ALFRED P SLOAN SCHOOL OF MANAGEMENT CAMBRIDGE MA CEN-=ETC F/6 9/2

A PRELIMINARY ARCHITECTURAL DESIGN FOR THE FUNCTIONAL HIERARCHY==ETC(U)
NOV 80 M HSUe S E MADNICK NO0039-80-K=-0498
CISR=-M010=-8011=05

NL

I O
N A
I
.
1 A

A
A\
(@)
e\
| -
P
<
4 Q
<
€ }‘
¥
._'0
4 > o
S
. v
¥ v Ll
[4 1 A
A rm
& :
:
i E

-
i adeln #

-

.

Center for Information Systems Research

Massachusetts Institute of Technology
Aitred P Sloan Schoo! of Management
50 Memorial Drive
Cambridge . Massachusetts. 02139
617 253-1000

.
SRR oy - :”;p.”'m‘w —r

s/ [

Internal Report Number M010-8011-05

; Preliminary Architectural Design
/l“lor ','ﬁ'le
- Functional Hierarchy

(Qf The i

.. DWFOPLEX Database Computer ¢ /

T e A 187

e

¢ (SR,

rmchun/Hsu : / // /{/" : '7/

Tecnm.ca_ Report # 5

o/ N

74 SR
/! WP 1197-81 \/} o7

Woverrtber 1980

-

Cvor TR

i Mgl Ry LE

Principal Investigator:
Professor S.E. Madnick

Prepared for: \
Naval Electronics Systems Command

Washington, D.C.

B R ”m.”‘.m AN T -

PR o
¥ Laewh 2 Ot

4

e

SECURITY CLASSIFICATION OF TH1S PAGE (When Dete Encered)

A Preliminary Architectural Design for the

READ INSTRUCTIONS .

REPORT DOCUMENTATION PAGE T BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NOQ. 3. RECIPIENT'YCATALOG NUMBER
Technical Report i5 ﬂ‘b - ﬂ_iﬂg? 9% ’yf

4. TITLE (and Subtitie) e S. TYPE OF REPORT & PERIOD COVERED

Functional Hierarchy of the INFOPLEX :
§. PERFORMING ORG. REPORT NUMBER

Database Computer M010-8811-05
7. AUTHOR(s) ®. CONTRACT OR GRANT NUMBER(s)

N0039-80-K~0498 V7
Meichun Hsu

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10.

Sloan School of Management
Massachusetts Institute of Technology
|__Cambridee, MA - 02139

1. CONTROLLING OFFICE NAME AND ADDRESS . 12. REPORT DATE
November 1980

13, NUMBER OF PAGES
181

14. MONITORING AGENCY NAME & ADDRESS(If different {rom Controlling Oftfice) 1S. SECURITY CLASS. (of this report)

Unclassified
'il. DECL SSIFICATION/DOVNGRAQ!NG
SCNEDJLE

18. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, 1! different from Report)

N

RS

10. SUPPLEMENTARY NOTES

19. KEY WORCS (Continue on reverse aide il neceasery and identily by bdlock number)

Database computer, data base management system, functional decomposition,
multiple processor system, hierarchical system

20. Als?'ﬁi\ CT (Continue on reverse side if necessary and identily by dlock numbes)
Conventional computer architecture has shown its limitations in

supporting large-scale information processing. Database machines which

specialize in database functions have been suggested to alleviate the
problem of increasing loads on these computers.

The INFOPLEX database machine proposed by Madnick employs a highlw- §
parallel computer architecture to achieve high performance and capacity. ____}

oD ‘:2:*;3 1473 eoition oF 1 nOv 8818 OssSOLETE
$/N 0102-LF-014.6601

SECURIYY CLASSIFICATION OF TiiS PAGE (Phen Dete Bnterec

St RPP P v s PRI W MR

SECURITY CLASSIFICATION OF TH1S PAGE (When Data Entered)

¥

It contains two subsystems: the storage hierarchy and the functional
hierarchy. This paper is about a desiqn of the functicnal
hierarchy, the subsystem of the INFOPLEX which performs database

functions.

As originally proposed by Madnick, the functional hierarchy is
made up of hierarchical levels; each level is designed to perform
certain database functions and is to be implemented by multiple
microprocessors. The guidelines for identifying these levels are:
(1) functional abstraction, and (2) pipelining of trancac:ions.
This paper attempts to turn this originai idea into a detailed
design by accomplishing the following: (1) Identification of
functional requirements (i.e., features)/of a generalized DBMS;
these features are to be supported by the functional hierarchy;
(2) Development of an integrated data model; (3) Detailed spec-
ifications of architectural levels, including their functions and
implementation strategies; and (4) Pointing out future research

directions.

/_/‘\cc;‘}‘lo; FO]:A Tt el
YT N1 oo /

| D7ic mea ;
. o e [‘
2 : e U A A ::l .
l ! J'l::t-.'-‘i,..,t. [i
V c-wsllon :
e _— ————
By

—

Y ony
D iby
,', 1str1bl.tlcn/
| Avail.jl;'lli’.v Codes
!‘). Avmia ad/op
for 0
e . ~bkreigl
!

WP
i
;\._

o S aliiT
SNV AP
—

N - . oy Y
e fonll ‘ s

R I

&

ne

SECURITY CLASSIFICATION OF THIS PAGE(When Dete Entered)

o

.

R T PN ey SN

P A

- 1 NP

-

‘4
&
W its FT e

.

.‘ S

i

TR —_—_ T P —

ABSTRACT

Conventional computer architecture has shown its 1limitations in
supporting large-scale information processing. Database machines which
specialize in database functions have been suggested to alleviate the

problem of increasing loads on these compuiers.

The INFOPLEX database machihe proposed by Madnick employs a
highly-parallel computer architecture to achieve high performance and
capacity. It contains two subsystems: the storage hierarchy and the
functional hierarchy. This paper is about a design of the functional

hierarchy, the subsystem of the INFOPLEX which performs database

functions.

As originally propsosed by Madnick, the functional hierarchy is
made up of hierarchical levels; each level is designed to perform
certain databasae functions and 1is to be implemented by multiple
microprocessors. The guidelines for identifying these levels are (1)
pPipelining of transactions, and (2) functional abstraction. This paper
attempts to turn this original idea into a detailed design by
accomplishing the following: (1) Identification of functional
requirements (i.e., features) of a generalized DBMS; these features
are to be supported by the functional hierarchy; (2) Development of an
integrated data model; (3) Detailed specifications of architectural
levels, including their functions and implementation strategies; and

(4) Pointing out future research directions.

r R T e g RIS AP

1.

2.

3.

I
BT

& ool

> ol g

L < onh

4.

-

» v R danl

P.

TABLE OF CONTENTS
Introduction Cetteetaersearieannsnenes Ceeerentreceanarnannes 5
l.1 Storage Hierarchy Ceteestesesensstsensanns terrasssanens 6
1.2 Functional Hierarchycecviivneennecconnnnns Cetisesiecans 9
l.2.1 Hierarchical Functional Decomp051t10n 9
1.2.1.1 Hierarchical vs. Non-hierarchical design-.9
1.2,1.2 Family of Systems ccoeeeevnenosens esesecennee 13
l1.2.2 Multiple Microprocessor Implementation 15
1.2.3 Summary Cetetesesistatesarasesereeortorannanns 19
1.3 Research Goals and an Overview of this Report............ 22
The General Structure of the Functional Hierarhcy 27
2.1 sStratification of the Database Management System 27
2.1.1 The ANSI/SPARC DBMS Architecture ..e:secivevencens .27
2.1.2 DIAM CONCEPLS .t.uveevereceronnnanss Cereesssesenasanans 30
2.1.3 The INFOPLEX APProach ..cceceiieecccsecssccescescocosen 30
2.2 DALA MOAELS rvreertesscsssarscessssasssnsscsssnsasscssssassascnssass 32
2.2.1 The Conceptual Data Modelccevvvveerensncnncnnes 32
2.2.1.1 Literature Overview.....ccveeeeeencnecansenns 32
2.2.1.2 the INFOPLEX Approach .ceecececvevesocacanans 35
2.2.2 The Internal Data Model o eriieiaseeaas 46
2.2.3 Support of Multiple Viewsccveuvvnercensn. vesaeees 49
2.2.4 SUMMALY «-cocercrcnsnoosnnsss cecereacanee ceecen escaccss 54
Memory Management cesene Ceteceserans ceresanns Cesians cevesasans 56
3.1 The id Approachiciiiivnrecnccannsans Cecersesstsesaseraans 56
3.2 Allocating Storage SPACEe «.eccevreeroecnssssncsssccnnssasnass 60
3.3 Page Fix and Clustering Considerationscoveceeee. 61
3.4 Virtual Storage INterfacecvviieencccncnsscncnnnens ceeene 61
3.5 Memory Management Interface........ccececeeuss tresessenracans 62
Internal Structure.......ccv.... seeseeree ceevens cecessererananns PN %4
4.1 Introductionc.ccveunnn teresaseseneraans veseens ceneses.b67
4.2 Data Encoding Levelveiveecersesneessocesnenscnnnsasanes 7
4.2,1 Data Definition Interface cereaes Cererenens n
4.2.2 Operational INterface «-eceececsserosronssocnnnacnsens 72
4.3 Unary Set Level Cesres Citeeciersstccescananans Ceeesenene 74
4.3.1 Introduction «eccececes Ceceseseresasees cersiseenas veo 18
4.3.2 Primary Sets and Secondary Sets (Subsets) 76
4.3.3 Catalogue Implementationccveceveeeennen. teessaes 76
4.3.4 Fast Search Mechanisms Ceseaee cetreteenans «..78
4.3.4.1 Sorting ,.........cciiienen R &
4.3.4.2 Index Table Implementationcc...e.....79
4.3.4.3 Hash Table Implementation eee..80
4.3.4.4 sSummary of Fast Search Mechanisms......... 82

L P R

PP T - AUy g S

4.3.5 Data Definition Interface Cesesssssasnas oo
4.3.6 Operational Interface etseresseansnan .e..83
4.3.7 Conclusion of Unary Set Level ceeees...84
Binary Association Leveli.iieeeiioecsencceaostsnsanennns 89
4.4.]1 Introductioncveeeveescensns Ceeeecreseessnneonnenns 89
4.4.2 General MechanisSm ...c.cceeevveeecnsnenssssssososssseses 89
4.4.3 Data Definition Interfaceeec.. Ceeeecoes cesenes 7
4.4.4 Operational Interface v eeseseseenctranaann 95
4.4.5 SUMMALY ..itiuiinrreneneenosecsonsscssasssensanesennns 97 i
5. Database Semantics feeeeseeretreeanas D e ieeeeneserennnnanes 103 |
5el N-ary Level iuieriiieneeeneeeeeeneeonaesncessaesanonnnns 103
. 5.1.1 Introduction ,......cieeierininrnneeeneneanonnonennnss 103
5.1.2 Data Definitioncciiereeeneeeoeeneecnssosesnnenses 103
5.1.3 N-ary OperatoOrSv.eeececeoccccncennnoen Teiiacenann 104
5.1.4 Retrieval Strategyciciierreenecrocncionaancnns 107
5.1.5 Entity Record Constructionccceveveerncnnans 113 :
5.2 Virtual Information Leveloeeereecevccnnconocnnnans 119 |
5.2.1 Introduction e teeeseenearaenasaeeatesaeesaans 119 ‘
5.2.2 The General MechanisSm ...c.cceeeecescssescscseccaans 120
5.2.3 Data Definition Interface..............covvvvennnn. 122
5.2.4 Operational Interfaceccc0...... }55 ,
5.3 Data Validity Level ...cciiirereenenerneeeesnssccssnnssnssnss
5.3.1 General Mechanismcceeereerivennoscccscssncnosnns 125
i 5.3.2 Data Definition Interfacecceecececcccccscns 126
‘ 5.3.3 Operational INterface ,........eceeeeveveececannes 127
4]
1 6. User Views and Database Secureity Ceeetterretecannnans 128
| 6.1 INEtroduCLionceveveeeesocscessesnsosocsacossosnsancnes ,3.128 [
6.1.1 Mappingsciceiienrcitettitsatieteinenans129 b
6.2. View Enforcement Level ...ccicetcennctccscannsssnsssansansns 134 i-
6.2.1 INtrodUCLION .vveverereeeceseocacoonneccceoasconoasons 134
6.2.2 General MechaniSmcccvveeeeeeencnncannss ve..136 ;
6.2.3 Data Definition Interface .,,.......ccevveevvennnns 136
6.2.4 Operational INterface --:teeeeeecreccsacrascacssnns 137 .
6.3 View Translation Levelccvcvvenvnnnnn ceees...138]
6.3.1 View Translation Level -- Relational View 138 ’1
6.3.2 View Translation Level -- Hierarchical View....147]
6.3.3 View Translation Level -- Network View 153
6.3.4 Database Sublanguage Facility and Summary of the View
Translation Level teeeeenecececsassrasneune ee..161
6.4 View Authorization Levelceceeeeeveceoncasesacasene 164 3
6.4.1 Introduction ,,..........c.... Cereseeeeeeanans ce....164
6.4.2 Data Definition Interface ceescee vesses.165
6.4.3 Operatinal Interface teesenenans tevenens veee..168

7. Summary and Future Research DirectionsSeceecevecesesss.169

7.1 Summary of Reportcceeees N cees..169

h————'—'—"—-—'—'————-——-—-— N "
[.
|
. P- 4
Al
7.2 Future Research Directions........... cerscenes eeevesecns cee. 172
7.2.1 Formal Design Methodology N 172
7.2.2 Locking Mechanismsccecieeceenncsnncses R Y K
7.2.3 Mapping of Operatorsceceeveecevnnnconsnees 174
7.2.4 Implementation of a Software Prototype 174
7.2.5 Performance Evaluationccceiievieececconrcnnssas 175
7.2.6 Recovery and Reliability ceseseeanans 175
REL @I NSveeenuesoeonsonasesassasassssosnssnesssssnsansocsssasssnas 176

WP > oo Py O G guEr

1"', ,:‘:"..ﬂ" ~

-
-

I. INTRODUCTION

Conventional computer architecture has shown its 1limitations in
supporting high-performance, high-reliability and large-capacity
systems dictated by today's information processing needs. Attempts in
the form of microcoded instruction sets, intelligent controllers,
back~end processors and database maéhines have been made to augment the
data processing capability of a computer <Hsiao77>. The INFOPLEX
database computer represents one effort which employs a highly parallel
computer architecture designed specifically for such information

procesing needs.

