
TR4ES 1-.150

Technical Report 570

J.H. Cosgrove

E.T. Bayliss
LFP User's Manual J.M. Sivak

(Lincoln FORTRAN Preprocessor)
Version 02.01 for MODCOMP Systems

12 May 1981

Prepared for the Defense Advanced Research Projects Agency
and the Department of the Army

under Electronic Systems Division Contract F19628-80-C-0002 by

2"e Lincoln Laboratory
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LEXINcTON, MAsSACJuSD

Approved for public release; distribution unlimited. DT IC

SSEP 1 1981DU

U DV 81 9 01 010

The work reported in this document was performed at Lincoln Laboratory, a
center for research operated by Massachusetts Institute of Technlogy. This
work was sponsored in part by the Defense Advanced Research Projects
Agency and in pan by the Department of the Amy under Air Force Contract
F19628-80-C-0002 (ARPA Order 3391).

This report may be reproduced to satisfy needs of U.S. Government agencies.

The views and conclusions contained in this document are those of the con-
tractor and should not be interpreted as necessarily representing the official
policies, either expressed or implied, of the United States Government.

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

Raymond L. Loise ie, Lt.Col., USAF
Chief, ESD Lincoln Laboratory Project Office

Non-Lincoln RecIpients

PLEASE DO NOT RETURN _

Permission is given to destroy this document
when it is no onger needed.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LINCOLN LABORATORY

LFP USER'S MANUAL (LINCOLN FORTRAN PREPROCESSOR)

VERSION 02.01 FOR MODCOMP SYSTEMS

J.H. COSGROVE

E.T. BAYUSS

J.M. SIVAK

Group 47

Accession For

NTIS GRA&I TECHNICAL REPORT 570
DTIC TAB
Unannounced] I
Justiication ___ 12 MAY 1981

