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ABSTRACT

We develop a method for the analysis of perturbations of integrable
planar systems of differential equations. Concentrating on the case in
which the unperturbed system is Hamiltonian and the perturbation introduces
dissipation and time-periodic forcing, we show how the global solution
curves (level sets) of the unperturbed system can be used in regular per-
turbation calculations to locate subharmonic orbits and homoclinic orbits
and to characterize the bifurcations in which they are created as external
parameters are varied. We apply our results to Duffing's equation and

point out applications to the chaotic motions of buckled elastic beams

undergoing periodic excitation.
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1.1

s 1. INTRODUCTION: A PHYSICAL EXAMPLE

In this article we develop a method for the analysis of systems of the

form
x = f(x) + eg(x;t), (1.1)

( )
) e il [f](u,v)] lg,(u,v;t) S
where x = [v] , and f = tfz(“’v))’ g = gz(u,v;t) are sufficiently
smooth (bounded) functions and g is T-periodic in t. In examples of in-

terest g will generally also contain parameters

g,(x:t) = glxstiu) w€ R". (1.2)

The unperturbed system,

x = f(x), (1.3)

is assumed to be integrable. In particular, we shall concentrate on the

3 Hamiltonian case, in which a real valued function H :IR2 € R exists and

fluv) =0, fluw = - 3 (1.4)
The results we describe here can be generalized to multidimensional

systems and even to infinite dimensional Hamiltonian systems arising on
evolution equations in studies of partial differential equations (cf. Holmes
and Marsden [1981a]), and to the study of multidegree of freedom Hamiltonian
systems with perturbations which do not depend explicitly on time (cf.
Churchhill [1980], Holmes and Marsden [1981b,c]).

. Qur basic assumption, made precise in Section 3, is that the unper-
turbed system (1.3) possesses a nondegenerate (hyperbolic) saddie point

P, witi a homoclinic orbit % = {g°(t)|t € R} such that

SR g L

pre

|




1.2

1im qo(t) = 1im qo(t) =p

t+ + t+ e 0 (]‘5)

We further assume that the interior of T® 4s filled with a one-parameter

family of periodic orbits ¥ = {qa(t)la € (-1,0), t € [O,Ta]} where Tu

is the period of gq"(t),
lim g2 (t) = q°(t), (1.6)
a+ 0

and lim qa(t) = qﬂl is an elliptic fixed point or center, c¥. Figure 1.1.

Q-

The homoclinic orbit can be replaced by a homoclinic cycle connecting several

Figure 1.1. The unperturbed phase portrait of (1.3).

saddle points. Such orpits and c¢ycles filled with periodic motions occur
naturally in the phase planes of single degree of freedom nonlinear Hamil-

tonian systems; the pendulum:

9 +sing =0, (1.7}

and Duffing's equation with negativ2 linear stiffness:

y’Y*Y350. (]8)

provide examples. We se.ect Duffing's equation as our major example in

subsequent secticns because of its importance in mechanics, which we now
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briefly indicate. For more details see Tseng and Dugundjii {1971], Moon
and Holmes [1979], Holmes [1979], Moon [1980]) and Holmes and Marsden

. [1981a].

Consider a slender elastic rod, clamped at one end in a rigid frame-
work and constrained to move in a plane (Figure 1.2). Two magnets attached
to the frame as indicated cause the beam to buckle either to the left or

+=~strain gage
f cos Wt <7 . ..- beam
. N N
S 7-s WS v B ek
: framne s s T

j

e T —————— e~ -

Figure 1.2. The magnetoelastic beam
(from Moon and Holmes {1979])

right, the central position being unstable. The whole framework is now
moved sinusordaliy, so that the Beam vidrates under 'inertial’ excitation.
For srall excitation amplitudes, periodic motions are observed aboyl either
stable equilidrium, but as the amplituée s increased an apparently suydden
: irarsition to a 'chaotic snap through' motion is obsers~d. In this state,

tre beam gsciliates irregularly about first one and then the other eguilib-

rium.  An exarpie of such 3 motion, measured from a strain guage at the
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beam's root, is shown in Figure 1.3.
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Figura 1.3. Nonperiodic motion of (a) the beam {from Moon and
Holmes [1979]) and (b) the forced Juffing equatic:
(from Holmes [1979]).

As shown Ly Moon and Holmes [1979], the nonlinear partial differential
equations of an inextensible elastic rod in a nonuniform magnetic field
can be truncated in a3 single mode Galerkin approximation to yjeld Duffing’s
equation:

. 3
Yy-y+y =0, (1.9)

wnere y = y{t} 1is the (nondimensional) amplitude of the first moce of
vidration ang dicsipation is ignored. On the introduction of weak dissipa-

tion {aerodynamic damping} and perigdic forcing one cbtains

- 3 .
¥y vy o= ey COs Wb - &) .

,.
ot
et
=)

—

which is the equation %0 be studied in Sections 4-6 of this article.
in the following section {2} we introduce some basic concepts from the
N Gualitative theory of dynamical systems and then in Section J state and
sketch the groofs of the results on perturbed integrable systams. In Lac-

» tion < we 3pply these results to Quffing's equaticn andé then, in Section 5,
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review more of the relevant abstract theory. Finally, in Section 6, we
bring the abstract theory back to bear on Duffing's equation in an attempt

to understand irregular motions such as that of Figure 1.3. In this article,
although we assume some familiarity with the qualitative theory of dynami-
cal systems and bifurcation theory, we do attempt to introduce or review mest
of the important aspects necessary for our study. Background material on
differential dynamics may be found in Chillingworth [1976], and on bifurca-
tion theory and nonlinear analysis in Iooss and Joseph [1980] and Chow and
Hale |1981]. The latter reference, and Chow, Hale and Mallet-Paret L1980]
contain many of the results of our Section 3, but presented from a different
viewpoint. The book of Andronov, Vitt and Khaiken [1966] continues to pro-

vide the best background in nonlinear oscillations.
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2.1

2. POINCARE MAPS AND INVARIANT MANIFOLDS

We consider the periodicaliy forced system

%= £(x) + eg(x,t); x € RD, glx,t) = glx,t + T) (2.1)

which can be rewritten as an autonomous system defined on the 'toroidal’ phase

space IRZ X S]:

f(x) + eg(x,8)

e
i

. };uﬁ)ERZX§, (2.2)
6 =1

where S1 = IR/T, the circle of length T. This naturally copes with the

T-periodicity of the vector field. We next define a cross section for the

flow:

t
0 2

£ = {(x,8) € R® x s‘!e = t, € [0,T)}, (2.3)

and a first return or Poincaré map

O (2.4)

obtained by following orbits (x(t +t ), 8(t + to)) based at points
t t

(x(t.), t)ez O to their next intersection with I °. We have

0 O)

t

PEO(X(O)) = (x(T+t ), T+t) (2.5)

)s t))

0 0

and w denotes projection onto the first factor. When ¢ = 0, the unper-
t t
Poo is identical on every section I © in view

wnere (x(t + to), t o+ to) is the solution of (2.2) based at (x(t

u

turbed Poincaré map Py

1

of the invariance of X = f(x) under time translations. P_ 1is given simply

0
by the time T flow map of the unperturbed eguation
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P (x(0)) = x(T) , (2.6)

where xo(t) is the unperturbed solution of 2.1 based at x(0). The per-

t
’ turbed maps Pso differ on different sections but any two are diffeomorphi¢
t 7 t
and P° =po,
€ €

The Poirce:é map captures the dynamics of (2.1) in the sense that T-
periodic orbits of (2.1) correspond to fixed points of PZ°, mT-periodic
subharmonic: correspond to periodic cycles of period m and stability types
corresEond. The study of fixed and periodic points of the two dimensignal i
map P;O is generally casier than that of the corresponding periodic motions
in the three dimensional flow of (2.2). 4

Suppose that the map P (the sub-and superscripts will be dropped
where they are not explicitly needed) nas a nyperbolic fixed point p. This
implies that the linearized map OP{p] has eigenvalues Ai with modulus
(A ] # 1,1 =1, 2 asink, a saddle or a source. The stable manifold §

theorem (cf. Chillingworth [1976], Hartman {1973], Hirsh-Pugh-Shub [1977])

and Appendix A) asserts that, in a neighborhood U(p) there are smooth local g

S
loc

the linearized problem

(p), W (p) tangent to the eigenspaces E°, EY of

stabie manifolds W 3
loc ;

£ =DP(p)E , (2.7)

and of dimension s, u (s + u = 2 here) where s( resp. u) is the number of
eigenvalues with moduli less than 1 (resp. greater than i). These manifolds
are simply defined as the sets of points asymptotic to p under forward

(resp. backward) iterations of P

Wy (P) = (x € U(p)[P"(x) € U(p), ¥n, and P"(x) ~ p as n ==},
r‘ =~ -
w?oc(p) = {x € U(p)|P™"(x) € U(p)yn, and P"Mx) »p as n =)
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and global manifolds are obtained by iteration of the local manifolds

backwards (resp. forwards):

H
C
o
[}
=
—
=
wn
—
p=]
~—
~——
-

W (p)

u n, u .
W U p )
(p) 50 (wloc(p))

Of course if both eigenvalues 1ie inside (resp. outside) the unit circle
then w“(p) (resp. WS(p)) is empty.

