AD=A103 067

UNCLASSIFIED

WANSAS STATE UNIV MANHATTAN DEPT OF COMPUTER SCIENCE F/6 9/2
RESEARCH IN FUNCTIONALLY DISTRIBUTED COMPUTER SYSTEMS DEVELOPME==ETC (L)

FEB 77 F J MARYANSKI+ V WALLENTINE DAAG29=76-G=-0108

CS=77=2 NL

. N 4
- //./ - 5
et ¥ ,4, :/)’/

AIRMICS amimwaie s 2t
CQm:::tor Science Atlannt:, GA 030332 oo
Do Technical Report
S _RESEARCH IN FUNCTIONALLY
g DISTRIBUTED COMPUTER
: SYSTEMS DEVELOPMENT.
Py .
<< Kansas State University
;o ST | e
Virgil /Wallentine 198’-5:3
P . . | \ ti t AUG 20 1 ﬁ
- rincipal Investigator 5

Approved for public release; distribution unlimited

__ VOLME VIIT .

A DeapLock Pr ION ALGORITHM FOR
uISTRIBUTEDKDATA EOMANAGENENT SYSTEM .

U.S. ARMY COMPUTER SYSTEMS COMMAND FT BELVOIR, VA 22060

DTG FILE COPY

L35 Ly yrs

s . T T o o !
Nttt b o0 SRS WP ST OPR T, V. PO DA S

. * UNCLASSIFIED ¥
SECURITY CLAWLITICATION OF TS PAGE {(When Data | ntered)
! ! READ INSTRUCTIONS
1. REPORT NUMBLR 2. GOVT ACCESSION N0.|I 3. RECIFPIENT'S CATALOG NUMBER
M} .o C
UD-As031ce7
4. TITLE (and Subtitie) l S. TYPE OF REPORT & PERIOD COVERED
}
A DEADLOCK PREVENTION ALGORITHM FOR Iteri
DISTRIBUTED DATA BASE MANAGEMENT SYSTEMS. rim
L 6. PERFORMING ORG. REPORT NUMBER
g L cs 77-2 v
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)
Fred Maryanski
DAAG 29-76-G-0108~
9. PERFORMING ORGANIZATION NAME 2ND ADDRESS 10. PR(S-GRAM ELEMENT, PRCJECT, TASK
X . AREA & WORK UNIT NUMBERS
Kansas State University
Department of Computer Science
Manhattan, KS 66506
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
US Army Research Office February 1977
P O Box 12211 13. NUMBER OF PAGES
Research Trianple Park, NC 27700 27 pages
14. MONITORING AGENCY NAME & ADDRESS(/f difterent {from Controlling Oftsce) 15. SECURITY CL ASS. {of this report)
US Army Computer Systems Command e
Attn: CSCS-AT Unclassified
Ft. Belvoir, VA 22060 T5a. DECL ASSIFICATION DOWNGRADING

SCHEOULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, {{ different from Report)

18. SUPPLEMENTARY NOTES

The findings in this report are not to be construed as an official
Department of the Army position, unless so designated by other authorized
documents.

119 KEY WORDS /Continue on reverse side if necessary and identify by block number;

Deadlock
b DBMS

S~

b ——
20 ARGYRHRACT rContlnue on rovoerse arde if necessary ond 1dentifly by dlock number)

—-aVver-

——

DD "‘ N .‘_]/1/3 EOVTHON OF Y #00y K5 1y gty f T Ul\\'l.l:\:ii 1 ik‘\i

1

SECHHITY T8 oo vF e A50ON S0 T 5 AGE When Satn £

UNCHLASSTELED

SECURITY CLAMCIFICATION OF THIS PAGE(When Dats Entered)

N — e Ri o Ar— A 0s SN M WA e

=ABSTRACT-

The problem of deadlock in distributed data base
management is analyzed in terms of performance effects of
potential deadlock handling schemes. The performance
tradeoffs of deadlock detection and deadlock prevention for
distributed data base management systems are compared.
Since the run-time overhead in deadlock prevention is
projected to be less than for deadlock detection, an
algorithm for preventing deadlocks in distributed data Dbase
systems is developed. The critical information for the
deadlock prevention algorithm is maintained in a shared
record list. The shared record 1list contains all shared
access records for a set of tasks. Shared recoras lists are
maintained dynamically by the run-time system. A proof thet
the algorithm prevents deadlocks in a distributed data Dbase

management system is provided along with a comprehensive
example.

UNCLASSIFIED

A Deadlock Prevention Algorithm
for Distributed Data Base Management
1
Systems

Technical Report CS77-02

Fred J. Maryanski

Computer Science Department
Kansas State University
Manhattan, Kansas 66506

February 1977

]'l'lw work reported herein was supported by the United
States Army Computer Systems Command, Grant No. DAAC
29-76-G-0108.

-

Abstract

The problem of deadlock in distributed data basc management 1is
analyzed in terms of performance cffects of potential decadlock handling
schemes. The performance tradeoffs of deadlock detection and deadlock
prevention for distributed data base management systems are compared.
Since the run-time overhead in deadlock prevention is projected to be
less than for deadlock detection, an algorithm for preventing deadlocks
in distributed data base systems is developed. The critical information
for the deadlock prevention algorithm is maintained in a shared record
list. The shared record list contains all shared access records for
a set of tasks. Shared records lists are maintained d&namically by the
run-time system. A proof that the algorithm prevents deadlocks in a
distributed data basce managment system is provided along with a compre-
hensive example. A discussion of the efficiency of the deadlock
prevention algorithm indicates that partitioning the data base into

sub-schemas reduces the overhead.

