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Abstract:

Results of a numerical simulation, based on an energy consistent moving

singularity dynamic finite element procedure, of fast crack propagation and

arrest in a high strength steel DCB specimen are presented. The influence of

material properties of high strength steel on dynamic crack propagation and

arrest is investigated. The influence of the loss of contact of specimen with

the loading wedge is also critically examined. The present numerical results

are compared with available experimental data. It is found that the present

results agree well with available experimental data, and the crack arrest

toughness values obtained in the present analysis correlate well with the

ratio of the maximum kinetic energy of the specimen to the input energy.

Introduction:

The techinque of the measurement of dynamic stress intensity factors for

fast running and arresting cracks in specimen made from a transparent photoelastic

material, Aralidite B, has been developed by Kalthoff et al [1,2,3]. In the

experiments, stress intensity factors for fast running cracks were measured by

means of the shadow optical method of caustics. This method was later applied

for a nontransparent specimen [4]. Thestress intensity factors were measured

by the caustics reflected from the mirrored surface of a high strength steel

specimen. In the case of highsrength steel, the overall variation of stress

intensity factors during the crack propagation was found to be similar to that

in Araldite B. For some portion of the crack propagation phase, however, the

stress intensity factors in the high strength steel specimen show large oscil-

lations, whereas the data for Araldite B specimen can be represented by a rather

smooth curve. The authors in Ref. [41 attribute this oscillation to high

frequency stress waves interacting with the crack. However, it is the present

authors' opinion that these oscillations may be limited to the surface of the
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specimen, due to the presence of vibration of the specimen surface. Therefore,

stress intensity factors along the crack front within the specimen thickness

may be expected to show a rather smooth variation.

The primary objective of the present paper is an attempt to simulate the

crack propagation and arrest by using the data for steel specimens presented

in Ref. [4]. The authors have presented a "moving singularity" finite element

procedure for simulation of fast crack propagation in finite bodies [5,6,7].

This special finite element method has been previously applied, for the "generation"

and "prediction" phase calculations of dynamic fracture in DCB specimen made

from the model-material Araldite B [8], and for analysis of dynamic fracture in

dynamic tear test specimen [9].

In Ref. [4], insufficient data for crack propagation history which are re-

quired in the present generation phase study [calculation of dynamic K-factors

for a given crack-propagation history] have been measured in the experiment.

In the present paper three curves for crack propagation history are hypothesized

to perform the calculation. The influence of material constants on crack propa-

gation and arrest in DCB specimen is also investigated by changing Young's modulus

E, Poisson's ratio V and the mass density P. In addition, in the present paper,

careful attention is paid to the wedge-loading condition. Both fixed and contact/

no-contact loading conditions are analyzed. The obtained numerical results are

critically examined and some conclusions that may be germane to the process of

crack propagation in structural steels are made.

Outline of Moving Singularity Finite Element Method:

In the procedure adopted in the paper, the basis functions used for displace-

ment, velocity, and acceleration in the singular element near the crack-tip

are:

u a( ,x 2,t) u L. (&,x 2b) (t) [a=1,2; j=l, ... ,N (1)
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uic M u j0 - vuaj8B (2)
aj cij aij, j

Ua u jLj - 2vujE j + V2Uj, (3)

where u correspond to the "steady-state" (i.e., which are invariant to an

observer moving with the crack-tip) eigen-function solutions for the elasto-

dynamic wave Pquations (with independent variables , and x2) for crack

propagation at constant velocity v in a plane domain. Note that x (a=l,2) are

fixed coordinates, with x 2=0 defining the crack plane and &=x1-vt. It is noted

that the first term, viz., u 1 , leads to the appropriate (r" ) type singularity

in strains and stresses. The singular element in the present procedure is

surrounded by the usual isoparametric [8-noded, in the present case] elements.

The displacement compatibility between the singular element and the surrounding

isoparametric elements is satisfied in the present analysis through a least-

square technique [5,6].

Consider two instants of time, t1 and t2=t1 +At. Assuming that in a Mode

I crack propagation problem, the crack-lengths at t1 and t2 are, respectively,

EI and E +AE. Let the displacements, strains, and stresses at t be denoted by1 1 1

ul, E i, and oj , respectively, while those at t2 are denoted by a superscript

2 for each variable. The variables at time tI are presumed to be known. It

has been shown in [5,6] that the variational principles governing the dynamic

crack propagation between times t1 and t2 can be written as:

ij+ p(ui--i) i dv io, ....

