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MAGNETIC ENERGY STORAGE AND CONVERSION
IN THE SOLAR ATMOSPHERE

10.1 INTRODUCTION

In the past, the problem of storage and conversion of magnetic energy on the Sun has
been investigated primarily in the context of solar flares, although increasing evidence has
appeared, in recent years, that this problem is relevant to other forms of solar activity, such as
atmospheric heating (Kuperus et al., 1981.) Hence, due to the relevance of magnetic-energy
storage and conversion to diverse aspects of solar activity, the present review while emphasizing
the physics of flares, is applicable to other solar phenomena as well. In §10.2, the relationship
between magnetic energy storage and the electrodynamic coupling of the solar atmosphere is
developed. This approach, which originates in the ionospheric-magnetospheric literature (e.g.,
Roederer, 1979), is both comprehensive and lucid, while including the standard view of mag-
netic energy storage (cf Van Hoven et aL, 1980). By accounting for the electrodynamic cou-
pling of the solar atmosphere, we are able to examine the fundamental problems associated
with the concept of in situ versus remote magnetic-energy storage. Furthermore, this approach
permits us to distinguish between the roles of local and global parameters in the storage pro-
cess.

Section 10.3 is focussed on the conversion mechanisms that can explain, in principle, the
rapid energy release of a flare. We emphasize physical understanding of these mechanisms, as
opposed to mathematical rigor. In addition, we discuss how electrodynamic coupling eventually
dictates which mechanism(s) is responsible for releasing the stored magnetic energy, and how
the global coupling dictates the final evolution of the relevant mechanism. No attempt is made
to review the flare models in which these processes are utilized, since a comprehensive and
objective review of this controversial topic already exists (Sturrock, 1980). Section 10.4 exam-
ines preflare triggers and in §10.5, we examine the most promising directions for future
research into the problem of magnetic-energy storage and conversion on the Sun.

10.2 GLOBAL ELECTRODYNAMIC COUPLING AND MAGNETIC ENERGY STORAGE

10.2.1 The Importance of Global Electrodynamic Coupling

In this section, we introduce the concept of global electrodynamic coupling in the
solar atmosphere, and examine how electrodynamic coupling affects both the magnetic-energy
storage process and the macroscopic stability of those plasma-magnetic field configurations in
which this storage might occur. We first review how currents are generated and transported and
what conditions need to be satisfied for storage of magnetic energy. Next we introduce
equivalent circuit analogs, to facilitate discussion of the electrodynamic concepts relevant to
solar conditions. The primary advantage of this approach is that it allows us to greatly simplify
complex magnetic field-current systems, while still incorporating the appropriate physics. We
conclude this section by discussing the fundamental problems of in situ versus remote
magnetic-energy storage with a critical examination of present-day understanding of MHD loop
stability.

10.2.1.1 Magnetic fields arise as a result of electric charges in motion, that is, currents.
Magnetic energy storage arises when a current system, driven by external sources of electro-
motive force, emf, does work against the induced emf's induced by the build-up of the current

Manuscript submitted May 12, 1981.
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system itself. This work is stored in the magnetic field associated with the currents, and can be
regained by allowing the currents to decay. Thus, to maintain the stored magnetic energy, the
preflare state must have the ability to generate new magnetic energy and permit its transport at
a rate which is faster than dissipation can cause its conversion to other forms of energy. To
store magnetic energy in the solar atmosphere, therefore, we must address the question of how
currents are generated and subsequently transported to the storage volume. In the case of a
flare the photosphere generates currents which are subsequently transported into the higher
atmosphere. However, these currents do not simply stop somewhere in the atmosphere, but
must flow in such a way as to satisfy the requirement of current continuity V - J - 0,* where J
is the current density. If J is resolved into a field aligned current, J11, and a current perpendic-
ular to the magnetic field, J1 , we can relate Ji to Ji by V J11 - - V • J1 ; that is, - V • J, acts
as a source for the field aligned currents. Hence, J, communicates between adjacent regions of
the solar atmosphere: the hot fully-ionized coronal plasma is coupled electrodynamically with
the colder partially-ionized photospheric plasma. J11, therefore represents the means by which
magnetic energy is transported from the "generator" (- V • J,.) to its "storage" site.

The origins of J, and, hence J11 can be understood as follows. Using the single-fluid
momentum equation (and neglecting gravity),

dv - -Vp + J X B (10.2.1)
d' c

and taking the vector cross product of (2.1) with B yields
j .cB x Vp cp dv x B, 00.2.2)

B 2  B2 d(0
where p is the total gas pressure, p the mass density, and v the bulk velocity of the plasma.
Note that (10.2.1) reveals nothing about ,11. Equation (10.2.2) demonstrates that J1 arises in
regions with pressure gradients and convective flow fields. Using V . J-- V . J, and
(10.2.2), we find (Sato and Iijima, 1979)

f _ pI _____ x J1 - VB 1 11;LxtB & ] 11
J= B0 0f 2 ~ (n 2 ? -p 2 dt ~ Vpjjds,(00.2.3)JB dt B0 2  + B 2  pB B

where the integration is performed over the field aligned coordinate s and incompressible flow
was assumed. Equation (10.2.3) illustrates the various means by which - V • J, gives rise to a
J1 in a fluid theory. The vorticity term (the left most term in the curly brackets) is the source
usually believed to generate the currents believed to cause flares (e.g., Stenflo, 1969; Hey-
vaerts, 1974b). Note that if the integrand in (10.2.3) were zero, J11 = aB 0 would result, where
a is the constant of integration for a specific field line. Thus, force free currents must com-
municate between regions producing -V . J (cf §10.2.2).

The physical processes that lead to the generation of J have their origins in the different
motions electrons and ions experience in the direction perpendicular to the magnetic field,
which result from either the small electron to ion mass ratio (the first and third terms in
(10.2.3)) or from the difference in the sign of the charge (the second term in (10.2.3)).

From a physical point of view, electrodynamic coupling arises when the resistivity tensor,
,q, varies from some finite value to effectively zero along a given field line in the presence of an
external force. This can be understood in the solar context as follows. Consider two domains
connected by a magnetic field (Figure 10.1). The first domain, denoted by PC (perfectly con-
ducting), satisfies Ohm's law in the ideal MHD approximation,

"We are justified in assuming V . J - 0 if we only consider phenomena for which the displacement current can be
neglected, as is the case here.

2
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REGION I

REGION II

DOMAIN PC
1r=0

t , J-I JIIREGION Ill

Figure 10.1 - Schematic of three simple current paths embedded in a plasma
with two resistivity domains: perfectly conducting (PC) and resistive (R).
Each path illustrates the typical magnetic configuration found in the solar atmo-

sphere: Region I, open; Region 11, partially open and closed; and Region Ill,
closed.
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E + VXB - 0, (10.2.4)

which implies that region PC is flux preserving.* The second domain, denoted by R (resistive),
is characterized by an Ohm's Law

E + v -x B J. (10.2.5)
c

Contained in -q are components that connect neighboring fields lines (Pedersen conductivity),
and thus allow the discharge of excess charges produced in domain PC or the flow of currents
perpendicular to B. In Figure 10.1, we have split domain PC into three separate regions
following Roederer (1979): Region I, corresponding to field lines starting at the photosphere
and ending in the solar wind, as in coronal holes; Region I, corresponding to field lines which
comprise a helmet streamer; and Region I1, corresponding to field lines entering domain PC
and then closing back into domain R, such as occurs in loops. Note that some loop field lines
may exist entirely in domain R. Assuming that some external force exists in R such that
V •Jt ;d 0, then the field-aligned currents J11 will link domains R and PC. If V • J = 0 is to
be satisfied in the MHD domain, then a J, must exist in both regions I and II. Since J, is
non-zero in regions I and II of domain PC, a Lorentz force (J x B) in domain PC attempts to
force the plasma in domain PC into co-motion. Thus, a plasma in domain PC of regions I and
I1, which is initially free of external forces, will become co-moving with the resistive plasma in
domain R, if the resistive plasma is under the influence of an external force.

Region III presents a special case in that the symmetry of J11, with respect to the two pos-
sible sources of J, in domain R, will dictate whether current continuity is satisfied by a J exist-
ing in domain PC or in R. Figure 10.2 illustrates four possible loop current systems. In gen-
eral, symmetric current systems with J1 - 0 in PC imply that a J, exists in PC. Asymmetric
current systems allow J11 to close in PC or in R depending on the degree of asymmetry in Jj1.

Because energy storage involves both local and global quantities, e.g., current density J
and total current 1, and because we will use global equivalent circuits to illustrate several con-
cepts about energy storage, it is pertinent to investigate the relationship between global quanti-
ties, such as total inductance L, total resistance R0 and total current I, and local quantities, such
as resistivity and current density. Consider first the equation of motion for the electron com-
ponent of the plasma

dve  v, x B
neme -. - - nee (E + c -VPe + nee-l • (10.2.6)

where Pe is the electron pressure, ne the electron density, and Ve the electron drift velocity.
1 8A

Neglecting the electron inertia (LHS of (10.2.6)), setting E = -VO - I and integrating
c at

(10.2.6) yields
f 2 o - j ., 2 ( 7) • .d .. 2 1 f 2 1oA . I. .. V-0 .dl+-dl +A - (10.2.7)

where

E0 - 1--V Pe + , B (10.2.8)
nee c

the integrations in (10.2.7) are performed over the current path between points I and 2 in the
plasma. The LHS of (10.2.7) is the applied voltage V, and the terms on the RHS of (10.2.7)

'llerc we ignore for now regions within PC where the ideal Mill) approximation can break down, such as in neutral
shects or in icaring layers (cf Vasyliunas, 1976).

4
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Figure 10.2 - Schematic of four possible current paths that can occur in a closed loop
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are, respectively, the resistive, capacitive, and inducti'.e voltage drops. E, contains both a rota-
tional and an electrostatic term. A relatively small displacement of electrons (with negligible
currents) will cause the capacitive term to cancel the electrostatic part of E,,, VP,. However, a
much larger current is driven continuously through the plasma by the solenoidal part of E,
s, x B, and its attendant B fields. If the capaciti c term in (10.2.7) is neglected, for the
moment, and the integration path is assumed to be that of a simple loop circuit, as is depicted
in Figure (10.3), Equation (10.2.7) yields:

-iR,, - l , (10.2.8)

where

.f E • 11, (10.2.9)

IRO= (i J ' dl, (10.2.10)

and
d MI ) - I f 2 ..A . dl. (10.2.11)

d/ C dt

Equations (10.2.9), (10.2.10), and (10.2.11) straight forwardly demonstrate that the contribu-
tion of local quantities along the current path determines R,,, L and 1. A more subtle conclu-
sion is that the evolution of the relevant circuit depends not only on the local parameters but
also on the global aspects of the entire circuit Isee below). In addition, the current path may
be very complicated and not amenable to analytic treatment.

The standard approach for both lkboratory (e.g.. Book et al., 1978) and space plasma (e.g.,
Bostr6m, 1974; Alfven, 1977) situations is to develop a representative global circuit analog of
the electrodynamic phenomenon of interest, and to couple this circuit analog 1o equations
which specify the evolution of the local parameters (e.g.. Book et al, 1978).

Regardless of which type of region in PC we consider, resistive dissipation in R is
expected to dominate resistive dissipation in PC (ignoring for now the possibility of instabilities
occurring in PC' that both limit and dissipate currents) so that magnetic energy storage is
strongly dependent on domain R. This latter point can be clarified further by considering a
simple lumped circuit (Figure 10.3) with a battery at potential V, an inductor with self-
inductance L, and a resistor with total resistance R,,. At t= 0 switch A is closed. At this
instant, there is no current in the circuit and the voltage drop across the resistor is zero. How-
ever, there is a voltage drop across the inductor given by LdI/dt and equal to V, where / is the
net current. As soon as the current begins to flow, a voltage begins to appear across the resis-
tor, resulting in a decreased voltage drop across the inductor and a decrease in dl/dt. The final
steady-state value of the current, 1, is determined by R, and the battery emf. In steady-state
the complete emf is across the resistor, since dil/d is zero. Hence, the maximum magnetic
energy stored, 1/2 Ll,2, is strongly dependent on RO, since I = V/RO. This simply reflects the
fact that a current will not flow without a load. In addition because the net current grows and
decays in time as LIR,, we see that not only is the total energy stored dependent on the resis-
tivity of domain R, but also the rate at which it is stored.

Although /, always is determined by VIR,, the total energy stored and the rate at which
it is stored or dissipated can be enhanced greatly by allowing the inductance to vary with time.
Consider the circuit in Figure 10.4. The inductance of the generator is denoted by Lx(t),
which is an explicit function of time- similarly, the total resistance, neglecting Joule heating, is
represented by RO(). The load inductance is represented by L, which is constant in time, and
any resistance associated with the load circuit is included as a constant term in RO(). The cir-
cuit depicted in Figure 10.4 is described mathematically by

0
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SWITCH
A

R0

V L
Figure 10.3 - A simple LR circuit with an

inductor, L, a resistance, Ro, and an applied

voltage, V

R(t)

Lg(t)
L9 M

V

Figure 10.4 - An LR circuit illustrating how allowing

for a time dependent inductance can greatly enhance

either the magnetic energy storage rate or conversion

rate (see text)
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(L, + L,) I + L, / + IR,= 0, (10.2.12)

the solution of which is

1 (1) + L, exp L ') +L ' (10.2.13)

where I(, and L,, are the values of the current and generator inductance, respectively, at t= 0.

From (10.2.13) it can be shown that, if / > I and the condition

L + L, 1 > 1 (10.2.14)

is satisfied, and L,(r) = 0, the circuit will contain more stored magnetic energy than it con-
tained initially, where

a = exp - J L d)+L, (10.2.15)

Note that R1) still affects the rate of energy storage and the total energy stored.

The electrodynamic coupling of the solar atmosphere also plays a fundamental role in sta-
bilizing potential instabilities that can occur in domain PC and thereby alter the ability of the
current system to store magnetic energy. Consider a plasma in PC which is disconnected from
domain R. If an external force F is applied, the plasma will undergo a force drift
VF = c F x B/B 2e, which in turn causes a force current density 3F = cn F x B/B 2 . The
plasma then will become polarized in such a way as to generate an electric field which results in
an acceleration exactly equal to F/p 0 . However, if this plasma is now connected to domain R,
the polarization charges will drain into or draw neutralizing charges from domain R in the form
of parallel currents, J, so that the effect of F on the plasma will be altered. For example, if an
ideal MHD interchange instability were to occur in region III driven by the external force of
gravity, the resultant perpendicular polarization electric fields then can be shortcircuited by neu-
tralizing parallel currents drawn from domain R. This is sometimes referred to as line tying (cf
§10.2.2.2 for the relationship between this picture of line tying and the MHD picture).

Returning to regions I and Ii of Figure 10.1. the following question naturally arises:
Where does the current path close, in these two regions, if the current generator is in domain
R? In the case of region I, the current path can close at infinity and still satisfy the condition
V • J = 0. Current closure in region 11 could easily result from the presence of a neutral sheet
in the helmet streamer. Even if there is no current generator in region R, currents still can
exist in regions I and IL since a solar-wind dynamo could induce a J1 , the polarization charges
generated then can drain into or draw neutralizing charges from domain R in the form of Jj,.
Thus, domain R will act as a resistive load dissipating the electrodynamic energy generated by
the solar wind. A similar phenomenon could occur in region 11 due to the flow fields around
the helmet streamer. This implies that the solar wind can act like a dynamo and feed electro-
dynamic energy back into the solar atmosphere.

The current path obviously plays an important role in magnetic energy storage. Referring
again to Figure 10.1 only those paths taken by currents in regions 11 and Ill of domain PC can
result in energy storage, because the stresses resulting from the current closure condition can
be balanced by reactive inertial stresses in the photosphere. If the currents followed those
paths allowed in region I, any electrodynamic energy generated by a photospheric dynamo sim-
ply would propagate out into the solar wind, with no storage. Even a current path such as that
indicated in region II is, to some degree, susceptible to loss of electrodynamic energy, for rea-
sons similar to those associated with region I. Those current paths which could occur in region
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IlI (Figure I) are least likely to allow energy to propagate out to the exosphere of the sun.
However, anyone of these paths can lead to problems of energy storage. In particular, an asym-
metric path in which the dynamo-generated J and the closure J, both close in region R can
result in minimal energy storage in PC, if Joule dissipation is too large in R. Hence, while the
current paths characteristic of loops are the most likely for generating the stresses necessary for
energy storage in PC, they can still present theoretical problems.

10.2.1.2 Examples of Circuit Models

To illustrate the quantitative application of equivalent circuits to magnetic energy
storage and conversion and, at the same time, to demonstrate some important effects associated
with the flare-related transport and storage of new magnetic energy in the solar atmosphere we
consider two flare model geometries: a loop (or loops), Figure (10.5a), and an inverted Y
geometry, Figure (10.7a). Consider, first, a circuit analog of a loop. Within the magnetized
portion of the photosphere and convection zone (domain R) the resistivity is highly anisotropic
and, therefore, a tensor quantityt. Because of this high anisotropy in the resistivity, large
currents can flow perpendicular to the magnetic field if an external force exists in the photo-
sphere an/or convection zone that can force the partially ionized gas across magnetic-field lines.
According to (10.2.2), either a pressure gradient or a flow field can drive J1. In the following
discussion we assume that a flow field u = u ,, switched on at t = 0, is responsible for driving
a current in the -v direction, perpendicular to a magnetic field in the z direction, that ends in
another part of domain R after passing through domain PC (Figure 10.6). In addition, we as-
sume that f ,,/Iv,, >> 1, where il,(,, and v,, represent the electron gyro frequency and effective
collision frequency respectively, so that the ions are responsible for electrical power generation.
At t = 0-, each field line which connects the foot of the loop containing the generator to its
magnetically conjugate foot containing the load is nearly equipotential, due to the high conduc-
tivity parallel to B in domain PC. At t = 0* , however, the flow field results in an emf, given
by U Bi/c. that will drive a current in the -v direction. Hence, a potential difference will exist
perpendicular to the magnetic field, since the current produced need not satisfy V • J = 0. At
points where V - J ;e 0, charge accumulates and, in a sense, anodes exist with a separation d
and at potentials 1(0) and D (d). Since the electrons are line-tied (f>,,/v,> 1), they cannot
move perpendicular to B to neutralize the charge accumulation. However, this charge accumu-
lation causes a potential difference to exist between the magnetically conjugate feet of the loop,
so that a flow of electrons is induced along the field lines linking the points of potential
difference in an attempt to remove this charge imbalance. Since the potential at each "anode"
of the "generator" is of different polarity, antiparallel currents develop between the conjugate
feet of the loop. Hence, there exists a current loop made up of both J,! and J, components
between the conjugate feet, with the current being driven by the flow field.

To estimate the magnitude of the flow-field velocity as well as the time required to build
up and store an amount of magnetic energy EF = 1/2 Li , we refer to Figure (10.6) and note
that the maximum available electrical power is the kinetic energy density of the flow field
delivered through the surface area S, between the anodes, that is

Pm,, I nm, u S,. (10.2.16)
2

To store Ep in a time A, requires
E nm, u3 SAt, = EF, (10.2.17)

2
where the factor E represents the efficiency of flow to electrical-energy conversion. Since
At, = LIR, (cf Figure 10.8), we find u must satisfy the inequality

9
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DOMAIN PC

DOMAIN R

(a)

J1l

C

L DOMAIN PC

J11

DOMAIN R

(b)

Figure 10.5 -Illustrates an equivalent circuit ror a closed loop. VG and
RG represent the current generator voltage and resistive load, respectively,
R, the resistive load in the other root or the loop, C the capacitance asso-
ciated with the polarizability or a magnetized plasma, and L the total in-
ductance or a loop.

10
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FOOT OF LOOP

7/f

~~ +CATHODE

T t 'FOOT OF LOOP
d A NODE h

ox (DIRECTION OF FLOW)

MHD
GENERATOR

Figure 10.6 - Schematic of the current system set up in a loop by a flow field directed perpendicular to
one foot of the loop (see text)
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11 . 1 1
10> (I - a,.),n,n Axh J (10.2.18)

where R, = R, + R,= R,( - a,), a,. (I + RuIRL) 1, which is a measure of the
impedance matching between generator and load and R, - tqj' dAxh The quantity a,
reflects the well-known fact that the power conversion efficiency of a generator increases as the
ratio of the external to internal load increases, up to a maximum a, = 1/2 for the present case.
Equation (10.2.18) clearly requires I - a, < I since otherwise u will become intolerably large
although the energy storage time will shorten since At, = L (I - a ,)/R,. To estimate the
required u and At, for a large flare, e.g., with Ef z 1032 ergs output, we note that L = I(/c2

(Figure 10.6) and that A.x, = 10 " cm and /( = 10 4 cm are typical for such a flare. Using
Tv' -- 10 "' sec, h, 5 x 108 cm, d, = 10" cm and n = 1017 cm -3 as typical temperature
minimum values, we find At, = 5 x 10" (I - a,.) secs and u > 3.4 x 105 (e (I - a,.)) -", and
a total current /,, = 102- sta-amps (from E - Llh2/2). If E 0.1 and a, = 1/2 then At,
2.5 x It) secs and u > 10 cm/s. Both of these values, while rough estimates, appear reason-
able for the preflare state.

We can use the simple-loop equivalent circuit to understand the preflare storage process
both, qualitatively and quantitatively, by solving the equivalent circuit equation corresponding
to Figure 10.5b:

L + IRT = V,, (10.2.19)dt

which yields the trivial solution*

= - - (I - e_""'), (10.2.20)

RT

where we have assumed that V,,, RT, and L are independent of time and spatially integrated to
include their maximum contributions from both domains R and PC.

The total magnetic energy stored, the rate of magnetic energy storage, and the rate of
Ohmic heating are, respectively

LI 2  L V2 (I - e RrIL, (10.221a)
2 2 R 2

d ,- = L e (I - er), (10.2.21b)
dt 12 R,

and

12Rr= - r (I - e R -t1.)2 (10.2.21c)

Figure (10.8) illustrates the well-known time dependence of (10.2.21a-c) in dimensionless
units. Note that all of the generated electrical power is stored magnetically until I == 0.69L/Rr,
after which the Ohmic heating term dominates and the rate of magnetic energy storage drops
precipitously. Since the Ohmic heating varies as 12R7, the plasma in the temperature minimum
is being Ohmically heated by a power input level of > 1026 erg/s in a volume = 102 cm "'.

