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I. INTRODUCTION

This Quarterly Technical Report, Number 5, describes aspects

of our work performed under Contract No. F08606-75-C-0032 during

the first quarter of 1976. The previous reports in this series

dealt largely with work quite closely related to the development,

maintenance, and operation of the ARPANET, e.g., the IMPs and

TIPs of the ARPANET and the Satellite IMPs and PLIs connected

to the ARPANET. However, beginning with this quarter, our work

with the ARPANET has been largely funded under a contract from

the Defense Communications Agency and our work with Satellite

IMPs, PLIs, etc. has been supported under new contracts from

ARPA which will be reported elsewhere. The only significant body

of work still funded under this contract is a study into the

feasibility of using the Pluribus computer as the basis of a large,

secure message-switching system. The remainder of this document

describes our Pluribus message switch work.

-- ' . r . . .. .. .. ...... . , . .. -;'  ,1
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2. PLURIBUS MESSAGE SWITCH STUDY

The message handling systems which have been developed and

used within the ARPANET have spurred widespread interest. We

are studying extensions of this technology, contemplating a

system which will provide a message handling service of large

capacity and high reliability while meeting stringent security

requirements. Our task is to explore the suitability of the

Pluribus computer for this application. This interim report

on our work will be followed by a comprehensive final report

to appear in our next Quarterly Technical Report.

Message switching, not inherently a difficult task, becomes

difficult when a large number of messages must be processed in

an environment requiring high reliability and complex and

stringent rules regarding who should and should not have access

to each message. A secure system requires means for guaran-

teeing not only that messages are not misdirected to improper

recipients but further that there is no method by which an

individual can obtain access to messages without authorization.

To guarantee the integrity of both the operation and the security

of a message switching system requires a highly reliable system

with good fault tolerance. Thus for a large message switch of

the kind contemplated, the hardware and operating system

together must:

Be able to support a high volume of traffic, with

provision for expansion.

* Be highly reliable and highly available.

Assure against release of information to unauthorized

recipients.

2
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2.1 Application of the Pluribus to Message Switching

The Pluribus multiprocessor, developed at BBN under ARPA

support for the ARPANET, has many characteristics which make

it attractive as a machine for the message switch. In this

study, we are considering how it handles, or can be made to

handle, the various problems presented by this application.

This will, of course, involve special software, although a

substantial part of the reliability/availability software which

already exists may be used. Also, some special hardware for

helping with the security problems will likely be required.

However, it seems possible to capitalize on the multi-resource

nature of the Pluribus in coping with these problems and

thereby to minimize the amount of new hardware work required.

The structure of the Pluribus has been described in

previous Quarterly Technical Reports, and is further described

in References 1 to 5. With the structure of the Pluribus in

mind, we turn to consideration of how the Pluribus meets the

needs of a large message switch.

The ability to handle a high volume of messages is a very

important requirement of the message switch. A prototype

installation which is being used as the basis for estimates

requires on the order of 15,000 messages to be processed

daily for about 2000 users. We estimate that the present TENEX

system operated in a dedicated fashion could handle perhaps

60 such users. This is not surprising since the TENEX system was

designed to provide efficient service of a very different type.

The Pluribus, on the other hand, seems quite well suited to

providing the required processing bandwidth. It was designed

to be able to process, in an economical fashion, large numbers

3
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of small tasks which could be executed in parallel. Just as in

packet switching, the task of message processing has a large

element of inherent and obvious parallelism stemming from the

independence of the individual messages. The Pluribus was

designed to gain speed by taking advantage of such parallelism.

Another characteristic of many jobs, and message processing

is no exception, is that the capacities required inevitably change

with time -- usually by increasing. The modularity of the Pluribus

hardware structure, plus the approach we have taken in using the

processors as general purpose workers, plus a highly adaptive

approach in locating and utilizing available hardware resources,

combine to create a system which can be adapted easily to changing

requirements. Handling increased traffic should require only the

addition of the needed extra hardware resources. This would

typically mean adding more communication line controllers in the

I/O, perhaps more memory for buffering, and perhaps more processor

busses to increase processing bandwidth. Such changes do not

require changes in the software, because the adaptive mechanisms

necessary to incorporate shifting hardware resources are built

into the software at the outset for reasons of reliability. The

system thus can grow with a minimum of effort. We have set the

upper bounds on growth (as determined by address fields, etc.)

very high, so that large amounts of I/O and processors can be

accommodated.

