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Abstract
<

The Melnikov theory of perturbations of Hamiltonian systems con-
taining homoclinic orbits is extended to systems containing canonical vari-
ables belonging to the coadjoint orbits of a Lie group. This is applied
to the free rigid body with attachments and to the nearly symmetric top.
These sys*ems are thereby shown to have transverse homoclinic manifolds
in an appropriate return map and therefore have complex dynamics. In
particular, the heavy top and rigid body with one attachment are shown to
contain horseshoes and therefore have no additional analytic integrals,

while the rigid body with several attachments exhibits Arnold diffusion.




1.1

§1. Introduction

This paper presents theorems which estabiish the existence of
horseshoes and Arnald diffusion for nearly integrable Hamiltonian systems
associated with lie groups. The methods are based on our twd previous
papers, Holmes and Marsden [1981b,c]. The two main examples treated here
are as follows:

1. The rigid body with attachments. This system has horseshoes
{withone attachment) and Arnold diffusion (with two or more
attachments).
2. A rigid body under gravity, close to a symmetric (Lagrange) top.
This system is shown to have horseshoes (and hence is not integrable).
The main new feature présent here is the presence of Lie groups. Both
the symmetry groups and the basic phase spaces involve Lie groups and our
. perturbation methods must be modiTied to take this into account. As in our
previous work, the results hinge on reduction together with a method of
Melnikov. This is used to analyze the perturbation of a homoclinic orbit in
an integrable Hamiltonian system. In example one, the unperturbed system
is the free rigid body which has a homoclinic orbit lying on a sphere. This
sphere arises as the coadjoint orbit for the rotation group S0(3) and the
computation of Poisson brackets needed in the Melnikov theory is most easily
done using the KKS (Kostant, Kirillov-Souriau) theory of coadjoint orbits.
This theory is reviewed in Section 2.
‘ After removing the angular momentum about the vertical axis, the cor-
rect phase space for a rigid body under gravity is T*S2 the cotangent bundle
. of a sphere. This and its connection with Euler angles and coadjoint orbits

in the Euclidean group is explained in Section 3. This section thus sets




1.2

up the basic phase spaces needed in the analysis of our second example.
Section 4 develops the Melnikov theory when the phase space is a
. product of a KKS phase space and a set of action angle variables. This is
applied to the rigid body with attachments in Section 5.
Section 6 develops the Melnikov theory for systems on a phase space
where the unperturbed system admits an 5! symmetry and has a homoclinic
orbit in the reduced phase space. This gencralization does not assume the
original phase space is simply a product. This generalization is needed
for and is applied to thenearly symmetric heavy top in Section 7.
The two examples presented nere were selected because of their physi-
cal interest and because they provide good models for how the Melnikov
theory must be modified for systems with topologically nontrivial phase spaces.
The presence of horseshoes in the motion of a nearly symmetry heavy top
implies, amongst other things, that thedynamics is complex and cannot be
captured by averaging methods (cf. Akulenko, Leshchenko and Chernousko
(1979]), that the dynamics has periodic orbits of arbitrarily high period
embedded in an invariant Cantor set and that the system admits no additional
an.iytic integrals. The latter fact is consistent with known classical re-
sults, but the existence of horseshoes is a stronger and, we think, more sig-
nificant assertion. Ziglin [1981] recently proved a general nonintegrability
theorem that includes the non-standard rigid body cases but his proof pro-
ceeds along different ling3 and does not seem to yield horseshoes.
We expect that dissipative and forcing terms added to these systems

can be dealt with along the lines of Holmes and Marsden [1381b].

Acknowledgements. We thank Allan Kaufman, Steve Smale and Alan Weinstein

for motivation and several useful coiments.




2.1

§2. Hamiltonian systems on Lie groups and semi-direct products

Since the basic paper of Arnold [1966]’Lie groups nave played an im=

. portant role in the construction of phase spaces and the symmetry properties
of some important mechanical systems. For systems such as the rigid body
one wishes to realize the classical Euler equations as Hamiltonian equations
on an appropriate phase space to apply Hamiltonian perturbation techniques.
For a rigid body free to rotate about its center of mass, the basic phase
space is T*SO(3) which is conveniently parametrized by the Euler angles
(¢,v,6) and the correspending conjugate momenta (p¢, p¢, pe). However the
S0(3) symmetry of the problem enables one to reduce this 3 degree of freedom
problem to a one degree of freedom system whose phase space is a sphere in
body-angular momentum space.

For purposes of this paper we are interested mostly in the Poisson
hracket structure since it is this which directly enters the Melnikov theory.
In what foilows we describe the Poisson structure associated with a Lie group
and its connection with coadjoint orbits. (For the same theory with emphasis
on the symplectic geometry, see Abraham and Marsden [1978, Chapter 4].) Proofs
may be readily supplied by referring to the preceeding reference, to Arnold

[1978] and to Guillemin and Sternberg [1980].

f (a) Generalities on KKS structures
Let G he a Lie group and l?, its Lie algebra. For ¢&,n G@}- {g.n]
*
denotes the Lie bracket of £ and n. Let g} denote the dual space of 0}
*
For F:ff + IR, and the variable in 63 denoted by u, define
SF o L op b
. éu’ %’ Y
8F

DF(u)'\) = (\), E) . (2.1)

,' m,’;k‘éfé?t'tji”ﬁ" W gl




2.2

. where (,) denotes the pairing between a’_* and QJ,; and DF(u):Q},* + R
is the usual (Frechet) derivative. It is understood that -g% is evaluated
, at the point wyu.

The KKS-bracket of two functions F, G :q}* + IR is defined by

{F,61) = - u.[g{j-, £ . (2.2)

This bracket makes the smooth functions from 0}* to IR into a Lie algebra.
The only non-obvious condition is Jacobi's identity.

Next we describe the relationship between the KKS bracket and coadjoint
orbits. For g €G, 1let Adg :cg.-» g. be the adjoint representation (the
linearization of the map Ig: h - g'ng"‘ at h = ijentity) and Ad;_] :9* -»9*
the coadjoint representation. For Mg GQ}!, let @ = {Ad;_luolg €G } be
the orbit of Mg A theorem of Kirillov, Xostant and Souriau states that 0
is a symplactic manifold. We now describe the symplectic structure. For
u €0, tangent vectors to 0 and u have the following form: let £ € q,

and define E(u) Eq’." by n ~<u, [£,n]). Then E(p) is tangent to 0 at

u. The formula

GORMERINEIE (2.3)

defines a symplectic form on (. Formulas (2.2) and (2.3) are reiated as

follows: for F,G :of - 1R,

{{rF,6)}i0 = {Flo, GIO)O ' (2.4)

‘ whare { }0 is the Poisson bracket computed from the symplectic structure
{2.3) on C.

. If H :of - R is a given Hamiltonian, there is a unique vector field

¥

*
X, on a}* such that any function F : a}, - IR which evolves along the fiow

QN T A M S e = L e -~ - - - w———ﬂ
. « "




2.3

of XH satisfies
F = {{F,H}} . (2.5)

Explicit equations of motion for u E'qf can be computed directly from (2.5)
and (2.2) in examples, without the computation of coadjoint orbits, by letting

F be coordinate functions on q}*. The equations so obtained are thus

e ) - (2.6)

The vector fielc XH is necessarily tangent to the coadjoint orbits; thus
if w(0) €0, then wu(t) €0 as well. Furthermore, X.|0 = leo where
XHIO is the Hamiltonian vector field on ¢ computeo.from H wusing the
symplectic structure (2.3).

As we shall see in the next sections, the classical Euler equations

for a rigid body (with or without gravity) can be expressed in the form (2.9).

Remark. In Arnold [1966] and Ebin and Marsden {1970] it is shown that the
equations of an incompressible fluid also fall into this class using the
qroup Dvol of volume preserving diffeomorphisms of space. For compressible
flow, the appropriate group is the semi-direct product of diffeomorphisms and
functions. (The reason semi-direct products are relevan. is explained ab-
stractly below). When appropriately coupled to the electromagnetic field,
equations (2.5) also include the equations of plasma physics and magnetohydro-
dynamics (see Marsden and Weinstein [1981]).