_ DTIC
_Ditr butn/ EL ECT-
Availabiity Coco3 SEP 1 1981 i:

~~~~Avail ;o -
Di~it Sptcial

Approved for public release; distribution unlimited.

LEXINGTON MASSACHUSETTS



ABSTRACT

LFP (Lincoln Fortran Preprocessor) provides top-down control structures

to Fortran and generates a self-documenting structured listing. LFP is com-

patible with existing Fortran and also permits an internal procedure capabi-

lity.

tii



CONTENTS

Abstract

List of Illustrations viii

1.0 INTRODUCTION 1

2.0 RETENTION OF FORTRAN FEATURES 3

3.0 CORRELATION OF LFP AND FORTRAN SOURCE 4

4.0 STRUCTURED STATEMENTS 5

5.0 INDENTATION DESCRIPTION 8

6.0 CONTROL STRUCTURES 10

6.1 Decision Structures 10

6.1.1 IF 10

6.1.2 UNLESS 10

6.1.3 WHEN . . . ELSE 11

6.1.4 CONDITIONAL 12

6.1.5 SELECT 14

6.2 Loop Structures 15

6.2.1 DO 15

6.2.2 WHILE 16

6.2.3 REPEAT WHIIE 16

6.2.4 UNTIL 17

6.2.5 REPEAT UNTIL 18

6.3 LFP Control Structure Summary Sheet 19

7.0 INTERNAL PROCEDURES 20

v



8.0 CONTROL STATEMENTS 24

8.1 Listing Format Controls 25

8.1.1 Comment delimiter COMMENT 25

8.1.2 Control Character CONTROL 26

8.1.3 Double Spacing DS 26

8.1.4 Heading HEADING 26

8.1.5 Statement Numbering LABEL 27

8.1.6 Left Adjust LADJ 29

8.1.7 #Lines/Page LINE 29

8.1.8 Listing Control LIST 29

8.1.9 No Left Adjust NOLADJ 29

8.1.10 No Listing NOLIST 30

8.1.11 Page Eject PAGE 30

8.1.12 Single Spacing SS 30

8.1.13 Listing Width WIDTH 30

8.2 Inclusion of External Files 31

8.2.1 Include Command INCLUDE 31

8.2.2 Include Expansion INCEXP 31

8.3 Control Statement Summary 32

8.4 Control Statement Example - Typical Program Setup 33

9.0 COMMENTS 34

10.0 LFP RESTRICTIONS AND NOTES 35

11.0 EXAMPLE OF L'P LISTING 38

vi



Wl

12.0 ERRORS 42

12.1 Syntax Errors 42

12.2 Context Errors 43

12.3 Undetected Errors 44

12.4 Control Card Errors 46

13.0 PROCEDURE FOR USAGE ON MODCOMP 47

14.0 PROGRAMMERS' GUIDE TO LFP 49

14.1 Subroutine Description 49

14.2 Installation of a New LFP Version 52

14.3 Modcomp Include Files 57

ACKNOWLEDGMENTS 58

BIBLIOGRAPHY 58

APPENDIX A. Control Structure Summary Sheet 59
B. Control Statement SummarySheet 61

vii



LIST OF ILLUSTRATIONS

1-1 LFP Preprocessor 2

11-1 LFP listing of user's program 39

11-2 User's source program 40

11-3 Fortran listing of user's program 41

13-1 Listing of Procedure $LPG 48

14-1 Link edit procedure $LFPT 56

viii



1.0 INTRODUCTION

The Lincoln Fortran Preprocessor (LFP) E I was constructed to

facilitate structured programming by extending FORTRAN to include the most

useful top down control structures. The choice of FORTRAN for a target

language was dictated by its being the only higher level language

available on many mini-computers. This work was motivated by a desire to

make top-down structured programming tools available for the development

of FORTRAN software.

LFP is an upward compatible extension of FORTRAN which provides five

new top down decision structures, five additional loop structures and an

internal procedure capability. In addition to structured control, LFP

provides a neat, automatically-formatted, structured listing. The ease of

program construction and clarity of program documentation are greatly

enhanced thus reducing the clerical detail and the likelihood of

programming in bugs.

At Lincoln Laboratory, LFP is implemented on a Modcomp 4 under MAX

4-rev D operating system and on an Amdahl 470 with the CP/CMS operating

system.



Source

program in

LFP

INCLUDE

files

Section 8.2

Process LFP

control statements

Section 8

Process LFP

comment fields

Section 9

Process -- LFP diagnostics (Section 12)

LFP constructs
Source program in FORTRAN

Section 6, 7

LFP
listing

Fig. 1-1. LFP Preprocessor.

2



2.0 RETENTION OF FORTRAN FEATURES

The LFP translator examines each statement in the LUP program to see

if it is an extended statement (a statement valid in LFP but not in

FORTRAN). If it is recognized as an extended statement, the translator

generates the corresponding FORTRAN statements. If, however, the state-

ment is not recognized as an extended statenent, the translator assumes it

must be a FORTRAN statement and passes it through unaltered. Thus the LFP

system does not restrict the use of FORTRAN statements, it simply provides

a set of additional statements which may be used. In particular, GO TOs,

arithmetic IFs, CALLs, arithmetic statement functions, and any other

FORTRAN statements, compiler dependent or otherwise, may be used in LFP

programs.

3



3.0 CORRELATION OF LFP AND FORTRAN SOURCE

A basic flaw in most FORTRAN preprocessors' output is the inability

to correlate the preprocessor source listing with compiler syntax or run-

time errors. This usually forces the user to list the FORTRAN source that

was generated by the preprocessor and to attempt to make sense out of the

generally unreadable FORTRAN.

The philosophy inherent in the UPL design was simple: Let UFP work

in the same numbering system as the FORTRAN compiler, since all compiler

errors or execution errors refer to this numbering system. However, not

all compilers number the statements the same way. IBM FORTRAN G and H

compilers number every statement except comment and continuation lines

while CDC and MODCOMP conpilers number every statement.

The statement identification field (line tag) that is present in

columns 73 to 80 of the user's source program, if one is present, nay at

the option of the user be printed on the LFP listing along with the

statement. The FORTRAN source generated by LFP may also contain this sta-

tement identifier.

It is possible to specify exactly what type of line numbering scheme

is to be used by LFP with a LABEL control statement. (See Section 8.1.5.)

A sample of a source program processed by LFP along with the compiler

listing output may be found in Section UI.

4



4.0 STRUCTURED STATEMENTS

A basic notion of LFP is that of the structured statement which con-

sists of a control phrase and its scope. FORTRAN has two structured

statements, the logical IF and the DO. The following examples illustrate

this terminology:

structured statement

control phrase scope

keyword specification

X (IU: V+W

keyword specification

DO 30 z 1,N control phrase srcue
A(I) z B(I).C srcue
L(I) a I-K(I) scope statement

30 CONTINUE J
Note that each structured statement consists of a control phrase which

controls the execution of a set of one or more statements (its scope).

Each control phrase consists of a keyword plus some additional infor-

mation called the specification. A statement which does not consist of a

control phrase and a scope is said to be a simple statement. Examples of

simple statements are assignment statements, subroutine CALLs, arithmetic

IFs, and GO TOs.

AThe problem with the Fortran logical IF statement is that its scope

may contain only a single simple statement. This restriction is elimi-

nated in the case of the DO, but at the cost of clerical detail (having to

atop thinking about the problem while a statement number is invented).

5



In LFP there is a uniform convention for writing control phrases and

indicating their scopes. To write a structured statement, the keyword is

placed on a line beginning in column 7 followed by its specification

enclosed in parentheses. The remainder of the line is left blank. The

statements comprising the scope are placed on successive lines. The end

of the scope is indicated by a FIN statement. This creates a multi-line

structured statement. Examples of multi-line structured statements:

IF (X.EQ.Y)

R = S+T

IN

DO (I - I,N)A(I) = S(I)-C

- C*2.14-3.14
CIN

Note: The statement number has been eliminated from the DO specification
since it is no longer necessary, the end of the loop being specified by
the FIN.

Nesting of structured statements is permitted to any depth.

Example of nested structured statements:

IF (X.EQ.Y)
U = V+W
DO (I - 1, N)

A(I) - B(I)+CK.- C*2.14 "3.14

IN
R - S+T

--FIN

When the scope of a control phrase consists of a single simple

statement, it may be placed on the same line as the control phrase and the

FIN may be dispensed with. This creates a one-line structured statement.

6



Since each control phrase must begin on a new line, it is not

possible to have a one-line structured statement whose scope consists of a

structured statement:

Example of invalid construction:

IF (X.EQ.Y) DO (I - 1,N) A(I) = B(I)+C

To achieve the effect desired above, the IF must be written in a multi-

line form.

Example of valid construction:

IF (X.EQ.Y)
L DO (I - 1,N) A(I) = B(I)+C

FIN

In addition to the IF and DO, LFP provides several useful structured

statements not available in FORTRAN. After a brief excursion into the

subject of indentation, we will present these additional structures.

7

!.



5.0 INDENTATION DESCRIPTION

In the examples of multi-line structured statements above, the state-

ments in the scope were indented and an "L" shaped line was drawn con-

necting the keyword of the control phrase to the matching FIN. The