The need for reliability hardly needs emphasis. If all

messages flow through a central message switch, when it breaks,

the flow of messages stops. The approach we have taken with the

Pluribus attempts to guarantee that service will rarely be

interrupted and that when it is, the system will recover auto-

matically and quickly. Service should be resumed within seconds

4
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with any failed component excised from the system by the program.

This will result in a system in which single errors have extremely

low probability of stopping operations for more than a few seconds.

The third major requirement is multi-level security, the need

to provide protection for several levels of access. Many different

levels of messages will be handled by the same system and yet

unauthorized access must be prevented. This is a difficult job.

A "security kernel" in the software is one traditional approach

to be considered. However, just as in the case of reliability,

the multi-resource aspect of the Pluribus offers some conceptually

simple approaches to the security problem.

The focus of attention in security studies has traditionally

been on software and on providing assurance that no amount of

ingenuity could circumvent the protective features provided in

the program. However, to our knowledge, there has been little

work on attempting to cope with the ways in which hardware

failures can jeopardize security. The assumption of unfailing

hardware is unrealistic in the practical world; any prudent

system design must allow for the effects of a failure. In the

Pluribus, powerful techniques have been developed for detecting

and dealing with the effects of failures, both software and

hardware, on the integrity of system operation. A good deal of

the program (although only a small fraction of processing band-

width) is given over to mechanisms for isolating and recovering

from failures. Methods have been developed whereby the processors

work together to certify functioning and to eliminate bad parts

of the system so that they do not damage overall operation. Many

of these same approaches can be used to assure the integrity of

5
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system security as well as system operation. This is a vital

issue and the Pluribus appears to offer an environment in which

security might be insulated from the damaging effects of

failures -- perhaps both hardware and software.

6
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2.2 Security

The message switch is intended to serve a military community

which has multi-level security requirements. This stringent

requirement has occupied much of our attention, and we feel that

we have significant progress to report.

The message switch design must insure that neither a single

hardware error nor a software bug can compromise security. Un-

authorized access to messages resulting from hardware errors can

be prevented by performing all operations twice on different hard-

ware, accepting the result only if both agree. This brute force

approach is unnecessarily expensive, since we have found a way

to organize the system so that only a small part of the code need

be executed twice. Software problems can be avoided by verifica-

tion of all of the code; this too is impractical, because of the

large size of the system. We have devised a system organization

and special hardware that permit us to verify only a small part

of the code, again without compromising security.

An important idea in both of these simplifications is check-

summing messages. A message complete with checksum can be moved

through the system without danger even though it is handled by

unverified code executing only once, providing that we insure

before delivery that the checksum is still valid. The important

fact is that the list of addressees is included in the checksummed

data, so any alteration of either the message or an addressee

will be detected by an incorrect checksum. For example, if any

hardware or software failure alters the message by changing an
addressee or including someone else's data, the checksum will be

incorrect and the message will not be delivered.

7
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We thus have three significant results to report:

. Checksumming messages permits us to leave much of the

code unprotected, since failures in it cannot compro-

mise security. This means that only part of the pro-

gram need be executed twice, and that only part of the

code need be verified.

. In the areas where double execution is required, we

have clean solutions to the problems of forking a

single computation into parallel computations and

joining parallel computations into a single computation.

. We have devised a hardware modification for Pluribus

to permit us to execute unverified code without fear

that it might compromise security.

The remainder of this section presents our ideas on obtain-

ing the requisite security in the message switch. Section 2.2.1

discusses checksumming, the concept that permits us to fragment

the system into critical and non-critical parts. Briefly, a

message with a checksum, referred to hereafter as a Safe Message,

can be moved with impunity around the system, providing only that

we insure that it is delivered only to those entitled to see it.

In Section 2.2.2 we present the technique for dealing with hard-

ware errors. For convenience in exposition we label as "orange"

those non-critical parts of the code that need be executed only

once, and we label the two parallel paths "green" and "blue" for

those critical portions of the code in which double execution is

necessary. The interesting ideas are in the fork where orange

separates into green and blue, and in the join where green and

blue become orange. In Section 2.2.3 we describe the hardware

i
I
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that insures that errors in the unverified parts of the software

cannot permit a security leak. There is a well known technique

developed for a different purpose that can be used here: special

hardware in the processor to support an Executive mode and a User

mode. In Exec all of the computer's abilities are available,

while in User mode the hardware enforces restrictions. All of

the unverified code is executed in User mode. This code may

include bugs, but the User mode hardware provides the needed

guarantee that there can be no security leak. The idea is simple.