For the rigid body free to rotate about a fixed point, the basic phase
space one starts with is TiSO(3). irrespective of whether or not gravity is

present. [n the absence of gravity, reduction by S0(3) leads naturally to
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the KKS Poisson structure on the Lie algebra of SO(3). However when gravity
is present, reduction by S‘ leads to the KK3 Poisson structure on the Lie
algebra of the Euclidean group; i.e. the semi-direct product S0(3) € HZ3.
Proofs of assertions made in the following may be found in one or more of
Abraham and Marsden [1978], Guillemin and Sternberg [1580] and Ratiu and

van Mcerbeke [1981].

(b) KKS Structures for Reduction by a Squroqpf

tet G be a Lie group and T*G its cotangent bundle. Let v € q?f
*
and let G = {g € 3]Ad .1V = v} be the isotropy subgroup of v. Now
g
Gv acts on G by left transiation and hence on T*G. This action nas an

*
Ad -equivariant mcmentum map
v o L* *
J° T G~n§v
. . *
where Q}v is the Lie algebra of GV. In fact, for Gg € Tgb and § € Q}V,

v Oy "
{J (gg),g) » (Qg, Te.Q £) (2.7)

9

where R9 :6 » 6 denotes right translation by g and ( , ) denotes the
* ®
3irings betwe:zn and or TG and TG as riate.
o g 07V§ Q}v t* g g sppropriate
How let u € ¢ and u*=§;V be its restriction to QFv‘ We shall
henceforth make the {(gemeric) assumption that Gv is abelian., Thern the

L 3
reduced space of T & relative to the action of G N is

The heavy rigid top is done two Separate ways in Section 7, nameiy in
terms of fuler angles and in terms of the KX§ structure. Those who wish
only to read the Euler angle proof may omit the rest of this sactien and
the third part (¢} of the rext section.

LR il denth e S - _—‘-ﬂ
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- -1~
P = W) (e, (2.8)

*
Let ({, )) be a left invariant metricon G and K :T G = IR the correspond-

ing kinetic energy function: K(ag) = ]f((ag’ag)) . Llet Y be the one form

on G defined at g €G by minimizing K over the affine space of ag

such that Jv(ag) = |,

1

Remark. If 6 =S and & €9}, is the element corresponding to W via

(¢, 2 i.e. (g, W) =u(n) for ali “E"}v’ then for veTgG,

(LELEN
a (g)ev = (T R g, W) 2 (2.9)
[ eg ((Adg_]g, Adg_]g))

The function K(au(g)) = Vu(g) is called the amended potential.

The map O‘q + ozq - a, induces a symplectic diffeomorphism of Pif.v

with T (6/G) by Theorem 4.33 of Abraham and Marsden [19781.

*x
Remark. In general, the symplectic formon T (G/Gv) is the canonical one

0.

H

plus the "magnetic" field dau. Fer the examples in this paper du
However au # 0 and it is necessary to use it to form the amended potential.
If this is added to the standard potential for the heavy top, we recover
the effeccive potential. As we shall see below, this agrees with that in
standard texts (Goldstein [1980], formula 5-60, p. 215) and is a special
case of Theorem 4.5.6 of Abraham and Marsden [1978].

Now ~onsider the semi-direct product G x o;, of G with the additive
group o} with G acting on a} by the adjoint action. For v eo}_*, let
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2.6
V: 6 x 9 R
£(g,E) = (v, Ad, 48 ) (2.10)
i.e. f (g,e) = Ad;_]v. Write fz(g) = £V(g,&). From the identity
(g 0.8) = g, Adg ©) (2.11)
we see that G x o; acts on T*G by the right action
*
(g:8)vey =t +(TR) way (2.12)
df
g
where tdf’\’ is fiber translation in T*G by the differential of fz. The
g
action (2.12) is symplectic and has an Ad*-equivam‘aut momentum map
N :T*G +0;* x of
given by
v _ * *
M(ag) = ((Telgy) ags Adg_qv) (2.13)

g_])*ag and v = Ad;_]v. (See Abraham and Marsden

[1978], Ex. 4.2¢ and Guillemin and Sternberg [1980]). We note that the ad-

We shall write m = (TeL

joint action of G x 0} on % X Q} is

Ad( (nyg) = (Adgn, Adg; + (&, Adgn]) (2.14)

9,&)
and that the Lie bracket on QJ_ X % is
[(g] ;n])s (‘52: nz)] = ([ipE?], [E‘:l 9”23 + [n] sgzl) (2‘]5)

One can check directly from (2.14) and (2.12) that AV s equivariant.
(The identity
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Adg[g an.] = [Adgi.ﬂ]

is useful in verifying this).
Observe that AV is invariant under the left action of Gv; i.e.

for h €6
v

*
ML o

AV
A g) (ag) (2.16)

Thus, A’ induces a map
- * *
A P'ﬁ’\) d d& X &(

One readily sees that T s a diffeomorphism of Pﬁzv onto the orbit Ou v'

2.1 Theorem 'K\" :P; N > O}1 v is a symplectic diffeomorphism.

Remarks. 1. This result is due to Ratiu [1981]. The proof we give is
simpler, being motivated by Guiilemin and Sternberg {1980].
2. For the Lagrange top, 2.1 can be proved by a direct, but messy,

calculation which weoutline in the next section.

Proof of Theorem 2.1. Since the symplectic form on P-— v is induced from

Hs
*
the canonical symplectic structure on T G and that on Ou N is determined
3
by the KKS structure, it suffices to show that A’ commutes with Poisson
brackets. This, however, is a general fact about Ad*-equivariant momentum

maps and collective Hamiltonians proved in the next two lemmas.

; *
2.2 Lemma. Let J:P "7* be an Ad equivariant momentum map for the right
action of a Lie group K on the symplectic manifold P. Llet F :5(* + IR,
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‘ithen the Hamiltonian vector field XFO J fgr the (collective) Hamiltonian

Fod :P + IR s givenat X EP _lgg_

£l - _B-E.
XFOJ(x) {6u}9(x) (2.17)
where & E%is evaluated at u = J(x) and &, stands for the yector
&y -— p

field on P generated by the Lie algebra element £.

Prooi. By the chain rule and definition of the functional derivative,
d(F°J)~vx = dF(u)'dJ(x)-vx

= o . SF
(dJd(x) Voo 611)

. where vy € TxP and u=J(x) as above. By definition of a momentum map,
vy o SEy o [[SE
. (dJ(X, VX, GU) wx[[au}Pg VX}

where w is the symplectic form. Thus

a(r J)-vx

[}
|4
b3
N
—
Fim
-
-
>
| S

which means XFOJ = (GJ R

/P

2.3 Lemma. Under the assumptions ¢ the preceeding 'emma, if F,G:?b + 1R,

then
{Fed. G} = {{F,G}}od (2.18)
Proof. {Fed, Gd} = u {[ﬁsﬁ] [Qﬁ} \ (2.19)
] Froot. ’ x| |81 P, SU, o) .




by definition of Poisson brackets on P and the preceeding lemma. On the

other hand, the KKS bracket is

(F,G HK) = -(3(x), [ 1) (2.20)

On the other hand, ad” equivariance gives (Abraham and Marsden {1978, Corol-
lary 4.2.9])

C3(x), [g", g"p- {<J(x) > (3(x), 3‘5 | (2.21)

in which u 1is fixed and x 1is variable. There is a minus sign here since

J is generated by a right action. Holding %& fixed,
Fry =y = v SF
dJd(x), '55> Vy TV {dJd(x) Voo Gu)

so (J(x), %E) generates the same Hamiltonian vector field as FeJ, as in

2.2. Thus, substitution of (2.21) in (2.20) yields (2.19). ®

Remarks. As we shall see, the heavy rigid top Hamiltonian is a collective
Hamiltonian for J°. This is compatible with the reduction picture: a

Hamiltonian system on the reduced space Pﬂ- , can be written in the form
’

F = {{F,H}} (2.22)

where H 1is written in terms of the KKS variables (m,v) 60}* xaf,

' PBESPY O Lt e a e




3.1

§3. The rigid body

This section is divided into three parts. The first part explains

how to write the equations of a free rigid body free to rotate about its
| center of mass in KKS form (2.5). The second part recalls the Euler angle
formulation of the heavy top and the third part puts it into KKS form giving

the explicit relationships with Culer angles.+

(a) The free rigid body

The free rigid body is a left invariant Hamiltonian system on T*SO(3}.
where SO(3) is the group of proper orthogonal linear transformations of
IR3 to itself. By general facts about reduction we know that the equations
of motion must be in the form (2.5): this is true of any left invariant
Hamiltonian system on a Lie group G. For the free rigid body we can bypass
the Euler angle description (the relevant formulas are given in Table 1
below).

