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Abstract

I The Melnikov theory of perturbations of Hamiltonian systems con-

taining homoclinic orbits is extended to systems containing canonical vari-

ables belonging to the coadjoint orbits of a Lie group. This is applied

to the free rigid body with attachments and to the nearly symmetric top.

These syý'sms are thereby shown to have transverse homoclinic manifolds

in an appropriate return map and therefore have complex dynamics. In

particular, the heavy top and rigid body with one attachment are shown to

contain horseshoes and therefore have no additional analytic integrals,

while the rigid body with several attachments exhibits Arnold diffusion.
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1.1

§1. Introduction

This paper presents theorems which establish the existence of

horseshoes and Arnold diffusion for nearly integrable Hamiltonian systems

associated with Lie groups. The methods are based on our two previous

papers, Holmes and Marsden [1981b,c]. The two main examples treated here

are as follows:

4 1. The rigid body with attachments. This system has horseshoes

(withone attachment) and Arnold diffusion (with two or more

attachments).

2. A rigid body under gravity, close to a symmetric (Lagrange) top.

This system is shown to have horseshoes (and hence is not integrable).

The main new feature present here is the presence of Lie groups. Both

the symmetry groups and the basic phase spaces involve Lie groups and our

* perturbation methods must be modified to take this Into account. As in our

previous work, the results hinge on reduction together with a method of

Melnikov. This is used to analyze the perturbation of a homoclinic orbit in

an integrable Hamiltonian system. In example one, the unperturbed system

ii is the free rigid body which has a homoclinic orbit lying on a sphe-e. This
sphere arises as the coadjoint orbit for the rotation group S0(3) and the

computation of Poisson brackets needed in the Melnikov theory is most easily

done using the KKS (Kostant, Kirillov-Souriau) theory of coadjoint orbits.

This theory is reviewed in Section 2.

After removing the angular momentum about the vertical axis, the cor-

rect phase space for a rigid body under, gravity is T*S2 the cotangent bundle

*i of a sphere. This and its connection with Euler angles and coadjoint orbits

in the Euclidean group is explained in Section 3. This section thus sets

•-------------- - ' - --



• 1.2

up the basic phase spaces needed in the analysis of our second example.

Section 4 develops the Melnikov theory when the phase space is a

product of a KKS phase space and a set of action angle variables. This is

applied to the rigid body with attachments in Section 5.

Section 6 develops the Melnikov theory for systems on a phase space

where the unperturbed system admits an S1 symmetry and has a homoclinic

orbit in the reduced phase space. This generalization does not assume the

original phase space is simply a product. This generalization is needed

for and is applied to thenearly symmetric heavy top in Section 7.

The two examples presented here were selected because of their physi-

cal interest and because they provide good models for how the Melnikov

theory must be modified for systems with topologically nontrivial phase spaces.

"The presence of horseshoes in the motion of a nearly symmetry heavy top

implies, amongst other things, that thedynamics is complex and cannot be

captured by averaging methods (cf. Akulenko, Leshchenko and Chernousko

[1979]), that the dynamics has periodic orbits of arbitrarily high period

embedded in an invariant Cantor set and that the system admits no additional

aniytic integrals. The latter fact is consistent with known classical re-

sults, but the existence of horseshoes is a stronger and, we think, more sig-

nificant assertion. Ziglin [1981) recently proved a general nonintegrability

theorem that includes the non-standard rigid body cases but his proof pro-

ceeds along different Iin* and does not seem to yield horseshoes.

We expect that dissipative and forcing terms added to these systems

can be dealt with along the lines of Holmes and Marsden [1981b].

Acknowledgements. We thank Allan Kaufman, Steve Smale and Alan Weinstein

for motivation and several useful comments.
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§2. Hamiltonian systems on Lie groups and semi-direct products

Since the basic paper of Arnold [1966])Lie groups have played an im-

portant role in the construction of phase spaces and the symmetry properties

of some important mechanical systems. For systems such as the rigid body

one wishes to realize the classical Euler equations as Hamiltonian equations

on an appropriate phase space to apply Hamiltonian perturbation techniques.

For a rigid body free to rotate about its center of mass, the basic phase

space is T SO(3) which is conveniently parametrized by the Euler angles

(,•4,0) and the corresponding conjugate momenta (pY, pg,, p0 ). However the

SO(3) symmetry of the problem enables one to reduce this 3 degree of freedom

problem to a one degree of freedom system whose phase space is a sphere in

body-angular momentum space.

For purposes of this paper we are interested mostly in the Poisson

, racket structure since it is this which directly enters the Melnikov theory.

In what follows we describe the Poisson structure associated with a Lie group

and its connection with coadjoint orbits. (For the same theory with emphasis

on the symplectic geometry, see Abraham and Marsden [1978, Chapter 4].) Proofs

may be readily supplied by referring to the preceeding reference, to Arnold

A• [1978] and to Guillemin and Sternberg [1980).

(a) Generalities on KKS structures

Let G be a Lie group and its Lie algebra. For ý,n E [&,nl

denotes the Lie bracket of F and n. Let denote the dual space of

For F *• IR, and the variable inj denoted by vi, define

6F F
LL

DFI-) (v, (L.1
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where (, denotes the pairing between and #.; and DF(U): IR
6F

is the usual (Frechet) derivative. It is understood that ý- is evaluated
611

at the point u.

The VKS-bracket of two functions F, G : * IR is defined by

{F,G}}(P)= - , 6 -F ] . (2.2)

This bracket makes the smooth functions from %* to IR into a Lie algebra.

The only non-obvious condition is Jacobi's identity.

Next we describe the relationship between the KKS bracket and coadjoint

orbits. For g E G, let Ad :A•- . be the adjoint representation (the

linearization of the map I : h -• ghg" at h = iientity) and Ad*- 1 :.* o,*

the coadjoint representation. For pO E *, let 0 - (Adgluolg E G } be

the orbit of ýiO. A theorem of Kirillov, .ostant and Souriau states that 0

is a symplectic manifold. We now describe the symplectic structure. For

ip E0, tangent vectors to 0 and p have the following form: let ý E 4ý

and define ý(O) Ec c by n 1(j, [ý,n]). Then ý(ji) is tangent to 0 at

u. The formula

MP), n(p))=-00, [,n] (2.3)

defines a symplectic form on 0. Formulas (2.2) and (2.3) are related as

follows: for F,G . IR,

{{F,G)}iO - (FIO, GIO)o (2.4)

--* wh2re { } is the Poisson bracket computed from the symplectic structure

(2.3) on 0.

If H :0, -- IR is a given Hamiltopian, there is a unique vector field

XH on Oý such that any function F : - IR which evolves along the flow
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of XH satisfies

F = {{F,H}} . (2.5)

Explicit equations of motion for p E 0/ can be computed directly from (2.5)

and (2.2) in examples, without the computation of coadjoint orbits, by letting

F be coordinate functions on i. The equations so obtained are thus

X H 41() . (2.6)

The vector field XH is necessarily tangent to the coadjoint orbits; thus

if V(O) E 0, then p(t) E 0 as well. Furthermore, XHIO = XH,0 where

XH o is the Hamiltonian vector field on 0 computea from H using the

symplectic structure (2.3).

As we shall see in the next sections, the classical Euler equations

for a rigid body (with or without gravity) can be expressed in the form (2.5).