'We h. 1 neglCk;Cd the .pcLlim 1erM sInce it mik g% s rise Ii, I R( rnrlgig .nd does not appreciahl, effect the ener-
g, slor,igte irices lfic lrelu nL ol 'ie inging is ,I I a nd. depending on ilie Ircqut'en , regiion. corresponds In

%,,ilou ii rnl moes tl ,ill ,a in1.igt ' d p~lal , suc 'h ,is %1llven W4.te3

13



I) \ SpI(I.R

1.0

.9

.8

.7

.6 - R )
12 R)

.5 R0 (L12\

.4 --

.3

.2 Rdo dL1
2

0 O0IL OIL .1L L 1OL 1OOL

A W R R R

Figure 10-.B Schernatic of the rate of magnetic energy
,a P/d ( 212)/V 2 )  the rate of Joule heatingstora e, (Rodld., 

.u

(RolI RV). and the magnitude of the magnetic energy

stored globally, LI Ro/VO, in a simple circuit model such as

in Figure 10.3

14



NRI NI % I RANI)tiM RI.P)R I 41S()

Since we have assumed the current is distributed uniformly throughout the generating or load
volume, the Ohmic heating does not exceed the global radiation losses from the volume (=
10-50 erg/cm/s. Machado and Emslie, 1979). However, there can be regions within either the
generator or load volumes where the local Joule heating rates equal or exceed the local radia-
tion losses. Under these circumstances, preflare heating of the temperature minimum should
occur. In addition, if the heating should exceed the local radiation losses plasma expansion into
the loop should occur. This expansion may be gradual or rapid, depending on the Joule heating
rate, and can be dominant in one foot of the loop as opposed to the other due to impedance
mismatch (a,, ;d 1/2). Since any increase in mass density can alter the energy balance and
pressure equilibrium in the remainder of the loop, by increasing the radiation losses and
absorbing more heat flux from the corona, highly turbulent mass flows should exist within
loops prior to flares. These mass flows are expected particularly in the transition-zone volumes
of loops, due to the precarious energy balance there (Kuperus and Athay, 1967). Hence, we
conclude that preheating of the temperature minimum, density enhancements within loops, and
turbulent processes within loops all may occur as natural by-products of preflare magnetic-
energy storage.

A multiple-loop equivalent circuit is illustrated in Figure (10.9). This circuit demon-
strates several important concepts, that to the authors' knowledge, have never been discussed
in the literature. In our earlier discussions we have emphasized circuits that are coupled con-
ductively by flowing currents. However, two or more loops can couple strongly with one another
inductively if they are sufficiently close together. Under these circumstances a mutual induc-
tance exists between these two loops. This concept is easily extended to multiple-loop systems.
An alternative situation is for a loop to be coupled inductively to an open magnetic
configuration, such as an inverted- Y configuration. This concept of inductively coupling distinct
magnetic configurations in the solar atmosphere has radically new implications for flare theory
and needs further theoretical study. Coisider the following examples:

(1) The magnetic-flux variation resulting from a one-loop flare induces large emfs and,
thus, currents in a neighboring loop, thereby triggering a flare in the neighboring loop, if
sufficient magnetic energy is stored therein,

(2) Emerging magnetic flux induces temporal variations of the global field configuration
in which magnetic energy already is stored. These inductive field changes produce large emfs
and currents, thus causing the global field configuration to release its energy in the form of a
flare. No mechanical coupling of the two configurations is required, as is generally required in
emerging flux flare models (e.g.. Heyvaerts et al.. 1977), and

(3) A time-varying magnetic field due to, e.g., emerging flux or a flare loop, couples
inductively with an inverted-Y held configuration. The induced emf produces accelerated
streams of electrons and protons that move into the photosphere or out into the solar wind
along that portion of the inverted- Y configuration with open field lines, depending on the direc-
tion of the emf, producing radio bursts such as Type III, U and type V bursts. No transport of
particles across field lines iA required.

We should note that, because of the high electrical conductivity in the solar atmosphere,
the skin depth, Ax, : c/o, .,,At, where v,., is the electron-ion collision time and W,e the
plasma frequency, can be very small if the timescale of flux variation, At, is small. Hence, very
large current densities can be produced as well as high-energy particle streams (Spicer, 1981b).

The equivalent circuit model also yields a potential explanation of "homologous"
sequences of flares, which are regularly spaced in time, appear to come from the same volume

15



1) A. SPIC'I:R

DOMAIN 7 C 1C r7I C2PC

DOMAIN

VG, RG1  1 R1 V, RG2

Figure 10.9 - The equivalent circuits of two juxtaposed loops interfacing inductively,
as opposed to mechanically conductively
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in the solar atmosphere and are quite similar in form (Ellison, 1963; Svestka, 1976). The inter-
val between such flares is observed to increase with importance, to as much as > 10's for
events of Importance 3. According to the single loop circuit model presented earlier in this sec-
tion, the largest flare requires At,>5 x 10's for energy storage to occur, while for small flares
this tine certainly is shorter. For a sequence of flares to occur, spaced roughly by At,, the basic
current system and thus the original magnetic field configuration must remain intact. However,
if the fields vent out the top of the atmosphere the current system is changed, and the value of
the inductance will depend on how the current closes in the new field configuration. If the
current closes at infinity the new current-field configuration cannot repeat the flare in a time
At,, because the circuit time constant becomes infinite as the inductance becomes infinite, to
restate, the rate at which magnetic energy is stored goes to zero because an infinite time is
required to transport energy to infinity. From these arguments, we conclude that the
phenomenon of"homologous" flares demands that the current system close at a distance above
the photosphere not greater than 1010cm, to ensure that the time between sequences of flares is
sufficiently short.

ihe question of "homologous" flares and open magnetic fields leads naturally to the hel-
met streamer or Y type flare model, depicted in Figure (10.7a) (Carmichael, 1964; Sturrock,
1966, 1967, 1972, 1974; Kopp amd Pneuman, 1976; Pneuman 1978, 1979, 1980, 1981). Much
of the present discussion of currents in closed loops (or multiple loop) field configurations also
is true for Y-type field configurations. However, there is one important difference: part of the
current must close not only in domain R, at both feet of the streamer, but also in domain PC.
An external force must therefore exist in the tail of the helmet streamer which produces an
emf capable of driving a perpendicular current of sufficient magnitude, and through a large
enough area, to close the circuit. This applied emf must be of the right sign as not to oppose
the photospheric emf. If it does oppose the photospheric emf, its magnitude must be less than
that of the photospheric emf; otherwise, the external force - presumably the solar wind - will be
the source of generator energy. Most versions of helmet-streamer flare models, as presently
proposed, in fact rely on the solar wind instead of the photosphere as the source of flare energy.
Barnes and Sturrock (1972) have investigated numerically a modified form of the helmet-
streamer model, in which they assume a photospheric generator: field-line twisting at the feet of
a loop that opens up after the field becomes too greatly stressed by the twisting. A model such
as Barnes' and Sturrocks' would yield similar magnitudes for the photospheric flow velocity and
energy storage time as the simple loop model discussed earlier. However, it remains to be
demonstrated that, once the loop opens the current still can close low in the atmosphere, since
otherwise, the configuration would cease to be of use for storing magnetic energy and could not
explain "homologous" flares.

Models that do use the solar wind as a power source of the flare, either in the pre-flare or
in the post-flare period (Kopp and Pneuman, 1976; Pneumar., 1978, 1979, 1980, 1981),
encounter difficulties because the flow velocities that give rise to the J, which closes the current
in the helmet must be at least as large as the flow velocities we estimated in §10.2.1.2 for the
photospheric generator; the currents must still go through the photospheric load, since without
a load currents do not flow. Because the number density of the coronal plasma is > 10' less
than the photospheric plasma, the flow velocities perpendicular to the field of the streamer
required of a coronal-wind generator will be > 102 larger (>10 8cm/s) than those required of
the photospheric generator unless the area of the coronal generator is increased by > 10" (up to
> x lt)21cm 2). However, even increasing the area by a factor of >106 will not improve a model
that attempts to power the post-flare phase with the solar wind, for the following reasons. The
maximum power available is Pmaxnm,4i-S/2, where S denotes the area perpendicular to the
magnetic field through which the plasma flows and AL is the magnitude of the flow speed per-
pendicular to the magnetic field and not the radial coronal wind velocity. Taking
n == IOcm -3.AL : 10' cm/sec and S = 1021cm 2, we find Pm , Z 1

0 23 erg/s, which is barely
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enough to heat a coronal loop. The Kopp-Pneuman model is even more extreme, physically,
because the model requires potential magnetic fields between the photosphere and coronal
heights of > 1.2R,,, and non-potential fields above that height. In other words, their model
implies that the current system closes completely in domain PC. We find such a current system
unphysical since their model contains no electrodynamic coupling to the photosphere. yet
includes electron beams propagating into the photosphere which are, by definition, currents and
part of the current system. Kopp and Pneuman argue that part of the source of free energy in
their model is the energy expended by an erupting prominence while distorting the overlying
magnetic fields. This distortion causes an increase in the energy of the magnetic field, which
then is utilized to explain other aspects of the flare phenomenon. However, these authors fail
to point out that the J x B forces which initially distorted the fields also produce perpendicular
currents, e.g., polarization currents, thus causing large potential differences along field lines
which are normally equipotential. This causes the excess charge to drain into or draw neutraliz-
ing charges from the photosphere to remove the potential differences, thereby dissipating much
of the energy that went into distorting the fields (Spicer, 1976).

An equivalent circuit of a helmet-streamer model, shown in Figure (10.7b) is based on
the model proposed by Bostrom (1974) for the magnetotail. We have added a photospheric
voltage source to model the photospheric current generator, which can be removed for a model
which is completely solar-wind driven.

Equivalent circuits for more complicated magnetic configurations, such as prominences,
are more difficult to specify. However, attempts have been made to satisfy the current closure
condition for prominences (Kuperus and Raadu, 1974; Van Tend and Kuperus, 1978; Kuperus
and Van Tend, 1979) who model a prominence with a line current that closes via a mirror
current in the photosphere. Their equivalent circuit is similar to that discussed for a simple
loop, but the total resistance must be modified to account for the long photospheric current
path. Their work has been extended further with diffuse current profiles by Lerche and Low
(1980a,b,c), who have developed a prescription for constructing equilibrium fields for any hor-
izontal prominence and with an arbitrary magnetic field. However, the stability of these solu-
tions has yet to be addressed (cf of §10.2.2.2).

10.2.1.3 The Rate of Magnetic Energy Transport and the Energy Storage Location

It is commonly, albeit incorrectly, stated in the literature that magnetic energy only
can be transported at the Alfven speed (e.g., Van Hoven et al. 1980; Brown and Smith, 1980).
We need only consider an electron beam propagating at the speed of light, which constitutes a
current with a drift speed of c, to illustrate that magnetic energy can be transported at any velo-
city up to that of light. The Alfven velocity is but one speed associated with the dielectric pro-
perties of a magnetized plasma, and is important only for transmitting low frequency signals of
voltage, current, and inductance changes. For example, when a voltage source is switched on
suddenly in a circuit made up of a magnetized plasma and a load, the current surge propagates
through the circuit with a dispersion of speeds determined by the frequency spectrum excited
and the wave modes which can be supported by the dielectric properties of the magnetized
plasma. The specific mode which will transport the bulk of the power associated with the
current surge depends on the power spectrum associated with the switching voltage. One of
these modes may be the Alfven-wave mode or a mode that propagates at the speed of light. In
fact, it is well-known that switching operations or short circuits in transmission lines used in
utilities, which cause a change from steady state, result in current surges (i.e., beams), accom-
panied by a self-consistent voltage surge that propagate at light speeds. However, such utility
circuits cannot support Alfven waves because they are not normal modes of such circuits
whereas a magnetized plasma can support AIfven waves as well as higher velocity waves.
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I'he abo~e discussion leads to the question, "can an energy release by some dissipation
mech.nism occurring in the corona be driven dire'uly from the photosphere?" 'he answer to
this q..estion is a "qualified no," if we mean that a voltage source in the photosphere directly
drikes a flare, because the maximum power available from a generator (./. §10.2.1.2, I quation
(10.2 16)) would be =102" erg/s unless the flow vclocity in domain R is roughly an order of
magnitude larger than that obtained previously. l owever, it is possible for the bulk of the
magn( tic energy required for a flare to be stored slowly remote (as opposed to local, ix.. in sini
storag -) from the site of energy release, and be brought to the site at speeds up to that of light,
this r mote storage site may well be the photosphcre. An example to be discussed in more
detail in §10.3 concerns the results of a sudden local increase in the distributed circuit
imped rice of a loop. Because the inductance of a loop is so large, the circuit attempts to keep
constant the product of the inductance and net current, that is, the magnetiL flux (LI). 1 he cir-
cuit accomplishes this by generating a large-amplitude voltage wave with an accompanying
current wave (surge) which will propagate at whatever speed is necessary, up to the speed of
light, -o keep the flux constant. This behavior of high-inductance circuits is, in particular, the
essen. of double-layer and anomalous resistivity flare models (o/f §10.3.2). Also note that
accounting for the global aspects of the entire electrodynamic circuit demonstrates that it is not
onl the local properties of the plasma, but also the global properties, that are important
(Alften, 1977).

10.2.1.4 The Magnitudes of Magnetic Fields Required
by Magnetically Driven Flare Models

One puzzling aspect of magnetically driven flare models is the large currents, and
thus large magnetic fields required to drive the flare. These fields typically range from a few
hundred gauss to 1000 gauss or more. In fact, the observed energy densities of flare plasmas
require fields of 500 gauss or more to contain them (Widing and Spicer, 1981). Part of the
solution to this problem is obtained by noting that V • J = 0 implies that the net current must
vanish globally. From Ampere's equation in integral form.

fBdl - _. f-. dS.

we note that a surface integral taken outside the volume containing anti-parallel currents must
vanish and, as is shown in §10.2.2, V • J = 0 is required for MUID equilibrium. [fence, large
currents and fields can, in principle, exist in such solar magnetic configurations. In addition, if
these Lurrents are locally force free* (cf §10.2.2.1), the mutual repulsion that arises from anti-
parallel currents will be locally suppressed.

10.2.2 In situ Storage of Magnetic Energy

The prevalent view of the preflare state maintains that the flare
free energy must be stored in coronal magnetic fields because it appears to be released there
(Svestka, 1976, Van floven et al. 1980) as opposed to in a remote photospheric site- hence the
term "in situ storage." There are two principal arguments for this view. The first argument is
based on the observational fact that no large changes in the photospheric structure ha%e been
detected to date throughout the duration of most flares (./. Svestka, 1976 for a review). The
second argument is essentially theoretical: the free energy required to drive a large flare is

1032 ergs and the only source of this energy that can be identified observationall) is the
atmospheric magnetic field (Parker, 1957). To release : 1032 ergs of atmospheric magnetic
field requires relaxing z 500 gauss to 400 gauss within a volume of = 6 x 102' ( in'. Note that
the mognetic pressure associated with such fields is two to three orders of magnitude greater
than the ambient gas pressure, as is discussed later. While both arguments suffer from obser-
vational and theoretical difficulties (. §10.2.2.4), the proposition of in situ storage of magnetic
energy has motivated a majority of the theoretical studies related to flare physics. The

"It seem. to be a general trait of force free field solutions to ha,e anti-parallel currents.
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preponderance of these studies have utilized the concept of force free fields (§I0.2.2.1 ), that is,
fields for which the Lorentz force vanishes. The utilizationi of force-free fields is moti',ated by
the need to slowly build up magnetic energy in sin' by stressing the magnetic fields
(J x R;;' 0) while maintaining a relatively stable ((f. §10.2.2.1) large-scale magnetic
configuration in a low pressure atmosphere. Under these conditions, large-scale equilibrium
magnetic configurations only can be either potential with no free energy (current sources are
external to the atmosphere, that is, below the photosphere) or force-free, because the plasma
pressure gradients in the atmosphere are smaller than the magnetic pressure by up to four ord-
ers of magnitude and therefore cannot support J x B forces (e.g., Van Iloven et al. 1980).
This form of in situ magnetic energy storage has resulted in basically two classes of flare models:
those models which utilize magnetic dissipation mechanisms driven by J, and those dri%,en by
J, (Spicer and Brown, 1980; 1981). The J, class of models are of the current sheet or field
reversal variety (010.3.5), and accordingly draw energy from the photosphere ,ia J , since J, is
the means by which the upper and lower portions of solar atmosphere are electrod~namicall
coupled (:f §10.2.1), or mechanical energy in the form of il sin flows must exist to drive the
JL current (Spicer and Brown, 1980; 1981). The helmet-streamer circuit model (Figure 10.Tb)
illustrates the essentials of the applicable energy sources.

Because of the commonly held view that preflare magnetic energy storage involves il situ
force-free fields, and because there are still unanswered theoretical questions associated with
the view, the following section comprises a brief but thorough review of the concept of force-
free fields and the physical constraints associated with them.

10.2.2.1 Theoretical Aspects of Force Free Fields

Force free fields are equilibrium solutions to a reduced set of magnetostatic equa-
tions based on the assumption that the pressure gradient either vanishes or is negligibly small:
thus corresponding to a low /3 plasma magnetic-field configuration, where/3 = 87rP/B 2 (e.g.,
Longmire, 1963).* The relevant force-free equations are

V x B = ao(r)B, (10.2.22)

where tio is a scalar function defined by

B • Vat0  0, (10.2.23)

so that av is a surface function. The use of magnebostatic equilibria solutions in a clearl time
varying problem (energy storage requires time) is justified only if the magnetic field evolves in
a time much longer than a MIlD transit time, the time it takes a MUD wave to propagate the
shortest magnetically determined spatial scale of the plasma-magnetic field configuration,
PMFC; the system thus appears to evolve through successive stages of quasi-static force-free
equilibria each being in a higher energy state if energy storage it to occur. Since magnetic
storage takes - 10' sec, this assumption is reasonable.

From the virial theorem it can be shown that no plasma-magnetic field configuration can
be globally force free, only locally (e.g., Longmire, 1963; Shafranov, 1966; Schmidt. 1979).
Indeed, a fundamental result of the virial theorem is that the total pressure outside the region
occupied by the force-free magnetic field must be greater than the mean pressure inside the
force-free region. In laboratory magnetic confinement experiments where force free fields are
involved, such as reverse field pinches (RFP), this external pressure is represented by a highly
conducting immovable wall. Such a wall does not exist in the solar atmosphere, however,
implying that a force-free field must be surrounded either by a high-pressure gas blanket, which
could only occur in the low atmosphere, or by a potential field whose normal component
matches that of the force free field across their common boundary. This implies that the

*We cmphasize that th,l1 is i local quantity and varies by orders oi' magnitude within a given solar pkisman-mgnetic
ficld contiguration.
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magnitude of the potential field is comparable to that of the f'orce-free lield "lhus. if the
releasc of" I0 ergs b) a large flare is to be explain,:d with forie free fields. we require > 500
gauss 'totential fields distributed over ,olumes much greater than j()29 (,?1 ..'\n alternati-e is to
assur2 that the principal field is potential with parallel currents (Svro atskii, 1906 Barnes and
Sturro,.k, 1972- Sakurai and Uchida, 1977; ichida and Sakurai, 1977).

1" ,, is constant then the curl of (10.2.22) yield,,

V 2B + a,B 0. (10.2.24)

the vc,:tor lelmholtz equation. This equation is linear and has a general solution in terms of
poloidid and toroidal components (Ferraro and Plumpton, 1966). Various authors ha%,e utilized
(10.2.74) to compute, in various coordinate systems. the structure of force-free fields and thus
the m.ignetic energy stored in the atmosphere using magnetograph line of sight field measure-
ments and adjusting a(, independently to achieve at least gross agreement wit obser.ations
(Raadu and Nakagawa, 1971; Nakagawa and Raadu. 1972; Nakagawa, 1973; Tanka and Naka-
gawa. 1973; Nakagawa, 1974; Levine, 1975, 1976; Chiu and IHilton, 1977; Barbosa, 1978; Naka-
gawa, 1978, Nakagawa et al., 1978). It is expected that this kind of calculation will be greatfl
improved b, using vector magnetograph measurements to determine a( = (V x B) - B/B 2

with higher precision.

Sakurai (1979) has developed a numerical approach in which the set of equations
10.2.72-10.2.23) are expressed in terms of curvilinear coordinates, using Euler potentials.

based on the observed magnetic-field configuration. By assuming a very coarse mesh and a
simple representation of the field variation along field lines, Sakurai was able to compute
approximate forms of quite general field configurations.

A more general approach to the problem of relating force-free fields to energ) storage
in%,olL:s relaxing the aor = constant assumption. Ho.ever. this approach results in highlk com-
plex, non-linear differential equations with solutions that are not necessarily unique and are
difficult to interpret physically (Low and Nakagawa, 1975; Jockers, 1976. Low, 1977a,b. \nzer,
1978. Birn et al. 1978, Heyvaerts et al., 1979; Hood and Priest, 1980). This lack of uniqueness
in the solutions, as well as their interpretation, is undoubtedly related to the fact that (10.2.22)
is arri\ed at by imposing a priori the condition that .1 x B = 0 everywhere without regard to
boundary conditions e.g., V • J11 = -V • Jt, solving the resulting equations, and then attempt-
ing to match the solutions to boundary conditions not arrived at from a physically consistent
treatment of the whole set of relevant equations. A self-consistent approach would follow, for
example that given by Pereversev et a. (1 978).

111.2.2.2 Prefiare Stability of Magnetic Configurations

Associated with the question of in situ energy storage and force free fields is the slability
of such fields. That is, what kinds of force free fields can exist in quasi-equilibrium before the
equilibtium becomes unstable? Before reviewing the published literature on force-free field
stabilit it is worthwhile to examine the relationship between electrodynamic coupling of the
solar atmosphere, 7 - J = 0, and stability.

In order to solve the magnetostatic equilibrium equations (neglecting gravitN).
.JxB

Vp 0 X (10.2.25)

7 x B= -4L.1. (10.2.26)
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and

V 7 B - 0. (10.2.27)

we proceed by seeking lowB solutions. At j = 0 the global magnetic field must be a vacuum
field and due to external currents.

The first-order perturbation to the vacuum field, due to a plasma pressure p, is
JI x B.

Vp = j (10.2.28)
('

V x B, = i . (10.2.29)

and

V B- 8 0 . (10.2.30)

where J I is the plasma current density, BO the vacuum field and B1 , the perturbation in B') due
to finite gas pressure. Following Taylor (1963) we note that (10.2.28)-(10.2.30) do not, in gen-
eral, possess a solution for any given p (this is also true of (10.2.25)-(10.2.27)), We therefore
need to determine the conditions which p must satisfy in order for a solution to exist. The first
condition arises from taking the scalar product of (10.2.28) with Bo to obtain

B• *Vp -0 or 6 = 0. (10.2.31)
as

where s is measured along a field line. Equation (10.2.31) implies that p is constant on a field
line, so that isobaric (magnetic) surfaces exist. Next we take the vector product of (10.2.28)
with BO to obtain

B0 x Vp (10.2.32)

B82

so that
=B 0 x V'p

J, c B + X BOj. (10.2.33)

where X is an arbitrary scalar function.