Using the concept of hierarchical decomposition in its design,
multiple microprocessors in its implementation, and decentralization in
its control mechanism, the INFOPLEX database computer architecture has
as its objective the support of large-scale information management with
high reliability <Madnick79>. It aims to provide a solution to the
problem of increasing loads, in terms of both throughput and voiume of

stored data, faced by tdday's and tomorrow's information processing

nodes.

INFOPLEX consists of a storage hierarchy, which supports a very
large data stgrage system, and a functional hierarchy, which is
responsible for providing all database management functions other than
device management. The fuhctional hierarchy is built on top of a
storage hierarchy. This data computer may be used as a stand alone
database machine, where users interact with it directly through a

Data-Definition/Data-Manipulation/Query language interface, or it can

be connected to a regular host computer through a data channel, where
the host computer augments the database machine's functions by

providing language processors and other utilities. The host computer

_generates commands to be received by INFOPLEX's DDL/DML/Query

interface, as depicted in Fig 1.1.

1.1 Storage Hierarchy

The storage hierarchy is comprised of levels of =storage devices
with various -performance and cost features. In our research
<{Madnick?75>, it is found that the requirements of a high~performance
and 1low-cost storage system are best satisfied by a mixture of
technologies combining expensive high-performance devices with
inexpensive low-performance devices. Hierarchical decomposition is
applied to organize this ensemble as a hierarchy. The high-performance
devices, such as cache memory and main memory, are placed on the top
(i.e., the highest 1level of the hierarchy), while low-performance
devices such as mass storage systems are placed at the bottom (i.e.,
the 1lowest 1level of the hierarchy). An example of our storage

hierarchy is shown in Fig 1.2.

The storage hierarchy supports the functional hierarchy by
providing a very large linear virtual address space with a small access
time. The actual structure of the storage hierarchy and movement of
information between levels within the storage system are hidden from
the functional hierarchy. The lowest level of the storage hierarchy

always contains all the information of the system, while higher 1levels

‘

—~ A Sar w5 B e PRI AR TR -

Host
Computen

User
Termina

I - User
Interface

/

'

Functiona
:F Hierarchy

Controllers

Storage
Interface

Storage
Hierarchy

. Fig 1.1 INFOPLEX: Backend machine/Stand-alone
T data computer

NI..."

P N
iy

-

e

I el -
g - Y e

S - R

o e
o T

Y

WEon

~ite L

AR

Storage references

controller

bus

I
B
I
1l

Pigure 1.2 An Example Memory Hierarchy

CACHE

MAIN

BLOCK

BACKING

SECONDARY

O T

ate BT .

contain subsets of the total database. Requests for data are made to

the highest level, and information is moved automatically between
levels depending upon actua} or anticipated usage, such that the
information most likely to be referenced in the future is kept at the
highest level. The effectiveness of the storage hierarchy therefore

depends heavily on locality of reference.

Microprocessors are used at each level to implement data movement
algorithms. Simultaneous and parallel operations at all storage levels
enhance throughput and reliability of the storage system. Various
desirable properties of storage hierarchies have been identified, and
the relationships between these properties and various storage

management strategies have been studied in detail <Lam79, Abraham79>.

1.2 Functional Hierarchy

1.2.1 Hierarchical functional decomposition

The INFOPLEX functional Hierarchy is designed around a concept of
hierarchical functional decomposition. The concept of hierarchical
decomposition, as applied to the functional design area, is a technique
that identifies the key functional modules that have minimal
interdependencies and can be combined hierarchically to form a software

system, such as an operating system or a database management system.

%.2.1.1 Hierarchical vs. non-hierarchical design

.

PRT ¥ q‘.—eg"_'\ ~

The advantages of hierarchical modular design as opposed to
conventional subroutine modular design can be shown by a simple
comparison. Fig 1.3 depicts a system consisting of a "main" program
and eight subroutines. In addition, there is a common data pool used
by all of these routines. Each 1link in the figure represents an
interdependency. If the function or interface to suroutine E were
changed, five other subroutines (i.e. M,'A, B,C, and D) may also have
to be changed. The same argument applies to changes in the format or
usage of a variable in the déta pool. In the hierarchical
decomposition approach, functionality 1is distributed to modules in a
very strict manner so as to produce a hierarchical structure as
illustrated in Fig 1.4. 1In this case, the modules are designed such
that each of the nine routines 1is only dependent upon one other
routine. Furthermore, each routine maintains its own private data pool
as needed to serve its function. In such a case, if a subroutine is
modified, there is only one other subroutine that can be directly
affected and must be tested. Similarly, a change in a data pool
variable only impacts a single subroutine. Besides minimizing the
propagation of changes, this hierarchical approach also makes it much
easier to determine which subroutine must be changed, and in what
manner, since the functionality of each subroutine must be
well-defined. This approach has been found to be very effective in

earlier design work on file systems <Madnick69, MadnickT7u>.

Another reason for the choice of a hierarchical design is to take
advantage of the pipelining nature of transaction processing in a
database system. A transaction that enters a database system normally

has to go through a sequence of stages of processing. For example, it

+
v ANV Ry I e SN PRI T >

1 papseh
H
|
.
!
- Laand -
- -
L4 ~
- -
I'd X -~
* - ~
L4 -
’ M \‘\\
~
L4

- -
v ~ - - -
- - o
\\.‘ — e o a-— T
-—
-
" e e - -

; Fig 1.3:

SRy
TS
»—

w2

> v
-
2

[
e .

t 2N

§ ’ .

P.
~
NN
\\
N
.
S b
\
L4
L4}
s
- ’
ﬂ‘ I
4 L
’

Non~hierarchical design

WAt Yt e Sy B - giog SRFSINEI WA IAPE T~

11

12

p.

Ml pores

|

(o)
i
ale

N "2
Mg
i

RN oAt 4
I o4

» ont

4.

R WAl - T

2R

-

Ik
"

Fig 1.4 Hierarchical design

0 T)
oy it v TS

"~ e

may first be checked by a security control module; then it is passed
to a name-mapping module which determines the records to be accessed;
and then it is given to a search module which determines the address of
the records; finally a storage module is invoked to obtain the record
from the memory. These stages suggest strongly a database system
structure that reflects their sequence. Moreover, the modules that
support the earlier stages of processing (e.g., security control and
name-mapping) also require services provided by those modules that
support the later stages of processing (e.g., searching and accessing).
Research 1in stratification of database systems will be reviewed in
chapter 2. Here we conclude by pointing out that, since hierarchical
modularity enables higher-level modules to be implemented on top of an
'extended machine' incorporating all the primitives implemented at
lower 1level modules, it contributes to the reduction of redundancy of

functions in the system, and therefore enhances the reliability.

1.2.1.2 Family of systems

I AN

Another advantage of the decomposition approach 1lies in the

v i

.‘ 2) .
aw® . T

development of a ‘'family of systems'. The concept of 'family of

-9

R systems' is motivated by the proliferation of operating systems or

s

< e

' DBMS's developed over the past decade or two. While the individual
systems may have various desirable features, it is often difficult for

the wuser to find a system which possesses just the right number of

- ’x(
- -? ol

» - qualities that he desires. It is therefore advantageous to develop a

s

general structure that can be wused as a basis for many different

&

systems. By decomposing a system 1into modules that are compatible

Y ¥

-

through a set of well-defined interfaces, it is nearly possible to

tr’-‘ L

.
- I R

- o

B

. N

Ll
-

4

PO

R e

develop any specific system by an appropriate choice of modules
proposed. In other words, a desired system may be assembled according
to needs the way a stereo system or a cutomized automobile is
assembled. In our research on Family of Operating Systems <FO0S76> and
Family of Database Management Systems <FODS76>, hierarchical modular
design was found to be effective in providing a normative model for the

systems.

Members of a family of systems will differ as a result of
differences in the contents of the modules that make up the hierarchy.

There are three broad classes of module differences:

(1) Functional: Although the purpose of and the interface to each
module must be clearly defined, the specific functions and
algorithms used may vary significantly.

(2) Performance: For a given functionality, there may be
different implementations that offer different performance
characteristics.

(3) Existence: As an extreme case of minimal functionality,

certain modules may not exist at all in certain system.

Applying the concept of heirarchical decomposition, the INFOPLEX
Functional Hierarchy attempts to decompose the typical DBMS functions,
such as data restructuring, security control, integrity and validity
checking, access path optimization, data encoding, etc., into a
hierarchy of tasks, each of which to be implemented as a 'level' of the
hierarchy. Levels are connected in a top-down fashion, with higher

level modules supported by the 'primitives' of the 'extended machine'

e *"————'—m_—“

p. 15 {

composed of the hardware and all lower level functional modules.

Howevék]‘design and implementation of each level is made as independent

of other levels as ..possible so that algorithms incorporated in a
particular level are not affected by those of other levels. In
particular, inter-level communication is made through a set of clean,

pre-defined interfaces.

1.2.2 Multiple Microprocessor Implementation

The functional levels specified above are to be implemented using
multiple microprocessors to take advantage of possible parallelism and
pipelining effects in processing incoming streams of transactions. As

F: shown in Fig 1.6, each level in the hierarchy communicates only with ;

adjacent levels and each module within a level communicates only with

adjacent modules. Thus no central control mechanism is necessary.

k) When a processor in a level requires service from the next lower ;
J»‘.
;d level, it places an operation code and associated operands in a shared
>80
»
“H memory area accessible to only these two levels. This special memory
vl

module is called an Interlevel-Request-Queue, or IRQ, to be
distinguished from the storage hierarchy and the local memory described

below.

In addition to the IRQ, every 1level has sSome 1local memory as
working space. Therefore, each processor may have 3 sets of memory

modules:

(1) IRQ shared by the next higher level,

(7% SR,

A aw® s Y

(2) local working space, and
(3) IRQ shared by the next lower level.

This concept is shown in Fig 1.6.

Even though a processor has a number of memory modules, memory
operations can be supported in a conceptually simple fashion by
assigning different ranges of the address sp;ce of the processor to
each of its three memory modules. Thus the same set of storage

operations (i.e.LOAD,STORE,MOVE,etc.), and the same addressing

mechanisms can be used for each of the three types of memory.

1o illustrate, suppose the data encoding level (refer to fig 1.5)
places a request to the memory management level to fetch a byte string
of data, given its 'id'. (The 'id' is a unique identifier for the byte
string, and is described in detail in section 2.1) The <calling module
formats a message and stores it in the IRQ shared by the data encoding
and memory management levels. This message contains an operation code
(i.e. 'FETCH') and the id of the data element to be retreived. When
the memory management level completes this request, it stores the byte
string of data in the IRQ, and returns a message to the data encoding

level, containing a pointer to the data in the shared IRQ.

There are several ways to implement this hierarchical ensemble of
processors and memory modules. One approach is to simulate the
hierarchical structure of the system with a 1linear, single bus,
structure (Fig 1.7). Research in the area of multiple microprocessor

networks has shown that improved communication protocols and bus

architectures can be used, with today's technology, to linearly connect

View Auth.

{ ' - Level o 17

View Tran.
Level

View En-
farcement
- tevel -~

Validity/

Integrity
L..,Levell R i

. Virtual Infol
- L_‘Level .

P N-ary
e Level

=

Binary
Level

I

Unary Set
Level

Data Encoditng

Level }
ey {
h’ Memory Mgmt.!
Level)

/

.Virtual Storage_Interface

virtual Storage

Fig 1.5: Functional Hierarchy

nlw e v B o BB B ST

Level i-1

IRQ (i-1,1)

Level i

IRQ (i,i+1)

| - [|

Level i+l

Fig 1.6 Multi-processor implementation of Functional

Hierarchy

‘ -
oy Microprocessors Memory modules

3
o

i ,

y [|
3

" Single Bus
g3

E

(11

. Fig 1.7 Simulating Functional Hierarchy with

a single~bus microprocessor ensemble

il ;“"‘ L e

-
-,

2

“!
avh a2 b

ol

-
-

oy
o

e " N N

-

up to 60 microprocessors without any performance degradation due to
communication bottlenecks on the bus<Toong80>. Another approach,
taking advantage of new fabrication technologies, is to implement each
functional level using several multi-microprocessor multi-memory
clusters. As illustrated 1in Fig 1.8, each of these clusters is
referred to as a functional processor cluster (FPC), and can be
fabricated on a single chip. The IRQ may also be implemented using a
FPC, whose data buses communicate with adjacent functional 1levels, as

shown in Fig 1.9 <Madnick80>.

1.2.3 Summary

The advantages of the functional decomposition approach to
database computer design are summarized below:

(a) Decomposed design and implementation: Functional
decomposition breaks the design and implementation of a
potentially very 1large DBMS into smaller, much-easier-to-tackle
modules, where each module can be worked on separately.

(b) Modularity: Each level of the functional hierarchy interacts
with other 1levels through a clean set of interfaces; therefore
modules that perform the same task while using different
algorithms. or employing different levels of sophistication can be
selectively plugged into the system.

(c) Parallelism and pipelining: Multiple microprocessor
implementation makes it possible to process very high transaction

rates (orders of magnitude higher than currently available

systems).

e 3t Yt e 13 o P YA 9 e g TR 2 RS 10 - et

l data bus

FPig 1.8: Functional Processor Clusters (FPC)
in a functional level

T Inter Level
Requests
i T v
4
'.;;
"w T Inter Level
% Requests
., &1
-
O‘
Q' ©
. FIGURE 1.9
' IRQ Structure as a Functicnal Processor Cluster (FCP)
A s T it SO AR e e ————

e 2= I - PRI STV F. o

p. 22

(d) Distributed control: Since each module has clearly defined

functions, it is easier to detect errors and to identify the

erroneous module. Also the use of multiple parallel processors at

each level enhances the availability of the system in the event of

any isolated software or hardware breakdown.

1.3 Research goals and an overview of this report

The goal of this research is to turn the INFOPLEX concept of a

pipelined, multi-processor-based database management system into a

detailed design. Specific accomplishments are the following:

(1) Identification of functional objectives of the system: We

have identified,

drawing from the current literature in the DBMS

area, the following as major features to be included in the design

of the system:

(a) multiple types external views of the database

fté (b) a high-level conceptual data model rich in semantics

Py T R

(c) a flexible physical data structure

(d) explicit support of database security, validity, alerting

constraints and virtual information

(e) concurrent use of the database

(2) Development of an integrated data model: we have developed a

data model, which is used to describe the database and serve as a

media for inter-level communications

(3) Specification of architectural levels: We have examined

database

stratifications in the past and proposed a more

DY PR

- -
.

potice — e e et i

p. 23

generalized layered architecture to achieve our functional

objectives. In particular, functions performed and data

structures used to implement them at each level are described.

This can be used as a blue-print for software prototype

implementation and for future study and refinement.

!

In this chapter, we have reviewed the architecture of the INFOPLEX

database machine and introduced basic design concepts of the functional

hierarchy as outlined in <Madnick79>.