Remark. In Arnold [1966) and Ebin and Marsden [1970) it is shown that the

4 equations of an incompressible fluid also fall into this class using the

group Dvol of volume preserving diffeomorphisms of space. For compressible

flow, the appropriate group is the semi-direct product of diffeoinorphisms and

functions. (The reason semi-direct products are relevan'. is explained ab-

stractly below). When appropriately coupled to the electromagnetic field,

equations (2.5) also include the equations of plasma physics and magnetohydro-

dynamics (see Marsden and Weinstein (1981]).

For the rigid body free to rotate about a fixed point, the basic phase

space one starts with is T S0(3), irrespective of whether or not gravity is

present. In the absence of gravity, reduction by SO(3) leads naturally to
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the KKS Poisson structure on the Lie algebra of S0(3). However when gravity

is present, reduction by Sl leads to the KKS Poisson structure on the Lie

algebra of the Euclidean group; ioe. the semi-direct product S0(3) E IR.

Proofs of assertions made in the following may be found in one or more of

Abraham and Marsden [19783, Guillenin and Sternberg [l80O] and Ratiu and

van 14cerbeke [1981].

(b) KKS Structures for Reduction by a Subgroup+

Let G be a Lie group and T*G its cotangent bundle. Let v E

and let G = {g E '4IAd* v = v} be the isotropy subgroup of v. Now

GV acts on G by left translation and hence on T G. This action has an

Ad -equivariant momentum map

J :TGG - Vo
*

where 4 is the Lie algebra of G . In fact for cg E T G and ý E VWdv V 9

WV (a 9 (ag, TeP'-, ) (2.7)

where RP :G , G denotes right translation by g and ( , ) denotes the

pairings between 17V and or T G and T G as appropriate.

N ow let • C- and El be its restriction to IV. We shall

henceforth make the (generic: assumption that G6 is abelian. Ther, the

reduced space of T G relative to the action of G •, is

The heavy rigid ton. is done two separate ways in Section 7, naely in
ters of Euler angles and in term of the KKS structure. Those who wish
only to read the Euler angle proof mty omit the rest of this seqction arid
the third part (c) )f the next section.
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(V P jv )l•1/G V (2.8)

Let ((, )) be a left invari;ýat metric on G and K :T G IR the correspond-

ing kinetic energy function: K(a ((g,a). Let be the one form
9 2 gg1

on G defined at g G G by minimizing K over the affine space of ag

such that J('g .

Remark. If G= S1  and E 41 is the element corresponding to p via

((,)) i.e. ((•,') = •{n) for all n Eq,), then for v E T G,

a (g).v = (Te R g, v)). ((Adg A l (2.9)

The function Kga (g)) = V ,(g) is called the amended potential.

"The map aq + - a• induces a symplectic diffeomorphism of P-

with T (G/GV) by Theorem 4.33 of Abraham and Marsden [1978].

Remark. In general, the symplectic form on T (G/G) is the canonical one

plus the "magnetic" field da . For the examples in this paper da P 0.

However a p 0 and it is necessary to use it to form the amended potential.

If this is added to the standard potential for the heavy top, we recover

the effective potential. As we shall see below, this agrees with that in

standard texts (Goldstein [1980], formula 5-60, p. 215) and is a special

case of Theorem 4.5.6 of Abraham and Marsden [1978].

Now ýnnsider the semi-direct product G x %, of G with the additive

group' wth G acting on 0ý by the adjoint action. For v E o, let

0... . I I I

-.... . .. . . / ' , . /
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fV: G x + IR

fv(g,ý) ( v, Adql• ( 2.10)

i.e. f (g,.) = Adg-lv. Write f,(g) = f (g.,ý). From the identity

f VCglg,1 ) f (g, Adgl) (2.11)

we see that G x acts on T G by the right action

-(g'I)'h t "(TR)*ch (2.12)
df g

where t is fiber translation in T*G by the differential of fv. The
dfv,*

action (2.12) is symplactic and has ar. Ad*-equivariaiut momentum map

A :TG x

given by

4A0(ag) (TeLg_. )* g, Adg_lv) (2.13)

We shall write m = (T Lgl)*ag and v = Ag.l v. (See Abraham and Marsden
[1978], Ex. 4.2c and Guillemin and Sternberg [1980]). We note that the ad-

joint action of G x on x 0 x is

Ad (g,)(n,•) (Adgr, Adg• + [• Adgn]) (2.14)

and that the Lie bracket on . x O•is

[(El'nl) (ý2' tn2)] (: ý (I'C23' [Rl 92 3 + [nl'112]) (2.15)

One can check directly from (2.14) and (2.12) that A"" is equlvariant.

(.The identity

S.. .. 4 q - U .a -.~ H ..nmm BB • ~ ~i
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!1
"Adg[ ,n] = [Adg•,n]

is useful ii verifying this).

Observe that A' is invariant under the left action of G i.e.

for hEG
V

AV(TL 1  (a (2.16)
h

Thus, AV induces a map

One readily sees that A is a diffeomorphism of P- onto the orbit 0
j111V P.1V

2.1 Theorem A :P- 0 is a symplectic diffeomorphism.

Remarks. 1. This result is due to Ratiu [19811. The proof we give is

simpler, being motivated by Guillemin and Sternberg [1980].

2. For the Lagrange top, 2.1 can be proved by 3 direct, but messy,

calculation which weoutline in the next section.

Proof of Theorem 2.1. Since the symplectic form on P- is induced from

the canonical symplectic structure on T G and that on 0 is determined

by the KKS structure, it suffices to show that Ae commutes with Poisson

brackets. This, however, is a general fact about Ad*-equivariant momentum

maps and collective Hamiltonians proved in the next two lemmas.

2.2 Lemma. Let J :P be an Ad equivariant momentum map for the right

action of a Lie group K on the SYMpleCtic manifold P. .I.af F -*IR.
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ihen the Hamiltonian vector field XFoJ for the (collective) Hamiltonian

FJ :P + IR is given at x EP by

XFoj (X) = (O (x) (2.17)

where S-F E is evaluated at uI = J(x) and stands for the vector

field on P generated by the Lie algebra element •.

Peoo,. by the chain rule and definition of the functional derivative,

d(FOJ).vx = dF(p).dJ(x).vx x

; = < (dd(x).v . -•F )

where vX E Tx P and . = J(x) as above. By definition of a momentum map,

(dJ(x)'vx ,-T) = -X .( p' v)

where w is the symplectic form. Thus

d(F J).v ~ O 'XI

which m.eans XFoJ -

2.3 Lenma. Under the assumptions o" the preceeding lemma, if F,G: + IR,

then

{F°J, G-.'} = {{F,G}}oJ (2.18)

SProo.f. {FoJ, GoJ} ( 6F)P (2.19)

6p) P IP)P

IK
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by definition of Poisson brackets on P and the preceeding lemma. On the

other hand, the KKS bracket is
(SF S F

{(F,G}}(-v) = -(J(x), [ý-, IF (2.20)

On the other hand, Ad equivariance gives (Abraham and Marsden [1978, Corol-

lary 4.2.93)

SF S:F] ) Sj( x F j Sx F
<J(x), -{J(x), <(x) } (2.21)

in which li is fixed and x is variable. There is a minus sign here since

J is generated by a n action. Holding T- fixed,

d J (.x), -Lu). v = v Q <d(x).-vX ýF
'SU x x x 6P

so (J(x), IF generates the same Hamiltonian vector field as FoJ, as in

2.2. Thus, substitution of (2.21) in (2.20) yields (2.19). N

Remarks. As we shall see, the heavy rigid top Hamiltonian is a collective
iI

Hamiltonian for J . This is compatible with the reduction picture: a

Hamiltonian system oni the reduced space P- can be written in the form

F ={{F,H}} (2.22)

where H is written in terms of the KKS variables (m,v) E x

---- I•
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§3. The rigid body

This section is divided into three parts. The first part explains

how to write the equations of a free rigid body free to rotate about its

center of mass in KKS form (2.5). The second part recalls the Euler angle

formulation of the heavy top and the third part puts it into KKS form giving

the explicit relationships with Euler angles.t

* :(a) The free rigid body

The free rigid body is a left invariant Hamiltonian system on T SO(3).

where SO(3) is the group of proper orthogonal linear transformations of

IR3 to itself. By general facts about reduction we know that the equations

of motion must be in the form (2.5): this is true of any left invariant

Hamiltonian system on a Lie group G. For the free rigid body we can bypass

the Euler angle description (the relevant formulas are given in Table 1

below).