The requirement that 7 • J, = 0 yields

Bo' V = - 2 VB0 • (p x Bo)/B(I. (10.2.34)

or

d -,_ 2 VBo (VTp x B,)/B. (10.2.35)ds

A sufficient condition for this equation to possess a unique single-valued solution for X along a
given field line is (Newcomb, 1959)

yp2 (Vp xB0)J 7 BO B ds = 0, (10.2.36)

where the integration is performed from the point where the field line enters to the point where
it first leaves the volume of interest (Taylor, 1963). If (10.2.36) is satisfied, a unique A always
can be constructed from (10.2.33). The condition (10.2.36) is therefore both necessary and
sufficient.
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PhN sicall), (10.2.36) expresses the fact that a perperldiculr current cannot be dicrgence
free, except in cases of high symmetry (Longmire, I963), so that parallel currents must exist to
c~arr.% off excess charge. Thus, equilibrium requires there be no accumulation ii" charge on a

Ield line. In fact (10.2.36) represents a boundary condition that the local force-tree fields must
satist.% if they are to match on to the global magnetk configuration. I fence, the clectrodx namic
coupling of the solar atmosphere plays an important role in understanding equilibrium
configurations. We emphasize that the concept of equilibrium as opposed to stead) state is,
strictl. speaking, incompatible with magnetic energy storage: since equilibrium implies no flows,
by definition, electrical power generation would occur only through pressure gradients llow -
eer, we can use the concept of equilibrium if the time scales of energy storage and instabiliiy
are sutlicientl different, as already noted.

The investigation of magnetohydrodynamic (MI ID) stability, in particular (if coronal loops
and prominences, is a problem first examined by Anier (1968) and Raadu (1972). More recent
studies (Van lloxen ci ul. 1977, Chiuderi et a. 1977, Giachetti ei u. 1977: flood and Priest.
1979: Silleen and Kattenberg, 1979, llasan, 1979) were precipitated by the Skylab obserxations
which suggest that the so-called compact flares originate in loops (G. e.g.. Sturrock. 1980 and
Brown ut il. 1981 for reviews) and by the loop flare model developed by Spicer (1975, 1976.
1977a,b, 1981a,b) and Colgate (1978). The essence of the majority of these papers is the fo-
lowing. In a series of papers, Van Hoven et al. (1977), Chiuderi e al (1977). and Giachetti c
oil. (1977) present a MIlD marginal stability analysis of a loop using as a model a li ndicutll
symmetric loop in which they investigate the role of a positive transverse (to the magnetic
field) gas-pressure gradient in the MFID stability of a loop made up of a Bessel function force-
free field (Lundquist, 1950). Their loop model is essentially a weakly non-force-free field
embedded in a high-,8 force-free environment. On the other hand, Silleen and Kattenberg
(1979) determined the growth rates for kink instabilities driven by a Bessel function force-free
field which was assumed to be embedded in a potential low-,8 potential field, which is in agree-
ment with requirements imposed by the virial theorem. llasan (1979), who also determined
growth rates, investigated the stability of a cylindrically symmetric force-free field with constant
pitch and found it always unstable, consistent with the results of Anzer (1968). 1lasan also
included the effect of a small positive transverse pressure gradient which he found to be stabil-
izing. as did Chiuderi, Giachetti, and Van Hoven in their series of papers. Ilood and Priest
(1979) also examined the stability of a constant-pitch field, as well as a variable pitch field (uni-
form axial field). The results of Hood and Priest differ from llasan's for the constant pitch
case because tlasan did not include the effects of line tying of the field lines in the photosphere.
Most of these papers in one way or the other attempted to include line tying of the loop's ends
in their stability analyses, some more rigorously than others. Ilood and Priest (1979), in partic-
ular, make the strong claim that line tying, as opposed to shear stabilization, is the dominant
MiII) stabilizing feature of coronal loops. tlowe\er, Spicer (1976) and Spicer and Brown
( 1981 ) point out that this is only part of the picture, since the three-dimensional aspects of the
loop (see below) have not been accounted for in loop stability analyses to date. Their argument
is based on the physical fact that line tying and magnetic shear stabilization are ver closely
related physically to one another. To illustrate, consider a magnetic system that is shearless (.
WI0.3.5 and below), so that the pitch of the lines of' force are independent of position. This

permits the free interchange of any two field lines, separated by any distance of that magnetic-
field configuration. This interchange occurs simply because the field lines are identical, i ... the
system is degenerate. As is well known, such an interchange is highly unstable (Kadomtse%,
1966): it causes a minimal distortion of the magnetiL field, thereby minimizing the I x B res-
toring forces the distortion of the magnetic field might produce, which would tend to cause the
equilibrium state to be restored. The perturbation then would tend to grow. lence. by induc-
ing shear, the field lines form an angle with respect to one another, which effectively Iimf.s the
hnth over which interchange of the field lines can occur.
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Line tying, which imposes the condition that the field lines have a finite hcngtl and are
embedded in a plasma with high conductivity at each end, has an effect similar to shearing the
field lines. This occurs for two reasons: line tying limits the maximum wavelength of a pertur-
bation to the length of the system, and inhibits the long-wavelength interchange of field lines.
This can be seen as follows: suppose two field lines are frozen to conducting endplates. To
obtain instability, the change in the potential energy must be negative. The only way to inter-
change two field lines frozen at different points on an endplate is to twist the field lines which
excites shear Alfven waves: this, however, requires energy. Hence, the potential energy of the
system will increase, not decrease, due to this form of interchange. Tying the field lines thus
tends to increase the stability of the system.

From the electrodynamic coupling viewpoint, line tying and shear stabilization are
equivalent in their nature. Consider a shearless field that is line tied. If a low frequenc, per-
turbation that generates an electric field perpendicular to the magnetic field is excited, a polari-
zation current that is also perpendicular to B is likewise excited. These polarization currents will
result in Alfven waves that propagate to the endplates. Since the magnetic-field lines are nor-
mal to the endplates and the electric field carried by the Alfven wave is perpendicular to the
magnetic field, the electric field will be tangential to the perfectly conducting enplates and must
vanish there (Gibbons and Spicer, 1981). Alternately, and more generally since the photo-
sphere is not perfectly conducting, the polarization charges will drain in or draw neutralizing
charges from the photosphere in form of anti-parallel currents transported by Alfven waves (i/.
§ 10.3.5).

Next, consider a sheared magnetic field which results when a net parallel current is added
to the shearless plasma magnetic field just considered. This causes the field lines to twist about
the plasma. Field lines will then run part of their course on one side of the plasma and part on
the other side. If now excess positive charges are added to one part of the plasma and excess
negative charges to another by a polarization current, caused by a perturbation, these excess
positive and negative charges can communicate with one another as the field twists from one
side to the other side of the plasma. If the field lines were straight, communication between
different parts of the plasma only could occur parallel to the field. In the MIlD picture, shear
stabilization (/.f §10.3.5) is provided by imposing an equilibrium variation of the magnetic field
with direction due to a net current. This forces any perturbed quantity to vary parallel to B
unless the perturbation is constant over a magnetic flux surface. This forced variation parallel
to B will tend to couple to shear Alfven waves that stabilize the system (clf §10.3.5).

What is perhaps most surprising about the problem of line tying is that a general sufficient
condition for stability due to line tying in three dimensions already exists (Solov'ev, 1975), as
was pointed out by Spicer (1976), which was derived using Ilamada coordinates (liamada,
1962). The stability condition, in cylindrically symmetric geometry, is

7-8 - > 2JIB,/r 
(10.2.37)

where BI and B, are the axial and azimuthal components of the magnetic field respectively, L
the loop length and J1 the axial current. It is trivial to show that a Bessel function model
violates (10.2.37) at the zeroes of the zeroth order Bessel function: since J/ = aoB1 (aor),
BI, > 2a)0 L2B,/(7rrc) must always be satisfied by B, = aOJo(aor), Jo being the zeroth order
Bessel function. For J, = const, BI = const, the sufficient condition (10.2.37) leads to

JIL/rcBZ < I. (10.2.38)
which is roughly four times more stringent than the stability criterion for an analogous
configuration bent into a torus of radius R, for which 1. = 27rR.
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There are many other problems associated with the stability of' magnetic loops that most
authors chose to ignore. For this reason, it is worth discussing these problems in more detail to
really appreciate what we are faced with if we reall.% want to understand the problem of the
MIII) stability of any plasma-magnetic field configuration that exists in the solar atmosphere,
and how it affects magnetic energy storage.

Jlo store in situ magnetic energy sufficient to explain a flare in an exponential atmosphere
requires that the energy be stored within a rather larve volume (> 10 28 cm 3) in the solar atmo-
sphere, since storage in a small volume would cause the energy density of the magnetic field to
be so large that the field would simply expand at roughly the Alfen speed until it achiecd glo-
bal pressure balance with the ambient pressure. Thus, to build-up and store magnetic energy
requires that the magnetic configuration not develop any internal instabilities that might lower
its stored energy before a sufficient amount is accumulated to explain a flare. MIlD expansion
of a magnetic field is the most likely way a magnetic configuration will take to lower its energy
densit.. This can be seen by using the conservation of magnetic flux I = f B - dA =- B.. so
that the total magnetic energy varies as

-=_ D' d ( 1 0 .2 .3 9 )
M f A'

where s is measured along a field line and .4 is the cross-sectional area of the flux tube. To
lower I.,,, by expansion requires the field line to shorten, e.g., the field line can untwist if it is
twisted and for the flux tube area to increase. In terms of lumped circuit parameters,
I.,,, = (1)//2 since () = LI, so that I must decrease in the MIlD approximation and therefore the
current density since / = f J dA. Thus storage of in situ magnetic energy requires very
special conditions to be satisfied to prevent expansion, conditions which must be understood if
in sini storage is to be a valid concept.

Mill) stability investigative techniques must be applied very carefully to solar magnetic
contigurations since it is not clear, at least from the literature, what constitutes an unstable
magnetic configuration. Most of the papers discussed above treat, e.g., loop stability as if they
were treating tokamak or RFP stability (some even used the same boundary conditions), even
though these are confined plasma-magnetic field configurations (enclosed by conducting
immovable walls) whose reasons for existence are totally alien to the solar atmosphere. Thus,
it is critical to define what constitutes an unstable plasma-magnetic field configuration in the
context of an exponential atmosphere and of our ability to observe these configurations. That
is, we are not really interested in whether a plasma-magentic field configuration is stable for all
times, but rather in whether or not the configuration exists long enough for sufficient energy to
be stored in it. This concept of stability differs from the standard definition, which requires sta-
bility with respect to all growing perturbations, including those that take an infinitely long time.
Thus, what is really needed is stability with respect to perturbations which grow in times shorter
than the time it takes to store the magnetic energy required to explain the flare. In addition we
need to ask whether a given type of unstable mode will significantly affect the energy storage
process. For example, "does it really matter if local pressure-driven interchange (Suydam)
modes are unstable within a loop if they do not strongly affect the global stability and thus the
energy storage process'?" In laboratory plasmas, Suydam modes apparently saturate at low
amplitudes and continuously re-adjust the plasma pressure profile, presumably by enhanced
convective transport (e.g., Bodin and Newton, 1980). If this is the case, then a stability
analysis of e.g., a loop, which demonstrates that a given plasma-magnetic field configuration is
stable to Suydam modes would discard a mechanism for enhanced matter and energy transport
across field lines, processes whose occurrence is strongly indicated by observations. Alternately,
a stability analysis might show, e.g., that a given plasma magnetic field configuration of a loop is
unstable to Suydam modes, thus leading to the dismissal of this configuration as inappropriate
for coronal loops. Unfortunately, this erroneous line of thinking predominates in the papers
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discussed above. In view of these arguments, we feel Lhat a more useful approach than that of
marginal stability, as applied to loop stability, is what is known as %r stability" (( ioedblocd and
Sakanaka, 1974), in which perturbations growing more slowly than exp (fot). where I, is
some characteristic time (c.g., the L/R magnetic energy storage time) are ignored because these
modes grow too slowly to be important or alternaticl) the complete eigenvalue problcn needs
to be solved to determine growth times. Regardless I' thc choscn approach, an understanding
of those saturation mechanisms which govern the growth (if' %arious modes in an open s stem,
such as the exponential atmosphere, must be achie\,cd befi're an understanding of global stabil-
ity of a loop, Ior example, becomes a reality.

Another question which must be answered i., " iat do \e mean by global stability and
what does local stability tell us about global stabilit. ." 'I he answer to the latter part (if the
question is that local stability tells us nothing about gl(bal stability G.. c.g., Kadomtse,, 1966).
On the other hand, global stability requires a knowledge of the appropriate boundary conditions
and the Mlice-dimensional structure of the plasma-magnetic field configuration. If the
configuration is, ,.g., cylindrical with axial and azimuthal homogeneity we can ignore the 0, :
coordinates and concentrate on the stability (f the configuration in the inhomogeneous radial
direction. This constitutes a global stability analysis because the configuration is the same
everywhere as a function of' 0 and :. If ,.g., the i and : coordinates are not ignorable then a
stability analysis of some slice of' that configuration taken at some : = zoo constitutes a local sta-
bility analysis and is equivalent to studying the stability of particle motion in a two-dimensional
potential well while ignoring one of the degrees of heedom of' the particle. Presently. all the
MHID stability analyses of solar structures are local in nature and tell us nothing about global
stability, despite claims to the contrary. In general, inhomogeneity parallel to the field of a
given configuration has been ignored, even though such inhomogeneity can radically alter the
global stability of the configuration and thus affect the amount of magnetic energy that can be
stored therein (Spicer and Brown, 1981). In addition, the one-dimensional configurations that
have been studied were chosen because of mathematical convenience without being justified on
physical grounds.

Two other problems with stability studies of loops are. "what are the appropriate boundar
conditions and what are the appropriate geometries?'" The standard approach is to straighten,
c.g., a loop into a cylinder and demand the field lines to be tied to perfectly conducting plates.
This approach has two unfortunate drawbacks. First, line tying isolates the configuration from
disturbances propagating into the volume between the plates, while helping to short circuit dis-
turbances generated within the volume - i.e., hard wall boundary conditions. While it is
understandable that the dense, highly conducting photosphere can damp disturbances propagat-
ing into it from the corona, it is hard to understand why disturbances generated in or below the
photosphere should not be allowed to propagate into the corona to disturb the configurations in
it - i.e., transmitting boundary conditions. After all, waves and shear flows are known to exist
in the photosphere, and it appears very artificial to suppress their effect on the configurations in
the corona. Indeed, Spicer (1976) has pointed out the possibility that kink or resistive kinks
can be parametrically driven unstable by photospheric motions. A more appropriate treatment
of the boundary conditions at the photosphere would be to treat the photosphere as a resistive
boundary layer through which disturbances can propagate, be damped, and also communicate
between neighboring field lines through .I1 . llowe ,er, this wuuld require abandoning the
energy-principle approach to MIlD stability because the driving function would no longer be
seif-adjoint.

The second drawback to assuming cylindrical geometry for a0 loop is that, because curvi-
linear terms in the metric coefficients, as well as inhomogeneities in more than one spatial
direction, can radically alter the stability of a system the choice of geometry is very important.
This point does not seem to be appreciated in the MIII) stability papers cited. They argue that
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the curvilinear terms are small because the inverse aspect ratio (e = a/R) of the loop is small,
whLre a is the thickness of the loop and R the global radius, so that a cylindrically symmetric
approximation is ahd. This is true only when considering growth rates of certain well-
recognized instabilities, such as m = I kinks (Spicer, 1976). llowever, if a cylindrically sym-
metric loop were always assumed, then modes which occur only when a cylinder is bent, such
as ballooning modes or tilting modes would never occur. Let us consider the ballooning mode
further, to illustrate the salient points discussed above concerning inhomogeneity in more than
one dimension, and the importance of including the curvilinear terms in MIID stability ana-
yses. For a bent loop in which a current flows, there are three forces assoc, ited with geometri-

cal effects that ha',e no analog in slab geometry: two forces due to both loca, and global curva-
ture (only the first occurs in cylindrical geometry), and an outward force that results from the
fall off in field strength of the toroidal component (or principle field of, e.g., a loop) of the
magnetic field that results from external currents. This last force clearly is a geometric effect,
since it is not balanced directly by a change in plasma pressure. In addition, it varies along a
field line from one foot of the loop to the other, and achieves maximum strength at the top of
the loop for symmetric field strengths at the feet of the loop. The ballooning mode is an inter-
change mode that is localiz.d to a region at the top of a loop where there exists unfavorable cur-
vature (Schmidt, 1979) and is driven by this purely toroidal force. It is difficult for a mode to
localize itself along a field line, since it will set up shear Alfven waves which are stabilizing (q.
l0.3.5). We can model this mechanism by noting that an interchange instability has a growth

rate /= A , while the stabilizing effect of Alfven waves is , = - . /L so that

= t- I/L(. (10.2.40)

where L, is the characteristic length of a disturbance along a field line, approximately
Rq/2 (q = 2wrr B_/L 0B,, :./ §10.3.5), ki the characteristic gradient scale length of the pres-
sure, approximately r I; and g, the effective gravity due to curvature effects, approximately
2 IR, where Vi, is the ion thermal velocity. This yields an approximate 6 necessary for

.2,  2RBd
stability of the loop against ballooning modes (Spicer, 1976): 3 - < 2 . The reader

i. 
-should take note of two points. First, (10.2.40) is identical to the result one obtains from line

tying of interchange modes (Kulsrud, 1967). This is because line tying localizes the mode to a
maximum wavelength corresponding to the length of a loop, while ballooning modes are local-
ized because of the variation of the toroidal component of the field with position. The second
point is that the ballooning mode would never appear in a cylindrically symmetric analysis of a
loop, even though a loop is susceptible to such a mode (Spicer, 1976). These two points clearly
illustrate the fundamental problems associated with treating loops in the cylindrically symmetric
approximation with homogeneity in 0 and :: inhomogeneity and curvilinear terms tend to local-
ize driving forces along field lines which drive unstable those processes preferred b) some
researchers, as the flare mechanism; this localization tends to make it harder to destabilize
these mechanisms, thereby allowing more energy to be stored before an instability occurs. In
addition, the greater the localization of these driving forces the more violent these mechanisms
will be when they do occur (Spicer, 1976; Spicer and Brown, 1981).

10.2.2.3 The Ta~lor-Woltjer Theorem and Energy Storage

The stability of force-free magnetic field configurations and the storage of magnetic
energy in such configurations is a very critical problem associated with solar flares as discussed
in the previous section. A powerful and promising approach to understanding the stability of
force-free configurations is to use the Taylor-Woltjer theorem (Woltjer, 1958; Taylor, 1974).
The Taylor-Woltjer apyroach extremizes the magnetic energy 11' = 1/87r f B2d3x subject to the
constraint that A = JA B d3x be held constant, where A is the vector potential and K is an
invariant of the motion called the magnetic helicity within the context of ideal HMD. By intro-
ducing a Lagrange multiplier X I for the constraint, the first variation, 8 W, of If - X IK/2 yields
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V x B= AB. (10.2.41)

%here AI is a constant. For this special class of force-free equilibria we have B = A1A + VX,
from which follows It = AIAi 2, where X is an arbitrary gauge scalar function. Thus, the solu-
tion to (10.2.41) with the smallest value of XA is the lowest energy state and is expected to be
stable. We cannot extend this approach into the vacuum region which bounds the force-free
region, where K is no longer conserved and hI = 0.

The second %ariation of 1t - N IK/2 is just
= f 5 21 A A • B) d 'x. (10.2.42)

which is just the usual potential energy 8 11V of linearized ideal MIlD for force-free equilibria
and zero pressure, but with the addition constraint that SA is related to the plasma displace-
ment f via 8A = f x B. Thus, the ideal MftD energy principle can be expressed in terms of
82 14. with the added constraint that B • 8A - 0. This result implies & W > 82 W, which guaran-
tees that B2 W > 0 is sufficient for ideal MIlD stability. As shown by Finn et al. (1981) the
condition B -SA = 0 can be satisfied everywhere except at a mode rational surface ((f 10.3.5).
The Finn et al. proof utilized a plasma-perfectly conducting rigid wall interface boundary condi-
tion. However, it is trivial to extend their proof to a plasma-plasma interface boundary condi-
tion, because 8A - 8, x B, where 8v is the plasma displacement velocity associated with the
perturbation, is required at such boundaries; hence, B • SA = 0 there. If no mode rational sur-
face occurs in the plasma-field configuration, 82 W = 8 Wand we have a necessary and sufficient
condition for ideal MHD stability (Finn et al,, 1981).

Norman (1979) has utilized the Taylor-Woltjer Theorem to postulate that the post-flare
field configuration is a force-free field with constant X1. He obtained this result by using a two
timescale It, and if) expansion of the invariant K, where to is the characteristic timescale of the
flare release mechanism and t, the characteristic timescale associated with energy storage.
Clearly, t, << t1, as discussed in §10.2.1.2, which justifies Norman's assumption that the pho-
tospheric boundary conditions will not change appreciably during the energy release phase.
Ilowever, since the coronal boundary (e.g., the plasma-vacuum interface) should change during
the energy release, Norman's assumption needs further investigation.

We can conclude from the Taylor-Woltjer Theorem and Norman's results that a preflare
force-free field should have mode rational surfaces if it is to become ideal MHD or resistance
MIlD unstable, and that X, cannot be the minimum eigenvalue if it is to become ideal MHD
unstable.

10.2.2.4 Strengths and Weaknesses of In Situ Versus Remote
Energy Storage

While the concept of in situ energy storage is very appealing physically, there
remains a great deal of theoretical work to be done before it becomes an unambiguously
demonstrated concept. Many of the reasons for this state of affairs are discussed throughout
§10.2.2. In summary, the theoretical weaknesses associated with in situ coronal storage are:

(i) large coronal fields, distributed over large volumes, are required:

(ii) expansion of the magnetic field must be prevented: the suggestion that potential
fields will prevent expansion remains to be verified;

(iii) all current theoretical studies ignore electrodynamic coupling of the solar atmo-
sphere, which is an absolute prerequisite for understanding the nature of the current systems in

28



NRL %1i M()RANI)tM RI IP( )KI 4 S)

the solar atmosphere, as well as the magnetic-field structures and their global stability. 1 here is
simply no physical justification for assuming various one-dimensional magnetic field
configurations and studying, e.g., their stability, particularly if these field configurations are
manufactured solely for mathematical convenience %ithoul regard for physical constraints (such
as the virial theorem): and

(iv) we must attempt to understand the effect on energy storage of photospheric distur-
bances propagating into the energy storage volume.