resulting graphic effect helps to reveal the structure of the program.

The rules for using indentation and FINs are quite simple and uniform.

The control phrase of a multi-line structured statement always causes

indentation of the statements that follow its scope. Nothing else causes

indentation. A level of indentation (i.e., a scope) can onl.y be terminated

with a FIN.

When writing an UFP program on paper, the programmer should adopt the

indentation and line drawing conventions shown below. When preparing a

UPP source program in machine readable form, however, each statement

should begin in column 7. When the UFP translator produces the listing,

it will reintroduce the correct indentation and produce the corresponding

lines. If the programmer attempts to introduce his own indentation with

the use of leading blanks, the program will be translated correctly, but

the resulting listing will be improperly indented. The source may be left

adjusted to column 7 before processing by the use of the LAWJ control

card. See Section 8.1.6.

Example of indentation:

1. Program as written on paper by programmer.

U a V44A/
D& (I = I.. )

FZN

8



2. Progcam as entered into computer:

IF (X.EQ.Y)
U -V+W
DO (I = 1,N)
WI) -B(t)+C

C C2. 14-3. 14
FIN
R =S+T
FIN

3. Program as listed by LFP translator:

IF (X.WQ.Y)
U U-V-W

*DO (I = 1,N)
*.A(l) =B(I)+C
**C - C*2.l4-3.14

*... FIN

R -S+T
*...FIN

The correctly indented listing is a tremendous aid in reading and

working with programs. Except for the dots and spaces tised for

indentation, the lines are listed exactly as they appear in the source

program. That is, the internal spacing of columns 7-72 is preserved.

There is seldom any need to refer to a straight listing of the unindented

source.

9



6.0 CONTROL STRUCTURES

The complete set of control structures provided by LFP is described

in the following subsections together with their corresponding flow

charts. The symbol Cis used to indicate a logical expression. The sym-

bolSts used to indicate a scope of one or more statements, Some

statements, as indicated, do not have a one-line construction.

A convenient summary of the information in this chapter may be found

at the end of this section and in Appendix A.

6.1 Decision Structures

Decision structures are structured statements which control the exe-

cution of their scopes on the basis of a logical expression or test.

6.1.1 IF

Description: The IF statement causes a logical expression to be

evaluated. If the value is true, the scope is executed once and control

passes to the next statement. If the value is false, control passes

directly to the next statement without execution of the scope.

General Form:

I F 5 Flow Chart:

Examples:

IF (X.EQ.Y) U = V+W

IF (T.GT.O.AND.S.LT.R) IALSE
• I I+ :g
• Z-O.l

... FIN

6.1.2 UNLESS

Description: "UNLESS (i)" is functionally equivalent to

"IF(.NOT.(S ))", but is more convenient in some contexts.

10



General Form:

UNLS (Z Flow Chart:

Examples:

UNLESS (X.NE.Y) U -V+W

UNLESS (T.LE.O.OR.S.GE.R) Il
I = 1+1

.Z -0.1

... FIN

6.1.3 WHEN.. .ELSE

Description: The WHEN.. .ELSE statements correspond to the IF.. .THEN... ELSE

statement of Algol, PL/l, Pascal, etc. In LFP, both the WHEN and the ELSE

act as structured statements although only the WHEN has a specification.

The ELSE statement must immediately follow the scope of the WHEN. The

specifier of the WHEN is evaluated and exactly one of the two scopes is

executed. The scope of the WHEN statement is executed if the expression

Is true and the scope of the ELSE statement is executed if the expression

is false. In either case, control then passes to the next statement

following the ELSE scope.

General Form:

Flow Chart:

ELSE St
Examples: T

WHEN (X.EQ.Y) U - V+w
ELSE U - V-W ram

WHEN (X.EQ.Y)
U - V+W

ST- T+.5
... FIN

4 ELSE U - V-W

WHEN (X.EQ.Y) U - V+W
ELSE

U- V-W
ST- T+1.5
. . .FIN

ii



Note: WHEN and ELSE always exist as a pair of statements, never
separately. Either the WHEN or the ELSE or both may assume the
multi-line form. ELSE is considered to be a control phrase, hence
it c~nnot be placed on the same line as the WHEN. Thus "WHEN (CS
ELSESZ is not valid.

6.1.4 CONDITIONAL

Description: The CONDITIONAL statement is based on the LISP

conditional. A list of logical expressions is evaluated one by one until

the first expression to be true is encountered. The scope corresponding

to that expression is executed, and control then passes to the first sta-

tement following the CONDITIONAL. If all expressions are false, no scope

is executed. (See, however, the note about OTHERWISE below.)

12



General Form:

Flow Chart:
CDNDITIMIL

Zt() S,
* Sz

aft) FALE RU S

... FIN

Examples: TU

FtALSE
CONDITIONAL

*(X.LT. -5.0) U =U+W
*(X.LE-l.O) U = U+W+Z
*(X.LE.1O.5) U =U-Z

*... FIN TRE

CONDITIONAL
" (A.EQ.B) Z 1.0
" (A.LE.C)

'Y = Y2.0
Z -Z 3.4

*... FIN

L.(A.GT.C.AND.A.LT.B) Z =6.2
.(OTHERWISE) Z - 0.0

... FIN

Notes: The CONDITIONAL itself does not possess a one-line form. However.
each (i.) Si." is treated as a structured statement and may be in one-
line or multi-line form.

The reserved word OTHERWISE represents a catchall condition. That
is, "(OTHERWISE)Sx" is equivalent to *'C.TRUE.)S4- in a CONDITIONAL statement.

V 13



6.1.5 SELECT

Description: The SELECT statement is similar to the CONDITIONAL

but is more specialized. It allows an expression to be tested for

equality with each expression in a list of expressions. When the first

matching expression is encountered, a corresponding scope is executed and

the SELECT statement terminates. In the description belowel ,(z,''',e.

represent arbitrary but compatible expressions. Any type of expression

(integer, real, complex,...) is allowed as long as the underlying Fortran

system allows such expressions to be compared with an EQ. OR .NE. operator.

General Form: Flow Chart:

FALSE

SELECT (OCOD(C))

• (I) S21

ItALI

PC =PC I

S(SKIP) PC - PC+2 FALSE+

S(STOP) CALL STOPCD
:..FIN

Notes: As in the case of CONDITIONAL, at most one of the ;i; will be

executed.

The catchall OTHERWISE may also be used in a SELECT statement.

Thus "(OTHERWISE) SS is equivalent to 5 X within a "SELECT
( "statement.

14

* (JUP) P = A



The expression is reevaluated for each comparison in the list,
thus lengthy, time consuming, or irreproducable expressions should
be precomputed, assigned to a variable, and the variable used in
the specification portion of the SELECT statement.

6.2 LOOP Structures

The structured statements described below all have a scope which is

executed a variable number of times depending on specified conditions.

Of the five loops presented, the most useful are the DO, WHILE, AND

REPEAT UNTIL loops. To avoid confusion, the REPEAT WHILE and UNTIL loops

should be ignored initially.

6.2.1 DO

Description: The LFPs DO loop is functionally identical to the

Fortran DO loop. The only differences are syntactic. In the LFP DO loop,

the statement number is omitted from the DO statement, the incrementation

parameters are enclosed in parentheses, and the scope is indicated by

either the one line or multi-line convention. Since the semantics of the

Fortran DO statement vary from one Fortran compiler to another, a

flowchart cannot be given. The symbol represents any legal incremen-

tation specification.

General Form

DO(Z ) S
Examples:

DO (I - 1,N) A(I) = 0.0

DO (J - 3,K,3)
B(J) - B(J-I)*B(J-2)
C(J) - SIN(B(J))

...FIN

15



6.2.2 WHILE

Description: The WHILE loop causes its scope to be repeatedly

executed while a specified condition is true. The condition is checked

prior to the first execution of the scope, thus if the condition is ini-

tially false the scope will not be executed at all.

General Form: Flow Chart:

W HILE C) S

Examples: FALSE

WHILE (X.LT.A(I)) I = +l
TRUE

WHILE (P.NE.O)
VAL(P) = VAL(P)+l

• P = LINK(P) 5
... FIN

6.2.3 REPEAT WHILE

Description: By using the REPEAT verb, the test is logically

moved to the end of the loop. The REPEAT WHILE loop caused its scope to

be repeatedly executed while a specified condition remains true. The con-

dition is not checked until after the first execution of the scope. Thus

the scope will always be executed at least once and the condition indica-

tes under what circumstances the scope is to be repeated.

Note: "REPEAT WHiLE ( I)" is functionally equivalent to "REPEAT UNTIL

(.NOT.( C)

16

k (.SOT( ))"



General Form:

REPET WHILE (CL) S

Examples: 5
REPEAT WHILE(N.EQ.M(I)) I - I+l

REPEAT WHILE (LINK(Q).NE.O) TRUE
*R - LINK(Q) L
*LINK(Q)
P PQ FALSE...FIN

6.2.4 UNTIL

Description: The UNTIL loop causes its scope to be repeatedly

executed until a specified condition becomes true. The condition is

checked prior to the first execution of the scope, thus if the condition

is Initially true, the scope will not be executed at all. Note that

"UNTIL (,C)" is functionally equivalent to "WHILE (.NOT.(,C)

General Form:

UNTIL CC) S

Examples: TRE

UNTIL (X.EQ.ACI)) I 1+1 FALSE

UNTIL (P.EQ.O)S