The Lie algebra so(3) of so(3) consists of the set of 3 x 3 skew

symmetric matrices. We identify sc(3) with IR3 by identifying

0 -r q
v=(pgr) ER with v=|r 0 -pleso3d) (3.1)
~q p 0

The Lie bracket corresponds to the cruss product in the sense that

(vl = (vxw . (3.2)

1‘The third part may be omitted if desired since we give two proofs of our
main resylt for the heavy top, one using only Euler angles and the other
using the KKS structure
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We denote elements of 50(3)* by m; these will also be identified with ele-
ments of IR3 . FElements m € so=(3)* represent the body angular momentum

of the rigid body and are related to the angular velocity w by
my = Ii“’i' i=1,2,3 (3.3)

where I1 are the moments of inertia. (The moment of inertia tensor has,
as usual, been diagonalized). The standard Euler equations (Goldstein [1980],

p. 205) written in terms of m are

RS \
"‘1”‘!‘1"23 moMs

I,-1

.13t
I 0 PR > (3.4)
1L -1

Taking the Hamiltonian to be

Hm) =5 J 7t (3.5)

we see by a simple calculation that (3.4) are equivalent to
F={{F,H}} (3.6)
where {{ , }} is the KKS bracket. In the present case this bracket becomes

{{F,G}}(m) = -m+(VF x VG) (3.7)

for F,G@ functions of m.
The fact that the equations (3.6) must preserve coadjoint orbits amounts

in this case to the fact that
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9 = mf + mg + mg (3.8)
is an (obvious) constant of the motion for (3.4). In terms of coadjoint
orbits, equations (3.4) are Hamiitonian on each sphere in m-space with
Hamiltonian function (3.5).Jr

The flow T1ines are given by intersectiuy the ellipsoids H = constant
with the spheres. For distinct moments of inertia the flow on the sphere
has saddle points at (0, #&, 0) and centers at (z2, 0,0), (0,0,t2). The

saddles are connected by four heteroclinic orbits, as indicated in Figure 1.

Figure 1. The spherical phase space of the rigid body for fixed total
T
angular momentum £ = /m, + m§ + m3; I] > I2 > I3

1"The coadjoint orbits are spheres because the coadjoint action of SO(3) on
m space is just by rotations. The KKS symplectic structure is proportional
to the area element by a simple calculation.
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The orbits are, of course, explicitly known in terms of elliptic func-
tions. The orbits of the most interest to us are the heteroclinic orbits which

are given as follows. The four orbits 1ie in the invariant planes

a
= |3
my =% 3 ™

where :
-1 I,-1 I, -1
al=——2-—1_3— >0, 32=—'3—I—]T3—1"<0 and a3=JT;I;2- > 0.
2°3

3.1 Theorem. The nhetergclinic opbits for the free rigid body are given hy

+ 3
m](t) -iﬂvégg sech(-v’ala3 Lt) ,

n;(t) =:l tanh(-/a 3, 1t) , (3.9)
m+(t‘ = 44 .Eg.sech(-J a, it
37T A, 33, 2t) ,

2a
for m, =+ (ET-m] and by

my(t) = m(-t), my(t) = my(-t), m3(t) = -my(-t) (3.10)

This may be checked by direct computation or by consulting one of the

classical texts.
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3.5

(b) The Heavy Top: Euler Angle Description

We now recall the traditional Euler angle description.of the heavy
top and shall locate homoclinic orbits for the symmetric (Lagrange) top.
The Euler angle description is more familiar but in some respects the KKS
description is simpler. For this reason we shall present Leth.

Given a rotation A € SO(3) we let the corresponding Euler angles be
denoted {¢,y,8) using the conventions of Goldstein [1980]; see Figure
2(a). The corresponding conjugate momenta are denoted p¢. DW’ Pg SO that
(¢,0,6, p¢, pw, pe) coordinatize T*SO(B).

We let m denote the angular momentum in the body and let v = ATk

where k 1is the unit vector along the spatial z-axis. We assume the center

of mass is at (0,0,2) when A {5 the identity. The vectors (m,v) are
expressed in the body coordinate system; see Figure 2(b).

The Hamiltonian is
2

m;
-3-+Mgﬂ.v

H(m,v) = Ij

3
J

3

) —

3=

where M 1is the total mass. When written in terms of Euler angles, this

becomes
1 [(D® - by, o8 8) sin y + Py sin 8 cos w]z
H= =
¢ I‘ since
[(pe - Pl cos ) cos v - Py sin 8 sin wlz ?5
+ 2 o vt Ngg cos o
I, sin 3

2
(3.12)

in Table Y below we summarize the relationships between m, v. ¢,

¥,8, pﬁ, pw, P> é, b and & for convenient reference, but ia this sub-

section we shall take (3.12), or equivalently the Lagrangian

&
e
.;;




z("s) 3.6

! {b)
Figure 2. The heavy rigid body, illustrating space (x,y,2z) and body (1,2,3)

coordinates, and the Euler angles (2,¥,8).
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3.7
I, . : 2, 1 ; 2
L= -5-(¢ sin 6 sin ¢y + 8 cos ¥)° + > (¢ sin 8 cos ¢ - 6 sin )
1, . .2
+ =5 (¢ cos 6+ §)° - Hga cus 6 (3.13)

as our starting point, and work exculsively in terms of Euler angles.

The Hamiltonian (3.12) 1s invariant under rotations about the z-axis;
i.e. ¢ 1s a cyclic variahle, so p¢ is a constant of the motion. Ip
othevr terms, the momentum map for this S] action is J{3,9,8, Py Py pe) =
p¢. The reduced space J'](p¢)/5} is parametrized by (v,0, DW’ pe). In

2

fact this reduced space is identifiable with s , the cotangent bundle of

the two sphere on which (v,0, pw, pe) dre canonical c<oordinates. In fact,
zs we shall see below, (y,6) are a system of spherical coordinates for this
sphere. The equations of motion for y, 6 are thus just Hamilton's equations

for (3.12) wich p¢ held constant.

Remarks 1. The S] reduction here is in accord with the general fact that

* 1 * 1, . ] 2
reducing TQby S gives T (Q/5'}: here Q = S0(3) and SO(3)/S5' = S°,
2. The two sphere obtained here is not to be confused with the

sphere for the free rigid body shown in Figure 1.

For the symmetric top, I‘ = Iz. ¥ 1s also a cyclic variable and
pw is constant as well., Ir fact these two S] symmetries commute, SO we
have a torus, Yz, symmatry, which makes the system completely integrable.
The reduced system %as one degree of freedom in (8, pg). The reduced space

*
is no longer a manifold, but has a boundary at 6 = 0, =n; i.e. it is T [0,n].
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These singularities in the reduced space correspond to the fact that the
Tevel set pw = constant is singular at 6 = O.u*.

With I, = 12. (3.12) becomes

2
. , P
H = —~5— {(p¢ - Py cos 8)% + pg sing} + TI' + Mgs cos @

ZI] sin“o 3

2 2 2
p (p, - p, cos 6) P
= —%—- + [Mge cos 6 + ——Y > + Tﬂ (3.14)

1 ZI] sin g 3

which shows the amended potertial explicitly.