We note that while locally they are smooth submanifolds of IRZ,
ws(p) and Hu(p) are not necessarily submanifolds globally, since they
may wird back and forth and acéumulate on themselves, as they do in the

specific exampies to follow (Figure 2.1).

T NG

W (p)

() \\\__//7 /

Figure 2.1 Stable and unstable manifolds

loc

It is important to reaiize that the orbit of a map (P"(x)} is a
sequence of puints, rather than a curve 25 in the case of orbits of flows
arisine from vector fields. Eacii of the curves W(p), Wip) in Figure

2.1 contains a one parameter family of such oruits. Uniqueness of solutions
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2.4

implies that the stable (or unstable) manifolds ws(pl), ws(pz) of two
distinst points cannot intersect. and nor can such a manifold intersect

itseif.

A homoclinic point q to a hyperbolic saddle point p is a point

whose orbit approaches p under both forward and backward iterates of P:

1im Pn(q) = 1im P'n(q) = p,
n->o N+

thus q € w“(p) O WS (p). When two plane curves intersect at a point they

generally do so transversely, so that their tangent vectors span IRZ.

Such a point q € W(p) 33ws(p) is called a transversal homoclinic point

The existence of one such

and will play an important réle in our analysis.
point immediately implies the existence of infinitely many, lying on the

orbit {P"(q)}. Moreover, the A-lemma (Palis [1963], Newhouse [1980] and
Appendix A)implies that WY(p) accumulates upon itself, and W (p) accu-

mulates upon itself, leading to the complicated structure of Figure 2.2.

Figure 2.2. Transverse homoclinic orbits. See Section 5.1
for discussion of the réle of the rectangle S.
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In Section 5 we discuss some implications of such homoclinic orbits,

but first wedevelop a method for their detection in specific examples.

|
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3.1

3. PERTURBATIONS OF INTEGRABLE SYSTEMS: MELNIKOV'S METHOD

The basic ideas to be developed in this section are due to Melnikov
{1963]. More recently Chow, Haie and Mallet-Paret [1980] have obtained
similar results using alternative methods, and Holmes and Mﬁrsden [1981a,b,c]
have applied the method to certain infinite dimensional flows arising from
partial differential equations and to multidegree of freedom autonomous
Hamiltonian systems. The basic idea is to make use of the globally compu-
table solutions of the unperturbed integrable system in the computation of
perturbed solutions. To do this we must first ensure that the perturbation
calculations are uniformly valid on arbitrarily long or semi-infinite time
intervals. |

First we make our assumptions precise. We consider systems of the form

x = f(x) + eg(x,t); x= [3] € le R (3.1)

where f = fz(x) y g = gz(x,t)J are sufficiently smooth (C', r > 2) and

bounded on bounded sets and g is T-periodic in t. For simplicity we assume
that the unperturbed system is Hamiltonian with f] = %%, f2 z - %%n The
non-Hamiltonian case is considered by Melnikov (1963] and Holmes [1980].

Specific assumptions on the unperturbed flow are:

Al. For ¢ =0 (3.1) possesses a homoclinic orbit CP(t) to a hyperbolic
saddle point Py

A2. Let %= (¢°(t)|t € R} U (p,}. The interior of O is filled with

a continuous family of periodic orbits q%(t), a € (-1,0). Letting

d(x,) = inf jx-q| we have Vim sup d(g%(t), T) = 0.
qEr a+ 0 teR
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A3. lev h = H(q*(t)) and T, be the period of q*(t). Then T, isa
differentiable function of ha and dTa/ahu >0 inside fo.

mone /&M'cﬁ.('é;,
We note that A2 and A3 imply that Ta > °v»Aas a + 0. Many of

the results to follow can be proved under less restrictive assumptions. In
what follows we indicate the proofs but omit some details. See Greenspan

{1921] for more information.

3.1 Bifurcations to Homoclinic Orbits

Lemma 3.1. Under the above assumptions, for e sufficiently small (3.1)

has a unique hyperbolic periodic orbit yg(t) =Pyt 0(e). Correspondingly,

t t
the Poincaré map PEO has a unique hyperbolic saddlie point Deo = Do + 0(¢g).

Proof. This is a straightforward application of the implicit function

theorem, our assumptions implying that DPO(p ) does not contain 1 in its

)
spectrum and hence that Id - DPO(po) is invertible and there is a smooth

curve of fixed points in (x,e) space passing through (po,O). .

. . : s u
Lemma 3.2. The local stable and unstable manifolds w]oc(ye), N]oc(Ye)

of the perturbed periodic orbit are c" close to those of the ynperturbed

periodi¢ orbit Py X S]. Moreover, orbits Qz(t’to)' Qz(t.to) lying in

t
ws(y ), NU(YE) and based on I ° can be expressed as follows, with uniform

¢
b

validity in tne indicated time intervals.

Qi(tity) = @@t - t ) + eq}(t,t ) + O(cD), t & [t =),

(3.2)
u . 0 U 2 ®
qeltoty) = a(t - t) + eq(t,t ) + 0(e"), t & (-=,t ]
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Proof. The existence of the perturbed manifolds follows from the invariant
manifold theory of Hirsch, Pugh and Shub [1977], cf. Hartman [1973]). We

fix a v-neighborhood (0 < g << v <<1) U, of p, inside which the Tocal
perturbed manifolds and their tangent spaces are e-close to those of the
unperturbed flow (or Poincaré map). A standard Gronwall estimate shows that
perturbed orbits starting within 0(c) of q%(g) remain within 0(c) of
qo(t - to) for finite times and hence that one can follow any such orbit
from an arbitrary point q°(0) on r° outside UV to the boundary of Uv’
at, say t = t1. Once in UV, if the perturbed orbit qz is selected to
lie in ws(ye), then its benavior is governed by the exponential contrac-
tion associated with the linearized system. Straightforward estimates then
show *hat |qZ(t,t0) - qo(t - to)l = Q(e) for t€ (t],w). Reveising time,

one obtains a similar result for qg(t,to). |

Sanders [1980] was the first to work out the asymptotics in detail.
This lemma implies that solutions lying in the stable manifold are uniformiy

approximated by the solution q? of the first variational equation:
.5 - Oy s Oy _ .
dq(tat ) = DF(Q°(t - t ))ay(t,t)) + gla (e -t )it) . (3.3)

A similar expression holds for q#(t,to). Note that the initial time,
to appears explicitly since solutions of the perturbed systems are not
invariant under arbitrary translations in time.
t
- Uy, O $, O
We next define the separation of the manifolds W (pC ), W (p, )

t
on the section I ° at the point q°(0) as

dlt,) = al(e ) - aS(t) (3.4)

def . .
where qg(to) == qg(to'to)’qz(to) def qé(to.to) are the unique points
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t t t
on Nu(peo), ws(peo) ‘closest’ to P€° and lying on the normal

fl(qo(o)) = (fz(qo(o)). fj(q°(o)))T to T at q°(o). The C" closeness
of the manifolds to I, and Lemma 2 then imply that

flag) ~ (ay(t,) - aj(t,))

. 2
d(t) = € IFTa (o] + (%) (3.5)

Here the wedge product is defined a ~b = a]b2 - a2b1 and f ~ (q? - q?)

i

is the projection of gqj - q? onto fl, cf. Figure 3.1.

Figure 3.1 The perturbed manifolds and the distance function.

Finally we define the Melnikov function

Megh = | FQ(E - 6g)) - g(@’(e - e )ut) dt (3.6)

Theorem 3.3. If M(to) has simple zeros and maxima and minima of 0(1), then

for ¢ >0 sufficiently small wulx%o) and us(peo) intersect transversely.

—

l

t
f M(t ) remains bounded away from zero then N“(péO) n us(pe°) =
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Proof. Consider the time dependent distance function

At,t) = #@%(t - £)) ~ (af(tst) - aj(t,t) (3.7)

def S
= 4 (tsto)'A (t’to)

and note that d(to) = eA(to,to)/lf(qo(u)); + 0(32), from (3.5). We com~

pute

S a%(t,t)) = 0F(e%(t - £ ))a (b - t) ~qy(t,t)

¢ FlQ(t - t)) ~afltat)

Using (3;3) and the fact that do = f(qo) this yields

8% = DF(°)F(a%) ~ qf + £(a°) ~ (DF(a°)q] * 9(a®,t))

. trace Df(q°)a® + £(q°) = g(q%,t) (3.8)

But, since f 1{s Hamiltonian, trace Of = 0. Integrating (3.8) from t

to =« we have

[

Slmity) = 83(tte) = [ AR - £)) 9@t - t)ut) gt (3.9)

%

':e Sm = 1i Y - ~aqd i Q S

% However 47 ( ,co) tjﬁ; £(q” (¢ to)) q}(w,to) and Jlﬂ» q (t ty! 7 Py
? so trat  lim f(q%(t - t.)) = 0 while q?(m,to) is bounded, from Lemme

; tew 4

. 3.2- thus As(m,to) = @ and (3.9) gives us a formyla for as(to,to). A

similar calculation gives

oy oui e e TSNSV
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Y

8% (tyty) = | FQ(E - £)) - gla’(t - g )it dt, (3.30)

-00

and addition of (3.9) and (3.10) and use of (3.5) yields

a(ty) = eM(t,)/F(a°(0))| « O(&7) (3.11)

since  |£(a°(0))] = 0(1), M(to) provides a good measure of the
t
separation of the manifolds at q°(0) on £° In particular, if

M(to) oscillates about zero witn maxima and minima independent of ¢,

then qﬁ(to) and qi(to) must change their orieatiation with respect
: t t
to fl(qo(O)) as t% varies and hence N”(Peo) and wS(P€°) intersect.
If the zercs are simple {%%— # O}, then it follows that the intersections
0

are transversal. Conversely, if no zeros exist, then qg and qz retain

the same orientation and hence the manifoids deo not intersect. B

Rema:.s 1. We note that M(to) is T-pericdic in t_, as it should be,

t t +T
since the maps P % and PE° are identical and thus d(t ) = a(t, + 7).