In chapter two, the general structure of the functional hierarchy
is discussed. It describes the rationale for the proposed
stratification in an integrated fashion, and relates it to the

literature of various database research areas.

The rest of the report is organized around the proposed structure
of the Functional Hierarchy. For each 1level identified in the

Functional Hierarchy, the following general issues are discussed:

1) The functions this level performs;
2) The rationale for singling out this level;
3) The implementation strategies;

4) The interfaces;

As shown in Fig 1.5 , our design of the INFOPLEX Functional
Hierarchy has the following levels:

A. Memory Management

M
3 I o PR IR T

» .

-.‘at,.""

T P

L T

1) memory management level
B. Internal Structure

2) data encoding level

3) unary set level

4) binary association level
C. Database Semantics

5) n-ary entity level

6) virtual information level

7) data validity and daﬁa integrity level
D. User Views and Database Security

8) view enforcement level

9) view translation level

10) view authorization level

The report starts from the lowest level of the Functional Hierarchy.
In chapter three, we discuss the memory manager. The discussion
focuses on how this level is to be implemented in order to manage the
virtual memory resource and to provide mapping functions of the logical

identifier of a data element to its physical identifier in the virtual

memory.

In chapter four, we describe how the internal structures of the
database are supported. Descriptions of the three levels supporting
the internal structure, namely, the data encoding level, the unary set

g
level, anq the binary association level are presented.

The encoding scheme of a stored data element may change when the

L)
T i P - SRR N

P. 25

element is passed from one level to another. In particular, an element
may go through data compaction, editing, or various forms of encoding
right before it is to be stored into the storage hierarchy. The data
encoding 1level provides functions to perform these types of data

conversion.

Stored data elements are grouped into unary sets. (The notion is
similar to that of grouping stored records into files.) The unary set
level deals with search and retrieval of stored data elements from the
unary sets. It provides a "content-addressable" interface to its
superior levels. It incorporates data structures that facilitate

searching into the database.

The binary association 1level implements binary connections
specified in the conceptual schema. Even though it is classified as
one of the internal structure levels, it provides the basic service to
materialize complex semantic constructs. It is capable of extracting a
data element from the database given the content of an associated

element.

In chapter five, we discuss how database semantics may be built in
and maintained. A structure of 3 hierarchical levels is proposed. At
the n-ary entity level, binary associations are grouped into an n-ary
construct that is used to describe an entity in the real world.
Multi-valued attributes as well as nested attributes are built into
this n-ary construct. This level supports an n-ary entity interface,

which returns an entity based on some description of the attributes of

this entity. It alsc has to resolve certain access path selection

problems.

The virtual information 1level provides functions to derive
information which is not physically stored. The validity control level
further implements constraints on updating of the database. These two
levels complete the discussion of database sem?ntics.

f In chapter six, we describe the implementation of definitions and
mappings of external views and contrql of database security. A
three-level functional structure is discussed. The view translation
level sits in the middle, performing mapping and translation of views.
Three kinds of views are discussed: relational views, hierarchical
views, and network views. It shows, by way of a sample database, how

L different views and their operators may be translated.

Below the view ¢translation 1level, the view enforcement level
integrates all external views and enforces operational access

constraints. On the other hand, the view authorization level on top of

: é the view translation level authentiates 1log-on wusers and authorizes

;i views to the users.

?. Finally, in chapter seven, we conclude this report, and point out

1*» dimensions for further research in the design of the functional .
U hierarchy.

.

i

¢,

)t

+
AN R B ot SR BN

st ottt e

II. The General Structure of the Functional Hierarchy

Before we go on to the description of individual 1levels in the
hierarchy, an integrated overview of the stratification proposed is
presented here. This chapter dwells on the recent 1literature 1in the
area of database design and database management systems, and its

relationship to the design of the Functional Hierarchy.

2.1 Stratification of the DatabaSe Management System

In this section, we shall review two important concepts in
stratification of database management systems. The first one,
represented by the ANSI/SPARC recommendations, emphasizes the process
of data abstraction and a three-level hierarchy of data models. The
other one, represented by the DIAM model, stresses abstraction of
functions. Both have been drawn upon for determining features to be

supported by the functional hierarchy and its architecture.

2.1.% The ANSI/SPARC DBMS architecture

It is one ot the objectives of the INFOPLEX Functional Hierarchy
to be able to support various high level constructs demanded by an
information modeller. In order to design a DBMS that has the
capability to provide many different kinds of views (e.g. relational,
hierarchical or network views) of the database, as well as the
flexibility in the organization and reorganization of the stored data,
INFOPLEX has adopted a DBMS architecture similar to that suggested by

the ANSI/SPARC study group. <ANSI75, Yourmark77, Tsichritz78>. Under

- . e e cteeme s e kIR T Cameiea o b b IR e S -

p. 28

this framework, as shown in Fig 2.1, a conceptual schema is introduced
to insulate view definitions (i.e. the external schema) from stored
structure definitions (i.e. the internal schema). The application
program views are mapped to the conceptual schema, such that changes or
additions of individual views will not affect the definitions of the
others. On the other hand, conceptual schema fs mapped to the internal
structure, such that changes to the internal sﬁructure will affect only
the mapping between the conceptual schema and the internal schema, but
not the external views. Therefore data independence may be preserved
and protection of existing application programs can be effected. To
serve 1its purpose, the conceptual schema should have the following

properties:

(1) It 1is a description of the enterprise that will stay
relatively stable compared to the external or internal schema.

(2) It 1is capable of expressing high level semantic constructs
existent in the enterprise in order to faithfully model the
enterprise.

(3) It is simple to work with and flexible in restructuring itself

to provide different external views.

A very similar architecture is found in the description of
System R <Astranhan76>. As shown in Fig 2.2, System R has a Relational
Storage System (RSS) which corresponds to the internal 1level, a
Relational Data System (RDS) which corfesponds to the coceptual 1level,

and various programs run on top of the RDI to support other user

interface.

External
Model A

External
Model N

External/
conceptual
Mappi

Conceptual
Data Model

Conceotual/Internal Mapping

: Stored data base
p (Internal Model)

Fig 2.1: The ANSI/SPARC DBMS Architecture

¢~ Programs to
support various interfaces

.
ff €= Relational Data
-4 Relational Interface (RDI)
! Data System
(RDS)

€ Relational Storage

Relational
+ M L
b Storage System Interface (RSI)
! (RSS)
o

Fig 2.2: The System R Architecture

N A

te A7
N

O oy e

Gl

Ak A " v

The choice of data models has a great impact on the design of
interfaces between levels of the functional hierarchy. We shall
examine, in section 2.2, the significance of choices of data models at
each of the three 1levels, and approaches taken in the design of the

Functioanl Hierarchy.

2.1.2 The DIAM concepts

Senko <Senko73> has also exploited to a great extent the concept
of stratification in implementing a databasé““system. His Data
Independent Accessing Model (DIAM), as shown in Fig 2.3, has identified
four levels of abstraction for a DBMS: the Entity Set model (the
info-logical 1level), the string model (the construct-building level),
the Encoding model (the basic construct implementation level), and the
physical device model. Even though there is certainly a similarity
between DIAM and the ANSI/SPARC architecture, the purpose of DIAM's
stratification is more along the 1line of abstraction of database
functions. This results in a further decomposition of its internal
model, with the emphasis that a higher 1layer always builds its
functions on top of those implemented at a lower layer. Another
example of stratification of database functions is presented in

<Navathe76> in a more limited context.
2.1.3 The INFOPLEX Approach

The architecture of the Functional Hierarchy strives to achieve

the following features of a DBMS:

.
PR TN N =y

, p. 31
|
. Representation
Concept Names Entity Set Indevendent
Language
Translator
- N
b String Model -
Representation - Representation
: Names Encoding Model Dependent
? Physical Device Language
o Model
a L .
{
Fig 2.3: The DIAM Architecture

Data Structure

| {

1 | |

Info Structure

1 | |

\%

N

] |

Normalized
relational
model

Conventional
hierarchical
or network
models

T e T

—

Taawea

-4 Fig 2.4:

W ale & e

S e e g

Loy N

{ |} !

Schmid;
Chen:
E-R
model;
Senko:
Entity-Set
model

role-~

Aggregation
concept generalization

Conceptual Data Modeling

| 1 [

Codda:
RM/T

Al:
Semantic
Networks

Mclead:
SDM

[

—~ = T

- ~

A St o T P~ o YD B -

(1) Support of multiple types of views

(2) Separation of the structure of views (the 'external schema')
and the structure of the stored data (the 'internal schema') by a
relatively stable and simple data model (the 'conceptual schema')
(3) Implementation of various stored data structure techniques

(4) Explicit support for virtual informat?on, validity/consistency
checking and security checking |

(5) Support concurrent use of database

In order to achieve these features and at the same time realize
pipelining and functional abstraction in the system, the functional

hierarchy is given the propsoed architecture as shown in Fig 1l.5.

2.2 Data Models

From the discussion above, it is clear that selection of data
models at the external, conceptual and internal levels has great impact
on design of the interfaces between 1levels and functions to be
supported at each level. This section presents an overview of research
in the area of data models and points out approaches to be taken by the

functional hierarchy.
2.2.1 Conceptual Data Models

2.2.1.1 Literature Overview

Recent research in the area of logical data models has followed

-7 AT r .
W 1 ey

l". - -

e
w3

I 4 1,

3

e £ s e

L

il ;e

..

two directions. One has focused on enriching the conventional data
models (e.g. hierarchical, relational, and network). It 1is argued
that these <conventional models are basically 'syntactic' data models
which suffer from deficiency in semantic constructs. Numerous efforts
have been made to enrich them, especially in the refinement of
relational data model. The concept of 'normalization' in a relational
model is an attempt to understand better éhe meaning of a relation by
recognizing functional dependencies among the data <Codd72>. Schmid
<Schmid7%> further <classified relations by 'type'. He suggests that,
by indicating which type (e.g. entity type, association type,
characteristic type) a normalized relation belongs to, the meaning of
storage operations (e.g. 1insert, delete and update) on the relation
are clarified. This concept of 'type’ of relations enrich semantics of
the strictly syntactic structure, and has motivated work on further
normalization <Fagin77a>. The Entity-Relationship model proposed by
Chen <Chen76> is also concerned with an improved modelling technique to
be applied to real world facts. Smith and Smith <Smith77a & 77b> then
added the concepts of aggregation, generalization and cluster
membership attributes. Along the similar line, Bachman <Bachman77>, in
an attempt to extend the network model, introduced the role concept in
representation of real world entities. A comprehensive discussion of
data model semantic constructs is found in the development of the
Semantic Data Model (SDM) by McLeod <Mcleod78>, where additional
concepts such as cover aggregation and event-type entities are
included. A recent paper by c¢odd <Codd79> has summarized these

extensions 1in semantic constructs into a relational model called RM/T.

One way to summarize these developments is to plot them on a

P T e e e PRI > R N

,
ey

.. ife -:’

g

- - o

34

o

one~dimensional chart (Fig 2.4), where at the left end there are
strictly syntactic data models such as conventional hierarchical and
network models, and more semantics are added to the data models as they
progress towards the right, then at the right end of the chart there
will be models proposed in the field of artificial intelligence, such
as the Semantic Networks <Roussop75>, where an effort is made to
provide the user with a powerful set of éools to model real world
information as naturally as possible. UPlata models developed in the
area of artificial intelligence also strive to provide flexibilities in
naming a certain set of objects, depending on the context of the

application and the angle from which information is viewed.

Another direction of research in logical data models emphasizes
the identification of a basic simple construct. This construct,
sometimes termed "minimum information unit”, is simple, with clear and
clean semantics, and may be easily collected in a meaningful fashion to
represent complex varieties in semantic structures. Hierarchical and
network models are considered too complicated for this purpose. They
are not flexible in restructuring themselves to a different view.
N-ary relations (or single-leveled files) and binary relations are more
appropriate for use as the basic construct in this sense. However, the
conventional n-ary relation is plagued by semantic ambiguity
<Schmid75>. All the fields in a tuple are equally associated, while in
the real world, some associations may be direct and others indirect.
Placing all of them in a single tuple may lead to misunderstanding of
the meaning of the information. Even though considerable efforts have
been put in the concept of 'normalized' relations, it is felt that the

best guard against spurious information is a binary association model.

.
WL R P - ST WP T

fﬂ‘w.z

.
A INT

R

It has been argued that the binary association or some close
approximation has much more desirable technical properties than n-ary
relations for use at the logical level <Senko77>. The advantages of a
binary association data model are discussed in <Bracchi7e6,
Falkenberg76>. Briefly, it is believed that binary associations have
clean semantics, and are most flexible in sugporting various exterral

representations.
2.2.,1.2 The INFOPLEX approach

It is not our purpose here to add to the debate of various data
models. However we look into research in this area, and propose the
use of a binary network type of model as the basis for logical design.
The important qualities of a binary network are clean semantics and its
ease in handling multiple-view support and mapping of the internal
representations. In the remaining part of this section, a description
of the proposed binary network model 1is given, followed by some
examples demonstrating these qualites. We also believe that the binary
construct is capable of supporting more complicated constructs demanded

by some recent data models.
The Binary Network Model:

A visual presentation of our binary network (BN) model is shown in
Fig 2.5. There are four basic constructs. Primitive Elements
represent some objects or facts in the real world (Fig 2.5a). A
Primitive Set is a group of primitive elements that have similar

generic properties and therefore are given a common group name, called

IR 2 ""—v‘by\"’ B u"‘ u 5 r cihi.ﬂ LAY

Office Automation Q "JCHN"

Decision Support Q "MARY" '}

Fig 2.5a: Primitive elements

- - -
P e -~ T .

. -~
,’ - ~ ,’ \\ P \‘
’ . : N U)) n \
,Office Automation " ' \ ¢ "JOHN" |
~ / ' X !) : '
' ' !))
' ! : ' { ’
' \, Decision Support ! \ 9 ,' \\ "MARY" /
g \\ . 4 \‘ 2 . - - -

e S Y

PROJ @ BMP @ M :
Fig 2.5b: Primitive sets (P_set)

se e
.
3 - - l «
. .

,

, Office Automatlon Q ,‘_,-——-—-‘/7‘ "JOHN"
. ! t

' tZ

\\ Decision Suppo \
. \

~

R/

7/ /
> - . ~ ’

‘-— -
-

m@ O O

Fig 2.5c: Binary associations

- -
‘-. - -

.
’_-o-~- ~

A

,' Offlce Autaratlon 9 _x__’___,__._————'- " JOHN" \
\ ; ‘ !
!

