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SUMMARY 

A computer program has been developed to compute the inviscid supersonic 

flow over delta wings and smooth wing-body configurations.   A second-order 

accurate predictor-corrector finite-difference scheme is used to integrate the 

three dimensional Euler equations in regions of continuous flow.   Bow shock 

and crossflow-induced embedded shocks are explicitly computed as discontinui- 

ties which simultaneously satisfy the characteristic and the Rankine-Hugoniot 

conditions.   In computing the flow about complex wing cross sections, the use 

of appropriate conformal mappings were an important factor in developing a 

computational mesh capable of resolving the large flow gradients that are inevi- 

table in the vicinity of wing leading edges. 

Geometry programs were developed to supply the appropriate geometric 

boundary conditions necessary to compute complex wing cross sections.   New 

starting solutions were developed that were more appropriate to thin-wing cross 

sections. 

In the initial stage of development, the flow about conical wings was com- 

puted for a two-fold purpose.   Conical Euler solutions would be used as start- 

ing conditions for conical wing-bodies and three dimensional wings and the 

conical problem would uncover potential problem areas in the computation of 

these flows without the added complexity of geometrical variations. 

The conical problem led to the development of special techniques to resolve 

the vortical layer that inevitably develops on the body surface. 

Typical results are shown for subsonic and supersonic leading edge delta 

wings and wing-body combinations.   These results are also compared to lin- 

earized and nonlinear potential flow theories as well as available experimental 

data. 
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SECTION I 

INTRODUCTION 

The standard assumptions made in order to predict the flow about thin wings 

at supersonic Mach numbers and moderate angles of attack (i.e. linearized po- 

tential flow) preclude the prediction of some of the basic fluid dynamics of 

these flows.   Specifically, the formation of supercritical crossflow regions in 

the vicinity of the leeward wing leading edge.   The assumptions of small-per- 

turbation linearized potential flow theory can not predict supercritical cross- 

flow regions, and thus any embedded shocks which might result due to recom- 

pression.   Consequently, aerodynamic design engineers who are keenly aware of 

of the shortcomings and restrictions of applying linearized design and analysis 

tools to supersonic problems avoid possible nonlinear areas by striving to con- 

tour their wings at design points (i.e. lift coefficients) that fall primarily with- 

in the realm of linearized flow (e.g. C   ~ . 2).   Unfortunately, this becomes an 
JL 

increasingly difficult task as highly cambered wings are sometimes required to 

achieve specific design and maneuver goals.   It has been found and noted in the 

past that optimum wings that have been designed with linearized methods often 

fall short of their design goals (Reference 1) when tested experimentally.   These 

shortcomings have often been blamed on unaccounted-for viscous boundary 

layer effects.   On the other hand, some very important inviscid aspects of the 

flow have been neglected (e.g., crossflow-induced embedded shocks).   The non- 

linear inviscid behavior of the flow can shed light on the boundary layer be- 

havior (i.e. shock-induced boundary layer separation).   Thus, with the some- 

what unreliable predictability of linearized methods, experimental wind tunnel 

testing is currently the final and often expensive determinant in the design of 

a supersonic wing. 

In Reference 2 and 3, a computer code was developed primarily for comput- 

ing the three-dimensional inviscid hypersonic flow over space shuttle configura- 

tions by integrating the nonlinear Eulerian equations of motion and explicitly 

f»wr*A»*i»»r ••-- 
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computing shock waves.   It was shown that pressure and force data could be 

successfully predicted for this type of vehicle, thus significantly reducing the 

amount of wind tunnel testing necessary in the vehicle development.   It is the 

intent of the present study to apply procedures similar to those developed in 

Reference 3 to supersonic vehicles.   The code described in Reference 3 con- 

tained several drawbacks in that it lacked sufficient geometric detail for model- 

ing contemporary complex supersonic wing geometries.   In addition, the pro- 

cedure had never been tested on thin-wing geometries in supersonic flow where 

typically very large gradients of pressure and Mach number can be generated 

in the vicinity of wing leading edges.   An important step in computing the flow 

about complex wings is to select the appropriate conformal mapping necessary 

to generate an accurate grid line or computational mesh arrangement in the 

transversel plane, perpendicular to the marching direction.   This procedure 

was first used by Moretti (Reference 2) for three-dimensional flow and was 

shown to be a significant factor in generating accurate and reliable results. 

- , ——- 
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SECTION II 

PROBLEM DEFINITION 

Figure 1 shows a sketch of the type of flow field under consideration.   Ini- 

tially, conical wings will be considered because of the geometrical simplifica- 

tion of reducing the full three-dimensional problem to only two spatial coordi- 

nates.   In addition, the nature of conical geometries makes it possible to study 

the effect of cross sectional perturbations on the spanwise pressure distribu- 

tion.   In subsequent sections, the conical solutions to the Euler equations will 

be used as starting conditions for three-dimensional wings. 

The nature of a conical flowfield is dominated by the "crossflow" Mach num- 

ber.   The crossflow velocity is defined to be that velocity that is tangential to a 

spherical surface whose origin is the apex of the conical wing.   Figure 2 shows 

a sketch of the cross-sectional plane of a delta wing.   At zero angle of attack, 

the crossflow about a symmetrical wing will stagnate at the wing leading edge 

(see Figure 2a), rapidly accelerate about the upper and lower surfaces and then 

stagnate at the upper and lower symmetry planes.   At angles of attack greater 

than zero, the crossflow stagnation point moves slightly to the windward side of 

the leading edge.   The resulting crossflow undergoes a larger expansion and 

can attain supercritical values on the upper surface, thus forming a supersonic 

crossflow region (see Figure 2b).   The crossflow must stagnate in the leeward 

symmetry plane and, if the crossflow becomes sufficiently supercritical, a 

"crossflow shock" is generated on the upper surface or leeward side of the wing. 

The crossflow shock facilitates the turning of the three-dimensional velocity 

vector or streamline in the direction of the leeward symmetry plane, thus 

satisfying the symmetry plane crossflow stagnation boundary condition.   The 

crossflow shock is a normal shock at the body in order to satisfy the flow tan- 

gency body boundary condition, thus delineating the supercritical crossflow 

region from its subcritical counterpart. 

.. 
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Figure 1   Sketch of Supersonic Flowfield About Elliptic Cone 
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(b)  ANGLES OF ATTACK GREATER THAN ZERO 

Figure 2 Sketch of Crosif low Stagnation Streamlines and Supersonic Crossflow Region 
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The problem of computing the external flow about a supersonic wing is 

completely defined by the wing geometry, the free stream Mach number and 

angle of attack, and an initial starting solution which satisfies the local boundary 

conditions.   A finite difference marching technique can then be applied to inte- 

grate the governing partial differential equations in an assumed axial marching 

direction (Z).   The only restriction is that the axial Mach number must remain 

supersonic and that the Courant-Friedrichs-Lewy (CFL) stability condition 

must be satisfied in marching from one station to another. 

In order to apply the boundary condition at the wing surface (i.e., vanishing 

of the normal velocity), the surface and all its first derivatives must be de- 

fined.   Therefore an analytic definition of the geometry is needed, with con- 

tinuous first derivatives.   The second derivatives of the body geometry appear 

explicitly in the present formulation of the problem, but continuity is not neces- 

sary. 

The governing equations were defined in a Cartesian coordinate system, thus 

giving no special consideration to the conical flow problem.   In the marching 

procedure each cross sectional geometry is mapped into a near circle, thus 

developing an accurate computational mesh.   For the conical flow problem, the 

mappings exhibit conical similitude in the computational plane and thus the 

axial derivatives will vanish if a conical flow solution has been achieved. 
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SECTION in 

COMPUTATIONAL GRID:   CONFORMAL MAPPINGS 

The definition of a computational grid is one of the most crucial steps in 

the building of a numerical technique.   The concept of using conformal mappings 

to develop the computational mesh in three-dimensional supersonic flow prob- 

lems was originally proposed by Moretti (Reference 2). 

Three coordinate systems or spaces will be referred to.-   the physical space 

(x, y, z), a mapped space (r, Ö, 2>), and a computational space (X, Y, Z); see 

Figure 3.   The coordinate system in the physical space is Cartesian and de- 

fines the three velocity components that are to be computed.   The governing 

equations are written in the physical space and then all derivatives are trans- 

formed into the computational space where the mesh points are at uniform in- 

tervals AX, AY,  AZ. 

Each £ = constant plane in the mapped space is obtained by conformally 

mapping cross sections in the physical space into near circles in the mapped 

space.   The region bounded by the body and the bow shock becomes an annulus 

in the mapped space.   The corresponding computational space is obtained by 

normalizing the radial distance between body and shock (X-direction) and the 

circumferential distance between the two symmetry planes (Y-direction); see 

Figure 4.   The mapped space serves three purposes.   First, it distributes the 

body mesh points (which are evenly spaced in the computational plane) so that 

the necessary resolution is obtained in regions of large curvature where trunca- 

tion error may otherwise become too large.   Second, the mapping makes the 

body and bow shock positions single-value functions, r = b (0, 3) and 

r=C(0,a) in the mapped plane. Third, since Shockwaves embedded in the flow- 

field become mesh lines, an accurate and stable computation is contingent 

upon the shape of the crossflow shock not differing significantly from a 0 = 

constant mesh line.   This enables one to define a number of regions in the 
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computational space when more than one shock exists in a cross section.   The 

dotted lines in Figure 4 are extensions of shocks to complete the boundaries of 

these regions.   The points on either side of these portions of the boundaries 

are allowed to pass information across the boundary.   The crossflow surfaces 

(i.e., extensions of crossflow shocks) are defined as 6 = constant.   The con- 

stant taken is the value of 8 at the last radial point on the shock. 

Now, the transformation (r, 6, ä) — (x, y, z) is considered. The mapping 

that has been found suitable for cambered wings is simply a single Karman- 

Trefftz transformation, which may be written: 

-i   /w-w»\6/T 

+ 1    \ w+w*/ ( 

where ? = re19 (mapped space variable) and W = x + iy (physical space variable). 

W* is the position of the singularity of the mapping in the physical sppce, W* 

= x* + iy* (Figure 5).   The singularity of the mapping must be placed near the 

wing leading edge in order to map the wing cross section into a near circle. 