The principle strength of in situ storage is that the flare energy is stored exactly where it is
needed to explain the flare. However, this is only an apparent strength because it rests on a
possibly dubious interpretation of observations: that no large changes in the photospheric struc-
ture are observed throughout the duration of most flares (cf Svestka, 1976). We have used the
term dubious because sheared flow fields tangential to the solar surface, which are required for
both in situ and remote storage as well as directly driving the flare, are difficult to detect obser-
vationally. In addition, because it is clearly possible to transport electromagnetic energy at
speeds up to that of light in high inductive systems, there is no a priori justification for ignoring
the possibility of remote inductive storage, particularly since no significant photospheric struc-
ture changes are expected from the transport of magnetic energy to a coronal site of dissipation.
Nevertheless, a remote storage site still suffers the same theoretical difficulties as an in situ
storage site, because an inductive current source requires the existence of large, essentially con-
stant (as a function of time) net currents coupling various segments of the solar atmosphere.
The primary advantage of a remote storage site is that tht; bulk of the inductive storage volume
will be photospheric, as opposed to coronal, thus reducing the requirement that large fields
must be distributed throughout a large coronal volume.

10.3 Magnetic Free Energy Dissipation Mechanisms

As demonstrated in §10.2 the preflare state can be modelled by identifying the
appropriate magnetic geometry, the form of the power source, and the global closure of the
current system. Hence from the equivalent circuit point of view, the preflare problem is
reduced to identifying a power supply, an inductor for magnetic energy storage, and a load to
draw the current. In the context of this analogy, the mechanism which converts stored mag-
netic energy to observable, flare associated forms of energy can be identified as an enhanced
effective impedance, introduced at a specific location along the current path. This enhanced
impedance would lead to a rapid decay of part or all of the stored inductive energy, in a time
far shorter than the time required to store this energy. If this view is accepted, we must iden-
tify the physical origins of this enhanced effective impedance, and establish its proper role in
the simple circuit analog used to model the flare phenomenon. The identification of the origins
for this enhanced impedance has lead, on occasion, to heated debates amongst theoreticians in
the solar physics community. Surprisingly, an examination of both the plasma physics and the
solar flare literature shows that only three mechanisms exist that can cause irreversible dissipa-
tion of up to 1032 erg of magnetic free energy in a time required by observations: anomalous
Joule heating, reconnection (neutral sheets, current sheets, tearing modes, resistive kinks), and
double layers (current interruption). In terms of lumped, or distributed, circuit parameters,
anomalous Joule heating is modelled most simply by an anomalous resistance in parallel (J -
driven ) or in series (J,-driven) with the load resistance, reconnection by an / term and double
layers by a leaky capacitor with an internal resistance in series with the inductor * In this sec-
tion we present an overview of these mechanisms, including recent developments concerning
their applicability to solar phenomena.
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10.3.1 The Magnetic Dissipation Times and

There are two physical quantities we need to examine, before proceeding, in order
to clarify the importance of these flare mechanisms in dissipating stored magnetic free energy:
the characteristic local and global magnetic-energy dissipation times, 7t, and T(,, respectively.
As magnetic field lines move through a plasma, the induced currents result in Joule heating,
thus, energy is removed from the field and appears in the plasma as heat. The energy per unit
volume lost from the field in a time rI. is 7) J2r , so that the magnetic energy dissipation time
is expressed approximately by

B
2

Ti- =(10.3.1)

Using Ampere's equation, (10.3.1) is transformed to

T 27r (8 (10.3.2)

where 8/is the characteristic scale length of the magnetic field, B, associated with the induced
plasma current, J. Since T1. is a local quantity, it does not reveal anything about the charac-
teristic global magnetic-energy dissipation time, 1T; = LIR, unless we integrate T

L along the
entire current path, where L is the total inductance and R the total resistance. For example,
consider a current-carrying loop of length LO with a load resistance Rr in its feet. If a sharp
increase in resistivity, in series with the current, were introduced along some fraction of the
loop length, As, the global time constant would be expressed approximately by:

L(; L (10.3.3)

(R + AsC

Two categories of models for flare energy storage are thus suggested. If

R << ASTC 2 , then TG =LOTL , and all of the globally stored energy, Li 2! 2, is dissipated
As

across the enhanced impedance within As. To explain a flare that releases -10-1-2 erg in O l03 s,
this case requires LI 2/ 2 = 1032 ergs and 7-(; 103 s: thus the entire reservoir of stored mag-
netic energy is released at a rate determined by the global time constant. Conversely, ifC

2

RT >> As/IL , only a small fraction of the globally stored energy is released expressed
approximately by

As Li 2

T,. C
2 Rr"

To explain a flare energy release of =102 erg in 210
3s, this case requires that LI2 !2 1032

ergs. Hence, only a small fraction of the stored energy is dissipated, and the global time con-
stant plays no role because it remains relatively unchanged as does the total magnetic energy
reservoir. This distinction between types of storage models is important for evaluating the
feasibility of many flare energy release mechanisms proposed to date. To illustrate, two of the
flare mechanisms reviewed here, double layers and anomalous resistivity, require essentially
constant currents to operate throughout a flare, because they will switch off very quickly if the
net current decays sufficiently. The distinction between classes of storage models also may help
explain homologous flares, particularly if future observations show that homologous flares
repeat in times much shorter than the storage times computed in §10.2.1.2.

Returning to Equation (10.3.2), we see that basically two mechanisms can decrease the
local dissipation time: either the scale length of the spatial variation of B is decreased, i.e., the
field gradients are steepened, the resistivity is increased, or both occur. As shown is §10.3.5,
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reconnection mechanisms decrease T 1 by driving the scale lengths 8 Ito smaller values, while
anomalous Joule heating mechanisms further decrease -T, by increasing the effective resistivity
in addition. The reduction of rI is the key to understanding reconnection and anomalous Joule
heating flare mechanisms. However, the role of T I in the double-layer mechanism is unclear,
as is discussed in §10.3.4.

In §10.2.2.1, we introduced the local quantity /1 as a measure of the ratio of the internal
energy density to the magnetic energy density; we also pointed out that, for low-3 equilibrium
configurations, the magnetic field is essentially force free (J, -dominated) or potential. Note
that /3 also plays an important role in determining the Joule heating rate of a plasma. If /3
represents the /3 associated with the free magnetic energy then the Joule heating time can be
expressed as r = nkT/i)J2  2/3 *T, thus, for a fixed TL, the Joule heating time is shorter for
smaller values of/3 . Hence, plasma heating is faster in a low /3 * system. In addition, if /3 * is
small, the plasma can be Joule heated through dissipation of only a small fraction of the avail-
able magnetic free energy. These arguments suggest that the most theoretically useful plasma-
field configuration for energy dissipation and storage ('f. §10.2.1. 1) is characterized by a low/3
such as force free configurations.

10.3.2 Double Layers

In recent years, numerous experimental and theoretical studies have investigated
the properties of "double layers," with particular emphasis on their application to the Birkeland
currents (JQ, currents) which couple electrodynamically the ionosphere and the magnetosphere.
Because several excellent reviews on double layers already exist (Block 1975, 1978; Goetz,
1979; Carlqvist, 1979a; Torvin, 1979), we present here only a synopsis of the important aspects
of double layers, with particular focus on applications to solar flares. In addition, since
J..-driven double layers and anomalous resistivity models are related, to a certain extent (cf.
§10.3.4), the discussion of excitation mechanisms for Ji-driven double layers or anomalous
resistivity is postponed to §10.4.

The first application of double layers to solar flares was due to Alfv6n and Carlqvist,
(Alfv6n and Carlqvist, 1967; Carlqvist, 1969, 1979b). In their model, numerous double layers,
driven by a high inductance current system, are formed in numerous current filaments, each
with very high current densities, traversing the solar atmosphere. AIfv6n and Carlqvist argued
that inductively stored magnetic energy is released rapidly as non-thermal particles, plasma
heating, and bulk plasma motion, as a consequence of the formation of double layers. The
Alfven-Carlqvist model was dismissed by Smith and Priest (1972), who maintained that the
Buneman instability (Buneman, 1959) or the ion-acoustic instability would lead to plasma tur-
bulence, and thus, to the occurrence of anomalous resistivity rather than double layers. Of
course Smith and Priest's assertion, at that time, was well taken. Unfortunately Smith and
Priest went beyond this reasonable assertion, and proposed erroneous critical conclusions (c/'
§10.3.3) which further dampened theoretical interest in the Alfven-Carlqvist model. There is
considerable evidence at present, that local plasma evacuation, required for the formation of a
double layer, can be caused by the Buneman instability or the ion-acoustic instability, under
certain circumstances (Carlqvist, 1973; Smith (R.A.) and Goertz, 1978; Raadu and Carlqvist,
1979) thus contradicting the original assertion of Smith (M.F.) and Priest (1972). As a result
the double layer or current interruption model of Alfven and Carlqvist has recently invoked
renewed interest.

A "double layer" consists of two, equal but oppositely charged, essentially parallel but not
necessarily plane, laminar space-charge layers, which irap a large fraction of the current-carrying
electron population and accelerates the remainder (Block, 1978). The potential, electric field.
and space-charge density vary qualitatively within the layer, as shown in Figure (10.10). A
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Figure 10.10 - Schematic of the potential (4t), elec-

tric field (E) and charge density of a double layer
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double layer is believed to occur when a potential difference is applied to a finite length plasma
in which the potential difference is concentrated in a shock-like localized region, rather than
distributed over the entire length of the system. Such double layers are expected to produce
mono-energetic particle distributions. Four conditions essentially must be fulfilled for double
layers to occur (Block, 1978):

(i) The potential difference 0, across the layer must satisfy 16,j > k, T,./ e-

(i) The electric field must be much stronger inside than outside the double layer, so that
the integrated positive and negative charges nearly cancel;

(iii) Quasi-neutrality is violated locally in both charge layers; and

(iv) The collisional mean free path must be much greater than the double layer thickness,
because the formation of a double layer is a collisionless phenomenon.

Note that for a double layer to be applicable to solar flares the potential difference 4,
must be much greater than kb T, / e, otherwise the energy gained by an electron traversing a
double layer with (ho > kb Te /e is not appreciably greater than the thermal energy of the
plasma. Hence, we require 00 >> kb Te/ e, which indicates a strong double-layer. It was
shown by Goertz and Joyce (1975) that a strong double layer requires for formation a current
density given by IJ I = nevr,, where Vr, is the electron thermal speed, which is the current

density required to excite the current driven Buneman instability (Buneman, 1959).

To utilize a current driven double layer for solar flare modelling we require that the sys-
tem consisting of a current driver and a double layer be at marginal stability (i.e., in steady
state) during some fraction of the flare duration. For this reason, the entire current system
must be analyzed to understand the nature of the current generator, the inductive magnetic
storage reservoir and the load as discussed in §10.2. Hence, double layers, as well as J,-driven
anomalous resistivijy systems, require large global time constants in order to keep the current
roughly constant.

An important constraint on a double layer model is obtained by noting that double layers
primarily lead to particle acceleration- intense Joule heating, if applicable occurs only in a very
small volume l1015 cm 3. A double layer must be able to accelerate = 1 03_ 1 0 38 25-keV elec-
trons during the course of a flare, to be consistent with a non-thermal hypothesis for typical hard
X-ray bursts (Hoyng et al. 1976; Brown et al. 1979). Since acceleration essentially is collision-
less through a double layer of thickness LIL, the rate - of electrons accelerated freely through
LOL by a potential eO. is

= L,,'m J/ (10.3.4)

where m, is the electron mass.

The production rate of non-thermal electrons per unit volume is given approximately by

dnb 11bdt- Y n(, - (10.3.5)

where n, represents the non-thermal number density, and r- the lost rate at which non-
thermals are thermalized due to collisions in the acceleration volume. If we assume that Y, n,
and r are roughly constant and t >> T, then (10.3.5) yields n, b n, yT.
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Excitation of a double layer by the current drift speed requires v1) > v ,; furthermore, it

is necessary to maintain v1) > vt,. to keep the double-layer at nearly steady state throughout a

X-ray burst. Hence, using Ampere's equation, we find that the current density must exist in a

channel with a thickness of roughly 8r 3__ ' (f §10.3.1). Taking a cylindrical shell
W p'

for the current channel cross-section of area 2f r r r and noting that the double-layer thickness
is (Hubbard and Joyce, 1979)

L1 6 , (10.3.6)

the total number of electrons accelerated by one double layer is

Nr= n, T 2f7 r 13 " (10.3.7)

where r is the radius of the current shell. Assuming n, 10"' cm 3, e 25 keV,
r = 5 x l08 cm, /J3* 10 , and an ambient plasma temperature of = I keV, we find that
Nr = 1012 electrons are accelerated in a volume of V - 2fr r8 rL,, - 10I cm 3. Hence,
approximately 104-10"' double layers, dispersed throughout a typical flare volume of

1029 cm 3, are required by the non-thermal hypothesis to explain a flare. Such a large
number of double layers seems unlikely; however, one must remember that these estimates are
based on double layer theory that is very much in its infancy and on the assumption of a non-
thermal electron distribution. Note also that 104-l10" double layers constitute only 10-10-"'
of the entire volume flare!

A double layer in principle, can be modelled in an equivalent circuit model by a capaci-
tance with an internal resistance parallel to the magnetic field lines. In this case, the properties
of the capacitor and the resistor are nol constant, but are highly non-linear functions of the
electric field throughout the double layer (R. A, Smith, 1981); consequently Ohm's law, which
is a local linear relationship between current and electric field, is not satisfied. In addition, an
elongated turbulent region should exist on either side of the laminar double layer, with a length
determined by the convective properties of the turbulence excited (Smith and Goetz, 1978).

10.3.3 Anomalous Joule Heating Due to D.C. Anomalous Resistivity

Anomalous Joule heating assumes a pivotal role in numerous flare and coronal
heating theories, due to the rapid rates of heating and magnetic energy dissipation associated
with this process (c:!. Kuperus, 1976; Norman and Smith, 1978). Anomalous Joule heating
occurs in plasmas in which collisionless transport, rather than collisional transport, dominates.
In a collisionless plasma, the mechanisms by which the plasma state evolves are determined by
the microturbulent (i.e., processes with scale lengths much smaller than MttD scale lengths)
electric and magnetic fields excited by various plasma instabilities. Energy and momentum are
transferred from plasma currents to electric and magnetic field oscillations, and back again to
the plasma particles as "thermal," or randomized energy. The reader is referred to the
numerous reviews which have appeared within the last few years for depth (Mozer, 1976;
Davidson and Krall, 1977, Papadopoulos, 1977; 1979), a detailed treatment being beyond the
scope of this review. In the following section, however, we review the basic origins of both
classical and anomalous resistivity. This allows us to distinguish between J, -driven and
J,-driven anomalous resistivity, problems associated with J, -driven anomalous resistivity, and
to discuss techniques for computing the magnitude of anomalous resistivity and resultant Joule
heating under solar conditions.
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10.3.3.1 Origins of Resistivity

To understand the physical origin, of resistivity, consider the equation of motion
ol a test particle of charge -e and mass m,. drifting with a velocity vj) with respect to a station-
ary ion background:

-,. e - M v) v (v), (10.3.8)
di

where E is the macroscopic electric field, taken to he constant, and , (v), the collision fre-
quency is given by (Spitzer, 1962)

4wr n,. e4 In A
(V) , v (10.3.9)

m", V

where n, is the background electron number densityN: v, the particle's net rms velocity, and
InA = In (4T nA.), with XD, representing the electron Debye radius. In the absence of colli-
sions, electrons are accelerated freely, relative to the ions, such that

v = - e (10.3.10)
m1

,

Conversely when the electrons undergo collisions with the more massive ions or with slow-
moving field electrons, a steady state can be achieved, characterized by

eE (10.3.11)
nt,., (v) '

The electron velocities are randomized during these collisions so that the energy associated with
the drift velocity is converted to Joule heat. Using the following relationship between the
current density and the electron drift velocity J - - n,. ev n , and (10.3.11), we find a local rela-
tionship between J and E:

n,.e'E E (10.3.12)

71, the electrical resistivity, is given by

4rv (v) (10.3.13)W2

where the plasma frequency to,,. (4v n,e 2/ n,)112 .

If the drift velocity of the electrons is less than the electron thermal velocity,
vT,. = (kh T,./ m(.) 1/2 , we have v = .iv' + .+ V ,., so that (10.3.9) reduces to

4w- ,i e e
4 In A

47. (k h 4,)3/2(10.3.14)

,)' (k, T,+)112

the classical result (Spitzer, 1962). Using the definition XD,. = ./wp, (10.3.7) can be
expressed as

InA (10.3. I)

Notice that the drag force on the electrons for which vD, < v7. in,. v) v - v)/ v.,
increases wilh v/), so the steady-state condition given by (10.3.11) can be achieved; for elec-
trons with drift velocities in the regime vbj > T the drag force decreases as v,, so a steady-

state cannot be attained. The following physical picture thus emerges. In the low-velocity
regime (v/) < vj,.), where the drag force dominates the electric force, the electron motion is
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essentially random and a steady-state can be achiceed. Ilowever, as the dynamical friction
becomes weaker at higher velocities, there is a critical elocity beyond which electrons are
accelerated faster than collisions can decelerate them. As a result, these electrons continually
gain more energy, because the friction they Iel is reduced still further with increasing velocity.
E'ventually, the friction becomes sufficiently negligible that they arc freely accelerated by the
dominant electric torce, until some other energt and momentum loss mechanism, such as radi-
ation or an instability becomes dominant. The el eCt of these additional loss mechanisms
invariably appears its a cutoff in the distributio.i Lunction at higher energies. These freely
accelerated electrons are called "runaway" electrons. [he following expression for the critical
velocity, v, at which electrons start to run awa is obtained by balancing the two opposing
forces on the RI IS of (I 10.3.9) using ( 10.3.9).

47r n, cl' II k' : (10.3.16)

The Dheicr electric field, L,, (l)reicer, 1959), is defined as the electric field at which a thermal
electron will run a'tva (ic., for which v, = v ): hencc,

c. In/ c I (10.3.17)

Physically, this is the electric field at which the electron energy gained in one collision time is
equal to the thermal energy. Using (10.3.16) and (10.3 17), we find that runaway occurs for
any electron with a velocity

v > v, = (10.3.18)

10.3.3.2 The Origins of Anomalous Resisfiity

So far, we have treated singh pani/chl /ooiUIi only. IHowever the behavior of a
bulk cle(tron distribulio,, changes remarkably in the presence of in external electric field, due to
the reduction of v Is ) with higher velocities. In the collision-dominated portion of the velocity
distribution, we intuitively expect the electron distribution to be it slightly skewed Maxwellian,
drifting relative to the ions with a velocity given by (11).3.11). At velocities much greater than
v,, however, electrons pick up more momentum from the electric field than is lost by mnomen-
tum exchange with either the ions or field electrons through collisions. As a result, the elec-
trons move in a direction anti-parallel to the electric field" the distribution therefore develops a
long high energy "tail" which is concentrated parallel to the electric field. The entire electron
distribution thus consists of a skewed and drifting Maxwellian, containing most of the popula-
tion, with a very long and highly anisotropic tail anti-parallel to E. This anisotropic, drifting
distribution is a source of excess free energy, capable of exciting various collective microinsta-
bilities which may, in turn, inhibit the extent of the tail.

If the drift velocity of the skewed Maxwellian lies in the range (v,, c,) < v/, < v.,

where ( , (A T,. / mn,) 1 is the ion-sound velocity, and v/, the ion thermal velocity, various
current-driven collective microinstabilities can be excited. Instabilities are driven by the bulk of
the current carrying electrons as opposed to just the tail of the distribution--which may possess
a bump. When this occurs the phenomenon of anomalous resistivity arises due to charge
clumping caused by a microinstability. The plasma can be unstable to the generation of those
types of waves, which are normal modes of the plasma: electrostatic waves, in particular, grow
at the expense of the free energy associated with the drift energy of the electrons. Scattering of
the drifting electrons by these turbulent wave electric fields causes an enhanced momentum and
energy loss and so the term "anomalous resistivity."
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'I.) appreciate how these turbulent wave fields originate, we must consider the sources of
collisions in a plasma, where the scale of charged-particle interactions is limited by l)ebye
shielding. In the classical view of a plasma, a collision occurs when a series of small angle
deflecti rns becomes equivalent to a 900 deflection. These deflections are calculated assuming
successive binary collisions between uncorrelated scattering centers within a Debye-shielded
Coulomb field. Due to Debye shielding, only collisions with impact parameters less than a
I)ebye radius, X,,. need be considered. However, this classical approach to understanding col-
lisions in a plasma is limited. A physically equivalent but more useful approach to understand-
ing collisions in a plasma is to treat collisions as stochastic scatterings of particles in the stochas-
tic electric fields of a thermal plasma. Stochastic electric field fluctuations with wavelengths
X < \/,. originate in the incoherent thermal motions of single particles, while stochastic fields
with A > A,. result from the collective shielding effects of many particies. Fluctuations with
X > X, may be treated as coherent waves, which are neglected in the classical approximation
For a thermal plasma, the ratio of collective to classical collision frequency is \ -; since \ usu-
ally is very large, collective effects are negligible. I lowever, plasmas are rarely in thermal
equilibrium. An available supply of free energy can interact with plasma wave modes, of negli-
gible energy content in a quiescent thermal plasma, and drive them to non-negligible ampli-
tudes. This interaction usually, albeit not alwvas, constitutes a resonance plasma instability
which causes a high level of plasma-wave turbulence. These collective stochastic fields for
which x > X,., result in stochastic particle scatterings and lead to e.fective binary collision fre-
quencies, and thus transport coefficients, that can be orders of magnitudes greater than the clas-
sical Spitzer values.

To illustrate the relationship between classical collisions and enhanced scattering caused
by collective effects, we refer to (10.3.15), which relates the classical collision frequency with
the plasma frequency, and to the definition A 4ir n, 1) ,, the number of electrons in a Debye
sphere. As noted above, the collective quantity X is a measure of the ratio of the electric-field
energy density in thermal fluctuations, < 8E 2 > / 8 r, to the thermal energy density, n, Ab T,.
that is,

< 8E 2 > _ 1 (10.3.19)
81r n,./k T,.