T-+ ,., -__ -;F ir

(TS -- 2 2 r _2 _Tl + 62 + : ,

= f (Ti+Ti)6uids + (TI+Ti) 2+ds

02

+ (T 2+o 1 1 (6u ) + ds:. (4)

----------------------..-...--.----
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where V2 is the domain of the body, and S is the boundary of V2 where trac-2 a 2

tions are prescribed, at time t2 Ti are the prescribed tractions at time t
-2

at S (=S ) and T are the prescribed tractions at S as well as at the newly
a Il v t A a r th2o

created crack surface AE at time t2 . It is seen that a 1 v at AE are the

hesive forces holding the crack-face together at time tI. In the above, mode I

conditions are assumed; hence, only the upper half of the domain with the crack

face E+ is considered.

In the variational principle in Eq. (4), the variables UiV and al are

2 2 2
presumed to be known; while a.., e.. and u. are the variables. The variables

2 1 13 32
uj are assumed according to Eq. (1), with the velocity v2 appearing in them.

Further, the variational principle in Eq. (4) is used to develop a discrete

(finite element) approximation for a (finite element) mesh at time t2. Note

that at time t2, in the present problem, the crack-tip is located at x=E +AE.

In developing the equations for the finite element mesh at t2 , it is seen

1 
1

from Eq. (4), that the variation of a.. and u. must be known in the finite1) 3

1 1 1
element mesh at time t2. However, a j and u., and U. were solved for, in the

finite element mesh at t . In the mesh at t1 the crack-tip is located at

x=E1 and hence the crack-element is centered at E . Thus, between t1 and t2

(=tl+At) the crack-element is translated by an amount AE. While the crack-

element is translated, only the elements immediately surrounding the moving

crack-tip are distorted. Thus the finite meshes at times t1 and t2 differ

only in the location of crack-tip (and hence the crack-element) and the shapes

of the immediately surrounding isoparametric elements. Thus, the known data

for a1 and u in the mesh at t1 is interpolated easily into corresponding
foro1

data in the mesh at t2. Based on these concepts, the development of the finite-

element equations form the principle in Eq. (4), and the numerical integration

of these equations follows the well-established procedures. Further details
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can be found in [5,6] where it is shown that the dynamic k-factors can be com-

puted directly in the present analysis procedure.

Analysis Procedure for Double-Cantilever-Beam Specimen:

The test specimen geometry is indicated in Fig. 1 along with the initial

configuration of the finite element mesh. Because of symmetry, only the upper

half of the DCB specimen is modeled in the present analysis. Point L in Fig.

1 represents the loading point. Forty six 8-noded isoparametric elements and

one moving singularity element shown by the shaded area are used. The specimen

geometry indicated in Fig. 1 corresponds to that reported in Ref. [4], and a

plane-stress condition is invoked in the present two-dimensional analysis.

In the present series of computations, the crack growth history is used

as input data to the "generation phase" fractrire simulation. As output of these

generation phase computations, dynamic stress intensity factors for the propa-

gating crack is directly obtained as a function of time. Fig. 2 shows three

types of data for the crack extension historyE=E(t) as well as the crack

velocity history v=v(t), i.e., Data 1, Data 2, and Data 3. The data obtained

by experiment in Ref. [41 are shown by the solid lines. To complete the

input data, the broken lines are assumed, as plausible extensions of the ex-

perimentally measured datea. The crack extension histories are obtained by

integrating the crack velocity histories for each case.

In Ref. [4], the crack initiation stress intensity factor for a blunt
-1.5

notch, KIQ' was quoted as 224 MNm . Prior to the dynamic analysis, a static

analysis of the specimen is performed to obtain the critical load-point deflection

which produces the initiation stress intensity factor K .=224 MNm -1 .5 at the

crack tip. Then the crack starts propagating dynamically from this initial

static state of the specimen. The static stress intensity factor as well as

dynamic stress intensity factors during the crack propagation are obtained
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directly by the present singularity element procedure as described earlier.

In the experiment [4], the specimen was loading in a testing machine by

forcing a 20-degree wedge between the pins as shown in Fig. 3a. After crack

initiation the wedge was fixed at the same position. Obviously the wedge

can "push" the pins attached to the specimen but not "pull" them. Thus there

is the possibility of a lack of contact of the specimen (pins) with the wedge

(see Fig. 3b). In one case, the wedge loading condition taking account of the

above effect of no-contact is considered, while, in other cases, the fixed

loading condition, i.e., one in which the wedge is always in contact with the

pins, is used.