The singularity should be on the wing cross sectional camber or mean line; this 

condition defines y* and 

X*=7XT2-R2 (2) 

where xT = coordinate of the wing leading edge (Figure 5) and Rc is the radius of 

curvature of the wing leading edge.   The power ö/ir of equation (1) is, in gen- 

eral, the external angle of the corner of which the mapping is intended to eli- 

minate.   In the case of a blunt wing, 6 = 27r, and therefore equation (1) becomes 

;-l _ /W-W*\ 
+ i   yw+w*/ 

In order to compute W from £ (i.e., to invert this mapping) care must be taken 

to choose the proper root of 

(Lzl\i/2J^^1) (4) 

—:  
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The root selection was determined by first locating the singular point in the 

mapped space 8* (Figure 5) and selecting the root of equation (4) such that 

points with 8 >8* in the mapped space have y >yc in the physical space (i. e., 

points on the upper surface of the wing in the mapped space are on the upper 

surface of the wing in the physical space). 

In order to transform the derivatives in the governing equations from the 

physical space to the computational space, the first and second derivatives of 

all the transformations are needed.   The derivatives rx, ry, 0X, and 8y can be 

calculated as follows: 

W,= 
(W* + W*) 

c     (f + l)(f-l)(W-W*)(W+W*) 

and 

fw = W, 

If ? = u + iv, where u = r cosfl and v = r sinö, then 

u,= Re(£w) 

vx = Im(£w) 

and from the Cauchy-Riemann conditions, 

u,= -vx 

then 

rx = (uux +wx)/r 

rT=(uuy+wy)/r 

0x = (uvx- vuj/r2 

0y=(uvy-vu,)/r2 

(a) 

(b) 

(c) 

(d) 

(5) 

(6) 

(7) 
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For the 3 derivatives of the mappings, the following results are obtained: 

w _w* (w-w*)      Wj(W + W*) 
»     a (w*+w*)      w* + w* 

x» =Re(w*) 

ya = Im(Wj) (8) 

where 

Wj=x*+iy* 

Where xj = x*, yj=y£   since z= 3   and z   =1.   Now, since r, 0, i are inde- 

pendent coordinates, it follows that r^ = dh = 0.   Therefore: 

and 

r
i=

rxx»+r7yi 
+ rzzi = ° 

ea = exXa+öyyJ + ezZ,=o 

Solving for rz and 0Z, the following results are obtained: 

(a) 

(b) 
(9) 

The second derivatives of this transformation, needed for the body point 

calculation, are derived in a similar fashion. 

The singularity of this mapping is located inside the body so that the map- 

pings are never evaluated at singular points.   It is not necessary that the map- 

pings be conformal but it has been found that conformal mappings give the best 

results in terms of mesh point distribution.   It is also not necessary that r, 6, 

3 be orthogonal coordinates and, in general, they are not. 

These mappings (Eq. (1)) use simple algebraic expressions and their coef- 

ficients are defined explicitly so that transformation from one space to another 

takes a minimum of time.   Considerable work has been done to develop conformal 

11 



mappings that can map arbitrary cross sections into circles or near circles 

(Reference 4).   These generalized mappings offer a greater flexibility than the 

mappings used herein, but would require a large increase in computational 

time. 

Some examples of the mesh generation in the physical space are shown in 

Figure 6 for elliptical and cambered wing cross sections.   The mappings yield 

the highest mesh density in the vicinity of the leading edge. 

With the mapped plane completely defined, the transformation between the 

computational space and the mapped space (X, Y, Z) -* (r, 6, 3 ) is required. 

Consider a cross section (Z = a = constant) with multiple shock waves, e.g., 

(Figure 7) bow shock, wing shock and tail shock, plus two crossflow shocks. 

The computational plane is divided into 1C regions in the Y direction, and LC 

regions in the X direction.   They are ordered as in Figure 4.   The body is de- 

scribed by r= B(Y, Z) and a wing-type shock as r = Ct(Y, Z) for JC= 1 — LC 

(1= LC being the Dow shock).   Similarly, the crossflow shocks are described 

as 6 = Ht (X, Z) for i = 1 — IC + 1 (i = 1 is the bottom symmetry plane and i = IC + 1 

is the top symmetry plane).   These surfaces are shocks for some range of X 

and Y, and arbitrary (dividing) surfaces for other values of X and Y, as de- 

scribed previously. 

Now define LC +1 surfaces such that: 

Cj(Y, Z) = B(Y, Z) 

Ct(Y, Z) = CI.1(Y, Z)      (£=2, 3...LC+1) 

The transformation to the computational plane then can be written as: 

X=(r-C£)/(Ct + 1-Cf)      (a) 

Y = (0-H1)/(Hltl-H1)       (b) (10) 

Z=ä (c) 

12 
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Figure 7   Cross Sectional Shock Pattern in Mapped and Computational Spaces 
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The coordinates X, Y, Z are not orthogonal.   The boundary Ct in the mapped 

plane becomes X = 0 in region 1 and C£ + 1 becomes X = 1.   Similarly, the IC 

regions in the Y-direction in the computational plane are bounded by Y = 0 and 

Y = l. 

Inverting this transformation yields the result: 

r = X(C£ + 1 -C£) + C£ (a) 

e=Y(H1+1-H1) + H1 (b) (ID 

a = Z (c) 

Again, the derivatives of this transformation, Xr, Xe, Xa, Yr, Y8 and 5f8 , 

are needed. 

First 

rx~ (c*+) ~ct) (a) 

rY-(CY      -CyJX + Cy,      (b) 

rz=(czt + 1-Cz£)X+CZ£ (c) 

eX=(Hx£ + 1-HXl)Y+HXl (d) 

0y = (Ht +1 — Hj) (e) 

0z=(HZi + i-HZl)Y+HZi (f) 

ax = o (g) 

»Y = 0 (h) 

bz=l (i) 

(12) 

The Jacobian of the transformation is defined as: 

J = 
8(r, 6, » ) 
9(X, Y, Z) 

rX 
rY     rZ 

Ox 0y       ÖZ 

»x iY   3Z 

16 
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and thus 

X„ = T 
1 ("9(r, X, 3) 
J L Ö(X. 

1 [ 8(X, 0,3)1 
*r~ J L9(X, Y,Z) J 

1  \d(Y, 0,3)1 
Yr    J l_9(X,Y, Z)  J 

X, 3)1 
,Y,Z) J 

1 [ 9(r, Y, 3 ) ~| 
jl.9(X,Y,Z) J 

1 [ 9(r, 0, X) 1 
J L 9(X, Y, Z) J 

l[ 9(r, 6, Y)~\ 
J |_ 9(X, Y, Z) J 

Y« = 

(a) 

(b) 

(c) 

(d> 

(e) 

(f) 

(13) 

After some algebraic manipulations the above derivatives can be written in 

the following form: 

Xr=l./[ö + XD16Y+D1Cy£] 

Yr=D,Xr 

Ye=l./[A+YD2Ax-D2Hxl] 

Xg = D2 Ye 

(a) 

(b) 

(c) 

(d) 

X (X6z+X6YD3+C2t+CYtD3l     (e) 

[6 + XD46Y+CT£D4] 
(14) 

Ya=D3 + D4XA (f) 

where 

6 =Ct + 1 - C£ (a) 

6Y=CYf+ ,_CYje (b) 

6z=cz£t,-
czl (O 

4«H,4,-H, (d) 
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%=Hxl+1-HXl (e) 

*      zi+i       zi 
<f) 

D, = -(YAx-HXl)/A (g) 

D2=-(XöY+CYt)/ö (h) 

D3=-(HZl+YAz)M (i) 

D4 = -(HX +YAX)/A (j) 

(15) 

This transformation is a modification of the one used previously by Moretti 

to solve numerical problems (e.g., see Reference 5).   Singularities occur 

when Ct = Ct +1 or Ht = Ht + ( and when J= 0.   The former occurs when two shocks 

intersect.   This matter will be discussed in the section on "Treatment of 

Shocks".   The latter case occurs when the mesh lines X = constant and Y = con- 

stant become parallel in the physical plane.   This can occur for certain loca- 

tions of crossflow shocks.   However this problem can be overcome by either 

modifying the conformal mappings so that the cross section in the mapped 

plane is "more circular," or by using a crossflow shock-type surface (which 

acts like an extension to a crossflow shock) to control the shape of the mesh 

lines. 

All shocks are defined in the mapped plane as r = C(6, b ) and 6 = h( r, b ), so that 

C(Y,Z) = c-[6(X8,Y,Z),3],H(X,Z) = h[r(X,Y8,Z), b ] (where X8 and Y8 are either 0 

or 1) and their derivatives C Y, C z, Hx and H z must be calculated.   The body 

is defined in the physical plane and an iterative procedure is needed to de- 

scribe the body as r = b (0, b ) from which B (Y, Z) can be computed.   From the 

derivatives bg, ba, c"9, ca, ha and hP, the calculation of B, C, Bz, and C z 

proceeds as follows. 

Using the notation of equations (11, 12 and 13), define 

c,sb(e,a) 

cjsct., (d,b) 

18 



then 

(16) 
Cx£ = %[H(X8) Z)1+1-H(X8, Z)J 

HXi = hri[C(Y„ Z)£ + 1-C(Y8, Z)£] 

Where again Xa (the value of X at the shock C£) and Y8 (the value of Y at the 

shock Ht) are 0 or 1. 

(a) 

flz=Y(Hz(X8, Z)ltl-Hz(X8,Z)i]+Hz(X8, Z),      (b) 

"z^h^ + h^rz (c) 

rz = X[Cz(Y8, Z)£ + 1-CZ(Y8> Z)£] + CZ(Y8> Z)t     (d) 

cz£ = cj£ + <Vz 

(17) 

At the points X=X9 and Y = Y8 at a cross section Z, these equations result in 

a set of simultaneous linear equations for Hz (X8, Z) and Cz (Y8, Z): 

C
Z^'Z)

£-       l-c9fY8(h.      -h,)-hr] 
(18) 

*i + l       'i 

whereas 1IZ (X8, Z) can be computed from equations (16).   For all other points, 

equation (16) is used to compute Cz (Y, Z) and HZ(X, Z). 

