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ABSTRACT

The governing equations for constrained multibody systems
ire focnelaced in o wannes Suitadbie oo thelr autorated, el Lol
1

Jevelopment and sclution. Speciricallv, the "civcacd loop" prooien

of multidody chain svstems (s addressed.

The governing equations are developed by modifving dynamical
equations obtained from Lagrange's form of d'Alembert's principle.
Tuals modification, which is based upon a sclution of the comstraint
equations obtained through a "zero eigenvalues theorem," is, in

effect, a contraction of the dvnamical equations.

[t is observed that, for a svstem with n generalized coordinates
and m constraint equations, the coefficients in the constraint
equations may be viewed as "constraint vectors”" in n-dimensional
srace. Thern, in thies setting the svstem itself is free to move in

the n-m directions which are

'orthogonal” to the censtraint vectors.




INTRODUCTION

This report presents a tormulation of the governing equations of
constrained multibody systems. The objective is the establishment of
procedures for the automated generation of the equations.

Recently there has been an increasing interest in the efficient
development of governing dynamical equations of multibody systems. This

interest is stimulated bv the fact that manv phvsical svstems can be

v
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me DD 3 by sustems o conmact:
phvsical svstems of interest are robots, manipulators, human heodv models
and biodvnamic svatems, :nd f{lexible cables ov ohains,

There have been a numoer of Tornulacions of the zcecations orf morinsn
of multibody systems [1-19]*. The majority of these have been restricted
to "open chain" or '"open tree" svstems: that is, systems of rigid bodies
such that adjacent bodies have 4t lcast one common point and such that
no closed loops are formed. Figure 1. illustrates such a svstem. The
formulation of the governing equations of motion of such svstems has
advanced to the point where the coerficients of the governing differential
equations can be [ormed automatically (numerically) bv simply knowing the
connection configuration {10-12].

However, during recent years, there has also been interest in the
dvnamics of svstems possessing clesed loops, where some of the branches
of the tree or chain are connected. Figure 2., illustrates such a syvstem.

These svstems are useful in modelling such phvsical svstems as: closed

* Numbers in brackets refer to References at the end of the report.
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Figure 1. An Open-~Chain Multibody System.




Figure 2. A Multibody Chain System with Closed Loops.




mechanisms, 'docking'' manipulators of spacecraft, ship cranes, restrained
human bodv models, and cables anchored at both ends,

As noted above, this report presents a procedure for the automatic
formulation of the governing equations of such closed-loop multibedy
systems. The procedure is based upon Lagrange's form of d'Alembert's
principle as exposited by Kane et. al. [14,20-22] and as used in [9-12]
to develop the dynamical equations of motion., It is also based upon a

"zero eigenvalues theorem" as exposited by Walton and Steeves [23] to

provide an automatic inclusion in the analysis of the constraint equaticns.
bt £ M - 4 b= EaY 5 R < - - Sl iy v Y a3 g

The balance of tie repovrt {tself is divided int:s Iive parts with the
following part providing some preliminary informaticon useful in the sequel.
This inciludes a review of dvnamic:l Iormulations of multibodr svstems and 7
a statement of the "zero eigenvalues theorem." This is follcwed in the

next part by the governing equation formulation for constrained or closed-

loop multibody systems. The subsequent part presents a simple example.

The final two parts discuss generalizations and other ifeatures of the

formulation.

PRELIMINARY CONSIDERATIONS

Coordinates and Kinematics

Consider again the multibodv svstem of Figure 1. This system will
have, in general, 3N+3 degrees of freedom where N is the number of bodies
of the system. These degrees of freedom might be delineated as follows:
Arbitrarily select a bodv of the svstem as a reference bodv. Call this

body B Next, label or number the remaining bodies of the system in

1
ascending progression away from B

1 through the branches of the tree

o~




structure, moving clockwise from branch to branch, Then the orientation

of Bl relative to a fixed (inertial) reference frame R together with the

orientation of the remaining hodies of the svstem relative tc their
adjacent lower-numbered bodies defines 3N degrees of freedom. Finally,

the location of an arbitrary reference point in B, relative to R defines

1

an additional 3 degrees of freedom.
The position and configuration of the system can thus be described by

3N+3 generalized coordinates X, Let Y, (2=1,...,3N+3) represent their

time derivatives®*., Next, let n, (i=1,2,3) represent a mutuallv perpendicular

olnovecror set fixed ia AL, Let G represent the mass center cof pody 3

~

(k=1,...,N). Then, it has been shown [20,21] that the velocitv of G, in R

and the anguiar velocity of B, in R mav bte exorassed in the form:

k

(1)

v, = and

k T Vikan” 20 kT kan ¢ Pm

(Regarding notation, a repeated index, such as % or m in Equation (1)
represents a sum over the range of that index, unless otherwise stated.)