Key Words and Phrases:

e’
pistributed data base management systems, deadlock prevention,
system deadlocks.
CR Categories:
4.33
~
A 4

1 Introduction

One of the major trends in computer systems is toward the decentralization
of resources and facilities., This phenomenum has lead to a requirement for
distributed data basc management systems., A distributed DBMS permits an
application program executing on a processor in a computer network to access
data on any other node in the network. In an optimal situation the only
limits on data access are communication linkages and security. A distributed
DBMS relies upon its underlying network for communication facilities. The
basic data basc software in a distributed system is functionally identical te
a centralized (one machine) system.

From the preceding statements it appears that a distributed DBMS can be
realized by interfacing a centralized data base system with a network communicati:
facility. However, as indicated by Fry and Sibley [10], when a data base
system is extended to operate over several machines a whole new class of
problems arises while many existing problems become more complex. Among
those problems that are complicated by the distribution of the data base

is that of deadlock. This paper proposes a method for preventing deadlock

in a distributed data basc system. The algorithm stated here is intended to
avoid deadlock in a manner that is transparent to the application program and
with minimal effect on processes that would not be involved in a deadlock

Situation,

2. Dictriboted hata Bascs Systems

Before the precentation of the deadlock preveantion algorithm can occur,
terminolopy concerning data base management systems in general and distributed
data poase systens in particular must be established. A schema is a logical
descripcion of o data base. The portion of a schema that may be accessed by

a particalar application program is specificed by the sub-schema associated

PR

witih that program. The sub-schema defines the data records that the propgram
may operate upon and indicates the logical relationships among the records
in the data base.

In a centralized data basce system, the application program, sub-schema
and data base software all reside on one processor which is physically connccted
to the secondary storage containing the data base. A distributed data base
management system has resources and their control spread among the processors
of a computer network. In a distributed DBMS, an application program executing
on one network node may access data that reside at several distinct nodes. A
computer that executes data base application programs is a host machine. A
back-end machine is one which controls access to data. A machine with both

capabilities is termed a bi-functional machine. Figure 1 protrays a distributced

DBMS with host, back-end, and bi-functional nodes. A discussion of rhe
goeneral organization of distributed data bases can be found in Reference [18].
In order to implement a distributed DBMS, the software required for
a centralized DBMS is necessary plus some communication and control software.
As indicated in Reference[18]), communication between application programs and

data base tasks can best be accomplished by means of a generalized message
systoew which is capable of handling communication among hetcrogenceous machines,
Yac mcsiope system must alse allow for transmission over a wide range of
inter-machine connections, from conventional phone lines (typically 1200 baud)
to shared memory Gy oo anately 10M baud).

A proup of machines tied together via memory-to-memory linkages is known
as g vluster. A network can be formed from a collection of clusters joinoed
by ltowvee speed connections. In o distributed DBMS communication between

macnine: i the same cluster can occur with little overhead. However,

Intercio.tor conmunication may result in noticeable performance degradation.

The impact of intermachine communication upon system performance is an

important consideration in the treatment of deadlock in a distributed DBMS,

3. Deadlock in a distributed DBMS

In general, deadlock occurs when two or more processes request a sct of
shared resources in a sequence that results in the activation of each precess
being dependent upon the acquisition of a resource held by another process
whose activation is also blocked. A considerable amount of study has been
donce on the deadlock problem of operating systems [5,6,9,12-14,19-20]. The
particular form of deadlock under consideration in this report involves
processes that are data base application tasks residing on (potentially)
different machines in a data base network. The shared resource is a
collection of records dispersed among the data bases of the system that may
be updated by more than one application program. It is assumed that no
user imposed restrictious concerning accessibility have been placed upon the
data records. This form of deadlock is a DBMS problem, not a user problem.
The means of treating deadlock must be totally transparent to the application
program.

The special difficulty of deadlock in a distributed data base is that
since there is no central control point in the network, the responsibility
ior noting the actual or potentialoccurrence of a deadlock situation can not
canily be asnigze: . Ll task requesting the resource can be informed that the

reguent was unable to be fulfilled. However, if that resource is controlled

by once {(or more) different processors, considerable manipulation and intermachine

comnunication would be required to determine if a deadlock situation exists.

it e tte ol - : a

Ao Deaciock beteetion and Preveation

There are two basic mechanisms for treating the dcadlock problem [4].
One approach is to prevent deadlock before it can occur. Deadlock prevention
requires a prior knowledge of the shared records to be operated upon by all
active application tasks in the system. The alternative to deadlock pre-
vention in deadlock detection which involves noting the existence of a
deadlock situation, and then resolving the dilemma., Generally, a
deadlock situation can be resolved by halting one of the competing
processes and freeing its resources for access by other processes. However,
task "rollhack" is detrimental to system performance and in some cases in-
feasible.

In a distributed DBMS, both deadlock prevention and detection produce
consideradliv overhead; yarticularly if intercluster communication results.
Peadloclo preveation in a distributed data base requires that records that may
be shared cmeng <everal tasks (and updated by at least one) be identified.