In computing H(to) we are gffectively stanaing at 4 fixed point q°(0)

on a moving cross section ZMO and watching the perturbed manifolds oscil-
late as t, varies. In his analysis, Greenspan [1981] fixes tne section
and moves the base point ¢°(0).

2. If the perturbation g i3 derived from a (time dependent) Hami'-

-—

tonian function G, gy = %%. g9, ® - %5. then we have
a0 0
M(ty) = -] (K@ (e - to)). Glar(t - tyhsthh at, (3.12)

-y

where {«, »} denotes the Poisson bracket. This is a natural formula if

one recalls that the first variation of the unperturbed Haailtlonian energy
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H will be obtained by integrating its evolution equation
H = (H,6} (3.13)

along the unperturbed orbit ¢°(t - to), cf. Arnold [1964].
3. If g-= g(x) 1is not explicitly time dependent then we have,

using Green's theorem

<« @

| f0°t - 1))~ glad(t - et = [ (g, - £97) o

= J(QZ(UG,VQ)QO - gl(uo,vo)Qo) dt

= J gz(u,v) du - g](u,v)dv
r

=

J trace Og{x) dx. (3.14)
int T

Thus the formula obtained in Andronov et al [1971] is a special (pianar)
case of the more general Melnikov function which describes the ‘splitting’
of the perturbed saddle seperatrices.

We now turn to the tase in which the pertyrbation g = g{x,<;u)

depends upon parameters u € ®P. for simplicity we take p = 1.

Corollary 3.4. Consider the parametrized family x = f{x) + cgi{x,tiu),

u» € IR and let hypotheses Al-3 hoic. Suppese that the Melnikgv function
2
: ? 3“ £ iBH A%
4} h z Tkl T Vi @ ] s {1y B 0 and
M(t,,u) has 2 quadratic zero N\.,,b) 3t (taug) = 0 but ;:? {ruyi # 0en

= (:.ub) # 0. Then ug * e * 0{¢) is a bifurcation value for which

quadratic hamoclinic tangencies occur in the family of systems.

e IR A SN R e e e leie e e e et b s g s




Proof. By hypothesis, using (3.5), we have

d(tyon) = efalu - ) + 8t - 1)2} + 0(elw - ublz) + 0(62) (3.15)

where we have expanded in a Taylor series about (to,u) = (r,ub) and a,
B are finite constants. Taking e sufficiently smali we find that
d(to.u) has a quadratic zero with respect to t, for some g near .,
and hence that Nu(pZ), Ns(p;) have a quadratic tangency near q°(0) on

' ®

This result is important, since it permits us to verify in specific
examples one of the hypotheses of Newhouse's [1979] theorem on wild hyper-
balic sets (see Section 5).

We next turn to the perturbations of the per’ .{ic motions qa inside T.

3.2 8ifurcations of Subharmonics

Once more we start =ith a perturbation lemma:

Lemma 3.5. Llet g*(t - to) be a periodic orbit of the unperturbed system
t
b £ 9 with period T . Then th ist
ased gn T with period o Then there exists a perturbed orbit

q:{t,to), not necessarily periodic, which can be expressed as

S, - Ak ¥ ﬁz \
qc(‘-vto) q (t = to) + '.Q]\tuto) * 0(!. ) (3-16)

=

vniformly in t € {to.to + Ta}. for ¢ sufficiently small ang al)

a € {-1,0).

Progof. The proof reites heavily upon the geometrical structure af the per-

turbed stadie and unstable manifolds established in Lemma 3.2. We again

e —————r et e i
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t
fix a neighborhaoa Uv and take a curve of initial conditions q“(o) es©

not lyine in U, and with ;iyo q%(0) = q°(0). Any orbit q%(t - to)
starting on such a curve takes a finite time to reach the boundary of UV
as t increases or decreases and hence we have |qz(t,to) - Xt - to)l =
0(e) for tE€ (tO -t t0 + tz), say. Once in U  the perturbed and
unperturbed orbits may take arbitrarily long to pass through and exit,
since, 385 a -+ 0, they pass arbitrarily close to the saddle point Py (or

to Ye)‘ However, for fixed ¢ = €, e can find a set of orbits lying

sufficiently close to the stable and unstable manifolds which remain within

0(e) of those manifolds until they enter a ce neighborhood Uce of p,
which is chosen to contain Yes Figure 3.2. This implies that we can
extend our estimate uniformly to t € (t - ts, t + t4), where tq + t,
is the iime required for the unperturbed orbit q* to pass from the
boundary of U c and return to it. 1t remains to check that qg(t,to)

and q*(t - tg) remain within Q(e) during the arbitrarily long passage

t

u )
. wloc(pa )

Figure 3.2. Orbits i U, and Uee

AR s e S ek ot s
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through Uce' This follows from the ‘'shear'on the flow near p; one has

to check that qz exits from UCE ‘at the correct time' and since orbits
passing neav. Y, take arbitrarily long to exit, and those near the boundary
of ch arbitrarily short times, at least one orbit can be found for any
given (unperturbed) time of passage. It follows that an initial condition
qi‘(to)ext0 can be picked with 0(e) of 9*(0) and q°(0)~ such that fhe
orbit qg(to) will remain within 0(e) of q%(t - t,) (and qZ(t - tg))
until it reaches UCE. It will then 'transfer its allegiance' to qg(t - to)
untii it once more reaches an ¢-neighborhood of q“(O). Throughout it re-
mains within 0(e) of g™t - t,). This takes care of orbits with un-
perturbed periods Ta larger than some T& = T&(ao) depending on €y
For orbits with periods shorter than T&(eo) a standard Gronwall estimate
ensures g-closeness. Then we have our result for all Ta and € = €y
But since f and 'g are ' the solution wili vary smoothly in e and

thus the result holds for all O <eg < e For details see Greenspan [1931].H

0

We next define the subharmonic Melnikov function. Letting qu(t - to)
be a periodic orbit of period %}, with m and n relatively prime, we
set

(mT

TATE Iy £a%(t = t)) ~ glg™(t -t ), thdt.  (3.17)

o]

Theorem 3.6. If M/ (t.) has simple zeros and maxima and minima of 0Q(1),

0
and dTa/dha £ 0, then for 0 < e < g(n) (3.1) has a subharmonic orbit of

period mi. If n =1 then the result is uriformly valid in 0 <e <

—— 0"

Proof. A calcuiation similar to that of Theorem 3.3 shows that
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mT

£(g%(0)) ~ (az(t, + mT,t ) - q2(t .t )= sJ

%(t,t, Fa¥(t - £ )

0

~gla®(t -t )st)at/[F(@(0))] + 0(eD).  (3.18)

Thus if Mm/"(t ) has a simple zero then there is a perturbed orbit
0 t

qz(t,to) which leaves qg(t ) and returns to L ° at qg(t0 + mT) with

0
t
the vector q*(t_ +mT) - ¢*(t ) €z © parallel to f(q*(0)); i.e. the
€' 0 €'°0

ml
projection cnto fl(qa(O)) vanishes. Letting MB(tO) = jo f(qs) 5 g(qB,t)dt
for B8 near o, it is clear that MB depends smoothly on 8. For

B<a,, <T and for 8 > a,T, > T ; it therefore follows that we can find
,B o8 B B8 ! B ¢4
perturbed orbits qel, qez, By <a< 32 such that the vectors
Bi B, t Bi
q (tO + ml) - qe‘(to) c:® are parallel to f(q '(0)), but that they

have opposite orientations. Thus the curve of initial conditions connecting
8 B t
qel(to) to qaz(to) is mapped back to the section £ © under m iterates
t t
of PE0 as indicated in Figure 3.3. It follows that (PEO)m has a fixed

point near qa(O), and nence that there is a subharmonic of order m/n.
The nonuniformity for n > 1 arises because Lemma 3.5 applies only to
orbits with times of length Ta = ml making one pass through Uv(p) and

‘ultrasubharmonics' of period mT/n make n passes through Uv(p). u

R
qEZQEQ:;TIl—— fixed point

Figure 3.3. Tne proof of Theorem 3.6.
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We also have a bifurcation result analogous to Corollary 3.4:

Corollary 3.7, (Consider the parametrized family x = f(x) + eg(x,t;u),
m/n

u € IR, and let hypotheses Al-3 hold. Suppose that M
' n aMm/n 2m/n Mm/n
quadratic_zero VAL S 3 MZ , 8 5 $O at  wo=u. Then

0
=y + 0(e) 1s a bifurcation value at which saddle-nodes occur.