\

Dec1smr‘ Suppot

- - = \

- 4
@ &~ Emp Name
Pro3 @ —>w)

Fig 2.5d: Binary association sets (B_set)

p. 37

a Primitive Set Name, or Pset_name (Fig 2.5b). Binary associations are
representations of some real world relationships among primitive
elements from different primitive sets (Fig 2.5¢). A binary set is a
group of binary associations that have similar generic properties
(i.e., the incident primitive elements belong to the same primitive
sets, and the associations have the same meaning). It is designated by
a pair of primitive set names and a pair of association names (Fig

2.5d).

In Fig 2.5d, the upper portion’ (primitive elements and binary
associations) represents the instance of the database, while the lower
portion represents the schema of the database. Therefore, the schema
of our BN model 1is composed of primitive sets (also known as the

'nodes') and binary association sets (also known as the 'ares').

Further classification of nodes and arcs: In a binary network
schema graph, a node can be either an entity node or a value node. An
entity node serves to tie all equally related value nodes or entity
nodes together. By 'equally related' we mean that those nodes tied to
this entity node are all direct attributes of the entity node, instead
of 'derived' attributes. An entity node corresponds to any set of real
world objects (tangible or intangible) that have some common set of
attributes which are revealed by the node's binary connections to other
value nodes or entity nodes. It's own identity is reflected by these
associations; i.e., an instance of an entity node does not have any
value or identity, and its designation is made through instances of its

associated nodes. In a sense, the purpose of an entity node is to

collect equally related binary associations to form a semantically

R L

."‘

‘

p. 38

clean n-ary association. Therefore an entity node is also refered to
as an n-ary entity node. Those nodes that are not enity nodes are
value nodes. Value nodes, in contrast to entity nodes, have values

assigned to their instances.

Ares can further be specified by several parameters. One is the
syntactic function, which is given in terms of 1:1, %:n, n:1 and n:m.
The other, to be specified for each direction of the arc, is the
semantic function, which is gi?en in terms of ‘thierarchical' or
‘association', 'total' or ‘'optional', ‘'candidate _key' or ‘'non-key',
etc. These parameters help further define and clarify the meaning of
the storage operations on these nodes or arcs in our conceptual schema.
For example, the instance of an incident node of a hierarchical arec
depends on the existence of the associated instance at the other end of
the arc for existence, while the association arc does not imply this
restriction. A binary network schema with these distinctions is

presented in Fig 2.5e.

Conditional Arcs: At the instance 1level, there are situations
where the existence of an association depends on the value of the
instance of another node. For example, an entity node PERSON may have
an association with a value node TYPE, and if the value of the
associated TYPE of an instance of the node PERSON 1is ‘'doctor', then
this instance will have an association with another entity node DOCTOR;
on the other hand, if it is associated with a TYPE 'nurse', it will
have an association with another entity node NURSE. This means that
the existence of the instance of an arc may depend on the value of

another node. We shall distinguish this kind of conditional arcs from

L)
e ARATE - NN P o PRI Y

(Convention: .

: Entity node A: assoc.; H: Hierarchial;
O: optional; T: total
: Value node ' Ki: candicate key i; NK: non-key)
)l : Arc

| : Direction of Spec.

Fig 2.5e: An example of BN schema with distinctions of nodes and arcs

Fig 2.5f: An exanple of a BN schema with conditional arcs P

the unconditional arcs. FPig 2.5f shows a diagram incorporating this

distinction.

We shall conclude the description of the BN model by referring to
its definition language specifications. Fig 2.6 is a BNF expression of
the specification. Specifically, 'Defineryset' will create a value
node; ‘'Define Nset' will create an entity node; and the attribute set
in the Nset definition is manifested by creating arcs connecting this
Nset to the nodes that correspond to the domain of the attributes. An
example of a schema definition is given in Fig 2.7a, and its
corresponding node-arc diagram is given in Fig 2.7b. It is believed
that this definition language is very simple to understand and easy to

use.

Implementation: The BN model is implemented at the N-ary level
(the lowest level in the hierarchy that supports 'database semantics').
This 1level accepts the conceptual schema definitions in the form as
shown in Fig 2.6, and generates the corresponding binary network. It
keeps a catalogue of all the value, binary and entity sets defined in
the schema and interpretes operations against the instances of these
constructs. (More details are given in chapter 5, which describes
implementation of the n-ary level.) The binary network 1is also made
known to the internal schema designer as a basis for the file and
access path design. The latter is to be specified in an internal
schema specification language implemented at the internal levels. The
binary network is also made known to the external schema designer to

describe different types of views, which are implemented at the

external view levels.

R < D P o SRIPIAM. TP TS -

.

{BN statement?
{Vset)

“e s s e

¢Vset? | (Nset>
Define Vset (Vset name)

! {Nset > = Define Nset (Nset name, ¢Attr list))
{Attr_list) = (Attr descripy | (Attr_list)<Attr descrip>
(Attr descrip) ::= (attr name, < domain_nane) » { Arc_spec))
{damain name) ::= Nset name | Vset name
(Arc_spec) ::= Syn , Sem , ((equivalence)], [op name]
(Syny ::= 1:1} l:n|n:l| nim
{Sem) ::= { Hier), Umparatived ,L4Key) , {condition
(Hier) ::= Hier [Assoc
{Imparative) ::= Total |Optional
{Key > ::= Cand key | Non key !
{condition) ::= {ocon)| uncon

3 Loon) ::= (attr name, ¢link})

7 ¢link > ::= (Iiteral, MNset name) |(link),(literal,Nset name)

‘ {equivalence) ::= eg= Bset name ! eq=Bset name.R

{Bset name) ::= Nset name.Attr name | Nset name.Op name

Note: 1: [] denotes optional parameters; terminal symbols are underlined.
2: Bset name.R refers to the reverse of Bset name

Fig 2.6: A BI\IFl specification of the schema definition language

(a) Define Nset (EMP,

(E#,E#,1:1,H,T,K,uncon)
(DEPT,DEPT,n:1,A,T,IK,uncon))
-y Define Nset (DEPT
H,T,K,uncon)

5. (DN,DN, 1:1,H,T,K
" M,EMP,ltn,A,O,NK,unCOn,eC]FEMP.DEPT.R))

Define Vset (DN)
Define Vset (EMP#)

l:n
X ,O,M(,mwn

(b)

Fig 2.7a & 2.7b: An exanple schema definition and it BN graph

Examples: Some examples are given here to demonstrate the
advantages of the Binary Network data model:

(1} Clean Semantics: As 1illustrated in Fig 2.8, an n-ary
relational schema may potentially carry ambiguous information,
while a binary form of the schema eliminates this ambiguity.
(2) Ease of mapping into different constructs: It is awkward to
map an n-ary relational schema . containing one-to-many
relationships into its equivalent hierarchical form (Fig 2.9a),
while the mapping is performed more naturally from the Binary
Network schema (Fig 2.9b). Also, since all the binary connections
are explicit, it 1is easier to maintain certain semantic
constraints. (fbr example, deleting a product will trigger
deleting of the shipments of that product.)
(3) Ease of mapping into internal constructs: Fig 2,10 shows how
the binary network may be mapped into a variety of internal data
structures by simply specifying how nodes and arcs are to be
implemeted; while this convenience does not exist in most other

types of schema representation.

Support of rich semantics: This subsection summarizes the BN model's
capability of supporting rich semantics. This is done to show that the
BN model, while parsimonious in its constructs, can be used as the

basic building block for richer models.

(1) multi-valued attributes: This 1is achieved simply by
specifying the syntactic function of the arc implementing this
attribute to be 1l:n. No other explicit specifications such as

'‘characteristic entities' are necessary.

Ml > o YL, Ry

i e -

T : . . X L
" Gl & . AP L . Ty R e

S

An ambigquous n-ary schema:

(MANAGER| SECRETARY | SATARY] (Does the SAIARY refer to the
MANAGER's SALARY or the SECRETARY's

SALARY?)

Elimination of ambituity through the use of the binary form:

(SAIARY refers to the SECRETARY's SALARY)

Fig 2.8: Binary network safeguards clean semantics

(a) n—axy relational schema Hierarchical view
,*“sorere: GEISH - LT~
. ‘0 : @3@ SUPPLIER ™ .
\ ‘ i
« ProDUCT: (Pl PN| . Awkward : . | :
\ surpvent: (851 PE AT [oaTE - mapping — (B EN AMT DATE] SHIPMENT
- I4 \ - I'
= ~ S - - _/ e e e = e -— -
(b) binary network schema

Semantic-preserved
mapping with only
re~orientation of

-
-—a =

Fig 2.9 (a) & (b): Binary network facilitates mapping of views

- = EL A L]

”M-wm WP~ .

- Record Segmentation

~— Record pointer linkage

— Inexing a record

FRR A

LT

— Record integration

VL dawop

Yo

an .

;,;.,

-

k Fig 2.10: Examples of intermal specification using binary -
i network data model

<

LR, Ry T Y e

This is achieved by specifying the domain of the

(2) aggregation:

aggregated attribute to be another entity. (There is no

restriction which says that the domain of an attribute has to be

atomic).

(3) generalization: This 1is achieved by the conditional arc

property. In the case of a an unconditional generalization

hierarchy <Smith77a>, the association from a node at a higher

E level to that at a lower level is based on a conditional arc,

while the association from 1lower to higher 1is based on an

unconditional arc. In the case of an alternative generalizaiton

<Codd79>, the associations in both directions may be conditional.

This scheme also implements cluster membership attributes and the

role concept.

(4) hierarchical association: This is achieved by specifyiﬁg the

arc to be ‘'hierarchical'. It clarifies the fact that this

association provides external identify to the 'child' node, and

node necessitates deletion

deletion of an instance of the 'parent'

of all the associated instances of the 'child' node.

Summary: Our approach bears certain resemblance to concepts of

'molecular semantics' introduced in <Codd79>.

‘atomic semantics' and

simple n-ary relations are referred to as atomic

In that paper,

semantics, while molecular semantics represent ‘'bonds' that tie up

atomic semantics to form complex constructs. In a similar spirit, we

propose to use binary associations as 'atomic' semantics. We also move

ahead to show how these atomic semantics are actually implemented at

the internal levels, and how they are collected to realize more complex

logical structures at the semantic construct levels. Moreover, we will

sent the formation of different views for the end user from the

underlying binary structures.

2.2.2 The Internal Data Model

2.2.2.1 Literature overview

The internal data model 1is wused to describe physical data
structures of a database. The choice of a physical data structure is
the outcome of a physical database design process, which uses the
conceptual schema and statistics on usage of the database to generate
either an optimized or a 'good' physical data structure. The goal of
physical database deesign 1is good performance, i.e., good throughput
and response time, under a certain access/update pattern and 1load on

the database.

The scope of physical database design spans the file structuring
problem (e.g., sequential file or inverted 1list), the access path
selection problem (e.g., sequential scan or indexing), the record
segmentation and allocation problem (e.g., the number of fields in a
physical record), and the reorganization problem. The problems of
memory hierarchies and allocating files among storage devices are
sometimes included in the physical database design, but they are not

addressed at the internal levels of the Functional Hierarchy.

There has been a great deal of research in the area of physical

database design. This results in a desisre to support a large number

Ry Ao

4- -

2y

r X

-

vy .23

I

4

-
. dfe &

v . A .
‘."a‘r

p. 47

of data structures in a database management system. A general survey
of these structures 1is given 1in <Date77>, and a survey of physical

database design methodologies is given in <Schkolnick78>.

In order to support a large number of data structures, the
internal data model has to be very general, i.e., it has to be a model
through which the various data structures may!be described by the user
and implemented by the DBMS. While most of the research in data models
has been dedicated to conceptual data models (as indicated in the
previous section), some prominent ideas have been generated in the
context of the data translation and conversion problems <Smith71> and

in the development of the DIAM system <Senko73>.

In the DIAM system, the concept of a basic encoding unit (BEU) is
introduced. A basic -encoding unit is a unit of data stored in the
computer. It is comprised of control information and a data field.
The former may be further broken down into the identifier field, the
attribute field (i.e. 1length and encoding type) and the relationship
pointer field (Fig 2.11). The idea 1is that, by manipulating
definitions of the control information parameters of a BEU, various
data structures can be realized. This provides a powerful media for
describing data structures, and a common basis for implementing them.
The implementation will consist of functions that decode the parameters

and build up data structures accordingly.

The concept of BEU summarized the attempts up to then to
generalize all data structures in a single construct (i.e., an encoding

unit), and allowed variations to be parameterized. Use of the BEU

p. 48
CONTROL INFO.
IDN ATTRIBUTE LINI/(\POINTERS DATA
pe | 10y 0396 JONES
] L : / JL -y

Fig 2.11: Format of a BEU

p. 49

concept is extended and further formalized in a paper by <Fry77>. The
authors of that paper adopted this concept to express the "translator
view" in their data tranlation project conducted at the University of

Michigan. They call it the Logical Encoding Unit (LEU). Several

operations are defined on the basic construct:

1. Collapsing/expanding: this pair of operations encode and

decode data values into bit strings;

2. Extracting (factoring) / dispersing (distribution) : the
. first operation condenses the encoding wunit by bringing common

fields into a catalogue entry. It also may specify how

relationship pointers are expressed (i.e. whether by actural

pointers or by physical contiguity, etc.). The second operation

does the reverse.

2.2.2.2 The INFOPLEX approach

We have adopted the BEU approach to internal modelling because of
its power and simplicity. It 1is <considered fairly general in its
ability to encode various data structures, and at the same time very

\\\iEatmpg\york with. In chapter four, we will describe how the BEU model

——— -

is used to deSeride——and implement the physical data structures of a

database formatted in terms of the BN conceptual data mda;IT‘“‘“\~\\\\\\‘~_—

2.2.3 Multiple-View Support

'S

;. As discussed in section 2.1, a sophisticated DBMS ought to be able

>
oA

) .
Y s T e s

\ . ' p. 50

to support different external views of the database. This is important

on two grounds:

(1) Protection of investment in existing application programs:
Most of the existing application programs are either written in a
conventional environment without a database system or implemented
on a database system that employs a different data model (e.g.,
IMS). It is important that a DBMS is capable of 'simulating' the
St old data structures so that the exisiting application programs do
not have to be rewritten from scratch. This practical
consideration is critical in implementing conversion from one DBMS
to another.
(2) Diversity in views in different applications and by diferent
users: Each user's view of the real world may differ depending on
the application context and the preference of the individuals. In
<Nijssen76> it is pointed out that selection of an application
data model by the user is analoguous to selection of a religion.
Therefore an effective DBMS should be capable of providing the

'freedom of choice' by supporting diversity of views.