Now the computational plane and its boundaries are completely defined so 

that, for any mesh point (X, Y, Z) in the computational plane, the corresponding 

point (x, y, z) in the physical plane and all the necessary transformation de- 

rivatives can be computed. 
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SECTION IV 

COMPUTATION OF REGIONS OF CONTINUOUS FLOW 

In the physical plane (x, y, z) the Euler equations are: 

wPz+rwz = -(upx + vPy+rux+yvy) (a) 

wuz = -(uux + vUy + TPx) (b) 

wvz = -(uvx + wy + TPy) (c) (19) 

TPz + wwz = -(uwx + vwy) (d) 

wSz = - (uSx + vSy) (e) 

where T=T/T00, P = ln(p/pJ, S = (S~-Sj/cVoo and all velocities are nondimen- 

sionalized with respect to Vp„/p« (the barred quantities are dimensional), 

x = x/fi, y = y/F, z = z/I (jFis an arbitrary length). 
• 

The equation of state for an ideal gas becomes: 

ln(T) = P (T-1)   + - (20) 
y        y 

The dependent variables are P, S and the Cartesian velocity components 

u, v, w (Figure 1).   Transforming all derivatives to the computational plane, 

the following results are obtained. 

fx = fXXx + fYYx + fzZx (a) 

fy = fxXy + fyYy + fzZy (b) (21) 

fz = fXX2+fYYz + fzZz (c) 

where f is the vector (P, u, v, w, S) and 

Xx = Xrrx+Xeex+X43x (a) 

xy=xrry+x9ey+x, ay (b) (22) 

Xz = XTrt + Xeei+Xiit (c) 

20 



r w*mm 

Similar expressions can be written for the Y and Z derivatives.   The deriva- 

tives of (X, Y, Z) with respect to (r, 6, & ) and (r, e, i ) with respect to (x, y, z) 

have already been discussed in the previous section. 

Combining equations (19'     nd (19e), the following form of the Euler equa- 

tions is obtained which are used in the present solution. 

Pz = (a.ipx + a,2Ux + a,3Vx + a14wx + b11PY + b12uY + b13vY + b14wY)    (a) 

uz = -^a2ipx + a22Ux + D21PY + b22uY) (b) 
(23) 

vz = -(a3lPx + a33Vx + b31PY + b33VY) (c) 

wz = -(a4,Px + a42Ux + a43Vx + a44Wx + b41PY + b42uY + b43VY + b44wY) (d) 

Sz = -(a55Sx + b5:)SY) (e) 

where the coefficients appearing in equations (23) are defined in Appendix A. 

At a data plane, Z = Z0 = constant, all the quantities on the right side of equa- 

tions (23) are known and therefore the derivative fz can be computed and used 

to predict the dependent variables at Z = Z0 + AZ. 

The step size AZ in the marching direction must satisfy the CFL (Courant- 

Friedrichs-Lewy) condition for stability (Reference 6).   If A^ are the charac- 

teristic slopes in the X, Z plane and XY± are the characteristic slopes in the 

Y, Z plane, the stability criterion is written as follows: 

AZX* = AX/XX+ 

AZX- = AX/XX- 

AZY*=AYAY- 

AZY-=AY/V 
(24) 

Each of these quantities is evaluated for every mesh point at the station 

Z = Z0, and AZ is taken as 70% of the minimum of all of these AZ values. 

A modified MacCormack, two-level, predictor-corrector finite-difference 

scheme (Reference 7) is used to integrate equations (23).   It can be proved that 

the MacCormack scheme is accurate to second order for a linear system of 

equations, so that the truncation error is of the form: 
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where £ is a length in the physical plane.   In regions where dH/dl? is large, 

the mappings tend to assure A4— 0 so that the truncation error remains small, 

while keeping the total number of grid points to a minimum. 

Equations (23) can be written in the following general form 

fz = [A]fx + [B]fY (25) 

where, as previously defined, f is the vector (P, u, v, w, S) and [A] and [B] are 

matrices of the coefficients of equations (23).   With these equations, the 

MacCormack scheme proceeds as follows. 

Level one: 

fz (Z 0) = [A ] fx + [ Bl fY (all quantities evaluated at Z 0)     (a) 

f = f(Zo) + fz(Z0)AZ      (f is the predicted value) (b) 

Level two: (26) 

fz = [A ] fx + [B] fY (all dependent variables evaluated      (c) 

with the predicted values and all 

independent variables are 

evaluated at Z =Z0 + AZ) 

f(Z0+AZ) = (f + f(Zo) + fzAZ)/2 (d) 

The fx derivatives are taken one sided in the positive X-direction in level one, 

the fy derivatives in the positive Y-direction.   For level two the direction of 

these derivatives is reversed. 

This procedure defines all the dependent variables at interior points of the 

computational plane (1<NN<NC(L) and 1<MM<MC (I)), Figure 7.   The body 

point calculation and the shock point calculation will be discussed later.   How- 

ever, note there that all imbedded shock points have two mesh points associated 
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with them, one for the low pressure side and one for the high pressure side, 

both having the same position in the physical plane (Figure 7).   The low pres- 

sure side of all shocks is computed following the MacCormack scheme and 

taking X and Y derivatives into the low pressure region in both levels.   The 

low pressure side of the bow shock ((NN = NC(L), L = LC)) is defined by the 

given free-stream conditions. 

The points on the symmetry planes (MM = 1, 1=1 and MM = MC (I), I = IC) are 

computed using the same scheme and the symmetry conditions PY = Vy = wY 

= Sy = 0 and u = 0.   The points on the internal boundaries that are not shock 

points are also computed using the MacCormack scheme.   In level one, the 

points NN = 1 and MM = 1 are computed, taking the difference between NN= 1, NN = 2 

and MM = 1, MM = 2 for the X and Y derivatives, respectively.   After level 

one, quantities at NC (L) and MC (L) are updated (i.e. , f (NC(L), M)L = i"(l, M)L + 1 

and f (N, MC(I))I = f (N, l)1 + i).   In level two the points on the other sida of the 

surfaces, NN = NC (L) and MM = MC (I), are computed and afterward the points 

i\TN = 1 and MM = 1 are updated. 

A careful study of the numerical results initially generated for thin, super- 

sonic wings indicated that the gradients in the Cartesian velocity components u 

and v were very large, while the gradient in the velocity component in the di- 

rections of the computational space coordinates X and Y were much smaller. 

These velocity components are defined by: 

ü = ul, + vly + wlz 

v = uJ, + v Jy + wjt 

wheref=VX/l VXI and7=VY/|VY| 

Solving for the two Cartesian velocity components u and v, 

««(!~3        !*) (27) \v-wJr       Jr/ 
DET 
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and 

(28) (it    ü-wi,\ 
\i v-wJ«/ 

DET 

where 

DET=IxJy-JxIy 

By analytically differentiating equations (27) and (28), the derivatives of the 

cartesian velocity components can be determined as a function of fi, v and their 

derivatives, which are evaluated numerically.   It was found that numerically 

differencing u and v, instead of u and v, reduced the truncation error of the 

total computation significantly. 

It should be noted that u and v are the normal and tangential crossflow 

velocity components, respectively, on the surface of the body.   Thus, u is 

constrained to vanish on the surface due to the flow tangency boundary condi- 

tion.   A comparison of the two sets of velocity components and their variation 

on the surface of an ellipse is shown in Figure 8.   The improvements in the 

computed results are demonstrated in Figure 9 at zero angle of attack.   A 

marked improvement in the results at angle of attack is demonstrated in 

Figure 10. 

Special difference formulas must be used to avoid difficulties associated 

with entropy discontinuities (i.e. , vortical singularities).   These procedures 

will be discussed in a subsequent section. 

The calculation of interior points is the most time consuming of this com- 

putation mainly because it is done many times.   The scheme used here keeps 

the computational time to a minimum by keeping the total number of mesh 

points as small as possible. 
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SECTION V 

BODY POINT COMPUTATION 

The boundary condition at the vehicle surface is u = 0, where ü is the ve- 

locity normal to the body.   The entropy at the body is computed by using equa- 

tion (23e), as for any other mesh point.   At the body, the coefficient of Sx (i. e. , 

a55) in equation (23e) vanishes so that this derivative does not affect the calcula- 

tion of entropy on the body. 

To compute the pressure on the body, the continuity and three momentum 

equations (23a, b, c, and d) and the body boundary condition are combined to 

write a compatibility equation along the characteristic (in the X, Z plane) reach- 

ing the wall from the flow field. 

Pz + anPx + a12ux + a13vx + a14wx = Rt 

UZ + a21?X + a22uX • R2 

R3 

WZ + a41?X * a42uX + a43Vx + *awX = R4 

VZ 
+a3lPX 

+ a33VX 

where: 

Rt = - (buPY + b12uY + b13vY + buwy) 

R2 =-(b2iPY + bj2uY) 

R3 =-(b3,PY + b33vY) 

R4 • - (b41PY + b42uY + b43uY + b44wY) 

Substituting for a12, a13 and a14 equation (29a) becomes 

Pz + aupx + —^ Tx + —^- °x " Ri 

where: 

T = u/w and a = v/w 

(a) 

(b) 

(c) 

(d) 

(29) 

(30) 
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Taking the difference between the product of w with equation (29b) and u with 

equation (29b) and substituting for a33, a43, a42 and a44, the following result is 

obtained. 

/ V     Jiy2 \ 
W

2
TZ + Px(wa21 - ua41) + w2( X^ + -J -Xy(rJ 

(31) 
w2T7T 

X. rrY = wRo - uR* 

Similarly, taking the difference between the product of w with equation (29c) and 

v with equation (29d) and substituting for a33, a43, a42 and a4A, the following re- 

sult is obtained. 

w2az + Px(wa31 - va41) + w2 (x, + ^ff" + ^j^ 

+ -f^XIrx=wR3 -vR4 

The body boundary condition is ü = 0.   Since X = constant is the body, this 

boundary condition can be written as 

G = uXx + vXy + wXj = 0 

(32) 

or: 

TXI + crXy + Xj = 0 (33) 

Combining equations (30),   (31), and (32) and using equation (33), the equation 

for the characteristic slopes can be written in the form 

-auT .    / a2,T2 

*.-=5"*/^*g[1*|JBtf*<*xs] w w 
(34) 

where K is the slope of the characteristic reaching the wall from the flow field. 

The compatibility condition along this characteristic is: 

[ A - J3L {uX, • vv] (Pz -I *Py) 

2 ? 