(to,u) has a

=0;
) ot

u

m/n

Proof. The proof is identical to that of Corollary 3.4. We will consider

the stability types of the orbits created in this bifurcation in Section 3.3.8

The next result is a generalization of oneobtained by Chow, Hale and
Mallet Paret [1980]. It implies that the homoclinic bifurcation is the

Timit of a countable sequence of subnharmonic saddle-node bifurcations.

Theorem 3.8. Let Mm/1(to) = Mm(to), then
lim M'(t ) = M(t). (3.19)
M o 0

Proof. We must show that the integral
mr
(2 o3 ¢4
t) = J' flq*(t - t.)) ~ g(g™(t - t,)»t) dt  (3.20)
_ml
>

converges to

o«

Mtg) = | Rt t)) ~ (et b)) g, (3.2)

as o -0 and m + o. (Note that the periodicity of Mm(to) implies that

we can change the limits from 0 +mlT to -~ gl - g}.)

Letting




e
PN .
PV DS PPN SO

= {*t)|te [0,7,)} and = (q°(t)|t e R} U {p,} we select a
neighborhood Uv(p) such that the arc length of ro, ™ n Uv(p) is less
than v. Choose <t such that q°(-r) and q%(t) both lie within UV.

Then for o close enough to zero, q¢*(xt) also lie in UV. We have

~

T T
Mt ) - Mt ) = J £(q%) ~ g(q°,t)dt - f f(q*) ~ g(q“,t)dt]
L/ ~T -T

pe

-T
+ f £(¢°) ~ g(q®,t)dt + r £(q°) ~ g(a%,t) dt  (3.22)
-0 T

=3

mT
-1 2
R - gle®de - |7 #ta® » g(qa,t)dt] :
- T .

The smoothness of f and g and continuity of solutions with respect to
initial conditions implies that, given v > 0, there is an a' <0 such
that, for o € (a',0) the first [bracketed] term of (3.22) is less than
v. Clearly, as a's 07, m+«. The second term may be expressed as the

difference between two integrals over arcs of r° and 1% Using the arc-

length increment ds = /002 + 102 gt = 1£(q°)ldt on T° and ds = |f(q%)]dt

on Fa, the second term becomes

ngo“’ 0 . s *) L s
E ) ~ gttty —E &) s gl B (329
Q°(-1) LCIO T (%)
Our assumptions on g imply that  sup lg(q%,t)] = K< w, and thus
q€ 8,,(p)
t ER

that the second term is bounded by 2Kv. Hence, for o« € (a',0)

———— s R e
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M(t,) - M2 ) < (2K + 1)y

and [M(t)) - M'(t )] ~0 as o ~0. W

0

3.3 Higher Order Terms and Stability

We next develop a perturbation method which enables us to Compute the
global structure of the perturbed Poincaré map PZ°, and to determine how
the sets of subharmonics and homoclinic orbits are related. Our starting
point is Melnikov [1963, §7], although we have somewhat modified his trans-
formations.

Since the unperturbed system is Hamiltonian, a symplectic change of

coordinates to action angle variables can be found in the interior of o

I =1I(yv) 0=0(4v) . (3.24)

Under this chenge of coordinates (3.1) becomes

t o (el al def
o e[ﬁ 9t 3792] == €F(1,0,t)

(3.25)
. ) 30 ) def
Q= Q(I)“'El["a'a‘ 91 + '5792} o GkI,O,t)
ay, _ oH ;.o _ 20
where Q(I7) = ET'(I ) = T s the angular frequency of the unperturbed
a
orbit q*(t - to) with action I% = I(q®). We now consider small perturba-
tions of a resonant orbit Ta = %; . Letting
I=1%+ /eh
(90m)
0= q(I%t +¢ = l%‘,{ﬂ t+o B B4y, (3.26)

we obtain
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h = JeF(I® Ot o+ bt} + eF' (1% 0% + ¢,t)h ,

’ ’ - +0e¥?) (3.27)
6 = /ea' (INh + c@I%a® t + o,t) + "(1)h%)
where ' denotes 5%= Here we have e<panded in Taylor series and uszd the

fact that Q' # 0, since dTu/dha # 0. Noting that

..... 1 ol o1
woww . cay e ™ oweiamho

the leading term of (3.27) can be rewritten

b= /8L f(%(E = 0/2%) gt - 0/6%),8)
Q

¢ = /e (1%)h.

(3.28)

Provided that Q'(I%) is bounded, for V& sufficiently small tha averaging
theorem (cf. Hale [1963]) can be applied to (3.28) to yield

. mT
We Vg ) o) ~ ol - o) et

or

B - /E_LM”‘/"[}Z] ’
2mn o (3.29)

§ 7 Ve Q' (INR .
Under the averaging tneorem, the hyperbolic or elliptic fixed points of
(3.29) correspond to small periodic motions of (3.27) and hence to sub-
harmonics of order m/n of (3.1). It is, of course, no coincidence that
necessary and sufficient condition for the existence of such fixed points

is that the Melnikov function Mm/" have sinmple zeros and that n‘(Ia),
Q
QIT) £ 0 (dTG/dhQ #0).

We note that (3.29) is astructurally unstable Hamiltonian system with
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Hamiltonian

'
ua@P%—-VGﬂ. (3.30)

« where V(¢) = i%ﬁ' JMm/n($79“)d¢, and thus to determine the stability and

the global behavior of orbits of the unperturbed system near the resonant

orbit q%, we must investigate the terms of 0(c). Letting f ~ g = E%E-M“V" -%

+ 5(¢,t) where F has period T and zero mean, the averaging transformation
is

h+h+v/e JE(_‘;’t)dt; ¢ + 3 ’ (3.31)
where the antiderivative is defined up to a t-independent term, generally

taken to be zero. Using (3.31), (3.27) becomes

== 1y . = of - 2 [F geaf
h=ve EﬂM’“ (o/2%) + e((F(1%,0% + §,t)h - % JF dte'h),
‘ + 0(83/2)
o = /EQ'n + e(Q"h?' + G(I%,0% + 3,t) + Qj Fdt).
(3.32)

Since F has zero mean (it is simply a sum of fourier components), j? and

5%—I F also have zero mean and on a second application of averaging to the

0(e ) terms of (3.32) we obtain (dropping the bars)

h = /e QL—HMJ“M(WQG) + ¢F'(¢)h, ;
s oYy, (3.33)
¢ = Jen'h + E(ﬂ“h?' + G(g)) .

- where F', G are the averages of F' and G. As Morosov [1973] notes,
this second order averaging generally suffices to determine the stability
. of the fixed points and hence of the bifurcating subharmonics, at least for
R' <= and e sufficiently small. However, as we shall see in our appli-

catfon in sections 4 and 6, one can also obtain global information on the
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Poincaré map by considering the time T flow maps of the averaged systaems
(3.33) in the neignborhood of each resonant and nonresonant periodic orbit.
These results on the full Poincaré map P, follow from application of the

averaging theorem (Hale [1969]).
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4. GLOBAL BIFURCATIONS OF DUFFING'S EQUATION

In this section we apply the results of Section 3 to the Duffing equa-
tion with weak sinusoidal forcing and damping. Written as a system, we
have

i=v (4.1)

V=uy- u3 + e(y cos wt - 8v) ,
where the force amplitude, vy, frequency w, and the damping § are
variable parameters and ¢ is a small scaling parameter. For € = 0 the
system has centers at (u,v) = (£1,0) and a hyperbolic saddle at (0,0).
Tne level set

v2 u2 u4
(U,V)=T-T4’T=O (4.2)

is composed of twd homoclinic orbits,rs, F? and the point p, = (0,0). The

unperturbed homoclinic orbits are given by

qg(t - to) = (V2 sech(t - to).- vZ sech(t - to) tanh(t - to)).

Q= -qf . (4.3)

Within each of the loops F? there is a one parameter family of periodic

orbits which may be written

, ( t-t 1 52 t-t t-t
Q:(t - to) z‘ 2 dn 0 * K s ﬂk 2 sn oak!cn -— "“*‘0—, k]“t
W2-« Y 2 - k AN IR VA JJ

K

-

Q(t -t ) = -af(t -t ), (4.4)

where sn, cn and dn are the Jacobi elliptic functions and k is the
k

elliptic modulus. As k =1 q, = q? v {0,0) and as k -0 QE - (21,0). We

nave selected intial conditions at t = tO:
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a2(0) = (2,0}, (o) = [: I o} . (4.5)

The orbits lying outside Fg U {(0,0)} V rf are given by

~k |l [""‘o 2k t-t
q(t-t)= en| ———=, k|, - =5 x
% -1 | J2Z - 221 ["""1
t - t
dn (4.6)
J -1

where k € (1//2, 1) and ak - q+ v {(0,0)} V q as k~+1 and ak becomes
unbounded as k - 1//2.