The Lie algebra so(3) of so.(3) consists of the set of 3 x 3 skew

- I symmetric matrices. We identify so(3) with IR3 by identifying

V (p,q,r) E IR3  with v = 0 E so(3) (3.1)

The Lie bracket corresponds to the cross product in the sense that

AA A

Iv,w] (v x w) ( (3.2)

tThe third part may be omitted if desired since we give two proofs of our

main result for the heavy top, one using only Euler angles and the other
using the KKS structure
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We denote elements of so(3)* by m; these will also be identified with ele-

ments of IR3 . Elements m E so'(3)* represent the body angular momentum

of the rigid body and are related to the angular velocity w by

mI - Ii•I, i = 1,2,3 (3.3)

where Ii are the moments of inertia. (The moment of inertia tensor has,

as usual, been diagonalized). The standard Euler equations (Goldstein [1980],

4 p. 205) written in terms of m are

I -2 13
ml I I m2m3

2I3I

m2  1 ii 13 mm3  (3.4)

2 I 1 312 3

.1 2 m
m3 1 11 m1m2

Taking the Hamiltonian to be

H(m) = - 1 (3.5),.< J l :j

2 .1 I

we see by a simple calculation that (3.4) are equivalent to

F = {(F, H (3.6)

where { , }} is the KKS bracket. In the present case this bracket becomes

S{{F,G}}(m) :-m,(VF x VG) (3.7)

for F,G functions of m.

The fact that the equations (3.6) must preserve coadjoint orbits amounts

in this case to the fact that
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M, +. 2 , 2 2 (3.8)m1 m 2+m 2

is an (obvious) constant of the motion for (3.4). In terms of coadjoint

orbits, equations (3.4) are Hamiltonian on each sphere in m-space with

Hamiltonian function (3 . 5).t

The flow lines are given by intersectm,,u the ellipsoids H = constant

with the spheres. For distinct moments of inertia the flow on the sphere

has saddle points at (0, ±L+, 0) and centers at (±_Z, 0,0), (0,0,±t+). The

saddles are connected by four heteroclinic orbits, as indicated in Figure 1.

J.-,. ..- - .
~01

Figure 1. The spherical phase space of the rigid body for fixed total

angular momentum 2. lW+m!+ M; > 1I
1 2 3 11>2 3

TThe coadjoint orbits are spheres because the coadjoint action of SO(3) on
m space is just by rotations. The KKS symplectic structure is proportional
to the area element by a simple calculation.

4a" '•i iI • 1 • i l l " m1 I
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The orbits are, of course, explicitly known in terms of elliptic func-

tions. The orbits of the most interest to us are the heteroclinic orbits which

are given as fol.lows. The four orbits lie in the invariant planes

m3 = ml

a,

where
S12 13 3 -I1 2

S> 0, a < 0 and a > 0.
a >0, 12 13 3 1 >0.2

2 1

3.1 Theorem. The heteroclinicorzbits for the free rigid body are given b•

m W ± _a 1sech(-V7a zt)

-2(t) =ti tanh(-a 1a 3 , (3.9)

ni"(t+ = +W -. a2 sech(" ae Lit)
2

Lfor m3  + [ l and by

n• m(t) + m(-t), m2(t) m+(-t), m3(t) +m(-t) (.0

"for a3r 3 1 V

This may be checked by direct computation or by consulting one of the

classical texts.
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(b) The Heavy Top: Euler Angle Description

We now recall the traditional Euler angle description.of the heavy

top and shall locate homoclinic orbits for the symmetric (Lagrange) top.

The Euler angle description is more familiar but in some res~ects the KKS

description is simpler. For this reason we shall present !.eth.

Given a rotation A E SO(3) we let the corresponding Euler angles be

denoted (p,,) using the conventions of Goldstein [1980]; see Figure

2(a). The corresponding conjugate momenta are denoted py, pV, Pe so that

S(¢,,, p ,$ Y p8) coordinatize T SO(3).

We let m denote the angular momentum in the body and let v = A-]k

where k is the unit vector along the spatial z-axis. We assume the center

of mass is at (0,0,t) when A is the identity. The vectors (m,v) are

expressed in the body coordinate system; see Figure 2(b).

The Hamiltonian is

32
H(m,v) _½j l - 1 +b4gYv 3  (3.1v)

2 1~ 3j

where M is the total mass. When written in terms of Euler angles, this

becomes

I [(p - cos 6) sin i + P8 sin 0 cos ý]2
HI sinza

UCpo P Cos Cos : P~~~ sin 8 sin ý]2 p'2
12+ + +Mgt g os 012 sinze 3

(3.12)

In Table 1 below we summarize the relationships between m, v, €,

pO, p, II, Pt p8 p and 0 for convenient reference, but in this sub-

section we shall take (3.12), or equivalently the Lagrangian



z~y 3 )3.6
33

x 0

(a)

3

* J m

(0'0,.)0
V3

VI V2

I (b)

Figure 2. The heavy rigid body, illustrating space (x~y,z) and body (1,2,3)
coordinates, and the Euler angles(,9)
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2 +2(: e~~
i• ~ ~L = •($sine0 sin*€+ i)cnstp)2 +LT( sin e cos -0sin 0]2

co e+ L3 2 Ng'2 cos 6 (3.13)

as our starting point, and work exculsively in terms of Euler angles.
The Hamiltonian (3.12) is invariant under rotations about the z-axis;

i.e. 0 is a cyclic variahle, so p is a constant of the motion. In

other terms, the momentum map for this Sl action is J(4,i,O, p 0, p*, pe)

pC. The reduced space j- N(p)/S 1  is parametrized by (iý,e, lpe P0 ). In

fact this reduced space is identifiable with T S , the cotangent bundle of

the two sphere on which (ý,0, pS, p0 ) are canonical coordinAtes. In fact,

zs we shall see below, (*,e) are a system of spherical coordinates for this

sphere. The equations of motion for ý, e are thus just Hamilton's equations

for (3.12) wirh P, held constant.

Remarks I. The S1  reductlon here is in accord with the general fact that

reducing T Q by S gives TkQ/S- here Q S0(3) and SO(3)/S S2

2. The two sphere obtained herc is not to be-confused with the

sphere for the free rigid body shown in Figure 1.

For the symmetric top, 11 12, , is also a cyclic variable and

p is constant as well. In fact these two S1 symrmetries comrmute, so we

have a torus, T , symmetry, which makes the system completely integrable.

The reduced system kas one degree of freedom in (0, p ). The reduced space

is no longer a manifold, but has a boundary at 0 0, r.; i.e. it is T [O,n].
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These singularities in the reduced space correspond to the fact that the

level set p, constant is singular at e O= ,rt.