The coefficients Vioim and ®ram in Equation (1), and their derivatives,
A

play a central role in the analysis of the sequel. Thev are components of
the so-called "partial velocity" and 'partial angular velocity" vecters:

3vk/3y2 and awk/3yr. These vectors are useful in forming the generalized
~ ~ X

* The reason for using the symbol Y, instead of X, is that there exist

instances when a convenient choice of generalized coordinate derivatives
result in functions v; which cannot be integrated to obtain the coordinate
x,. In such cases, the X, do not, in general, exist (and are sometimes

< 2

called "quasi-coordinates"). This occurs, for example, when the v_ are
.

selected as angular velocity components. See [24].




active and inertia forces of the system. The coeificients Viim and @y om
and their derivatives mav be formed bv simple multiplication algorithms
as developed in [9-12]. Hence, by differ:nriating in Equation (1), the

acceleration of G, in R and the angular acceleration of Bk in R may be

k

expressed as:

3 = Teonde ¥ Vi % 2 % T O YO P

Equations of Motion

Consider the system in Figure 1. to ve subjectee to an eiternally

applied force field which mav be represented on a trpical bedy Bk hv a single

(= ]
force F
~k

let the inertia force system on Bk be represented by a single force Fi

passing through Gk together with a couple with torque @ﬁ. Then F#* and Mﬁ

~

may be expressed as [21]}:

fﬁ = -ma, (no sum) (3)
and
¥§ = —}k S (}k . @k) (no sum) (&)

where ™ is the mass of Bk and Ik is the inertia dyadic of Bk relative to

G Through use of orthogonal transformation matrices [10] Ik may be

K"

expressed in the form:

Ek - Ikmngmgn )

Lagrange's form of d'Alembert's principle then leads to governing

dvnamical equations of motion of the form [21}]:

passing througsh Gk together with a couple with torque Mk. Similarly
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where T ois calleld ob Lanera

. N
L vkﬁkam + "kimjkm

se oy IN+3 (6)

where there is a sum from 1 to N on k and from 1 to 3 on m, and where

ka and Mkm are the n components of Ek and Mk.

Similarly, F#*

2 in Equation

(6), is called the "'generalized inertia force" and may be expressed as:

Tt
<

e

whare there {5 a sum from 1 £o N on k and from 1 €t 3

F o and M§ are the n_ components of F#*
a km . k
Tibvstituting from Equaticns - 13

finallyv into (6) leads to the equations

in the form([10]:

a, v =f, L= 1,0, 3N+

where there is a sum from 1 to 3N+3 on q and where a,

a

' q = mkvk:mvkqm *

and

f = - v v v 4
b Fi (mk k'n kum u

e I » N d v v
nmh kmr kun ksr ' k.n u

Ikmn“kgm'\kqm

{8)

on T, and where
and M,

T
zo f3) into (V) and 7 and

of motion which may be written

)
and f, are given byv:

(LG

1 By v v
tmn k.m kuntu

S (i)

S

where there is a sum from 1 to N on k, frem 1 to 3¥+3 on u and s and ‘rem

1 to 3 on the other repeated indices and where e

tion svmbol {25}.

-
/

mh is the standard permuta-

o




Constraint Equations

fguaticns (9) represent the gereral soverning dvramical »quations
for open chain or open tree systems. However, if the system has one or
more closed loops, as illustrated in Figure 2., there are additional
equations which need to be satisfied to insure that the closed lcops are
maintained throughout the motion of the system., These equations are

holonomic constraint equations [21] and they may be written in the form:

g{(x:) = 9 i=1,.00,m : m < 3N+3 (12)

(These equations mav be obtained bv simplv adding to zero the rziative
rosition vectors of the connecting joints around the respective loops.)

[t should be noted that constraint equations of the “arr of Equation (12)
can arise in ways different than that of the closed loops mentioned above.
This can occur, for example, with restrictions on the motion at a joint or
with the anchoring of one or several of the bodies to a fixed frame R.

