z. =>s=]

Thus, res is a list containing the three required verification

conditions. It is easily seen that each of these conditions is

true. So the program is partially correct with respect to the

specified input and output conditions.

E

16
Example 2. Square-root program.

Input condition: n>O (n is input)

Output condition: output = max k2 >n
k>O

begin integer x 'y1 y2 ,y3 ; .0.0. . . 40.6.. 0 .. 0. p

read x; (* The value n is assigned to variable x *)... re
(ylY2,y3) := (0,10,1)al

J endY2 :=Y2 +Y3 a

end,

maintain

x-- nd .:in an Y 2 =(Yl+l) 2and y 3 2*yl+l ast
while y2<x do adlad2

(y1IY 21 Y3) : (yl
+lI,y 2+y 3+2,y 3+2);..*.....bbSwrite Y1, wr

(* yl is appended to the (currently empty) file o. Thus,

11S=Yl
assert (sllo) 2 <n and n< ((sllo)+l) 2....... ter

end
Final Result res

Translations

re A TXaxYlaylY 2 yY 3 yOiI :O Ti 1 y 1 jY Y2 y2Y 3 y 3 i

al Xo-axaya Ya y a : Txa 0 al
Yl 2 y 2 y 3 y 3 XYI Y 2 aY 3

a2 -AOTxaYlylY 2ay2Y 3 ay 3 :OTaXxaxYyl[y 2+y3]ay2Y 3ay 3

aa - A:re(al(a2 4))
as Xoxoxl yl'ay' y: (T (s21a:>[x'=n & y 2<nast =-A T~ l&l~ y2 3 y

& Y!=(yj+l)2 & y3$m2*yi+l]))

(sub [x-n & y2<n & y2 -(yl+1)
2 & Y3=

2 *Yl+lla)x oyY 2a yY 3 a y

adl B XoTa:*T(add [y 2 <X!j)
ad2 E XoTa:T(add [y2>x]a)
bb Z X w xa Y y Y2ay2Y3 ay 3 +21] Y2 2 Y3

17
nw - X :ast(adl(bb(ast(ad2 4))

wr E XoT XaxYlylcY2 Y Y3 Y 3 (o;yl)

ter -XO TaX'CY[yly~yyy3O' : (T; (s 2 1 a =[(SO') 2<n & n<(Sl)+if))

(sub [(s11o)2 <n & n<((sllo)+l) 2]a) x Yyl Y2 ay2Y 3 ay30

p -) ITI:aa(mw(wr(ter(XTIXGxYlaIyY2yY3aY3:0Ta))))Ta0IQIQIQI

res M p(XTaO:t) I <n>O, I> In

By lambda-calculus reduction, we obtain:

res 4 <[n>O O<n & 1=1 & 1=1 & n-n],

[y1n & y2 =(Y l +l) 2 & Y3 =2Yl+l & x=n & Y2 <x
=(y 1 +l)2 <n & y2+y3+2=(y 1 +1+1) 2 & y 3 +2=2(yi+1)+1 & x=n],

[y2<_n & Y2= 2(Y1+1) & Y3=2Yl+l & x=n & Y2 >x

y 2<n & n<(Yl+l)2]>

Thus, res is a list containing the three required verification

conditions. It is easily seen that each of these conditions is

true. So the program is partially correct with respect to the

specified input and output conditions.

Example 3. GCD calculation.
Input condition: n>O & m>O (m,n are inputs).
Output condition: output = gcd(n,m)

begin integer x,y;...............h

read x,y; (* Input values n,m assigned to x,y *)..........a
maintain

gcd(n,m)-gcd(x,y) & x>O & y>0............. ast

while x~y do adl, ad2

if x>y then as,sc,d,e

x :x-y
else..•. . • U

y :-y-x;
write x;I.