IKrall and Trivelpiece, 1973). Hence (10.3.15) and (10.3.19) yield

I< BE 2 > 10.3.20)

Iquation (10.3.20) suggests that, if it were possible to enhance the level of electric field
fluctuations through which the drifting electrons are scattered, the collision frequency would be
increased over that of a thermal plasma and, therefore. the transport coefficients and the resis-
tivity would be modified. There are, in fact, a number of current driven microinstabilities that
can result in enhanced electric-field fluctuations which exceed the thermal level by several ord-
ers of magnitude (Papadopoulos, 1977, 1979). However, not all high-frequency microinstabili-
ties can cause an increased resistivity. For the bulk of the drift electrons to experience friction,
the phase velocity of the waves produced by some microinstability must be small. That is,

%r = - , << vT,. v/,, which implies that the frequency of the waves must be much less than

the local plasma frequency. The physical explanation for this requirement is two fold: resis-
tikity cannot be a resonance phenomenon between wave and particle *, and, if v,, > v7, v/)

the electrons and clumps of charge due to collective effects would move together with litle or
no momentum exchange. Hence vp << v7', vI implies that the electrons see a fixed scattering

iF it ,cre i resonance phenomenon, only a fraction of the electron distribution function would be affected.
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center and, thus, the momentun exchange will be large. Also note that if the wave frcquency
is sufficiently small the electrons, with their small inertia, will not be affected b\ these waves.
For example. Alfven waves cannot directly cause anomalous resistivity. Furthermore a current
with a drift velocity of order the ion sound speed or electron thermal speed requires very sleep
magnetic-field gradients, which are on the order of an electron or ion plasma skin depth
((/,, or /,,), where wp, is the ion plasma frequency.

If a magnetic field is introduced into the problem of anomalous resistivity, ve encounter
new physical effects which alter some of the Iregoing arguments. In particular, a current
flowing perpendicular to the magnetic field will to, gi.e rise to runaway electrons, due to the
adiabatic motion of charged particles in the presence of' a magnetic field. hence, there is no
difficulty in maintaining a stationary electron distribution. I lovever, a current flowing parallel
to the magnetic field presents theoretical problems. particularly when Q,,. /, > 1, vhich is
true throughout a large fraction of' the solar atmosphere, where Q1,, is the electron gyrofre-
quency, because the electron motion is essentiall. one-dimensional unless the effective collision
frequency of the turbulence, i, satisfies Q,, / ,,.j , < 1': otherwise the electrons will behave
adiabatically. Thus, if a magnetized electron ioies through a turbulent region where
Q,/ v,l > 1, it enters and leaves the region of ui hulence with the same magnetic moment so
that its perpendicular energy remains unchanged. (ionsequent. the electron velocities parallel
to the magnetic field simply increase in the presence of the electric field driving the current.
instead of being randomized in all directions as is required by the standard definition of a resis-
tivity mechanism. Under these circumstances, we should expect the entire electron distribution
to run away and not be restrained by any, resisti\it. process. If this occurs, the concept of a
local Ohm's law is no longer appropriate, because the drift velocity of the current is determined
by the global electric field at each point along the current path rather than by lIcal properties of
the plasma. Thus, to regain a local Ohm's law, the bulk of the electron population that carries
the current must be trapped while at the same time the ptrailel electron velocities must be ther-
malized, that is, the electrons velocities perpendicular to the magnetic field are increased at the
expense of' their parallel velocities.

Palmadesso et a/. (1981) have recently de\elopcd and provided an elegant and sul-
c-onsiselt theory lor DC anomalous resistivity parallcl to ; magnetic field, through numerical
simulation techniques, which are in agreement with the experimental results of Kiwamoto u al.
(1979), that a magnetized plasma contains two anomalous collision regimes: one characterized
by a collision frequency -- E,,.. 2, and the other b. v .... /. They show that DC" anomalous
resistivity in a magnetized plasma results from a sequence (1I self-consistent plasma effects. Ini-
tially, a large-amplitude electrostatic ion densit% wa\c forms that traps, via the self-consistent
electrostatic potential well associated with the wa\,e, a large fraction of the lowest energy
current-carrying electrons. To illustrate, they found that 6 i, /a, = 0.3 traps = 60 of the
electron population with the remainder running away up to a maximum cut off energy, where
6 n,/ n, is the ion density fluctuation level. As the untrapped population forms a "bump" on the
tail of the velocity distribution due to the runaway\ process. two-stream instabilities initiate
filling in of the region in velocity space between the bump and the trapped portion of the distri-
bution, leading to a flatter distribution in this region. lhese processes continue until non-linear
beam stabilization mechanisms stabilize the beam (Papadopoulos, 1975). When the tail (if the
runaway distribution reaches a critical velocit%, hocver. it excites the anomalous )oppler
cyclotron resonance instability, which generates obliquely propagating electron waves
(Kadomtsev and Pogutse, 1968; Parail and Pogutse. 1976: laber cl a!.. 1978). Since this
mechanism pitch-angle scatters electrons with high % into %,, it results in a sharp deaccelera-
tion of the resonant runaway electrons and imposes a cut off velocity for the runaway tail.
thereby forming a bump on the tail (laber c't al.. 1978). Ilence, a number of competing
mechanisms occur simultaneously: one process attempts to flatten the bump, while the others
attempt to maintain the bump. The combination of these mechanisms thereby provides a con-
tinuous transfer of large parallel momentum int(o perpendicular momentum at high phase
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velocities, which then cascades to lower phase vehcities; the perpendicular energy (l the
trapped electrons thus is increased as is required of a resistivity mechanism. It is evideit that
.,,-dricn anomalous resistivity is far more complex in its origins than the simpler picture wc
presented earlier.

Anomalous resistivity resulting Irom a perpendicular current is conceptionally Ca-aer to
understand. J -driven instabilities which cause anomalous resistivity can be divided into two
categories: those that are important when Q,,./%V. - I, i.e., the Buneman and ion acoustic
instabilities, and those which predominate when >> I, i.e., the beam-cyclotron, lower
hybrid-drift, modilied two-stream and ion-cyclotron drift instabilities (Q. Davidson and Krall,
1977: I'apadopoulos, 1979). In the unmagnetized J, -driven instabilities, the excited turbulent
waves cvwiled can easily randomize the perpendicular electron and ion velocities, thus leading to
heating in all directions. For the magnetized cases, heating occurs in directions normal to the
magnetic field. The resultant distribution may be fully isotropized, however, by the concurrent
excitation of secondary instabilities, such as whistler and electromagnetic ion-cyclotron, by the
high-temperature isotropy that results 'rom the J1 -drien anomalous heating (Spicer, 1976).

10.3.3.3 Techniques for Computing Plasma Turbulence
Levels in Solar Physics

Various approaches to computing the level of plasma turbulence, and thus resis-
tivit), from a given plasma instability have been applied to solar physics problems. For exam-
pies, the mode independent approach of Galeev and Sagdeev (1979), which is based on the
conservation of energy and momentum between wave and particle at marginal stability. The
assumption of marginal stability in solar problems is a particularly powerful technique for com-
puting turbulence levels, because the growth times and saturation times of instabilities which
produce anomalous resistivity are - 106 times shorter than any macroscopic time, such as a
tearing mode growth time or the life time of a flare. Thus, if anomalous resistivity is to be
important in solar problems, the instability causing the anomalous resistivity must be at or near
marginal stability and driven continually during the course of a flare by a source of free energy
external to the instability. The marginal stability approach, whose principal proponent is W.
Manheimer (Manheimer and Boris, 1972, 1977; Manheimer and Flynn, 1974; Manheimer et at.
1977- Manheimer, 1979a; Manheimer and Antonsen, 1979), has yielded theoretical predictions
which are very consistent with actual laboratory results.

In general a micro-unstable plasma is assumed to exist in a linearly unstable state. The

transport coefficients are determined by the fluctuation level, which is limited by a local non-
linear effect such as resonance broadening (Dupree, 1967) or mode coupling (Manheimer et at
1976, Cohen et aL 1976). Thus, to obtain transport coefficients, it is essential to utilize a non-
linear theoretical treatment of all relevant mechanisms. In the Manheimer approach. it is
assumed that the relaxation of the plasma to the linearhy stable state is the most effective stabili-
zation mechanism, so that the plasma presumably is at or near marginal stability even if some
mechanism continually drives it toward instability. Thus, non-linear theory of the relevant
mechanism plays a far less important role in the analysis of a marginally stable plasma than for
a plasma that is linearly unstable. This is not to say that non-linear effects play no role at all,
because saturation levels must be use to limit the turbulence level; nevertheless, the marginal
stability approach does not depend on the detailed non-linear evolution of the instabilit.. In
principle, the marginal stability approach is similar to the quasi-linear theory of turbulent tran-
sport (cf Galeev and Sagdeev, 1979) but with the additional assumption that the characteristic
time over which the instability can develop and field amplitudes vary is short compared to the
time scale of the macroscopic fluid quantities.
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To illustrate the marginal stability approach, we consider a magnetic loop in which a paral-
lel current flows such that the net current is roughly constant for a time t = L/R and that J1
exceeds the threshold of the ion-acoustic instability (cf, e.g. Krall and Trivelpiece, 1973) along
some fraction, A s, of the loop length, Lo; hence, unstable and growing ion-acoustic waves are
present. We expect the level of turbulence to lie in the range between the classical value and
the saturated value as determined by the marginal stability condition. Physically, three time scales
are of interest: the anomalous Joule heating time, 1 ; the cooling time, t, due to radiation or
diffusive transport, whichever process yields the smallest t,.; and the hydrodynamic expansion
time, tH, due to expansion either parallel or perpendicular to the magnetic field, whichever is
shorter. For solar flare plasmas, tj < t, < tH. With these time scales in mind, we expect the
following sequence of events (Spicer and Manheimer, 1982):

(1) Rapid anomalous Joule heating, due to the existence of unstable ion-acoustic waves,
induces modifications of the threshold condition for the ion-acoustic instability so that the ins-
tability is shut off and the transport coefficients resume to their classical values. This occurs
within a few ti.

(2) Conductive cooling, both parallel and perpendicular to the magnetic field, and radia-
tion eventually allow the threshold conditions to be again satisfied so that the instability is
switched on again.

(3) Sequence (1) and (2) will occurs many times (subcycle) before hydrodynamic expan-
sion occurs.

(4) Finally, hydrodynamic expansion causes cooling and reduces the density in the heated
volume. As a result, J1, increases to keep the net current constant. This increases the drift
velocity, vi), so that higher temperatures are achieved.

Hence, temperature will vary with subcycle (I) - (2) but continues to increase stepwise,
according to (4), with progressively more energy being deposited per unit volume. This heating
continues until the net current has decayed sufficiently that J11 cannot be maintained at the ion-
acoustic instability threshold. In terms of lumped circuit parameters, this occurs in a time

A s(10.3.21)

c' (Rr + "qAN -)A
where Rr represents the total load resistance as determined by the power generator in one foot
of the loop and the load in the other foot; 71AN, the anomalous resistivity at marginal stability;
and A, the cross-sectional area )ip which J11 exceeds threshold. In a cylindrical loop,

A ==27r r 8 r, where 8 r > I L c #,- 1/2 for the ion-acoustic instability and r is the

radius of the current channel (Spicer, 198 1b). If we assume Rr << 71ANA s/A then

LO T- . (10.3.22)
As

where rT is the local'anomalous current-dissipation time (10.3.2).

Thus a dynamic balance is struck between anomalous heating and cooling, with the
current-plasma system sitting at, or perhaps oscillating about, the marginal stability point. Since
these oscillations about the marginal stability point occur many times in a hydro-time, 1H, the
combination of heating and cooling can be treated as a steady-state process within a hydro-time
scale. The fundamental quantity to determine, then, is not the level of turbulence but the tem-
perature and density profiles during a hydro-time scale. Once J11 and these profiles are known,
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we can calculate the amount of energy transported within a hydro-time. Once given the
amount of energy transported we can compute the turbulent fluctuation level in a hydro-time,
using simple quasi-linear theory. This logical sequcotce is just the reve,.: of conventional
approach used in non-linear theory.

The marginal stability analysis proceeds as follows (Spicer and Manheimer, 1982). The
steady-state electron heat-balance equation for anomalous Joule heating is

Q. (v + nt.m Lv 2 b 3m,.
Q. (v)Prad + v,,. ,. (T - T,) 0 0, (10.3.23)

while the marginal stability condition for the ion-acoustic instability is

vI= C (T., T,) f( T. ,) (10.3.24)

where Q, is the thermal and frictional heat flux, Prad the radiation loss; v,,., the electron-ion col-
lision frequency, vi, the current drift velocity, f the ion Landau damping factor,
V,'J = v,, + 'AN, and for simplicity, we have here assumed that T,, n, and v1) are known. The
marginal stability approach adopts (10.3.24) instead of (10.3.23) as the equation for tempera-
ture. while (10.3.23) is used to determine vi'f, the effective collision frequency.

Earlier attempts at applying the concept of marginal stability to flare theory (Spicer,
198 1b; Duijvernan et a. 1981) do not utilize the Manheimer approach outlined above, contrary
to the claims of Duijveman et a. (1981). In addition, these attempts were not internally self-
consistent. For example, the Duijvemenn et al (1981) analysis assumes a given electric field
which drives the current unstable, while feed back is not permitted to account for the alteration
of the electric field with changing transport coefficients. Spicer's approach was even less self-
consistent: global and local energy balance arguments are used to estimate flare temperature at
marginal stability, but with saturated levels of turbulence.

10.3.3.4 Applications of Anomalous Joule Heating to Flares

As noted in §10.2.2, Spicer and Brown (1980, 1981) have proposed a
classification scheme whereby flare mechanisms, are separated into mechanisms driven by
currents flowing either perpendicular or parallel to the magnetic field. This division according
to the source of driving current is useful for reasons which will not be discussed here, (cf.
Spicer and Brown, 1980, 1981), however we note that this approach enables us to recognize
which instabilities might be important in a force-free loop, i.e., those driven by .1, and which
might be important in a neutral sheet, i.e., those driven by J1 . In the past, two classes of flare
models have been developed which utilize anomalous Joule heating: those driven by J,. and
those driven by J1,. In §10.3.2 for example, we considered a J,1-driven model, denoted the
modified Alfven-Carlqvist model (Spicer, 1981b) to differentiate it from the original double-
layer or current-interruption model of Alfven and Carlqvist (Alfven and Carlqvist, 1967;
Carlqvist, 1969, 1979b). An alternate set of flare models that utilizes J1 - driven anomalous
resistivity to enhance the reconnection rate (cf §10.3.5.2) and/or to cause anomalous Joule
heating (Sturrock, 1966, 1967, 1972, 1974; Friedman and Hamberger, 1968, Priest and Hey-
vaerts, 1974, Kuperus, 1976; Heyvaerts et al. 1977; Tur and Priest, 1978; Heyvaerts and
Kuperus, 1978). These models, to date, have utilized only the ion acoustic or Buneman insta-
bilities as sources of anomalous resistivity; in this respect, these models are archaic. In particu-
lar, work by Huba and colleagues (Huba et a. 1977, 1978, 1980; Drake et a. 1981) has demon-
strated that the most appropriate J, -driven mechanism for anomalous resistivity in neutral
sheets is the lower-hybrid drift instability (LHDI) (for a review of anomalous resistivity in neu-
tral sheets cf. Papadopoulos, 1979). The LHDI has a number of advantages over those of the
ion-acoustic and Buneman instabilities because it can be excited by currents far weaker than
those required of the ion-acoustic or Buneman and occurs even when Tl T < i. The level of
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turbulent resistivity is also substantial. In addition, the lower-hybrid drift instability, which is
characterized by wave numbers that satisfy k • B = 0, is closely related to the modified two-
stream instability (MTSI) (k • B - 0) (Gladd, 1976) and is capable of accelerating electrons
stochastically to very high energies (Lampe and Papadopoulos, 1977). Application of the
LHDI or the MTSI to neutral sheet flare models has yet to take place although Spicer et al.
(1982) utilize both instabilities in a model of Type 1 metric bursts, and Kahler and Spicer
(1982) invoke both instabilities to explain certain classes of impulsive electromagnetic bursts
associated with flares.

The J11-driven anomalous Joule heated flare model discussed previously is an alternative
to the double layer model of Alfven and Carlqvist (cf. §10.3.2). It was formulated initially by
Smith and Priest (1972), who objected to the Alfven and Carlqvist double layer model for a
number of invalid reasons as discussed in §10.3.2 (Carlqvist, 1973, 1979b, Spicer 1974; 1981b).
Smith and Priest found that the LIR decay time of the relevant circuit is a factor - 106 too
large to explain a flare. However, this estimate is based on a decay time of the circuit due to
anomalous resistivity alone, which is an incorrect assumption: the full cross-sectional area of a
loop (the basic geometry of the Alfven-Carlqvist model), = l0l cm2, was used instead of the
cross-sectional area of the current channel in which the unstable J11 current flows,

2 rr 8 r = 1012 cm 2 . The ratio of these two areas is = 106, yielding an effective LIR time
ofz 102s (Spicer, 1981b).

The two primary advantages of an anomalous Joule heating flare mechanism are: the large
heating rate associated with this process and the fact that anomalous Joule heating gives rise to
a very hot thermal plasma (= 10keV), which thus can provide a thermal explanation for a
specific class of impulsive X-ray bursts (Spicer, 1981 b). A distinct disadvantage of such models
is the large current densities required; this disadvantage is more severe for J11-driven
anomalous Joule heating and double layer models than for J, neutral sheet models.

10.3.4 Double Layers and Anomalous Resistivity

If a purist's definition of double layers and anomalous resistivity were required,
we would state that a double layer is a collisionless laminar structure, much like a collisionless
laminar electrostatic shock (cf Tidman and Krall, 1971), and that anomalous resistivity results
from highly turbulent structure. An examination of the aforementional literature (§10.3.2 and
§10.3.3) concerning the application and theoretical studies of these two J11-driven mechanisms,
however, suggests a more confusing picture: in which double-layers consist of a turbulent struc-
ture superimposed on a gross laminar structure, while anomalous resistivity may require
approximately laminar, large-amplitude ion density waves with similar turbulent structure. In
addition, both mechanisms lead to trapping of large numbers of current carrying electrons,
while simultaneously requiring similar magnitudes for the current drift speeds for excitation.
This latter point implies that double layers, which are highly localized along the current path,
may be embedded in a larger region characterized by anomalous resistivity, as discussed by
Smith and Goetz (1978).

We also note that it is not at all clear how a double layer dissipates the stored magnetic
energy since it appears to lead to primarily mono-energetic beams without any local irreversible
dissipation of the current, except possibly through beam driven instabilities or where the beam
is stopped, e.g., in the footprints of a loop. In addition, the sequence of events found by Pal-
madesso et at. (1980) may well occur for a double-layer in a magnetized plasma. That is, the
beam formed by the double layer should become two-stream unstable, leading to the formation
of a quasi-linear plateau, while at the same time this beam should excite the anomalous Dopper
cyclotron-resonance instability; the resultant transfer of high-velocity parallel momentum into
perpendicular momentum thereby isotropizes the particles trapped in the double layer. For
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these reasons, we would like to caution the reader against advocating either mechanism for
applications to solar phenomena until both mechanisms are subjected to more thorough theoret-
ical and experimental investigation; at present it appears, to the author at least, that these
mechanisms may well represent two aspects of a more general Jj 1 -driven mechanism in mag-
netized plasmas.

10.3.5 Ideal Magnetohydrodynamics (MHD) and Reconnection
Mechanisms in Flares

In this section, we review two macroscopic processes commonly invoked to explain
flares: ideal MIlD and dissipative MHD mechanisms. These processes are very closely related,
although they usually are treated as separate phenomena. Reconnection is a particular dissipa-
tive MHD mechanism which is distinguished from the ideal MHD process by the existence of a
dissipative boundary layer. By definition, a dissipative boundary layer is a narrow region in
which the solution of the relevant differential equation changes rapidly and which must vanish
in the limit of zero dissipation. Hence, many of the effects associated with an ideal MHD
mechanism also are associated with dissipative MHD mechanisms; for example, an ideal MHD
kink of mode m = I is identical in many respects, to the m = I resistive MHD kink (a cylindr-
ical or toroidal tearing mode), except within the resistive boundary layer (Drake, 1978). In the
absence of boundary layers, however, dissipative effects still are important in the context of
understanding flares; for example, ideal MHD motions often yield large convective flows per-
pendicular to a magnetic field which, in turn, can provide significant heating and particle
acceleration if the relevant dissipative mechanisms are included properly. Hence, we consider
two types of MHD mechanisms those in which boundary layers play an important role for both
macroscopic stability and the thermalization of free magnetic energy, and those in which boun-
dary layers play no role, e.g., when magnetic flux expands freely into an exponential atmo-
sphere. In this section, therefore, we develop and review the general significance of ideal
MHD, as opposed to dissipative MHD, and illustrate how a simple ideal MHD phenomenon
may explain a flare. Then the concept of ideal MHD stability is discussed briefly. In this
regard, we distinguish between those MI-D instabilities which lead to a lowering of magnetic
free energy and those which do not. In addition, we discuss the significance of k - B = 0
resonant surfaces in ideal-MHD and dissipative MHD stability theory. We complete this sec-
tion with an introduction to reconnection and the theory of fast and slow tearing modes, and a
review of recent developments in tearing mode and reconnection theory, in the context of the
potential role of these processes in solar flares.

10.3.5.1 Ideal MHD Theory

The fundamental distinction between ideal MHD and dissipative MHD theory is that
magnetic flux is a conserved quantity in the ideal MHD case. The conservation of flux in ideal
MHD is a consequence of Faraday's law,

I 6B V x E, (10.3.25)
c Ot

which derives from the fact that the electric field, E, around any closed contour, is the negative
rate of change of the magnetic flux though that contour, 4), defined by

= f B- dS. (10.3.26)

In the non-relativistic limit, Faraday's law is consistent with the following transformation of the
electric fields E, and Em (Jackson, 1962):
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E= B + E,, (10.3.27)

where E, and E,, are measured in fixed and moving frames of reference, respectively, and V is
the velocity of the moving frame relative to the fixed frame. Using (10.3.25), (10.3.26) and
(10.3.27), the rate of change of flux through any moving contour is

-d fdl{E/± + <Bj (10.3.28)

where + • V. For a perfectly conducting plasma, Ohm's law requires

E - x B. (10.3.29)

that is, the electric field in the frame moving with the plasma, E,,, is zero and cannot have a
component parallel to B. Hence, (10.3.28) reduces to = 0, which means that the mag-dt
netic flux, OP, is convected along with the perfectly conducting plasma and is a constant of the
motion.

If toroidal flux surfaces are imbedded in the perfectly conducting fluid, the local quantity

S4-) -- (10.3.30)

where 4), and 4)p are the toroidal and poloidal fluxes, is convected along with the plasma;
hence, dq = 0. In a cylindrically symmetric (homogeneous in 0 and z) cylinder of length L0 ,dt
the toroidal and poJoidal fluxes are

4), = 7Afo&(r.t)rdrdO = 21rJ fI r.rdr (10.3.31)

and
4p, = f B,(r.t)drdz = Lf Bo(r.t)dr (10.3.32)

so that

q(r,t)= LoB (r, ) (10.3.33)

The geometrical significance of the parameter q is indicated in Figure (10.11), which represents
an unfolded cylinder. In this projection, the magnetic field lines appear locally as straight lines
so that q is a local measure of the pitch of the field lines, as follows:

2ir dz
q = L d, (10.3.34)

The quantity q is most commonly called the safety factor because of its relation to laboratory
MHD stability. We return to the application of this parameter later in this section.