+ IT&xTz + Xy°z> • *P (XXTX • Xy<xx) = f 
l M 

(35) 
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where: 

R = ( A - 
yr 

A,w 
(uX, + vXy) )*, 

+ ^^(wR, - uR4) + S3L (wR   _ uR ) 
At At 

The equation for the body can be written in the form: 

F = r -B(Y,Z) 

Thus the body boundary condition is: 

TFX + (xFy + F2 = 0 

This equation holds for all values of Z, thus: 

CTzFy + TZFX = - (FzZ + oFyz + TFxZ) = R 

Now using equation (10a), equation (36) becomes: 

F = r - B = (C£ - B) X 

Thus, differentiating equation (39): 

F„ = [(C£)X -BX]X + (C£ -B)XX 

Fy = [(C£)y-By]X + (C£ -B)Xy 

and, for X = 0: 

Fx = (C£ - B) Xx 

Fy   =    (Cj^            B)    Xy 

(36) 

(37) 

(38) 

(39) 

(a) 

(b) 

(a) 

(b) 

(40) 

(41) 

Using equations (38) and (41) in equation (35), the following result is obtained: 

R    yw2 f   R        , _ „     .1 

r^-^(TXx + crXy)l 
(42) 

This equation is integrated with the same scheme used for interior points with 

the X-derivatives, computed using three-point end differencing away from the 

body. 
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To compute the velocity components on the body, an intrinsic frame (I, J, K) 
m      mm       m A 

is used with velocity components (u, v, w).     The vector I is the unit normal to 

the body, with J and K defined as follows: 

(a) I = I,i + I2j + I3k 

J = (lxk)/|fx k| = Jti + J2j" + J3k 

K = fx K = Kti + K2 j" + K3k 

(b)        (43) 

(c) 

where i, j and k are defined in Figure 4.   The x and y momentum equations are 

used to compute v as follows.   Equations (29b) and (29c) are integrated using 

the MacCormack scheme to obtain u and v and then v is obtained from the 

equation 

v = ujt + vJ2 (44) 

From the integrated form of the energy equation, the w component of velocity 

can be obtained: 

4 2Ho-^i-v2 (45) 

where T is computed from P and S and the equation of state (19). The three Car- 

tesian velocity components are: 

u = vjj + wKt (a) 

v = vj2 + wK2 (b)        (46) 

w = vJ3 + wK3 (c) 
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SECTION VI 

TREATMENT OF SHOCKS 

In this section, the computation of grid points on the high pressure side of 

all shock waves and the detection of embedded shocks will be discussed.   In 

this area, we draw systematically from Moretti's extensive research on the 

treatment of shock waves (Reference 8 and 9). 

The bow shock, all wing-type shocks (i.e., embedded shocks which, in gen- 

eral, originate near the body and move toward the bow shock and are caused by 

canopies, wings and vertical tails, see Figure 11) and crossflow shocks in the 

flowfield are computed as discontinuities satisfying the Rankine-Hugoniot con- 

ditions.   The bow shock and wing-type shocks are defined in the mapped plane 

by r = c(0,3) and the crossflow shocks by 9 = h(r,d).   At a data plane Z0, all 

dependent variables are known and, in addition, the quantities c, ce, Cj, h, hr, 

hj are also known.   Using equations (16 to 18) C(Y,Z0), CY, Cz, H(X,Z0), Hx 

and Hz are computed for all the shocks in the flowfield.   At Z0 + AZ, the posi- 

tions of the shock points can be computed by using: 

C(Y,Z0 +AZ) = C(Y,ZU) + CZ(Y,Z0)AZ (a) 
(47) 

H(X,Z0 + AZ) = H(X,Z0)+HZ(X, Z0)AZ (b) 

Then CY(Y, Z0 + AZ) and HX(X,Z0+AZ) are computed using central differences. 

With these quantities and equations (16) c,   c$, h and hr can be computed at 

Z=Z0+AZ. 

After the first level of the MacCormack scheme, the predicted values of the 

dependent variables on the low pressure side of all shocks are computed (the 

variables on the low pressure side of the bow shock being the constant free 

stream values).   With the low pressure side of the shocks known, the high pres- 

sure side is computed by an iterative process. 
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A value of h s  orcj   is guessed, between the values corresponding to an 

infinitely weak shock and the value which gives a subsonic axial Mach number. 

Once this guess is made, the normal to the shock can be defined.   Let 

F= r-c(0, 3) 

or 

F=0-h(r,a) 

Then the normal to the shock I is given by: 

I = (Fxi + FJ + Fzk)/VF£ + FJ + F|   = I,i + I2j + I3k 

where: 

Fx = Frrx + Y(ßx + Fiix 

Fj-FrlV + F^ + F^, 

Fz = Frrz + Feez + Faa , 

With the normal to the shock defined, the Rankine-Hugoniot conditions can be 

applied.   Using the subscripts 1 for the low pressure side and 2 for the high 

pressure side, we have: 

\ " Vi • I (a) 

M„, • vn/Vyf7 (b) 

p2/p, = [Ml{(y+l)/2.]/[l+M2
H(y-l)/2.] (c) 

pj/p, = [(y+ i)Av-i)p2/p,-i.]/[(y+ D/(y-i)-p2/p,]   (d) 

T2/T! = [Ti(p2/pl)]/(p2/pl) (e) 

(48) 

VT  = V-, Vn   I (f) 
2 1 1 

where Mn and Vn are the Mach number and velocity normal to the shock and VT 

is the velocity tangent to the shock. 
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An intrinsic coordinate system is defined at the shock with the three direc- 
*     A       A m      —      —. * 

tions (I, J, K), coordinates (£, TJ, W) and velocities (u, v, w) such that I is normal 

to the shock and: 

K = (ix 10/1 ixk| = Kti + K2J + K3k 

A A A Ä A A 

J = ix K = Jti + J2j + J3k 

In the 4, w plane, the characteristic that intersects the shock from the high 

pressure side has a slope: 

(ü w + a /u2 + w2 - a2) 
du> (w2-aT (49) 

A point (*) in the Z0 data plane is where the characteristic originates.   The 

characteristic slope at the shock point is first evaluated and then the position 

of the (*) point is computed using the relations: 

u>* = -AZ/(K3 + XI3)     ' 

£* = Xw* 

** = xSH + S*Ii + "*Kt 

y* = ysH + z*h + W*K2 

(a) 

(b) 

(c) 

(d) 

(50) 

where the subscript SH refers to quantities at the shock at Z0 + AZ.   Depen- 

dent variables at the (*) point are obtained by linear interpolation.   A value of 

the pressure on the high pressure side of the shock is computed using the com- 

patibility equation along the characteristic: 

/3=yw2/[aVu2 + w2-a2 ] 

X = (uw + aVu2 + w2 -a2)/(w2-a2) 

R _ Kü - x w) (v P„ + yvj- (r v'O yv wn1 

aVu2 + w 2 - a2 

dr =Ww*-üSH/wSH 

PSH = P* + Rw* - ßdT 

P2 • e 
PSH 

(a) 

(b) 

(c) 

(d) 

(e) 

(0 

(51) 
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where ß, A, and R are averaged between the * point and the shock point.   The 

iteration is continued until this value of pressure agrees with that computed 

from the Rankine-Hugoniot conditions for some value of c j   or h 4   .    For weak 

shocks, this iteration may converge to a pressure ratio ft/p, < lj in these 

cases the value of C 4 or h i which gives P2/P1 = 1 is taken. 

Crossflow shock points at the body must satisfy the body boundary condition, 

that is, the velocity normal to the body on the high pressure side of the shock 

must vanish.   This implies that the shock normal, at the body, must be perpen- 

dicular to the body normal.   This condition gives a relationship between h 4  and 

hr at the body: 

hr= (FH -h4FB,)/Fr (52) 

where: 

FH " FBA + FBy0y + FBA 

Fr = FB*rx + FByry + FBzr, 

and FBx, FBy, FBz are x, y, z derivatives of FB = r - b(0,3) and r = b(0,a) de- 

fines the body. 

After the second level of the MacCormack scheme, the corrected, final values 

of the dependent variables on the low pressure side of the imbedded shocks, the 

values of Ca and hd computed after the first level, and the Rankine-Hugoniot 

conditions are used to compute the final values of the dependent variables on the 

high pressure side of the shocks. 

The first problem encountered when one treats imbedded shocks as discon- 

tinuities is their detection.   There have been a number of techniques proposed 

(see Reference 9).   One of the earliest procedures has been found to be well 

suited for the type of shocks encountered in this problem. 

Crossflow shocks and wing-type shocks are detected in very similar ways. 

For crossflow shocks, the pressure distribution is monitored in the Y-direction 

and, for wing-type shocks, the pressure distribution is monitored in the X-dl- 

rection.   At a data plane Z = ZQ, the maximum pressure gradient Px for 



L 

wing-type shocks and PY for crossflow shocks is located.   Then a third order 

polynomial is fit through the four mesh points adjacent to the maximum gra- 

dient.   This polynomial takes the form: 

X = a0P
3 + a,P2 + a2P + a3 > 

where 

X = X (for wing-type shocks) 

X = — Y (for crossflow shocks) 

and the coefficients a0, at, a2 and a3 are computed by matching the curve fit to 

the four mesh points.   The condition used to determine the origin of a shock is 

dx/dP = 0, which implies dP/dx —°°.   Applying this condition to equation (24) 

yields an equation for P, of the form: 

_ - at ± Va?- 3a0a? 
a0 

Whenya,2 — 3a0a2 = 0, this equation has one real root.   When this condition 

is satisfied, a shock is inserted in the flow field at Xj = a0Pf + atPf + a2Pf + a3. 

Crossflow shocks are assumed to originate on the body, so that the 

pressure distribution is monitored in the Y-direction on X = 0 (the body). 

Once a shock is found on the body, monitoring is begun at increasing values 

of X = constant. 

In general, it is not known at what value of Y the first shock point on a 

wing-type shock will be found, so that the maximum pressure gradient Px at 

all values of Y must be tested until the first shock point is detected.   Once a 

wing-type shock is detected, additional shock points are sought at the grid 

points adjacent to the end shock points. 
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SECTION VII 

STARTING SOLUTIONS 

During the course of this study, several techniques were used to "start" the 

solution to the Euler equations.   Early in the study, approximate Euler solu- 

tions for a circular cone at a small angle of attack (References 10 and 11) were 

employed to start the computation.   The geometry was then deformed continu- 

ously to the desired conical wing. 

Later in the study, linearized potential flow solutions for delta wings with 

subsonic leading edges were used and permitted the computation to start with 

the desired geometry.   In the marching technique, the geometry was held in- 

variant.   These linearized potential flow solutions are described in the follow- 

ing section. 

Another technique that was employed, for both conical and three dimensional 

wings, was to use an exact Euler solution to start the computation.   For these 

cases, the geometry would also be continuously deformed.   For example, a 

conical Euler solution would be used to start the computation for another coni- 

cal wing.   The geometry would start conically then be continuously deformed to 

another conical geometry. 

1.    LINEARIZED POTENTIAL FLOW THEORY 

Since the supersonic flowfield about thin wings is of primary interest, a 

starting solution more representative of this type of flowfield was sought.   As a 

first step in this direction, the linearized flow solution for the flow about thin 

elliptic cones with subsonic leading edge at zero angle of attack was used.   This 

solution can be easily found in Reference 8 for linearized boundary conditions 

applied on the plane Z = 0. 