Remark. In these coordinates, the abstract formula (2.9) for the ¢,y-reduc-

tions gives the closed one forms p.dp, and p dp respectively.
— "¢ vy

3.2 Theorem. If 0 <p< ZVﬁgQI] and if p¢ 2 DW = I b, _the reduced

Lagrange top system in (6, p ) space has a hyperbolic saddle points at
8

6 =0, Py © 0 and a homoclinic orbit connecting it to itself given by

cos 8 =1-y sechz(—@—%—}-} (3.18)
b2
where 8 =2 Mg2/l, and v = 2- =5

Remarks 1. A top with 0 < pw < ZJRQ£1] for which the vertically spianing

state is unstable (a saddle) is called a slow top.

?This is a special case of a general fact about singularities in level sets
of momentum maps; see Arms, Marsden and Moncrief [1981].
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°}
a)
(b)
(c)
0 IN\—/ . 9

Figure 3. Motions of the top a) steady precession (6 = constant)

b) precession and notation ( Omin < 0 < O
c) homoclinic orbit (emm <6 <0)

ax
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2. F =
" S of Py TRy
.w¢3§ ? singularity a~ # - 0, n, so these end points do not cause difficulties.

aote that the potential in (3.14) does not have a

PR
PN

3. Note that 0 <y <« 2.
The theorem is most easily checked by using the energy equation (3.14);
the homoclinic orbit has emergy H = Mgy + Pj/213; cf. Goldstein [1980],

pp. 215, 216 and Figure 3.

(c) The heavy top: KKS description

The abstract theory in the preceeding section quarantees that the
*
reduced space T 52 for the heavy top is symplectically diffeomorphic to a

coadjoint orbit in the semi-direct product SO(3) x IR3; i.e. in the

Euclidean group E3. The Lie algebra is denoted ey

wfﬁgg_ The mapping that gives this diffeomorphism is just the map

At (4, .6, Py Py P+ (m,v) (3.16)

where m 1is the angular momentum in the body and v is the orientation of
oravity as viewed from the body. Table 1 below summarizes the explicit
formulas relating these quantities. Table 2 summarizes the relationships
between the "Euler angle" spaces and the coadjoint spaces.

The KKS bracket for functions of (m,v) is given by (2.2) and (2.15),

which in this cate beccmes
({F,6}(m,v) = =me (v F x ¥ .6) - vo(qF x 9,6+ 9F xvs) (3.17)

The ascertions of the general theory can be checked by hand in this
case. First of all, it is easily seen tha*t the KKS bracket equation
©={{F,H}} with H given by (3.11) and the bracket by (3.17) yield the

equacions

RadXE QT R T e - B .- e am

. ;@?’_2&*_—%"*&?"‘*‘ B iae 1
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Table 1
Formulas Relating Euler Variables and KKS Variables for the Heavy Top

my = [(p¢-pw cos 8) sin p + P sin ¢ cos yl/sin 6 = I1(é sin 6 sin y + 6 cos y)
my = [(p¢~ v cos ) cos y - pe'Sin 9 sin y]/sin 6 = 12(¢ sin 6 cos ¢ - 8 sin y)

my = pw = 13(¢ cos 6 + i)

<
—
1]
7]
-de
=
<D

sin y
Vo = sin g cos y

V3 = Cos 9

p¢ = fev I]($ sin 6 sin ¢ + 8 cos ¢) sin 6 sin w+12($'sin 6cos ¢ -0 siny) sin gcos ¢
P, = M3 = 13(¢ cos 6 + y)

Py = (vzml-v]mz)//;-vg = I](é sin 6 sin y +6 cos w)cos v -Iz(é sind cosy -é siny)sin y

-1 MY L MY
b1 Y,

1 ,{—Z_v3 2 ,]"7_\,3
;- M3 MMYy MY

I

3 I

WViovg Lhvlevg

B m, V. m,.v
s.m2 TN

LAY, 1 ”%"'2
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Table 2
The Relationship Amongst the Spaces and Variables
Euler Angles KKS
Variables Space Space Variables
* *
(9,9,8,p,5py Pgl | T SO(3) e, (m,v)
reduce by

(:8,p,5 Pg)

(8,pg)

Slz¢ cyclic
T*s?
If 1, = I

Lagrange
reduction

T*[O,Tl']

l restriction

coadjoint orbit

reduction

coadjoint orhit/s’

vl =1, mev= p¢

Volly =Vqys V3
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m, = amm, + Mgt 2 (3.18)
m3 = a3m.lm2
] m,v, m,v
1 ° ‘%‘l '“%‘é' \
3 2
mvy m,v
- _ 13 731
Vz —I]——-—I—a— > (3.19)
o= e MYz )
3"

A slighlty tedious, though straightforward computation shows that these are
equivalent to the Hamiltonian equations for (3.12). In fact, if F, G are
functions of (m,v) and (m,v) are then written out in terms of the Euler

variables then an explicit (but tedious) computation shows that

(F,6}Hm,v) = (F,6), (3.20)

where {, } denotes the bracket computed for the 6,y variables (i.e.

9,
holding p¢ coﬁstant). This is the content of Theorem 2.1 for this special
case.

The equations (3.18) and (3.19) have Hvl and m.v as constants of the
motion. This just reflects (a) the conservation law p¢ = constant and
(b) the preservation of the coadjoint orbit by the KKS equations. The condi-
tions vl =1 and mev = p. = constant also give the explicit identification
of the coadjoint orbit with T'S°. Indeed, Ivl = 1 describes the unit
sphere S2 and mev = p¢ specifies m as a linear functional on the unit

normal to 52, leaving m restricted to TVS2 free, Thus m determines,
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by restriction, an element of T:SZ. Finally observe that the equations
for v in Table 1 show that 6,y are spherical-type coordinates on 52
(¢ has been rotated by w/2 from standard conventions on spherical co-
ordinates).

Finally we discuss the lagrange top in the KKS picture. For I, = 12
the invariance is rotations about the 3 axis. Tnis s! action corresponds
to the S] action of rotation through ¢ 1in the Euler angle picture, as is
easily seen. Also, the momentum map can be directly checked in the KKS
picture to be just ms.

The following is a general property of reduction, but it may also be

checked explicitly in this case.

3.3 Lemma. If F and G are functions of (m,v) which are rotationally

invariant, then

= const (3.21)

{{F,G}} = {{F,G}}m

3

i.e. the full KKS bracket is the same as if it were computed holding Mg
constant.

With vl =1, mev =p any rotationally invariant function of

¢5
(m,v) can in fact be expressed as a function of Vol = Vi, and V3
These variables are a convenient representation of the coadjoint space
reduced by the S'i action. Brackets of functions of these variables may be

computed by 3.3. Agein, one can check by hand that for such functions

{{F,61} = {F,G}, (3.22)

where




i.e. the canonical bracket holding p¢, pw constant.

The homoclinic orbit now is described very simply as follows:

3.4 Theorem. For 0 < My < 2vMg? I, and mev = My, the reduced system
for the heavy top has a hyperholic saddle point at

v3 =0, vzm1 - v]m2 =0

and a homoclinic orbit cunnecting it to itself given hy

Vg = 1-¥ sechz{zgg—EJ

(3.23)
and

Volly = Vqily = m3(1 -v3) /; - vg [= I ¢ sinze]

where B,y are as in Theorem 3.2 with pw = mg.

This can be checked directly (using the energy equation and the evolu-

tion equations). Of course it corresponds to (3.15).

Iy e Yo P P T S vy g e N AR PR R T RN
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4.1

§4. Transversal intersections of invariant manifolds for KKS
variables coupled to action angle variables

We now develop an extension of the Melnikov-Arnold thaory (Kelnikov
- [1963], Arnold [1964], Holmes [198Q]) which appies to systems duscribed by a
set of m KKS variables u = (“l' . um) Gd}* and a set of n action
angle variables (61’11)’ cevs (en,In). This theory will then be applied to
the free rigid body with attachments in the next section. For the heavy top,
a more sophisticated version is needed for systems whose variables do not
decompose so cleanly. This is the subject of Section 6.