With = I (3.12) becomes
1 22

H 1 {(P- p cos"O) 2 + P2 sin2e} + + Mgk& cos e
211 sin 2 0 1 3

2(p - cos 8)2
. + CMgi cos -+ + (3.14)
211 211 sine a13

which shows the amended poternttl explicitly.

Remark. In these coordinates, the abstract formula (2.9) for the ¢,p-reduc-

tions gives the closed one forms p and p respectively.

3.2 Theorem. If 0 < p < 2 Xg-k11  and if Pý = P I. = 11 b, the reduced

--Lagrange top system in (8, p0) space has a hyperbolic saddle points at

0 = 0, p0 = 0 and a homoclinic orbit connecting it to itself qiven_

cos 0 1 - y sech2(•2t' 1  (3.15)

• b2

where 6 2 g491/1 and b2

Remarks 1. A top with 0 < pý < 2A'14DIT for which the vertically spinning

state is unstable (a saddle) is called a slow top.

S.'This is a special case of a general fact about singularities in level sets
of momentum maps; see Arms, Marsden and Moncrief (19811.
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0

- - -I
8max

emn

(a) (b) (c)

Figure 3. Motions of the top a) steady precession (e - constant)
b) precession and notation ( emln I e < emax)

c) homoclinic orbit (0min e < 0)



3.10

2. For p= p note that the potential in (3.14) does not have a

singularity a• A 0, , so these end points do not cause difficulties.

3. Note that 0 < y<2.

* The theorem is most easily checked by using the energy equation (3.14);

the homoclinic orbit has energy H = Mgt + P/2 3 ; cf. Goldstein [1980],
•3;

pp. 215, 216 and Figure 3.

(c) The heavy top: KKS description

The abstract theory in the preceeding section guarantees that the

reduced space T*S2 for the heavy top is symplectically diffeomorphic to a

Scoadjoint orbit in the semi-direct product S0(31 x IR3 ; i.e. in the

Euclidean group E3 . The Lie algebra is denoted e3.

The mapping that gives this diffeomorphism is just the map

A : y4, i,0, p Y, p•,)p * (m,v) (3.16)

where m is the angular momentum in the body and v is the orientation of

9gravity as viewed from the body. Table 1 below summarizes the explicit

formulas relating these quantities. Table 2 sunmarizes the relationships

between the "Euler angle" spaces and the coadjoint spaces.

The KKS bracket for functions of (m,v) is given by (2.2) and (2.15),

which in this ca•_• becomes

{{F,G}}(m,v) = -m.(V F x V G) - v.(v F x VvG + v F x vmG) (3.17)
M m rn v m

The assertions of the general theory can be checked by hand in this

case. First of all, it is easily seen that the KKS bracket equation

({{F.H}} with H given by (3.11) and the bracket by (3.17) yield the

equations

Tý
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Tablee I

Formulas Relating Euler Variables and KKS Variables for the Heavy Top

*, i1M = [(p -p cos e) sin 4 + p0 sin e cos 0]/sin e I,($ sin 0 sin 0 + 6 cos 4)

m2  [(Pý-P cos e) cos V - p0e ine sin S ]/sin 0 12() sin 6 cos 4)- • sin !)

m3= P4  3( cos e + )

v1  sin e sin

v2 = sin e cos,

v3 = COs 0

mp r=v'v 11(o sin e sin , + e cos ,) sin 0 sin ,+12(4 sin ecos ,-6 sin,) sin ecos 4

p4 = m3  13 ( Cos e +4)

p_ = (v m -v IIII= I1 sn ( sin 4 +0 cos l)cos 2( sine cos4 -e sin4)sin

211m 1 2v

m mml V+ mm2v2

-3 3 11 32 2

m v2  _ m2v1

i 12
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Table 2

The Relationship Aiwongst the Spaces and Variables

Euler Angles KKS

Variables Space Space Variables

L reduce by restriction
S :~cyclic

ccP pe) T*5 2  coadjoint orbit lVI 1, v m'

if 11 =12
1Lagrange reduction
jreductiont

M0 pe) T [O,,r]J coadjoint orbit/S1 v 2mI -v Im2$ v3
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l a 1l23 - Mgt v2

m2 =a 2nlm3 + t4gX v1  (3.18)

m3 = a3mlm 2

m 3 3vI m2 v31 - 3 12

m v3 m3v1 (3.19)

m2 vl mInv2

3 T2 -II

A slighlty tedious, though straightforward computation shows that these are

equivalent to the Hamiltonian equations for (312). In fact, if F, G are

functions of (m,v) and (mv) are then written out in terms of the Euler

variables then an explicit (but tedious) computation shows that

{[F,G}}(m,v) = {F,G) 0 , (3.20)

where { denotes the bracket computed for the 0,Jp variables (i.e.

holding p constant). This is the content of Theorem 2.1 for this special

case.

The equations (3.18) and (3.19) have 1v0 and m.v as constants of the

motion. This just reflects (a) the conservation law p, a constant and

(b) the preservation of the coadjoint orbit by the KKS equations. The condi-

tions Ilvi = I and miv a p@ - constant also glve'the explicit identification

of the coadjoint orbit with T*S2 . Indeed, Ivi - I describes the unit

sphere S2 and m.v a pc specifies m as a linear functional on the unit

normal to S2 , leaving m restricted to TvS 2 free. Thus m determines,
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by restriction, an element of T*S Finally observe that the equations
V

for v in Table I show that e,£p are spherical-type coordinates on S2

(tp has been rotated by .•/2 from standard conventions on spherical co-

ordinates).

Finally we discuss the Lagrange top in the KKS picture. For I1 = 12

the invariance is rotations about the 3 axis. This Sl action corresponds

to the S action of rotation through * in the Euler angle picture, as is

easily seen. Also, the momentum map can be directly checked in the KKS

picture to be just m3.

The following is a general property of reduction, but it may also be

checked explicitly in this case.

3.3 Lenmna. If F and G are functions of (m,v) which are rotationally

invariant, then

{{F,G}) = {{FG}}m = const C3.21)
3

i.e. the full KKS bracket is the same as if it were computed holding m3

constant.

With OvU = 1, m-v =p, any rotationally invariant function of

_(m,) can in fact be expressed as a function of v2mI - vlm2  and v3.

These variables are a convenient representation of the coadjoint space

reduced by the Sl action. Brackets of functions of these variables may be

computed by 3.3. Aein, one can check by hand that for such functions

where {{F,G}} = {F,G}0 (3.22)

A• where

OF DG DG aF
{FG}0 = -

. .a;

Do ap0 Do ap
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i.e. the canonical bracket holding y p constant.

The homoclinic orbit now is described very simply as follows:

3.4 Theorem. For 0 < m3 < 2g0vie and m-v = m3 , the reduced system

for the heavy top has a hyperbolic saddle point at

v3 = 0, v2m1 - vlm2 = 0

and a homoclinic orbit connecting it to itself given by

-= I - y sech.
Sa(3.23)

S- and

and v2mI - vimr2 = m3 (1 -v 3 ) [v' II€ 5i 2l

_where a,y are as in Theorem 3.2 with p, = m3 .

This can be checked directly (using the energy equation and the evolu-

tion equations). Of course it corresponds to (3.15).

- *.

j 4
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§4. Transversal intersections of invariant manifolds for KKS
variables coupled to action angle variables

We now develop an extension of the Melnikov-Arnold theory (Felnikov

[1963], Arnold [19643, Holmes [19801) which applies to systems duscribed by a

set of m KKS variables um = (E~, ... , and a set of n action

angle variables Cel,l1), ... , (InenIn). This theory will then be applied to

the free rigid body with attachments in the next section. For the heavy top,

a more sophisticated version is needed for systems whose variables do not

decompose so cleanly. This is the subject of Section 6.