VAL(P) - VAL(P)+l

*P = LIIJK(P)
... FIN

17



..

6.2.5 REPEAT UNTIL

Description: By using the REPEAT verb, the test is logically

moved to the end of the loop. The REPEAT UNTIL loop causes its scope to

be repeatedly executed until a specified condition becomes true. The con-

dition is not checked until after the first execution of the scope. Thus

the scopc will always be executed at least once and the condition indica-

tes under what circumstances the repetition of the scope is to be terminated.

General Form:

REPEAT UNTIL ( Z ) S

Examples:

REPEAT UNTIL (N.EQ.M(l)) I = + S
REPEAT UNTIL (LINK(Q).EQ.O)

R - LINK(Q)

LINK(Q) P ALSEP Q

Q-R
•. FIN TRUE

18

L ._____ I.'"



6.3 LUP Control Structure Summary Sheet

IF (C) S (IESS (C) s (c (S 5

YFAL

CMITQIKSELECT (c)
c*l (St

.. FN.. .FIN I

TU TRWENT:PAEAPlM TP

LS i FALSEP E PIN T STAU

amT: OTNERWISE CAR K um As
A CATc34A. CMIsTtOR Ol

TRUE TRW ussio N ioCOUITIONAL
F- RUE sit AG SELECT STATIEMNI .

F5LS LEGEND: C - LOGICAL EXPIRESSIO

*- STATMMII(S)

REPEAT UNTIL(C f- RET WILE (f) S 1INTIL (.0 S WHILE (L) S

ssTRUE 
FALSE

4AS TRUE RU

IRKC FALSE

19



7.0 INTERNAL PROCEDURES

In LFP a sequence of statements may be declared an internal procedure

and given a name. The procedure may then be invoked from any point in the

program by simply giving its name.

Procedure names may be any string of letters, digits, and hyphens

(i.e., minus signs) beginning with a letter and containing at least one

hyphen. Imbedded blanks are not allowed. The only restriction on the

length of a name is that it may not be continued onto a second line.

Examples of valid internal procedure names:

INITIALIZE-ARRAYS
GIVE-WARNING
SORT-INTO-DESENDING-ORDER
INITIATE-PHASE-3

A procedure declaration consists of the keyword "TO" followed by the

procedure name and its scope. The set of statements comprising the proce-

dure is called its scope. If the scope consists of a single simple state-

ment it may be placed on the same line as the "TO" and procedure name,

otherwise the statements of the scope are placed on the following lines

and terminated with a FIN statement. These rules are analogous with the

rules for forming the scope of a structured statement.

General Form of procedure declaration:

TO procedure-name

20



Examples of procedure declarations:

TO RESET-POINTER P - 0

TO DO-NOTHING

TO SUMMARIZE-FILE
INITIALIZE-SUMMARY

* OPEN-FILE
REPEAT UNTIL (EOF)

* ATTEMPT -TO -READ -RECORD
* WHEN (EOF) CLOSE-FILE
r ELSE UPDATE-SUMMARY
S... FIN

OUTPUT-SUMMARY
... FIN

An internal procedure reference is a procedure name appearing where an

executable statement would be expected. In fact, an internal procedure

reference is an executable simple statement and thus may be used in the

scope of a structured statement as in the last example above. When

control reaches a procedure reference during execution of a LFP program, a

return address is saved and control is transferred to the first statement

in the scope of the procedure. When control reaches the end of the scope,

control is transferred back to the statement logically following the pro-

cedure reference.

A typical LFP program or subprogram consists of a sequence of Fortrar

declarations: (e.g., INTEGER, DIMENSION, COMMON, etc.) followed by a

sequence of executable statements called the body of the program followed

by the LFP internal procedure declarations, if any, and finally the END

statement.

Here is a complete (but uninteresting) LFP program which illustrates

the placement of the procedure declarations.

21



11/13/78 3.?.T* LINCOLN L&BORATORtY POltAN PRPtOCSSO LIP 02.01
10:07-33 PAGE 1

%RIDTv 72 PtO00010
;INTEIACTIVE PROGRAM FOR PDP-10 PRO00020
;TO CORPUTE THE SQUOiR toot OF 1. P000030
;STOP R3 I IS NEGATIVE. P?000030

PRO00050
00001 REAL I,SQRTI PRO00060
00002 REPEAT UNTIL ( I .LT. 0.0) P100070
0000e . RBAD-XN-A-VALUE-OP-X RO00080
00006 . IF (I .GE. 0.0);OiLY 15R1 I IS POSITIVE Pooo090
00007 . . CORPUTI-SQIT-01- PRO000100
00009 . . TIPS-ODT-THB-RESULT;BOTH I AID SQETI PO00110
00011 . ...FIX PR000120
00012 .,Fill PRO00130
00013 StOP;ALT !XECUTION PO00140

00013 TO UBAD-I-A-VALUE-OF-1 PR000150
00015 * TYPE 10 PO00160
00016 10 * FORIT(s I = I,$) P000170
00017 * ACCEPT 20,[ PRO00180
00018 20 * FOEIAT(F) ;FREE FORMAT INPUT PRO00190
00019 , .il P3000200

00020 TO COEPUTE-SQRT-OF-X SQRTX=SORT(X) PRO00210

-- - - -- - - - fm ea t Je ~ t ----- ft~ ---------- --

00023 TO TYPE-O0T-TE-RESULT PR000220
00023 * TYPE 30,XSQRT3 PRO00230
00025 30 . FORMAT(* THE SQRT O ,F7.2, IS *,F7.2) PROO0240
00026 ., ?IN PRO00250
00030 lD PRO00260

PROCEDURE CROSS-REFERENCE TABLE

00020 CONPUTI-SQIT-OF-
00007

00014 R1DA0-XN-A-VALU-OF-I
00004

00023 TYPE-OUT-THE-RSULT
00009

10 DIAGNOSTICS

26 LFP LINES SCANNED, 30 FORTRAN STATEUENTS GENERATED

22



Notes concerning internal procedures:

1. All internal procedure declarations must be placed at the
end of the program just prior to the END statement. The
appearance of the first "TO" statement terminates the body
of the program. The translator expects to see nothing but
procedure declarations from that point on.

2. The order of the declarations is not important. Alphabetical
by name is an excellent order for programs with a large
number of procedures.

3. Procedure declarations may not be nested. In other words,
the scope of a procedure may not contain a procedure
declaration. It may of course contain executable procedure
references.

4. Any procedure may contain references to any other procedures
(excluding itself).

5. Dynamic recursion of procedure referencing is not permitted.

6. All program variables within a main or subprogram are global
and are accessable to the statements in all procedures
declared within that same main or subprogram.

7. There is no formal mechanism for defining or passing parame-

ters to an internal procedure. When parameter passing is
needed, the Fortran function or subroutine subprogram mecha-
nism may be used or the programmer may invent his own para-
meter passing methods using the global nature of variables
over internal procedures.

8. The LFP translator separates procedure declarations on the
listing by dashed lines as shown in the preceding example.

9. Internal procedure references called from inside nested DO

Loops are not recommended.

23



8.0 CONTROL STATEMENTS

Statements which supply information to the LFP translator during pro-

cessing are called control statements. These statements, denoted by a

control character in column 1, allow user control over the format

(appearance) of the LFP listing and permit the inclusion of the contents

of other files in the source.

A control statement, in general, will contain 3 items:

control This is a percent sign (%) in column 1.
character This character may be changed by a

CONTROL control statement. See
section 8.1.2.

control This is a string from I to 8
word characters in length that denotes

the control card type and must not
contain imbedded blanks.

argument This is either a numeric or alpha-
betic string (optional for some
keywords).

The only requirement on the control statement formtat is that the

control word comes before the argument and that they are separated by at

least one blank. Otherwise, the control word aind argument are typed in a

field -free format.

Each control word may bc. recognized from a subset of the complete

control word, e.g., the control word INCLUDE can be recognized by an I,

IN,.., or INCLUDE. The minimum recognition pattern is denoted by the

capital letters in each control word.

24



All statements will be listed in the LFP listing except those that

follow a NOLIST control. A subsequent LIST control statement will negate

the effect of a NOLIST.

Control statements can occur anywhere in the user's LFP source file or

in the included files.

8.1 Listing Format Controls

The format control statements control the appearance of the UFP

listing such as page width, spacing and page length, etc.

8.1.1 Comment delimiter % COMment char Default

This statement defines the comment field delimiter character,

which should not be part of the standard Fortran character set for obvious

reasons. A comment field may be placed on any LFP source statement

including control statements. The delimiter does not have to be separated

from the UFP statement by a blank.

Examples:

%COK $

% COMMENT ;$ change delimiter back to a

The first example changes the current comment delimiter to a $

Example 2 then changes the delimiter back to a ; (the field $change

delimiter back to a ;is treated as a comment).

25



8.1.2 Control character % Control chars Default %

This control statement allows the user to define a character or a

set of characters that will identify a control statement. Caution - Do

not use the character C or regular comments will be flagged as BAD CONTROL

CARDS.

Unrelated examples:

%C * ; change control character to a*
% CON +-AX
%CONTROL >;+

In example 2 any statement with a +, -, A, or X in column 1 is