We note that the Hamiltonian (4.2) can be rewritten within I, {or
F?) in terms of the elliptic modulus k.
ky _ k% -1 def
H(q ) = ———-—2-7 = hk . (4.7)
(2 - k%)
Moreover, the period of these orbits is given by
T, = 2K(k)v/2 - k2, (4.8)

where K(k) is the complete elliptic integral of the first kind. T in-

creases monotonically in k with lim T, = Y2n, lim T, = = and
k-0 k +1
di dT /dk
m >0 (4.93)
and
dT )
Tim 5 o, (4.9b
k1 9N

We tirst compute the Melnikov function for qg (the computation for

q° 1is identical):
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o
M(to.y,é,w) = j vO(t - to)[y cos wt - 6Vo(t - to)] dt

-0

o
= —JQ&J sech(t - to) tanh(t - to) cos wt dt
2 2
- ZGJ sech®(t - to) tanh™(t - to) dt . (4.10)

The integrals are easily evaluated .the first by the method of residues) to

yield
M(t §,w) = A8 oymw sech(“w sin wt (4.11)
O’Y' * 3 Y \"2‘ o . .
If we define
4 cosh |t
RO(w) = ——JZI , (4.12)
321w

then it follows from Theorem 3.3 that if v/6 > R%(w),W’(P_) intersects
u“(PE) for € sufficiently small and if vy/§ < Ro(m),ws(PE) n w“(PE) = D,
Moreover, since M(to.y.é.m) has quadratic zeros when y/6 = ROQ»), it
follows from Corollary 3.4 that there is a bifurcation curve in the Yy, &
plane foreach fixed . tangent toy = R%w)S aty =6 =0 on which quad-
ratic homoclinic tangencies occur. We display some calculated bifuyrcation
curves in Figure 4.1, below.

We next compute the Melnikov function for the resonant periodic orbits.
we will only consider those within r?, qi(t - to). The resonance condition
is, from (4.3)

2K(k) 2 - & = %ﬁ? (4.13)

2
and for each choice of m, n with %3? > v2n (4.13) can be solved to give

2 unique resonant orbit qf(m'"). Computing
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Mm/"(to.v,é.u) = [» vk(m'")(t - to)[v cos wt - évk(m'“)(t - )] dt, (4.18)
-0

Using the Fourier series for (4.4) and Remark 3 following Theorem 3.3, we

obtain

MY P (t057,6,0) = =60 (m,n) = v,(m,n,0) sinwt , (4.15)

where J;(mn) = $(2 -+ k¥(m,m)2E(k(m,n)) - ak'¥(m,n)K(k(m,n)) 1/ (2 k¥ (m,n)) Y2,
and
‘ 0; n#l
Jy(m,n,u) =
2 /2m secn e t - } ;0=

Here E(k) 1is the complete elliptic integral of the second kind and k'

is the complementary elliptic modulus k‘2 2] . kz. Defining

m J‘(m,l)
R(w) = JEHETT:;Y 3 (4.16)

we conclude from Theorem 3.6 and Corollary 3.7 that if +/§ > Rmhg) then

there is a pair of subharmonics of order @m (pericd 2mm/w) which appear

on a bifurcation curve tangant to y = Rm(m)é at y =4 =0,

Routine computations verify that

Tim N1

{to!\f'évm) = H(tov\f;dﬁ“) » {4-}7)
e

that the limit is approached frem delow and that the rate of convergence is

extremely rapid {cf. Figure 6.8).
Similar computations for the orbits lying outside rf v {(0,0)) v ;®

give the Meinikov function
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ﬁm/n(to'Y;G,m) = ‘63] (in,n) - YJz(montw) Siﬂ‘u)to (4.18)

with

3y (mn) = & (2E(m,n) - Datk(m,n)) + ok (m,m2K(k(mn) /(2 mon) - 1)

and
0; n#l, m even,

/2w sech[mf%lﬁ?ill

CKim ) ; n=1,m odd.

In this case we obtain a sequence of bifurcation curves
def

Y = 31(m,1)6/32(m,1,m) B AMw)s accumulating on y = Ro(m)é from above.
Here k(m,n) 1is the unigue solution of the resonance rzlation

- aK(K)2Ke -1 = & (4.19)

wh

Ty
Formore details on the above computations see Greenspan [1981].

In Figure 4.1 we show some of the approximate bifurcation curves
v/6 = R%(w), R™w) for orbits both inside and outside the separatrix. Below,
in Figure 6.8 we show how the subharmonic bifurcation curves accumulate on
“he homocl.nic vifurcation cyrve as m - = for fixed w. We leave the
discussion of the detailed structure of the Poincaré maps for various param-

eter va.ues {v,6,u) to Section 6.

Sral
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Figure 4°1 (a) Bifurcation curves Rm(w) for subharmonics and
homoclinic orbits inside I‘O + v {0,0} v PO-'
Ri = gubharmonic of order 1, RP = homoclinic
orbit. ‘

——— B » R -



Y/é

1y

&4
'

Su.ug
'

g un

3714

21 un
'

el
.

5 \‘_____._,.«—/

-
-

>
7{1

: 7
e 4
~ /

4 4 + 1
e 2.8 j.oo 4,40 5.
w I
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5. SMALE HORSESHOES, NEWHOUSE SINKS AND CHAQTIC MOTIONS

In this section we provide a brief review of some useful results in the
. abstract thecry of dynamical systems, and in particular of two dimensional
diffeomorphisms. For background material see Smale [1963,1967], Nitecki

[1971], Moser [1973] or Newhouse [1980].

5.1 The Smale Horseshoe

Here we outline an important example of a planar diffeomorphism due
to Smale [1963]. We shall adapt the map to our specific application.

Consider a m.p F :Q » R defined on the square Q = [0,1] x [0,1]
such that F is linear on the two horizontal strips H] = [0,1] x [0,a],

HZ = [01]] X U "0-,0.]: with

8 0 -8 0
DF(p) = 3 P EH] and DF(p) = [ i p€ H,, (5.1)
0 1/a 0 -la 2

where 0 < B <q < 1/2. F 1is chosen such that the image of the strip

(011 x (a, 1 - ) falls outside Q but F(H) & v, ana F(n) %y,
are two disjoint vertical strips lying in Q as shown in Figure 5.1. By
our construction, F has a hyperbolic saddle point (0,0) and F/Q has
constant Jacobian g/o <1 and in thus a dissipative map (Newhouse [1979]).

The nonwandering set A CQ of F is obtained by intersecting all forward

and backward iterates:

n -n
A=A NN A = N FQ), = n FQ). (5.2)
. v g & n>V

1 , , .
Thus A, = QNnF(Q) = Vi U V2 is a pair of vertical strips each of width

g. It is not hard to see that Ak = h Fn(Q) is Zk disjoint vertical

N=(

v
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Figure 5.1. The Horseshoe

strips each of width ek and thus that Av = Ca x [0,1] is a Cantor set of
k
vertical intervals. Similarly Aﬁ = 520 FF(Q) s 2k disjoint horizontal

k

strips each of width o«  and A = {0,1] x Ca is a Cantor set of horizon-

tal intervals. Thus 4 = CB x Ca is also a Cantor set.
To describe the orbits of FIA we assign to each point x €A a
bi-infinite symbol sequence {aj(x)} = {...aoza.]-aoa]a2 ...} chosen such
that aj(x) =1 (resp. 2) if FJ(x) € H] (resp. Hz) and a_j(x) = 1 (resp.
2) if F'(j"])(x) € V1 (resp. Vz). The action of Fon A then corresponds
to the shift o on the space £ of all such symbol sequences, and in fact

there is a homeomorphism ¢ such that the following diagram commutes:

PO
Iy bo
T S 1
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To every periodic sequence there corresponds a periodic orbit of FIA; for
example the fixed point (0,0) has a symbol sequence {.. 117.111...}
and there is a second fixed point with sequence {... 222.222 ...}. For

details see Moser [1973]. This method of symbolic dynamics enables us

to prove the following.

Proposition 5.1. The map F has a countable set of periodic points, with

points of arbitrarily high period and an uncountable set of .non periodic

recurrent motions. The periodic points are dense in A and there is an

orbit dense in A. All the periodic points are of saddle type.

The last assertion follows directly from the form of the linearized
map OF . It is more difficult to prove that FIQ is structurally stable,
but this latter important fact implies that any sufficiently C1-close map
Foaiso possesses an invariant cantor set K homeomorphic to A. Thus
the compiicated dynamics of F cannot be removed by small perturbations.

The 'piecewise linear' map F represents an idealization of a map
which is embedded in the dynamics of any system with transverse homoclin.c
orbits. This result, the Smale-Birkhoff homoclinic theorem (cf. Birkhoff
[1927] Smale [1963], Moser [1973]) follows from the lambda lemma and the
homomorphic structure of Figure 2.2, although it can be proved independently.
We select a small rectangle S bounded by pieces of the stable and unstable
manifolds W(p), Wu(p), with a transverse homoclinic point q at one
corner. There are then integers %> %9s Ny such that A = P-zl(S).

B = PRZ(S) are disjeint and 1ie in any neighborhood U,(p}, and the map
n

n, )
P1:B+A is well approximated by its linearization ODP 1(p). This en-

ables one to find horizontal strips H], H2 C B whose images under
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RIS (248540, ) + (& +Ly4ny)

P are vertical strips V1,V2 CB. Themap P

then has a horseshoe. A careful study of the linearized map enables one to

obtain estimates of hyperbolicity and show that the behavior of

(z]+ %+n])(£]+£2+ni)

P is homeomorphic to that-of the 'idealized' map F.