The action angle variables can be those associated with motion near an

*1 elliptic fixed point in a one degree of freedom system. For example, our

methods apply to the system obtained by coupling two rigid bodies if we ex-

amine the motion near a homoclinic orbit in one (such as an orbit connecting

(0,I,0) to (0,-Z,0) in Figure 1) and a small periodic orbit in the other

(such as an orbit near (z, 0,0) in Figure 1). The coupled system then will

have horseshoes under the conditions of Theorem 4.3 below. (We believe that

this applies, in particular, to the five mode truncation of the Euler equa-

tions for an ideal fluid on a two torus, which consists of two sets of over-

lapping and coupled rigid body equations; note that for &j - so (3) and n 1,

we have five variables in the set , For simplicity, however, we

have chosen a rigid body with attachments to work out in detail since the

action angle variables are more explicit and it is easy to add on additional

ones.

We assume that our Himiltonian takes the form

n
H:(1.,O, I)= F(p) + I Gj(I ) + CH (W.0, I)

= HO(6, IlI ... , In) + EHI (11,0I) + 0(C2) (4.1)

............-.
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where 1i = ()I, "".. lim) E¶, the dual space of a Lie algebra O• and

o = Celt ... , On), I = (II, ... , In) with e0 a 21t-periodic variable.

We assume that the KKS system associated with F has a homoclinic (or

heteroclinic) orbit ý(t) OE . The oscillator frequencies
aG

( = (4.2)i
are assumed to be positive.

As in Holmes and Marsden [1981b,c] we can solve the equation

Heji•,,) = h (4.3)

for I. in the form

In= L•(U,6 1 , .... ,n'l'l In-l 1 h) = LO(P,. I* n.,n-h)

+ eLl Cj, 61 .. 6n, Il ., Inlh) + O(e2) (4.4)

where
• n-1

LO(P,.Il, n-l, h) G-n(h - F(j) Gj(1 (4.5)

and

16 1 . , lilt .. I h)•i" I~pOI '" n'l" n-I

H N.1O. en, 1 1~ 1.. nil' L 0(i1i, Il$ ... , I nl'h)

~0~ (4.6)
anL°(L, Il, ... In-l' h))

mfIn addition, we eliminate t in favor of the new 'time' en and write

for d/dO n.
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4.1 Proposition. Hamilton's equation for (4.1), namely

41= H{{i, Hc}} ' i I,

a (4.7)

L=- - j. j .' n-i

(where {{ , }} denotes the KKS bracket in the P-variables) become

u•= -{(w1 , L1}}

ii (4.8)
.3 ae

Proof. Implicit differentiation of (4.3) gives

-SH + 3HE 6L' 0

an a

It follows that for a function K(P),

SK H-' ~~~~L ifH}}p I-U •• T- )

'~~~ (u • In -- H 61J:-

• i E aHE

and so {(K,H - {K,Lc}. However then, K' _n K -(,L }}.
DiOn a /H an

The second set of equations in (4.8) follows in the same way. 1

Using L - LU + Il + 0(c2) we see that (4.8) has the form of a

periodically perturbed system. Next we relate the reduced and non-reduced

bracki ts.



4.4

4.2 Proposition. We have

0 1
S{{L 0 L1 } = {(F,H 1 )} (4.9)

Proof. From (4.5),

S•L_•°= -1 6F

SU 'n
and

6L1  1[6H1  BH6LJ +_ 1 ".'n~r 6L.

6L 0 6L 0
However, since =-], - = =0, we get

0 = -•, 6L • -
6V 6H11

12 F 6H1

*6 1
"1 {{F,HI}}. I

Let us now give a special case of the general result, suitable for two

- degree of freedom systems.

4.3 Theorem. Suppose •(t) is a homoclinic (or heteroclinic) orbit for

F, which lies on a coadjoint orbit in of dimension 2. Furthermore,

supeose ni 1

Let h F(p) be the energy of the homoclinic orbit and let h > h

and t0 = G-l(h F h) be constants, Let {(F,H1 }) (t,eO) denote the KKS

bracket of F(u) and H1(i, :(LO)t + 0O. 0) evaluated at ý(t). Let

---!i
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.1O

MOO) 1 f dt (4.10)

and assume M(60 ) has simple zeros. Then for c > 0 sufficiently-smal1,

the Hamiltonian system (4.1) contains transverse homoclinic orrbits and hence

Smale horseshoes on the energy surface H8 = h.

Proof. By reduction, it suffices to check that the Melnikov function for the

reduced, forced system on the coadjoint orbit containing - has simple zeros.

This involves only a generalization of the one degree of freedom Melnikov

theory for forced oscillationsto two dimensional symplectic manifolds. The

standard proof (see Holmes [1980] and Greenspan and Holmes [1981] ) carries

over directly. The Melnikov function for the reduced system is

M(e0 ) f{{LO,L1}} dO (4.11)

since . KKS bracket coincides with the Poisson bracket on coadjoint orbits.
'~do_

Using (4.'1) and T- fi,

t}) dt

00

Finally, note that il Q(O) is constant on the homoclinic orbit, so the

theorem results. I

To deal with the situation in which n > 2, we introduce the following

conditions on the Hamiltonian (4.1).

(HI) F contains ( ho.-(or hetro) clni orbit E ti n.ern hg .

The coadjoint orbit containimQ j is assurid to be two-diO-ensional.

The saddle pointsfor j aredenoted (they ,.ou14 be coincident).
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(H2) "JC(I) -G3(IY ) > 0, J ", ... , n.

To explain the remaining conditions some discussion is needed.

For e = 0, note that the Hamiltonian system for LO has txo n.I

parameter families of invariant n-I dimensional tori T±(hl, ... hn-1)

given by

G i 0 =hi = constai.t (i.e. I =. = GI(h )) } (4.12)

a e. (•jij)en + 6 (0) (mod 27), j = 1, ... , n-i

(Correspondingly, the system for H0 has two n parameter family of in-

m variant tori (T+(hl, ... ,I he).) Henceforth we write the (phase) constants

of integration e.(0) as j = I..., n-l, n.

The tori T+(h 1 , ... , h n-I are connected by the n-dimensional how-

clinic manifold defined by

0
n n

G.(I.) h., (4.13)

•j• •(Ij)8fn + 0, - 1, ... , n-I

0where the phase constant 0  associated with the 'reduced' degree of freedom• n

appears explicitly. This ranifold consists of the coincident stable and

a( • unstable manifolds of the torl T.(h, h h.; i.e.

i (T,(hl • hn Wu(T,() ., . . . . h
given.by .1 ).nI

!: given by (4.13).

S. . . . " - - -j
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For e t 0 the system (4.7) possesses a Poincare map P. from (a

piece of) (11, 61, ... , In.l' II'-*, I n-1) space to itself where 6.

gos through an increment of 21r, starting at some fixed value nO, (which

will be suppressed in the notation). Below, when we refer to transverse

intersection of stable and unstable manifolds, we mean so for this Poincare

map.

(H3) Assume that the constants G (Ij) hj, .j 1, ... , n are chosen

so that the unperturbed frequencies slyll), ... , Ql(In) satisfy

the non-degeneracy conditions (i.e. W(I) t 0, j = 1, ... , n-l)

and the non-resonance conditions of the KAM theorem. (cf. 1j

(1978), Appendix 8).