The general solution for the entire Cartesian velocity field about the elliptic 

cone can be written in complex form as 
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r 
u=Re   {—-^[TtanÖ + F(Ö,K) -E(0,K)]| 

w= Re    |-m7[m^-T'! 

where F and E are incomplete elliptic integrals of the first and second kind. 

Also 

0 = sin ' [i^f 
where T is a complex variable defined by the transformations 

2e 
T=TT^ 

y + iz 
x + Vx2 - y2 - z2 

and m denotes the leading edge value of T. 

With these transformations, the entire flowfield about the elliptic cone can 

be defined up to the Mach cone where all disturbances vanish.   Special considera- 

tion must be given to these expressions for the elliptic integrals in the symmetry 

planes Z = 0 and y = 0 because one or the other of the incomplete elliptic inte- 

grals reduce to the complete integral. 

A computer subroutine was coded to compute this flowfield to be used as a 

starting solution for the nonlinear code.   Several problems arose in trying to 

implement the solutions because of the singularities that exist at the leading 

edge due to the linearized boundary conditions.   As a result, leading edge cor- 

rections had to be fitted to the linearized solution to obtain finite values of ve- 

locity and pressure at the leading edge (see Figure 12).   The resulting solution 

then had to be modified in order to satisfy the exact nonlinear boundary condi- 

tions.   The exact equation for the pressure also had to be used to be consistent 

with the nonlinear equations.   The subroutine was then made compatible with the 
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nonlinear code tor its starting solution.    The shock was initially defined as 

the free-stream Mach cone about the elliptic cone. 

In conjunction with the thickness solution, a lifting solution for a flat plate 

delta wing with subsonic leading edges can be found in Reference 12.   The gen- 

eral solution for the entire Cartesian velocity field from the body to the Mach 

cone can also be expressed in complex form as, 

) m' sino. 
u = Re 

v • Re 

w - Re 

i m_sinu  I    r    2 ,-1/2 
_}/3E(K)    j   {m     Ti} 

(mHöÖ) |(m2-r2)1/2) J (54) 

This solution in linear combination with the solution for the velocity field 

about elliptic cones was used to represent an initial starting solution for the 

flow about a lifting delta wing.   The Mach cone rotated at the angle of attack was 

used as an initial guess for the location and shape of the bow shock.   In addi- 

tion, leading edge corrections also were implemented to this solution to eliminate 

problems with the leading edge singularity associated with the linearized poten- 

tial flow solution.   To be consistent with Euler's equations, the exact expres- 

sion for the pressure coefficient was used and the entire initial incremental en- 

tropy field was set to zero. 

The useful aspect of employing a linearized starting solution is that lower 

free-stream Mach numbers and larger delta angles can be achieved which were 

not possible using the cone as a starting solution.   In addition, as mentioned 

earlier, the entire entropy field developed gradually from the irrotational 

starting solution.   This allowed for a better understanding of the development 

of the vortical singularities and their effect on the solution. 
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SECTION VIII 

SPECIAL TECHNIQUES FOR CONICAL FLOW 

1.    CROSSFLOW SHOCK SHAPE 

Several problems arose in the detection of crossflow shocks and in the 

transient shape of these shocks during the iterative marching technique used 

to obtain a conical solution to Euler's equations. 

Figure 13 shows a schematic of a typical supersonic crossflow region. 

Since a crossflow shock can be detected anywhere along the sonic line between 

the symmetry plane and supersonic crossflow region, a shape criterion for the 

crossflow shock had to be imposed to ensure a stable computation. 

The crossflow shock is located along the sonic line and its strength decays 

radially along this line.   As the shock becomes weak, its shape basically follows 

the shape of the sonic line.   The computational scheme assumes the shock is an 

M-grid line boundary (see Figure 14a).   If weak crossflow shock points are de- 

tected whose shape significantly differs from the shape of an original M-grid 

line developed from the mapping, the original near orthogonality of the two- 

dimensional mesh will be disturbed, leading to an unstable computation and 

spurious numerical results.   Thus, a shape criterion was imposed to eliminate 

this problem and retain a reasonable grid line arrangement.   Crossflow shock 

shapes as shown in Fig.  14b promote a more stable computation. 

During the iterative marching to a conical solution, certain transient and 

sometimes unstable phenomena occurred which were all associated with the 

vortical layer that builds upon the body surface.   It was observed that the cross- 

flow shock point on the body would become displaced relative to the field shock 

points, as demonstrated by Figure 15a.   Normally, the radial shock derivative 

at all field shock points is determined numerically using central difference 

formulae.   It was found that this procedure, when implemented early during 
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the convergence process, could lead to an instability in the shock shape as 

demonstrated by Figure 15b.   The field shock position would become unstable 

and travel into the supersonic region, become weak, and eventually fail to con- 

verge.   It was determined later in the study that this problem was most prob- 

ably caused by the buildup of a vortical layer on the body surface.   This vorti- 

cal layer cannot be resolved numerically without special consideration.   Thus, 

it was necessary during the transient, while the shock points were moving to a 

converged location, to detach the field shock point derivatives from the location 

of the body shock point.   An assumption on the direction of the shock normal in 

the cross sectional plane had to be prescribed.   The shock normal in this plane 

was assumed to be tangential to the local N-grid line direction. 

2.   VORTICAL LAYER 

Prior to convergence, certain problems arose in the pressure and crossflow 

Mach number distribution between the crossflow shock and symmetry plane. 

Severe oscillations developed in both pressure and crossflow Mach number in 

this region as soon as the crossflow shock became strong and approached con- 

vergence.   To examine the problem, a numerical scheme was devised to allow 

the insertion of more grid points in this region.   Two M-grid regions were as- 

sumed:   one being the region between the windward symmetry plane and the 

crossflow shock, and the other being the region between the crossflow shock and 

leeward symmetry plane.   Separating the grid into two regions allowed for dif- 

ferent grid spacing in the two regions in the computational space.    Thus, to in- 

vestigate the problem between the crossflow shock and leeward symmetry plane, 

more points were inserted in this region.    Figure 16 shows a typical distribution 

of pressure, crossflow Mach number, and entropy that would result just prior 

to convergence.   Inserting more points in this region permitted resolution of 

any steep gradients.   A large gradient in entropy was revealed.   Near the shock, 

the entropy corresponded to the entropy being developed by the shock, and at 

the symmetry plane the entropy was still negligible.   Thus, a wave in entropy- 

was slowly traveling towards the leeward symmetry plane.   The steep gradient 

in entropy was also causing the oscillations in both pressure and crossflow Mach 
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number in this region.   Since the body surface is a streamline, the entropy at 

the shock must propagate to the symmetry plane, thus constituting the vortical 

singularity.   The computation was allowed to proceed in the hope that the en- 

tropy would propagate to the symmetry plane, but the process turned out to be 

too slow in converging since the entropy propagates at the crossflow velocity and 

thus becomes an asymptotic process.   Thus, a new computational technique 

would be required to speed up this process,  allowing the vortical singularity 

to develop.   In addition, a new computational technique would be required to 

handle the vortical layer, and the discontinuity and large gradients in entropy 

that would develop between the body surface and the first N-grid line off the 

body. 

Figure 17 shows a basic sketch of the vortical singularities and the entropy 

field occurring with a crossflow shock.   The entropy on the surface of the body 

between the windward symmetry plane and low pressure side of the crossflow 

shock comes from the stagnation streamline which originates at the bow shock. 

The entropy on the body in Region II comes from the crossflow shock.   A strong 

vortical singularity is developed in the leeward symmetry plane on the body. 

Here, the body surface is a streamline and the entropy must be equal to that 

on the high pressure side of the crossflow shock.   At the first field point in the 

leeward symmetry plane, the entropy must be that corresponding to the entropy 

of the streamline coming from the bow shock.   At a high enough angle of attack, 

a discrete bow shock does not exist in the leeward symmetry plane, and thus 

the entropy is zero.   Hence, the vortical singularity corresponds to the jump 

in entropy on the body developed by the crossflow shock and the entropy, if any, 

developed across the leeward plane bow shock point. 

To resolve this singularity and to speed up the process of the entropy de- 

velopment on the leeward symmetry plane from the crossflow shock, a new com- 

putational technique was developed.   This scheme is only imposed when the 

crossflow shock attains maximum strength and is close to convergence.   The 

entropy on the body between the leeward symmetry plane and the crossflow 

shock is set equal to the entropy at the crossflow shock.   At the first N ring 
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off the body, outward difference numerical derivatives in the radial direction 

are used.   The entropy on the body is undisturbed by the first field ring since 

the coefficients of its normal derivatives are zero.   The entropy at the field 

ring is unaffected by the body entropy because of the windward differencing in 

the radial direction at this ring.   All other field points are still computed using 

central difference formulas. 

To eliminate the oscillations in pressure and cross flow developed as a re- 

sult of the steep entropy gradient between the shock and symmetry plane, a one- 

step numerical damping or artificial viscosity was imposed in this region. 

Some typical results are shown in Figure 18 for the leeward side of the body. 

As indicated by the figure, when this procedure was adopted the results im- 

proved markedly.   Both the pressure and crossflow are smooth and show no 

oscillations.   The entropy distribution shows a discrete jump, representing the 

vortical singularity, from the body surface to the first field ring.   In addition, 

a discrete jump in radial velocity also occurs at the vortical singularity. 
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SECTION IX 

GEOMETRY 

1.   ANALYTICAL SPANWISE CONICAL DEFINITION 

A geometry definition based on simple conical parameters was developed 

and was found to be very useful in defining both conical and three-dimensional 

wings.   The cross section was simply defined as the superposition of a span- 

wise thickness and camber distribution.   The cross section was restricted to 

spanwise elliptical thickness and circular arc camber.   In a subsequent section, 

a more flexible geometry package is described for general three-dimensional 

wings with chordwise definition. 