(* Value of x appended to (currently empty) output

file o. Thus S1oi- *)

18
assert gcd(n,m)=s 1 1o 0*....* *..

end
Final Pesult,*. ,,* ***,**. *.o res

Translations

a EXOTa xoaY xy iii2:&r ailxao
ast EXaxaya :cdT; (s 21 at:Igcd(n,m)=gcd(x',y') & x'>O & y'>01))

(sub [gcd(n,m)=gcd(x,y) & x>O & y>O~ct)xaxya
adi E Txxay: ad~~~~axy
ad2 E XOaay T(d x-]a ay
as EX csxaxya y: (pushcs 2 1a &[x>y1)Caddjx<ylct))x(push xax)y(push Ya)
b XTaaya y:cTc1[X-y1a~ya
su A4 cxaxYa y: ch (add 13F-x & =Y-Y]) CS 2 la YCPaP- %) 1Cs 2 1'7) CEM c,)
c Xo TaxaYa :Tax[y-x~a I
sc E Xc TaxaYa: Tcomb(add~x--x & =Y 1 a) iaja
d Xo:as(b(su(c(sc f)))

f X aay Ooaay Co; X)
g EXOTctX'aXY'a oI:4CT;Cs21 a: Tgcd~n,mj=s11 o0'1))

(sub igcdCn ,m) =s 110 oa) XyaY o\

h XOT a: a(e (f(g (X Ta xry Ta l
res E h(XTao:T)I<[n>O & m>01, I> I n m

By lambda-calculus reduction, we obtain

res -1 <[n>O & m>O ---gcd(nm)=gcd(n,m) & n>O & m>0],

[gcd(n,m)=gcd(x,y) & x>O & y2.0 & x~~y & x.y& Rxx & 7--y-x

or gcd(n,m)=gcd(x,y) & x>O & Y>10 & x~'y & X>y & Fr-x-y & 7 y

D, gcd(n,m)=gcd(R,7) & R~>0 & 7y>O],

[gcd(nlm)=gcd(x,y) & x>O & yjO & xv-y =)gcd~n,m)=x1>

Thus,.res is a list containing the required verification conditions. As

each verification condition is true, the program is partially

correct with respect to the specified input and output conditions.

19

Translations of individual statements into the lambda-calculus.

(Note: L stands for X on computer input.)

A = (L PHI (L TAU(L AL(L VX(L SX(L VI (L SI (L 01 (L 11 (L 12
(PHI TAU AL I1 SX 12 SI 01))))))))))).

AST =(L PHI(L TAU(L AL (L VXP(L SX(L VYP(L SY(PHI (ESi TAD
((S21 AL) IMP (ECU (GCr N M) (GCD VIP VYP) AND (GE VXP 0)
AND (GE VYP 0))))
(SUE (EQtU (GCD N M1) (GCD VX VY) AND (GE VX C) AiD
(GE VI 0)) AL) VX SX VI SY)))))))).

AD1 = (L PHI (L TAU (L AL(L VX(L SX(L VY (L SI (PHI TAU (ADD
(NE VX VY) AL) VX SX VI SY)))))))).

AD2 =(L PHI(L TAU(L AL(L VX(L SX(L VY (L SY (EHI TAU (AIC
(EQU VX VY) AL) V1 SI VY SY)))))))).

AS = (L PHI(L TAU(L AL(L VX (L SX(I VY(L SY(LHI TAU (PSH
((S21 AL) ANE (GT VX VY)) (ADE (LE VX VI) AL)) VX
(PSH VX Sx) VY (PSH VI SY))))))))).

BB = (L PHI(L TAD(L AL(L VX (L SA(L VY(L SY (PHI TAD AL
(- VX VI) SX VY SY)))f)).

SU = (L PHI(L TAU(L AL(L VX(L SX(L VI(L SY (PHI TAU (CH
(ACD ((EQU VXB VX) AND (EQU VYB V¥)) AL)) (S21 SX)
(S22 SX) (S21 SY) (522 SY))))))))).

CC = (L PHI(L TAU(L AL (L VX(L Sx (L VY(L SI (PHI TAD AL
V1 Sx (-Vl VT) SY)))))))).