"This condition ensures that the tori T+(hl, .. , hn.I) perturb to

invariant tori T ,+(h1, ... I hn 1 ) for P for e sufficiently small.

n
Let h > , h = h+ I h. where h. > 0, and the unperturbed homoclinic mani-

fold be filled with an n-parameter family of orbits given by (p, 682 ....
•, • Iln~in1 t 0 ii ')8n 1Il, ... , In) = _P(t), 9l(1l)t + 00, ... , il( t+ 00' li "'.. I n

Pick one such orbit and let {{F,H 1}) denote the KXS Poisson bracket of

IF(i) and H 01.al... 1 ,1v..I . I ) evaluated on this orbit. Sim-

ilarly, let U{II,HI} M -aH/ -ak, k 1, ... , n-l be evaluated on this orbit.

Define the Melnikov Vector M1O0 ) (H1 s .....  I Mn) by

e h (8 .h h. h0 ) h iIs Hh} dt k 1- ..I n-I
I ' ' 2' n-i , , ,

m .(e .. 0 h, hl F (jF8)) dt. (4.14)

n '2 0 ..., h ) n-
n
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n-i
(We note that hn a h-1i- - hj; In and h do not explicitly entern n. n

"al-

the calcualtions, since I is eliminated by the reduction process; we also

note that these integrals need not be absolutely convergent, but we do require

condi tional convergence.)

0(4) Assume that the multiply 21T periodic Melnikov vector M :IRn IRn

(which is independent of e) has at least one transversal zero; i.e. there

is a point (0•, ... , 80) for which

nn
butefrM(6w , ...1 80) . _

nbut- detEDM(60, ... , 0 0 0 ,

where DM is the n x n matrix of partial derivatives of MI, ... , Mn with
0 nirespect to .... , , the initial phases of -the orbit.

Here is the result for n > 2.

4.4 Theorem. If conditions (Hi) - (H4) hold for the system (4.1), then,

_ for c sufficiently small, the perturbed stable and unstable manifolds
sW T , , _ U(T
W (T and W j of the perturbed tori T intersect transversely.

The theorem follows from the arguments of Holmes and Karsden [1981c)

4 in the present context. We also refer the reader to that paner for a discus-

sion of how this yields Arnold diffusion and for related references.

There is a similar result when the coadjoint orbit is higher dimensional

i.e. of dimension 2M, M > 1, but the syste for F on is completely
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integrable, say with integrals

SF f, 2 FM

where F2, ... , FM are associated with action angle variables. Now a

result simflar to 4.4 holds if the Melnikov vector is enlarged by replacing

the number 1

by the vector

f {{Fi H}} tit, i - 1,.., m

TC would be if interest to apply such a generalization to the Toda lattice

and related completely integrable systems.

ti 1
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;5. An example: the rigid body with attachments

We start by considering the rigid body in the absence of gravity, with

a single attachment which spins freely about an axis coincident with one of

the body's principal axes, say 1. The angle about this axis is denoted 6.

For simplicity we suppose that the attachement does not affect the position

of the principal axes, so that the inertia tensor remains diagonal, but

that the attachment is slightly asymmetrical in the sense that the perturbed

moments of inertia a'out the 2 and 3 axes depend upon the angular position

- of the attachment relative to the body. Such an attachment could consist

of a (heavy) disc and a light rod, as in Figure 4.

2

Figure 4

Il Letting the moments of inertia of the body with respect to the three body

axes be j 1,2,3, and of the attachment be J, + C, J C cos2 e,

J 3 + e sin 8. We obtain the Hamiltonian3

'+ . . - :.,. .+,.x
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2 2  2, M2 2  _12_

H + +
= I 1 + 2 + e Cos8 3 + e sin e

3 1; 2  in2  2)2 1 l 2 2 +0R3
2 h/.+I Ii 7+-3 ~ 2-

= F + G + e8 +,O(E2) (5.1)

where I. = I' + 3j and where (6,1) are action angle variables for the

4 attachment. Since the unperturbed system is a produce flow on CS2) x IR x ),

the product of the coadjoint orbit of S0(3) with the (1,6) cylinder, we can

use (3.9) to write the homoclinic orbits for an energy level H0 = h

ITZ2 +k , where 2= m2 + m + m2 and k is a constant, as

+ T1- - sech(-3 t)2a 13

• :m2 +- tanh(-Y5 3£ý t)

a3  (5.2)
S±Z - sech(-Aala32 t)

a82

I = k(constant)
".4.

= k t + 80

To show that transverse homoclinic orbits occur for e $ 0 we need
only show that the Melnikov function

ii0

M(e0) = ( -- {{F,HI}} dt (5.3)
--00

has simple zeros, all other conditions of Theorem 4.3 being immediately

__ _ _ _ _ _ _.--

g~

'I.- K - U
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satisfied. Note that we must set k > 0, so that I > 0 for the unper-

turbed system and hence the inversion of He h goes through. This is

the reason for choosing an attachment with a heavy 'in balance' symmetric

component). The KKS bracket is given by (3.6):

{{F(m), H (m,I, -e0)}} -m=VmF x VmH1

a cos2  a sin 2 2 0 (5.4)F a[I_•l a2 co 3 s
+" • + --- 1 ... 2 mlm 3

*2 I3

Noting that on any homoclinic orbit mI and m3  are even while m2  is

odd, it follows that the constant term (a1 /II)m lm2m3  vanishes in the Melnikov

integral and we are left with

M(o M 1 { cos 2o + sin20 do,

'3 a a 2ede!;i.~ 21 2a3

=MJm~mm cos 2e -- Cos 2 o
213 3

, 1 - - m1 2m3 cos 2e do. (5.5)

Inserting the expressions for the homoclinic orbits, we get

000

* M(OO) :2k - " j. ~ -a 2 J l3 t) tanh(-.'ala 3• t)

C cos 2 k t + 00 dt ,

3zf sech2 (-alT t) tanh(-a t) "t) dt sin 26, (5.6)

C C eh F i 't i

1'.~kV
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where 3 a a 3

J T3

C =2-7 i• a2

The integral of (5.6) may be evaluated by the method of residues to obtain

S0 ( a321Tk2  f_______ I snB'(")aa•J

M(O ) =C . 2( Z )r cosech , k'- s 260  (5.7)

which has simple zeros. We therefore have

5.1 Theorem. The free rigid body with a single slightly asymmetrical

freely rotating attachment on one of its principal axes possesses transverse

heteroclinic orbits and hence Smale horseshoes in a suitably chosen cross

section of the constant energy surface with k > 0.

This implies that the rigid body equations with an additional attach-

ment are non integrable. More precisely, if we make a Markov partition of

the invariant sphere consisting of the four open regions filled with periodic

notions in the unperturbed case (Figure 1), then the dynamics of the per-

turbed Poincare map is conjugate to the subshift of finite type on these four

symbols. To see this we sketch the homoclinic structure on the sphere in

Figure 5, identifying one of the centers (in region A) with the point at

4 iinfinity. It is clear that orbits starting near the manifold on the 'boundary'

of regions 2 and 3 can be selected such that they pass either from region

2 ÷ 2 or 2 - 3 or 3 + 2 or 3 o 3. Similarly on the border of 1,2 orbits

can be found passing from 1 1 1, 1 ÷ 2, 2 1 1 or 2 ÷ 2. Continuing in this

m i~ ..