Specifically, for our problem we have

t t t
Theorem 5.2. If the Poincaré map Pe0 . L 0,30 possesses a transverse

homoclinic point 9, to a hyperbolic saddle point P> then, in a neigh-
- t
oyN

borhood of q, some_power (Pe7)

cantor set A on which (P€°)N is conjugate to a shift on two symbols.

possess an invariant zero-dimensional

t
Corollary 5.3. (PEO)N/A possess a dense set of periodic points, there are

points of arbitrarily high period and there is a non-periodic orbit dense

in A, Moreover A is structurally stable in the sense that if P is

— T -

sufficiently C' close to P€°, then (P)N has a non-wandering set A
t .
and there is a homeomorphism h such that (P€°)N°h = L°5N.

The horeseshoe's non-wandering set A 1is extremely complicated. It
is of saddle type and has one dimensional stable and unstable bundles

W (A), -WY(

A) which are locally the products of Cantor sets and curves.
Letting W3(0,0), W%(0,0) be the stable and unstable manifolds of the
fixed point {...111.111...} of the idealized horseshoe, F, we have

W (A) = C2(¥%(0,0)) and WY(A) = C2(w(0,0)), and since such a A can
be chosen arbitrarily close to any transverse homoclinic point G and

hen~e to the saddle point P, in our application, it follows that

[{]

Ca(W(p_))

€

Cﬁ(wu(pe)).

W (A)
W4 (a)
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Thus the structure of the stable and unstable manifolds ws(pe), w“(pe) is
doubly important not just for establishing the existence of horseshoes, but

also in their structure. We shall return to this in Section 6.

5.2 Homoclinic Tangencies and Newhouse Sinks

We now turn to the bifurcations in which horseshoes are created. Newhouse
[1974, 1979, 1980] has studied the situation and has shown that the lack of
hyperbolicity which occurs when stable and unstable marifolds havea quadratic
tangency persists under small perturbations. Ve first require a definition.

A hyperbolic (basic) set A(F) for a two dimensional diffeomorphism F s
called wild if there is a C'-neighborhood N of F such that for any G &N

there are points x,y € A(G) such that WY(x) and ws(y) are tangent some-
where.

Theorem 5.4. (Newhouse [1979]). Let p be a dissipative saddle point of

a two dimensional C" diffeomorphisi, F (|det(DF(p)}| < 1). Suppose

wi(p), ws(p) are tangent at some point q. Then arbitrarily C" near F

there is a diffeomorphism G naving a wild hyperbolic set near the orbit of

q.

Wild hyperbolic sets are important because they imply the existence of

countably many stable periodic orbits.

Tneorem 5.5. Suppose F is a two dimensional ¢’ diffeomorphism with a

wild hyperbolic set A containing a dissipative periodic point. Then thers

is a neighboihood N of F and a residual subset 8 C N such that if

G B, then G has countable many periodic sinks.
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For a proof of Theorem 5.5 see Newhouse [1980]. One step in the proof
closely resembles a result obtained independently by Gavrilov and Gilnikov
[1972,1973], who showed that, for certain two dimensional diffeomorphisms,
the homoclinic tangencies were the 1imit of an infinite sequence of saddle-
node bifurcations in which pairs of periodic sinks and saddles are created.
To illustrate their argument, consider a one parameter family of maps Fu
such that for u <0 WY(p) N ws(p) = @ while for u >0 we have transversal
intersections and at p =20 FO has a quadratic tangency as in Theorem 5.4.
We pick a coordinate system (x,y) such that, in a neighborhood Uv(p),

W (p) and WY(p) are givenby y =0 and x =0 respectively. Let

q, = (0,y) and q = (x,0) = Fn(qz) be (non-transverse)homoclinic points
and A], A2 be neighhorhoods of s 9 lying in Uv as shown in Figufe
5.2. The map Fk . A] ->A2 is well approximated by

0
G Y

where 0 <x <l <y and Ay <1 and k o as we pick domains in A]

closer and closer to Ns(p). The form of the map Fg :A2 - A] (n is fixed)

may also be approximated since, by hypothesis, the vertical line Nu(p) r»Az

is mapped to the parabola Hu(p) N A] and the parabola Ns(p) N A2 to the
. s

horizontal line W3(p) n Ay. When u # 0 the images also undergo a verti-

cal translation. Using these facts, and normalizing the maps to remove re-

dundant parameters, we arrive at an approximate quadratic map

mk

. = k - K -
Fu = fu,k (X -k, y) + ((yy - )’), AXx *a(yky - y)2 -u) . (5.4)

(We have selected the orientation such that a > 0). It is interesting to

note that this is essentially the same quadratic map studied by Henon {1976]
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Figure 5.2. Quadratic homoclinic tangencies

and conjectured, on the basis of numerical evidence, to possess a strange

attractor.

We fix a horizontal strip H(k) C A, and an integer k such that
Fk(H(k)) r\AZ is a vertical strip and hence Fn+k(H(k)) N A1 is non empty.
Equation (5.4) then permits us to compute the approximate bifurcation value
for which a pair of periodic orbits of period n + k appear in a saddle node

bifurcation:

k- ~k— 1 k -k,
, W PAX Yy - (A" ey )" (5.5)

It is easy to check that wu, -+ 0" as k - o, showing that the homoclinic

tangency at uy = 0 1is the limit of a countable sequence of saddle node
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bifurcations. For sufficiently large k, these subharmonics of order
m Saf n+ k are precisely those found by Melnikov's method in Sections 3
and 4, since the perturbation methods used there yield all subharmonics
which pass once through Uv.

The two fixed points of (5.4) existing for W area saddle
and a sink and another straightforward analysis shows that the sink bifur-

cates to a sink of period two at

k

-y e ok ey (5.6)

M
leaving to an orbit of period 2m for the map. The bifurcation sequence
“i also accumulates on p =0 from below. Recent work of Lanford [1981]
has shown that quadratic maps of the plane with small Jacobian determinant
undergo countable sequences of period doubling bifurcations precisely as do
one dimensional maps to which they are sufficiently close (Feigenbaum [1978],
Collet, Eckmann and Lanford [1980]). The present map has [ng,kl a (XY)k
and therefore fails into this class for k large. We conclude that uﬁ
is but the first of a countable set of period doubling bifurcations which
must take place before y = 0, since for u > 0 there is 3 full horseshoe

in A nk

1 hear gqy, containing points of all periods for themap F . In

fact countable sets of further bifurcations must also occur, in which points
of period 25-3(n + k), ZJ-S(n +k); 3J=1,2, ... etc. are created. Since
such sequences occur for each sufficiently large k we have a countable
sequence of countable sequences of bifurcations all accumulating on u = 0.
One can thus find sinks of arbitrarily high period in any neighborhood of a
non transverse homoclinic point q, and finite sets of these sinks persist

when the homoclinic tangency is broken. Newhouse's results [1979,1980] give

more irformation and in particular show that, in the case of tangencies, the
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closure of the set of homoclinic points of a suitably perturbed map is con-
tained in the closure of the set of periodic sinks. This implies that any
homoclinic orbit can be approximated arbitrarily closely (for finite, but

arbitrarily long times) by a stable periodic motion and thus the horseshoe

might become’ 'physically observable'. On the basis of this work Newhouse

[1979] conjectured that some of the numerically observed strange attractors

(such as that of Hénon [1976]) might in fact be orbits lying in the stable
manifolds of long period sinks. The question is still open, and we shall
return to it in the next section.

Before closing we note that, even without Theorem 5.4, the existence
of a single parameter value yu at which a homoclinic tangency occurs im-
mediately implies a countable set of such values, since the stable and un-
stable manifolds accumulate on one another, by the lambda lemma. Thus the

‘first' tangency is immediatley followed by infinitely many others, each

with their attendant saddle-node and period doubling bifurcations.
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6. THE GLOBAL STRUCTURE OF SOLUTIONS OF DUFFING'S EQUATION

In this final section we make use of the bifurcation and perturbation
computations of Sections 3 and 4 and the abstract theory of Section.5to obtain
a partial understanding of Duffing's equation (4.1) for € small., We start
by considering the phase portraits of the averaged systems (3.29) and (3.33)
0
L+.

near each resonant periodic orbit inside the separatrix Similar conclu-

sions apply within r? and outside the appendix.

6.1 Subharmonics and Their Domains of Attraction

The material in this and the following section is deduced directly from
the theory of Section 3, the results of Sectign 4, and standard results in
dynamical systems theory such as that reviewed in Section 5. In these two
sections we collect various proven facts aoncerning Duffing's equation, al-
though we do not state precise theorems. In the concluding Section 6.3 we
go on to make some conjectures which we feel have a firm basis in these facts.

Within rg the action transformation gives
= (k) = 5 (202 - kD6 - AV - $AYE L (s

where the elliptic modulus k = depends implicitly upon u and v through

2 2 4 2
tne relationsnips H(u,v) = . gf + %T s 2-5—41%;2 . Using (4.13) we have
2 -k
d [2a )l 2n d
N = : 2 - T(k k
(™) a {‘TTT}{I i _z'dk ( )/-E I{k)

a2 -k 4ri2 - x )r.m -2+ kAR .