The ideal-MHD property of flux conservation immediately suggests a new and very simple
model of a flare, using magnetic flux emerging from the photosphere as the flare driver.
Assume that the magnetic flux emerging from the photosphere, 4)0, is associated with a field
pressure that greatly exceeds the ambient atmospheric pressure. If no barrier exists above the
emerging flux, the configuration lowers its energy by expanding at roughly the Alfven velocity,
V.,, and with an acceleration V,/R, where R is the radius of curvature of the field lines (Book,
1981; Spicer t al. 1982). The work thus performed on the surroundings is of order A W
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A 11, - I , 1 .,87r, "here A I is the initial volume of the emerging flux- B, the initial
magnet!, field, L . the initial length of the emerging flux: and .-I,, the initial area. TFaking .4, Z-
It)" cm. I. 10' cm and B IP(1, we find A 1$ 4 x 102" erg, enough to power a small
flare. In addition, the emerging flux ejects a mass Am = pA I(Book, 1981), for AvI= 10 I5
cm and 1Il) ", g cm A Am l 0I g. The total power involved in expansion initially is
I I 1A R (Spicer et aL., 1982), which yields P, = 102I' ergs s 1 for R Z 7L,. This
power (1tpt111ut increiises rapidly at first, then drops back to zero when the flux system reaches
pressure equilibrium with the ambient atmosphere. Since the emerging flux moves at velocities
greater than th h(cal .\flken or sound speeds, the flux drives collisionless shocks in front of it.
These shoLks mai, reprc,,ent the irre',crsible heating mechanism needed to explain the observed
flare heating ind p.articl. ack:eleration The temperature changes due to the collisionless shockarc s'sti atud {, h' 3/ 91",
are estimated tI he A. .. /Cs) for large Alfvenic Mach numbers, where C", is the

local sound ,pcc, and I, is the initial temperature (Kahler and Spicer, 1982). Since 1'.1 > 10
( as assuncd chingcs ot'. I -- 100 1,, can result.

I thc simpic results obtained aboe illustrate three important points: no macroscopic insta-
hilit% i,, ecssar% it. explain a flare with this model, remote, photosphericall) stored magnetic
energ can explain a flare; and ideal MIID motions can indirectly drive perpendicular currents
that are suficicni t, LIxIte crossfield anomalous resistivity effects in the form of collisionless
shocks.

Next. Lwnsidcr how the motion of a perfectly conducting plasma induces currents, which
then produce heating. Assume that a sudden pressure increase occurs at the center of a
cylindrical plasma, in which is imbedded only an axial magnetic field, B. As the central plasma
pressure is increased, the resultant radial force imbalance drives an outward radial flow, with
velocity '... This flow xclocity produces an azimuthal electric magnetic field, -v,B:/., which
reduces the axial field according to Faraday's law. This reduction in the B. profile induces
azimuthal currents, thus providing an inward J,B. force which restores force balance at the
higher plasma pressure. In the absence of dissipation, the plasma overexpands and then oscil-
lates spatially about the new equilibrium. If dissipation is permitted, these oscillations are
damped h Ohmic (collisional or collisionless) and/or viscous dissipation so that the oscillation
energy reappears as heat. In this manner a MHD process can transport energy, from a small
volume, into a larger volume without invoking diffusive transport mechanisms, and, if dissipa-
tion is permitted, can deposit the energy in a larger volume.

We now review the ideal MID instabilities relevant to solar flare theory. Our goal is to
introduce the appropriate concepts that allow us to differentiate ideal MHD instabilities and
resistive Mill) instabilities. There are basically two equilibrium sources of driving energy for
both ideal and resistive Mill) instabilities: currents perpendicular and parallel to the magnetic
field. Currents perpendicular to B, due to pressure gradients, are responsible for driving the
so-called interchange instabilities. These instabilities cause one portion of a plasma to exchange
places with another portion, and depend only on the local conditions near the line of force-
therefore, they constitute local instabilities or modes, as opposed to global modes. In general,
the interchange instabilities, which are local do not necessarily imply global instability: some
level of local instability is tolerable and usually appears as convective turbulence. This tur-
bulence may he manifested in various solar features such as prominences (Spicer, 1979b). The
second source of driving energy currents parallel to B, drives macroscopic instabilities which
spread themselves (Jut over the plasma volume. These "kinks," or helical instabilities, can be
subdivided further into free-boundary kinks (external kinks) and internal kinks. The external
kink involves motions of the entire, plasma-magnetic field configuration- in the solar context, a
classical example appears to be the erupting prominences (Sakurai, 1976: Spicer, 1976, 1979b).
On the other hand. internal kinks involve distortions and motions within the plasma-magnetic
field configuration WPNW('), and are not necessarily visible to an external observer.
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As a general rule, ideal MHD instabilities occur when a perturbation to a PMFC does not
bend or stretch the magnetic field lines. Such perturbations do not provide magnetic restoring
forces, which are necessary for restoration of equilibrium, so that the perturbation continues to
grow. To identify, in a more definitive manner, those effects which are capable of causing ins-
tability and those which are capable of stabilizing, we utilize the energy principle (Bernstein et
at., 1958). By dividing the potential energy 8 W into positive and negative parts, we can iden-
tify the stabilizing and destabilizing terms.* We write 8 W in the form (Furth et al., 1966)

8W=8W,. +8W, +8W, (10.3.35)

where 8 Wf, the change in potential energy resulting from the perturbation of the plasma, is
given by

8 882 8B,, Bof • VP0

t f3 + 41, 4B0 + Yop(V.) 2

W (Alfven) (Magnetosonic) (sound)

O BO(BO x f • aB 2:• T •Jo. B0

B (kink) ( interchange];(1..6
( Ballooning

8 W v, the change in potential energy resulting from the perturbation of any vacuum magnetic
field, is given by

V 2 fd3 X %Bj, (10.3.37)

and 8 WI, the change in potential energy associated with any surface currents present, is given
by

W= f dS. P0 + AL (10.3.38)

where f is the fluid displacement, y, is the ratio of the specific heats; fl, is a unit vector nor-
mal to the equilibrium magnetic surface; 8B, the perturbed magnetic field; and

K = -1B, x V(87rp,, + B,2)] x B,, (10.3.39)
2 B,,'

is the curvature of the magnetic field. 8 W, always provides stabilization, and 8 W, vanishes if
no surface currents exist.

The first three terms in 8 Wf are stabilizing while the last two are destabilizing. The first
of the two potentially destabilizing terms results from currents flowing parallel to B,, and the
second destabilizing term is due to the interaction of the pressure gradient with the field curva-
ture. Notice that these terms arise from J1t and Ji, respectively. In solar PMFC's 19 can vary
by orders of magnitude, so that J, may play an important role in part of a PMFC while Jl1
predominates in other parts (Spicer, 1979b). However, just the opposite is true inside neutral
sheets, where 93 -o since B -- 0 so that J, becomes very important. Interchanges are
expected in neutral sheets where finite curvature effects exist, according to Uchida and Sakurai

'The reader should note that the following arguments are geometry independent; e.g., kinks can occur in any
geometry, although with differing growth rates and manifestations. For example, the m - I kink requires curvature
effects which are a natural consequence of cylindrical and toroidal geometry, but not of slab geometry; hence, a m - I
kink :annot exist in slab geometry.
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(1977), and might play an important role in the energetics of neutral sheet reconnection during
a flare.

The first and second stabilizing terms in 8 W[ arise because energy is required to stretch
and shift lines of force where ever the direction of the magnetic field is changed by the pertur-
bation. Contained within this term is the global magnetic shear, the average shear over the
entire magnetic surface, and the local shear, the amount a field line must be stretched if it is to
exactly replace a neighboring field line in the course of the perturbation (Ware, 1965). Mag-
netic shear provides stabilization because the direction of the magnetic field changes its direc-
tion with position in a sheared magnetic field. It is very difficult to interchange two neighboring
field lines which are oriented at an angle to one another, unless a line is bent and/or stretched.
Since bending and stretching require that work be done on the field, 8 Wf increases rather than
decreases; hence shear is stabilizing. We emphasize, at this point, that shear is stabilizing in
the ideal MIlD limit because flux is conserved, i.e., field lines cannot be broken. However, dis-
sipation effects, such as resistivity, allow the lines of force to break and reconnect. Thus, shear
in the presence of dissipation is less effective as a stabilizing influence than in the ideal MHD
approximation.

Two compression terms exist in (10.3.36), both of which are stabilizing: yopo(V • f)2 and
(Bg This follows because they are a measure of the net energy absorbed by the

PMFC in compressing the magnetic field and the plasma. As with stretching, a finite amount
of compression is necessary if one field line is to replace another exactly. Notice also that both
terms become ineffective in the limit of 3 - 0.

The destabilizing term J0 - B0 (B0 x f ) • 8B is responsible for driving kink instabilities in
force-free fields, by means of forces resulting from the interaction of the currents parallel to B0
and 8B (Voslamber and Callebaut, 1962; Green and Johnson, 1962; Anzer, 1968; Raadu, 1972;
Spicer, 1976, 1977; Van Hloven et al., 1977; Van Hoven, 1981). Energy is released by lowering
the net current along the magnetic field. The constraint that the magnetic fluy. within a given
flux surface be conserved is satisfied by bending and stretching the field lines into a helical or
screw shape (Kruskal and Kulsrud, 1958). The decrease in the magnitude of B0 inside the flux
surface is balanced by an increase in the cross section of the bounding surface; this accounts for
the expansion of prominences (Sakurai, 1976; Spicer, 1979b).

The term 2f • Vpof • K is related to the curvature and, thus, the tension of the lines of
forces, and is responsible for driving the interchange instability.* This tension results in a force
which is proportional to B2, so that work must be done to move lines of force against this ten-
sion. One additional stabilizing effect, line tying, is not obvious from the discussions ((f

§ 10.2.2.2).

Although the m = I kink will be discussed in more detail under reconnection it is per-
tinent to briefly comment on the nature of the kink instability. As has been shown, kinks are
effectively incompressible perturbations since P0 does not appear in the driving term
(Jo - B,)(B 0 x f) • 8B); that is, they would exist with or without a finite f3. As a result of their
incompressibility the kink driving force must provide a torque, T, in the axial direction; i.e.,

T = v " (10.3.40)

*The Rayleigh-Taylor instability is essentially an interchange instability but with gravitational acceleration g as the driv.
ing term not o It arises as a result of a coupling between the pressure gradient and g.
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Linearization of (10.3.40) for perturbations of the form e(r) expil(mO + kz)] yields

8 T_ = 8B,- - + A Il1?I8Jz, (10.3.41)
'dr

where dJ.J/dr provides the driving force. In general, the second term is negative and provides a
stabilizing force except where the perturbation is constant along the equilibrium field, where kil

(k • B(V0 = 0. Thus, depending on the sign and magnitude of dJ,(Vdr at the point where It
BO =0 instability may or may not result. Therefore, knowledge of the equilibrium current

density profile is of crucial importance in comprehending the MHD stability of solar features in
which parallel currents are believed to flow, such as loops and prominences.

If no component of B exists other than that produced by J, the system is considered
shearless because the induced field component Be has lines of force which are all in the same
direction. However, if more than one component of B exists, B has shear because the direction
of B varies from point to point. For a cylindrically symmetric field, the pitch of the magnetic
field, ., is given by

A = a q (10.3.42)

hence, shear represents the change of field line pitch with radius and is just the derivative
dq/dr. Shear also can be related to dJ:/dr by the integral expression (Wesson, 1978)

d_#_ 2irL0 ['r2 dli,0dr =1rB Lo f r'r1 dr'. (10.3.43)
dr r3g ) dr'

The main point, then, is that steep current density profiles, i.e., profiles with large dJ1/dr, pro-
duce large degrees of shear so that a solar PMFC with a steep current gradient should be rela-
tively stable to ideal MHD kink modes and interchange modes, as discussed in §10.2.2.2. How-
ever, the introduction of finite resistivity, which relaxes the ideal MHD constraint of flux con-
servation, changes the above argument.

We now consider the parameter q, as defined by (10.3.30), and its relationship to the
mode rational surface. Denoting an unperturbed equilibrium quantity by the subscript N"" and
perturbed quantities with the prefix "8," the linearized equations of motion for a current free
magnetized plasma are

08v PO
VU yo-Vap + -(V x 8B) x Bo. (10.3.44)

PO 47T

8 + pO • 8" = 0 . (10.3.45)
Ot

and

08B
t = V x (v x B0). (10.3.46)

where the adiabatic relation p = yop/lc 2 has been used. Assuming B0  Boez, V = ik and

t -iw, and solving for By, we find (Jackson, 1962)

O28v = - c2 k(k 8v) + VA , x [k x (k x '8v x )1 (10.3.47)

where V, = BO=/d - o. Taking k to be in the y - .v plane, then due to isotropy in the .j - z
plane, (10.3.47) yields the following expressions for the components of W28v.

W2 8 v, kZ 2.X. (10.3.48)

28 V, = kc 2(A,8v, + k-8v,) + (k:2 + k,?) V28v,. (10.3.49)
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Equation (10.3.48) ields the dispersion solution
2 = _21 k,2 1* 2 OS2 (k B, B )2

o _I 4 )os (10.3.51)

where () is the angle between k and B. while (10.3.48) and (10.3.49) together ield

2 - + K)± 'K - ,')'+ 4t,-2  sin' . . . ) (10.3.52)

Equation (10.3.51) is the dispersion relation for shear Alfven waves. For H = 0, (10.3.51)
yields two solutions co2  A2 , and W2 = A'K V; for H - 7T/2, the two roots are w

/.(' + i') and o 2/k 2  0. We emphasize that shear Alfven waves are non-compressional,
since 8v, 8v= 0: at 0 = 0 only the sound wave, w2  k-t,, compresses, while at H - 7r/2sice= , ompressscowhilesats.
the magnetosonic wave w= A,2 G, + F,2), compresses.

If the plasma is characterized b) t3 < < I we can assume that the plasma is incompressi-
ble perpendicular to the lines of force (y(o - -). In this situation, compressibility provides no
stabilization, so that only shear Alfven waves are available to stabilize against perturbations.
Shear Alfven waves have frequencies w 2 = (k • B,) 2/47rrp and equal zero when k - BR, = 0.
Suppose, then, that some perturbation drives the magnetized plasma toward instability, which
requires w 2 < 0, but that initially w 2 > 0. If G-2 > > 0 initially, the perturbation lowers w 2 at
most. while if initially w" > 0, the perturbation may lead to w 2 < 0 and instability. Clearly the
most likely condition for instability to occur is if w 2 = 0 initially that is, if the perturbation
wave number vector satisfies k • BO = 0. Thus, if the perturbation results in k • BO 0, the
perturbing flow couples to shear Alfven waves, which tend to stabilize the sNstem. However,
we must emphasize that instability can occur even if k •B0 ;z 0, as long as the unstable flow is
sufficient to overwhelm the stabilization effect of Alfven waves. If' an instability exists and k •
B, # 0, the instabilit is localized along the field lines since the perturbation is forced to vary
along the field line exciting stabilizing shear Alfven waves. If k ' BO = 0, the perturbation is
resonant, because the pitch of the perturbation exactly matches the pitch of the magnetic field.

The definition of q, given by (10.3.33) for a cylindrically symmetric diffuse pinch, we
nm B1

derive b) expanding k • BO = kIB1 + and rewriting it in the form k . R,=
I"

(q + m/n )nB,/r, where m is the azimuthal mode number: a finite cylinder of length L,, also is
assumed so that only axial wave numbers which satisfy A/ = 27rn/L L it the sy stem. Ilence. k

B = 0 when q = --m/n. These surfaces are called mode rational surfaces. Ilowever. the
existence of such surfaces in a solar magnetic configuration is unlikely, because the\ are an
artifact of the periodic boundary conditions imposed on the axial coordinate: thus, if the
cylinder were bent into a torus, the pitches of the field lines at each end of the cylinder would
match identically. However, in a solar loop, the pitches of the field lines will differ at the ends
of the loop, in general, because of inhomogeneit. A' the field along the field line, something
that is not accounted for in the cylindrically s.mmet;, loop. Consequently, a loop can not be
treated as if it were topologically equivalent to a torus The fact that q is a local quantity, in
general. except in cases of high symmetry, justifies our pre ious contention that the use of local
stability criteria reveals us nothing about global stabilit.% (. § 10.2.2.2).

Shear and line-tying stabilization can now be easil understood in the MIlD picture. If a
finite, homogeneous axial magnetic field is placed between two perfectly conducting end plates,
the parallel (axial) wave numbers are limited to kl = 2rn/L,,. Hence, the available wave fre-
quencies, defined by o 2 

= (k V)2 = (2TrnlL' )2 , always are positive and thus exert a sta-
bilizing influence. If the end plates are removed the plasma is free to chose a parallel
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wa\lngth equal to /ero. I I,. ever, if a ariation is induced in the direction of' B this fr .edom
is remov ed and shear stabili/ation is obtained. If the two stabilization mechanisms, shear and
line-t ing, are combined the stabilization is Lurther enhanced.

As noted in §0t).2, several mechanism can cause polarization currents to exist perpendicu-
lar to magnetic field lines: these currents tend to discharge along magnetic field lines by means
of shear Alfven waves. When charges of opposite polarities on differing field line-, are neutral-
ized, a parallel current system is established. This can be better understood, together with how
shear Alfven Aaves stabilize against instabilities in the electrodynamic coupling picture, b util-
izing a linearized from of 110.2.2) with the pressure gradient neglected, V - 6J =0 and

10.3.50) to obtain the first order parallel current associated with an Alfven wave given by

It 111
8.1= 4- -k, • (ki x 8s). (10.3.53)

Equati, n (10.3.35) demonstrates that magnetosonic waves (kjj - 0) do not produce parallel
currents, while shear Alfven waves do. Hence, perturbations with k • BO = 0 cannot generate
charge neutralizing parallel currents to short circuit the polarization currents associated with
U., while perturbations with k1 ; 0 can produce parallel currents. Thus, because V • U = 0
is required for equilibrium (Lf §10.2.2.2), instability results from perturbations that satisfy kil
= 0. Furthermore, since k , cannot vanish in finite systems, line-tying results from the fact
that a finite 6J always is produced with a magnitude that depends on k11 . Hence, the larger
the system the smaller the stabilizing effect of line-tying.

Returning to the m = I kink mode, we note from (10.3.14), that the driving term,
dJ:d/dr, still can become sufficiently large to exceed the stabilizing term associated with the
shear Alfven waves, if ki is not allowed to vanish. Thus, a kink will develop, localized along
the field lines. The presence of any inhomogeneity in both 0 and z will further localize the
mode along the field lines, thus requiring even larger current densities and gradients to drive
the kink instability, as suggested in §10.2.2.2. This implies that larger currents can exist in
loops than present stability analyses permit. It further implies that more magnetic energy can
be stored in such configurations.

10.3.5.2 Reconnection

Reconnection is, without doubt, the most popular flare mechanism ever pro-
posed. This process is attractive for two fundamental reasons: it allows magnetic energy stored
globally to be locally converted into thermal energy and convective flows, while simultaneous
giving rise to large induced electric fields, and thus particle acceleration, parallel to the magnetic
field. Because most of the recent developments in reconnection theory that are pertinent to
solar flares are associated with the tearing instability, the bulk of our review is focussed on that
instability. In addition, because flares appear to be closely involved with curvilinear plasma-
magnetic field configurations, we compare tearing in a slab geometry with that in a cylindrical or
toroidal geometry. The following review assumes that reconnection is collisionally dominated,
at least in the linear growth phase.

A "bare bones" explanation of reconnection is as follows: a resistive boundary layer
mechanism that violates the conservation of magnetic flux, the fundamental constraint of' ideal
Mill) theory, and thus leads to topological changes in the magnetic flux surfaces that change
the path for current closure. These topological changes are manit.sted by what are called neu-
tral points and magnetic islands. A neutral point is denoted as either an X point or an 0 point
(Figure (10 121) a magnetic island consists of at least one X point and one 0 point. Neutral
points represent sites where large current densities can be produced without being opposed by
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Figure 10.12 - Schematic of a single magnetic island with one 0 point and two ~
x points; ideal and resitive MHD regions are delineated

.52



NRL MI M()R \NI)LJM RI I()R I 4S5

J x B forces, as first demonstrated by [)ungey (1953), and therelore provide ideal sites f,,r pro-
ducing large .1, currents, which may be manifested as accelerated particle streams. However,
topological changes in magnetic flux surfaces only can occur under rather special conditions. In
particular, the flow field which drives reconnection, must be an odd function of position with
respect to the mode rational surface, where k • B0 = 0, so that the two fluid elements on oppo-
site sides of the mode rational surface are flowing toward's each other. In this respect, two
basic types of treatments of reconnection are found in the literature: those in which steady-
state flow fields on opposite sides of the mode rational surface always face each other in the
presence of one X-point; and those which assume a dynamic flow field that includes flow ele-
ments on opposite sides of the mode rational surface flowing either towards or arway from each
other in the presence of one or more X-points. The latter type of flow characterizes reconnec-
tion by the tearing mode instability (Furth et at., 1963, Drake and Lee, 1977, Mahajan et al.
1979, ilassam, 1980), while the former type of flow characterizes steady-state reconnection
theories (see Vasylunias, 1975 for a review). Presently a clear relationship does not exist
between the d namic and steady-state theories of reconnection, although presumably a steady-
state reconnection model describes the saturated state of one magnetic island consisting of one
X point and 0 point.

The role of the mode rational surface in reconnection is illustrated by the following exam-
ple. After Manheimer (1979b), consider a two-dimensional incompressible flow field of a per-
fectly conducting fluid in the x-y plane, defined by

-VOcos Ay A < x (10.3.54a)

xx

- V- cos ky 0 < x <A (10.3.54b)

with V', (-x) = - ,.x), and

0 A< x (10.3.55a)

- sin ky 0 < A < x (10.3.55b)
Ak

with V (-x) = V,.(x) such that V • V = 0; A represents the thickness of the resistive boun-
dary layer and is assumed here to be arbitrarily small, and k is a wave number in the y direc-
tion. This type of flow field is called tearing.flow. An examination of (10.3.54) and (10.3.55)
shows that a very rapid flow exists in the y direction where lxl < A. The flow streamlines
shown in Figure (10.13), illustrate that, as the fluid elements with y > 0 approach the x - 0
plane from the position and negative directions, they continuously turn away from the x = 0
plane into the y direction and then continuously back into the negative and positive y-
directions, respectively. Those fluid elements with y < 0 flow in a similar manner, but move
away from the x = 0 plane in the -y direction and then back into the negative and positive x
direction, respectively. The fluid element initiated located at y - 0 does not develop a velocity
component in the y direction, but piles up at the stagnation point at x = y = 0.