?? Supporting multiple views requires: (1) view modelling and view ;

}éa integration during the logical database design, and (2) specification : ﬂ

' ¥ and implementation of the mappings between the external views and the 1

' conceptual view. The first one has been discussed in the context of E
.- the logical database design process <e.g., Chen76, Bernstein76, g
{ Navathe78, Vetter77>. In fact, it is very related to the development ?
‘g of a concpetual data model which must be used to describe the

:i 'integrated view' of the database as a result of view integration. The

.

LY

1 -

g
it Al
L aw® .

..'.c <

L J

e

»

ata U

-

"‘Thlllf'

second one, on the other hand, is an issue in the design of the
database management system, and is to be incorporated into the external
view levels of the functional hierarchy. 1In eséence, the external view
levels are responsible for accepting definitions of the views in terms
of different data models (e.g. relational or hierarchical, etc.) and
their structural and operational mappings to the conceptual schema
based on the binary network model, and'translating operators issued
against the external data models to the equivalent conceptual schema

operators. These are problems to be addressed in this section.

Scope of the problem:

In order to clarify the mapping problem, three levels of

complexity of the multiple-view support are defined here:

(1) Subschema: This is the simplest level of the mapping problem.
A subschema is a view that represents strictly a subset of the
conceptual schema. For example, if a relational model is used in
the conceptual schema, the allowable external views are also
relational, and each individual view contains relations that are
subsets (in terms of either degree or cardinality) of those
defined for the conceptual schema. The subschema facility |is
extremely useful for security control, and does provide certain
degree of data independence. But it does not provide views
expressed in different data models to fully accomplish the
objectives described in the beginning of this section. Examples
of this kind of facility are DBTG's Sub-schema facility <DBTG76>,

IMS's logical database facility <IMSa>, and System R's view

facility <Astranhan76>.

(2) Simulating a different external data model: This level of

mapping actually involves more than one data models. For example,
in the research of the Database Computer (DBC), it has been shown
that the DBC data model can be used to accomodate relational,
hierarchical or network type of external) models by incorporating
s explicitly the idiosyncratic information about these external
models into the DBC record-oriented data model <Hsiao79b>.
Another example is the implementation of a non-relational data
model on top of System R by incorporating a sequence-number field
into the relations <Astrahan76>. This 1level of multiple-view
support has generally ignored the possible interactions between
t different external models due to the explicit altering made to the

conceptual schema. (This 1is 1largely due to the fact that the

conceptual schema in question is syntactic-oriented rather than -

semantic-oriented.) It is one step above the subschema approach, E
. .
:tf but may still not be ideal in supporting multiple types of models
g simultaneously.

o (3) Transformation: This is the most ambitious level of the
multiple view support, and is the kind that the functional
B hierarchy strives to achieve. It supports multiple types of
| external data models simultaneously. The basic premise of this

kind of view support is that the conceptual schema is an

."{"“ » .

¢ embodiment of all the knowledge available, and the external models

,g are merely different templates for abstraction and transformation

> of this knowledge. As pointed out in <Falkenberg77>, the process]
% %
>

.
—— - ot St '_”:,nuﬁ.‘.mww -

(1)

]

Y "
WA v v ANy ey g N AYey VA N Ay wee e AV A A A e L% iy
Py vt vy a iy Ay vt PRI N R TRk 2 L U B B S R R N R N AVen A
L N T LT T R e N A L N N A N SRR R L N N S ALY

Yevyiw

(20

LS 33 A

LT P RN o

Ny

Aty

A AN

RN

\
gy A4

LRELENE 4
"y

e oy
SNy

N Av R

e

4

YAYY Y v

Mav ey ae oy

A

A en

sy Ay

\

KRR

\

®o

I T B L N L R A T S R N A A A L B T AL L RS

R R T T R N R X R L AL R ST RN

B R R R R A Rt W R N U R I ARG AL AR SBatiipte viaew
y W vty Yatwy M\
[S e R X L R N N R Y LR S ACRE SRR SRR R S SR R Yy

IR LEE SO N N O Ay vy Ny hic ey A e iRy \ e Ve lay e

WAy At Ny WAL N ey Ly e e e M ayyty W e avag e Wy v Wy
Vava v Ay sanEe e Ay R R N N N N L TR T T R LR T T T v Wy
Sen oy 8D I I S O I T N e O Y I I JL LN T 2
R T T R e T T Y I T Y WY S ST S SRR VI S P S LR A AR VAR e Ay
Aoty Te Ny oy vy Aty A My e vt e vty vy A A AL e
L N I R K SR TR BN SN v ie vy v‘**i.\ Myt ety @

LR AR AR TR Law vt Vst v Wy Y e¥ Ly Vebe A4S »v*‘\\r‘iy‘w\-.*v-hv‘

SN Vawy aoapy oy et Py} WYty b Ae N LAY vy ey Wy iy ¢ WAoo

L YR | VY v Aw ANy s

v L S T R [AN vy N Vevry vy v Ay v A A AL Wavyeyway

A .
L byt st ety vy oy by 2 e by vy BAYGNRY

L Magyyty v LMy g Naw Ve A vv'\\l\\\ FARY BT
AN iy T iver Ay oy AVt AR IS AR Y S R} SAYEY Ay A
) Ve wnd gy O R R N R S AL B R 2 2 A N N)“'y‘,\"v“y‘ Vy

T N Y e T B B T S N S R S N e A L A L L) L SR R

v e et sy e PR RN "‘\ FALIEAY \\‘\‘\‘ A LR v iv‘\ﬁi%

definitions for data model equivalence.

INFOPLEX approach: Support of multiple external data models in
INFOPLEX results in multiple external view levels in the functional
hierarhcy. These levels are basically parallel to each other, rather
than organized hierarchically. Each level is designed to provide all
the views expressed in a particular external data model. Presently,
three data models are supported: the relational, the hierarchical, and

the network models,.

In chapter six we shall show how the structural as well as
operational mapping between the three types of external models and our
conceptual schema are specified. Proof of correctness will be
conducted as one of the future research dimensions. Basically, to show

that a mapping is correct, the following is to be demonstrated:

Given a conceptual data model C, an external data model E, a set
of conceptual operators Cwand a set of external operators E¢ we
would 1like to construct a strucutral mapping language M and an

operational mapping algorithm q?such that

E=M(c)
Ep{E}= My (Ep){ M)}

2.3 Summary

R

ST B

p. 55

We have discussed the formation of the general structure of the
functional hierarhcy in the context of recent research in the database
management systems. We have examined the 1literature from both
architectural and functional points of view and identified functions
and their organization in the functional hierarchy. Research 1in the
area of 1logical data models and physical data models is reviewed to
shed light on the structures to be supported by the 1levels of the
functional hierarhcy. Finally, the need for multiple-view support and

problems associated with it are discussed.

—— L T e vy

.

e R I e e e e

»

e AT

¢

III. MEMORY MANAGEMENT

As described in the previous chapters, the INFOPLEX database
computer consists of two hierarchical components: the storage
hierarchy, which is a collection of storage devices implementing a
large virtual storage, and the functional hierarchy implementing
database management functions. There is a'virtual storage interface in
between these two components. We now start at the lowest level of the
functional hierarchy -- a 1level that interacts with the storage
hierarchy through the virtual storage interface and manages the large
virtual storage address space. We have isolated memory management as a
separate level because it deals with physical memory issues (e.q.

bytes and byte addresses) which are very different from logical issues

(e.g. logical units of data) of a DBMS. This level is depicted in Fig

3. l.
3.1 The id approach

The primary task of the memory manager is to manage a vast volume
of virtual storage while insulating the rest of the system from the
details of virtual memory management. An approach using the data id is
proposed here. We first give a brief description of this approach and

then provide some rationales.

This method divides the entire memory into pages. When a piece of
data is stored in a page, it is given an id. The id comprises the page
number and a pointer slot number within that page. The 1idea is an

extention of the TID <tuple id> concept used in System R (Astrahan76).

wreseey sguartu

3

. N . .
: - n]

g
o M

ata

Higher Level

$ Mem Mgt Interface

pP. 57

Storage Hierarchy

Fig 3.1: Memory Management Level

Data id: page h:

h k

page# slot#

Mem Mgt local
Processor memory
\ !

]

Pointer slot format:

Flags igéffset ptr

Data item format:

——— -
o -

length
fielg | data

Fig 3.2: The id scheme

data

f area

pointer
area

e A

{ data id:

page h

page 1

page 1

mth slot

page p

(a) |h k o
data id:

(b) h k N

Fig 3.3:

S~

kth slot

S P

gth slot

Data item moved across pages with id unaffected

page catalogue

PAGE# RESERVE F_SLOT F_DATA F_SPACE D_COUNT
0
1
n k
\
\\\page n
full data area
RESERVE: Page reserved for = | _ _)i v -f;e; aa;a_
special purpose area
F_SPACE: Size of free_data_area
D_COUNT: -Size of deleted area 1//
FREE spoT_CHAIN
Fig 3.4: Keeping track of available storage space

-

FRECEVING FAR bLabK=-OT F1

e

>3
P

L < oy

- -
R o

e

£

nxl

P. 60

(c) The memory manager insulates the 'byte detail' from other
levels, centralizes the memory management algorithms and policies,
and therefore reduces the complexity of other levels and
eliminates contention involved in shared usage of the storage

hierarchy.

3.2 Allocating storage space

When a request to store a data "item is received, the memory
manager has to (1) allocate some free storage to this data item and (2)
store it and update pointers. In order to keep track of free storage
space, the memory manager has to have a catalogue. One method is to
keep a table, 1in which each page has an entry, which points to the
first free slot in that page. All other free slots of the same page
are chained together. The catalogue also contains an offset of that
page which indicates the starting byte of the free data area. This is

shown in Fig 3.4.

Data items are of variable lengths. Therefore, a length field is
stored with each item. When an id is presented to the memory manager
for retrieval of the item, the length of the item is first examined and
the number of bytes to be pulled out determined. The 1length field
itself may be of variable length to accomodate a wide range of sizes of

data items.

For simplicity, a data item 1is wusually not split across page

boundary. When the size of the free data area of the first available

p. 61

page is not enough to store a particular data item, the next page is
approached, until a page that is capable of holding this data item is
found. Another field may be added to the page catalogue, which

indicates the size of the free data area of each page.

3.3 Page reservation and clustering consideration

Even though it 1is definiteiy advantageous to have storage
a allocation decisions centrally made at the memory management level,
there are situations in which, for practical reasons, certain areas of
the storage space are requested to be set aside by higher levels. Once
pages are assigned to be dedicated to certain purposes, they can no
longer be used for storage of items outside of these purposes. For
example, some pages may be reserved to store only elements of a set
which are stored according to a hashing function. The higher 1level
actually calculates the id of a data item to be stored and passes the
i id to the memory manager, instead of having the latter assign the 1id.

Special parameters are incorporated into these commands.

3.4 Virtual Storage interface

It is through this interface that the memory manager interacts
with the Storage Hierarchy. The latter provides a byte-addressable
memory, and STORE/LOAD operations are performed as within a

conventional computer. Details of virtual storage operations are

completely concealed beneath this interface and are responsibilities cf

TN e s e e NI, WGP -

the storage hierarchy. The memory manager simply views itself as

equipped with a memory of a very large size.

3.5 Memory management interface

The memory manager provides the following functions for modules of

higher levels that call for service (refer to Fig 3.5 for their logic):

operations arguments
St

CREATE (mode, byte string, id0)

UPDATE (id, new_string)
: DELETE (ia)

RETRIEVE (id)

RESERVE (code, no_of_pages)
’;5 CREATE is invoked when a data item (i.e. a byte string) is passed to
;té be stored in the database. Other parameters concerning the data item's
P
JH storage area may be passed at the same time. There are 3 modes for
1]

CREATE: (1) In Regular mode, the caller does not care where the item

1 is to be stored.

~i; (2) In id mode, the caller specifies the id of the item to be ‘j
,: created.
* (3) In approx mode, the caller provides the 1id of another item

e 1}

around which this new item is to be created.

&

. 4l

v UPDATE replaces the old content of the data element designated via id

.g&""‘
1
!
[]
i
!
¢
»

aSnptg e R o U . S AT Y

p. 63

with the new byte string passed. If the new string is of a smaller or
the same size of the 0ld one, it is written over the old one. However,
if the new byte string is larger, the area where the old string is

stored is discarded, and a new free data area (preferably in the same

page) is sought to store it. 1In either case, the id is not affected.

|
DELETE is effected simply by chaining the pointer slot to the free slot

. chain and setting a flag in the slot. The data area freed by DELETE is
not recaptured until a page compaction module 1is invoked to walk
through pages to collect them. 1In order to facilitate page compaction,
the number of bytes deleted in a particular page is recorded. When
this counter exceeds a critical value, a flag is set for this page, and

a request for compaction is filed (see Fig. 3.4).

L4
. In addition to functions that may be invoked through the i

interface, there are miscellaneous housekeeping tasks to be maintained.

Page compaction is one, and statistics collection and data
:;‘ reorganization may be another. Other design issues such as page size,
1: data area size, sizes of pointer slots and length fields, as well as
?% whether an overflow area is to be reserved for the page, etc., are to

be discussed in detail design.

f,% . One final consideration at this level is the place where the page
catalogue is to be stored. Since the storage hierarchy is directly
accessable at this level, it seems natural to use part of this wvirtual
Y storage to store the page catalogue. An adequage number of some
pre-determined pages may be assigned to the page catalogue, and entry

of the catalogue is retrieved by the following formula:

~ ot - SAPRD . B PPRND = T -

base address of catalogue + (page no - 1) * size of entry

The structure and information (» be stored with the catalogue are to be
determined during the detail design. In general, it opens a question
as to how large catalogues are to be maintained 1in functional
decomposition, since the set of catalogues represents a very large
database, and data structure manipulation functions devised to maintain
the database may also be needed to housekeep catalogues. The page

catalogue represents a design problem and different alternatives and

their tradeoffs are to be explored.