For thi. information to be meaningtul, only the records shared with currently
active tasis should be included. This implies that whenever a task that up-
dates -aed records enters the systen the list of shared records must be
revised. Waen this has taken place, the new task can proceed. Whenever a
aven teoaoccss aoshared record arvises, a prevention algorithm can be invoked
coodctersine il the access may procced. I not, the task is blocked until
Lhie e rees e o, : .

The ain couce ot overhead in deadlock prevention in a distributed DBMS
poothe oo bntation and communication of the list of shared records for active
ta e dhes e a continual operation which must occur whenever tasks are
Created ad destroyeds Asoin all prevention schemes, some time is devoted
to avoiding deadiodis which would not have occurroed during a particular cxecution

y Yoo ' N . H e et v : N
e b e have aecess rights to many more records than it actually uues

Deadlock detection schemes represent an a posterlori approach to the
problem of avoiding deadlocks. In a distributed data base system, deadliock
detection involves first identifying a set of two or more tasks blocking cach
other from a collection of shared records. Generally a "timeout" mechanism
which involves noting that the effected tasks have becn waiting for longer
than some fixed time is used in deadlock dectection. Once the sct of dead-
locked tasks and the conflicting resources are identified, one of the tasks
must be rolled back to some point that will free the resources necessary to
break the deadlock. Rollback involves restoring all data to the values held
before the operations being retracted were performed. In a distribpted
envirenment, the data base operations may be initiated on one host processor
and carried out by several different back-end processors. Rollback action
would have to be initiated by the host processor and then carried out by the
back-end processor in a manner analagous to the execution of a standard
data base access. This will necessitate considerable message transmission
activity to start and synchronize the rollback operation,

An additional nejative performance factor in the deadlock detection
approach is that tacks not involved in the deadlock situation can be effected
if they have aceo el datn written by the sequence of compands being rolled
back. 1In this cav, the te b oeoeon,, the data would also have to be rolled
pack, It i powcible for the rollliack to cawcade throughout the system in the
WOt Caae,

The deadioci detvction alperithos Jeseribed in rederences 12,3,7,15] all
reguite o dynaedc it of proeces o and the records that they access. This
infoymation i civilar to that roquired in a deadlock prevention scheme,

Acquiting and maintaiving an acccessibility list for Jdeadlock deteetion could

il
-

reguite o heavy comnmunication load in a distributed system as in the case of

desalodd prevention,

A corparison of the two alternatives for avoiding deadlock indicates
that both types of algorithms would require some form of a reccord access-
ibility list. Since deadlock prevent{on requires continual computational
veasures are wost likely to be invoked infrequently, there is potentionally
wmore overhead in deadlock prevention. However, the overhcead is fixed and the
prevent ivia algorithm has no effect upen processes that may not be involved in
any Jeadleck situvations. In a distributed data base system, the rollback and
tivceout rochanisms of deadlock detection could result in substantial com-
puatat len and commuaicaticn overhead and also the rolling back or blocking of
tasics not invelved in the deadlock situation.

pecatse of the uncertain and petentially serious performance degradation
that mav result from rellback in a distributed DBMS deadlock prevention is
a safer stratepy for handling deadiocks in a distributed data base environ-

ment . Thuas, this paper cencentrates upon deadlock prevention,

, Iafer L 0in Regaired to Prevent Deadlock

In oo dieributed DI utilizing the proposed prevention algorithm,

cact: baci-end precessor will be responsible for preventing deadlock situatiens

Tiovosvin s the pertion of the data base under its control. Sinee the back-end
preocwr perferne the fanction of manipulating the data, it is best suited
o o the reroon il 0 s for deadlock prevention. In this way, the
prevoation ot deadiocl i removed from the application task.,

For oo active toak that it i« scerving, the back-end procecsor maintains

alicr o recorda that omay be accensed by several tasks and updated by oat

Tha ared record e i deraoved from the sub~scehema of task. When a

tacde e aaitrted st hared record Tist o is circulated among the back-cmd

processors to o determine i any Toteractloa with other task exlsts, A

list of intervacting tazke is malntained by the back-end processore. In order
to minimire the communications overhcad upon task inftiation, cach back-

end processor can maintain a list which indicates thosce back-end processor:s
which may control records shared with any given sub-schema. Only these back-
ends with potential interaction need be contacted. Upon task termination
similar action must be taken to withdraw the task and its records from the
task interaction and shared record lists. The shared record list is

conceptually sinilar to the process set of Chu and Ohlmacher [4].

6. Dbeadlock Trevention
An algorithm for the prevention of deadlock in a distributed DBMS
is developed in this section. Initially some notational conventicns must

be cstablished.

Definition I (Netation) y
1. rj - a record in the data base
2. 'I‘K - on application task.
3. RK - potential shared record list of T,. A set of shared records
is accessed by several tasks and updated by at lcast one,
4. XT - a task interaction list. A set of tasks whose potential I
shared record lists have non-empty pairwise intersections,
5. ST = the shared record list of X, . All records appearing in more
than onc potential shared récord list of the tasks in XT.
6. Bk = the back-end processor executing a data base request for Ty. F
7. S.. . - the shared record list of a sct of tasks T on back-ond
T,K , _ _ C
processor Koo A record in a shisred record 1ist is marked with
a task ideantifier when it is requested or locked.
8. m (ST K) - the number of distinct tasks that have records marked
’ in S, ...
T,K
9. L (ST) - the number of distinct tasks that have records loched
in ST. o

For a given task interaction list XT, a copy of ST' the shared record

list, is maintained on each back-end processor executing data base operations

for a tack 1in XT'

In order to properly prevent deadlock, the state of the system
immediately prior to a deadlock state must be described and recognized. 1If
an algorithm can develop which insures that the distributed DBMS will ncver
enter a state that can immediately lead to deadlock, then the algorithm will

prevent deadlock. First let us formally define deadlock.