SC = (L ImI(L TAU (L AL(L VX(L S"(L VY (L SY (PHI TlU (COM
(ADD ((EQO VXB VX) AND (EQD VYB V¥)) AL))
VXB SI VIB SY)))))))).

D = (L PHI (AS(BB(SD(CC(SC PHI)))))).

E = (L PHI (AST(ADI (D(AST(AI)2 PHI)))))).

F = (L PHI(L TAU (L AL(L VX(L SI (L VY (L SY (L 01 (PhI TAU AL
VX SI VY SY (PSH 01 VX)))))))))).

G = (L PHI(L IAU(L AL (L VXP(L SX(L VYP(L SY (L O (PhI
(PsH TAD ((S21 AL) IMP (EQU (GCC N I) (SIl OP))))
(SUB (EQU (GCD N H) (S11 01)) AL) VX SX VY SY C1))))))))).

h = (L PHI(L TAU(L AL ((A (I (F (G (L TAU (L AL(L VX (L SX(L VY
(L SI (PHI TAU AL))))))))))) TAU AL Ca I CMi 1)))).

RES =H(L TAU(L AL(L OU1 TAU)))I(SH(GE N 0 AND G1 M 0)1)1 N L.

20

Definition of auxili4xy objects

PSH =(L A(L B(L X (I A B)))).

SEC =(L X(L I I)).

S11 =T 1. (Alternative definition- T - XY;yx is a primitive)

521 =T K.

S22 =T SEC.

SUB =(L VX(L VY (PSH VX (S22 VY)))).

ADD =(L VZ(L I (PSH ((S21 X) AND VZ) (S22 X)))).

CH = (L VZ (PSH (521 (S22 VZ)) (PSh (521 VZ) (522 (S22 VZ))))).

COP =(L VZ ((PSH (OR (521 VZ) (S21 (S22 VZ)))) (522 (S22 VZ)))).

Now RES should reduce to a list of three verification conditions.

Due to the definition of lists, RES has the form <<<P>,Q>,R>.

The components are extracted below in the order R, Q, and P.

S22(S21 (S21 RES)).

INPUT OBJECT IS...
S22(S21(S21 RES))

REDUCED OBJECT IS...
GE N 0 AND GE 8 0
I1P (EQU (GCD N I) (GCD H 1,) AND (GE N 0) i N (GE H 0))

522(S21 RES).

INPUT OEJECT IS...
: S22(S21 RES)

HEDUCIC OEJZCT IS...
OR (11)0 (GCD N 15) (GCD VX V[) AND (GE VX 0)

ANC (GE VT 0) INE (NI VX VY) AND (LE VI VT)
AND (EQO VXB VX AND (EQU VYB(-VY VX))))

(EQU (GCD N M) (GCD VI VY) AND (GE VX 0)
AND (GE VY 0) AND (NZ VX VY) AND (GT VX VY)
AN (!QU VXE(- VX VT) AMC (EQU VYB VY)))

I1P (E1O (GCD N Z) (GCD VXB VYB) AND (Gk VXE 0)
INC(GE VIE 0))

21

S22 RES.

IN PUT OBJECT IS...
: S22 61S

BEDUCED OBJECT IS...
EQU (GCD N M) (GCD VX VY) AND (GE VX 0) A1RD (GE VY 0)
AND (EWU VX VY)
IMP (EQU (GCD N M) VI)

22

The Correctness of Verification Model

We would now like to prove that the verification model pre-

sented above is correct. In other words, we would like to show

that the translation of a PL program according to the above-given

rules indeed reduces to a list containing the lambda-calculus
representation of all verification conditions. We begin with

some definitions:

A path a in a PL program is said to be basic if it

--starts with an "assert" or "maintain" or starts at the beginning

of the program,

--ends with an "assert" or "maintain", and
--does not contain any other "assert" or "maintain".

The verification condition for a basic path a with starting

assertion q, terminating assertion p and path condition y (the
condition under which y is traversed) is

q & y=> p
where the variables in q are replaced by the result of performing a.