Fig 3.5: operational commands at memory management level

(note: Arguments suffixed by '*' are return arguments)
LOCATE (id, byte_addr*, code¥*)

1. calculate slot addr of id;
. load content of slot;
if free flag set, then code = 'free', and return; else
if new page not set, then go to 7; else
use info in current slot to obtain new slot address;
load content of new slot;
calculate addr of data item and store it in byte addr
return (byte_addr, code='o.k.') -

e A e -

oUW

S s s o & @

CREATE (mode, byte string, id0, id*, codet*)
‘ id mode:
. 1. LOCATE (id0, A, R)
2. if R not equal to 'free', then Return (Code='contention');
‘ else
. 3. id = ido;
& 4. F CHAIN('remove', id, l=length(byte string));
5. LOCATE (id0, A); -
6. store byte string at A;
7. Return (id0, code='o.k.');
approx mode:
8. (assume id0=(p0,k0))
p=p0; l=length (byte string);
y 9. 1if Reserve (p) not set, and F_space(p) >= 1,
© then go to 11; else
~ 10. p=p+l; go to 9;
11. let k=F_slot(p) and id = (p,k);
12, go to 4;
regular mode:
13. let p=PAGE;
14, if F_space(p) >= 1 then go to 1l1; else
15, p=p+l; go to 14;

(Note: PAGE is a variable that points to an
! immediately available page)

DELETE (id)

g 1. LOCATE (id, A, Code);

’ . 1let Ll=length of data element at A;

F CHAIN('insert',id,Ll);

if new page flag not set, then return; else
let idl=id of new slot;

F_CHAIN ('insert',idl);

return;

NSO wih
s s o s »

_: UPDATE (id, byte string)
) 1. LOCATE (id, A, Code)
.%ﬂ 2. let Ll=length of data element at A;
¢ 3. if L1>= length (byte_string) then go to 8; else
Y 4. let id0=id and call CREATE ('approx',6 id0, byte_string, id);
5. if id and id0 are of the same page, then update content of
slot designated by id0; and call F_CHAIN ('insert', id0, Ll),

e

.-

.

T
. RERR
|

6.
7.
8.
9.

and go to 9;

else

set new page flag at slot designated by ido0;
go to 9;

store byte_string at A;

return;

F_CHAIN (op, id, L) where op='insert' or 'remove'
assume id =(p,k).

1.

2-

il

.
e T

L]

if remove op, then remove kth slot from free slot chain.
update F_data(p) by adding L to it, and if p full, declare it;
if insert op, then insert kth slot into free slot chain of
page p; increment delete byte counter by L. 1If critical
value exceeded, add page p to Compaction request queue; set
free flag of that slot.

)
S~ [y L B > gl

IVv. INTERNAL STRUCTURE

4.1 Introduction

In chapter two, we have discussed the choice of the BEU concept
for internal modelling. We shall, in the present chapter, expand this
concept and show how the internal levels of tge functional hierarchy
are designed to support the binary-network conceptual data model with

various data structure techniques.

Our approach produces a gradual mapping of the internal construct
to the conceptual data model. The highest 1level of our internal
structure, the binary association level, may be viewed as the lowest
level of the conceptual model itself. The data definition language to
be accepcted by this internal structure 1level 1is simply the binary
definition loosely coupled with parameters that guide internal
construct building. These parameters are checked for consistency and
then distributed to 1levels that are of concern. For example,
parameters specifying how many indexes are to be maintained for a
particular set of elements are processed by the unary set processor,
while those specifying how data is to be edited before being stored are
processed by the internal encoding level. It is easy to show that
changes in techniques of internal representation can be accomplished by
changes in the parameter space presented to the internal schema writer.
The parameter space is virtually the collection of tools available to
the database designer. While these parameters may change, the

conceptual definition remains stable. This parameterization approach

is an example of how a true separation of the conceptual schema and the

internal schema may be brought about.
In our design, the following specifications are made to the BEU's:

1. A BEU is the smallest logical unit of data to be stored and

retrieved. They are grouped into sets, ?alled Unary Sets A unary

set is a collection of generically similaf BEUs. By ‘'generically

f similar' we mean that they share common control information which
has been factored into the catalogue entry of the unary set. The

identifier field (which is used to name the unary set) is replaced

by a 1link to a catalogue entry (i.e. the identifier field is

'factored'). This link may be a pointer, a table, or via physical

contiguity. It is to be specified by the internal schema writer.

< 2, Binary relations are implemented by association links. The
meaning of these 1links are also factcred into the catalogue

entries. Binary links may again take the form of actual gpinters,

physical contiguity or data duplication.

25 3. We break the relationship pointer field of the BEU into two
.3 areas, one called SP area (Set Pointer area) and the other AP area
kS

‘ﬁ (Associative Pointer area). It is obvious that an encoding unit

o has to exist before its aésociations to others may be created.
Ef Therefore we follow a natural route that breaks the task of
fi? managing these two types of connection into two hierarchical 4
!g levels. One is called the unary set processor 1level, and the

other, built on top of the former, the binary association level.

'y

é 4, The stored representation of the data value field of the
,i encoding wunit may be very differ~ont from that of the unit being
! processed at various levels of the system. This specification, 1if

A

e i B o SO, A

.
l‘. " S

. ,-"\.u

- P

p. 69

common to encoding units of a certain set, may be factored into a
catalogue entry of that set,. We identify the task of stored
representation transformation as a very different task from the
relationship management. Therefore a level called data encoder is

isolated for this job.

To conclude, the format of our BEU takes the shape as shown in Fig

.
WSt P < g TP TS - AT R

{
p- 70 1
|
T Header part Data part |
ength = >
Field PSPSP]_..,, SPn APlAPZ""APmL Data
[
SP Area AP Area
Fig 4.1 Format of a Basic Encoding Unit (BEU)

e (Pl P ot g ARG SO T

p. 71

4.2 Data Encoding Level

In this section, the data encoding level, and the next one, the
unary set level, the phrase 'set', unless otherwise qualified, refers
to the unary set, while the phrase 'element' or 'data element' refers

to a BEU.

The data encoding level 1is singled out to implement various
techniques in data encoding and text editing, such as suppressing of
blanks and duplicated characters in the text, other text compaction

techniques, crptographic methods to encode data for protection, etc.

An element to be stored is passed to this level along with the set
it belongs to. A catalogue is traversed to determine whether it is a
set of which the data part is to be encoded according to some specified
function. If it is not, the element is stored as it is; if it is, the
encoding function is located and transformation performed on the data
part of the element (refer to Fig 4.1) before it is stored. A flag of
a stored element is set if it has gone through encoding, and a reversed

procedure (i.e. decoding) is followed when this element is retrieved.

4.2.1 Data Definition Interface

A set that requires data field encoding will have an element of

the Encoding Structure Parameter Space (ESPS) coupled in its

definition, as shown in the following:

Define_set (Setname, other parameters, u€ESPS).

This parameter u is then given to the data encoding level to build a
catalogue, with the set name serving as the key entry. Various types
of data encoding methods may be precoded into this level, each given a
name, and may be invoked by giving this name. Data encoding is then

accomplished by executing the procedure that implements the method.

To facilitate fast retrieval of catalogue entries, a set name may
be hashed to generate the address of its catalogue entry. If the
catalogue is small, it may be stored in the working memory of this
level; if it 1is 1large, the virtual storage may have to be used to
accomodate it. In either case, an entry is made up of the set name and
encoding method name. The latter is represented by a pointer to a
procedure to be excuted. Procedures, again, may be stored either in

the working memory or the virtual storage.

4.2,2 Operational Interface

Requests to create, delete, update and retrieve an element are
passed down from higher levels. An element is distinctively composed
of a header part, which is intact at this level, and a data part. Also

passed as an argument is the set name of the element.

In short, this level sits between the unary set processor and the

memory manager to perform transformation of the data field of an

element. Clearly, the system will still function without this 1level.

AR TN 6 RSB S Y -

SR
[N | o PN

1d

-

L

at s

Jﬂ
pP. 73

It represents an option presented to the user. When this level exists,
the encoding methods that it supports may also differ from one system

to another, depending on the needs of the user.

N R o I

NP

0

»

- "
- e . -

3

&7

p. 74

4.3 Unary Set Level
4.3.1 Introduction

The purpose of this level 1is to 1link elements into sets and
facilitate fast retrieval of an element in a set.

The meaning of the "set" may need to be <clarified first. Every
data element stored in the storagé hierarchy belongs to one and only
one Primary Set. The set processor maintains a catalogue of all sets
defined. These sets may be logical unary sets defined by the user or
sets defined by modules at higher 1levels to store information for
housekeeping purposes. Therefore, "set", to the unary set processor,
is merely some collection of data elements that share certain common
properties. Every stored element in the database |is uniquely
identified by the combination of a set name and the content of the

element.

Every catalogue entry serves as the 'head' of a primary set. An
entry contains information concerning implementation of a set. It
contains a pointer pointing to the first instance of its member, and
other information, such as sort, index, hashing and physical
contiguity, used to implement retrieval mechanisms. The format of a

data element when passed to this level is shown in Fig 4.2.
Together with the element, the set name to which this element

belongs 1is also given to the set processor. Accordingly, the set

processor pulls out the catalogue entry of this set, concatenates a set

. R e N N

, L
llength
field AP area Data
Header
E Fig 4.2: Format of an element as it

is passed through unary set interface

)

SP area | AP area Data

- ength |
field

Header

Fig 4.3a: Format of an element after "SP"
') area is added to it

Catalogue

% dip [2P | "MARY"]

A STUDENT \ _\
i —>SP'[ap | "JoHN"]

Fig 4.3b: Inserting an element into a primary
set

p. 76

chain pointer (SP) field to the element, and inserts this element into
a proper position in the set. This is shown in Fig 4.3a and 4.3b for

sets that are implemented as linked lists.

4,3.2 Primary Sets and Secondary Sets (Subsets)
!
There are two types of sets implemented at this level. One is the
primary set, chained by the primary set pointer (PSP). A member of a

- primary set is created by actually storing a data element into the data

base.

The other type is the secondary set. Inserting an element into a |
secondary set is by way of passing the id of the element (i.e., the
element is already stored), and the secondary set it belongs to. There i
is a catalogue entry for each secondary set defining the structure of

the linkage of this set. A set of this type can be considered a

e

e subset, in contrast to the primary set discussed above. This mode of
k.

} 3 [3 s s I3 3 3

s set processing is very useful in implementing binary asscciations of
B 3

. ¥ . : .

& the form 1l:n or n:1. It makes the retrieval mechanism implemented at

this 1level available to subsets of elements as well. An example is

given in Fig 4.4.

4.3.3 Catalogue implementation

ats BT e

Catalogue entries by themselves are members of a primary set by

-

the name of CATALOGUE. Techniques wused to implement sets and

B 10 -

]
TR R B e NS AP >

p. 77
§ |
| CATALOGUE PSP Sp, AP DATA
: =AM PSP AP| DaTa
™7
S JOHN)
L | OLIT
STUDENT [—koLzr |
A P MARY T
“—> SLOAN.ST ~ X
" unary set STUDENT unary set DEPT
. H
- Fig 4.41 Subsets - Binary association between unary sets
' DEPT and STUDENT is of the type 1:n.
In this example, while SAM and JOHN
have AP's pointing to SLOAN, SLOAN's

AP points to a catalogue entry
SLOAN.ST which chains SAM and JOHN
. together with a SP,.

" CATALOGUE INDEX TABLE
> L 1d
Index Pointer ow
. CHRIS ias
. STUDENT | | 1
% EVON ids
“é
‘W
rt :
id
e @y
v @ LtiMY ~
, CHRIS
¢

.. Alds N
T fL'7¥id2 N

Hi dy \ | EVON

. .-
'C
o
o
o

i

l DAVID
L

Fig 4.5a1 Sorted linked list and its index table

-
T X ‘,‘: vy

-
 qpieln

B et R PRI)

-

4
e o I ot SN, S Y -

C 4L b el

wf———

p. 78

facilities available for search and retrieval at this 1level can be
employed to process the catalogue as well. To illustrate, the first
Data Definition command to the set processor, DEFINE-CATALOGUE, 1is a
statement which defines the structure of the catalogue set. Most
likely, for example, the catalogue set is hased. After the structure
of the <catalogue set is defined, a command ko define a regular unary
set is transformed into an insertion command which inserts the
catalogue entry of this set into the catalogue set; 1likewise, when a
catalogue entry is to be retrieved, a retrieval command is used to

accomplish this job.

4.3.4 Fast Search Mechanisms

The set processor is responsible for presenting a stored element
to a caller, given its set name and data part. It may also be required
to accomplish sequential retrieval of a particular set. The internal
schema, therefore, specifies how a set is to be implemented in order to
accomplish this retrieval task; for example, whether a sorted 1linked
list is desired, whether it is a two-way or one-way link, whether an
index is to be built on the data part (or part of the data part) of the
element, and whether a scatter table is to be maintained for the hashed
data part. If an index is requested, the set members are usually
sorted, and when a member is inserted or deleted, index entries, if
affected, are updated. Other parameters may be added to determine the
structure of the index table. A pointer to the beginning of the index

table is maintained in the catalogue entry of that set. If a scatter

table is specified, the hashing function as well as the beginning of

T

p. 79

the scatter table are stored with the set catalogue entry. Other
techniques may be incorporated by augmenting the parameter space of the

catalogue entry.

4.3.4.1 Sorting
!

Sorting is used to facilitate sequential processing and indexing.
A module SORT is wused to perform this task. To make this mechanism
more powerful, sorting can be based on the entire data part or part of
the data part. The sort field may or may not be unique. It may even
be desirable that sorting be performed according to the data part of
elements of another set whose id's are part of the data part of the set
to be sorted. These different modes of sorting are specified when sets

are defined, and indices built accordingly.

The sort module is invoked after the database 1is first 1loaded.
Then the sorted set is maintained by logic incorporated into INSERT,
REMOVE and UPDATE functions. It may be invoked during the operational
time of the database to reorganize sets that are previously unsorted,

or sorted with another key.

4.3.4.2 Index Table Implementation

Suppose we have a sorted linked list as shown in Fig 4.5a, and an
index table on the right is built for this set. 1Index table may be
implemented in several ways. If it is by physical adjacency, then the

whole table may be considered as a sorted set implemented by physical

contiguity and stored away. When search in the table is desired, the

p. 80

entries of the table are retrieved the same way members of a set are

Ry

4 retrieved, and decoded according to its structure parameters {e.g. the

length of each table entry) that are stored with the index table.
/Zggse parameters are passed when this set is defined by DEFINE-SET.
i
i
I Another approach would be to build the index table as a sorted
. linked 1list, and then make wuse of functions designed to manipulate
linked lists to manipulate entries of the table. A multilevel index
may also be built. If the lower level index table is built as a set,
| then the higher level index table is ﬁerely an index on this set. An

example of indexing by 1linked 1list 1is given in Fig 4.5b, and a

multi-level indexing example is given in Fig 4.5c.

When removal of an item in an indexed set is requested and if that
element is a member in the index table, the table has to be modifed. A
module that builds index tables (called BUILD-INDEX) 1is periodically

called to reconstruct the index table as the set is augmented. For

. % example, a counter may be incremented when a delete or insert 1is done
é: on a set, and the module BUILD_INDEX 1is called when this counter
LY

Al

N reaches a critical value. During the database load period, this mode
of calling can be suppressed and indices built only after the database

is fully loaded.
Essentially, BUILD-INDEX would visit every element of the set and
select elements .at a particular interval to be entries in the index

table.