If the perfectly conducting flow field is now imbedded in an equilibrium magnetic field of
the form

x

BO = B0  -8 , (10.3.56a)

which results from a current sheet of the form
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Figure 10. 13 - The velocity field stream lines for tearing flow (after Manheimer, 1979b)
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4' 8/ (10.3.56b)J' 41r 8 1

where 81 is the magnetic field shear length such that A << 81 (Figure 10.12), the magnetic field
will begin to be contorted b) the flow field because the magnetic field is frozen into the flow.
The time history of the magnetic field is shown in Figure (10.14): the magnetic field becomes
more and more contorted on either side of the x = 0 plane, as time increases, and the bending
of the magnetic field lines causes larger and larger forces which attempt to restore the magnetic
field lines to their original form. Notice that no magnetic restoring forces are generated where
k B() = 0 (i.e., at x = 0), and that the magnetic field is straight and anti-parallel within
lxi < A on opposite sides of the x = 0 plane. Eventually, the magnetic restoring forces equal
the forces exerted by the flow field and a steady-state is achieved. These arguments qualita-
tively demonstrate that tearing flow is stable in the ideal MHD approximation at least in slab
geometry. An analytical proof can be found in Furth et al. (1963), who first treated the
theoretical aspects of the tearing mode for slab geometry.

If the perfectly conducting constraint is relaxed and finite dissipation (non-zero resistivity)
is permitted, the foregoing picture changes. In both cases, the gradients in the magnetic field,
and thus the Jj currents, increase as the magnetic field is distorted. In the ideal MHD case, the
resultant large currents can not be dissipated, but simply build up in magnitude. With finite
dissipation, however, these currents can be dissipated, or "annihilated" in the form of Joule
heating and particle acceleration. The magnetic restoring forces thus are reduced, and thus lead
to the collapse of the steep current profile developing across the x - C plane that was built up
by the flow field.* In addition, long anti-parallel magnetic field lines exist on opposite sides of
the x = 0 plane within the resistive boundary layer A, due to the tearing flow (see Figure
10.14). In the presence of finite dissipation these anti-parallel magnetic field lines can diffuse
together, and merge to form neutral points of the X and 0 type (Figure (10.12)). Since the
addition of dissipation permitted the lowering of magnetic energy tearing flow leads to an insta-
bility, called the tearing mode, in the presence of finite dissipation.

The role of the mode rational surface is illustrated quantitatively as follows. Consider a

magnetic field of the form

B,-= BoF(x)/8. B >> B0, B, = 0, (10.3.57)

where B. is spatially constant; and F(x) = k .B/Ik ' B01 = x for x << 8/, and
F(Ixl >> 81) - 1. 8/ representing the shear length or, equivalently, the thickness of the
current layer peaked at F(x) =0 . Following Adler et at,, (1980), we introduce a flux function,
tP(x.y'), such that,

B = VxL: + B L:; (10.3.58)

Ampere's equation thus yields

b= _ 4r j. (10.3.59)

Using Ohm's law (10.2.5) with a constant scalar resistivity, Faraday's equation, and assuming
incompressible flow, we find the following equation for b:

At + V (1b v) = - V 2 ib. (10.3.60)al 41r

Operating on the momentum equation with L~x Vx, and introducing a stream function, 4b, for
the incompressible flow, such that v = V4,xi., yields

From this point of view reconnection can be viewed as a mechanism by which flow energy is converted to magnetic
energy and then into particle kinetic energy.
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Figure 10.14 - The evolution of the magnetic field lines at different times in the
presence of tearing flow
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P0 de 2 * - IV., xV (V/)J. (10.3.61)
dt

The set of coupled equations (10.3.60) and (10.3.61) must now be solved subject to the
appropriate boundary and initial conditions. These equations are linearized in terms of 846 and
80/, where

0 (x.y) = / 0(x.y) + 8s (x)cos ky. (10.3.62)

and

40(xy) = (y/kB,,) 8W(x) sin ky, (10.3.63)

and both quantities are assumed to vary exponentially with time as exp (-Y). Hence, we obtain

N/ = ( I/T d '8 4, [ k28t/i +80Fx (10.3.64)

and
80 , = "Jx I d 2  8. (10.3.65)

where TA = (k VA) - 1 and T L = 4v (81) 2/71c2 are the characteristic hydromagnetic and resistive
diffusion times for the problem. The magnetic Reynolds number, S - rL/TA is > 10( for
solar plasmas.

If 7 is very small but finite and F(x) never vanishes, then (10.3.64) demonstrates that 80
and thus 0, are reasonably well conserved and resistivity is unimportant. However, ifj 7 0 but
F(x) vanishes at some x. then the resistive term is dominant in (10.3.64), within the layer of
thickness A about the mode rational surface at F(x) - 0. Outside the mode rational surface,
the resistive term is no longer important and ideal MHD analysis is valid. Figure (10.12) illus-
trates the splitting between resistive-dominated and ideal MHD-dominated regions.

The aforementioned division into resistive and ideal-MHD regions suggests that
(10.3.64)-(00.3.65) can be solved using a boundary layer analysis (Furth et al., 1963), where
the resistivity is assumed to be negligible everywhere except within the resistive region Ix < A.
For "constant tp" tearing modes (cf. below), A is given by (Furth et al., 1963; Drake and Lee,
1977)

A = 2 81 (10.3.66)
tLJ

In the ideal MHD region, 80 and 80 satisfy

A -k-2 I 81P -0 (10.3.67)
&d2 F dX

and
84* = 8/IF. (10.3.68)

The solution to (10.3.67) has a discontinuous derivative at the mode rational surface; therefore,
the quantity

dA
A'- --- (In8q/) 0A (10.3.69)

dx dx
is used to characterize the current profile in linear tearing mode theory and is a measure of the
available magnetic free energy which can be dissipated (Adler el al., 1980).
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In the resistive region, FW(x) -x and A'A << I, if we assume the so called "constant 0"
approximation; then 8tb is roughly constant in magnitude across the resistive layer, although
d8ib/d may change considerably. With this assumption, the following versions of (10.3.64)
and (10.3.65), are appliciable within the resistive layer;

8 22
81y'r d284.- d28J, (10.3.70)

X dX 2  dx2 (1.70

and
8 0( (I2j (10.3.71)

81 & 2

Integrating (10.3.70) across the resistive layer from -A to A. we obtain

.f d8 - (10.3.72)
84(M) 1.2 .

which must be matched at x = --A to the ideal MHD solution of (10.3.67). Equation
(10.3.72), together with the solutions to (10.3.70)-(10.3.71), yield the growth rate for "constant
$" tearing modes in slab geometry:

1'(1/4) A'8114 S 215  
(10.3.73)7r= 1'-(4/- 5) T,

From (10.3.73), we see that instability occurs when A' > 0, marginal stability when A' = 0,
and stability when A' < 0. Hence, the tearing mode grows in such a way as to cause A' to van-
ish. In physical terms, this instability causes the current density profile to be flattened as the
width of magnetic island, W, increases, so that saturation occurs when W equals the thickness
of the current channel, 81, as illustrated in Figure (10.15).

To illustrate how tearing modes lead to parallel electric induction fields, we express the
perturbed electric field parallel to the magnetic field as

8 ElA 11  ik,,84), (10.3.74)

where 8Aj, is the perturbed component of the vector potential parallel to the equilibrium mag-
netic field and 84) is the perturbed electrostatic potentiatl. Since 8A1 = 84Ij,, (10.3.74)
becomes

8E, = - - -iA,18). (10.3.75)
C

The parallel induction field - y80b/c causes the elections to flow with a velocity 8v,.,,
However, because the induction field leads to charge separation between ions and elections, a
parallel electrostatic field - iA 180 also is produced, which shorts out the induction field for
sufficiently large kj thus, 8E = 0 except where k. - 0, where 8E = -8y&b/c. Within the
resistive layer, therefore large parallel electric fields are produced and particle acceleration can
occur (Drake and Lee, 1977), only in the vicinity of A, = 0.

from both the qualitative and quantitative arguments presented, it is clear that the
occurrence of either stead-state or dynamic reconnection, is determined by the nature of the
flow field required in the presence of a dissipative boundary layer located at the mode rational
surface. Thus, to evaluate the importance of reconnection, in solar phenomena the source of
the flow field, or equivalently the free energy supply that produces the requisite flow field, must
be identified. There are two possible sources of magnetic free energy: perpendicular and paral-
lel currents. As is indicated by (10.2.2) reconnection can be driven by a perpendicular current,

58



NRL MEMORANDUM REPORT 4550

yx
V V

I I I
I "1

t=O t tts

Figure 10. 15 - Schematic of the evolution of the magnetic island width, W, relative to the resis-
tance layer 24 thick. The evolutionof the current profile is also schematically shown.
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by means of either a pressure gradient or a flow field perpendicular to the magnetic field. With
regard to flare energy requirements and magnetic energy storage it is impossible to explain a
flare with energy stored in the form of an equilibrium pressure gradient, as can be proven by a
simple estimate of the pressure required and how it would manifest itself observationally.
Thus, for a flare to be initiated by J, driven reconnection, a tearing flow field must exist out-
side the reconnection region; if a flare were attributed to J, -driven reconnection in the corona,
a tearing flow must exist in the corona just prior to and during the flare process. Various ways
of achieving these flow fields have been proposed. The two sources of flow fields that are most
common in flare theory are solar wind-driven, inverted- Y neutral sheet theories (Carmichael,
1964, Sturrock, 1966b, 1967, 1972, 1974, 1980; Kopp and Pneumann, 1976) and the
emerging-flux-driven flow field (Priest and |teyvaerts, 1974; Canfield et al. 1974; Heyvaerts et
al. 1977, Tur and Priest, 1978: Krivsky, 1968).

A tearing flow field can be driven indirectly by a parallel current in several ways, and is the
basis of the loop flare model of Spicer and Colgate (Spicer, 1975, 1976, 1977a, b, 1980, 1981a;
Colgate, 1978; Sturrock, 1980). To illustrate J1 driven reconnection recall that in §10.3.5 we
noted that kink modes are driven by a parallel current. In particular consider the m = I kink,
which is uniquely a curvilinear effect that cannot occur in slab geometry. Assume as an exam-
pie a diffuse pinch in cylindrical geometry, that all perturbed quantities vary as exp i(mO + kz)
and for simplicity that B, >> B, (r), with B. independent of r. The perturbations are perpen-

dicular to B when k • B0 = kB: + m B, (r$) = 0, so that the unstable m = 1 kink is localized
r

about the mode rational surface at r = r,. Since B, is independent of r and B, >> B1, the

wave number k - ! B - -. This implies that the perturbation varies rapidly in 0 but
r B. r

slowly axially, so that the plasma motion is essentially two dimensional in the 0 - r plane.
Consequently, perturbations in the axial magnetic field and velocity are negligible. Using the
axial component of the curl of the perturbed momentum equation,

y V r(rpo v.) - poim vuI = I(B • V)Jo + (B0 • V)8J -

W V) B0 - Q0V) 811I., (10.3.76)

where y is the growth rate, and using the incompressibility condition V • 8v - 0, we find

'Y - i , rpo , (r8v) I-PO_ SVrI
Ir Or m Or r

8 8B2--- r + -C(k'BO) r Ir a (r8Br)J - j8BJ. (10.3.77)

The dependence on 8 B, is eliminated by using the relation
V x 8E I a8B (10.3.78)

together with Ohm's Law, in the ideal MHD approximation,
8 v x B0

8 E + -80, (10.3.79)

to find

y8 B, = ik • B08v,. (10.3.80)
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On insertion into (10.3.77), this yields

1 r F- (8v,.) = (M
2

- 1)F8v, + 2 r- 8 v,. (10.3.81)
r r I Or

where I- = (k • B1))2 + py 2. Equation (10.3.81) must be solved subject to the following boun-
dary conditions: 8 v, is well-behaved at r = 0, and 8 v,. is continuous across the external boun-
dary (in a laboratory device, 8 v, must vanish at the walls).

Near r = 0, (10.3.81) can be approximated by

0r 3  
' r I- r(l- m 2)Sv, (10.3.82)

which has solutions of the form 8v, - r" for n = - 1 ±m. For ml > 2, one root yields a
well-behaved solution, 8 v, = 0 at r = 0, the other root does not provide a well-behaved solu-
tion. Hence, the center of the plasma does not move for ImI > 2 modes.

For the m = - I modes, the well-behaved solution for 8 Vr is 8 v, = constant at r - 0,
which implies that the center of the plasma is displaced. Near r = 0, 8 v,. is proportional to
cos(± 0 + AZ) (the real part of exp [i (mo + kz) 1), so that 8 v, changes direction as the per-
turbation is followed axially. Hence, the m = I kink is a rigid helical displacement of the
center of the plasma which does not bend the field lines. A helical displacement consists of a
finite displacement Ar of the fluid from r = 0 plus a rotation; the basic motion of a kink, there-
fore, consists of a rigid displacement in the r - 0 plane coupled to rapid flow about r, in the 0
direction. Such a flow represents a radial flow that develops a 0 component as it bounces off a
stationary fluid and that rotates as a function of z (Figure 10.16). A comparison of the kink
flow field with the tearing flow field shows that both flows are essentially equivalent (see Figure
10.131. Thus, the magnetic energy stored in the parallel current can drive tearing flow in the
form of a m = I kink perpendicular to the magnetic flux surfaces, which appears as large per-
pendicular currents. In the ideal-MHD picture these large perpendicular currents could gen-
erate large restoring forces which could stabilize the system. If finite dissipation is permitted,
however, the perpendicular currents can be dissipated and reconnection can occur via an m = I
tearing mode. The above discussion qualitatively demonstrates how a parallel current drives
reconnection in a cylindrical diffuse pinch; analytical proofs can be found in Coppi et at, (1976)
and Drake (1978). In general, we can state that certain MHD motions can lead to reconnec-
tion.

As is noted earlier, the gradient in the current density provides the driving energy of the
kink. To prove this, and also to prove that the same driving energy is the source of energy that
drives the tearing mode (or the resistive kink as it is sometimes called), we multiply (10.3.77)
by i8 v*, rim and integrate over the plasma volume to obtain

2 - I a  rdr dJ:0 -8 + (10.3.83)
2tr frdr 'v+8 v) + (8B 2+B) - mc(k -B) dr

where the second derivative is integrated by parts, the incompressibility condition is assumed,
the end-point contributions are neglected, and a denotes the outer-boundary radius of the
configuration. The LHS of (10.3.83) is positive definite and represents (through the multiplica-
tive factor y) the rate of change of perturbed kinetic plus magnetic energy, while the RHS

represents a possible driving term for instability if the product H = (k • Bo) - ' is negative.
dr

This result does not depend on the resistivity, thus demonstrating that the parameter H deter-
mines stability, and that the sign and the slope of the gradient of the parallel current density are
crucial in determining kink stability. A more elegant proof of this statement can be found in
Adler ct at. (1980).
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From the above discussions it is clear that reconnection only occurs when a plasma-
magnetic field configuration is stable to tearing flow in the ideal MHD approximation; if it is
unstable to tearing flow, ideal MHD motions lower the magnetic energy by expansion. For
example, a c lindrically symmetric diffu,e pinch may be stable to m = I tearing flow in the
ideal MIll) approximation, while a toroidal diffuse pinch may be unstable to the same flow.
Hence, in = I reconnection may occur in a cylindrical diffuse pinch but not in a toroidal diffuse
pinch simply because the toroidal system is able to lower its energy by expansion.

A more subtle conclusion from our discussions, which is related to the problem of elec-
trodynamic coupling of the solar atmosphere, is that tearing flow is a means by which a parallel
current can drive a perpendicular current across field lines. In this way, tearing flow can cause
neighboring anti-parallel currents to link via a perpendicular current and essentially short-circuit
the current system and in the process lower the total inductance of the current system. In
terms of an equivalent-circuit (of §10.2), reconnection causes a time rate of change of the
inductance L, L, which then enters the equivalent-circuit equations as an effective impedance
term that can be much larger than the initial impedance of the circuit. The time rate of change
of L can be approximated in the linear growth regime by vy L, where y is the growth rate of the
tearing mode. If y L >> R, the time constant of the circuit is determined by L, because the
L/R time of the circuit can be radically reduced by an L term. Hence, the rate at which recon-
nection occurs can greatly affect the response of the global current system to reconnection.

As is shown earlier the growth rate of a "constant it" tearing mode is characterized by the

magnetic Reynolds number, S. The linear growth rate for any tearing mode can be written as

Y = al SP/rL, (10.3.84)

where a is proportional to the driving energy of the tearing mode evaluated at the mode
rational surface, and p is always less than unity and is mode dependent. For example, we com-
pare the growth rate of a typical tearing mode in slab geometry, given by (10.3.73), with that of
an m = I tearing mode (cylindrical geometry), given by the following expression (Coppi et al.,
1976; Drake, 1978):

i s dr , T. (10.3.85)

The m = I tearing mode has a rate of growth - S4115 greater than a slab tearing mode, that is,
400 times greater if S - 1010 . The difference in linear growth rates also is manifested in

radically different non-linear evolution. These differences are attributable to the "constant qi"
approximation, which is typically assumed in linear analysis of the tearing mode. The "constant
qi" approximation orginates in the neglect of the inertial contribution to (10.3.61), which is
equivalent to assuming that the perturbed plasma is in MHD equilibrium away from the mode
rational surface. The growth time of the tearing mode thus is required to be large compared to
the time required to achieve pressure balance by shocks or magnetosonic waves. Hence,
neglecting the inertia term implies that pressure balance must be assured at all times, in the
region outside the mode rational surface. Conversely, inclusion of the inertial term implies that
pressure balance is not achieved in the region outside the mode rational surface. Tearing
modes for which the inertial term must be included are called "fast" or "non-constant tp"tearing
modes. Fast tearing modes include the m = I and double tearing modes (e.g., Coppi el al,
1976; Drake, 1978; Pritchett et al. 1980; Schnack and Killeen, 1977, 1979) and were first
applied to loop models of flares by Spicer (1976, 1977, 1981a). Tearing modes for which the
inertial term can be neglected are called "slow" or "constant 4s" tearing modes, and were first
applied to flares by Jaggi (1964) and Sturrock (1966, 1967, 1972, 1974). The terminology
"non-constant ii," or "constant 0t" corresponds to the fact that 8,41 may vary greatly or very little,
respectively within the boundary layers.
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Analysis (Pritchett et u., 1980) shows that the growth time of the fast tearing mode, Y"
is equal to the diffusion time (sometimes called the skin time) associated with the boundary
layer; that is,

y/ 47 . (10,3.87)

The growth time of the slow tearing mode, y, 1 on the other hand, is much greater than the
diffusion time of the layer. (onsequently, the flux perturbations generated by slow tearing
modes have time to communicate across the boundary layer during their growth so the 80q
remains roughly constant, while the flux perturbations generated by the fast tearing modes
occur to rapidly to communicate across the layer so that 60 varies radically throughout. This
result has important implications for flares because the electric fields, parallel to the magnetic
field at the X points, 8EII, induced by the fast tearing process do not have time to penetrate into
the magnetic islands produced by the tearing process (see below), so that the plasma volume
accelerated by 8E; remains the same as that produced by a slow tearing mode in the linear
regime. On the other hand, the 8E, produced by a slow mode has sufficient time to penetrate
into the islands, causing 8EI to weaken as the magnetic island widens.

The non-linear evolution of fast tearing modes also differs radically from that of slow
modes. Rutherford (1973) showed that exponential growth of the slow tearing mode changes,
in the non-linear regime, to algebriac growth; the width of the magnetic island generated by the
slow tearing processes, 4, remains constant in time after W exceeds the resistive boundary-
layer width, A. However, the widths of the magnetic islands generated by fast tearing modes
grow exponentially until saturation (Waddell et at. 1976; Schnack and Killeen, 1977, 1979).
This result was used by Spicer (1981a) to estimate the heating rates and electric induction fields
generated by a fast tearing mode.

For both fast and slow tearing modes electric induction fields estimated using solar param-
eters always exceed the Dreicer electric field defined by (10.3.17). Estimates of parallel electric
fields generated by slow tearing modes (Van Hoven, 1979) indicate that the predicted electric
field is - 3 times the Dreicer field, while estimates of the parallel electric field from a fast tear-
ing mode (Spicer, 1981a) always exceeded the Dreicer ficld by orders of magnitude if the
saturated value of the electric field is assumed. The physical basis for these results appears to
be as follows: since solar current systems are inductivel) dominated, due to the large solar
diffusion times, the current will attempt to remain constant; at the same time, the small resis-
tive skin depth, characteristic of' a solar plasma constrains the electric induction field to small
channels about the X-points. These two effects together require the electric fields to be large.
Collision dominated tearing modes thus may develop into semi-collisionless or collisionless
tearing modes (Drake and Lee, 1977) and J11-driven anomalous resistivity may be produced,
thereb. altering the local non-linear evolution of the tearing mode even further (Spicer,
1981a).

Returning to the growth rate defined by (10.3.73) or (10.3.85) note that y is defined
entirely in terms of local quantities, which is not too surprising since the linear growth rate of a
boundary-layer instability is not affected greatly by global conditions. However, the global
configuration is expected to dominate the non-linear evolution of the instability, even through
local effects may dictate local dissipation rates that influence the global evolution. Further,
because reconnection is a boundary-layer phenomenon, the standard conservation jump rela-
tionships must apply and mass flux, magnetic flux, and energy flux are conserved through the
layer (Parker, 1963). Thus, although the dissipation process is localized to a thin layer, the glo-
bal conservation relations are preserved. The non-linear evolution of the reconnection process
must be consistent with global conditions, therefore, and the entire global current system ulti-
mately determines the evolution of the reconnection process. We further emphasize, that

64



NRL MEMORAN)UfM RPOR 1 4550

because the inductive properties of a laboratory plasma-magnetic field configuration with a mag-
netic Reynolds number of 104 differ radially from those of a typical solar Reynolds number
-10I" - 0i2, comparisons between solar plasma and laboratory experiments or numerical simula-

tions with low S only represent useful guides.