treated as a control statement. In example 3 the control character is set

to >, the field ";+" is an inline comment.

If the argument is not present the default control character is

assumed.

8.1.3 Double Spacing % DS

This control statement will initiate double spacing on the LFP

listing. Errors are still single spaced. Double spacing is done by

carriage control.

8.1.4 Heading % Heading character string

This control statement defines a character string that will print

as heading information at the top of each output page of the LFP listing.

The string is not delimited by single quotes and may contain imbedded

blanks up to a length of 69 characters.

If the heading length is larger than the page width, the heading is

truncated on the right.

26



The default Heading is

M.I.T. Lincoln Laboratory Fortran Preprocessor

Examples:

%H SUBROUTINE RENAME
%HEADING SYSTEM RS2-TEST
%HEAD INS SIMULATION;MODEL 4

In the third example the field ";MODEL 4" is treated as a comment and

will not be part of the heading.

8.1.5 Statement Numbering % LABEL XYZ

The LABEL control statement determines the method of statement

numbering on the LFP listing. The user is presented with the following

choices:

1. Fortran line numbers. These are internally generated by the
compiler and are affixed to the listing output to the left of
the statements. They are not to be confused with statement
labels (found in columns I - 5). Fortran line numbers are
sequential from card to card, however, some Fortran compilers,
e.g., IBM, do not number comments or continuations.

2. LFP line numbers. These are internally generated by LFP and
are sequential from statement to statement.

3. Line tags. These are the 8 column identification field found
in columns 73 - 80 of the input LFP statements.

In the LFP listing of a sample program in Section II, the num-

bers to the left of the statements are Fortran line numbers while those on

the right side are line tags. These were chosen by the options available

for the XYZ argument field on the LABEL control statement.

27



Field Value Description

X 0 Increment by I the Fortran line number
for every line of Fortran generated.
This corresponds to most CDC and
MODCOMP compilers. DEFAULT.

1 Increment by I the Fortran line number
for every line of Fortran generated
except comments or continuations.

This is standard for IBM machines.

Y 0 Put LFP line numbers to the left of
the source statements.

1 Put the Fortran line numbers as deter-
mined by the field X to the left of
the source. DEFAULT.

Z 0 Put LFP line numbers to the right of

the source.

1 Put the 8 column line tag to the right
of the source. DEFAULT.

2 Have no field to the right of the source.

The sample LFP listing in Section 11 was prepared with the default

LABEL control statement.

Examples:

%LABEL 111 ; This is tho default
%LABEL ; This resets the default
%LABEL 12 ; X=O,Y-l,Z=2

28

,~ ~~~~~~~~ , M-0".... 1... M .. ....



8.1.6 Left Adjust % LAdj

This control statement will left adjust the input source to column

7, i.e., all blanks from column 7 to the first nonblank character of each

source statement will be removed. This is particularly useful if the

source had been indented on input, because LFP does its own indenting.

8.1.7 # Lines/Page % Line N

This statement specifies the number of printed lines on each page

of the LFP listing which includes 3 lines for the heading. Reasonable

values for N are between 50 and 60 for a line printer. For a terminal

with a roll of paper, N could be made very large which would prevent the

top of page headers from being written.

Examples:

%L 55
% LINE 60

8.1.8 Listing Control % LIST

This control statement generates the LFP listing. This may be

used in conjunction with the %NOLIST control to selectively list portions

of the program. Initially the %LIST control is in effect.

8.1.9 No Left Adjust % NOLAdj

This control negates the effect of the LADJ control, i.e., do not

left adjust the LFP source. NOLADJ is the default.

29



8.1.10 No Listing % NOList

The control turns off the generation of the LUP listing. Only the

presence of a LIST card will turn the listing back on. A NOLIST statement

Is printed except if it is the first record processed.

8.1.11 Page Eject % PageN

This control statement forces a page eject on the UFP listing if N

Is zero or missing. If N is positive, this statement acts as a con-

ditional page eject to keep blocks of the listing contiguous. If there

are fewer than N lines left on the page, then eject a page.

If the LUP listing is double or triple spaced (see DS and TS

controls) the N means double or triple spaced lines.

Examplesr

%P

% Page 20

8.1.12 Single Spacing % S5

This control will single space the LUP listing, which Is the

default spacing.

8.1.13 Listing Width Z Width N

l Tshn in dt chrc r Thstafemectseis alo the cun page otheader

Thein i itharctrol Thstaementsspelifiestheicun page dhotheaders

adteprocedure cross reference table.

Nwill usually range from 72 to 133 with I column being reserved for

caraecontrol. See the sample UFP listing in Section 11 with a column

width of 78. 17 columns are dedicated for statement numbering and

labelling leaving N-17 columns for the indented source statements.

Examples:

%W 133

%WIDTHI 80; set width to 80 columns

30



8.2 Inclusion of External Files

8.2.1 INCLUDE Command % Include FILENAME

The INCLUDE control statement allows the user to include in the

source program the contents of other files. This is particularly effec-

tive in the usage of common blocks.

For example a series of common definitions are put in a file named

COMMON. The user's source program would contain a %INCLUDE COMMON state-

ment to include the common definitions. Included files may not contain

nested %INCLUDE statements.

The filename must be a legitimate SED file and may be compressed or

uncompressed.

Examples:

%I CBLOCI
% INCLUDE ABLOC

If the filename is missing on the INCLUDE card *or if the file does

not exist, the statement is ignored with diagnostic being issued to the

LFP listing and the terminal.

8.2.2 Include Expansion % INCExp N

This control statement controls the expansion of the %INCLUDE

file. If N is I the file is included, if 0 the file is not included in

either the LFP listing or the generated Fortran. Default N=I.

Examples:

%INCEXP 0
% INCE 1

31





8.4 Control Statement Example - Typical Program Setup.

The following control statements at the beginning of each source

program generate a listing that greatly facilitates referencing.

%NOLIST
%HEADING SUBROUTINE NAME
%PAGE
%WIDTH 110
%LIST

SUBROUTINE NAME

END

%NOLIST
%HEADING SUBROUTINE N2
%PAGE

%WIDTH 110
%LIST

SUBROUTINE N2

END

33



9.0 COMMENTS

Comments in LFP are recognized by the presence of a specified comment

delimiter in any column or by the traditional method of the character "C"

in column 1. All characters to the right of and including the delimiter

are considered the comment field.

Comments can be isolated, that is, the source statement is only a

comment, or they can be inline, meaning a statement and a comment field

may be present on the same source line.

All source lines of LFP including control statements may contain

inline comments. There does not have to be a blank between the last

character of the statement and the comment delimiter.

Isolated comments are indented to the current LFP listing level if

columns 2-6 of the statement are blank. An inline comment is indented

only if the statement is indented.

Inline comment fields are stripped off the input statements before

the Fortran output is produced. No comments are sent to the generated Fortran.

Examples:

C NORMAL COMMENT
C THIS COMMENT WILL NOT BE INDENTED

THE SEMICOLON IS TilE DEFAULT DELIMETER
THE DELIMETER MAY BE IN ANY COLUMN

A = SORT(B*B+C*C); COMPUTE RADIUS OF CIRCLE
%COMMENT $ ; CHANGE DELIMETER TO A $

DETERMINE-NEXT-EVENT$BY A TABLE LOOKUP

34



10.0 LFP RESTRICTIONS AND NOTES

If UFP were implemented by a nice intelligent compiler this section

would be much shorter. Thus the LFP programmer must observe the following

restrictions.

1. LUP must invent many statement numbers in creating the Fortran
program. It does so by beginning with a large number (usually
99999) and generating successively smaller numbers as it needs
them. Do not use a number which will be generated by the
translator. A good rule of thumb is to avoid using 5 digit
statement numbers.

2. The LFP translator must generate integer variable names. It does
so by using names of the form "Innnnn" when nnnnn is a 5 digit
number related to a generated statement number. Do not use
variables of the form Innnnn and avoid causing them to be
declared other than INTEGER. For example the declaration
"IMPLICIT REAL (A-Z)" leads to trouble. Try "IMPLICIT REAL
(A-Il, J-Z) instead.

3. The translator does not recognize continuation lines in the
source file. Thus Fortran statements may be continued since
the statement and its continuations will be passed through the