The action angle variables can be those associated with motion near an
elliptic fixed point_in a one degree of freedom system. For example, our
methods apply to the system obtained by coupling two rigid bodies if we ex-
amine the motion near a homoclinic orbit in one (such as an orbit connecting
(0,%,0) to (0,-2,0) in Figure 1) and a small periodic orbit in the other
(such as an orbit near (%, 0,0) in Figure 1). The coupled system then will
have horseshoes under the conditioﬁs of Theorem 4.3 below. (We believe that
this applies, in particular, to the five mode truncation of the Euler equa-
tions for an ideal fluid on a two torus, which consists of two sets of over-
lapping and coupled rigid body equations; note that for o = so(3) and n =1,
we have five variables in the set (u,0,1).) For simplicity, however, we
have chosen a rigid body with attachments to work out in detail since the

action angle variables are more explicit and it is easy to add on additional

ones.
We assume that our Himiltonian takes the form
€ n ]
H (Lhe: I) = F(U) + z Gj(x') + EH (uoe‘ 1)
. =1 4

]

Ko 1o wen 1)+ e (1) + 0(D) (6.1)
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4.2

where yu = (u], cons pm) Eq}*, the dual space of a Lie algebra q} and
6= (85 «»es 8)5 I= (I}, .o0y 1)) with o, a 2n-perfodic variable.

We assume that the KKS system associated with F has a homecliinic (or

-— *
heteroclinic) orbit u(t) 60} . The oscillator frequencies

3G

a,(1) = §T§ (4.2)

are assumed to be positive.

As in Holmes and Marsden [1981b,c] we can solve the equation

HE(4,8,I) = h (4.3)

for In in the form

€ =0
= L (_u’e.l, weey B ,I.I, e n ]gh) L (ut 1 o In-]’h)

+ aL](u. e] .y 0 n? Il’ cees n ].h) + 0(5 ) (4.4)
where
Lludys o T 0) = 67 (R - FQ) z 6, (1) (4.5)
and
1
L (W8 wves 00100 woes Im.h)
K (4,0 6, 1 1., L 1 1 .,h)
o ] ]’ LIRS ] n’ ]’ "esry n-]' b ] ;] AR ] n“]’ (4.6)

i)
Qn(l— (u, I]; coey ﬂ -1 h))

In addition, we eliminate t 1in favor of the new 'time’ Bn and write '

for d/den.
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4.3
4.1 Proposition. Hamilton's equation for (4.1), namely
. €
Di = {{uis H }} s is= 1: saey
(4.7)
. H® : aHE
e-="‘—",l=-—,j=1,...,n'1
J BIj h aej
(where {{ , }} denotes the KKS bracket in the W-variables) become
ui o= ={lugs LD
6J s - an , Ij aej (4.8)

Proof. Implicit differentiation of (4.3) gives

It follows that for a function

{{IKGHE ) = ~Cu,

=(u.[

[
and so  {{KHE} /M = S((K,LE))
aIn
The second set of equations in (
Using LS =LY+ al +0(e

periodically perturbed system.

bracke ts.

K(u),

5K GHE
5K 9H® &L

=, = =]
Sy aln Su

. However then, K' = o= eK
Sn aH®/a1_

4.8) follows in the same way. B

e -{{¥,L%))}.

2} we see that {4.8) has the form of a

Next we relate the reduced and non-reduced
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4.2 Proposition. We have

Wi’ = o wra'n (4.9)
(2,)
Proof. From (4.5),
sl e
s Qn Su
and
sl . 1 [w‘ L GLOJ R I N R
u R, |8 BIn Su (9652 aIn Su
oL aL
However, since [=— 5 ] G, we get
0 ]
e .1, _ [
) £ <SH
== [%u 6u

4]

.~ {{F.u‘n. .
Qn

Let us now give a special case of the general result, suitable for two

degree of freedom systems.

4.3 Theorem. Suppose u(t) is a homoclinic (or heteroclinic) orbit for

*
F, which lies on & coadjoint orhit in %; of dimension 2. Furthermore,

suppose n = 1,
Let h = F(1) be the energy of the homoclinic orbit and let h > h
and io = G'](h - h) be constants, Let ({F,H]}} (t.eo) denote the KKS

0

bracket of F(u) and Hl(u. ﬂ(io)t +8, 20) evaluated at u(t). Let
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[+~

M) = —L= [ terH 1ct,6%) at (4.10)
a, (&) L,,

and assume M(eo) has simple zeros. Then for ¢ >0 sufficiently small,

the Hamiltonian system (4.1) contains transverse homoclinic orbits and hence

Smale horseshoes on the enerqgy surface HE = n.

Proof. By reduction, it suffices to check that the Melnikov function for the
reduced, forced system on the coadjoint orbit containing | has simple zeros.
This involves only a generalization of the one degree of freedom Melnikov
theory for forced oscillations to two dimensional symplectic manifolds. The
standard proof (see Holmes [1980] and Greenspan and Holmes [1981] ) carries

over directly. The Melnikov function for the reduced system is

-]

ue?) = f Ly de (@.11)

-

since b~ KKS bracket coincides with the Poisson bracket on ccadjoint orbits.
Using (4.9 and F = @,

«

med) = | L at

J R

Finally, note that @ = Q(io) is constant on the homoclinic orbit, so the

theorem results. B

To deal with the situation 1n which n > 2, we introduce the following

conditions on the Hamiltonian (4.1).

— & —
(H1) F contains a homo- (or hetro) clinic orbit v €4 with eneray h.

The coadjoint orbit containing 3 s assumed to be twu-dimensional.

The saddle points for . are denoted u, (they could be coincident).

Fs
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(H2) Qj(lj) = 63(15) >0, 3=1, ..., 0.

To explain the remaining conditions some discussion is needed.

For € =0, note that the Hamiltonian system for L0 has two n-l

)

parameter families of invariant n-1 dimensional tori Ti(h1, cees hn~1

given by
=y,

6,(1,) = hy = constait (i.e. Iy =2 = G}l (n,)) (4.12)

J
ej = nj(zj)en + ej(o) (mod 21), j =1, ..., n=1

(Correspondingly, the system for HO has two n parameter family of in-
variant tori (T+(hl’ cees hn).) Henceforth we write the (phase) constants
of integration ej(O) as eg, j=1, ..., n1, n.
The tori T¢(h]. cees hn_‘) are connected by the n-dimensional homo-
clinic manifold defined by
- 0
weue, -8)

0 .
B 3 + 3 5], sy - Y
eJ nJ(Ij)en eJ 3 n-1

where the phase constant eg associated with the 'reduyced' degree of freedom
appears explicitly. This manifold consists of the coincident stable and

unstable manifolds of the tord T.(h]. ooy b }); i.e.

T (hye ey ) = Wy )

n-1

given by (4.13).
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For € # 0 the system (4.7) possesses a Poincaré map PE from (a
piece of) (u, 815 vees O 10 Ipaeens In-l) space to itself where 6
goes through an increment of 2%, starting at some fixed value eg. (which
will be suppressed in the notation). Below, when we refer to transverse
intersection of stable and unstable manifolds, we mean so for this Poincare
map.
(H3) Assume that the constants G

(1.)=h.,3=1, ..., n are chosen
3 J —_—

so that the unperturbed frequencies Q](I]), cees 91(In) satisfy

the non-degeneracy conditions (i.e. Qi(lj) £0,3=1, ..., n1)
and the non-resonance conditions of the KAM theorem. (cf. Arnold

(1978), Appendix 8).

This condition ensures that the tori T (h, ..., h ,) perturd to

invariant tori T (hy, ..., h ) for P_ for e sufficiently small.

n
let h>h,h=h+ | h, where hj > 0, and the unperturbed homoclinic mani-
J=1
fold be filled with an n-parameter family of orbits given by (u, Bys eens

= 0 0
8, I., ..., 1} =u(t), Q](I])t TR nn(ln)t +8, 11. ces xn).