4_ . . . .. . . . . . . . . . . . . . ..•R~m;• .•.•':•,' • •.. . . . . . ....... ..' . .r . -. .
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4

-. 4

Figure 5. The homoclinic structure of the perturbed manifold
SWS(O,±k,O), Wn(o,±+Z,O) on the sphere.

way we find the transition matrix

01 1

1 111 0
-- A [aij]

0 1 1 1

. 1 0 1 1

where a =1 if there is an orbit from region i to region j and ai- 0

if there is no such orbit.

If two or more attachments are added to the free rigid body then

Arnold diffusion may take place. Taking a system with two identical attach-

ments on axis 1, each free to rotate independently, with momenta I, J and

angles 0, @, we have the Hamiltonian
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H= FF+GI + G2 + cHI + 0(I 2 ) = mL + J2 1

2 2  c2 2 2 2)
"ml2 + m•2; (Cos 20 "+ Cos 2ý) + m3 (sin 2

o + sin2 ) 1 + i + 0i)2

(5.8)

In this case the Melnikov vector consists of the pair of function

M1(00°,)0) = J {1,H1 } d

12(eO =0)= _

M 1(600 { {F'H I }},

~~ {IHF= __

where {IH 1- is the usual canonical Poisson bracket and S2

Computations similar to those above (also cf. Holmes and Marsden [1981c], §4)

show that

M= C1 sin 2o0

0 0 (.0C2 sin 201 +C3 sin (2.10)

where the C. are non-zero constants depending on I, J, Jl, and the choice

of total energy and energy in each 'mode' (E - Z2/212 + k2/2J, + k2 /2Jl)"

Thus M has simple (transverse) zeros for 0 = nmf, 0 a nit, m,n 6 Z,=1

Since Sl(I) Tl • 0, all the conditions (HI) - (H4) of Theorem 4.4 hold.

Therefore, the rigid body with two attachments as apec-Ified exhibits ArnoZd

diffaion. The existence of a transition chain of two-tori connected by
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heteroclinic orbits, (see Holmes and Marsden [1981c], 23 for a discussion)

implies that angular momentum can be transferred back and forth between

the two spinning attachments in a chaotic manner.

Remark. An amusing corollary for the case of a single attachment is that

there are configurations of the Euler elastica for which the sequence of

loops above and below the mean level can be prescribed in advance. (For

example the loops can be coded by the binary expansion of an irrational

I number). This follows from the above calculations and the remarkable fact

that the elastica equations have the form of the equations of a rigid body

with an attachment; see Love [1927, p. 400].

S
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6.1

§6. 1Ienlkov Theory for Systems with S' Symmetry

We now develop a version of the Melnlkov theory that applies to per-

turbations of a two degree of freedom system with an S1 symmetry. We have

chosen this context with applications to the motion of a nearly symmetric

heavy top in mind.

The key new feature is that the unperturbed system is no longer

assumed to be a product system consisting of variables with a homoclinic

orbit and action angle variables. Rather, this product structure is gen-

eralized to the assumption of an Sl reduction.

Roughly speaking, our umperturbed Hamiltonian H0  no longer can be

split as

H 0O(q,p,I) = F(q,p) + G(I)

"so that the frequency function = now may depend on (pq). This

is, in fact the situation for the nearly symmetric heavy top.

Let us start with a four dimensional symplectic manifold P, whose

points are denoted x. Suppose SI acts on P by canonical transformations

and has an Ad -equivariant momentum map J :P - IR. Let the reduced space

be denoted

P j-I (-)1/S

(see Marsden and Weinstein C1974)).

For the heavy top, P = T*S2 and S1  consists of rotations about the

axis of symmetry. To keep the notation consistent, we shall use ý# for the

angle on S1. Motivated by this example, we allow P to have isolated
zU

singuiarities, but in this case we demand that the constructions carried out

below make sense at the singular points. For the heavy top this causes no

difficulties.
S
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6.2

Let points in the reduced space be denoted u E PW. Thus, u consists

of an S1 orbit in P, lying in the level set Jl (P). Choosing a slice

(cross-section) for this action, p parametrizes the point on the orbit and

of course the value of J labels the surface J-1(p). Thus, we write points

x as

x = (u,,,J) (6.1)

See Figure 6.

In this notation, a function of x is S1 invariant if and only if

it can be expressed as a function of u and J alone. Such functions induce

functions on PP, the reduced space, and have well defined Poisson brackets

on p . In fact, the Poisson bracket of two such functions is just that

function induced on P by their Poisson bracket on P. Of course any SI

invariant Hamitonian on P gives a completely integrable system, the integrals

being J and H, or equivalently H for the reduced one degree of freedom

system.

ITI N!
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6.3

10Now assume that we start with an S Invariant Hamiltonian HO(u,J)

and we perturb it by a general Hamiltonian. Thus, write

H (u,*,J) = H0 (u,J) + zl (u,'*,J) + O(Z ) (6.2)

Now we must generalize the procedure of Holmes and Marsden (1981b] to this

context.

We begin by letting

,H0

!acuJ) = (u,J) C6.3)

0
and assuming a is positive, so that H (u,J) is invertible in the J-

variable. For e small then

H6(u,opJ) = h (6.4)
0 0 -can be solved for J. Write H (J) -H0(u,J) and (H) for its inverse

in the J variable.

6.1 Proposition. J L3(u,,,h) = L0(u,h) + e I(u,,,h) + O(cs) where

2 0 0-1L (u,h) = (H ) (h) (6.5)

and

L (u,.,,h) = "ljuj - L0(u'h (6.6)

fZ(u,L (u,h))

Proof. (6.4) reads

Hc(u,k, L0 + 0 + O() h

i.e.

0 0 1 2 1 0 1 2H0(u, L0 + L+ 0(2)) + •H C(u, , L + cL + O(2 ) h

S. . . . "4



6.4

i.e. H10(u,LO) + c(u,LO) + e• (us,LO) h + 0(e 2 ). Comparing powers of

c gives the result. K

As in Marsden [1981, Lecture 4] we can arrange things so that p and

J are conjugate variables. Thus under the dynamics of Hc,

.p fcpHi { =-a- (6.7)

Now we change time variables from t to * and write for d/d#. Thus,

for a function F(u),

F' { =F,H.}/a-e (6.8)

However, from (6.4) and properties of the Poisson bracket,

{F(u), He(u,p,L-(u,',h))} = 0

so

{F,KC} + 3H{F,L = 0 (6.9)

Comparing (6.8) and C6.9),

F' = - (F,LF} = -{F,L } - c{F,L I} + Oce 2) (6.10)

:1 Thus, (6.10) is in the form of a periodicall) forced Hamiltonian system on

the reduced phase space. The brackets in (6.10) are taken in the u-variable

alone. Thus, we have:

6.2 Proposition. The evolution of u as a function of 'p is a ý-dependen

Hamiltonian system in the reduced phase space. The equations of evolutiott

are given by (6.10).

Now suppose that the reduced system for E 0 h&s a homoclinic orbit.

To detect the presence of transverse nomoclinic orbits for E $ 0 we must

- - =L , N i



6.5

integrate (LOA. ) around this orbit. Now in examples, La and Ll and

their bracket can be laborious to compute. It will save some effort if we

relate {LO,Ll} to HO and HI.

6.3 Proposition. [LO. 1 1HO. 0 H1  (6.11)

where 0 is evaluated at u, J and the bracket: are taken with resyect to

u, holdin , J fixed.

Remarks 1. Formula (6.11) is d generalization of (3.1) of Holmes and Marsden

[198lb3. In the later case a was independent of u.