translator without alteration. (See chapter 2.) However, an
extended LUP statement which requires translation may not be
continued. The reasons one might wish to continue a LFP state-
ment are 1) It is a structured statement or procedure declara-
tion with a one statement scope too long to fit on a line, or 2)
it contains an excessively long specification portion or 3) both
of the above. Problem 1) can be avoided by going to the multi-
line form. Frequently problem 2) can be avoided when the speci-
fication is an expr(3sion (logical or otherwise) by assigning
the expression to a variable in a preceding statement and then
using the variable as the specification. Avoid continued IF
statements.

4. Blanks are meaningful separators in LUP statements: don't put
them in dumb places like the middle of identifiers or key words
and do use them to separate distinct words like REPEAT and UNTIL.

.45. Let LFP indent the listing. Start all statements in col. 7 and
the listing will always reveal the true structure of the
program (as understood by the translator, of course). The
control statement %LADJ allows for preindented source code.

35



6. As far as the translator is concerned, FORMAT statements are
executable Fortran statements since it doesn't recognize them as

extended LFP statements. Thus, only place FORMAT statements

where an executable Fortran statement would be acceptable.
Don't put them between the end of a WHEN statement and the
beginning of an ELSE statement. Don't put them between proce-

dure declarations.

Incorrect Examples: Corrected Examples:

WHEN (FLAG) WRITE(3,30) WHEN (FLAG)

30 FORMAT(7H TITLE:) . WRITE(3,30)
ELSE LINE = LINE+l 30 . FORMAT(7H TITLE:)

...FIN
ELSE LINE = LINE+l

TO WRITE-HEADER TO WRITE-HEADER
• PAGE = PAGE+l PAGE = PAGE+I

WRITE(3,40) H,PAGE WRITE(3,40) H, PAGE
-..FIN 40 FORMAT(70A1,13)

40 FORMAT (70A1,13) ...FIN

7. The translator, being simple-minded, recognizes extended LFP
statements by the process of scanning the first identifier on
the line. If the identifier is one of the LFP keywords IF,
WHEN, UNLESS, FIN, etc., the line is assumed to be a LFP state-
ment and is treated as such. Thus, the LFP keywords are
reserved and may not be used as variable names. In case of
necessity, a variable name, say WHEN, may be slipped past the

translator by embedding a blank within it. Thus "WH EN" will
look like "WH" followed by "EN" to the translator which is blank

sensitive, but line "WHEN" to the compiler which ignores blanks.

8. In scanning a parenthesized specification, the translator scans
from left to right to find the parenthesis which matches the
initial left parenthesis of the specification. The translator,

however, is ignorant of Fortran syntax including the concept of
Hollerith constants and will treat Hollerith parenthesis as syn-
tactic parenthesis. Thus, avoid placing Hollerith constants
containing unbalanced parenthesis within specifications. If
necessary, assign such constants to a variable, using a DATA or
assignment statement, and place the variable in the
specification.

36



Incorrect Example: Corrected Example:

IF (J.EQ.'(') LP , (
IF(J .EQ.LP)

9. The LFP translator will not supply the statements necessary to
cause appropriate termination of main and sub-programs. Thus it
is necessary to include the appropriate RETURN, STOP, or CALL
EXIT statement prior to the first internal procedure
declaration. Failure to do so will result in control entering
the scope of the first procedure after leaving the body of the
program. Do not place such statements between the procedure
declarations and the END statement.

10. The LFP translator ignores blank lines and does not pass comn-
ments or blank lines on to the compiler. Thus blank lines can
be used for program clarity without worry.

11. Some FORTRAN compilers allow branching in and out of DO
LOOPS-other compilers prohibit this. The usage of internal pro-
cedure references inside DO structures Is not recommended.

37



11.0 EXAMPLE OF LFP LISTING

The user's program is named QDROOT LFP whose source is listed in

Figure 11-2.

Figure 11-1 is the resulting LFP listing. Note the correlation be-

tween the line numbers on the left of the LFP listing with the lines on

the Fortran compiler output (Figure 11-3). This is accomplished by the

default LABEL control card (Section 8.1.5).

38



03/02/81 SUBROUTINE QDROOT SOLVE QUADRATIC FORMULA LFP 02.01
12:41:37 PAGE I

00001 %LIST QDITSOOS
00001 SUBROUTINE QOROOT(A,BC,X,X2,IERR) . 2NA3I
00002 QDRTSO07
00002 REAL*8 A,B,C,X ,X2 ,DISCII4,TERM1 ,TERM2 QDRTSOOS
00003 QDRTSO09
00003 ;SOLVE QUADRATIC EQUATION .... A*X*X + B3X + C - 0 QDRTSO0
00003 ;FOR REAL X1 AND 12. 2NARI
00003 ; IERR ERROR CODE 2MARI
00003 -2 A AND B ARE 0.0---NO ROOTS 2NAR1
00003 -1 DISCRIMINANT < - 0.0---IMAGINARY ROOTS . 2tARI
00003 0 NORMAL RETURN --- 2 REAL ROOTS 2MARI
00003 1 A IS O.0---1 REAL ROOT . 2MARt
00003 QDRTS014
00003 IERR-O QDRTSO15
00004 WHEN (A .NE. 0.000) QDRTSO16
00005 DISCRM=B*B-4.ODO*A*C; CALCULATE THE DISCRIMINANT QDRTSOI7
00006 WHEN (DISCRM .LT. O.ODO) 2NARI
00007 IERR--1; SET NEGATIVE DISCRIMINANT CODE . 2MARI
00008 WRITE(6,10) A,3,C,DISCRM QDRTS020

00009 10 • FORMAT(' RTN QDROOT, DISCRIM 0 ,/, 2MARl
00010 +. ' A,BC,DISCRIN -,',4E17.6) 2KARt
00011 X1-O.OD0 QDRTS022

00012 X.2-0.ODO QDRTSO23
00013 ... FIN QDRTS024
00014 ELSE QDRTS025
00014 .. TERt-..f/(2.000*&) QDRTSO26
00015 TERM2-DSQRT(DISCRM)/(2 .ODO*A) QDRTS027
00016 XITERM1+TERM2; CALCULATE ROOTS XI and X2 QDRTS028
00017 X2-TERMI -TERM2 QDRTS029
00018 . ... FIN QDRTS030

00018 ... F114 QDRTS031
00019 ELSE; THE HIGH ORDER COEFFICIENT IS ZERO QDRTS032
00019 WHEN (B.NE.O.ODO) . 2NAR1
00020 X1- -C/B QDRTS033
00021 X2-X1 QDRTS034
00022 IERR-1 2KARI
00023 • . FIN 2ARI
00024 ELSE; A AND B ARE BOTH 0.0 2M ARI
00024 Xl-O. ODO 2NARI
00025 X2-0.O .O 2MARI
00026 IERR- -2 2MAR
00027 ...FIN; ELSE 2NARI
00027 ... FIN QDRTS036
00028 RETURN QDRTS037
00029 END QDRTS038

NO DIAGNOSTICS

49 LP LINES SCANNED, 29 FORTRAN STATEMENTS GENERATED

LIS

Fig. 11-1. LFP listing of user's program.

39



*D2* MC/LBL/LL SOURCE EDITOR DATE 03/02/81 12:41:59 Page I

1 INOLIST QDRTS001
2 IRgAD SUBROUTINE QDROOT SOLVE QUADRATIC FORMULA 2MARI
3 IWIDTH 80 . 2NAi
4 %PAG QORTSOO4
5 ILIST QDRTSO05
6 SUIROUTINE QDROOT(A,B,C,Xl,2,IELRi) . 2MAR1
7 QDRTS007
8 REAL*S A,B,CXI,X2,DISCRN,TBRM1,TER142 QDRTSO08
9 QDRTS009
10 ;SOLVE QUADRATIC EQUATION .... A*X*X + B*X + C - 0 QDRTSOIO
11 ;FOR REAL Xl AND 12. 2MARI
12 ;IERR ERROR CODE 2KARI
13 -2 A AND B ARE O.O---NO ROOTS 2MARl
14 1 - DISCRIMINANT - 0.0 -- IMAGINARY ROOTS . 2NARI
15 0 NORMAL RETURN- --2 REAL ROOTS 2MARl
16 1 A IS 0.0---1 REAL ROOT . 2MARI
17 QDRTS014
18 IERR-O QDRTSOI5
19 WHEN (A .ME. O.ODO) QDRTSOI6
20 DISCR4-B*5-4.ODO*A*C; CALCULATE THE DISCRIMINANT QDRTSO17
21 WHEN (DISCRM .LT. O.ODO) . 2MAR1
22 IERR--1; SET NEGATIVE DISCRININANT CODE . 2MAR1
23 WRITE(6.10) A,B,C,DISCRM QDRTS020
24 10 FORMAT(' RTN QOROOT, DISCRIN 0 ',/, 2MARI
25 + ' A,E,C,DISCRIM -,',4917.6) . 2MAR1
26 Xl-O.0WD QDRTS022
27 X2-O.ODO QDRTS023
28 FIN QDRTS024
29 ELSE QDRTS025
30 TERMi- -Bl(2.OD6*A) QDRTS026
31 TER2-DSQRT(DISCRM)/(2.ODO*A) QDRTS027
32 X1-TERMI+TER,2; CALCU1lATE ROOTS Xl AND X2 QDRTS028
33 X2-TIRM1-TERM2 QDRTS029
34 FIN QDRTSO30
35 FIN QDRTSo31
36 ELSE; TiE HIGH ORDER COEFFICIENT IS ZERO QDRTSO32
37 WHEN (B.NE.O.ODO) . 2t4ARI
38 X1--C/B QDRTSo33
39 X2-X1 QDRTS034

40 IERR-1 2MAR1
41 FIN 2MARI
42 ELSE; A AND B ARE BOTH 0.0 2MAR1
43 XI-O.ODO 2MARI
44 X2-O.ODO 2MAlI
45 IERI- -2 2MAR1
46 FIN; ELSE 2MARI
47 FIN QDRTS036
48 RETURN QDRTS037
49 END QDRTS038
TOTAL RECORDS WRITTEN - 50

EXIT
$$
$SEXE FR4,,LO,NOMAP

Fig. 11-2. User's source program.

40



IV FORTRAN IV C.O 03-02-81 12:42 PAGE I

1 SUBROUTINE QDROOT(A,B,C,XI,X2,IERR) 2MAR1

2 REAL*8 A,B,C,X1,X2,DISCRM,TERM1,TERM2 QDRTSO08

3 IERR=O QDRTSO15
4 IF(.NOT.(A .NE. O.ODO)) GO TO 99998 QDRTSO16

5 DISCRM=B*B-4.ODO*A*C QDRTSO-.7

6 IF(.NOT.(DISCRM .LT. O.ODO)) GO TO 99996 . 2MARl
7 IERR=-. 2MAR1
8 WRITE(6,10) A,B,C,DISCRM QDRTS020
9 10 FORMAT(' RTN QDROOT, DISCRIM 0',,/, 2MAR1

10 + ' A,B,C,DISCRIM =,',4E17.6) 2MAR1
11 Xl=O.ODO QDRTS022
12 X2=O.ODO QDRTS023
13 GO TO 99997 QDRTS024
14 99996 TERM1=-B/(2.ODO*A) QDRTS026

15 TERM2=DSQRT(DISCRM)/(2.ODO*A) QDRTSO27
16 Xl=TERMI+TERM2 QDRTSO28

17 X2=TERMl-TERM2 QDRTS029

18 99997 GO TO 99999 QDRTS031
19 99998 IF(.NOT.(B.NE.O.ODO)) GO TO 99994 . 2MARI
20 XI=C/B QDRTS033
21 X2=Xl QDRTS034
22 IERR=1 2MARl
23 GO TO 99995 . 2MARl
24 99994 Xl=O.ODO 2MARl
25 X2=O.ODO 2MAR1

26 IERR=-2 2MARl
27 99995 CONTINUE QDRTS036

28 99999 RETURN QDRTS037

29 END QDRTS038

$S

Fig. 11-3. FORTRAN listing of user's program.

41



12.0 ERRORS

This section provides a framework for understanding the error

handling mechanisms of version 02.01 of the LUP preprocessor. The system

described below is at an early point in evolution, but has proven to be

quite workable. After each execution of LFP the message NO DIAGNOSTICS is

sent to the terminal and the listing if there were no errors. If there

were errors the message ERRORS - MAJOR xxxxx, MINOR yyyyy, CONTROL CARDS