Definition 2
A sct of tasks T = {T1,Tz,...,Tm}, m = 2, is deadlocked if for

1 i © m-1, T; is blocked by Ti+ and T, is blocked by Tl'

1

BExarple 1
Assume there are five tasks Tl’ T2, T3, TQ’ TS’ active in the system.
Let
Ry = {rp, ry, 14}
R, = {rl, L r7}
Ry = {rJ, Tos r7}
Rl; = {T(), r()]
Ry = {rg, rg)
Then
xl = {1y, rz}
X, = AT, 1.}
X3 = “Z‘ IJJ
X/‘ s {ll, 1'2, AJ}
)\',) = “/4’ I‘l))
and
$, {113 S3= {r7} S5= {rq)
S 5 = -
7 {n“} S/. {rl, T r7}

10°

3 and T3 is blocked by 7T

is blocked Ly T

it Tl is blocked by T, T2 1’

then Xé is deadlocked.

Definition 2

A sct of tasks T = {Tl, T2. S Tm} , m 22, 1s in a dcadlock-pronc
state if there is a sequence of unfulfillable requests that can be issued

by the tasks in T that will place T in a decadlocked state.

Lepmma 1
A sct of tasks cannot enter a deadlock state without first entering
a deadlock~-prone state.

This result follows immediately from Definitions 2 and 3.

Example 2

LERATPAC
Consider the set of tasks in the previous example.
Assume that

Tl has locked r3;

T2 has locked rl;

and T, has locked r,.
3 7
T 15 in a deadlock-prone state since the following sequence of commands

resuits in a deadlock state:

T, requests r

i 1
']Z r('(}nt‘:;' l_;
T3 Togeats, Vs
since To will be blocked by T,, 7T, will be blocked by T, and T, will
1 2 2 3 3
boe bloched by Tl.
Lewsor 7oindicates a method for devecting the existence of a deadlock=prone

State,

11

LALA-nv‘.l:.'l__‘Z‘
A scet of tasks T is in a decadlock-prone state {f and only L (S‘l‘) = lll
}’_l;(,'v‘)ﬁ

Let T = {T , T

1 Ty e Tk} where the numbering of tasks 1s arbitrary,

k > 2.

We will first show that if L (ST) = lT|, then T is in a decadlock-prone

state,
Let {r;, ryy oees rk) < S;.
Let QO be the state of the system when L (ST) = [T]
Since L (ST) = IT[, cach task in T must have at least one record locked.

we can assume that for 1 < i < k, r, is locked by Ti'
Since each record in ST is contained in the intersection of the record
lists of at least two tasks, we can assume that for 1 <i<k-1, rl_‘_lcF’in R:I.+l
and rl € Rk) Rl'
From system state QO, let task Ti request record ri+l’ 1 <ic<k-1, and let
task Tk request record ry-
The system will then enter state Ql in which the following condition

nolds:

T, is blocked by T

1 2°
T2 is blocked by '1'3;
T, is bilo T T

K=1 ~

T is biocked by T

K L

Thus state Ql in a deadlock state.
From Hefinition 3, it follows that QO is a deadlock-proune state.

Theretore (.‘:T) ={'l'[implics that T is in a decadlock-prone state.

Jt most now be demonstrated that the existence of a deadlock-prone

statc dnplice that L(8,) - |T].
4

f WA

Let Q0 be a dealock-prone state such that there is a sequence of unsat-
isfiable requests which lead to deadlock state Ql'

Assume that the tasks in T are blocked in state Q1 as shown;

Tl is blocked by T2;
T2 1s blocked by T3;
1k—1 is blocked by Tk:

Tk is blocked by Tl;

1f a task is bDlocking ancther task, the intersection of their record

lists must be non-cumpty. Therefore, there is a set of records {r r

1 T2 ...rk}

E_ST such that

for 1 < i <« k-1, r, ,eR, n R,

and r.¢ R n R

1 k 1’

Since cach task in T is blocking another task, each task in T must
have at least one record locked in state Ql' Therefore in state Ql’
L (s) =17,

Since Q1 was recached from Q0 by a sequence of unsatisfiable requests,
the sceo of records locked in Ql is identical to the set of records
locked in QO. Therefore in state QO, L (ST) = lT] where QO is a dcadlock-

prooe ot

Foroam o

In the deadtoched and deadlock=prone states of preceeding examples,
s, r. . r o, Y where .
4 Irge vy r, wre the
} 3 2
intezer s beneath the records indicate the task locking the record.

Thus, 1. (9 - .
T (1‘) 3

-4

13

Go o An Adporithn for the Prevention of Deadlock

From Lemna 2, we can sce that if L (ST) < ITl = 1 for allsets of shared
records, then the system will be free of deadlock. This relationship between
the number of tasks potentially and actively sharing data and the occurrence
of dvadlock forms the basis for a deadlock prevention algorithm.