4.:.4.) Hash Table Implementation

LT e

P, 81

Catalogue entry Control info. about index

STUDENT [INDX { L ‘151

INDEX TABLE

id3
*.
[CHRIS]

Fig 4.5b: 1Index table implemented as elements
of a set

Catalogue entry Control info. Control info.

EMP_NO [Indx ptq [0T20]3d3)
Il LS
'
rcom
0200 |
id
First level Second level
Index table Index table

Fig 4.5¢c:+ Multi-level index table implementation

p. 82

The hash pointer contained in the catalogue. entry points to a
location where the hashing function and other parameters are defined.
One approach is to assign a certain series of pages that are to be used
to store this particular set. The hashing function is performed on the
whole or part of the data string, and returns a slot number and the
lower positions of the page number as well. T?e essence is to generate

an id number which belongs to the area assigned to this set. This area

is reserved for this set only and no other sets are to be stored within

lt.

When collision occurs, either a pointer chain or a 1linear search

starting from the collided id can be used to handle the problem.

Again many of these properties may be parametarized together with
the internal schema of the set involved. One also has to be careful
when the data part of an element in a hashed set 1is modified. For
example, if JOHN is modified to be JOHNNY, and if

H(JOHN)=0100
H (JOHNNY)=0907,
then in the new 1location (0907) a flag is set to point back to the

original. The logic of hashing is incorporated into INSERT and UPDATE.

4.3.4.4 Summary of Fast Search Mechanisms

The salient feature of this level is the fact that approximately
all techniques for internal representation that are geared toward fast

search or retrieval of an element of a set can be parameterized and

incorporated into the structure of the set. What has been shown is an

.
D tmtezt e I o SN WP " -

p. 83

example implementation, in which sets are primarily stored either as
linked 1lists or by physical contiguity, and search mechanisms include
linear search, indexed sequential and hashing. However, other
facilities may be provided if the parameter space of the structure of

the unary set is augmented.

4.3.5 Data Definition Interface

This is the interface across which sets as well as their types,
retrieval mechanism and encoding format are defined. The structure of
the SP area of an element is also given. The data definition 1language
of unary sets is given in Fig 4.6; a typical definition of a unary set
looks like the following:

DEFINE_USET (Uset_name, other parameters, x€SSPS, u€ESPS)

Where u is to be passed to the data encoding level, and x is processed
and entered into the set catalogue at this level. Two other commands
DELETE_USET and UPDATE USET are used to modify set definitions. (SSPS

stands for Set Structure Parameter Space).

4.3.6 Operational Interface

It is through this interface that operational manipulations of
data elements are made. Commands are¢ provided to insert, retrieve,
delete and update members of sets. Arguments include the set name, id

or data part, and/or header part. A list of commands at this level is

to be found in Fig 4.7. To provide a feeling as to what operations may

p. 84

be involved when these commands are invoked, some general logic is also

given in Fig 4.7

4.3.7 Conclusion of Unary Set Level

A summary of modules identified at this level is given in Fig 4.8.
"f Some modules are implemented on top of others, and inter-connections
between modules are delineated according to the module logic outlined

in Fig 4.6 and Fig 4.7.

e
* e

s P
P APV

" 2 e

»
P

-

Py

»

it .,‘:',-.:.ki'

[

A

T T R T e AP, RPN e

Fig 4.6: DD interface at unary level

(1) Define_catalogue: This command defines the
structure of the unary catalogue.

(2) Define Uset (Uset_name, x € SSPS, u ¢ ESPS):
This command defines a unary set, where SSPS stands
for Set Structure Parameter Space, which may include
specifications of the following parameters:

a. set type: primary set or secondary set (i.e. subset);
1

b. set element storage location: this parameter specifies
how the storage 1location of each element in this set is
determined; there are 3 modes:

E (1) id mode: the location of each element in this set is
determined by higher levels;
(2) hashing mode: the 1location 1is to be determined by

. hashing the data part of the element;

- (3) system mode: location determined by element 1link

described below;

c. set element link: This parameter specifies how elements
in a set are linked together; there are 3 different ways:
(1) pointer: by way of link list;

(2) pointer sequential: by way of sorted linked list;

(3) physical contiguity: by way of id contiquity;

d. index: this parameter specifies the number of indexes to
be built. For each index thus required, the following
information is furnished:

(1) which part of the element is to be indexed? (It may
either be part of the AP area or part of Data area):;

(2) Full indexing or partial indexing? If partial indexing

o is used, how sparsé is it going to be?

n (3) Will any sort previously performed on this set be useful?
“u (4) structure of the index? (i.e. the location and entry
2 size, etc.)

oo

"ﬁ e. additional sort and indexing: a set may be sorted (by
- link 1list) based on different keys, and further indexes may
4 be built. These are specifed in a similar way as described
& in 4. above.

.t (3) Update_uset (Uset_name, x€¢SSPS, utESPS); and

i M

'{ (4) Delete_Uset (Uset_name): These two commands effect changes or

deletions of a catalogue entry. The former may force internal
data re-organization, while the latter may involve deleting all
the elements in the set. Ramifications will be studieg and
detailed.

5’,-.," T

it

-~

O L PRI,

t

™ et R R e WS A

Fig 4.7: operational commands at unary level

Create_element (Uset_name, (AP, data) or id0, id*):
This command creates a unary element.

1. retrieve catalogue entry by
Retrieve_element ('data' mode, Uset_name, ctl_entry*);
2. decode ctl_entry;
3. case 'set element storage location' of
id mode: id=ido0;
hashing mode: do;
perform hashing on data;
generate id;
format SP area and then BEU;
try: try to store this element at location id by
CREATE ('id' mode, return_code¥*);
[if return_code = 'contention', then
b call Collision_Handler (id*) and go to try; i
2 | end; :
system mode: continue;
4, case 'set element link' of
pointer or pointer_ sequential: do;
format SP and BEU; .
try to store this element by
CREAT ('reqular' mode, id¥*); i
end;
physical_cont: do;
obtain Last_id and Inc from Ctl_entry;
if id out of bound of reserve area of this set, then
call Reserve_more;
id=Last_id + Inc;
format SP and BEU;
store BEU at id by CREAT ('id' mode);
© end; '
A 5. 1if set element link is pointer then
. call Insert (Beg_pointer, id);
else if set element link is pointer sequential then do;
call Search (Uset_name, data, fnd*, idl*, id2¥);
call Insert (idl, id, id2);
end;
_ 6. 1if additional link list sorts and indexes are specified,
' § then update the lists and indexes;
7. return (id);

e s .
ViawPt 2,

o

.-

B X

Retrieve element (mode, Uset_name, full data or partial_data or id,
(AP, datar, idr)*, code*);

data mode:
1. call Search (Uset_name, full _data or partial_data,
fnd*, idl*, id2*);
2, if £nd = null then return (code = 'not_found');
else do;

e

R

it

.
WS e Y Py GRAPUE I W PARND T T

{ p. 87

idr=£nd;
call Retrieve_element ('id' mode, fnd, AP*, datar*);
return (AP, datar, id);
end;
id mode:
l. RETRIEVE (id, byte_string*);
2. decompose byte string into SP, AP and datar;
3. return (AP, datar, idr=id);

Search_element (Uset_name, patial_data or full_data, fnd*,idl*, id2¥*)

This subroutine locates elements in a set. It is also responsible
for making an intelligent decision about which of the following
access paths to use (if available):

. hashing

. indexed

. indexed sequential
. binary search

U D W N

linear search

Information necessary for this decision making is stored in the
unary set catalogue. (When only partial data is specifed, and if
more than one elements contain that partial data, all of them will
be located and returned, unless otherwise suppressed by the
caller).

Delete_element (mode, Uset_name, full data or partial_data or id,
code*)

This command removes an element or a group of elements from a set.
If the Uset_name is a secondary set, only the connections related
to the secondary set are removed. That is to say, only the part
of the SP of the element that is used to chain this element to the
subset is affected. If the Uset_name is a primary set, then this
element 1is deleted from the database, so are its connections to
all subsets. Special attention is paid to connections made
through hasihing or physical contiguity.

.
t“,

T Lwh s SOt

Y e gt
.y . M
oo, -

i

Update_element (id, new AP, new data)
This command replaces the old content of the element designated by
id to the new content specified within the command.

-~ -
-« W ot

.."- »

£

FLLE T

£ ‘ .
¥ % . - . e e e e - S
* 8

e

.4

o2

Y 2

i

S g G o
p. 88
Define__ Delete_ -Update_
Catalogue Define_
Uset Uset Uset
N
‘v- = N
)
Retrieve__ Update_ Create_ Delete_
Element Element Element Element
Build_ Collision_| |Sort
Index Search _ M Handler

[

1 Access_

Path_

Selection

Fig 4.8: Unary level sub-modules

p. 89

4.4 Binary Association Level

4,4.1 Introduction

This level implements binary associations specified in the
conceptual schema. It serves as the bridgé between the conceptual and
the internal models. On the one hand, it communicates with higher
levels in terms of ‘'information units',‘such as primitive sets and
binary relations specified in the conceptual schema; on the other
hand, it talks to the lower levels in terms of 'stored elements' such
as BEUs and unary sets. The essence of this mapping is briefly

summar ized below:

a, A primitive set in the conceptual model is usually (but not
necessarily) mapped to a unary set in the internal model.
Therefore a primitive element is usually implemented by a BEU.
However, there are situations in which a primitive set does not
correspond exactly to a wunary set. For example, as will be
explained with details later, when a primitive set is to be
embedded in an associated set, it will not be mapped to a unary
set. Rather, its existence is manipulated through the unary set
that implements the embedding primitive set.

b. Binary associations of a primitive element are implemented

within the AP area of its BEU.

4.4.2 General Mechanism

s i

A

‘A aw

- ey

o

R LN

484

&F vo -

p. 90

The function of this level is to implement binary associations
among primitive elements. It keeps two catalogues; one, called CTLP,
describes the collection of primitive sets defined for the database,
and the other, CTLB, contains information concerning binary relations
among these sets. An entry of the latter is composed of names of the
sets involved in the binary relation, their reqiprocol attribute names,
the function type (e.g., 1l:n or n:m, eté.), and the association
structure. Based on these structure specifications, unary sets and

their formats are defined.

Recall that a stored element, a BEU, is composed of a Set-Pointer
(SP) area, an Association~-Pointer (AP) area, and a data part. The SP
area is created and manipulated at the unary set level, while the AP
area is to be constructed and maintained by the binary association
level. The AP area contains a collection of associative pointers. As
discussed in section 4.1, we have made the distinction between
associative pointers (AP's) and set pointers (SP's) since they
represent different types of connections among data elements. An SP is
used to chain BEUs of the same unary set together, while an AP is used

to connect primitive elements of different primitive sets together.

Function types refer to the way elements of two binary associated
sets are related. There are 4 types: 1:1, l:n, n:l and m:n. In this
design, we have identified 3 different modes of binary association

implementation:

1. Pointer mode: In this mode, 1:1 type is implemented through

A SRSt i B o o SR WP T

p. 91

inserting associative pointers into the AP area of the data element.
An association pointer is the id of the counterpart element in this
bkinary association. 1l:n and n:1l are implemeﬁted by creating a subset.
(Recall that in section 4.3.2 it was mentioned that there are two types
of wunary sets, one being the primary sét, the other the subset, or
secondary set.)' Many-to-may type is effected through a dummy unary set
that incorporates the binary éléments involved. These structures are.
shown in Fig 4.9a to Fig 4.9c. Note that the subsets may be

implemented as either linked lists or pointer arrays.

2. Physical duplication mode: Instead of storing the id of the
assoicated element, the data part of that element is duplicated in the

AP area, as shown in Fig 4.9d through Fig 4.9f.

3. Physical embedding mode: Under this scheme, the associated data
element 1is physically stored within the associating element. This
'embedded' element may have its own identity, in the sense that it ﬁ
belongs to certain primary unary set and is recognized by the unary set
processor, as shown in_Fig 4.9g, or it may be a sub-unit, such that its
manipulation always depends on manipulation of the embedding element,

as shown in Fig 4.9h.

4.4.3 Data Definition Interface

Data definitions of primitive sets and binary relations are passed

through this interface. Also passed are values of parameters in the

parameter spaces to be discussed later. Two statements are identified:

‘ p. 92 1
| ' | | \
. - ldl 1d2 r)
] 1512 JOHN | . 1d1‘J. ¢ + |12 FIRST ST CAM
l\ Header / l\ Header /

Fig 4.9a: Pointer mode, 1l:1 Relationship |

I APJJOH”\ _. |

.o ld]API]MARY J
\l

AD RICH

L

l|||-r-_

Fig 4.9b: Pointer mode, 1l:n (children of JOHN) Relationship

sp_|ap |E001 | SP 42 | E002 | (EMP#)
;fé “’/)
¢ (@
g RN g‘sp‘ _sg_l_)_l_ 1221 Clemenc.
,;-i

". | ﬁ I ?}lj TV Jeaz | (2ot

Fig 4.9c: Pointer mode, m:n Relationship (EMP_PROJ)

»
i
t

)
-
Ty

!

t

EADDR ENM EMP#
Camb,MA JOHN ceee E001
AP area

Camb,MA JOHN
y

Fig 4.9d: Physical duplication mode; 1:1 Relationship

Children EMP#

l EQOO1

MARY] RICH]

|| |ap marY | [[]ap [ricH)
/

Fig 4.9e: Physical duplication mode; l:n Relationship

d j ,aP| E001 |] Ap | E002 |

= PJl \ ﬁ'] pJ2 |

L Ty | 1]

/’ - J
| , len | {j 232]

E001 | E£002 | E002 |]

Fig 4.9f: Physical duplication mode; m:n Relationship

AD=-AL02 924

UNCLASSIFIED

ALFRED P SLOAN SCHOOL OF MANAGEMENT CAMBRIDGE MA CEN=--ETC F/6 9/2

A PRELIMINARY ARCHITECTURAL DESIGN FOR THE FUNCTIONAL HIERARCHY==ETC(U)
NOV 80 M HSUe S E MADNICK N00039-80-K-0498
CISR=M010-8011-05

Define_Pset (Pset_name, x€SSPS, u€eESPS)

Define Bset (Bset_name, zeASPS)

ASPS represents the Association Structure Parameter Space, which
specifies the function type, sets involved in this binary relation, and
data structures chosen to implement this binary set., These
implementation specifications provide guidance to the binary level in
building the structure of the AF area of each element. The SSPS and
ESPS are parameter spaces that are processed at lower levels (see
sections 4.2.1 and 4.3.5). The binary level defines the wunary sets,
and therefore becomes aware of the existence of these unary sets.
Brief statements of logic of these two definition commands are given in

Fig 4.10.