zzzzz is printed.

The UFP translator examines a LFP program on a line by line basis.

As each line is encountered it is first subjected to a limited syntax ana-

lysis followed by a context analysis. Errors may be detected during

either of these analyses. It is also possible for errors to go undetected

by the translator.

12.1 Syntax Errors

The fact that a statement has been ignored may., of course, cause

some context errors in later statements. For example the control phrase

..WHEN (X(I).LT.(3+4)" has a missing right parenthesis. This statement

will be ignored, causing as a minimum the following ELSE to be out of

context. The programmer should of course be aware of such effects. More

Is said about them In the next section.

42



12.2 Context Errors

If a statement successfully passes the syntax analysis, It is

checked to see if it is in the appropriate context within the program. For

example, an ELSE must appear following a WREN and nowhere else. If an ELSE

does not appear at the appropriate point or if it appears at some other

point, then a context error has occurred. A frequent source of context

errors in the Initial stages of development of a program cornes, from

mitscounting the number of FIN' i needed at so-ne point in the prograim.

With the exception of excess FIN's which do not match any preceding

control phrase and are igrored (as indicated by overprinting the line

number), all context errors are treated with a uniform strategy. When an

out-of -context source statement is encountered, the translator generates a

"STATEMENT(S) NEEDED" message. It then invents and processes a sequence

of statements w.hich, if they had been included at that point in the

program, would have placed the original source statement in a correct

context. A message is given for each such statement invented. The origi-

nal source statement is then processed in the newly created context.

By inventing statements the translator is riot trying to patch up the

program so that it will run correctly, it is simply trying to adjust the

local context so that the original source statemnent and the ;taternents

which follow will be acceptable on a context basis. As in the case of

context errors generated by ignoring a syntactically incorrect statement,I such an adjustment of context frequently causes further context errors

later on. This is called propagation of context errors.

43

------------------



12.3 Undetected Errors

The LFP translator is ignorant of most details of Fortran syntax.

Therefore most Fortran syntax errors will be detected by the Fortran com-

piler and not the LFP translator. In addition, there are two major

classes of LFP errors which will be caught by the compiler and not the

translator.

The first class of undetected errors involves misspelled LFP

keywords. A misspelled keyword will not be recognized by the translator.

The line on which it occurs will be assumed to be a Fortran statement and

will be passed unaltered to the compiler which will undoubtably object to

it. A common error, for example, is to spell UNTIL with two L's. Such

s.Atements are passed to the compiler, which then produces an error

meudage. The fact that an intended control phrase was not recognized fre-

quently causes a later context error since a level of indentation will not

be triggered.

The second class of undetected errors involves unbalanced

parentheses. (See also note 8 in Section 10.0). When scanning a

parenthesized specification, the translator is looking for a matching

right parenthesis. If the matching parenthesis is encountered before the

end of the line the remainder of the line is scanned. If the remainder is

blank or consists of a recognizable internal procedure reference, all is

well. If neither of the above two cases hold, the remainder of the line

is assumed (without checking) to be a simple Fortran statement which is

passed to the Compiler. Quite often this assumption may be wrong. Thus

the statement

"WHEN (X.LT.A(I)+Z)) X - 0"

44



is broken down into

keyword "WHEN"
specification *'(X.LT.A(1)+Z)"
Fortran statement ) X = 0..

Needless to say, the compiler will object to )X 0" as a

statement.

Programmers on batch oriented systems have less difficulty withf

undetected errors due to the practice of running the program through both

the translator and the compiler each time a run is submitted. The com-

piler errors usually point out any errors undetected by the translator.

Programmers on timesharing systems tend to have a bit more dif-

ficulty since an undetected error In one line nay trigger a context error

in a much later line. Noticing the context error, the programmer does not

proceed with compilation and hence is not warned by the compiler of the

genuine cause of the error. One indication of the true source of the

error may be an indentation failure at the corresponding point in the listing.

LFP ERROR LIST

END statement is missing
Translator has used up allotted space for tables
CONDITIONAL or SELECT apparently missing
ELSE necessary to match FIN '

FIN necessary to match line #
no control phrase for FIN to match
only TO and END are valid at this point
WHEN to match following ELSE
procedure already defined
procedure invoked but not defined
invalid character in statement label field
recognizable statement followed by garbage
left parenthesis does not follow keyword
missing a right parenthesis
valid procedure name does not follow TO

45



12.4 Control Card Errors

There are 4 control card error messages.

1. BAD INCLUDE FILENAME = XXXXXXXX

This indicates that the filename XX.XXXXXX is not found. The
include card is ignored.

Reasons - misspelled filename
- wrong USL assignment
- device not USL

2. RECURSIVE INCLUDE DECKS NOT ALLOWED

An include deck cannot include itself. The include card is ignored.

3. INCLUDES NESTED LEVEL GREATER THAN 1

4. BAD CONTROL CARD

This catchall error indicates something was wrong with the
control card.

Possible reasons - misspelled control word
- forgot control word
. no argument present when one has needed
- bad argument type
- bad argument

This error results in an ignored control card.

This error message is sent to the LFP listing and also to the

terminal. The LFP line number (see 8.1.5 under LABEL control) is affixed

to the error prior to printing at the terminal.

J 46



13.0 PROCEDURE FOR USAGE ON MODCOMP

The procedure to execute LFP is called $LPG , which also performs the

FORTRAN compilation, assembly and the saving of the binary in a user

library. To execute $LPG type the following job control:

$JOB
$LPG FN USL LO UL

where

FN Filename of file to be processed by LFP. This may be
in compressed or noncompressed ASCII.

USL User source library whicu contains the file FN. The default
is SU.

LO The listing output is sent to this device (default is VP) which
is the Versatek line printer.

UL The binary is saved in this sequential utility library. The
default is SS. If the paraform specified is BO, the binary is
not saved but left on device BO.

The listing of the procedure $LPG is in Figure 13-1.

If any files are to be included (see Section 8.2) and they are not in

the USL specified by paraform #2, the assignment

$ASS II USL2

must be made to the appropriate USL before Invoking $LPG.

47



*D2 MC/LBL/LL SOURCE EDITOR DATE 02/19/81 11:19:11

1. $PRODEFAULT LPG,%1 ,SU,VP,SS,NOLO,NOMAP
2. $NOP PROCEDURE TO EXECUTE LFP, FORTRAN, ASSEMBLER AND LIB
3. $POS %1,%2
4. $IF %3=VP,3
5. $IF %3=NO,2
6. $IF %3=LO,1
7. $AVR CI 16
8. $ASS LO=%3
9. $EXE LFP

10. $ASS SI-SC
11. $EXE FR4,,%5,%6
12. $WEOF SO
13. $ASS SI SO
14. $REW SI SO
15. $EXE M4A,,NOLO,NOSC
16. $WEOF BO
17. $IF %4=BO,4
18. $REW BO
19. $ASS BI-BO
20. $IFM %1 , PRO $LET %1-MAIN
21. $DO SUB,%I,%4
22. $NOTE LPG DONE--
23. $AVR CI
24. $NOTE -- ILLEGAL LO FILE.-.MUST BE VP,LO,NO -

TOTAL RECORDS WRITTEN - 25

Fig. 13-1. Listing of procedure $LPG.

48



14.0 Programmers Guide To LP.

14.1 Subroutine Description.

LFP consists of a large main program ( 1800 lines) and approximately

30 subroutines (4200 lines). The purpose of each subroutine is listed

below.

Name Function

BLNKUT Converts any leading zeroes
in a character string to spaces

CATNUM Convert a number to a
character string

CATSTR Concatenate 2 character
strings

CATSUB Concatenate a character
string to a character substring

CHTYP Classify a character to type

CLOSEF Write # of diagnostics to
terminal and listing and

close files.

CMRDSP Read records from a spe-
cified file sequentially in
compressed ASCII. This
permits the file inclusion
feature (Assembler)

CNR4NW Modified version of
compressed read to pad a
character string with blanks
on input. (Assembler)

CONTOP Controls the paging in the
LFP listing

CPYSTR Copy a character string

CPYSUB Copy a character substring

GET Processes control statements
and inline comments

GETC Get a specified character
from a character string

49



GETCH Get a specified character
from a computer word

GETL Read the next line of LFP
from the mainstream or from