2. The above development does not depend on the dimension of P.

Proof of 6.3. Given F(u), we first comaoute {LO,F}. From (6.5),

HO(u,L 0(u,h)) = h, so

00{H ,F! + 111OF} = 0

Thus 0 1 0
{L F} ( K OF} (6.12)

Next, from (6.6) we obtain

1HH1  l H + I1 0(G,LI -(G, -L-} - J {G,LO Z (GL (6 13)

Taking G - L0 in (6.131 the last two terms vanish, so
H1

(LOLl } {LO,--

By (6.12) this gives the stated result. U

Assembling these results as we did in Section 4, we obtain the following.

I j



6.6

.6.4 Theorem. Consider a twi degree of freedom Hamiltonian system on a

symplectic manifold P with an S1 symmetry with a Hamlltonlan of the

form (6.2). Assume that J is chosen and fixed so that the reduced system

HO(uJ) has a homoclinic (or heteroclinic) orbit 'i(t) in the reduced space

P and so iI(-(t),J) > 0. Let

4 (t) f Q(u(t),J) dt + (6.14)

and let {HO 0 } (t,HO) denote the u-Poisson bracket evaluated at i(t),

.(t) and J. Let

M(U1,) (H0 d (top) 0 t (6.15)

,m a0 0

-and assume M{P) has simple zeros as a function of Then for

sufficiently small, the system (6.2) has transverse homoclinic (or hetero-

clinic) orbits, and hence Smale horseshoes on the energy surface HE h,

where h 8HO(iuJ).

4
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7.1

§7. Example: the motion of a nearly syimnntric heavy top

We now show that Theorem 6.4 implies:

7.1 Theorem. If 11/I3 is sufficiently large, 12 = Il + sand e is

sufficiently small, c t 0, then the Hamiltonian system for heavy too

(see 3.11 and 3.12) has transverse homoclinic orbits in the Poincard map

for the ,p variable on energy surfaces close to the homclinic orbit

described in 3.2 or 3.4.

7.2 Corollary. The heavy top close to the symmetric top has no analytic

integrals other than the energy and angular momentum about the vertical

axis.

Remarks 1. A3 we have already discussed, this corollary has recently been

obtained oy Ziglin, but by rather different methods. Moreover, our result

7.1 shows the existence of 'chaotic' orbits.

2. 1 /1 being large can be replaced by 0 <y <I and the
1 3

integral 7.13 below being non-zero. This integral is non-zero for most

values of M, 1, Il, I3, as we shall show.

lip shall prove theorem 7.1 in the Euler angle representation first

and then sketch how the proof can be alternatively obtained using the KKS

description.

In (3.12) let 12 II +c. This gives

0 1 (p - p, cos 0)2 p2

.+-- + Mgt cos 0 (7.1)
* -:! 3s 2
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7.2

and

212 sin2e ((p - p cos e)cos V - P, sin o sin ()2 (7.2)

Note that H0  is the Hamiltonian for the symmetric top and so has a homo-

clinic orbit given by (.3.15).

Since p and p are conjugate variables and J = p., we have from

(6.3),

k1. - P O COS CO'4(7 3
. 3 1 1 i• 6

On the homoclinic orbit, p= pý constant - Ilb, so (7.3) becomes

Q b = COS + (7.4)

7.3 Lowna. With p = b,2Mg

b- and =
C1

we have

(HI, =l (A(6) sin 2S+TB,(0) cos 2' + C(e)) (7.5)

where44 -
A(6) 2 + (1*2 -I CO) _-2

Be f sin q31 - 4bL sihe4

and

C(6 ) sin 0
. 4 t. J .

M4114 3



Proof. The computations are slightly tedious but straightfovward. We

write

{HOlI} - L {HO1 a} , (7.6)

{H0 H1 aM0 DH ah0 8M1

-H
0 a(:! ~ {HO'j} = p e'

and compute that

S- i--II sin 8 - sin eJ,

I3H= 2 sin cosZP + sin 2d,a. 2
-Po (P- sin e sin 2p - isin

ap8  1 2

{. 0 H1 2 - sin2) - 2] sin 2p

p+ sin a cos 2* - -L sin O(cos 2* - I),
4 -;j, 

4

w sin 0

and

{HO0 11M= - sin 0.

Substituting these expressions into (7.6) and simplifying yields (7.5). U

The Melnikov function is given by

= jL ! djct (7.7)

-C
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7.4

where the integral is evaluated along the lomoclinic orbit

cos e = - y sech2 t p 2 (7.8)

(see (3.15)) and where

4{t) = J sct) dt + 40 = it) + 40 (7.9)

and

a bt) =b{ + (7.10)

y sech2 f /BY t3

Note that if 0 < y < 1, or if Ii/I3 is sufficiently large, a(t) > 0.

Substitute (7.5) and (7,M) into (7.7) yields

'a MC*0)01 CA(e) sin 2"• +B(6) cos 2j) dt cos 2,0

CA (MA) cos 27 - B(e) sin 27) dt sin 20 +C() dt

(7.11)

The first, second and fifth terms are odd functions of t and so we obtain
d

the following

7.4 Lenma.

M tlb 0): •(A(e) cos 2ý - B(e) sin 2T) dt sin 2,0 (7.12)

4.
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7.5

h2
Now we observe that at t 20, A- b->O and B O. It follows

that for II/13 sufficiently large, the portion of the integral from the

first term near t = 0 dominates and so the integral must be a non-zero

number. Thus M(* ) has simple zeros and the theorem is proved.

__-_ =2 b2

Remark. For any given b, $, I1, 13 (with y 2 -- and b < 2a,

,b, > 0) one needs only the condition that

f - (A(B) cos 2W - B(O) sin 2r) dt (7.13)

be non-zero. Since we cannot evaluate (7.13) analytically it does not

seem so simple to decide exactly when (7.13) vanishes. Since we can be sure

* it is non-zero for 11/I3 large, it follows that (7.13) can vanish for at

most a finite set of values of b, ý, Il, 13 as it is analytic. Thus, we

can be sure of transverse hmoclinic orbits for generic M, 1l, 13' b, if

o < Y < 1.

Finally, we indicate how the same computations can be done using the

KKS formalism. This actually makes the computations slightly easier, but the

~ final result is the same.
3 m 2

Again, letting 12 I + e in H= = r--+Mgtv 3 , we have"i •2 j -1 I

S+ m•

H 2 0 1 + 3+ Mg v3  (7.14)S: 211 213

and

HI m 2H (7.15)

-- . . .
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Next, observe that i and m3 are conjugate variables, where tan Vl/v2,

so if m-v = I b = m3,

(= {{*,H°}} - b + (7.16)
L'3 lv 31

H1
which agrees with (7.4). To compute {(HO, -- }} we write (see Lemma 3.3)

Hl as a function of the reduced variables v2ml - vIMi2  and v3 and compute

the bracket holding *' and m3  fixed. This is done by writing

m2 _1 v(- -Mv 2siin2 m -. vi (m. 3v3) cos2 ,- (v2m1 -vlm2 )(m.v -m3v3 ) sin,II -V 3

* + (v2mI - vlm2)2 sin2, (7.17)

When m-v = m3 = Ilb, this becomes

m2  Cos- 2~ , 2 2S1• lb c Ib(l -v -Xvlm2 ) sin + (v2ml -vim2)2 sin2,2 , 1 +v 3 13 21 12

(7.18)

0 H1
Using these expressions we readily compute {{HO, -•}} using (3.17). After

substituting from Table 1, the same expression (7.11) as above results.

1 Thus, the proof may be completed in the same way as with the Euler angle

argument.

0 t
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