Finally, by differentiating, Equation (12) becomes a linear relation in the

v, and may be expressed in the form:

‘

h, v, =0 i=1,...,m; ¢ =1,...,3N+3 (13

where the biﬂ are, in general, functions of X, and t. Equations (9) and
(13) thus constitute the governing equations for a "closed~loop" system.

These are c¢o be cast into a solvable form in the sequel.

Zero Eigenvalues Theorem

For a constrained N body chain svstem, the n dynamical equations (9)

together with the m constraint equations (13) constitute n+m equations for




PN

the n unknown v, where n is 3N+5. Hence, the svstem is over determined.
"

One apnroach to overcoming this difficultv is to solve Eauations (13)

rr

for m, sav the last m, of the v, in tzrms of the first n-m v. as "independent"

generalized coordinate derivatives, the partial velocities and the partial
angular velocities can be expressed exclusivelv in terms of these v. f21].
Finally, by following the procedure suggested by Equations (6), (7), and
(8), n-m governing dynamical equations are obtained for the v, (2=1,..,n-m).
Although this approach is suitable for relatively small systems,

claly A P I M : . T PR ey oy 3 Cooe . ey N o -t R
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s iCtempting to autcrate it. Amona these di:. iculties is the probiem or

obtaining a censistent soluticn 7 Zguations (13) for = of th
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icuitv is the problem of
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aucomatical

4 of the remainia: n-n . Another

from the partial velocities and the partial angular

&

e eliminating these m v
velocities. However, in 1966, while working on a constraint problem of a
Jifferent context, Walton and Steeves [23] develeped an autcmated procedurc
for solving equations such as Equations (13), for m of the v, in terms

of the remaining independent n-m Y. An extension of their procedure can

te developed to automaticailv eliminate m of the v, from the ~artial velocitv
and partial angular velocitv vectors. Their procedure and its extension are

based on a "zero eigenvalues theorem" as outlined in the following naragraphs:

. Consider Equations (13) to be written in the matrix form as:
Bv = 0 (14)

.

where 3 1s an mxn rectanzular matrix with elements bi‘and v is an n




element column matrix with elements y.. From B form the nxn symmetric

matrix § defined ns:

5

w
It
[
[s]
_
-
A\
-

L. . . . .
where B" is the transpose of B. Since § is symmetric, there exists an

orthogonal matrix T such that: i

-~ -~ -

T
T°ST = A (16)
i
waere .o.s J4nouxn Jdisacnal matrix with real o cioments or Uelgenvalues”
i
ti=1,...,n) [26]. [hese eigenvalues are readily see2n to be nen-negative i
i

. ot T T
and let w e Bv, Then ww = v B Bv =

L]

as follews: Let v be a tvpical column of

&

. . i' f e = . - T.. . .
S Jut ww - 3, and bv Equation (16), v sv s seen to he an wlement of

Y ‘

Y, say \i. Hence, Xl > 0. It is also readily seen that there exist zero

eigenvalues: Since B is an mxn matrix, its rank is less than or equal ;

1

to m {26]. Then, bv Equation (15}, the rank of S is alsc less than or equul
to m. But, since m<n the rank of the nxn matrix $§ is less than n.

Let the columns of T in Equation (1%) be arranged so that the eigen-
vaiues of S, or the diagonal elements of ., are ordered. That is. arrane=
T such that \l > \2 o> 3n. (From the preceeding argument, the last »

of these will be zero, where p > n-m.) Next, let the mxn matrix D be

defined as:

Then, ‘rom Equations (15) and (16) it is seen that:

2°D =" (1Y

10




Hence, since the last p rows (and columns) of | are zero, C may be written

in the partiticned form:
D = (pl0] (19)

where D is an (n-p)x(n-p) matrix with mutually orthogonal columns, and
where n-m < p < n. By noting that TTT is the nxn identity matrix, the

constraint equation (1l4) may be written as:

Dv = D‘L’TTy Doz =0 (20

. . : ; -, T . .
where z is the n element column matrix defined as T'v. 1In view of Equation
(19), the final equality in Equation (20) is satisiied if the first n-p
wlements of z are Tero, irrespective of the values o7 the last p elements

Since T is orthogonal, the definition in Equation (20) may be

"inverted" leading to the expression:
v =Tz 2D

However, since the first n-r elements of z are zero, v mav be rewritten as:
vy = Tz (22)

where f is the nxp matrix whose columns are the last p columns of T,

(In view of the ordering defined above, these columns are the columns of T
associated with the zero eigenvalues of S.) Thus, Equation (22) provides

a solution to Equation (14) for the n v, in terms of the n independent (the
last p) elements of z. Moreover, Equation (22) is an "algorithmic”
expression in that standard numerical procedures exist for matrix diagonal-

ization, eigenvalue determination, and hence, for the numerical evaluation

11




~

or the nxp matrix T.

v o=tz P=1l....n3r = 1,...,p (23)

wvhere the t‘r may be thought of as components of the column eigenvectors
Y,
tr in n dimensional space.