Three commands and a response are nccessary for operation in a deadlock-
frec¢ environment., All commands and responses are transmitted among back-cond
processors. The commands are LOCK, UNLOCK and REQUEST. When a task desirces
to update a shared record, the back-end processor controlling that record
issucs either a LOCK or REQUEST command to the other back-end processors
controlling records of tasks in any of the task interaction lists of the
requesting task. The decision as to whether LOCK or REQUEST is sent is based
upon rclative task priorities. LOCK commands are sent to the back-end pro-
cessors of lower priority tasks, while back-end processors serving tasks of
higher priority receive REQUEST commands. 1If a back-end processor that has
received a REQUEST command determines that the record is available, it issues
a POSITIVE response, It is important to note that under the deadlock preven-
tion algorithm a negative response is not necessary since a back-end processor
iscuing a REQUEST for an unavailable record or a REQUEST that would lead to

deadicen will recoive a LOCK command which invalidates the REQUEST. The

UNLOCH command relinquishes control of a record. The detailed effeet of

cach Jurction in o+ 70 1 in the following definitions. A command or request
is net neccensary for the query of a shared record. A check of the shared
record Yint will dndicate it the record is available. In this discussion

the e Mupdate” will fndicate both a read and write, while "query' implies

a read ondy.

14

Deiniti g -

The BEQEEEK_EJL_Ik command issucd by Bk to Bi results in the following
operatioas:

If for all ST,i containing rj,

a. r, is unmarked in S, . and

J T,i
. either T 5 ; d i < IM . |-1 f 1 <2,
b. either lk has a record marked in ST,i or m (ST,i) | Tl 1 for IPTI
then B, marks r, in all S ., with the identificr of T, and transmits
i j T,1 k

a POSITIVQ_LjLﬁfk response to Bk.
Otherwise Bi docs not respond to Bk'

Definition 4 indicates that two conditions must be satisficd before a
back-cnd processor can signify that a record is available:

1. The record must not be claimed by another task.

2, If the first condition is, then it must be certified that granting

control of the record to Tk would not cause any set of tasks to enter a

deadlock-prone state.

Defin:tion 5 ,

The LQSEMEJ:_T command, when issued by B to Bj, causcs rj to be marked

k k

as locked by Tk in all shared record lists of Bj.

detlnction O
The UNLOCR L command causes rj to be unmarked in all shared record 1lists.
The purpose of 8 WUNMLEST command and the POSITIVE response is to confirm
e availability of a record with higher priority tasks. Since the distributed
duti base environment permits concurrent asynchronous operations on shared
data, o back-end processor must query those back-ends that contain higher
prieroty tasks which interact with the requesting task to verify the status
of the accord. 1f the record is available, a POSITIVE response is sent, 1f

the 1ocord o unavailable, ot the time of the REQUEST a LOCK command would

—e . a - L. . B . N T o e -
—Mv ilinbo it A% ad . o

already bein transit to the back-end of the requesting task. The receipt

of 4 1.OCK command from a higher priority task invalidates a REQUEST. The

LOCK command binds a record to a task while UNLOCK is used to rclease records.
The functions and responses are employed by the following algorithm

to prevent the distributed DEMS from entering a dcadlock state.

Algorithum 1
PART A

When task T, desires to update shared record rj, the following steps

nust be taken by B, to prevent a deadlock state.

k

1. Check if rj is marked in any S containing rj. I1f so, Tk must

T)k i
wait until B, rececives an UNLOCK I command. Note that if ry is marked in one f
S , i ed i] .
T,k it is marked in all ST,k
- - _ . .
2. 1If — ST,k’ such that m (ST,k) lXTl 1, then Tk must wait until
a record in S, is unlocked.
T,k
3. Mark r, with the identifier of T, in all S contéining r..
j k T,k J

4, For all higher priority tasks in any S, containing TK

T

command to their back-end processors.

issue a REQUEST r., T
e e L _..J,_A__k

5. Wait for POS[TIY{“ti responses from all back-ends of step 4.

6. If while waiting, B, receives a LOCK r,, T, command, then B must issuc
k —_—i k

UNLOCH 1. commands to all back-ends which have transmitted POSITIVE rj TeSpoOnses.
g 25 Aiopiive T

and then Bk M. 0w e step 1.

7. If while waiting B recceives a LOCK v, Ti command (rn # rj), and

k AL

(o) lx,,,l - 1, then B

must iSﬁU(-lpﬂ{KHiJj commands to all back-cnds

which have transmittoed FOSTTIVE ro responses and then return to step 2.
Y |

8. When Kk receives EQﬁLT]yV“IJ responsces from all tasks in step 4 it

inctes g LOCK v
- N

Tl command to all lower priority tasks in any XT containing Tk.

Samiinatie B

rl.".;

16

9. 'l‘k may then operate upon)‘J. ,

10, Upon completion of the operations in step 9, ”k 1ssues an !Qﬂé&}’)ﬁ
command to all tasks in any XT containing TK'
PART B

When a back-end processor, Bi’ receives a REQUEST r , Tk command, it
transmits a EQﬁJJj}Twij response if the requirements of Def. 4 are satisfied.
it a POSITIVE response is transmitted, rj is marked with the identifier of
Tk in all ST,i'

PART C
When a back-end processor, B,, receives a LOCK r , T. command and it does
i —r"K
not have a REOUPST y command outstanding such that the conditions in steps
S
6 or 7 of Part A arise, r is marked with the identifier of Tk in all ST i

1t must now be demonstrated that Algorithm 1 prevents deadlock.