In this analytical representation of the wing geometry, the geometric pa- 

rameters are specified as parametric angles.   Thus, a wing cross section can 

be entirely specified by five angles:   <5F, 6E, 6T, 6TC, 6P,   The symbols ÖF, 6g 

and <5T represent planform angles defining the body lines of the delta wing, öp 

an angle controlling the centerline thickness variation, and 6TC the leading edge 

camber angle in the cross sectional plane (see Figure 19).     Cubic equations 

are used to curve fit the angles in the general form: 

6(z) = a(z - z0)3 + b(z - z0)2 + c(z - z0) + d 

The spatial location of the body lines can then be simply defined as: 

x = z tan(6(z)) 

The thickness of the wing was assumed elliptical but was allowed to have an 

inboard flat section.   The camber line, defined separately, was also allowed 

to have a flat inboard section with a circular arc camber line to the leading 

edge.   To define the maximum camber and twist of the cross section, a leading 

edge camber angle is specified (6TC).   The chickness and camber flats are de- 

fined separately and, thus, do not have to coincide.   The wing cross sectional 

geometry was then simply defined by adding and subtracting the thickness to 

the camber line. 
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All first derivatives of the surface could then be defined analytically through 

the surface normal vector.   The entire conical wing was then defined by three 

continuous wing sections.   The geometry definition was flexible enough to allow 

the initial section to begin as a circular cone.   The cone was then deformed con- 

tinuously through two wing sections.   The third section represented the in- 

variant conical portion of the wing.   The parametric definitions remained un- 

changed for all three wing sections, with only the coefficients of the cubic 

angle equations varying from one section to another. 

As an example, for a simple three-dimensional elliptical cross section wing, 

the surface normals would be defined from the parametric cross section equa- 

tion, 

y = Pt(z)[x.2,(z)-x2]1'2 

where Pt(z) is a cubic centerline thickness function and XT = ztanöT(z) where 

<5T is a cubic planform angle function in Z. The surface in three dimensions 

can then be defined simply as, 

F(x, y, z) = y-f(x, z) 

and the surface normal vector as, 

Figure 20a shows an example of the body line variation to achieve a cambered 

wing cross section.   Figure 20b shows an example of the cross sectional de- 

formation of a circular cone to an elliptical cross section.   Figure 20c further 

shows the deformation from an elliptical to a cambered cross section. 

It was a trivial task later in the study to add additional sections to the wing. 

The present capability of the geometry allows for variation from a circular 

cone to a conical wing, then an additional variation to a second conical wing. 
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A wing-body capability was then added to the second conical wing section. 

This was achieved by allowing for a cubic body section that follows a body line. 

Thus, the last section of the wing can be a conical wing or wing-body.    Figure 

21 shows a sketch of the parameters that control the body development.   Thus, 

this geometry package can be used for conical wings, conical wing-bodies, 

and, if done properly, for an entire three-dimensional wing-body vehicle. 

Figure 22 shows an example of the usage of this capability for computing a 

conical wing-body solution commencing with a conical wing cross section. 

2.   SURFACE PATCH GEOMETRY 

The analytical geometry programs described in the previous section were 

an advantageous device for computing results for a variety of wing shapes 

where the geometrical parameters could be computed exactly and without nu- 

merical errors.   Unfortunately, not all wing shapes fall into the category of 

these programs, and a more flexible geometry program was desirable. 

A geometry program was desired which could analytically simulate very 

complex wing shapes with a minimum of errors.   After some investigation, 

the bi-cubic surface patch formulation, developed in Reference 13 and put to 

practical use in describing aerodynamic vehicles in Reference 10, was found 

to be an adequate procedure.   The equation for the Cartesian coordinates of a 

surface bi-cubic patch can be written, in terms of parametric variables u & w 

(using matrix notation) as (see Figure 23): 

x= [u3 u^ u 1] [SJ 

y=[u3 uz u 1] [S,] 

z=[u3 u2 u 11 [SJ 

w 
w2 

w 
1 

w3' 
w2 

w 

_1 J 

w3 

w2 

w 
1 

(a) 

(b) (55) 

(c) 
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where 

S^MBtM', i = x, y, z 

or, in vector notation, 

V = [xyz]= USW4 

The boundary condition matrix B is a 4x4 matrix containing the four corner 

point spatial and derivative information.   The matrix M is a constant matrix 

derived from the desired blending functions.   The computer code described in 

Reference 10 uses the patch theory developed in Reference 12 for the geometry 

of complex aerodynamic vehicles.   The code uses the Harris geometry input 

data format that is commonly used by aerodynamicists.   The wing sections are 

defined chordwise for each span location.   Spline fitting provides the necessary 

information for developing the boundary matrices B for each patch. 

The computer code described in Reference 10 was extensively modified and 

incorporated into the finite difference code.   The finite difference procedure re- 

quires the surface coordinate y and surface normal vector components at a given 

axial location z and span location x of the wing.   Thus, with two of the Cartesian 

coordinates specified, equations (55a) and (55c) yield two simultaneous bi- 

cubic equations for u and w that must be solved iteratively.   The solution is 

accomplished quickly by a Newton iterative method for two simultaneous equa- 

tions and an error extrapolation scheme. 

Thus, if 

F(x, u, w) = x-f (u, w) 

G(u, w)= z-g(u, w) 

and (56) 

u, +1 = Uj + 6 
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where 

/Ft      FWA feu,      FA 
VGt     Gwl/ 6-\Ga     Gi/ 

"         8(F,G)t       ' a(F,G)i 
9(u,w) 8(u, w) 

and ut, wt are an initial guess or subsequent iterations until a convergent 

solution has been attained. 

Determining u and w explicitly defines the surface coordinates y from equa- 

tion (55). The surface normals at the point are then determined by the cross 

product of the two tangent vectors given by 

and 

where 

Ut" l_8u'   9u'  duj 

-      [te     8v.      8zl 
4    l_8w'  8w'    8wJ 

N = UtXWt 

(57) 

By.   i£ 
S /   8u     8u   \      8(y, z) 

Hi" 
8y_     8z 
8w    8w 

8(u, w) 

N = 
8<z» x) 

"    8(u,w) 

8(x, y) 
W»    8(u, w) 

In terms of practical usage, Figure 24 shows an example of a delta wing 

modeled using bi-cubic surface patches.   Each patch equation requires a 

(4x4x3) matrix of boundary condition information.   The core requirements 

necessary to store all the patch matrices are beyond practicality.   Thus, the 

patch matrices are written on an external device and only local blocks of patch 

matrices are stored in the vicinity of the axial station being currently computed. 
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SECTION X 

DISCUSSION OF RESULTS 

1. CONVERGENCE 

The axial variation of surface pressure, in the symmetry plane and at the 

wing tip, is shown in Figure 25-, the geometry is a 6:1 elliptic cone, and the 

free stream conditions are M„ = 1.97, and a =0.   The iteration was started at 

Z = 0.1 with a circular cone solution of half angle 18.39°.   The geometrical de- 

formation expands and recompresses the flowfield between Z = 0.1 and Z = 1.0 

and the geometry becomes conical at Z = 1.2.   The symmetry plane and tip pres- 

sures are both converged at Z = 4.    Figure 25 shows that these values continue to 

remain invariant.   At zero angle of attack, the two pressure levels are a good 

indication of the convergence of the flowfield on the body.    For these results, a 

20 x 25 radial by circumferential grid was used.    Figure 26 is a comparison of 

the computed spanwise pressure distribution with the experimental data of Jor- 

gensen,  Reference 7.   In addition, the second order result of Van Dyke, Refer- 

ence 15, is also shown. 

At angles of attack high enough to produce a crossflow shock, the shock 

pressure jump and position were studied to determine convergence.    Figure 

27a shows the axial distribution of the surface pressure in the windward and 

leeward symmetry planes and the high and low pressure side of the crossflow 

shock.   The configuration was the same 6:1 ellipse and the free stream condi- 

tions were Moo = 1. 97 and a = 10°.    Figure 27a shows all these pressure levels to 

be converged after Z = 3.0. Figure 27b shows the cross sectional surface pres- 

sure distribution and geometry.     For computations at angle of attack, 

a 25x 35 grid was generally used.   The results of the computations at the higher 

angles of attack (a 2 10°) exhibited pressure oscillations on the high-pressure 

side of the crossflow shock, as shown in Figure 27b and later in this section. 

These oscillations seem to be generated at the vortical singularity and move 
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toward the crossflow shock as the computation is continued.   The amount of 

difficulty encountered in the computation seems to be directly related to the 

strength of the crossflow shock.   The resolution of this difficulty will be demon- 

strated in subsequent results. 

Figure 28 shows the plan view of the wing and the position of the cross- 

flow shock on the body which was first detected at Z = 0.75.   The shock position 

approaches a conical ray at Z = 2.3 and thereafter remains on that ray. 

2.   EFFECT OF SPANWISE CAMBER 

As a preliminary investigation of the possible effects of conical camber, 

the flowfields about several wings with various forms of circular arc spanwise 

camber were computed.   In Figure 29, the computed spanwise pressure distribu- 

tions are presented for a symmetrical elliptical wing, a wing with half semi- 

span circular arc camber, and a wing with circular arc camber over its entire 

semi-span at zero angle of attack and Mx, = 2.0.   Both camber lines terminate 

with a 20° leading edge camber angle.   The conical camber effectively results in 

leading edge droop and thus reduces the effective angle of attack of the wing, 

resulting in a corresponding loss in lift.   The pressure distribution of Figure 29 

confirms this expected result with higher pressures being computed on the upper 

surface.   The pressure distributions also indicate a slight movement of the 

stagnation point to the upper surface. 

Figure 30 shows the computed pressure distributions for a wing with half 

semi-span circular arc camber and leading edge camber angles of 20° and 30°. 

Figure 31 shows the corresponding crossflow Mach number distributions.   At 

20° camber, a small region of supercritical flow is developed on the lower sur- 

face of the wing in the vicinity of the leading edge.   At 30° camber, this region 

becomes more extensive, reaching a crossflow Mach number of 1.4 and causing 

a crossflow shock to form on the lower surface at a span location 10% inboard 

from the wing leading edge.   Thits type of behavior brought on by rather large 

camber angles can cause the boundary layer to separate on the lower surface 

L 
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of the wing at small angles of attack.    Leading edge separation on the lower 

surface was detected experimentally in Reference 15. 

Figures 32 and 33 show the effect of full semi-span circular arc camber 

on the spanwise pressure distribution for two wings with different cross-sec- 

tional thicknesses.    Figure 32 shows a 14:1 elliptical wing at a = 3°.   The sym- 

metrical wing develops a supercritical region on the upper surface and forms 

a small crossflow shock at the end of a rather steep compression.   The effect of 

cambering the wing is to completely eliminate the suction peak and correspond- 

ing supercritical region in the vicinity of the leading edge.   Figure 33 shows a 

similar result for an 18:1 elliptical wing at a = 2.5°.   The symmetrical wing in 

this case develops a somewhat stronger shock, which is located closer to the 

leading edge.   Cambering this wing also completely eliminates the supercritical 

region near the leading edge.   In both cases, a loss in lift accompanies the 

camber effect.   An improvement in the drag characteristics might be expected as 

a result of a thrust acting on the forward-facing area of the wing, produced by 

the leading edge droop.   In any event, an apparent delay in the formation of the 

crossflow shock is apparent. 