In User mode the processor is restricted so that it can access

only a limited part of the system's address space. Before the

unverified code starts to run, verified code insures that there

is no one else's data in that area.

2.2.1 Message Checksumming and the "Safe Message"

The basic concept that underlies our solution to the security

problem is message checksumming. We define a "Safe Message" to

be a fully composed message with a checksum, the checksum to

include all of the addressees and the originator, as well as

the text of the message. (Actually, two checksums are kept, one

green and one blue.) Figure 1 shows the fields of a Safe Message.

A Safe Message may move through the system without concern, pro-

viding only that there are suitable safeguards on its creation

and delivery and that any legitimate alterations are handled

properly.

A basic operating rule in the message switch is that a user

may obtain access to only those messages for which he is an

addressee. Before the user gets access to a Safe Message, a two-

step check is performed. First the checksum is verified. Next,

if it is correct, the system verifies that the user is included

9
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BLUE CHECKSUM

GREEN CHECKSUM

TO:

CC:

FCC:

(TEXT OF
THE MESSAGE)

Figure 1. A "Safe Message"

10
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in the message as an addressee. Only if both of these conditions

are met is he given the message. It should be noted that this

discussion applies not just to one user's receiving a new message

from another, but to any access to data stored in the system.

For example, if a user wants to examine a message he received

earlier, perhaps to include it in a message he is composing, the

system retrieves the message from the file system and then performs

the check just described. The effect of this care is that there

can be no security exposure possible from any code that moves

Safe Messages within the message switch, so that this part of

the code may be unverified and need not be executed twice. If

some error is about to permit a message addressed to A to be

delivered to B, the check just mentioned will prevent the delivery.

On the other hand, if a hardware error changes the addressee

from C to D, the checksum will fail. (Of course, some errors

may keep the system from working at all, but security will not

be compromised.)

An important idea behind this scheme is that it is extremely

unlikely that "normal" code could fail in such a way as to generate
a valid checksum. This assumption is clearly not justified in
the presence of malicious programming and so would not be accept-

able in an operating system environment in which users could

program the computer. It makes good sense in the present situation,

however, because checksumming algorithms are sufficiently special-

ized that it is unlikely in the extreme that anything could

"accidently" produce a correct checksum. This is particularly

true of CRC checksums.

11
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2.2.2 Software to Protect Against Hardware Faults

The basic approach to insulating the system from the effects

of hardware errors is to perform twice, using completely indepen-

dent hardware, those computations in which a hardware failure

could permit an exposure. Our intention is to structure the

program so as to minimize the amount of program that must be

treated this way. These sections are the critical parts of the

program, the non-critical parts being those sections in which

hardware errors can do no harm. An important first step is to

identify the critical and non-critical parts. For example,

calculating a checksum for a Safe Message is critical, because we

must be sure that the message contains only what it is supposed

to contain; while moving a Safe Message through the system is

non-critical, for the reasons already mentioned.

It is important that the blue and green paths involve

completely distinct hardware, with different processors using

different copies of the code, different memories for data, and

different paths between the resources. If I/O is done it must

be done over different I/O busses. All of this is necessary

to insure that no systematic hardware error or alteration in

the program can have the same effect on both blue and green. It

then makes sense to speak of blue and green hardware, such as

blue processors, green busses, green memory, etc. A particular

piece of hardware need not be forever one color -- it can change

under program control providing that we insure that it never is

involved with both halves of a computation.

Consider a join where blue and green computations meet to

become orange. We carry the computations separately up to the

point where each of blue and green has computed a checksum. We

i
12
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use differing checksum methods for blue and green, perhaps

different coefficients in a CRC polynomial. We now attach both

checksums to either copy of the message, and call that copy

orange. Note that, at least in principle, it is not necessary

at this point to check that blue and green have produced

identical messages. If they have not, the error will be

detected the first time the orange message is delivered to blue

and green code; since one of them will detect an incorrect

checksum, the message will be discarded. In practice it may

be advantageous to check for identical text at the join to

detect the error sooner rather than later, on the grounds that

error recovery is then easier.

An example of a Join occurs at the completion of message

composition. A conceptually simple strategy for a join at that

point is as follows. The message is collected separately by

blue and green code, each receiving the typed characters over a

separate I/O path. When the entire message is composed, blue

and green each computes its own checksum. Both checksums are

attached to one copy (say, the blue one), and that copy of the

message is labeled orange and dispatched to its destinations.