Lewmma 3
Alporithm 1 prevents the system from entering a deadlock-prone state.
Pre vl
vVien Defo 1, it can be seen that under all circumstances, for any ST’
m(ﬂT L) © L (ST) for all back-ends B, .

v k

Goder Alporithe 4, L nack=end processor may only issue a LOCK command

il (HT.L) : EXTI-I for all XT. Thus immediately prior to the issuance of

a L0 conrand, L (ST)' IXTI— 1. After, the 1.OCK command has been issucd, the
Baxitao: value of L (ST) is |XT|—1 for all ST. Therefore according to Lemma 2, it th
sy . ton operates under Algorithm 1, it cannot enter a deadlock-prone state. ~

17

F_ Theoren 1
Algorithm 1 prevents the system from entering a dcadlock state.
Proof

The theorem follows immediately from Lemmas 1 and 3.

w

The following example, illustrates the operating of a distributed DBMS with

the deadlock prevention algorithm in effect.

Example 4
Assume the set of tasks in Lxample 1. We will follow the actions of

the back-end processors Bl’ BZ’ B3 which control data base access for Tl, Tz,

and T3 respectively. The only task set in which the value of m (ST) can be

greater than 2 is XA = {Tl’TZ’ T3}.

In the example under consideration, SA = {rl, r3, r7} . For notational

~ convenience cach 54 i will be denoted by an ordered triple in which the
bl

first element corresponds to the task, if any, marking s the second element

indicates the task marking r,,while the final element represents the task

3
marking r,.

Assume the following set of references in the sample system.

Tine Task Record Referenced
tO Tl r1
LO T2 r7
LO T3 r3
10 T T3
Y10 T 5
0 Ty Ty
Onee o task receives the second record it has requested, it requires S

time units to complete ity eoperation on those records,

18

For purposcs ef this example, the delays between back-end processors
shown below arce assumed,

Bl > B2 - 2 time units

Bl <> B3 - 3 time units

82 <> 53 - 1 time unit.

Also, let the task priorities be

Ii > TZ > T3.

Given the requests listed above the following operations are performed

in the system,

1. At time to

s 1 = {1' » } s

‘., = (.3,

={,,2) s

.

4,2 4,3

Bl issues LOCK Lo Tl to BZ and 33'

‘Tl proceeds to operate on rl. -

Bz issues REQUEST r7, TZ to Bl'

B, issues REQUEST r T. to B, and B,.

3 3*—3 1 2

2, At time tl.

receives REQUEST r32_23' i

{.3,2 1. |

B,

S4,2
B

) transmits a POSITIVE r3 to T3.

3. At ; :
time t2'

Bl receives REQUEST 57;_T2°

e = (L . 2).

Bl Transmits a POSITIVF_I7 to Bz.

52 receives a LOCK rli—Il'
Sl‘.2 = {1,3,2}.

19

4. AU tlwme Uy
By recceives EEQHESE_IjLJE3. Since m (Sb,l) = 2 the request is ignored,
By receives LOCK 1o, Tl' This command also indicates that the request
for ry by B3 will not be granted by Tl' Thus,
84’3 = {1, , }.
B3 issues an UNL0C§_£3L_23 to BZ'
5. At time ta,
ives S ‘I .
B2 receives PO IIl}Lu£7 from Bl
T2 procecds to operate on .
B2 issues a LQQ5_§7, T2 to 83. }
i |
als receives UNLOCK . .
B2 also receives UNLOCK r3_~?3 from B3
34’2 = {1, ,2},
6. - tin
At time LS’
rceives LOCK . .
83 receive J£~1~17~_32
54,3 = {1, ,21},
7. AU time tl()’
B. 1s8uc= LOOK T ' { .
ERRAR R USSR ST) to B2 and 83
. R .
54’1 {1,1,2},
'l‘A Proceca o crdte on 1'3.
o AL time !lz,
l’»z receives LOCE _r1 "'Tl.
S = {1,1,21).
4.2 {1.1,2]}
2. AL taime 113,

20
B, veceives 1LOCK r_o, T
R —emm——] -] —
54’3 = {1,1,2} .
10. At time tlS’
Hl issues E_I\:‘LQ&_K_ll and E_N,I;,_Qf;}_(_l:; to BZ and B3.
54,1 = {, , 2},

11. At time Tl7’ |
B, receives UNLOCK r, and UNLOCK r, and issues REQUEST r , T, !
to B. -

1
5’4,2 {2, ,21,
12. At time tl8’
By receives UNLOCK v, and UNLOCK r, and issues REQUEST r., T, ~
to Bl and 132.
54'3 = { , 3, 2}.
13. At time tl9’
B, veceives REQUEST ro, T,
. . "
.‘,1”1 = {2, ,2}.
B, dgsues POSTTIVE 1'l ,t_O__Bz'
B?, receiven R.}'.("‘ S A\.S.”T}.
= {2)
PR Y
l§2 1ssues ?‘f‘ﬁi[i'_l\"[}j:; to B3.
14 . AU Lime € R
20 ~
H‘,’ receiven POSTTIVE _;j,‘ from BZ.
. S . s S M I PR ._.:.'.‘x._,‘_'A.A_.Lu__* -.; o a v

15.

16.

17.

18.

19.

20.

At time t21'-

Bl reccives REQUEST r}L;[3.
S,"1 - {2,3,2).

Bl issues POSITIVE L2 to B3'

B, reccives POSITIVL v, from B, and then issues a LOCK r

2 —_—1 1 —1

and proceceds to operate upon -

At time t_,.