3.    COMPARISON WITH LINEARIZED POTENTIAL FLOW THEORY 

The failure of linearized theory in the vicinity of the leading edge of wings 

is well known.   Figures 34 and 35 show a comparison between the nonlinear com- 

puted results and the results of the linearized panel method of Reference 16. 

Overall good correlation is achieved at these low angles of attack except in the 

vicinity of the leading edge.   In Figure 34 the linearized results depart sharply 

from the nonlinear at approximately 95% span.   The symmetry plane pressures 

correlate reasonably well and the loading or Cp is in excellent agreement over 

most of the wing.   In Figure 35 the agreement in pressures on the upper surface 

is not as good as for the thinner wing. 

Figures 36 and 37 show the same conditions as Figures 34 and 35 but with 

spanwise camber.   Linearized theory predicts the reduction of the upper surface 

pressures and is in excellent agreement with the nonlinear results.   Some 
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discrepancy in the lower surface pressure exists.   Figure 38 shows a compari- 

son of the two methods at 10" angle of attack tor a symmetrical elliptic wing. 

Linearized theory breaks down completely in the region of supercritical flow. 

The upper surface or leeward pressures are in fair agreement between the 

shock and symmetry plane.   The pressures on the windward side of the wing 

are undcrprcdicted by the linearized method.   The loading between the shock and 

the symmetry plane is also somewhat underpredicted. 

From these comparisons it can be seen that the breakdown of linearized 

methods is primarily localized to the supercritical regions of these flows.    Lin- 

earized methods cannot predict the existence of a crossflow shock because this 

effect is inherently nonlinear.    Nonlinear prediction techniques can be used to 

evaluate the beneficial effects of aerodynamic devices like spanwise camber. 

The lengthy process employed with the cone as a starting solution had the 

geometry first deform to the desired conical cross section.    The flowfield then 

first converges on the body solution and eventually on the entire flow field.   The 

linearized solution allows starting with the desired conical cross section with 

no geometrical deformation.   The bow shock converges first and then the entire 

flowfield. 

The useful aspect of employing a linearized starting solution is that lower 

free stream Mach numbers and larger delta angles can be achieved than were 

possible using the cone as a starting solution.   Most of the following results 

were obtained using a modified linearized potential flow solution. 

Figure 39 shows the converged shock shape, in comparison with the Mach 

cone, for a 30° delta wing at Mx = 1. 8, a/b = 22.05.   The computed bow shock 

shows the largest difference at the leading edge of the wing where the Mach cone 

is close to the tip.    Figure 40 shows the convergence history of the bow shock and 

body pressures for a 20° delta at M„ = 2. 0.   The wing bow shock converges quite 

rapidly and the body pressure follows. 
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Using a linearized starting solution therefore seems plausible, and shows 

promise for the computation of flow about wings.   The next step is to generate 

solutions at angle of attack using a similar linearized starting solution. 

Figure 41a shows a previous case recomputed using a modified linearized 

potential flow starting solution and previously outlined techniques to resolve 

the vortical layer for the 6:1 elliptic cone at M„ = 1.97, a =10°.   The computed 

pressure distribution, and wing cross section are shown.   Figure 41b shows the 

corresponding crossflow Mach number distribution.   Figure 41c shows the com- 

puted crossflow streamline pattern, along with the sonic line and crossflow and 

bow shock locations. 

Thus far, only delta wings with subsonic leading edges have been shown. 

Figure 42 shows the pressure distributions for a 20° delta wing with elliptical 

cross section (a/b= 14) at a = 10° and M, = 2., 3., 4. and 6.   The four Mach 

numbers correspond to a subsonic leading edge, near-sonic or slightly super- 

sonic, and supersonic leading edges, respectively.   With increasing Mach num- 

ber, the crossflow shock moves inboard toward the symmetry plane.   As the 

leading edge becomes supersonic, the windward surface compression gradient 

becomes increasingly steep.. 

Figure 43 shows the crossflow Mach number distribution for the same 

cases.   Surprisingly, the lowest Mach number shows the largest crossflow Mach 

number in the vicinity of the leading edge.   The crossflow stagnation point moves 

closer to the leading edge with increasing Mach number, causing less of an ex- 

pansion to occur around the leading edge.   Hence, the lower crossflow Mach 

number accompanies increasing free stream Mach number.   Figure 44 shows 

the shock patterns for these Mach numbers.   At Mach 2, a portion of the leeward 

bow shock does not show a discrete jump in pressure.   With increasing Mach 

number, the bow shock differs significantly from the Mach wave, especially in 

the vicinity of the leading edge. 

The Mach 2 solution was generated using a linearized potential flow start- 

ing solution and the rotated Mach wave as an initial guess for the bow shock 

shape.   The Mach 3 solution was generated using the Mach 2 Euler solution as 
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an initial guess for the flow directions and the bow and crossflow shock shapes. 

The entire flowfield was scaled to the Mach 3 enthalpy.   The other solutions 

were started in a similar fashion, using the Mach 3 flowfield.   Figure 45 shows 

the crossflow streamline patterns for these Mach numbers.   Clearly, the flow 

angularity around the leading edge in the crossflow plane is greatest for the 

Mach 2 solution. 

Figure 46a shows the computed results at Mach 2 and a =5" for three 

planform angles, 15°, 20° and, 30°.   Increasing the planform angle reduces the 

shock in this case to a compression.   In general, for identical flow conditions 

and similar geometry, increasing the planform angle will reduce the strength 

of the shock.    Figure 46b shows the computed crossflow Mach number distribu- 

tions.   The 30° planform angle indicates a supercritical region without a distinct 

crossflow shock. 

4.   COMPARISON WITH NONLINEAR POTENTIAL FLOW SOLUTIONS 

A new procedure was recently developed at Grumman to compute conical 

supersonic flows using the complete nonlinear potential flow equation.   The 

method was developed by Grossman (Reference 17).   This procedure uses a 

conical relaxation technique tc obtain a solution of the irrotational Euler equa- 

tions.   With the assumptions of irrotationality, vortical singularities and cross- 

flow layers do not occur or present any problems in obtaining converged solu- 

tions.   Hence, some of the results of the conical relaxation method were com- 

pared to the solutions obtained by integrating the rotational Euler equations. 

Figures 47 through 51 show some of the surface pressure distribution 

comparisons for several delta wings with elliptical cross sections at various 

angles of attack and Mach numbers.   Figure 47 shows the results for a Mach 

1. 97, 6:1 ellipse at a = 10°.   The conical relaxation method captures the shocks 

and the crossflow shock is usually smeared over two or three grid points.   The 

comparison is quite good for both the location and pressure jump across the 

shock.   The conical relaxation method predicts somewhat lower pressures on 

the expansion side of the leading edge as compared to the Euler solution.   These 

80 



(a) M   -2.0 (b)  M    -3.0 

VORTICAL 
"LIFT-OFF" 

(e) M„-4.0 (d) M.,-6.0 

R80-1248-039W 

Figure 45  Crossf low Streamline Pattern! for M«, = 2.0, 3.0, 4.0 and 6.0 

81 



r 
-0.30 

-0.20 

-0.10 

CP 0" 

0.20 

nCF 

R801248-040W 

_0 20-    lb) CROSSFLOWMACH NUMBER DISTRIBUTION 

Figure 46 Computed Results for Three Planform Angles at Mw = 2.0, a • 56 

82 



__ .-      __ 

PLANFORM SIDE 

X/X LE 

0.20 + 

X/X LE 

Figure 47 Comparison of Nonlinear Theoriet for 6:1 Ellipse, M,,,, • 1.97, a * 10 

83 



-0.40  T 

-0.30 

-0.20 

-0.10 

(I Q-_Q Q- 

0  

0.10 

0.20 

0.30 + 

CD - -0.357 
KLIM 

6  = 20°, t, = 1.5° 

O     PRESENT METHOD 
-      NONLINEAR POTENTIAL 

GROSSMAN (REF. 3) 

_&_9- 

02 0.4 

x/x 
0.6 0.8 

LE 

o—e—e- •©-—o—is-—©_ 

-1.0 

0.20  + 

-0.20 

R80-1248-042W 

Figure 48 Comparhon of Nonlinear Theorist for 14:1 Ellipse, MM » 2.0, 
a« 5° 

84 



"" 

-0.40 • 

-0.30 

-0.20 

-0.10 

CD        • -0.357 
*UM 

PRESENT METHOD 

NONLINEAR POTENTIAL 
GROSSMAN (REF. 3) 

0.10 

0.20- 

0.30 I 

0.20 

-0.20 + 

K80-1 248-04 3W 

Figure 49   Comparison of Nonlinear Theorie* for 14:1 Ellipse, 
M    - 2.0, a -10° 

85 



r mmmm. 

-0.20 

-0.10 •• 0/ 
o / 

>3   ^-y 

.qq.i flg^ 

O -»  -9    O 

0.2 

a-ü--?--- 

- +-- 
0.4 0.6 

X/X 

0.10 
*—o- 

0.20 

0.30 r 

0.20 

LE 

A -a.—o-_. e—e-- 

9 • 30:, ft - 2C 

PRESENT METHOD 
NONLINEAR POTENTIAL 
GROSSMAN (REE. 3) 

-0.20 + 

0—   —- 

0.8 1.0 

R80-1248-0A4W 

Figure 50   Comparison of Nonlinear Theories for 30   Planform Angle, 
M_ = 2.0, a = 5° 

86 



^» 

AO-A103 HVt        6RUMAN AEROSPACE COKP  BETHPAGE NY RESEARCH DEPT F/G 1/3 
ANALYSIS AND DESIGN OF SUPERSONIC AIRCRAFT BASED ON INVISCID NO—ETC(U) 
OCT 80  M J SICLARI» F MARCONI F33615-77-C-3126 

lyKCASW^IEO  *F-*»3-PT-l AFWAL-TR-S0-3110-PT~1       NL 

* 







F 
\ 

_ _. _,  .... 
~ 

-.30 r 

-.20 

.10 

"P   0 

.10 

.20 

6 -20°, 8 -1.5° 

a/b~ 14 

—— NONLINEAR POTENTIAL (REF. 11 

OOO EULER EQS./SHOCK FITTING 

o     o/ o    o    oooooo0 

nnn^nnnnoni) 

11.0 

20 40 

X/X 

60 80 

LE 

OOP 

.30 L 

P.80-1248-045W 

Figure 51 Comparison of Nonlinear Theories for 14:1 Ellipse, Mx • 3.0, a = 10° 

87 

    . ...         - 



lower pressures result in somewhat higher crossflow Mach numbers in the 

vicinity of the leading edge.   A slight discrepancy in the leeward symmetry 

plane pressure is also apparent, while the windward pressure distribution is in 

excellent agreement. 