Although this method works, any error in either the blue or the

green copy will not be detected until the orange message is sent

to blue and green code later, when one of them will detect an

incorrect checkrum. This may not be until the message is received

at its destination, a place perhaps remote in distance and time.

At that point the system can only discard the message without

a trace. It cannot even report back to the originator of the

message that it was not delivered, since the system has no safe

way to know his identity. (It appears in the message, but no

part of the message can be trusted.) If the blue and green

copies are compared at the join, a discrepancy will still require

13
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that the user retype the entire message, but at least he is

warned, and at a time when he can still retype it. Such hard-

ware errors should be rare occurrences. Nonetheless, a tradeoff

must be made between efficiency and ease of recovery.

Consider now a point where we enter critical code. Here

the orange execution path splits into blue and green paths. Each

side copies the data into its own private work area (or one side

could use the orange copy to save time), and then each checks its

own color checksum. It is necessary to be sure that each side

has a message that is identical to what was created originally.

This must be the case if both checksums are correct. It is

important that green and blue have independent copies of the

data before checking the checksum, in case the common copy is

altered after the checksums are verified. It is also important

that the code (or hardware) that verifies a checksum be different

from the code (or hardware) that calculates it, or an error in

this code (or hardware) could go undetected and permit leaks.

An example of such a fork occurs after a message has been

received and is being prepared for delivery. The received data,

a Safe Message as described previously, is orange. Green and

blue code each make a copy, and each then checks its own check-

sum. They then check in with each other, and if both checksums

are correct they proceed with the delivery.

2.2.3 Hardware to Protect Against Software Bugs

To protect the message switch from security violations

caused by errors in the software, we follow a five step process:

(1) We partition the code into critical and non-critical parts.

The former consists of those parts of the program for which

correct execution is essential to prevent security leaks, and

14
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the latter consists of those parts in which incorrect code might

cause system failure but cannot cause security leaks. (2) The

critical parts of the code are executed twice, on different hard-

ware each time, to detect any hardware error that might compromise

security. (3) We use standard verification techniques to insure

that there are no bugs in the critical parts of the program.

(4) We provide special hardware to insulate the system from bad

effects that might result from bugs in unverified code. (5) We

provide a barrier in hardware and software (using the other four

techniques) which permits only Safe Messages to leave the system.

The part of the system that executes unprotected is very

much like a security kernel that is often used in secure operating

systems. We do not in this Quarterly Technical Report discuss

the software problems involved in implementing such a security

kernel. Instead, we address a more basic topic: Pluribus'9 lack

of the necessary hardware protection mechanisms to provide an

isolated environment for the unverified portion of the program.

As we shall see, it is relatively easy to provide this hardware

for the Pluribus. The remainder of the section assumes detailed

knowledge of Pluribus architecture.

The Pluribus processor does not have a traditional protection

mechanism, with distinct Executive and User modes. A new card

called a "Protect Card" must be developed to provide these

mechanisms. This card would sit on each processor bus and watch

the activities of the two processors on that bus. The card would

be able to tell the difference between references created by the

two processors by examining the key bits associated with each

reference. Rules already stated guarantee that the same protect

card cannot be involved with both the green and the blue half of

a critical computation, since it is improper for the same processor

bus to be used for both.

I
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The pr(,tect card keeps track of whether each processor is

in ExeC or User mode. A processor in Exec mode is subject to no

retric:tions; all accesses are allowed to continue. In User mode,

however, access is only allowed to a portion of the address space.

A good scheme is to specify for each 4K window of processor address

space a lower limit for User space.

A violation is then a read or write while in User mode to an

address not in User space. When the protect card detects a viola-

tion, It causes the violating processor to receive a Quit (non-

existent memory trap). On a write violation the card will prevent

the write from accessing memory. On a read, the data will be

forced to all ones so that the processor will not be able to see

the data. The data in memory will of course be unchanged.

On any interrupt or Quit, including that caused by a violation,

Exec mode will be entered. Presumably the interrupt vectors will

be part of Exec space and thus the location to which control is

transferred in Exec space can be trusted. To leave Exec mode, a
particular address which is recognized by the protection card is

written. Unfortunately, this cannot be done from Exec space,

since a violation would then occur on the subsequent instruction

fetch. Thus the "leave Exec" command and appropriate return

instructions must be copied into User space before each use (to

trust them) and then jumped to.