TR n
Pick one such orbit and let {{F.H]}} denote the K{S Poisscn bracket of
Flu) and W (u, 8s vees 80 s ooy 1) evaluated on this orbit. Sia-

ilariy, let {iu.Hl) a -aul/aek. k 21, ..., n-1 be evaluated on this orbit,

Define the Melnikov Vector H(BO) = (M]. ceeea Hn-i' Nn) by

) 90, ~0 ) [, 1

qk( ] 5n. ht h]. hz; “sey nn.']} L J_@ \Ik. h }dt, k L " ey n-].
¥ (a0 0 ] NP

ﬂ(el' » en. h. h]. ’12, . . hn-]) = —z(‘-; f&. ({F.H }) dt . (‘5.14)




oo L% foa

n-1
(We note that h =h - T - le hj; I, and h_  do not explicitly enter

the calcuaitions, since In is eliminated by the reduction process; we also

note that these integrals need not be absolutely convergent, but we do require

conditional convergence.)

(H4) Assume that the multiply 2r periodic Melnikov vector M :R" +» R"

(which is independent of €) has at least one transversal zero; f.e. there

is a point (e?, cees 62) for which
0 0y .
M(8Ys ..., en) 0

but det[OM(6], ..., 80)] £ O, :

where DM s the n x n matrix of partial derivatives of Hl' eees B with

?, ceaan e?, the initial phases of the orbit.

respect to 6

Here is the result for n > 2.

4.3 Theorem. If conditions (H1) - {H4) hold for the system (4.1), then,

for ¢ sufficiently small, the perturbed stable and unstable manifolds

HS(Tt .}, and HU(TF ;J of the perturbed tori T intersect transversely.

-

C.-:.

The theorem follows from the arguments of Holmes and Marsden [198ic]
in the present context. ¥e alse refer the reader to that paser for a discus-

sion of how this yields Arnold diffusion and for related references.

There is a similar result when the coadjoint orbit is highar dimensional

*
i.e. of dimension 2M, N > 1, byt the system for F on g is completely

Tt habiae tre ikt re Pt mir e Fatt tie a2l T rater sraa’ taies 1Ty
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integrable, say with integrais
F = F” Fz’ trey FM .

where FZ’ ceey FM are associated with action angle variahles. Now a

result similar to 4.4 holds if the Melnikov vector is enlarged by replacing

o

the number . .
T [ writy a

’ w0

by the vector

o

?zlj (FLH dt, i=1, ....m
n /-

1t would be f interest to apply such a generalization to the Toda lattice

and related completely integrable systems.
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35. An example: the rigid body with attachments

We start by considering the rigid body in the absence of gravity, with
a single attachment which spins freely about an axis coincident with one of
the body's principal axes, say 1. The angle about this axis is denoted o.
For simplicity we suppose that the attachement does not affect the position
of the principal axes, so that the inertia tensor remains diagonal, but
that the attachment is slightly asymmetrical in the sense that the perturbed
moments of inertia ahout the 2 and 3 axes depend upon the angular position
8 of the attachment relative to the hody. Such an attachment could consist
of a (heavy) disc and a light rod, as in Figure 4.

Z

[

€ J],J 3

2’73

Figure 4

Letting the moments of inertia of the body with respect to the three body
axes be Ii j=1,2,3, and of the attachment be J] + €, J2 + ¢ cosze,

J3 + € sinze. We obtain the Hamiltonian
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2 2 2
HE = ] ‘ D, "2 + " i
. E.lll te I2 + € cosze I3 + ¢ sin 6 Jl te
2 2 2
3 m m n 2
. s %— ) m§/Ij + IZ/ZJI - £ {—‘2 % cos?o + «%Sinze + %: + 0(c?)
3= h I I3 I
1 2
=F+G+eH +0(c) (5.1)

where Ij = 13 + Jj and where (8,I) are action angle variables for the

attachment. Since the urnperturbed system is a produce filow on (52) x (R xS

1

)

the product of the coadjoint orbit of S0(3) with the (I,8) cylinder, we can
0

use (3.9) to write the homoclinic orbits for an energy level H =h =
2 2
l.ﬂ;.+ k. s Where 22 = m2 + m2 + m2 and k 1is a constant, as
2 12 J] 1 2 3
!
My = L :5;- sech(- 8, 32 t)
My = L tanh(-/aiagi t)
{6.2)

-
my = tz\/;ég- sech(-¢a1a32 t)

I = k(constant)

TP

8 =
%

+ 6

To show that transverse homoclinic orbits occur for ¢ # 0 we need

only show that the Melnikov function

L o

- M%) = 5(;—7 J ({FHY) gt (5.3)

has simple zeros, all other conditions of Theorem 4.3 being immediately

R s T ¢ T EECMIN

P
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. satisfied. Note that we must set k >0, so that I >0 for the unper-

turbed system and hence the inversion of HE = h goes through. This is

§ d the reason for choosing an attachment with a heavy 'in balance' symmetric
component). The KKS bracket is given by (3.6):

{F(m), W' (m,I, 6-6") = ey F x vmn‘

(5.4)
aT a2 c0529 a3 sinze
=1zt * my Myt

7 Z

Noting that on any homoclinic orbit m, and m, are even while My is
odd, it follows that the constant term (allli)m]m2m3 vanishes in the Melnikov

integral and we are left with

o0

a a
M(eo) =z ZF%3;7 f m1m2m3{zg cosze + ;%-sinze} de,
[ -0 2 3

w0

13, a5
= —2~k—j mlm2m3 - cos 28 - 7 cos 26|de,
- Iy I3

Cs

i m, MM, cos 28 d8. (5.5)

Inserting the expressions for the homoclinic orbits, we get

o |
M(e%) = il %2 2 ff_flfé_ sech®(-/aTagk t) tanh(-vaaoL t)
, T (72772 ) Ty ) TR s 123

I, I3

e e a2 o .

ar ing

JER . RPN

\
cos 2{31 t+ eoj dt ,
1

A

sech?(-/aTaz0 t) tanh(-/ATag t) sin[%‘ij dt] sin 260, (5.6)
1

[}
f"'"cl""l
g B

WA T

Ry

SRR
t

=3
-
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where

3
C=2k {272 2,

. 3
J] a2 i a.i 2 a]a
I 1.)-

~N

3

The integral of (5.6) may be evaluated by the method of residues to obtain

2
0 enk kT : 0
M(e ) = C N P —— cosech|——>— | sin 26 . (5.7)
J%(-Jh]a3£) [-vh]a32 J1 I

which has simple zeros. We therefore have

5.1 Theorem. The free rigid body with a single slightly asymmetrical

freely rotating attachment on cne of its principal axes possesses transverse

heteroclinic orbits and hence Smale horseshoes in a suitably chosen cross

section of the constant energzrsurface with k > 0.