: Q' (m), (6.2)

Qkék' K(k)
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where k = k(m) 1is defined by the relationship K(k)r2 ;—;§.= ™m/w on a
resonant orbit of period 2mm/w and k'2 =] kz. Thus (3.29) and its
integral (3.30) become

¢ = /@' (mh , (6.3)

':l = /E 211“.‘ ('G‘J](m) = wz(m) Sin(m‘t)) *

m

\ d,(m,w)
and H = ﬁfﬁléml-hz + é% [Gdl(m)6¢ -y Akl cos(m¢)]] , (6.4)

where we have used equation (4.15) (with Ji(m,l) def Ji(m)) and the fact
that Q(I1%) = w/m at resonance. Noting tnat 6J,(m), v (mw) are positive
while Q'(m} is negative we easily sketch the phase portraits of (6.3) for
the three cases vy/é <, = ,> Rm(m), as in Figure 6.1. Note that, for
Y/6 > Rm(m), in each resonant band there are m saddles and m ‘'centers’
correspunding to a pair of subharmonics of order m in the original system.

To study the actual stability type of the fixed points which appear as
centers in the 0(vE) approximation, we compute the averaged higher order terms

F', G of Eq. (3.33). After tedious but routine computations we obtain

Flpy = ~0Ky(mu) sined) = 5Ky (m)
&) = __3§<2(m,w)a>s(~43)/m

e
. ) o penls ‘
where K, and K, arepconstants found by integrating products of ellipti¢ and

(65)

trignometric functioar, much 35 in the first order terms computed ix section
- . ) .

four. We note that we do not need & explicitly, and that toe trace (up to
0(€})) is given by

}5[2 ﬁ?)‘\} + %[S(JL':;&.,. G’E?)] = —g§Ky (™)

{cf. eq.\3.33)).
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These fixed points are thus found to be sinks, and the bifurcations in which
they are created simple saddle nodes, rather than the doubly degenerate
Hamiltonian bifurcations occuring in (6.3) when Y/§ = Rm(m). We show the
! phase portraits in Figure 6.2. The stadle manifolds or domains of attrac-
tion of the sinks are shaded. ‘

The methods used here are quite standard and include a check on the
non existence of closad orbits by Bendixon's criterion. Morosov [1973],

-6 : (1976] obtained similar results for a related equation.

. . h Y AC - .
. . —— PR N .‘ '—. - o s i et——
2 ‘
by 4 i ]
E ! (3) y < Aw) () v = R™()s (€) v > Rw)s
. Figure 6.1. Phase portraits of £q. 6.3, m = 2.
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(a) y < RMw)s (b) y = R™(w)s (c) v > R'“(m)s»

Figure 6.2. Phas2 portraits of Eq. 6.3 with O(e) terms added, m = 2.

It is important to realize, however, that uniike the existence Theorem 3.6
,‘{%.4 these results are not uniformly valid since the factor Q'(m) in (6.3) be-
; comes unbounded as m - =; in fact using the asymptotic behavior
K(k) ~ on(4/k') as k= 1(k' - Q), we have
2 40‘3 errm/w

Ql(m) - hat S - 3 (6.6)
ek 2Lan(a/k) T -

as m~w», Thus averaging is valid for successively smaller regions

0<e g eo(m) as m increases, and, while the invariant wmenifolds and
peripdic points of the Poincaré map PE are qualitatively similar to those
of Figure 6.2 in any giver rescnance band , we cannot carry our stability

results uniformly to the limit of homoclinic bifurcations as in Theorem 3.8.

"4

?? Qur results are, however, good for subharmonics of all finite orders m< o
HERIEE 1.
T and hold within each resonance band near the unperturbed resonant orbit of

period Z2nm/w.

Noting that J1(m,n) > 0 while Je(m,n.m) =0 for npl (Eq. 4.15)
we conclude that, between the resonance bands all orbits decay ‘inwarg'
(h(t) decreases). This implies that che unstable manifolds Hu(sk) of the
saddlas of period Kk intersect the stable manifolds “S(Sk-l) of those of

perigd k - 1 and ong therefgre obtains the glebal structure af connected

resonance bands indicited in Figure €.3 {cf. Hayashi (19807, Figure 3).
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I =1(3

¢ = 2n

Figure 6.3 Heteroclinic orbits connecting neighboring resonance bands
m=3 and m= 2.

This structure is repeated between each pair of resonance bands and, using
the lambda lemma, it is possible to prove that, in any neighborhood U of
the stable manifold ws(sk) of a saddle of period k there will be pieces
of the stable manifolds ws(sj),ws(aj) of saddles and sinks of all lower
periods j < k. The resultant violent winding and packing of the alternating
domains of attraction of the stable subharmonics leads to a sensitive depen-
dence on initial conditions, especidlly for the higher order subharmonic
motions, since the basic width of the domains of attraction, calculated from

the integral (6.4) of the 0(ve) Hamiltonian approximation is

Al(m) = [#E%TET (YJZ(m) cos{mp) - SJ](m)$)]]/2 + 0(e) (6.7)
where & 1is the root of
Gdl(m) m
sing = - W, = <§R"(w) (6.8)

corresponding to the center. For m large, while J](m), Jz(m.w) are bounded

(Theorem 3.8 and §4), Q'(m) ~ = and we find

»
« &5
%%

PR

¥ i NS AR p s, Rl M 5.

I =1(2)
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Al(m) ~ [¢ Jﬂ—-e'“m/w (6.9)

and thus the domains shrink rapidly in size as m increases. In typical
computations all but the lowest order (m < 5, say) subharmonics 1ie within
a band whose area is less than 1% of the interior of rgl

In Figure 6.4 we illustrate our results with numerical computations of
the Poincaré map, showing unperturbed resonant orbits and the perturbed sub-
harmonics. For more detailed and extensive computations on different versions
of Duffing's equation, see Hayashi [1975,1980] or Ueda [1980, 198la]. The
interaction of the subharmonics of order m =2 and 3 with the fixed
points near (u,v) = (£1,0) has been studied using conventional averaging

methods by Hoimes and Holmes [1981].

6.2 Homoclinic Orbits and Chaotic Motions

As we pointed out in Section 6.1, the results based on the averaged sys-
tems (3.29) and (3.33) are invalid near the homoclinic orbit, since
[@'(m)| >~ as m-+ o We can, however, use the abstract results of Section
5 to study the global structure of the Poincaré map in this region, and we
do know from Theorems 3.6 and 3.8 and Corollary 3.7 that subharmonics of all
orders exist here for y > Ro(w)a, although we cannot compute their stability
types from Eq. (3.33).

We start by noting that the symmetry of solutions of (4.1) (if (u,v,t)
is a solution, then (-u,-v,t + m/w) 1is also a solution) together with the

presence of transverse homoclinic points for y/§ > Ro(m) immediately imply

that we can find strips S+. S_ ' parallel’ to ws(p ) and in a neighborhcod




(a) Unperturbed resonant levei curves, T = a period af

forcing function w

L& 43 v

(b) Subharmonics of orders three and five outside H = 0 and of orders one
and three inside H = 0.

Figure 6.4. Some numerically computed subharmonics for Dutfing's equation:
w=4.2, ey = 0.65, €6 = 0.005.
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Uv(pe)a whose images Pg(si) under some iterate Pg of the Poincaré map
are as shown in Figure 6.5. The orbit of any boint X €S, (resp. $.) will
remain near the unperturbed loop rg (resp. rf) until it re-enters Uv.

In this way, using the symbolic dynamics approach of Section 5.1, we can find

orbits of P which visit neighborhoods of rg and rf in any specified

order.

- T W(p,)

Figure 6.5 The double homoclinic structure

This goes some way toward explaining the chaofic snap through motions
of Figure 1.3 (cf. Tseng and Dugundji [1971], Moon and Holmes [1979], Moon
[1980]), but we must recall that all these orbits are of unstable saddle
type, their dynamics being dominated by the linearized map DPE(pE). They
would thus be expected to give rise only to transient chaotic motions and
this is, indeed, precisely what is observed when numerical integrations are
performed in certain parameter ranges; almost all orbits converging to fixed
points or subharmonics lying within rf or rf (cf. Figure 6.4). However,
in view of Newhouse's results on persistent tangenices and wild hyperbolic
sets, it is reasonable to expect that there exist stable long period motions
which approximate such saddle-type chaotic orbits arbitrarily closely on

finite time intervals. We return to this point in Section 6.3.
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Note that while such ‘chaotic subharmonics' cannot be found by the per- -
turbation procedures of Section 3, since they pass through Uv(ps) arbitrarily
often, their existence can be inferred from our perturbation calculations of
W(p,) and Nu(pe)-

We also note that, by arguments similar to those of Section 6.1, we can
conclude that pieces of the unstable manifold w“(pe) accumulate od all the
unstable manifolds w”(sk), k=1,2, .... of all periodic saddle type mo-
tions within Pg and r?. It follows that any attracting periodic¢ motions
within this region lie in cz(w“(pe)).

In earlier work (Hoimes [1979]) we showed that all orbits of the damped:
Duffing equation remain bounded and enter some bounded simply connected set
A x S] C IR2 x S] as t +=, Letting AE zto be a section of such a set,

if we define the attracting set A as

A= 0 (P)A) (6.10)
n>0 °

it follows that ( M. m
= CR{W (p ]
Here wz Aassume  Hrok Or}{ attfac,h sielsE Wpng inside A but” owtsdl- F‘, ard
fhae JadusL so that Cpites of W“’(f") heVia Hear stable mam{ous.
However, s we show in the next section, it is not likely that A 1is a ‘'nige’

attractor; an invariant attracting set which is indecomposible and contains a

dense orbit. Certainly for parameter values (y,6,w) for which tangencies

occur Cz(wu(pe) contains periodic sinks and hence is decomposible.