Using the standard notation, the reaction forces at the points where dis-

placements are prescribed are calculated by:

P = Kq + m'c

The displacement u and reaction force P in the time step (n+l) are predicted

by:

Un+1  u + Atn+n (6)

(Pn-Pn )

Pn+l P + nAn-) At (7)n1 n At n+l
n

It is noted that we may use Atn+1 = Atn = At.

We designate the reaction forces with which the wedge pushes the pins as being

positive. Thus in Fig. 3a, both the reaction forces acting on the upper and

lower pins are positive. The no-contact condition during the time increment

(n) to (n+l) is predicted to occur after the sub-increment of time:

P

At = n At (8)
~ n- n~ 8

If O<At <At, during the (n+l) step we change At to At and perform the analysis

- c- c
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with the condition of contact, and during (n+2) step, we change At to AtF

(=At-At ) and perform the analysis with the condition of no-contact (free).
C

An analogous scheme is used to predict the transition form no-contact to

contact conditions. By monitoring the displacement, the sub-increment of time

to reestablish contact is predicted by:

-6
AtF L (9)6

L

where 6 L=U -u L. If O<At<At F, during the (n+l) step we change At to AtF and

perform the analysis with the no-contact condition, and during the (n+2) step

we change At to At (=At-At F) and perform the analysis with the contact con-cF

dition. These schemes are repeated for the entire computation.

The high strength maraging steel HFX760 was chosen in the experiment

(4]. Reference [4] has indicated that the steel has a yield strength of

2 -1.5
a ys=2.1 GN/m , a crack initiation toughness 'IC in the range of 70 to 100 MNm

and a bar wave speed of C =5190 m/sec. However reference [4] has not indicated
0

any other material properties such as Young's modulus E, Poisson's ratio v and

the mass density p which are required in an elastodynamic analysis. To investi-

gate the effect of material properties on crack propagation and arrest in the

DCB specimen, four different hypothesized material-properties, as listed in

Table 1, are used in the present analysis.

Results and Discussions

(i) Fixed Loading (Prescribed Displacement; wedge always in contact with specimen)

First we consider the Material I case. The variation of dynamic stress in-

tensity factor computed in the present generation phase simulation is shown in

Fig. 4. The time increment At used in the present analysis is 1.5 Psec. After

183 psec. the simulation was continued with three different crack extension

histories, i.e., Data 1, Data 2, and Data 3. As seen from the figure, in the
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Data 1 case, the dynamic stress intensity factors continuously decrease before

the crack arrest. On the other hand in the Data 2, and Data 3 cases, the stress

intensity factors increase just before the crack arrest. Obviously, the Data 1

case is the most realistic. The crack arrest toughness Kla in this case for

Material I is obtained as 55.3 MNm" 5  The range for the crack initiation

toughness K is also shown in Fig. 4. K value appears to be lower than
Ic Ia

the crack initiation toughness K Ic. Notations DA' SC, DB and RA will be explained

later.

The presently obtained K-values for Material I are shown in Fig. 5 along

with those measured in the experiment [4]. The experimental results show

large oscillations for the period of the crack length of 100 mm to 190 mm.

After this period the experimental results become smoother. The present result

is very close to the experimental results during the period of E>190 mm, and

close to the lower bound of the experimental oscillations during 100 mm < Z

< 190 mm.

As mentioned earlier, in the authors' opinion, these oscillations in the

experiment may be due to the high frequency vibration of the surface of the

steel specimen. Although a three-dimensional analysis is required to investigate

the effects of the surface vibrations, inside the thickness of this thin specimen,

a "generalized plane stress" two-dimensional analysis may be seen to be valid.

In comparing both the results it seems plausible that this vibration occurs

only on the surface of the specimen.

The computed variations of input energy W, strain energy U, kinetic energy

T, and fracture energy F are shown in Fig. 6. It is noted that in the present

procedure the dynamic K -value is calculated directly as a variable in the finite
I

element equations [5,61. The fracture energy is thus calculated directly by

integrating the energy release rate based on the present K -value. Alternatively,
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fracture energy is also calculated directly from a crack-tip integral of work

done in separation of crack-faces. These two procedures gave almost identical

results in the present analyses.

Since the input energy to the specimen W is a constant in the present

case, the above computed F, U, and T should add up to a constant. It is seen

that the error in (F+U+T) as compared to W increases almost linearly from

0.0% to 3.3% towards the end of crack propagation. Since this analysis was

carried out in 140 time steps, it is reasonable to presume that the error in

each time step is thus roughly 0.02%. This appears to give enough credence

to the presently computed stress intensity factors for this type of specimen.