22
83 reccives LOCE—ILLTIZ.
84‘3 = {2,3,2}.
At time t

24°

B, receives POSITIVE r. from B, and then proceeds to operate on ry.

3 —=3 1

-At time t26,

BZ issues UNLOCK L3} and UNLOCK r, to Bl and BJ'

At time t27,

83 reccives UNLOCK rl and UNLOCK r7 -

_57. T3 to Bl and BZ'

S ={ ,3,3},

4,3

At time CZS'
rcvives UNLOCK
Bl recelves UNLOCK r1

{.3, 1,

and UNLOCK r7 from BZ'

Su,1”

Bz receives RFQUEST r ,__1'3'

B, issucs a fﬁﬁ]l])ji_£7 to B_.

2 3

S4,2 7 1330,

T

21

to

B

3

from B, and then transmits REQUEST

21.

o

23.

At

B

3

At

B

Lime t,
¢ ot29

receives POSITIVE r7 from B2

time t30,

receives REQUHSI“£7, T3 from B3.
54,1 = { 3, 3} .

transmits EQEJEEEQ&JEy to 83.
time t33,

receives POSITIVE p7 from Bl and then hegins to operate upon ry.

22°

)

N

43

7. Lificiency of Deadlock Prevention Algorithm

It is difficult to trecat the cfficicncy of Algorithm 1 without
experimental evidence {rom a prototype distributed DBMS. There are several
critical performance factors which could vary among distributed DBMS imple-
mentations. Network topology, degree of potential shariug among application
tasks, and subschema size are among the system parameters that will have
the strongest performance effects.

The pumber of back-end processors in the network along with the
physical distance and type of connections among the back-end processors
will influcnce the amount of communication overhead resulting from dead-
lock prevention. It should be noted that only back-end processors that
execute data base operations for tasks that share data have a need to
exchange inforuation in order to prevent deadlock. 1If both deadlocl: prevention
and a high degree of efficiency are goals of a system design, than data shared
by a group of tasks should be controlled by a minimal number of back-end
processors. (Ideally, each such unit of shared data would reside on the
storapge of a single back-end processor.)

Once cenvironment under which Lhé deadlock prevention algorithm could
degrade performance is an on-line system in which each user may access
any reeord in the entire data base. In this situation, the deadlock preventicn
algorithm woutd force thoe DBMS to operate in a single threaded mode. 1If the
sub-tchoma concept o appiied to this unrestricted on-line environment, the
undesircable effects of deadlock prevention can be virtually eliminated.
Instead of permitting each on-line command unrestricted access to the entire
data base, the data base can be partitioned into a logical collection of

sub scheras. Whenever o user issues an on-line data hase request, the

appropraate sub-schena is invoked prior to the actual execution of the command,

24 .

The sub-schemas should be defined to encompass only that portion of the data
base that the command may access. For example, if an airline rescrvatjon
c¢lerk updates a passenger list, the sub-schema would contain the passenger
list for a given flight.

1n an on-linc environment in which the data base has been partitioned
jiute sub-schemas the user need not sacrifice any flexibility of data access.
Fach user would interface with a re-entrant control program which parses
each request, invokes the applicable sub-schema and then activates a host
task to execute the request., By organizing an on-line system in this manner

the negative performance effects of deadlock prevention are minimized.

The approach to deadlock prevention described here is a dynamic pre-
clain techuique {8) since it implicitly locks a set of records that could
be reguired for an operation. The deadlock prevention scheme proposed
for distributed data base systems has some similarity to the data base decad-
lock prevention mechanisms of Lomet [16) and Chu and Ohlmacher [4]. Lomet
cmploys a graph-theoretical technique to avoiding deadlock. However, the
ioersstion contained in the graphs is essentially the same as that maintained
i the coared record list. The version of Lomet's algorithm presented in
eferon. [16] does not consider the per{ormance effects of operation in a
drctributed environment .,

The process set of Chu and Ohlmacher is very close conceptually to the
shos el secord Tist. The algorithm of Chu and Ohlmacher is also intended
for dirtvibuted systems. The technique developed here differs from the
approach of Chu and Ohlnacher in that it operates at the record level and
tn that a requesting task is given control of only that part of its sharced

record Vist necessary to avoid a deadlock-prone state. The feasibility of

S SR PP TV SR

dgatabase sharing at the record level has been studiced using simulation by
Shemer and Collmeyer [20], who projected that even with a high degree of
contention, performance degradation due to overhead would be minimal.
Presently, several commercially available, single-machine data base systems
provide data sharing and locking at the record level [22].

The dcadlock prevention algorithm is intended to prevent all possible
deadlocks while allowing maximum data base sharing at the record level.
The results of the Section 6 demonstrate that the algorithm meets these
criteria. Naturally, deadlock prevention incurs some overhead. However,
careful planning by the designer of a distributed data base application
who 1s cognizant of the operation of the prevention algorithm can result
in minimization of the overhead. For a distributed DBMS application to
operate cfficivntly under the deadlock prevention algorithm, it i: important
that the data base be partitioned into sub-schemas. However, once the sub-
schema is defined, the individual application programs need not be aware of
the mechanics of the deadlock prevention algorithm.