Status reporting logic is also required in the protect card

to report the current processor mode and to indicate the cause

and address of the most recent Quit.

A call on the security kernel can now be implemented by just

referencing a non-existent location. Parameters can be left any-

where in memory, since when in Exec mode the processor can access

16
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anyth',r: . T/O devices can all be excluded from User space so

that ill I/0 must be done through the kernel. The protect card

would :dd a small overhead to every reference on the processor

bus, pi-obably on the order of 15%.

An optional feature which we might also implement on this

card would be a watchdog timer to force a return to Exec mode

if the vioncessor spends more than a specific amount of time in

User morle. Normally the program would be sure to "check in"

periodically by reentering the Exec to hold off this timer.

Although 'his feature does not explicitly add to the security

of the s>:tem, it would improve reliability.

The second hardware change to the Pluribus to provide a

secure syltem is to establish a barrier against improperly

exhibiting any message or message format. This is a two step

process:

1. Verified software being executed in Blue and Green

hardware assures that the output port corresponds

to a valid addressee of the message.

2. The hardware at the output port assures that the

message was acceptable to Blue and Green.

The first step is reasonably straightforward. The second

step, however, could be implemented in several ways. For example,

each line to a terminal could be served by two independent inter-

faces on output. One would be assigned to and operated by blue,

the other by green. The outputs of these two interfaces would be

compared exterior to the computer, and only if they agree would

the output be passed on to the user. This requires doubling all

of the hardware, and requires some buffering and synchronization.

17
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Another approach would be to have the blue and green software

place the output port number in the message and include it in the

checksum. Orange code could then set up the interface -- the

interface would check the port number and checksum before passing

the message to the user. This approach requires buffering for

each line within the interface for the line so that the entire

message (or piece of the message) can be held in the interface

until the checksum can be verified. This leads to problems on

echoing input.

Several other approaches like these are also under considera-

tion and must be evaluated before the appropriate one for this

environment can be selected.

18
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2.3 Sizing

Part of our task is to determine the hardware configuration

required to operate a message switch on Pluribus. To start

with, so as to give us some constraints within which to work,

we have made some arbitrary decisions. We are considering a

system designed to support 2000 users. The system will be a

host on a network which, for convenience, we are assuming to be

similar to the ARPANET. About half of the users will be on

terminals connected directly to the system (i.e., local users),

and the other half will access the system via the network. See

also the discussion in Section 2.4.3.

2.3.1 A Model for the Message Switch

In order to determine the hardware configuration needed,

it is necessary to know something about what the system does.

We early decided that specification of a user interface was

not a necessary part of this project, since BBN already has

much experience in the area with other projects. Instead,

we have decided to assume that the system to be built will do

no more computation than is done by MAILSYS on TENEX. Thus,

we must determine the computational load placed on TENEX by

MAILSYS; then we can apply appropriate multipliers to determine

loading on Pluribus. Note that this is a conservative approach

to sizing, since it depends on a mail system (MAILSYS on

TENEX) known to be very complex. A simpler mail system such

as MSG would impose smaller demands. We have chosen to study

MAILSYS both because it seems prudent to be conservative and

because it is convenient to study. (All the needed expertise

is local.)

19

£



Report No. 3276 Bolt Beranek and Newman Inc.

Our plan is to model a "typical" user of MAILSYS, and then

to use measurement tools to be built into MAILSYS to determine

numeric values for the parameters of use. At any moment, our

typical user is in one of five modes:

Read - A reader is merely reading new mail,

looking at one message after another at reading

speed.

Process mail - This is disposing of a message

in some way, such as writing it on a file,

deleting it, etc. This does not include composing

a reply.

Write - This is composing a message to be sent

out. It includes the various addressing tasks

that create the header, as well as composing the

the text of the message.

Scan old mail - This involves looking at old

files and doing things with them.

Think - "What should I do next?"

The common mode of use is alternating Read and Process, with

an occasional Write interspersed. Scan is relatively uncommon.

To size the system then, we first determine the percentage

of time spent in each of these modes, and we then determine the

computational load each mode places on the system. Both of

these tasks can be done relatively easily once suitable

instrumentation has been attached to MAILSYS. Experiments have

been outlined that will supply us with the required sizing

parameters, but they are as yet incomplete.
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2.3.2 Some Preliminary Data

Some data on system loading has been gathered by distri-

buting a questionnaire to selected users of Hermes, the current

experimental version of MAILSYS. These data were derived from

13 returns.