In other types of specimen such as dynamic tear test specimen [9], however,

it was found that the total output energy (F+U+T) is almost identical to the

input energy W during the analysis carried out in 360 time steps. It is seen

from Fig. 6 that about 88% of input energy is consumed as fracture energy in

the present steel DCB specimen. The strain energy U continuously decreases up

to the time of crack arrest. Contrary to this, the kinetic energy T, takes its

maximum value as 28.9% of the total input energy at the earlier stage of the

crack propagation, and becomes negligible at crack arrest.

Next we consider the Material II case. Fig. 7 shows the variation of dynamic

stress intensity factors. In the Data I and Data 2 cases the stress intensity

factors take the minimum values before crack arrest. The minimum K -value in

the Data 1 case is 40.5 Mnm which is considerably lower than Kla in the

Material I case. Fig. 8 shows the K -value as a function of crack length. For

the crack length values of 100 to 190 mm, the present results agree well with

the lower bound of the experimental data. The variations of the total work,

strain energy, kinetic energy, and fracture energy are shown in Fig. 9. The

maximum kinetic energy in this case is 25.6% of the total input energy, which



is lower than that in the Material I case.

Now we consider the Material III case. In this case, only Poisson's ratio

is different from that in Lhe Material I case. The variation of dynamic stress

intensity factors is shown in Fig. 10. The results are very close to those in

the Material I case. The K -value as a function of crack length and the energy

variation in this specimen are respectively shown in Figs. 11 and 12. Again

the results are very close to those in the Material I case.

Finally, we consider the Material IV case. In this case only the mass

density is different and 14% higher than that in the Material II. The variation

of dynamic stress intensity factors is shown in Fig. 13. The crack arrest

toughness Kla obtained for this specimen using Data 1 is 51.0 MNm - 1 5 , which

is about 8% lower than that in the Material I case. Fig. 14 shows dynamic

K -value as a function of crack length. For the crack length of 100 to 190 mm,

the present K- value variation is lower than the lower bound of oscillation

of the experimental data, while for Z>190 mm the present results agree excel-

lently with the experimental results. Fig. 15 shows the energy variations.

The maximum kinetic energy obtained in this specimen is 28.1% of the total input

energy.

The maximum kinetic energies and the crack arrest toughness obtained for

the four cases are summarized in Table 2. A good correlation between the inertia

effect (the ratio of the maximum kinetic energy to input energy) and crack

arrest toughness, i.e., the increasing KIa with the increasing ratio of the

maximum kinetic energy to input energy [(max T)/W] can be observed in Table 2.

The influence of Poisson's ratio on dynamic stress intensity factors is shown

in Fig. 16, comparing directly the Material I and II cases. Almost identical

variations of stress intensity factor c011 1e seen in Fig. 16 for the two cases

of v. On the contrary, a large effect of Poisson's ratio on crack propagation
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and arrest in DCB specimen has been reported in Ref. [121. The author of Ref.

[12] has claimed that for any given geometry, different materials are distinguished

in the finite difference scheme by their correspondingly different Poisson's

ratio only. This is quite different from the situation in any other numerical

schemes such as the finite element method and so on. This is also different

from the situation in elastostatic analysis. To expain the claim, the author

in Ref. [12] described that all physical quantities in the problem were given

relative to the specimen height H, the dilatational wave velocity Cl, and the

material density p. The distortional wave velocity C was defined in terms
2

of C according to the relation C =C /(l-2v)/(2-2v). From this, the claims
1~ 21

mentioned above was derived. However this explanation does not appear correct,

since the dilatational wave velocity C1 cannot be a basic unit. The velocity

C1 depends not only on the Poisson's ratio and mass density but also on the

Young's modulus, since C is expressed as

- E(l-v)
Sp(l+v)(-2v)

under the plane strain condition assumed in Ref. [12]. If Poisson's ratio is

changed with keeping CI=I and p=l, Young's modulus is also changed according

as:

E = (l+v)(l-2v)
(1-v)

Therefore the dynamic effect shown in Ref. [12] includes the effects of Young's

modulus as well as Poisson's ratio.