Before proceeding to non-linear effects of potential importance in solar phenomena, we
present a brief comparison between steady-state reconnection and the m = I tearing mode,
which is the only tearing mode that can be compared to the standard single X point, steady-state
reconnection theories. Previous theoretical work in the area of steady-state reconnection has
been aimed primarily at understanding reconnection in standard neutral sheets or in neutral
sheets with a component of the magnetic field parallel to the current sheet (Qi. Vasylunias,
1975, for a review). The fastest steady-state reconnection rate derived to date was found by
Petschek (1964), from an analysis assuming steady-state tearing flow, one X-point and one 0
point split into two halves each placed at ± L, where L is the length of the sheet. Petschek
found that steady-state reconnection depends logarithmically on the resistivity, which differs
from the Sweet-Parker form of reconnection (Sweet, 1958; Parker, 1963) because Petschek
accounted for the role of hydrodmagnetic waves in removing energy downstream from the X-
point. The curvilinear tearing flow that most closely approximates the Petschek flow is the m =
I tearing mode in cylindrical or toroidal geometry, as can be seen by topologically bending the
neutral sheet at the X point and matching the two halves of the 0 point at ± L together. The
similarity between the m = I tearing flow and the Petschek flow is also reflected in the growth
rate of the m = I tearing mode, given by (10.3.85); the physical origin of this relationship is
that an m = I tearing mode essentially is driven by the tearing flow caused by motion of an m
= I ideal MHD kink mode.

10.3.5.3 Non-Linear Effects Associated with Reconnection

In the previous discussions, we have considered only one tearing layer. How-
ever, a number of non-linear effects can result from the interaction of tearing modes and in
principle, can greatly enhance the rate at which reconnection occurs in solar flares (Spicer,
1976, 1977a,b; 1981b): multiple tearing modes, mode coupling, magnetic braiding, and island
coalescenc,..

Multiple tearing modes occur when more than one unstable mode-rational surface, with
the same mode wave number k, are juxtaposed in a magnetized plasma. As each unstable tear-
ing layer grows, the physical interaction with each unstable neighbor sets up a tearing flow pat-
tern that drives new magnetic flux into the X points of the neighboring layers. In a similar
manner, the adjacent unstable layer drives new flux into the X-points of its neighbors, and so
on. These tearing flow patterns result in a violation of the "constant 0" approximation and are
characterized by a growth rate identical to (10.3.85) because the MHD region between the
unstable layers is not in pressure balance. Multiple tearing modes most probably- occur in mag-
netic configurations with anti-parallel currents, as occurs in force free magnetic fields. Non-
linear simulations of double tearing modes have been performed by Cross and Van Hoven
(1973), White et aL (1977) and Schnack and Killeen (1977, 1979), while linear analyses have
been performed by Furth et al. (1973) and Pritchett et al. (1980).

The non-linear coupling of tearing modes with incommensurate k's is primarily a three-
dimensional phenomenon and presently is amenable only to three-dimensional numerical simu-
lation (Waddell et aL 1979; Carreras et al. 1979, 1980, 1981) or to analytical treatments with
very simplifying assumptions (Satya and Schmidt, 1979); furthermore, the results are only valid
for tokamak-like conditions and low Reynolds numbers. Nevertheless they do demonstrate the
fundamental point: different tearing modes non-linearly destabilize other tearing modes on a
rapid time scale (2-3 times faster than a single tearing mode) and greatly alter the trinsport
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processes within the magnetic configuration. In this way, inductively-stored magnetic energy
may be rapidly converted into flare-associated convection, Joule heating and accelerated parti-
cles, as proposed by Spicer (1976, 197 7 a).

Magnetic braiding, also due to the coupling of different tearing modes with incommen-
surate k's, induces large magnetic fluctuations, which, in the presence of large electron mobility
parallcl to B, cause an anomalously large electron viscosity and thus anomalously large electron
therml conductivity perpendicular to B (Rechester and Stix, 1976; Rechester and Rosenbluth,
1978) The effects of' this anomalously large electron viscosity, which is due to high-harmonic
secondary magnetic islands smearing the current-density profile around the neutral points of the
primaiy islands, on the non-linear growth of the incommensurate tearing modes have been
investigated by Kaw ct al. (1979). For low magnetic Reynolds numbers they found that tearing
mode growth can be increased dramatically. As noted by Spicer (1976, 197 7 a), these effects
can be particularly important under solar conditions because the large solar scale sizes can pro-
duce close spacing of the incommensurate modes. In addition, small changes in the electron
viscosity can lead to significant changes in the growth rates of the tearing modes, because of the
high solar Reynolds numbers.

In the above discussions, we have outlined the evolution of a plasma-magnetic field
configuration that is initially tearing unstable and then evolves until saturation, at which time a

chain of magnetic islands is fully developed. Because each island represents a current filament,
with current flowing in the same direction, they attract one another. Furthermore, an equili-
brium is established because each island feels equal and opposite attractive forces from its
counter parts on either side. However, if one of the islands is displaced towards the right for
example, the islands to the right of the displaced island feel a greater attractive force to those
on the left of the displaced one. As the displaced island begins to move towards its neighbor to
the right, however, the magnetic flux between the two islands is compressed; the local magnetic
pressure thus is increased, forcing the islands apart. If the compression force is dominant, the
plasma is stable, whereas if the attraction force is dominant, the islands coalesce. Finn and
Kaw (1977) first examined this phenomenon and found that the attractive force is dominant
and the islands coalesce. Pritchett and Wu (1979) simulated this effect in the ideal-MHD
approximation, and found that compression ultimately stops the island coalescence when the
magnetic pressure becomes sufficiently large. However, when finite resistivity is permitted
coalescence proceeds to completion, Spicer (1976, 19 77 a) has used island coalescence to
explain a class of impulsive electromagnetic bursts associated with flares.

I he above synopsis of non-linear effects in the reconnection process clearly illustrates that
the reconnection process can be quite complex, unlike the simple reconnection theories some-
times applied to solar phenomena. The lack of high symmetry in solar magnetic-field
configurations strongly suggests that these non-linear effects should occur whenever reconnec-
tion occurs in solar plasmas.

141.3.6 Which Dissipation Mechanism Will Prevail?

As noted in the introduction to this section, the most controversial aspect of flare
theory is choosing one of the mechanisms reviewed as the explanation for the sudden release of
magnetic energy. This controversy is unwarranted, however. Studies of both laboratory and
near-earth space plasmas have shown that the normal situation in an unstable magnetized
plasma is for many instabilities to be operating simultaneously. For example, an MHD instabil-
ity, su h as a kinking prominence, may drive a shock in front of it. If this shock is associated
with Jt -driven anomalous transport mechanisms (Da~idson and Krall, 1977), a highly anisotro-
pic perpendicular and parallel temperature ratio can be produced, thus leading to excitation of
various loss cone mechanisms (Spicer, 1976). As a second example, a constant net current
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flowing in a loop may excite the superheating instability,which steepens the current density gra-
dient (j §10.4), thus exciting a m = I ideal or resistive kink; the resultant kink may drive
large perpendicular and parallel currents, both of which can induce anomalous resistivity
mechanisms, and so on (Spicer 1976). These examples illustrate that the flare process is quite
complex, simultaneously involving many instabilities and requiring a careful examination of
how each process can either excite or interact with another to produce a flare. While this view
may appear self-evident, the reader is forewarned that the view that a single instability is the
cause of the flare still exists (c(f Van Hoven, 1981).

Despite the aforementioned complexity of the flare problem, we can attempt to identify
which of the three instabilities reviewed is most likely to occur first. In the case of J1 -driven
reconnection and anomalous transport, this question can be answered, in part. If the flow field
initially convects new magnetic flux towards the mode rational surface faster than it can be dis-
sipated by a tearing mode, the current steepens until J.1 -driven anomalous resistivity mechan-
isms are excited and dissipate the current buildup. However, if the new flux initially is con-
vected at a rate less than the tearing mode dissipation rate, the current is dissipated by the
reconnection process itself and anomalous resistivity is unlikely to occur, except possibly
through the induced electric field associated with the reconnection.

In the case of J1 -driven mechanisms, the current density or the current-density profile is
the important threshold criterion for excitation of double layers, anomalous resistivity, or MHD
processes (ideal or resistive). To determine which MHD process occurs first, a full understand-
ing of the global three-dimensional current system is required - not an easy task. It is generally
believed that MHD processes precede double layers or anomalous resistivity mechanisms (Van
Hoven, 1981). However, the universal applicability of this belief is questionable, because
MHD processes are very geometry dependent. Furthermore, the Birkeland current system
clearly contradicts the view that MHD processes precede the double-layer or anomalous resis-
tivity mechanisms. The Birkeland current is MHD stable and is made up of parallel currents,
flowing along the potential magnetic field of the earth, that are capable of driving anomalous
resistivity mechanisms or double layers (Wolf, 1975). Hence, it is not at all obvious which J11-
driven mechanism occurs first. The reader should be particularly cautious therefore in accept-
ing arguments for or against a specific J11-driven mechanism, until our understanding of the
three-dimensional MHD stability of solar configurations has been greatly improved (cf.
§10.2.2.2).

10.4 THE PREFLARE STATE AND FLARE TRIGGERS

Flare models have assumed, historically, that a flare instability must be excited
by some external perturbation or "trigger" (cf. Sturrock, 1966; Sweet 1969, Van Hoven et al.,
1980; Spicer and Brown, 1981), as opposed to directly driving the flare, e.g., by externally ap-
plied flow fields (Heyvaerts et al., 1977). Sturrock (1966) has noted that there are two basic
types of instability onsets: "explosive" or "non-explosive." The explosive onset occurs when a
system is near marginal stability, and is linearly stable to infinitesimal perturbations but non-
linearly unstable to finite perturbations. Conversely, non-explosive onsets occur when a system
is linearly unstable to infinitesimal perturbations. Sturrock also contended that only instabilities
with explosive onsets are viable as flare mechanisms. This point of view is justified as follows:
for preflare storage of energy to occur, energy must accumulate in the plasma-magnetic field
configuration without being dissipated continuously through instabilities excited by infinitesimal
perturbations: rather, the energy must accumulate up to some level beyond which a finite per-
turbation can drive the configuration to instability, thus releasing the accumulated energy.

We reviewed three mechanisms, in §10.3, two of which can be driven directly by both J,
or Jl,: reconnection and anomalous Joule heating. We also argued that J, driven mechanisms
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require externally imposed fl o. 'icldls I lence, .1, -drien mechanisms do not require triggers
and atre excited directl\ once the lo\,, field exceeds the icccssar, speeds. I loever. .) -driven
mechanisms can be either dri\en directlk or triggered. A directly-driven .1 mechanism can
result from the natural C\ (itltioin of the current profile tiat accompanies the time-dependent,
preflare magnetic-energ) storage pr Cns. ('onyerselk. ia .1 -driven mechanism may be initiated
by a trigger that leads to an alteration f' the current prolel even after the maximum amount of
magnetic energx i:s been stored Nek:rtheless, because thc preflare magnetic energy storage
processes apparentl )cc.ur III tirnC. i n.l greater than a Mil) transit time (c. §10.2.2.1 and
§10.2 2.2), the prclare, stae can he xauncd under the assunption of a quasi-equilibrium. As
discussed in §10.2 2.2, \ariOus author, lae utilized this approach. Others have assumed the
preflare magnetic configuration slo'.s l storcs energy during its c olution, until the configuration
is on the verge of losing its quasi-eCjUilihrium (JockCrs, 1976, L.ow, 1977-, Anzer, 1978, Birn et
ul. 1978; Ileyacrts ci ul 1N79: Priest and Milne, 1979, lood and Priest, 1980). This approach
is related to bifurcation theorr as the relekant i. erarters are varied, there is a point of bifurca-
tion "t which the equilibrium either can go unstable or can enter a more stable regime. This
approach is more realistic than the stability aoproach reiewed in §10.2.2.2, primarily because
the treatments usually in\,Il\ e more than one dimension and allow for global electrodynamic
coupling, to a certain degree. through more rcasonable boundary conditions. lowever, the
approach is limited, at present. because all analy ,.s haxc utilized some symmetry condition to
reduce the extreme mathematical complexity of the problem. which has the unfortunate conse-
quenLe of removing the degrees of frecdom available to the magnetic configuration for lowering
its energy state. In addition, these analy ses do not :ccount for transport phenomena which, in
real magnetized plasmas. help control the evolution of the existing current profiles. For exam-
ple, preflare magnetic cnergy storage invol\es induction currents and, as noted in §10.2, these
induction currents ma flom, in cry narrow channels. Thus, the current profile is dictated, in
part, by the resistivity profile in the magnetized plasma, as well as the resistivity profile at the
boundaries.

Accounting for the aforementioned transport eflects naturally leads to examination of the
role of thermal instabilities in altering the current prfile. and thus in triggering a flare. Ther-
mal instabilities were studied first by Parker (1953) and I icld (1965), while Sweet (1969) and
Kahler and Kreplin 11970) first pointed out the importance of thermal instabilities in flares.
Thermal instabilities ensue when thermal conduction is reduced, or is prevented from removing
any input of energx or replacing ;my dcrcase of energy im the presence of a strongly tempera-
ture dependent radiation function sLcIh as occurs in plasmris xith solar abundances. In a mag-
netized plasma, ihis process corresponds to prescnting thermal conduction parallel to the
magnetic field and can h act oinpli,,hcd by a long-x%%,elcgt1 perturbation parallel to the mag-
netic field.

The electromagnetic superheating (oxcrheatine) instabilit (Kadomtse\, 1966), which is a
thermal instability applicable to both neutral sheets and sh, ad magnetic fields, may be particu-
larly important for triggering flare,,, and has been utilized in several flare models (Coppi and
Friedland, 1971; ilc\ rts. 1974 a" ( oppi. 1975, Spicer. 11)76, 1177 a). The superheating insta-
bility requires a current fi'ns'ing parallel to a magnctk field. drirken bx a parallel, roughly equipo-
tential, electric field that may difler in strength on different field lines. Thus, because
J11 = Ell/7l and E-.1 -1 2,71 any perturbation that yields an increase in temperature will
reduce -q, increase .J , then the temperatuLre again and so on. This process then results in an
increase of both the current dcnsit. and the temperature For a cylindrically symmetric diffuse
pinch with an equilibrium magnetic ficed R, = . ,,, 0. ?-I/ ). the superheating instability is
localized about mode ratinal surfaccs, for which k • R, - 0. because the first-order perturba-
tion to the divergence of the heat flux, anishes there. The superheating instability will occur if

•1 1 3 dQ( .
-_ > ,, (10.4.
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where the subscript "0" specifies the equilibrium quantities, and QR, the radiation loss function.
Hence, if dQR/dT < 0 and (10.4.1) is satisfied, this instability occurs. The superheating insta-
bility is physically manifested in the form of plasma striations, composed of long wavelength
filaments parallel to the magnetic field with high current density and temperature, alternating
with filaments of low current density and temperature.

In the context of flare theory, the superheating instability is important because it pro-
motes buildup of the current-density in locations where k • Bj) = 0, while a tearing mode
attempts to flatten the localized current-density profile. In other words, these mechanisms work
in opposition to one another and, possibly, a non-linear balance may be achieved between the
two competing instabilities. Thus steady-state reconnection may occur in sheared fields, but
only if cross-field transport does not limit the further growth of the superheating instability
before a tearing instability occurs. The current density rises with a characteristic e-folding time,
t(sl, and then becomes unstable to a tearing mode with growth time t7.. If tSH < tr, the tearing
mode does not have time to develop, and the current-density profile continues to steepen until
the current density is sufficiently large to excite a tearing mode of growth time 17 < tSH. At
this time, either the tearing mode completely flattens the current profile before the superheat-
ing instability can raise the current density again, or the two instabilities evolve towards a state
of marginal stability so that steady-state reconnection can occur. At present, the superheating
instability only has been treated in the local approximation, analogous to the manner in which
the stability analysis of loops has been treated locally (cf §10.2.2.2), and no accounting for the
role of global electrodynamic coupling has been given.

Chiuderi and Van Hoven (1979) have treated thermal cooling instabilities in sheared mag-
netic configurations, using the local approximation as described in §10.2.2.2. They allow for a
generalized heating function and only treat the stability of the energy equation. Because their
treatment does not include electromagnetic effects and Joule heating, the superheating instabil-
ity does not appear. Nevertheless, they contend that thermal cooling instabilities at the mode
rational surface induces triggering of tearing modes because the temperature drop increases the
resistivity precipitously. However, this argument is questionable, because their analysis is inca-
pable of comparing the growth rate of the cooling instability with that of the superheating insta-
bility. Such a comparison shows that, for current densities typically required to explain a flare
by tearing modes, the growth rate of the superheating instability is largest. In addition, an
examination of tearing mode growth rates shows that the tearing mode growth rate is more sen-
sitive to higher current densities, as would be generated by the superheating instability, than to
a higher resistivity which tends to smooth out the current profile thereby reducing the tearing
mode growth rate.

Various triggers for J11-driven double layers, and also for anomalous Joule heating
mechanisms, are discussed by Carlqvist (1979b). Since a double layer is driven by a high-
inductance current system and requires a current drift speed of > vr,. (f §10.3.2), local reduc-
tion in the density provides the basic trigger of a double layer. The triggering results from the
requirement of a temporally-constant net current; the current drift speed must increase, in the
presence of a density decrease, sufficiently to keep the current constant. According to Carlqvist
(1979b), this density reduction may occur in several ways. The most promising method for
reducing the density in the quasi-equilibrium loop is by localizing heating, which causes both
hydromagnetic expansion perpendicular to the magnetic field and hydrodynamic expansion parallel
to the magnetic field. The requisite heating could be generated by the superheating instability,
the tearing mode, or anomalous Joule heating resulting from a J11-driven anomalous resistivity
mechanism with a much lower threshold than a double layer, e.g., the electrostatic ion-cyclotron
instability ((f Kindel and Kennel, 1970). Since hydrodynamic expansion parallel to the mag-
netic field results in a constant pressure along the field lines (neglecting gravity), an increase in
temperature of 10-100 causes the density to be reduced by a corresponding amount. Hence, an
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initial Lurrent drift speed of -5 x 105 cm/s results in an increase in the drift speed to 5 x 10
- 5 x ;07 cm/s, sufficient to trigger a double layer.

An alternate trigger for a double layer can occur in a high inductance parallel current sys-
tem, as in an emerging flux loop. As the flux loop expands, the density drops until the drift
speed of the current exceeds threshold for either an anomalous Joule heating mechanism or a
double layer. For this triggering mechanism to apply, the net current cannot change appreciably
during .he expansion process.

Other effects which may be important as trigger mechanisms, and which have not been
examined in the context of solar flares, as yet, are:

(I) Investigations by Dobrott ct aL (1977) and Pollard and Taylor (1979) have shown
that equilibrium diffusion flows have an important effect on the stability of a magnetic
configuration to tearing modes.

(2) Lau and Liu (1980) have examined the stability of shear flow in a magnetized plasma
slab. They found that velocity shear alone cannot produce a MIlD instability that qualitatively
alters the initial laminar state of the plasma. However, they suggest that a small amount of
magnetic field curvature, such as occurs in solar configurations, may reverse this conclusion.

10.5 MAGNETIC ENERGY STORAGE AND CONVERSION: FUTURE RESEARCH

In the previous sections, we reviewed various problems associated with magnetic energy
storage and conversion. How should we proceed, in the future, if we intend to solve these
problems? The most serious problem which must be addressed forthwith, is to identify the site
where magnetic energy, believed to be the free energy supply of the flare, is stored; this task is
of particular importance, because the storage location strongly controls the initial conditions
imposed on any given conversion mechanism. In accord with the arguments presented in
§10.2.2.4 and §10.3, we contend that the flare energ must be stored in the low atmosphere,
either in the photosphere or in the low chromosphere; that the flare originates low in the atmo-
sphere; and that either the PMFC associated with the energ storage rises to higher altitudes as
the energy conversion proceeds, thus appearing as a coronal event, or the current within the
PMFC is somehow shunted from a photospheric path into a coronal path, e.g., by the topologi-
cal changes in the current path attributable to reconnection.. These conclusions are based, in
part, on the extreme constraints imposed by flare energy requirements on the net current
necessary to explain a flare (> 1022 stat amps), and on the extreme limitations imposed by
conversion mechanisms on the current densities and/or current density gradients necessarily
associated with the net currents (c/. §10.2.2). It is difficult to believe that non-potential magnetic
fields associated with net currents of > 1022 stat-amps, as well as the strong magnetic-field gra-
dients associated with the high current densities and/or current-density gradients required by
the relevant conversion mechanisms, can exist anywhere in the corona in any semblance of a
steady state; pressure balance is extremely difficult to achieve under these circumstances and
the Virial theorem requires external stresses even if the currents are force free. Hence, storage
of sufficient magnetic energy to power a solar flare musi occur in the low atmosphere, where the
substantial fluid pressures can support the large non-potential magnetic fields required by flare
theory, If this conclusion is correct then the traditional view ((f § 10.2.2 and Van Iloven et aL.,
1980), which assumes coronal flare-energy storage, is incorrect, and a thorough re-examination
of pre-flare magnetic energy storage must begin. Furthermore, the assumption that energy is
stored i, situ must be abandoned in favor of a remote storage site.

A second fundamental problem is the lack of a fully self-consistent treatment of the glo-
bal electrodynamic coupling characterizing a current system in the presence of an actual conver-
sion mechanism under solar conditions. Even the studies of JI,-driven anomalous Joule heating
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by Spicer and Manheimer (1982), which utilize a I-D hydrodynamic code coupled to an
equivalent circuit representing the inductive properties of a co-axial current carrying solar loop,
do not account for the local changes in the current circuit resulting from a sudden, localized
onset of anomalous resistivity within the global circuit. Furthermore, existing analyses of
reconnection and the subsequent partitioning of annihilated magnetic free energy into kinetic
and thermal energies have utilized boundary conditions which are quite unrealistic for the solar
phenomena under consideration, such as the periodic boundary conditions with low Reynolds
numbers (S > 102) used by Van Floven and Cross (1973), or the "hard wall" boundary condi-
tions applied to Tokamaks by Schnack and Killeen (1978). In addition, no studies, as yet, have
accounted for the feedback between the global circuit and the reconnection process. Thus, the
results reported to date should be considered with caution.

A third problem of pertinent interest involves the efficiency and location of current gen-
erators (or MHD dynamos) which convert flow energy into the electrodynamic energy eventu-
ally manifested as a flare. Future investigations also should attempt to ascertain what observ-
able manifestations might be produced by these current generators, in order to develop a
preflare predictive capability.

In summary, a wealth of complex and critical difficulties remain in theoretical treatments
of magnetic energy storage and conversion in the context of solar physics, which must be care-
fully examined without pre-existing prejudices. Most theoretical and experimental efforts in the
area of magnetic energy storage and conversion have been tainted, heretofore by strong subjec-
tive biases, thus producing investigations aimed more at confirming pet ideas than at seeking
the truth. If the puzzling phenomena of magnetic energy storage and conversion in the solar
atmosphere are ever to be understood, then both theoreticians (including the author) and
experimentalists must avoid the overly simplified, highly qualitative, and over-intuitive "cartoon
pictures" that presently infest the solar physics literature, and confront these challenging prob-
lems in a physically realistic manner.
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