Finally, the formal statement of Equation (22) constitutes the 'zero

eigenvalues theorem" ([23].

COVERNING EQUATINS

The ~rocedures cutiined abowe can be used to svstematicallv formulate
the solution to the multibody svstem dynamics equations (9) subject to the
constraint equations (13). To develop this formulation, consider again the
partial velocitv and partial anzular velocitv vectors discussed above.

From Equations (1) and (23) the velocity of G, in R and the angular velocitvy

k
of Bk in R may be expressed in the form:
= v t., zn and I t. z.n (24)
~k Kimoireevm o ~k kim ir rm

where the z, (r=1,...,p) mav be viewed as new generalized coordinate
derivatives. The partial velocity of Gk in R and the partial angular

velocitv of 3, in R, with respect to Zr’ then beccme:
29
}vk/%z =v, . t.n and §mk/32 = . . t..n (25)

r k:m .r~m r “kim lrem

Hence, the generalized active and inertia forces of Equations (7) and

12
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o

(8) become:

To= er t T + t M (20
A [ . L. el
r kem {r km kem or km
and
F* = v Fx + t, Mx (27
T kim ir km im I1r km )

Then, from Lagrange's form of d'Alembert's principle, the governing

equations (6) become:

F + T =0 r=1,....,p (23%

or, more specificallv:
R r o= i . R

where a‘q and £, are given by Equations (10) and (11).
Equations (29) together with the constraint equations (13) constitute
the svstem of equations to be solved. A numerical procedure for their

solution can be formulated as follows: Consider the general case where p=n-m.

Then, by differentiating, the constraint equations (13) become:
b bomh v i=1,...,m (30

Equations (29) and (30) form a total of n equations for the 2n unknowns

v, and x,. Hence, there needs to be annexed to these equations the expressions:
19

<

(9]
-
-t

= So= b ..,n (

for the consistent numerical formulation of the governing equations. (If

the v are chosen such that the x. do not exist, as mentioned earlier,

13

4




[

o

then Equations (11} must be replaced bv analogous expressions relating
v to other variables (such as Euler parameters [10] which define the
relative orientations of the bodies.)

The balance of the numerical formulation of the solution of Equations
(29), (302, and (31) is now routine: It is perhaps most convenientlvy
expressed in matrix notation. To this end, let C be the nxn matrix
containing the coefficients of §Q in Equations (29) and (30). Then, in

partitioned form C is:

~ -
| Tqtar r=1,...,n-m

o —— ! i=1....,m (32)
o 5 d, = l....,0
Lovy
L _

Simiiarly, let the right sides of Equations (29 and (30) be combined into

the column matrix f, which in particioned form is:

(33)

N
]
— b
-

.

.

-

=]

Then the governing equations to be solved mav be expressed in the relativelv

compact matrix form:

v =(:-lf and =

IS

(34)

‘<

where x and v are the column matrices with elements x and v. (1 = 1,...,u)

v

respectivelyv.

14




For a sluple example illustrating some of these ideas, consider the

planar triple pendulum shown in Figure 3.

The three rods are identical

having length ., and there are friccionless pins at the joints: Ol' 0,,

and 03. The system has 3 degrees of freedom which may be described by

the orientation angles

S 9

1’ 3

»» and 9, shown in the figure. Using Lagrange's

form of d'Alembert's pnrinciple, the equations of motion of the svstem

0 s the form:

- (952 + 38

+ (35)4}.3 +

(10 + 9C., + 603 + 3C

= =(g/+)(95
- i+
3330

and

+ (10 + 9C, + ér

PUy+ 60, )7

"

—(g/l)(lSSl + 9Sl+2

o2 . . 2
2+3)91 + (932 - 383)(9l + 62)

. . . 0
IS Y(F, o+ 2T
3)\ 1 2 3

apy)ty F (1060, +
. 2
42 B ppagg) - (95, 35, %
. 0 . . s 02
o
,2) + 353(-3l + 32 + v3)