This implies that the rigid body equations with an additional attach-
ment are non integrable. More precisely, if we make a Markov partition of
the invariant sphere consisting of the four open regions filled with periodic
notions in the unperturbed case (Figure 1), then the dynamics of the per-
turbed Poincare map is conjugate to the subshift of finite type on these four
symbols. To see this we sketch the homoclinic structure on the sphere in
Figure 5, identifying one of the centers (in region A) with the point at
infinity. It is clear that orbits starting near the manifold on the ‘boundary’
of regions 2 and 3 can be selected such that they pass either from region

2+2 or 2+3 or 3+2 or 3+ 3. Similarly on the border of 1,2 orbits

can be found passing from1 +1,1+2,2+1 or 2~ 2. Continuing in this
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Figure 5. The homoclinic structure of the perturbed manifold
ws(o,:z,O), w"(o,:z,O) on the sphere.

way we find the transition matrix

(1 1 0 1]
] 1 1 1 0
A=1{a,.]=
W 01 11
1 0 1 1
where aﬁ =1 if there is an orbit from region 1 to region jJ and aij = 0

if there is no such orhit.
If two or more attachments are added to the free rigid body then
Arnold diffusion may take place. Taking a systemwith two identical attach-

ments on axis 1, each free to rotate independently, with momenta [, J and

angles 6, ¢, we have the Hamiltonian
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2
3 m 2 2
HE = F+ G, + 6, + eHl + 0(2) = 4 y el 2
172 2 ;5 T J;

2 2
e (m m 2 2 m 2 2 + 2
-3 —%-+ -%— (cos“e + cos ¢) + —% (sin“e + s1n2¢) + !"Tfil' + O(ez)
1, 1 I J
i 2 3 1
(5.8)
In this case the Melnikov vector consists of the pair of function
M](eo,¢0) - I {1,H'y 4t
0 0, _ 1 ]
Mz(e ,¢ ) "I-mm {{F,H }}’
1. o J
where {I,H }= - T is the usual canonical Poisson bracket and 92 =3 -
2

Computations similar to those above (also cf. Holmes and Marsden [1981c], §4)

show that

M] = C'I sin 29?

=
i

. 0 0
) C2 sin Ze] + C3 sin 202 (5.10)

where the Cj are non-zero constants depending on I, J, Jy, and the choice ‘

of total energy and energy in each 'mode' (E = 22/212 + kf/ZJ] + k%/ZJ]).
Thus M has simple (transverse) zeros for 90 = mm, ¢0 = nr, mn € 2,
Since @i(1) = 3%-f 0, all the conditions (H1) - (H4) of Theorem 4.4 hold.
Therefore, the rigid body with two attachments as specified exhidbits Armold

Aiffusion. The existence of a transition chain of two-tori connected by
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. heteroclinic orbits, (see Holmes and Marsden [1981c], §3 for a discussion)
implies that angular momentum can be transferred back and forth between

. the two spinning attachments in a chaotic manner,

Remark. An amusing corollary for the case of a single attachment is that
there are configurations of the Euler elastica for which the sequence of
A loops above and below the mean level can be prescribed in advance. (For

example the loops can be coded by the binary expansion of an irrational

g number). This follows from the above calculations and the remarkable fact
- that the elastica equations have the form of the equations of a rigid body
‘1?% : with an attachment; see Love [1927, p. 400].
.
_'-3,:
2
|
o
f; :
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§6. Melnikov Theory for Systems with S' Symmetry

We now develop a version of the Melnikov theory that applies to per-
turbations of a two degree of free&om system with an S1 symmetry. We have
chosen this context with applications to the motion of a nearly symmetric
heavy top in mind.

The key new feature is tha’ the unperturbed system is no longer
assumed to be a product system consisting of variables with a homoclinic
orbit and action angle variables. Rather, this product structure is gen-
eralized to the assumption of an S] reduction.

Roughly speaking, our umperturbed Hamiltonian HQ no longer can be
split as

K(q,p.1) = Flq.p) + 6(I)

0
so that the frequency function Q = 3§r~ now may depend on (p,q). This

is, in fact the situation for the nearly symmetric heavy top.

Let us start with a four dimensional symplectic manifold P, whose
points are denoted x. Suppose S1 acts on P by canonical transformations
and has an Ad*-equivariant momentum map J :P -+ JR. Let the reduced space
be denoted

P PR
P, J (u)/s

(see Marsden and Weinstein {1974]).

For the heavy top, P = T*S2 and S] consists of rotations about the
axis of symmetry. To keep the notation consistent, we shall use y for the
angle on S]. Motivated by this example, we allow Pu to have isolated
singuiarities, but in this case we demand that the constructions carried out

below make sense at the singular points. For the heavy top this causes nc

difficulties.
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lLet points in the reduced space be denoted u € Pu' Thus, u consists
of an S] orbit in P, 1lying in the level set J'](u). Choosing a slice
(cross-section) for this action, ¢ parametrizes the point on the orbit and
of course the value of J 1labels the surface J"(u). Thus, we write points
X as

x = (u,p,J) (6.1)

See Figure 6.

In this notation, a function of x is S] invariant if and only if
it can be expressed as a function of u and J alone. Such functions induce
functions on Pu’ the reduced space, and have well defined Poisson brackets
on Pu' In fact, the Poisson bracket of two such functions is just that
function induced on Pu by their Poisson bracket on P. Of course any S]
invariant Hamitonian on P gives a completely integrable system, the integrals
being J and H, or equivalently H for the reduced one degree of freedom

system.

Figure 6
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6.3

Mow assume that we start with an Sl invariant Hamiltonian Ho(u,d)

and we perturb it by a general Hamiltonian. Thus, write
£ 0 1 2
H-(u,,d) = H (u,d) + el (u,9,d) + 0(c") (6.2)

Now we must generalize the procedure of Holmes and Marsden [1981h] to this

context. .
We begin by Tetting

0
a(u,0) = 2= (u,9) (6.3)

and assuming Q 1is positive, so that Ho(u,J) is invertible in the J-

variable. For ¢ small then

HE(u,ypsd) = h (6.4)

can be solved for J. Write Hg(d) a Ho(u,d) and (HS)'] for its inverse

in the J variable.

6.1 Proposition. J = L%(u,y,h) = Lo(u,h) + eL](u,w,h) + O(ez) where

tunn) = @) ) (6.5)
and
] -H](u 4 Lo(u h))
L' {usp,h) = i B (6.6)
Q(u,L"(u,h})
Proof. (6.4) reads
€ 0 1 vy _
H(U-w.l- + gl *0(5))“"

Ho(u, Lo + EL] + O(ez)) + eH](u, v, L0 + eL] + O(ez)) = K
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i.e. Ho(u.Lo) + cﬂ(u,Lo) + sH](u,w,Lo) = h+ 0(52). Comparing powers of

e gives the resuli. B

As in Marsden {1981, Lecture 4] we can arrange things so that y and

J are conjugate variables. Thus under the dyncmics of KE,

. €
IER RS (6.7)
Now we change time variables from t to ¢ and write ' for d/dy. Thus,
for a function F(u),
_F gy M
F' = @ {F,H }/~§I~ (6.8)

However, from (6.4) and properties of the Poisson bracket,

{Flu), HE(u,u,L5(u,p,h))} = 0
S0 €
(F HE} + _agr (F LS} = 0 (6.9)

Comparing (6.8) and (6.9},
Fre - {FLS) = -(F,L0) - elrll) + 0(D) (6.10)

Thus, (6.10) is in the form of a periudically forced Hamiltoniam system on
the reduced phase space. The brackets in (6.10) are taken in the u-variable

alone. Thus, we have:

6.2 Proposition. The evolution of u as a function of ¥ 1is a y-dependent

Hamiltonian system in the reduced phase space. The equations of evolution

are given by (6.10).

Now suppose that the reduced system for € = 0 has a homoclini¢ orbit,

70 detect the presence of transverse nomoclinic orbits for € 0 we must
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Q 0 1

integrate {iL ,L]) around this orhit. Now in examples, L~ and L and

their bracket can be laborious to compute. It will save some effort {f we

relate {LO,L]} to H0 and H'.

1

o 0,1, 1,0 H,
6.3 Proposition. {L°,L'} =g {H, %5 (6.11)

where Q i{s evaluated at u, J and the bracket: are taken with respect to

u, holding ¢, J fixed.

Remarks 1. Formula (6.11) is a generalization of (3.1) of Holmes and Marsden
[19816]. 1In the later case O was independent of u.