an included file

GETTOK Get a token

HASH Compute Hash function

INIT Initialization

LADJ Remove any blanks In a
source statement between
column 7 and the first
nonblank character

LFP Main program

LFPSP1 Assembler versions of GETCH,
PUTCH and CHTYP

LFPSP2 Assembler versions of PUTC,
GETC, CPYSTR, CATSUB,
CATNUM, STREQ and CATSTR

LFPSP3 Assembler versions of TRIM
and PUTNUM

LITNUM Convert a numeric character
string to binary

NEWNO Generate the next sequential
statement label

OPENF File initialization

PUT Generate the FORTRAN, LFP
listing and the error output

PUTC Replace a character in a
character string

PUTCH Replace a character in a
computer word

PUTL Write 1 line to the FORTRAN,

LFP listing or error file

PUTNUM Put a 5 digit number at the
beginning of a character
string

50



STREQ Logical character string
compare

STRLT Logical character string
compare

TIMES Read Modcomp date and time
of day

TPAGE Generate top of page header
on the LFP listing

TRIM Truncate trailing blanks
from a character string

$LPG Procedure to run LFP. (Job
control)

$LFPT Procedure to link edit LFP
(job control)

Unless specified otherwise the above routines are written in LFP.

.1

51

A.



14.2 Installation of a New LFP Version.

14.2.1 Bootstrapping LFP.

The tape that is supplied has 3 files which contain the following:

File #I USL copy of the routines listed in section 14.1. This con-
tains the LFP preprocessor written in LUP, assembler
language equivalents, a procedure to execute LUP, and a pro-
cedure to link edit LFP.

File #2 Fortran equivalents of File #1 (non commented). These files
were obtained by running File #1 through LFP.

File #3 TOC Module of LFP

To bring up a version of LFP all that is necessary is to load the

module in file 3 and the procedure $LPG in file 1 and attempt execution.

Scratch partitions referenced in the procedure may have to be changed.

If the module does not execute, load the FORTRAN equivalents from

File #2 (making a minimal amount of changes), compile them under Integer

#4 option, and link edit LFP.

The usual test for the correct functioning of UFP is to compare some

of the routines in file 2 with the same routines [n file 1 processed by

the new LFP version.

14.2.2 Installation parameter defaults

The user may wish to change certain default parameters in LFP

depending on the computer system characteristics. It is recommended,

however, that changes be made to the source version written in LFP--not

the Fortran version and that the equivalent Fortran of each UFP version be

archived. The following changes may be made.

14.2.2.1 # of print lines/page

In subroutine INIT this is variable LNPPG which is currently

set to 50.

52



14.2.2.2 # of columns/page (width)

In Subroutine INIT this is variable LWIDTH which is

currently set to 133. When subroutine GET processes a faulty WIDTH control

statement LWIDTH is set to 133.

14.2.2.3 Default Heading

Subroutine INIT contains a data statement for the variable

HDRDEF which defines the default heading.

14.2.2.4 LFP Version Number

Subroutine TPAGE contains a data statement for the variable

VERSN to define the version #.

14.2.2.5 Default Control Character

Subroutine INIT defines the default control character. To

change the default control character to an asterisk add the following

code.

INTEGER STAR

STAR-42 ; HEX 2A

Replace the 2 lines

CALL PUTC (1, CNTRCH, PCNTC)
SVCNTC-PCNTC

with

CALL PUTC (1, CNMRCH, STAR)
SVCNTC-STAR

When subroutine GET processes a faulty CONTROL card, the percent sign

is restored as a control character.

53



14.2.2.6 Default Statement Labelling/Counting

In subroutine INIT variable IBMMET controls the statement

counting;

IBMMET-O # all generated FORTRAN statements sequentially

IBMMET-l # all generated FORTRAN statements sequentially except
comments or continuation records.

Variable STNUML controls the line # at the left of the listing:

STNUML=O Use the LFP line # (sequential from record to record)

STNUML=I Use the FORTRAN statement # as determined by IBMMET

Variable STLABR controls the line # at the left of the listing:

STLABR-O Use LFP Line # (5 columns)

STLABR-I Use line tags (col 73-80) of input source record (8
columns)

STLABR-2 blank field

Subroutine GET redefines these fields if a faulty LABEL control sta-

tement is processed.

14.2.2.7 I/0 Units

The I/0 units are defined at the end of subroutine INIT. The unit

numbers referenced by the REASSIGN statements in the procedures $LFPT and

the task would also have to change. See section 14.2.4

14.2.8 Comment delimiter

The comment delimiter is defined in subroutine INIT by the statement

CMTCH-SCLN

where SCLN is defined to be 59 Dec or 3B Hex.

When subroutine GET processes a faulty %COMMENT control statement the

semicolon is restored as the comment delimiter.

54



14.2.3 Assembler Language Support.

Assembler language equivalents for the primitive character string

operations have been written.. The named routines on file #1 of the tape

contain the following entry points.

Name Entry Points

LFPSP1 CETCH
PUTCH
CHTYP

LFPSP2 PUTC
CETC
CPYSTR
CATSUB
CATNUM
STREQ
CATSTR

LFPSP3 TRIM
PUTWUK

14.2.4 Link Editing

The procedure $LFPT, which is on file I of the tape, is used to link

edit LFP. The scratch partitions referenced by $LFPT may have to change

depending on the disk devices.

Fortran logical unit 1 is reassigned to the SI file which has been

positioned to the file to be processed by the procedure $LPG. FORTRAN

unit 2 contains the FORTRAN output (compressed ASCII). FORTRAN unit 3 is

the listing output and unit 4 is the terminal output. Unit 99 is assigned

to logical file (Included Input) which must have previously been assigned

to a USL file.

A listing of the procedure SLYPT may be found in Figure 14-1.

14.2.5 Diagnostic Testing

File #1 of the tape contains an LFP diagnostic program DIAGLFPO.

After this program is processed by LFP, the LFP listing and FORTRAN output

shall compare with the listings that were sent along with the tape.

. __55 1



*D2* MC/LBL/LL SOURCE EDITOR DATE 02/19/81 11:24:01

1. $PRODEFAULT LFPT,LFP,ST
2. $NOP PROCEDURE TO MAKE OVERLAY OF LFP
3. SASS LO=NO

4. $ASS BI SS
5. $EXE LIB
6. GET %l
7. WEOF BO
8. EXIT
9. $NOTE LINK-EDIT STARTED --

10. $REW BI BO

II. $ASS BI BO
12. $ASS LO=VP
13. $EXE M4EDIT
14. LIBRARIES SS,LB,MS
15. EDIT MAINBI
16. ASS LO-NO
17. WEOF BO
18. EXIT
19. $REW BI 8O
20. $NOTE TOC STARTED -.-

21. $EXE TOC
22. PILE %2
23. OVERLAY %1
24. REASSIGN 1 SI

25. REASSIGN 2 SC
26. REASSIGN 3 LO
27. REASSIGN 4 CO

28. REASSIGN 99 II
29. LOGFILES 4
30. CAT
31. ASS LO=VP
32. MAP %l
33. WEOF LO
34. EXIT
35. $NOP OVERLAY %l CATALOGED ON %2 FILE
36. $NOTE $LFPT DONE

TOTAL RECORDS WRITTEN = 37

$$

Fig. 14-1. Link edit procedure $LFPT.

56



14.3 Modcomp Include Files

Source files for LFP can be included with the %INCLUDE directive.

.When LFP encounters this, a routine is called (CMPFLI) which reads file II

searching for the included file name. If II is a USL type, the directory

is searched and an error returned if not found. The position index is set

to point to the start of the file. Then the file is read with consecutive

calls to CMR4A which is a modified version of CKR4. If II is not a USL

type file, then the position index is set to the beginning of II for CNR4A

calls. Nesting of included files is not allowed.

57



ACKNOWLEDGMENTS

LFP (Lincoln Fortran Preprocessor) is a major extension to the FLECS
preprocessor which was originally developed by Terry Beyer at the
University of Oregon.

We would like to thank Terry Beyer for his permission to use
selected sections of the FLECS User Manual (notably sections 1, 2, 4, 5,
6, 7 and 11) in the preparation of this report.

We would like to thank Paula Rygiel and Pam O'Connor for all the
time that was spent in the preparation of the original report and thanks
to Pam and Michelle Dalpe' for the work on this revised edition.

BIBLIOGRAPHY

Available Documentation Concerning Flecs (As of December 1974).

Beyer, T., Flecs Users Manual (University of Oregon Edition)

Contains a concise description of the Flecs extension of Fortran and
of the details necessary to running a Flecs program on the PDP-10 or
the IBM S/360 at Oregon.

58



APPENDIX A - Control Structure Summary Sheet

(This duplicate LFP Summary Sheet may be removed from the manual)

IF (C) S UNLESS (Z) UEN (JC)S

' TU SFS

FALSE TRUE

FALSEFALSE

FSt

CWDITIoNAL SELECT (C)
* ) S, . (c4) S,

* (44;,) Si C) S

do iC, 4.) CARRY-MIT-ACTION
..FIN ...FIR

TO CAARY-OU-ACTION

1,TRUE STRUE S

FALSE TALSE 5)ECtEISTTMRAA

ALEFE C RUROTE PLACE A AORN STOP. oft
,C, Tour 1 51CALL EXIT STATEMN rEA

FALS OF TlE FIRST TO STATIMEN'

NOTE: OTIERWISE CAN uE USED As

A CATCUALL CONITION OR

TUTUsS. ION (O IWITIONA
ASD SELECT sTATEmT.

FALSE FL LEGEND: C LOGICAL EXPRESSIO"
$1 - STATEMENT(O)

C - EXPRESSION
Z - DO SPECIFICATION

REPEAT UNTIL (4) S REPEATII1ILE( C) S UNTIL (4) S WHILE (,C) S

TRUE FALSE

FALSE TRWE

S FALSE £ TRUE 
SFL1

TRUE FALSE

59