Due to the infrequency of deadlock situations, a deadlock detection
schema requires less overhead than deadlock prevention in a single machine
DB, dicwever, the uncertain amount of overhead in distributed DBXS rollback

added to the fixed overhead of the timeout mechanism, both of which are neces-

sarv ooperations in deadlock detection, leads to proposing deadlock prevention as
the more satisfac, ay wocchanism for handling dceadlocks in a distributed
data base. The subject of rollback for a distributed DBHS is trecated in

reference {17], which presents an algovithm for minimizing the overhead of
the rollback operation,

The lists computed by the prevention algorithm have potential application

in two critical desipn arecas of distributed data base. The size of a task

interaction list, X is an indicator of the amount of interfercence

T
resalting from the activation of a data basce task. Slunce task Interference
has an effcect in system performance, the scheduler could use the size of
XT as one of the weighting factors in the scheduling algorithm,

The contents of the shared record list would be of use to a prepaging
memory manager [23]. Records that arc unlocked, yet only requestable by a
single task, could be transmitted to the page buffer associated with that

task. The shared record list would be particularly valuable when used in

conjunction with a Markovian paging model [1,11].

Y.

(%)

10.

il.

12.

27

Refoerences

Aho, A. V., Denning, P. J, and UWllman, J. D., Principles of Optimal
Paype Replacement, Journal ACM 18,1 (Jan. 1971), 80-93.

Astrahan, M. M., et al., System R: Relational Approach to Data Basce
Management, ACM TODS 1,2 (June 1976), 97-137.

Chumberlin, D. D., Boyce, R. F., and Traiger, I. L., A Decadlock-Frec
Scheme for Resource Locking in a Data-Base Enviromment, Proc. IFIP 74
VAugust 1974), 340-343.

Chu, W. W., and Ohlmacher, G., fvoiding Decadlock in Distributed Data
Bases, Proc. ACM Annual Conference (November 1974), 156-160.

Coffman, E. G.,Jr., Flphick, M. J., and Shoshani, A., System Deadlock,
Computing Survevs 3,2 (June 1971), 67-78.

Courtois, P. J., Heymans, F., and Parnas, D. L., Concurrent Control with
"Readers” and "Writers", Comm. ACM 14,10 (October 1971), 667-668.

Eswaran, K. P., et al., The Notions of Consistency and Predicate
Locks in a bata Base System, Comm. ACM 19,11 (November 1976), 624-633.

Fverest, G. C., Concurrent Update Control and Data Base Integrity,
in Pata Base Managenent, J. W. Klimbie and K. L. Koffeman (eds.)

North-Holland, Amsterdam, (April 1974), 241-270.

Frailey, D. J., A Practical Approach to Managing Resources and
Avoiding Deadlocks, Comm. ACH 16,5 (May 1973), 323-329.

Fry, J. P. and Sibley, E. H., Evolution of Data Base Management Systcms,
Computing Surveys 8,1 (March 1976), 7-42.

Gelenbe, Eo Ao Unified Approach to the Evaluation of a Class of
Repiacement Algorithis, TEEE Trans. on Comp. €-22, 6 (June 1973),
611-61%. '

a

Habermann, Ao N. Prevention of System Deadlocks, Comm. ACHM 12,
7 (July 1969), 373-385.

Havender, . W. Avoadiog Deadlocks in Multitasking Systems, IBM
Systems Journal 7, 2(June 1968), 74-84,

Hoit, R. €. Some Deadlock Propertics of Computer Systems, Computing
Surveys 4, 3 (Scptember 1472y, 179-196. T

Kiay, P. Fooand Collneyer, Ao J. Database Sharing - an Efficient
Movhaniom for Supporting Concurrent Processes, Proc. National Computoer
Couf., Vol. 42, (Junc 1973), 271-275,

16.

17.

18.

19.

20.

21.

22.

23.

28

Lomet, D. B., A Practical Deadlock Avoidance Alpgorithm for Data Rase
Systems, Proc. ACM SI1GMOD Conf. (Aupust 1977), 122-127.

Maryanski, F. J. and Fisher, P. S., Rollback and Regovery in Distributed
Data Basc Management Systems, Proc. ACM Annual Conf. (October 1977).

Maryanski, F. J., et al., A Minicomputer Based Distributed Data Base
System, Proc., NBS-IELEE Trends and Applications Symposium: Micro and
Mini Systems (May 1976), 113-117.

Miller, T. J., Deadlock in Distributed Computer Networks, UIUCDCS-
R-74-619, Dept. of Computer Science, University of Illinois, Urbana,
I11., 1974.

Russell, R. D., A Model of Deadlock-Frece Resource Allocation, Ph.D.
Thesis, Dept. of Computer Science, Stanford University, Stanford, Ca.,
(July 1971).

Shemer, J. E. and Collmeyer, A. J., Databasc Sharing: A Study of
Interference, Roadblock, and Deadlock, Proc. ACM SIGFIDET Workshop,
(November 1972), 147-163.

Slonim, J., Maryanski, F. J., and Farrell, M. W., A Survey of Database
Management Systems, Tech. Report, Dept. of Computer Science, Kansas
State University, Manhattan, Kansas 66506 (in prep.).

Trivedi, K. S., Prepaging and Applications to Array Algorithms, IEEE
Trans. on Comp. C-25, 9 (September 1976), 915-921.

<
BI-
FUNCT
[i% |
DATA BASE DATA BASE DATA BASE
1 2 J

FIGURE 1

DISTRIBUTED DBMS

. ¥ ‘ - —
e . . —~ T ————— o ap e e

E TN . O