The average session in Hermes lasted 1.3 clock hours,

using 33.6 seconds of CPU time. An average of 1.4 messages

was sent. The average message took 5.6 clock minutes to compose

and send, for an expenditure of 5.17 CPU seconds. These

times do not include MAILER, the program that actually sends

messages to their destination. When Hermes, or any other

message system on TENEX, has a message to send, it places

a copy of it in the user's directory as a file with a name

like [--UNSENT-MAIL--].SMITH to indicate a message for

SMITH. A separate program called MAILER looks in all directories

from time to time for such file names and mails them. The

time and resources used by MAILER will ultimately have to be

determined and included in our statistics.

Startup time in entering Hermes averaged 8.68 seconds.

(Improvements already under way will reduce this time.) There

are no further details yet available on how the rest of the

time was spent. It seems clear though that these users spent

much of that 1.3 hours doing things not related to Hermes.

(This corresponds to "think" time in our model.)

Clearly we need much more data to be able to make a mean-

ingful sizing estimate. One interesting fact does stand out:

Since a user using 33.6 CPU seconds in 1.3 hours is using
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about 0.7% of TENEX's computing resource, it appears that the

maximum capacity of TENEX is about 140 MAILSYS users. However,

this figure is undoubtedly too high, both because of queuing

effects and peak to average considerations. Queuing will

degrade operation if the system runs above about 80% of

capacity over relatively short periods of time. We do not

know what the peak to average ratio is for a message system

but 2 to 1 should not be suprising. Thus a TENEX could on the

average only support about 60 users.

A different approach has been some analytic studies of two

tasks in Hermes. If the number of characters in the message

is N, the time taken to print it is about

0.7 + 0.001*N

CPU seconds. The elapsed time is, of course, dependent on the

typing rate of the console.

The SEND subcommand takes a fully composed message and

places copies of it in the user's directory for MAILER to

send out later. If the number of addressees is A, and the

number of characters in the message is N, then SEND uses about

1.2 + 0.25*A + 0.000013*N*A

CPU seconds to do its work. Here "addressees" include file

copies as well as all destinations in fields such as "To:",
"Cc:" , etc.
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2.4 Other Considerations

Our efforts on and current understandinfg of 1) security mecha-

nisms for the message switch and 2) sizing approaches to its

implementation were discussed in the previous sections. Many other

issues have been under consideration during the first half of

this contract; our initial ideas on some of these are described

later in this section. However, the issues in the list below

are less well resolved and will be the subject of our efforts

during the next quarter. The duplication of some listed items

and sections of this report should be taken to mean that we

feel that our ideas are still in a rough form.

1. How does the message switch interface to the network?

A path seems necessary which would permit the transmission

of secure messages across the network to both secure hosts

and sccure users. This problem requires encryption and may

interact with on-going PLI efforts.

2. How can we provide secure and unsecure ports into the

message switch? It seems now that if we make all ports

secure, we can protect against leaks to unsecure users.

If the switch is connected to a network, it must be able

to talk to unsecUre hosts and users (without encryption)

as well as to secure users.

3. What savings are possible by addressing a specific security

environment - for example, one in which all of the users

and the switch are in a secure environment with no unclas-

sified users? As another example, what is saved by elimina-

ting security entirely? Is there still a savings if the

ability to upgrade to a full security system must be

retained?
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4. How does the swapping mechanism work? What mass storage

devices should be used? If the program and buffer require-

ments are too large, how should mass storage be used for

temporary storage? How are "Safe Things" stored in the

swapping and file systems?

5. How will the disk or other mass storage device be inter-

faced to the Pluribus? Does an interface for an

acceptable disk exist or must one be constructed?

6. What is the major program structure? What is the schematic

of data flow in the system? A preliminary version of this

has been developed.

7. What is the hardware configuration for a prototype system?

How does it expand? What is the relationship between

Pluribus size, switch capacity, and switch cost?

The remainder of this section describes our thoughts on

implementation language and the message switch interfaces to

the network and the user.

2.4.1 High Order Language

It has been our thought that the software for the Pluribus-

based message switch should be written in a high order language

(HOL). In addition to the usual reasons for using a HOL (ease

of programming, improved readability, improved maintainability,

etc.), there are two reasons specific to this application.

1. Since several existing mail systems (Hermes and MSG) are

written in a HOL, there is the possibility of using existing

code rather than having to recode from scratch.
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2. Software verification is probably feasible only for

programs written in a HOL.