The verification condition list for a PL-program is a list of
verification conditions of all its basic paths.

The predicate after an "assert" or "maintain" is referred to as

an assertion.

With these definitions the following theorem holds.

Theorem: If the assert (and maintain) statements in a PL-program
P contain only program variables, symbols il,...,i for the input,

the symbol o for the output and constants, and {prog} is a translation

of P into the verification model, and a0 is the input assertion,
then

{prog} (XTao:'T) I <a0 ,I> I il,...,in

generates the verification condition list for P.

Proof:
(X-aO:T) as the final program remainder deletes all the information

but T, the verification condition list.
We show that for all basic paths leading from assertions (*)

via path conditions yl,...,Yn to the assertion p in a PL-program,

M*) Some of the qj's may be equal.

23
the corresponding translation into the verification model generates

the verification conditions

ql & Y1 => P(R)

and

and

k & Yk => P(i)

and adds them to T, the list of verification conditions. R
denotes the values of the variables immediately before the
assertion, possibly also containing the value of the output var-

iable o.

Proof by structural induction:

basis:

q and p follow each other immediately, after execution of assert q,

a 1 is q.
The path cond. y - T.

The variables hold xl,...,xn -

assert p generates the lemma

s210=> PIx=x

which is true.

induction step:

(a) Suppose the hypothesis holds for arbitrary P'ql' 'qk in a
PL-program. Now consider a PL-program where

xi :=e(x I , . . ,x n) ;
assert r

is substituted for

assert p.

Let a denote the stack of assertions before the execution of the
assignment, which is the same as the one in the original program
before assert p.
Let 3E be the variable values before the assignment.
If we now let p(x) - r(xl,...,Xi_le(xl,...,x n) , x i + l , . . . , x n)

we know from the hypothesis

s21a => PIX 3i

is equivalent to

24

/ (qj & yj => pI

j=1,... ,k

and furthermore to
S(qj & Yr => r x (l . . e l , . x-) . . . E))

j=i, . .. ,k nf

(b) Suppose the hypothesis holds for arbitrary p in a

PL-program. Now consider a program where

begin <type> ul,...,<type> Um;

assert r(ui,...,Umx, ...x

is substituted for

assert p.

Let a denote the stack of assertions before the execution of the

assignment, which is the same as the one in the original program

before assert p.

Let 3 be the variable values before the begin.

If we now let
p(x) =rn.. X,., n

m

we know from the hypothesis

s21a => pIx=x

is equivalent to

A (qj & 7j => plx=E)

and furthermore to

A (qj & T3 => rIu=6),x=3)

j=l,.. ,k

(c) Suppose the hypothesis holds for arbitrary P'ql'""" 'k in a

PL-program. Now consider the program where

end; (<type>u 1,...,<type>um)

assert r(xl , .. xn)

is substituted for

assert p.

1,-t s... stack of assertions before end

x, u... variable values before end.
(1) u did not overwrite some global variable xj. Then if we let

P (Ul,... ,Um,1 ,.. .,xn) "r(xl,... ,xn)

OE...MiB.. . ..

25

we know from the hypothesis:

s 2 1 a > pI ui, x=5

is equivalent
to

/\ (q & Yj
jml ,.G..

and futhermore to

j=l,... ,k

(2) If however ui overwrote the global variable xj, we could

change the name of u 1 , so that this phenomenon does not occur

and we get

j1,j .x .

(d) Suppose the hypothesis holds for arbitrary pjl ..p in a

PL-program. Now consider the program where

i~f b(xjlseeix n) then

assert r

is substituted for

assert p (x11. *iXn)G

Let a..stack of assertions before if

x..variable values before if

The execution of the if changes

al=<L 1 .. to <ci..& b(3E),<,ai & -(E,>

and leaves 3unchanged.
If we let

p(x) =(b(x) -> r(x))

then we know from the hypothesis that

' 21"L ->P
generates the correct verification conditions

/A (qj & y C)

So

2 21 a & b (R) a> r (R)

which is equivalent to

21 a> (b(R) r,

Also generates 26

(qj & yj => p(R)) <> (qj & yj & b(R) => r(i))
j1l,... ,k j=l,... ,k

which are the correct verification conditions for the paths
leading to assert r in the modified program.