(2« 3, + 3 )51 + 24303, + 23

3

= 3(5/‘)Sl+

C

where Ci = cosei, i+]

243 "2 3

.o . .2
243 JSZ+3J1 - 353(31 + “2)

= : 4+ 3 .
cos(ai jj), etc

3 ¥ 34

+ 3504y

, N
(2 + 3C3).3

(36)

(37)

o




Figure 3. Planar Triple Pendulum.
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A "closed loop" or constraint mav be formed by fixing the end point
P of the pendulum. Hence, let P be fixed at a point PD having coordinates
(a,b) relative to the X-Y coordinate system shown in Figure 3. This
constrained system has only one degree of freedom. Two scalar constraint
equations relating the coordinates 61, 92, and 83 may be obtained from the

position vector equation:

0192 + O2~ 3 + O%?o + Pq?l =0 (38)
That is, considerin: one horizental and CeviloaLl ootonents of this
equation leads to the equations:

5, + 38 + 3 = a/:

+2 [=2+!
ol 3 (39)

c1 + cl_'_2 + C1+2+3 = b/
which, upon differentiation, become:

(€ * Cppp * Cpynpa?® + (Cppp * Cryng3)¥n + Crypgs®3 = 0

(40)
(S; + Sppn * 514043281 * Sppp ¥ S14043)% F S14043%3 = O

Equations (39) and (40) represent Equations (12) and (13) in the foregoing

analvsis.
~ To simplify the analysis, let P be fixed on the X-axis at a point Po
Ly
)
- a distance ¢ from C,. The system then takes the form of a rhombic linkage

1

as shown in Figure 4. In this case, a={, b=0, and the constraint equations

(39) are seen to be satisfied bv the relations: §, = 3/2-81 and 3 /245, .

37 1

The coefficient matrix B of Equations (13) and (40) mav then be expressed as:

17
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Figure 4. Constrained Triple Pendulum.
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4

B g
| 0 ¢ =y |
B = | l (41)
L-l (1-5s)) -5,
-
The matrix S of Equation (15) then becomes:
1 1 - Sl) -Sl
S=1Q1 - Sl) 2(1 - Sl) (1 - Sl) (42)
-S1 (1 - Sl) 1 i
e ——

Tt i3 raadily n that S has one zero eigenvalue and that the associated

omn
[
(0

eigenvector array T is:

The governing equations to be solved may now be obtained using Equations

(29) and (30). From Equations (35), (36), (37), and (40), these become:

. , . .
(16 + 9c2 + 3c3 + 6cz+3)e1 + (2 + 902 + 3(:3 + 3c2+3)e2
.o .2
) = o -
+ (2 + 3c2+3)e3 (g/e)(lssl + 3sl+2+3) 3524_331
+ (95, - 350 (5, + 802 435, (B + b+ 5.2 (44)
2 371 2 24371 2 3
—cle2 - cle3 = 51’3152 + 519153 (45)
and
) C e e /
3, * (1 sl)e:2 slem C1”192 clala3 (46)
19
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Equations (44), (45), and (46) have been solved numerically. The
vesults match the results of the numerical solution of the pendulum

equation:

51 + (6/52)sin3, = 0 (47)

which is the governing equation of the rhombic linkage of Figure 4.
REDUCTION OF THE NUMBER OF GOVERNING EQUATIONS

A principal step in the foregoing formulation as well as in the aktove
example is the differcentiation of the constraint equations (See Equations
(36), (45), and (46).). Since these equations are then combined with the
reduced set of dynamical equations and the resulting system is integrated,
a question which arises is: Is it necessary to first differentiate and
later integrate these equations? That is, could some computational
efficiency be obtained by avoiding the differentiation-integration steps?
The answer to these questions is that it is indeed possible to integrate
fewer equations and thus obtain some computational advantages. A procedure

demonstrating this is outlined in the following paragraphs:

Let the mxn matrix B in Equation (14) be partitioned into two

submatrices as:

(48)

where Ba is an mx (n-m) arrav and B, is an mxm square arrav., This

b

partitioning of B induces a partitioning of the § array in Equation (30).