Figure 48 shows a comparison for a much thinner ellipse (a/b~ 14) at 

Mach 2, Q =5°.   The entire windward and the leeward portion of the pressure 

distribution between the crossflow shock and symmetry plane are in excellent 

agreement.   The conical relaxation predicts a higher crossflow Mach number 

and an expansion pressure "spike" around the leading edge.   The locations of 

the crossflow shock exhibit only fair agreement.   Figure 49 shows th<   :?ame 

wing at a = 10°.    Figure 50 shows an ellipse at a planform angle of 30  and 

M0O = 20, Q =5°.   Excellent agreement is achieved, with the potential flow solu- 

tion indicating a weak crossflow shock. 

Since the conical relaxation method is irrotational, a higher Mach number 

comparison was made to determine if any entropy-related discrepancies would 

occur.   Figure51 shows the comparison for thedeltawing of Figure 49 butat Mach 

3, a = 10°.   The figure exhibits the same trends as the previous comparison with 

no large discrepancies occurring at the higher Mach number.   Figures 47 to 

50 correspond to subsonic leading edges, Figure 51 corresponds to a slightly 

supersonic leading edge. 

The relaxation method predicts somewhat higher Mach numbers and lower 

expansion pressures in the supersonic crossflow region, but the overall agree- 

ment in pressure is excellent.   The conical relaxation method adequately cap- 

tures the shocks and exhibits all the major nonlinear characteristics of the 

flow.   The relaxation method requires a finer mesh (60x60) in comparison to 

the Euler solutions (50x 35), but does not require shock fitting. 

5.   OTHER CONICAL SHAPES 

a.   Cones at High Incidence 

Some examples of the flow generated by circular cones at high incidence 

were computed to determine if significant lift-off of the vortical singularity 
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could be achieved at low supersonic Mach numbers.   Figure 52 shows the cross- 

flow streamline pattern computed for a 5° cone semi-apex angle at M„ = 2.0, 

Q = 10°.   The streamlines clearly depict the lift-off of the vortical singularity. 

The circular cone streamline pattern is distinct from the elliptic cone in that 

only one nodal singularity occurs in the leeward symmetry plane.   The stagna- 

tion streamline wetting the body lies in the windward symmetry plane.   Hence, 

the body windward symmetry plane point is the saddle point.   Numerical diffi- 

culties were not encountered in computing this case because of the small cone 

angle.   A supersonic crossflow region does not occur and thus the absence of a 

crossflow shock.   The bow shock is weak and thus the flow is not far from ir- 

rotational.   Figure 53 shows the result for a 12.5° cone at M0O= 1.8, a =25°. 

This cone was computed in an attempt to achieve vortical lift-off with a cross- 

flow shock at a lower Mach number.   The streamlines exhibit the normal coales- 

cent behavior at the leeward vortical singularity that is typical of incipient 

lift-off.   Lift-off was not achieved at the angle of attack corresponding to twice 

the cone angle.   The crossflow shock exhibits large curvature in its radial 

shape.   This may be an extreme case of the vortical and crossflow layer prob- 

lems mentioned earlier.   For circular cones, the radial density of streamlines 

is greater in the vicinity of the surface, thus indicating larger gradients in 

entropy and other flow variables.   It was necessary to use 40 radial grid points 

to have enough resolution to fit the crossflow shock. 

b.   Wing-Body Effect 

To determine the interference effect of a conical body on the wing flowfield, 

two conical wing-body geometries were computed.   Both bodies were cubically 

faired to the wing at a specified conical location (see Figure 54).   Both wing-body 

geometries were computed using a converged Euler solution for the wing as the 

initial starting solution.   The geometry was then deformed continuously until the 

specified conical wing-body geometry was achieved, at which point in the march- 

ing technique, the wing-body geometry was held invariant and conical until con- 

vergence was achieved.   Figures 55 through 57 show the results for a very 
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Figure 52 Crossflow Streamline Pattern for 5° Semi-apex Angle 

Cone at M^» 2.0, a = 10° 
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Figure S3 Crossflow Streamline Pattern for 12.5° Semi-apex 

Angle Cone MM = 1.8, a • 25° 
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Figure 54 Conical Wing-Body Geometry 
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blended wing-body cross section where the body was faired to the wing at a 

position (denoted by 6E) midway between the wing leading edge and the symmetry 

plane.   The body symmetry plane angle was 4. 5° (öB) and the extended center- 

line angle of the wing was 1. 5° (öw).    Figure 55 shows the resulting pressure 

distribution and crossflow shock shape in comparison with the converged wing 

solution that was used to start the calculation.   The presence of the faired body 

pushes the location of the crossflow shock outboard toward the leading edge. 

The crossflow shock thus reacts earlier to the presence of the low values of 

crossflow that occur in the leeward shoulder region or wing-body juncture. 

The presence of the body increases the windward pressures but also somewhat 

increases the leeward pressures between the shock and symmetry plane.   The 

outboard movement of the shock reduces the lift in the leeward expansion re- 

gion.   The crossflow streamline pattern changes somewhat in that the leeward 

streamlines appear to coalesce tangentially to the body at the vortical singular- 

ity, whereas the wing alone appeared to coalesce normal to the body. 

Figures 58 through 60 show the computed results for a more abrupt (not 

so blended) wing-body combination.   The body was faired to the wing at a 5° 

angle (6E), with a body centerline angle of 5° (6B) and the wing thickness angle 

remaining at 1.5°.   The same general trends apply to these results except for 

one interesting aspect.   The crossflow streamline pattern (Figure 60) shows 

that the windward nodal or vortical singularity has moved off the symmetry 

plane and occurs at the wing body juncture.   The windward symmetry plane 

must remain a crossflow stagnation point, but becomes a saddle point instead of 

a nodal singularity.   The crossflow Mach number distribution confirms the 

streamline pattern in that four instead of three crossflow stagnation points 

occur for this geometry.   The leeward vortical singularity remains intact, and 

once again the streamlines appear to converge tangentially.   The leeward 

streamlines thus locally behave in a similar fashion to the leeward streamlines 

on a circular cone at moderate incidence.   Similar behavior of the leeward nodal 

singularity for conical wing-body configurations has been observed in the non- 

linear potential flow solutions, using the methods developed in Reference 17. 
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It must be mentioned that the conformal mapping clusters points around 

the leading edge of the wing.   Hence, minimal resolution was obtained in the 

wing-body juncture area with 50 circumferential points. 

6.   THREE-DIMENSIONAL WINGS 

Figure 61 shows an isometric view of the pressure distributions com- 

puted for a fully three-dimensional wing, along with some representative span- 

wise sections using a modified NASA/Craidon geometry program (Reference 

10).   The wing begins with a conical section to Z =30.   The starting solution used 

was the converged Euler solution at Z =30 and was shown in Figure 41.   The 

thickness was tapered parabolically and the camber was varied from Z = 30 to 

Z = 150, resulting in a very thin cambered cross section at the trailing edge. 

Figure 62 shows an overlay of the same representative nondimensional 

pressure distributions and cross sections.   The longitudinal thickness variation 

expands the upper and lower surface pressures.   The pressures in the vicinity 

of the leading edge also expand.   At the thinnest section, the pressure begins 

to approach limiting pressure (Cp = - . 367 at M, = 1.97).   Figure 63 demonstrates 

the development of the crossflow Mach number in the vicinity of leading edge 

for two of the thinner cross sections.   At Z • 144. 5, which is near the trailing 

edge of the wing, the crossflow approaches a Mach number of 7.   Certainly, 

this extreme expansion around the leading edge would lead to boundary layer 

separation. 
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FiQure 61  Pretwre Distribution Computed for Fully Three-Dimensional 
Wing, M,«-1.97, a-10° 
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SECTION XI 

CONCLUSIONS 

It is obvious from the results presented here that there are important 

nonlinear aspects of supersonic flow over wings.    The results generated 

during the course of this work prove that the numerical procedures used 

here can be successful in predicting these nonlinear flowfields.   There- 

fore the code which has been developed can be a valuable aid in the design 

of supersonic wings and wing/body combinations. 

The computational time (code running time) required to generate 

these flowfields seems to make the code a difficult design tool to use. 

From the results generated thus far, it seems that a minimum of about one 

hour C. P. U. time is required to predict the flowfield about a typical 

supersonic wing. 

This number is unacceptable if the design process is to cycle through 

many wings to achieve certain design goals.   A significant reduction of 

this running time will require significant changes in the computational 

technique used in this work. 

During the course of this work an alternative approach has been con- 

sidered.   Specifically, the wing designer would specify the design goals 

and a computational procedure would develop a wing geometry to meet 

these goals.   Computational procedures which solve this inverse problem 

have been reported quite extensively over the past few years.   Most of 

these schemes involve iterating the wing geometry, for example, to achieve 

certain design goals.    This procedure would necessarily involve a solution 

to the direct problem which, in this case, would be unacceptable because 

of the lengthy computational times involved in the direct problem. 

For the simplest of the inverse problems (i.e. specify the surface 

pressure distribution and generate a wing geometry), a scheme has been 

studied during the course of this work which could have the same running 

time as the direct problem (1 hr. C.P.U.).   It would involve inverting 

104 



imWWf^^^^H ~~ 1 
the surface pressure equation (equation 42) to compute the surface geom- 

etry which corresponds to a given pressure distribution.    This is a direct 

scheme for computing the inverse (i.e. design) problem and therefore the 

computational time would be reduced significantly over an iterative tech-' 

nique. 
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APPENDIX - COEFFICIENTS OF TRANSFORMED EULER EQUATIONS 

A1=w2-YT=w2-a2 

A2 = ez + (0xu + eyv)w/A1 

A3=0z + 0xu/w + 0yv/w 

A4 = (exu + eyv)/A1 

A5=6Z + (rxii + ryv)w/A! 

A 6 = rz + rx u/w + ry v/w 

A7 = (rxu+ryv)/A1 

aj^Xj+XjAs+XgAj 

a12=X]l'yw/A1 

a,3 = Xyrw/A1 

a14 = -T(XrA7+X9A4) 

b12 = rwYx/A1 

b13 = YwYy/A1 

b14 = -')'(YrA7 + Y<>A4) 

a21=XxT/w 

a22=Xi+XrA6+X#A3 
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Figure 62  Pressure Distributions and Crossflow Shocks at Various Stations 
of Fully 3D Wing, M^ • 1.97, a = 10° 
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