Given these advantages for using a HOL, why is there any

question about using one? Two objections stand out: existence

of a compiler, and efficiency of the rr:Ide. These turn out to

be closely related. There currently -,ists no compiler for

any HOL that produces code for the SUE, the processor used in

Pluribus. Thus, a decision to use a HOL for the message switch

would impose the necessity to create a compiler. Efficiency

of the compiler code then becomes an issue. The message switch

will be a high bandwidth processor, requiring truly efficient

code. All existing Pluribus coding has been written in

assembly language. A compiler that produces really high

quality code at the state of the art in compiler production

is an expensive item. Of course, use of a less efficient

compiler can be compensated for in a Pluribus environment by

using more hardware, so the issues involved in the tradeoff

are relatively straightforward.

In spite of these objections, the possible payoffs appear

to be large enough that we have been investigating the matter

further. A compiler for SUE would not run on Pluribus but would

be a cross-compiler from another machine - such as TENEX. Since

the SUE processor is similar in many ways to the PDP-II, we have

investigated the possibility of modifying some existing compiler

frr the PDP-11 that runs on TENEX. Two obvious choices are BCPL

a.id BLISS.

Two compilers for BCPL currently run on TENEX - one for

the PDP-10 and one for the PDP-ll. The former has just gone
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through an extensive improvement process and now produces moderL y

good code. Although one might guess that a compiler for SUE cou

be most readily produced by modifying the PDP-11 compiler, careful

study has revealed that the PDP-10 compiler is a better starting

point. In addition to the fact that the PDP-10 compiler is a

better compiler, there is the problem that the PDP-11 compiler

makes extensive use of the memory-to-memory opcodes in the

PDP-11 - opcodes that are not present in the SUE. We estimate

that in perhaps six person months we could modify the existing

TENEX BCPL compiler for the PDP-10 so that it would produce mod-

erately good SUE code.

The BLISS language was developed at Carnegie Mellon University

as a system programming language for the PDP-10; BLIS11 is a BLISS

compiler for the PDP-11 that runs on the PDP-10 and can be run

under TENEX. The people at Carnegie have put a lot of effort into

code optimization, so that BLIS2I produces very high quality code

probably about as good as the average programmer, although a skilled

programmer does better when he is trying hard. The code generation

strategies used in BLIS11 turn out to be more easily adapted to

SUE than those used in the BCPL compiler, so we estimate that in

about three person months we might have a really high quality BLISS

compiler for the SUE, running on TENEX.

The verification problems to be solved suggest PASCAL as a

candidate, since ARPA appears to be going in the direction of a

derivative of PASCAL for its security work. This is hard for us

to evaluate, since we presently lack details of the derivative

under consideration. In general, PASCAL compilers require a run-

time support package, which would be at best awkward in the Pluribus

environment. (Neither BCPL nor BLIS11 requires such a package.)
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Also, the PASCAL compiler for the PDP-lO does not produce

particularly efficient code.

No decision has been made as yet in this area. PASCAL has

too many unknowns for us to evaluate it properly. The compiler

situation for BLISll is much better than that for BCPL, although

BCPL has the advantage that all the needed expertise is in house.
As a language, we prefer BCPL to BLISS, although the differences

are not of great significance. BLISS has no "goto" statement,

sometimes a moderately serious lack. Further, one could not

easily be added, since the code optimization strategies which

make the compiler so attractive are heavily dependent on there

being no "goto".

Ignoring temporarily the issue of which HOL to use, we have

given some thought to what modifications might be needed in any

HOL to adapt it to the somewhat unusual environment presented

by Pluribus. For convenience, our thinking has been in terms

of BCPL. We note the following problems that would have to be

solved as part of an effort to produce a useful BCPL compiler
for Pluribus, running on TENEX:

1. We must modify an existing compiler to produce SUE code.

2. The Pluribus uses map registers to permit a processor with

a 16-bit address to access 220 bytes of memory. Programmers

find that dealing with map registers efficiently is a sig-

nificant part of writing good Pluribus code. Ideally, the

compiler would totally insulate the programmer from this

task, but this might be too much to hope for. The proper

answer is probably to provide the programmer with linguistic
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constructs suitable for advising the compiler about how best

to handle map registers.

3. Life in a multi-processor environment requires certain special

linguistic constructs, such as those to deal with interlocks,

explicit parallel processing, etc.