The influence of the Young's modulus on dynamic stress intensity factors

is shown in Fig. 17. The result shown by the solid line for v=0.3 was obtained

by taking the average of Kl-values for v=0.318 (Material I) and v=0.280 (Material

II). The figure indicates that the dynamic effect in the specimen of E-183 GPa

(Material I) is larger than that in the case of E=190 GPa (Material IV). This
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means that the dynamic effect increases with the decreasing Young's modulus.

This tendency can also be found in Table 2, i.e., the ratio of maximum kinetic

energy to input energy in Material I (E=183 GPa) is larger than that in Material

IV (E=190 GPa).

The influence of mass density on the dynamic stress intensity factors is

shown in Fig. 18. The figure indicates that the dynamic effect increases with

the increasing mass density. Again this tendency can be observed on Table

i.e., the ratio of maximum kinetic energy to input energy in Material IV (p=

8042 kg/m
3 ) is larger than that in Material II (p=7053 kg/m3).

For all cases considered here, at the beginning of the crack propagation,

the dynamic stress intensity factors decrease drastically, and then become

constant for a while. At about a half of the crack propagation histories, the

present stress intensity factor variations exhibit their peaks. To investigate

these phenomena, the times for various waves, generated from the fast crack

initiation and reflected from boundaries, to interact with the propagating

crack-tip are computed and shown in Figs. 4, 7, 10, and 13. With A, B, and C

denoting the three boundaries as marked in Fig. 1, DB and D are the times when

the dilatational waves reflected from the boundaries B and C, respectively,

interact with the propagating crack-tip. Similar notations are used for RA

and SC denoting respectively the Rayleigh wave reflected from the boundary A

and the shear wave reflected from the boundary C. It is interesting to note

that the Kl-value begins to be constant at the time De, and begins to peak at

the time D B . It is also seen that the peak in the variation of K -value occurs

shortly after the time RA. Effects of Rayleigh waves in dynamic crack propagation

have also been studied in Ref. [7,13,14].

Furthermore, to investigate the effect of Rayleigh wave on dynamic fracture,

the Rayleigh wave velocities C are also listed in Table 2. It is seen that the
R

Rayleigh wave velocity has good correlations with both the ratio of maximum
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kinetic energy to input energy, and the crack arrest toughness.

(ii) Wedge Loading (Contact/No-contact)

For the Material I, the variation of reaction force at the loading point

where the displacement is prescribed during the crack propagation is shown in

Fig. 19. The reaction force becomes zero at t=60 psec, and then oscillates

with decreasing amplitude. A negative reaction force is observed during time

periods 60 psec to 100.5 psec, 129 psec to 171 psec, 187.5 psec to 202.5 psec,

and so on. This phenomenon can also be observed in the reaction force variation

in t- dynamic tear test specimen [9]. During the periods of negative reaction

force, the wedge is not pushing but pulling the specimen (pins). This situation

is not realistic in the mechanism of the wedge loading.

The variation of crack opening displacements during the crack propagation

is shown in Fig. 20. Since the displacement at the loading point of x=16 mm

and y=20 mm is always fixed, the beam parts of the specimen rotate around this

point due to the crack extension. The variation of crack-face profiles indicates

this rotation.

To simulate a more realistic mechanism of the wedge loading, the conditions

of contact/no-contact are invoked in the present analysis. The variations of

reaction force, and the distance between theuedge and the point L are shown in

Fig. 21. LI as shown in Fig. 21 is the time when the reaction force becomes

zero. As seen from the figure, the specimen is not in contact with the wedge

after L1 (=60 usec). The distance between the wedge and the point L, uL-uL,

becomes larger and larger with time.

The variation of crack opening displacements with the condition of contact/

no-contact is shown in Fig. 22. In contrast to the crack-face profiles for

the fixed loading case as shown in Fig. 20, it can be seen from Fig. 22 that

the variation of the crack-face profiles shows the parallel movement of the

beam parts of the specimen after the no-contact condition occurs at t-60 usec.
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Fig. 23 shows the comparison of the dynamic stress intensity factors obtained