(e) Suppose the hypothesis holds for arbitrary P'ql"...,q in
a PL-program. Now consider the program where

if b(x) then

else

assert r(x)
is substituted for

assert p.

Let a... stack of assertions before if, x... variable values before if
The execution of if changes

a = <al,...> to <a1 & b(3),<a & ~b(R)

and puts the values x on the variable stacks.

else causes

<a & b(),...> to be changed to <aI &~b(),<,

and the variable values are retrieved from the stacks. A reasoning
analogous to that in (d) now causes s 2 1 a & ~b(i) => r(R) to be

equivalent to the correct verification conditions

/\ Cqj & yj & ~b(R) => r(K)).

j=l,... ,k

(f) Suppose the hypothesis holds for arbitrary

pt qt q pe qe q e in a PL-program

if b(x) then

t
assert p (x)

end

else

begin

assert pe (x)

end;
Now consider the program where assert pt pe are eliminated and
replaced by assert r(x) after the if-statement.

if b (x) then 27

be gin

And

else

* begin

end;

assert r(x)

Lt
Let c... stack of assertions before ptci'.o. stack of assertions before pe

a"... stack of assertions after if-statement

2t ... variable values before pt

xe... variable values before pe.

From the induction hypothesis we know
s 1 => pt(t

is equivalent to

(q & Y=> pt xt))
J.l.°. ,k

and

s21, -> pe(xe)

is equivalent to
(q, S 7j _> pe (x-)).

j-l,... °,L

i, . <s 2 1 ',<s 2 1 i&

a" - <(s 2 1 &) (s 2 1 ai' & >

the variable values after the if-statement are F.
tLet p (x) (-x-> r(c))

pe (x) - (-x -> r())

So

aCM => r M)21
is equivalent to

Cs2 1 0 & Nomit => r()) & (s 2 1c' & axe => r())

or

(S2 1 (1> pt (xt)) & (s 2 1 a s W> Pe (x))

A (q>&yj ->r(x)) A &y-
jml,... ,k Jii,...• ,L

which are the correct verification conditions.

28
(g) Because of (a) - (f) we know that for all PL-programs without

while-loops the model generates the verification conditions.

Now suppose there are k basic paths from ql'.." 'k leading to

maintain p (x)

while b(x) do

S
We want to add the lemmas

qj & y => p(R)

to T, where x denotes the variable values immediately before the
maintain-while statement.

We know by induction hypothesis that if we replace this maintain-

while statement by

assert p(x)

the model will generate these verification conditions at that

point. But we observe that the first step in the translation of

the maintain-while statement is exactly to perform this assertion.

Thus the desired effect is achieved.

The only way of entering the statement S is through assuming p (x)

and b(x) (which is carried out in the second step of the trans-

lation of maintain-while) and we can leave it only by asserting

p(x) again.

That, however, is exactly the way of processing

assert p(x) & b(x)
S

assert p(x)

in the verification model.
So we know by induction hypothesis that for all the basic paths

ending in S or leading back to the top of the maintain-while

statement, the correct verification conditions are added to T.

Finally we want to start a new basic path by assuming p(x) & b(x)

and that is exactly what happens in the model.

References 29

1. Abdali, S. Kamal: A lambda-calculus model of programing

languages Part I & II. Journal of Computer Languages, l,

pp. 287-320, 1976.

2. Abdali, S. Kamal: "CLONE - a combinatory-logical normal

form evaluator," User's Manual, Rensselaer Polytechnic

Institute, Troy, NY, 1978.

3. Church, A.: The Calculi of Lambda-Conversion. Princeton

University Press, NJ, 1941.

4. Floyd, R. W.: Assigning meanings to programs. Math. Aspects

of Computer Science. J. T. Schwartz, Ed., Amer. Math. Soc.,

Providence, R.I., 1967, pp. 19-32.