2. The above development does not depend on the dimension of P.

Proof of 6.3. Given F(u), we first comoute {LO,F}. From (6.5),
Ho(u.LO(u,h)) = h, s0

e+ 2% F1 =0
Thus

Wrr=-Ladp (6.12)
Next, from (6.6) we obtain
G,L') = -(6 i*l—}-li*i]—{u"w“}@‘l(s L9 (6 13)
’ gt Tl vt ;f 3
Taking G = L9 in (6.13) the last two terms vanish, so

H
wduly = -, %y

By (6.12) this gives the stated resuit. B

Assembling these results as we did in Section 4, we obtain the following.
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6.4 Theorem. Consider a twy degree of freedom Hamiltonian system on a

symplectic manifold P with an SI symnetry with a Hamiltonian of the

form (6.2). Assume that J 1is chosen and fixed so that the reduced system

Ho(u,J) has a homoclinic (or heteroclinic) orbit u(t) in the reduced space

Pu and so Q(u(t),Jd) > 0. Let

to- 0
p(t) = Jo Quit),d) dt + ¢ (6.14)

1
and let {Ho, %5} (t,wo) denote the u-Poisson bracket evaluated at u(t),
v(t) and J. Let

«©

1
o) = | o, By () a (6.15)

g, . . 0
and assume M{yp") nas simple zeros as a fuaction of ¢ . Then for ¢

sufficiently small, the system (6.2) has transverse homoclinic (or hetero-

clinic) orbits, and hence Smale horseshoes on the ene#gy surface H® = h,

where h = HO(U,J).
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§7. Example: the motion of a nearly symmetric heavy top

We now show that Theorem 6.4 implies:

7.1 Theorem. 1f I,/1, is sufficiently large, I, =I;+¢and ¢ is
sufficiently small, € # 0, then the Hamiltonian system for heavy top
(see 3.11 and 3.12) has transverse homoclinic orbits in the Poingaré map
for the ¢ varizble on energy surfaces close to the homoclinic orbit

described in 3.2 or 3.4,

7.2 Corollary. The heavy top clese to the symmetric top has no analytic

integrals other than the energy and angular momentum about the vertical

axis.

Remarks 1. A3 we have already discussed, this corollary has recently been
obtained oy Ziglin, but by rather different methods. Moreover, our result
7.1 shows the existence of 'chaotic' orbits.

2. I]/I being large can be replaced by O <y <1 and the

3
integral 7.13 below being non-zerc. This integral is non-zero for most

valyes of M, §, X1, IQ, as we shall show.

= shall prove theorem 7.1 in the fuler angle representation first

and then sketch how the proof can be alternatively obtained using the KKS

description.
In (3.12) let I, = I, +e. This gives
( 2 2 2
0.1 (p¢,—p,;, cos 6) Pg q,)
H = 5 2 Y1 tyT( tMowcos 8 (7.1)
!1 sin” 9 I 3‘
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7.2

and

H' = - —y7— ((pcp - pw cos 8)cos ¢ - Py sin 6 sin w)z (7.2)

Note that HO is the Hamiltonian for the symmetric top and so has a homo-
clinic orbit given by (3.15).

Since ¢ and pw are conjugate variabies and J = pw, we have frem
(6.3),

v p, - p, coS Y
Q= Tm" o ¥ | »co$ 6 (7.3)
3

I.( S'hlze

On the homoclinic orbit, Py = Py = constani. = I]b. so (7.3) becomes

- wl ] _ _€os® '
&= b(13 1 + cos e] (7.4)

. 2 Mz
7.3 Lomma, With p =p =1Lh, g =598

o b . pe
®*Ticss 2 e I
we have
o H 1 \
(H, =y} =3 (A(8) sin 2y + B(8) cos 2y + C(8)) (7.5)
8.0y
where
Ale) = 2 ﬁ + §~9~ (1 - cos 8) - 8°
2 [ ba
L a3c2 14
2 8,8 NS 7 A
8(8) [9¢ + Q} sin 8 4bﬂ sin 6
and 4
- Lol 202
Cl{o) = é{ﬁ- i—;é??—ﬁ—} sin 0




Proof. The computations are slightly tedious but straightforward. He

write
0w 1,0.1, & .0
H,—§=§-{H,H}—‘E{H,ﬂ}, (7.8)

oty - 0 @' ol !
’ % 3p, dp, 30 °

0

0, .  OH 3

{H ,Q}""ﬁb‘gae s
and compute that

%H;=—11E£'2 sine-g—sin e},
aao_é
b ) ST
i
M :2 2 .4 ..
55 = =¢ sin § cos yp + 5 sin FOIR
o1 8 s .2
F (,2 sin 6 sin 2y - 6sin®y),

8 1 .

o'y = % [ - %) sin%s - 8] sin 29

AL :
+ §¢sin g cos 2y - %9 sin 6(cos 29 - 1),
2

= %sin g,

B

and

Substituting these expressions into (7.6) and simplifying yields (7.5). @
The Melnikov function is given by

(6]

1
M%) =f {HO, %} dt (7.7)

PO TR TR T
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where the integral is evaluated along the homociinic orbit

cos =1 « ¥y sechz(-'fé—%—g-}, Pg = Ilé (7.8)
(see (3.15) and where

-t
wt) = JO alt) dt + 0 = J(e) + ¢° (7.9)

and

I

2{ /8
’iw{sech[ t
Q(t) = bl + : 4

I
3 Y s»ach2 Ué; t}

Note that if 0 <y <1, or if I;/I, fis sufficiently large, aft) > 0.
Substitute (7.5) and {7.9) into (7.7) yields

(7.10)

«®©

Y M(tpo)= U %—(A(e) sin 20 +B(8) cos 2V) dt] cos 2\b0

+U -2-}- (A(8) cos 2y - B(8) sin 2y) dt] sin 20 + j %C(e) dt

-

(7.11)

The first, second and fifth terms are odd functions of t and so we obtain

the following

Ay a e

7.4 lemma,

x

A M 0,_ [ 1 — \ - : 0
Wy )= | a (A(8) cos 2y - B(6) sin 2y) dt| sin 2y (7.12)

-

TR ¥,

G

.
-
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3 2 :
Now we chserve that at t =0, A = 3T§¥§T >0 and 8 = 0. It follows

that for 11/13 sufficiently large, the portion of the integral from the
first term near t = 0 dominates and so the integral must be a non-zero

number. Thus M(wo) has simple zeros and the theorem is proved.

2

Remark. For any given b, 8, I], 13 (withy = 2 « %; and b2 < 28,
b, 8 > 0) one needs only the condition that
j L (A(8) cos 27 - B(6) sin 29) dt (7.13)

be non-zero., Since we cannot evaluate (7.13) analytically it does not
seem so simple to decide exactly when (7.13) vanishes. Since we can be sure
it is non-zero for I]/I3 large, it follows that (7.13) can vanish for at
most a finite set of values of b, B8, 11, I3 as it is analytic., Thus, we
can be sure of transverse hmoclinic orbits for generic M, Lys 13, b, if
0<y<1,

Finally, we indicate how the same computations can be done using the
KKS formalism. This actually makes the computations slightly easier, but the

final result is the same.

2
3 m,
Again, letting 12 = I] + ¢ in H= % 'zl A+ Mge V3 We have
J=h 7
0 M tm e o
H™ = 5T + s Mgy, v (7.14)
1 3
and 9
] M2
HY = - ~5 . (7.15)
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Next, observe that ¢ and m, are conjugate variables, where tan ¢ = v}/vz.

o0 if mev = I]b = m3,

1 v
Q = ({y.H0}} = plot - 3 ] (7.16)
[13 1+ v3

1
which agrees with (7.4). To compute {{HO, %5}} we write (see Lemma 3.3)

H1 as a function of the reduced variables Volly = vy, and Vy and compute

the bracket holding ¢ and m, fixed. This is done by writing

mg = -—-%2-(m.v - mgv,) cos?y - (voy - vymy ) (mev -mqvs) sin ¢

+ (vzm] - v]mz)2 sinzw (7.17)

When mev = my = I.b, this becomes

- I]b(l - v3)(v2m1 - v]mz) sin y + (V2m1 -vlmz)2 sinzw

(7.18)

1
Using these expressions we readily compute {{HO, l'[-—}} using (3.17). After

substituting from Table 1, the same expression (7.11) as above results.

Thus, the proof may be completed in the same way as with the Euler angle

argument.
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