6.3 The Stranqe Attractor: Numerical Results and Conjectures

We start by summarizing the results of numerical integrations and com-
putations of the Poincaré map, drawing in the results of Holmes (1979], Shaw

(1980] and, principally, Ueda [1981b]. In Figure 6.6a-d we show plots of
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the stable and unstable manifolds ws(pe), Nu(ps) for fixed €d = 0,25,
w=1.0 and ey varying. These curves are obtained by iterating short

s u
loc(pe)’ wIoc

have just intersected for the first time at ey = 0.19 the theoretical value

1ine segments lying near W (pe). We note that the manifolds
from Eq. (4.12) being ey = 0.188. As y 1s increased for fixed & the
homoclinic bifurcation and resulting formation of horseshoes near N“(pe)
occurs while stable fixed points continue to exist within each of the (unper-
turbed) Toops ri, rf. However, with appreciably higher vy and for a wide
renge of v,8 values, numerical computations suggest that there are no
stable low period attractors and one observes the characteristic ‘strange
attractor'* motions of Figure 6.7. Comparing Figure 6.7a with 6.6d, we note
that this single orbit appears to fall on C& w“(pe), as predicted in Section
6.2. For typical power spectra of these motions see Holmes [1979] or Ueda
(1980, 1981a].

In Figure 6.8 we indicate regions in ¢y, €8 parameter space for w =1
in which the various attractors are observed. We also superpose some bifur-
cation curves from our theory. In each region we sketch a representative
motion projected onto u-v space. These numerical results are due to Ueda
(1981b]. WNote how the subharmonic bifurcations all occur very close to the
homoclinic bifurcation curve y = Ro(w)é, apart from those of order m= 1.
Above y = R](w)é subharmonics of all orders exist both inside and outside
the unperturbed seperatrix r; ) {po} U r;. although only low period ones are

observable. The theoretical value of Rl agrees well with that observed.

w

This term is used only for convenience; we should more correctly say 'appar-
ent:r non-periodic attracting motion'. As indicated at the end of Section
6.2, we define a strange attractor for the map P  as an attracting set A

which is indecomposible, has a dense orbit and is neither a fixed point nor
a pericdic orbit.
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Figure 6.6. ilumerically computed Poincaré maps for Duffing's equation.

w=1.0, €8 = 0.25.
Perturbed manifolds

(a) ey = 0.05, (b) ey = 0.5.
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Figure 6.6 (Continued) (c) ey = 0.20 (inset, ey =0.19); (d) ey = 0.30.
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For small damping (< 0.1), sustained strange attractor motions are not observed
and we find only fixed points (T-periodic motions) or subharmonics of rela-
tively low orders (< m = 5) coexisting with the transient chaos characteris-
tic of horseshoes, ¢f.Figure 6.4. On the other hand, for higher damping
levels we observe stable T-periodic motions outside r; U {po} U rf (cf. Holmes
[1979]). One apparently requires moderate forcing and damping for the strange
attractor to exist. We note that in some parameter ranges (with multiple
shading in Fig. 6.8) two or more attractors (periodic and/or strange) coexist
and that one can observe hysteresis in the jumps from one attractor to another
as the paranmeters (c,v,8,w) are slowly varied.

We now attempt to describe the various attracting sets in the light of
the theory developed in this article. For low damping the stable subharmonic
motions and horseshoes predicted in Sections 3 and 4 account reasonably well
for the numerical observations, especially in view of the small characteristic
size of the domains of attraction of high subharmonics {eg. (6.9)) and the
associated implication that small machine errors will be syfficient to per-
turb orbits from the stable manifold of one such subharmonic to a neighboring
one, leading to a 'transitionally chaotic orbit' (cf. Ueda (1980]). Thus,
although there certainly are paramecer values for which such long period
sinks exist, they are not observable in practice. Franks [1981] has some
interesting results on the addition of random perturbations to a motion
originally attracted to a stable oeriod 7 sink of the Hénon map (cf. Hénon
[1976]). The addition of a small random vector after each iteration teads
to an orbit which appears to fill out the same 'strange attractor' as one

obser/es for nearby parameter valyes without intentignal perturbations. This

observation is one of the motivations for the conjecture which follows.
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The second pertinent observation is also based jointly on analysis and
numerical integrations. The study of near resonant excitation of the stable
periodic motions near (u,v) = (£1,0}) 1in Holmes [1979] and more particularly
Holmes and Holmes [1981] shows that for forcing frequencies w near 2 or
2/2, one obtains harmonic and subharm™nic bifurcations as y 15 increased,
so that the stable fixed point of the Poincaré map can become a saddle point
and (in the second case) throw off an orbit of period two. As in the case
of subharmonics near the homoclinic orbit (cf. §5.2), there is some reason
to think that this period doubling bifurcation is the first in a countable
sequence which has an accumulation point (cf. Feigenbaum [1978] Collet,
Eckmann and Lanford [1980]). The studies of Equation (4.1) and an associated
cubic mapping of the plane

(u,v) =+ {v, -Bu + av - v3) (6.12)

strongly supporty this idea( Holmes [1979]). In fact in view of the results of
Gavrilov and Silnikov outlined in Section 5.2, we can conclude that all the

subharmonic sinks of sufficiently high period 2mm/w undergo such period

doubling bifurcations as y increases for fixed §. It seems reasonable to
expect these each t¢ be tﬁe first of such an accumulating sequence, and all
such sequences presumably accumulate on the homoclinic bifurcation. This
provides a mechanism by which all sinks of periods less than some fixed

integer N can becowe unstable, leading to our conjecture:

Conjecture 6.1. For any fixed integer N < = there are op2n sets of param-

eter values in (¢,y,6.0) <pace for which the attracting set A e nfgﬂ PR(A) =

—

Ci(H"(pe)) of the Duffing equation (4.1} contains a shift on two symbols

with 3 countable set of saddle type periadic orbits and finite sets of

periodic sinks, none of the latter's periods being less than K.
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This conjecture implies that A 1is not a strange attractor, since it can be
decomposed into a finite set of simple periodic attractors. Such an attract-
ing set is structurally stable. We can of course, prove this conjecture for
the case N = 2 (Holmes and Holmes [1981]). The conjecture can be proven
for arbitrarily high N using a modified Duffing-van der Pol equation (Holmes
[1981]). Numerical work of Chirikov [1979,198C] and Lieberman [1981] on
diffeomorphisms of the plane, also lends support to our conjecture.
Newhouse's results [1974, 1979, 1980] suggest that there are also

residual subsets of parameter values for which one has countably many sinks,
but a careful examination of the proof of his Theorems 5.4 and 5.5 shows

that the small perturbations of diffeomorphisms with quadratic tangencies
necessary to obtain such infinite sets of sinks are very special, and there
appears to be no guarantee that our specific family realizes these perturba-
tions. In fact some recent work of Guckenheimer [1981] which borrows ideas
for Yakobson's [1973 ] work on one dimensional maps indicates that one can
also construct diffeomorphisms close to such homoclinic bifurcations which
_possess no periodic sinks and theréfore presumably have a genuine (indecom-
posable) strange attractor. (Such an attractor has been proven by Misiurewicz
[1980] to exist for the piecewise linear Lozi. map. Here the persistent quad-
ratic tangencies and their associated sinks do not occur since the folds in
the manifolds become points in the piecewise linear manifolds). On the basis
of this work one can conjecture that a situation similar to that in one dimen-

sional quadratic maps holds:

Conjecture 6.2. There is a set of parameter values of positive measure but

containing no open sets for which the Duffing equation has a strange attractor

A= C}(N“(pe)), i.e. A contains a dense orbit and is indecomposable,

Note that our two conjectures are compatible.

On this note of unbridled speculation, let us close our story.



APPENDIX. INVARIANT MANITOLDS AND THE LAMBDA LEMMA

Stable Manifold Theorem. Hirsh -Pugh -Shub [1977]. Suppose that p is a

hyperbolic fixed point of a c’ diffeoworphism P (IR + R and that

Es(p), E“(p) are the stable and unstable aigenspaces of the associated

linearized mapping DP(p). Then, in a neighborhood U(p) there are ¢’

invariant submanifolds wioc(p), w?nc(p), tangent to Es(p), Eu(p) at p.

The global manifolds WS(p), WY(p) are injectively immersed copies of

R, RY, when s = dim E%(p), u=dim E%(p) (s + u = n). Moreover, if P

Toc(P)s W ().

devends smoothly upon parameters u € IRm, so do wloc

A-Lemma. (Palis [1969]). Let P be a ¢" diffeomorphism with a hyperbolic

fixed point p and let DY be a u-disc in w”(p). Let A be a u-disc

meeting Ns(p) transversely at some point q. Then Ago Pn(A) contains

u-discs arbitrarily " close to DY,

These results also apply to periodic orbits {pi}i =1, ..., N

Pn(pi) = P and an analogue of the first result applies to flows, such as

that of the suspended system (2.2).
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