with the different loading conditions. In comparing the both results, it is

seen that the K -values calculated with the wedge (contact/no-contact) loading,

are exactly same before 60 Psec, almost identical during the time of 60 Psec

to about 120 psec, and lower during the time of 120 psec to 210 psec. The ef-

fect of the no-contact condition on dynamic stress intensity factor starts mani-

festing roughly 60 psecs after the condition of no-contact occurs. This is due

to the time-lag in which the "no-contact" effect propagates from the point L

to the running crack-tip. To further investigate the propagation speed of this

effect, the arrival times of the elastic waves emanating from the loading point

are examined. D and S as shown in Fig. 23 are, respectively, the arrivalL L

times of the dilatational and shear waves, emanated from point L, at the crack-

tip. It is seen that the no-contact effect at the crack-tip begins to manifest

itself at the instant S while no effect can be seen at the time D . In the
L L

wedge loading (contact/no-contact) case, a slightly lower crack arrest toughness

was obtained as 54.2 Mnm
- 1 .5

Fig. 24 shows the variation of the energies obtained from the present

analysis with the condition of contact/no-contact. The kinetic energy variation

after 120 psec appears to be higher than that in the fixed loading case as

shown in Fig. 6. This higher kinetic energy is due to the movement of the beam

parts of the specimen away from the wedge.

Summary and Conclusion:

Utilizing the moving-singularity element procedure, finite element simu-

lations of fast fracture in high strength steel DCB specimen have been performed

for different material properties, different crack propagation histories, and

different loading conditions.

The major conclusions and observations obtained from this study are summarized

below: 14
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(1) The dynamic crack propagation and arrest are influenced, largely by the

mass density, moderately by the Young's modulus, and almost negligibly by

the Poisson's ratio.

(2) The variation of dynamic stress intensity factors is influenced by the

various waves originally generated from the fast crack initiations and

then reflected from the boundary of the specimen.

(3) The ratio of the maximum kinetic energy to the input energy increases with

the decreasing Rayleigh wave velocity.

(4) The crack arrest toughness, for a given crack propagation history, increases

with the increasing ratio of the maximum kinetic energy to the input

energy, or with the decreasing Rayleigh wave velocity.

(5) Analysis with a realistic wedge loading condition (contact/no-contact) gives

a slightly lower variation of stress intensity factors than that with the

fixed loading condition (speciment always in contact with the wedge). Ef-

fects of the different loading conditions depend on the initial crack length

and crack velocity. This contact/no-contact effect propagates with a speed

of the order of shear wave velocity. Thus, if a larger initial crack length

is used, this effect appears at the crack-tip much later.
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Captions for Figures and Tables:

Table 1: Material Property Data for Different Cases

Table 2: Dynamic Effects on crack arrest toughness

Fig. 1: Finite element model for a double-cantilever-beam specimen.

Fig. 2: Crack propagation history and crack velocity history as input data
to generation phase fracture simulation.

Fig. 3: Contact/no-contact conditions between wedge and pins.

Fig. 4: Variation of dynamic stress intensity factors (Material I).

Fig. 5: Dynamic stress intensity factors versus crack length (Material I).

Fig. 6: Energy variations (Material I).

Fig. 7: Variation of dynamic stress intensity factors (Material II).

Fig. 8: Dynamic stress intensity factors versus crack length (Material II).

Fig. 9: Energy variations (Material II).

Fig. 10: Variation of dynamic stress intensity factors (Material III).

Fig. 11: Dynamic stress intensity factors versus crack length (Material III).

Fig. 12: Energy variations (Material III).

Fig. 13: Variation of dynamic stress intensity factors (Material IV).

Fig. 14: Dynamic stress intensity factors versus crack length (Material IV).

Fig. 15: Energy variations (Material IV).

Fig. 16: Influence of Poisson's ratio on dynamic crack propagation and arrest.

Fig. 17: Influence of Young's modulus on dynamic crack propagation and arrest.

Fig. 18: Influence of mass density on dynamic crack propagation and arrest.

Fig. 19: Variation of reaction force between wedge and pins during the crack
propagation (fixed loading condition).

Fig. 20: Variation of crack-face profiles (fixed loading condition).

Fig. 21: Variations of reaction force and distance between wedge and pin
L (wedge loading condition: contact/no-contact).

Fig. 22: Variation of crack-face profiles (wedge loading condition).

Fig. 23: Influence of the loading conditions on dynamic crack propagation and
arrest.

Fig. 24: Energy variations with the wedge loading condition.



Table 1

(Data 1)

Material Young's Modulus Poisson's Ratio Mass Density Bar Wave Speed
Number EIIGN/M 21 V p[kg/m3 ] vrE-7P [m/secJ

1 18 3(a 0 .3 1 8(a 80 42(a 4770

1110 b .3() 7053 (d) 5190

111 183 0.280 8042 4770

IV 190 0.3 8042 4860

(a) Obtained from J.F. Kaithoff [11].

(b) Taken from Ref. [10]I.

(c) Assumed.

2
(d) Calculated by p=EIC ;Co=5190 rn/sec.
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