5. Kaltofen, Erich & Abdali, S. Kamal: An attributed LL(l)

compilation of Pascal into the lambda-calculus, Tech. Report,

Rensselaer Polytechnic Institute, Troy, NY, June 1981.

6. King, James C.: "A program verifier," Proc IFIP, 1971,

pp. 234-249.

7. Manna, Z.: Mathematical Theory of Computation. McGraw Hill,

New York, 1974.

8. Morris, James H. Jr. & Wegbreit, Ben: Subgoal induction.

Com. ACM 20, 4(April 1977), pp. 209-222.

9. Petznick, G. W.: "Introduction to combinatory logic," in

Brainerd, W. S. & Landweber, L. H.: Theory of Computation,

John Wiley, New York, 1974.

10. Wijugarden, A. van (Ed.): Report on the algorithmic language

ALGOL 68, Numerische Math. 14, 79, 1969.

i

Unclassified
ICUAITY CLASSIFICATION OF THIS PAGE (%onf Do& Enae__r

READ INSTRUCTIONSREPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUmnERr It. GOVT ACC ESSION NO S. RECIP)ENT'S CATALOG NUMBER

CS-8104 , __ __ __,__
4. TITLE (end Subtitle) S. TYPE Or REPORT A PERIOD COVERED

A LAMBDA-CALCULUS MODEL FOR Technical Report
GENERATING VERIFICATION CONDITIONS 9. PERFORMING O0. REPORT NUNSER

7. AUTHOR(e) G. CONTRACT OR GRANT NUMEER(e)

S. Kamal Abdali ONR N00014-75-C-1026
Franz Winkler

,. PERFORMING ORGANIZATION NAME AND ADDRESS I0. PRAOGRAM9 EMEN1P RZOJCT. TAIX

Mathematical Sciences Department A UNIT MeRS

Rensselaer Polytechnic Institute
Troy, New York 12181

II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Office of Naval Research Resident June 1981
Representative IS. NUMBER OF PAGES

715 Broadway-5th Floor, N.Y., N.Y. 10003 29
14. MONITORING AGENCY NAME A ADDRsESS(If dlifeenll Itm Controlllnj Office) IS. SECURITY CLASS. (of this repon)

Unclassified
Ism. DEC ASSI ICATION/DOWNGRADING

16. DISTRIBUTION STATEMENT (of this Repot)

DISTRIBUTION STATEMENT A
4 Distribution Unlimited

17. DISTRIBUTION STATEMENT (os me eocrtcg mewree on uau, ',, It dlflerent bor Report)

It. SUPPLEMENTARY NOTES

It. KEY WORDS (Cotinue an reverse side it neeeesary End Identify by block numiber)

Program verification, inductive assertion, verification

condition, lambda-calculus

a

26. ABSTRACT (Cn nue ,etere. side If neoeeI7 and idavelfmI bp blek numbme)

(See back-side of page)

DO '0,WMP1473 EOT@OP1OVSSOSOTEUcasfe
S/ 0102LF046601 Unclassified

SECURITY CLAIFICATION OF THIS PAGE (lma. t's o

UnclamifiaA
SECURITY CLASSIFICATION OF THIS PACE (f1e Data Snweod)

7 A lambda-calculus-based method is developed for the

automatic generation of verification conditions. A pro-

gramming language is specified in which inductive assertions

associated with a program are incorporated within the body

of the program by means of assert and maintain-while state-

ments. This programming language includes the following

features: assignments, conditionals, loops, compounds,

ALGOL-type block structure. A model is developed which

consists of rules to translate each statement in this
programming language into the lambda-calculus. The model

is such that the lambda-expression translation of any program

reduces to a list (tuple) of lambda-expression representations

of all verification conditions of the program. A proof of

this property is given.

Unclassified
SECUUItY CLAIPICATIO OP'NIS PA6lME DO*. Bhmftr

T)ATI

wIL eI