20
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That is, if Equation (30) is written in the matrix form as: Bv = -By,

.
then By mayv be expressed as:

.-
| Yq:
.7= . |_—‘=_.~
By = [B, : B} |- By (49)
yb
-

- L]
where Ya is a column array with n-m elements and Yy is a column arrav with

m elements. If B;l exists, Equation (49) may be solved for ib in the form:

y, = -B_"(B.y_ + By) (50)

Similarly, let the roduced set of dynamical equations {29) be writtan
in the matrix form Ay = f where A is the (n-m)xm arrav with elements crqaa.

r=l,,,.,0~m; .=i,...,n and f is the column arrav with eiements i,t,r

[y v
r=1l,...,n~-m. Then following the pattern of Equations (%8) and (39), let
the dynamical equations be written in the partitioned form:

7, |

[Aa : &b] — i =f (51)

[_§b1
where Aa is an {(n-m)x(n-m) square array and Ab is an (n-m) xm arrayv.
Bv substituting from Equations (50) and bv matrix block multiplication,

Equation (51) becomes:

+ -
aa Ab[ B

<.

. 1. . .
A LBy, + B = f (52)

Bv rearranging the terms, this equation may be written as:

D>
o
—~
(W]}
[

<

Vg T

where A i1s the (n-m) x (n-m) square arrav defined as:

21




A=A - AB"B (54)
and f is the (n-m) element column arrvayv defined as:

-1

f=f+ AbBb By (55)

Equation (53) is equivalent to a system of (n-m) scalar differential

equations containing 2n unknowns: Yo and x 2=1,...,n. Hence, there

1’
needs to be annexed to this system an additional n+m scalar equations.
Equation (31) provides n of these equations. In matrix form they may be

written as:
X =y (56)

The final m equations mayv be obtained from Equations (50). However, unlike
Equations (53) and (56), Equations (50) are algebraic equations and do not
need to be integrated. That is, the system of 2n equations of Equations
(50), (53), and (36) contain 2n-m differential equations and m algebraic
equations for the 2n unknowns v, and X, 2=1,...,n. This is a reduction of
m differential equations from the previous svstem of Equations (29), (30),

and (31).
DISCUSSION

At this point chere are several comments and observaticons which might
be helpful. First, in the procedure of ths :zerc eigenvalues theorem, the
m constraint equations are solved for the n Y. in terms of n-m new variables

z_. Interestingly, in the subsequent formulation of governing equations,

these new variables z, do not appear, Indeed, it is only the coefficients




)
b
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tlr of the z, which are used. As noted earlier, these ccefficients are the
components in n-aimensional space of the eigenvectors c, associlated with tne
zero eigenvalues of S. However, in this context, since the corresponding
eigenvalues are zero, Sgr is zero and the eigenvectors Er are thus
"orthogenal"” to the rows of S. This in turn means that these eigenvectors
are orthogonal to the rows of the constraint matrix B. (This conclusion

was also reached in an earlier analysis of constraint equations in
n-dimensional space [27].) Hence, let the rows of B be thought of as
"sonstraint vectors' in n-Ji—enmsional space. Then, since the ¢t are used

to form the new partial velociiv and partial arn::lar velocity vectors, the
nhysical svstem can be considered to he ceonstrained te move, in n-dimension.i
snace, 1n directicns artrnoernal to these constraint vectors -- tnat is,

in directions defined by the eigenvectors Er'

Next, Lagrange’s form of d'Alembert’'s principle is an ideally suited
method for formulating the dvnamical equations when there are accompaning
constraint equaticns. Indeed, the governing dirfferential equations mav be
developed by simplv contracting the dynamical equations obtained, via the

srinciple, by using the t . arrav obtained from the zero eigenvalues theorem.

k
This procedure is seen to be successtul since the generalized forces are
linear, homogeneous functions of the partial velocity and angular velocity
vectors, which in turn, are coefficients of the generalized coordinate
derivatives (in the velocitv and angular velocity vectors). Therefore, a
modification of these derivatives directlv changes these vectors and hence,
also the generalized forces. This means that the modification procedure

fcr the generalized coordinate derivatives, as developed bv the zero eigen-

values theorem, may be directly applied to the dvnamical equations them-
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" selves. Also, due to these arguments, it is scen that this procedure would

not necessarily be successrul if the dvnamical euuations were obtained bv

some other method. (Additional liscussion of the merits of Lagr

of d'Alembert's principle may be found in deferences ([10,15,20,21,22].)
Finallv, the procedure developed herein is deemed to be well suited

for the automated development of the governing equations. Numerical

algorithms are currently being prepared to be incorporated into the computer

codes discussed in [10,11,12]. Additional information on this may be

T
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