4. Pluribus code is broken into short (in time) segments called

strips, and in each Pluribus application there is the require-

ment that no strip execute for more than some number of milli-

seconds. The compiler may be able to help the programmer deal

with strips, but it will probably be necessary for the programmer

to advise.

5. Although there is no "operating system" as such on Pluribus,

there is the reliability package that is part of all Pluribus

systems. This is written in assembly language, and provisions

will be needed to interface the HOL.to it.

6. BCPL, BLISS and PASCAL require a stack at run time. It is

not immediately obvious what this means in a multi-processor.

Should there be a stack per processor? Or one per Pluribus

PID level? Or a stack per user?

2.4.2 Discovery of Parallelism

In addition to its capability of supporting a reliable and

secure message switch, Pluribus also offers the capability of

high throughput through application of its multiple processors.

Furthermore, as has been mentioned above, the task of message

switching is in many ways a "natural" for a multi-processor, due

to the parallelism inherent in the message-switching function.
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This brings us to an important issue, however: to what

extent do we expect parallelism to be discovered by the compiler,

and to what extent do we expect the programmer to specify it?

Our view is that the compiler will do very little sophisticated

parallelism discovery. Automatic discovery of parallelism is a

highly complex task which should not be placed in series with

development of a message switch. Instead, we expect that the

programmer will maintain control over the parallel processing

in the algorithm. We mention the issue of parallelism discovery

to present our views about what is within the scope of this

project.

2.4.3 Terminal Access and Network Attachment

It is important to decide how user terminals will be inter-

faced to the message switch, and how the message switch will be

interfaced to the network. We believe that the message switch

should ultimately support several different (optional) methods

of terminal access and network attachment, but the most basic

configuration should be the message switch as simply a network

host with all terminal access from the network.

Given this configuration, a number of modes of use of the

message switch are possible:

1. With no additional features, the switch can support users at

terminals throughout the network. Of course, this requires

a standard set of protocols for terminal access to the message

switch. A very natural set of protocols to choose would be

the normal ARPANET host/host and TELNET protocols.
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2. Local terminal access could be supported by the addition of

the Pluribus TIP software package to the message switch. In

this case, the Pluribus IMP code should also be added to

provide the packet switching function between the message

switching application software and the terminal handling

TIP software, both taking the form of software-hosts in the

Pluribus IMP computer. This configuration would be sufficient

for a stand-alone configuration of the message switch and its

terminals, not connected to any network. This same messafgc

switch configuration could also be connected to a network with

the whole system appearing to the network to be a ringle host.

3. Next, one can consider the possibility of the Pluribus IMP

resident in the message switch actually being a part of a

network, a configuration which might be useful in some cases.

4. Assuming some sort of network connection, it would be possible

for the message switch to take advantage of various network

resources, such as a large archival store.

In summary, the basic configuration is simple a network host.

To this basic configuration any of the other above-mentlioned

configurations are relatively simple additions of existing soft-

ware packages, perhaps in modified form.

2.4.4 User Interface

Earlier in this report, we mentioned that we were not

concerned with what user interface (i.e., message system) would

be chosen for the message switch, but that BBN's Hermes would be

studied as one example. A few additional words of explanation
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are in order. ARPA is currently sponsoring research to determine

the proper form for a message system. As we are not part of this

effort, we eel that no good purpose would be served by our

lobbying f r yet another specific message system.

We do have a few comments, however:

1. We pro ose that only a single message system be implemented

in the message switch.

2. We propose that the chosen message system communicate with

other message systems using a standard message protocol,

leaving open the possibility of replacing the selected message

system by another.

3. While we do not propose to invent still another message system,

it is possible that the existing message system chosen to be

implemented will have to be modified somewhat to facilitate

implementation on the Pluribus. It would be good if those

people considering message system design and research keep in

mind the possibility of a Pluribus implementation.

4. We are drawn towards selection of one of the simpler message

systems being proposed rather than one of the more elaborate

ones.

2.4.5 Bulk Storage

To meet the message storage requirements of the message

switch there must be some form of bulk memory. This bulk memory

serves two purposes: short term memory (including swapping) and
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archival storage (including "file copies"). We are investigating

several mass storage technologies for this application including

conventional disc units and electron beam memory devices.

Conventional disc units have the advantage of being a well-known

technology. Electron beam memory devices, on the other hand,

offer advantages such as low access time, while being relatively

unproven in real applications. While a local memory device is

clearly necessary for swapping, archival storage could be provided

through the network on some other network host.
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