Binary set definitions may be deleted. When a binary set is
deleted, the primitive sets involved are left intact. On the other
hand, when a primitive set is deleted, all binary sets defined upon it
are deleted. Binary set definitions may also be modified. This
modification may represent a data reorganization at the internal level.

The detailed mechanism of this modification will be studied.

4.4.4 Operational Interface

Through this interface, insert, delete, update and retrieval of

2lements in primitive or binary sets are made.

Retrieval of the data base is done in two modes at this 1level:
(1) Unique and (2) Set nmode. Under the first mode, an item that
satisfies the requirement is retrieved. Under the second mode, all
items that satisfy the requirement are retrieved. To facilitate
sequential processing, the first mode 1is further classified into
self-contained commands and sequential operation commands.

Since the majority of existing database applications are still
very procedure oriented, and not like the higher level query languages
which are relatively self-contained, the sequential operation commands
such as Get_Next become a necessity. When such a command is received
at this level, the processor has the need to know what the current
content of that variable is. For simplicity, it is assumed that such
commands will pass information of this sort as part of the arguments,
so that all commands through this interface will be self-contained.
However, this assumption may be modified 1later for per formance

considerations.

At the instance level, deleting an instance of a binary relation
affects only the association structure (e.g. pointers etc.) of the
two elements, while deleting a primitive element deletes all binary
relations stemmed from it. An integrity problem may occur when a
primitive element is deleted. For example, if a primitive element |is
implemented by a BEU, then its id may be encoded into the BEUs of many
related elements. 1If the id of the deleted element is not to be
re-used, the problem is simplifed by setting a delete bit for the id.
However, for efficiency, the id of a deleted element cannot, in

practice, be 1left wunused indefinitely. When the 1id of a deleted

PR O A

p. 97

element is re-used, those elements that are originally associated with :

the deleted element (and therefore have its id encoded into their AP |

areas) now would have a mistaken association to the new element that

has assumed the id of the deleted element. One way to avoild this i
i

problem is to do as follows:

l. Locate the element to be deleted

I SR e R S

2. Remove it from the primary set and all subset chains (i.e.,

update the link list of the unary connection)

3. Locate all other associated elements where the id of the

element to be deleted is stored. Set it to null.
4. Delete the element (i.e., set the delete bit and return this

id to the free slot chain of that page).

This integrity consideration also applies to situations where a data

part is physically duplicated within another element. The implication ;

of this consideration 1is that the database system has to have the
capability to pull out elements that may be affected when a related
element 1is changed. This may be accomplished, for example, with
bi-directional vertical 1linked lists and bi-directional binary

associations (i.e. a complete binary implementation).

The set of commands to be supported at this level is given in Fig

4.11.

4.4.5 Summary

p. 98

This concludes our internal structure design. Higher level
functions are now built on top of these structures, and communicate
with the internal constructs through the interface provided at this
level. We shall see at a later point how manipulation and query
commands are eventually translated into operators that are accepted by

internal constructs.

1 Fig 4.10: DD interface at the binary association level |

Define_Pset (Pset_name, x € SSPS, u € ESPS)

{
logic: %i
1. format header according to the structure of CTLP. i
2, Create_element('CTLP', header, data=Pset_name) 0
3. If this Pset is to be implemented as a Uset then
Pefine Uset(Uset name, x,u)
4, return)

Define_Bset (Bset_name, z € ASPS)
This command defines a binary set. ASPS stands for Association
Structure Parameter Space, which includes the following:
l. names and roles of the two primitive sets involved in this asso

cl ?
2, function types (e.g. l:n, n:l, 1:1, m:n) ' ;
3. storage mode (e.g. pointer, physical duplication or embedding)
4. the structure of the dummy set if functional type is m:n

logic:

1., check consistency of primitive sets involved in this binary set
against CTLP

. format z according to the structure of CTLB into Z

Insert element ('CTLB', header=Z, data=Bset name)

if function type not equal m:n, then go to 6, else

Define Uset (Uset_name=setl/set2, x3, y3)

return

AU BxWN
s O

The following commands effect changes in the definitions
of primitive and binary sets:

S g e i (YOS 4 A SN

Update_Pset (Pset_name, changes in parameters)

Update_Bset (Bset_name, chagnes in parameters)

Delete Pset (Pset_name)

Delete Bset (Bset_name)

p. 100

Fig 4.11: operational commands at binary association level

Create_p (Pset_name, fote str1ng])
effects creation of an entry in ‘the primitive set named here;
returns an id;

Create_b (Bset_name, idl, [data of role2(or 1d2)J)
effects creation of a b1naty association;
optionally returns an id;

Delete_p (Pset_name, id)

Delete_p (Pset_name, Rel_op, data)
effects deletion of all elements that satisfy
the predicate (rel_ op,data) pair;

Delete_b (Bset_name, idl, [id2(ot datazﬂ ’ (ER])

Delete b multiple (idl, n, (Bset_namei, (idi(or dataiﬂ , [ER)
i=1,n))
effects deletion of a binary association:
If "ER" is not specified, then only the association
between the two data is deleted;
If "ER" is specified, then the association and the incident data
are deleted;
For one-~to-many relationship, the incident data has to be
specified; if not, all the associated data in that Bset_name
are deleted;

Update_p (Pset_name, old_data(or id), new_data)

Update_b (Bset_name, idl, id2(or data2), new_data)
updates the content of the incident data

Update_b (Bset_name, idl, id2(or data2), new_id)
updates the association between idl and id2 to be idl and new_id

Retrieval of the database is done in two modes : unique, which
retrieves one 1item at a time, and set, which retrieves a set of
elements. A limited ability to ©process predicate requirements is
incorporated.

p. 101

unique mode:

onpoy

Find (Pset_name, data, fnd*)

Select_p first (Pset_name, data*, id*) i 4

‘ Select_p next (Pset name, id0, data*, id¥*) k.
retrieves the element that follows element at ido;

Select_b (Bset name, datal(or idl), data2* id*)
Retrieves the binary associated element of datal or idl in Bset_name;

Select_b first (Bset name, datal(or idl), data2*, id*)

retrieves the first occurrence of binary associated element
of datal(or idl) in bset_name;

Select b next (Bset name, datal(or idl), id0, data2*, id¥*)
retrieves the next occurrence of the binary associated
element after id0 of datal in bset name; (note: meaningful
only when Bset name is l-to-many or many-to many)

Select_b 301n first (m, (Bset namei, datai(or idi), i=1,m))
gives the first element that satisfies m binary predlcates,

Select_ b join_next (m, (Bset_namei, datai(or idi), i=1,m), 1d0)
gives the next element that satisfies the m binary
prdeicates next to ido0;

set mode:

Retrieve_p_set (Pset_name, n*, ptr*)

gets the set of element in Pset_name; n is the number
of element returned; ptr points to the area where the
whole set can be found;

Retrieve_b set (Bset_name, n*, ptr*)

Select_p set (Pset name, rel _opl, datal, n*, ptr¥*)
gives the set of element that sat1sf1es the predicate;

Select b set (Bset_name, rel_op, datal, n*, ptr*)
gives the set of binary relation that satisfies the predicate;

p. 102

Select b join_set (n, (Bset_namei, Rel opi, datai(or idi), i=l,n))
gives the set of the elements that satisfy the m binary prdicates;

Count_p set (Pset_name, n¥*)
gives the number of elements in the primitive set;

Count_b set (Bset_name, n*)
counts the number of binary 'tuples' in the binary set;

p. 103

V. DATABASE SEMANTICS

Making use of functions provided by the internal structure levels,
3 additional levels are established to build semantic constructs.
These levels enrich the data model and provide a facility for

expressing schema constraints.

5.1 N-ary Level

5.1.1 Introduction

The N-ary level processes constructs defined in the conceptual
schema. The conceptual schema defines the total, integrated 'view' of
the database with clean semantics. The major functions of this 1level
are the following:

(1) Accept the data definitions of the conceptual schema expressed

in the BN model (as shown in Fig 2.6), check for consistency and

build the conceptual schema catalogue.

(2) Process operations on instances of the conceptual schema.

5.1.2 N-ary Data Definitions

The DD interface consists of the following definition statements:

Define_Vset (Vset_name, other parameters)

p. 104

Define Nset (Nset name, (attribute name, y€¢ATPS) list)

where Vset stands for Value Set, Nset for Entity Set, and ATPS stands

for Attribute Parameter Space.

The detailed format of data definitions prPcessed at this 1level
has been discussed in <chapter 2 and shown 1in Fig 2.6. Either
Define Vset or Define Nset will result in a node being created in the
schema, and each attribute defined in the Define Nset statement will
result in an arc being created. Consistency checking includes such
items as proper equivalence definition, proper domain definition, and
compatible syntax and semantic specification on the arcs. Processing
of a set of data definition statements results in building a set of
catalogues to be used by the N-ary level in interpreting and executing
operations on the database. There are two catalogues to be maintained:
Primitive and Binary. The primitive catalogue contains an entry for
each node defined in the schema, and the binary catalogue contains an
entry for each direction of an arc defined. The catalogues are built

in such a way so as to facilitate cross referencing.

5.1.3 N-ary Operators

In order to distinguish between instances of Nsets defined at this
level and instances of constructs defined at external view levels, the
former 1is called an entity record from now on. Operators to retrieve

and update the entity records are supported. Again, there are two

modes of retrieval: set mode and unique mode. Set mode will give all

IR

PO

p. 105

the entity records that satisfy the requirement, while unique will give

just one. Sequential operator Retrieve next is also included.

The retrieval operators are listed below:

Retrieve Set (Nset_ name, attribute name_list) WHERE

(attribute name, rel opr, value)_ list

Retrieve_Unique (Nset_name, attribute name_ list) WHERE

(attribute name, rel opr, value)_ list

Retrieve_ next (Nset name, attribute_name_list) WHERE

(attribute_name, rel opr, value) list CURRENT IS ((attribute_name,

value) list)

where rel opr are the relational operators such as =, >=, >, etc. Also
note that 1if the 'next' mode is specified, the current content of the
attribute_name list has to be supplied. If the domain of any of the
attribute _name in the list is not a value set, the attributes of that

non-value attribute to be retrieved are specified in the command.

To update the instances of an entity set, one has to be careful in
defining the meaning of the update. (Recall that Nsets defined here
are not restricted to normalized relations). Therefore, the following

rules are imposed:

l. To insert a new entity record (e.g., to add a newly hired
employee's record into the Nset EMPLOYEE), all the immediate
attributes may be passed. Values of a l:n or m:n attribute have
to be enclosed in parantheses. An example is given in Fig 5.1.

2, To delete ar. entity record (e.g. to delete the record of an

T

p. 106

Suppose we have an n-ary entity set EMP defined as

EMP (EMP# , ENAME, DEPT, CHILDREN) ;

To create a new employee "Joe John", use the following
INSERT ENTITY statement:

INSERT_ENTITY (EMP, EMP#="0907",

ENAME="JOE JOHN",
DEPT="0015",

CHILDREN=("MARY JOHN", "RICH JOHN"))

To add another child to Joe John's CHILDREN attribute,

use
the following INSERT ATTRIBUTE statement:

INSERT ATTRIBUTE (EMP, ENAME="JOE JOHN",
CHILDREN= ("JEFF JCHN"))

Fig 5.1 and 5.2: .NSERT ENTITY and INSERT ATTRIBUTE

VWIS [y R A AT e

e
.

p. 107
1
employee who has quit from the Nset EMPLOYEE), only one of the r
candidate keys has to be passed. All the rest s done ,

automatically. .i
]

3. To insert or delete an instance of a 1l:n or m:n attribute
(e.g., to insert a new child into the attribute CHILDREN of the
relation EMP), a candidate key of the entity record and the
attribute instance are given. All 6ther attributes within that
relation are not cited. See Fig 5.2.

5. Updating of any attribute value is done pair-wise, i.e., only
a candidate key of the entity record and the attribute to be

changed are involved each time.

The operators to be supported for update are listed below:

Insert Entity (Nset_name, key value, (attribute,value)_list)
Insert_Attribute (Nset_name, key value, (attribute value(s))_list)

Delete_entity (Nset_name, key value)

Delete_Attribute (Nset_name, key value, (attribute,
value(s))_list)

Update (Nset_name, key value, (attribute, old value, new value))

The logic of these operators is briefly discussed in the next
section. The detailed algorithms as well as the effect of these

operations will be studied. i

5.1.4 Retrieval Strategy

p. 108

When retrieval commands for entity records are given, they are

translated into operators upon underlying binary associations. These
binary operators are then given to the next 1level across the binary
association interface. This translation procedure involves access path
selection. Since the attributes of an entity set are implemented as
binary asociations to the entity node, the simplest solution 1is to
establish the instance of the entity node first, and then follow the

binary associations to obtain its attributes.

There may be different ways to establish the desired instance of
an entity node. Therefore, optimization of the construction effort is
to be considered. 1In general, a record can be constructed in many
ways, depending on the choice of the starting role and the path to be
followed. To clarify this idea, imagine that the mapping of an n-ary
set to its binary form is to be stored as a tree, where attributes are
represented by nodes. 1Instances of attributes at higher levels of the
tree are to be established before those of the lower levels of the
tree. Branches represent binary associations in consideration. Then a
natural choice of the tree from of an example retrieval command Iis
shown in Fig 5.3. However, there are equivalent trees that may
represent exactly the same relation with a different starting role. An
example is given in Fig 5.4. It is seen that the latter graph ‘hangs'
the tree in a slightly different orientation and completely changes the

path of construction.

Since the shape of the ¢tree may affect record construction
per formance, it is a decision to be made intelligently by a

retrieval strategy module. The issue may even involve the internal

p. 109

structure, such as indices or sorted lists. To see what all these
mean, we use the above example to illustrate the different construction
efforts that may be involved in these two trees. In the example,
suppose PROJ# is specified in the retrieval command to be the sequence
field. 1Ideally the system should translate the command into a
procedure such that records are constructed according to the sequence
order. Alternatively, it may sort the records‘after they are entirely
generated by subjecting them to a sort module. If we choose the second
tree form and, if the unary set 'PROJ#' is sorted in the internal
structure, then records will be generated in the desired order
automatically. On the other hand, the first tree form will not result
in a set of records ordered by PROJ#, therefore requires a further

sort.

Another more obvious consideration would be that, if wvalues of
some attributes are to be restricted (e.g. PROJECT='system'), it may
save some effort if construction starts at the restricted attribute.
Restriction wusually takes place when the WHERE clause is~ysed in the

command.

To summarize, the strateqy used in this design is 1listed below;

more examples are also given:

(1) If no predicate is given , the entity record construction
starts from one of the candidate key attributes of the entity set.
(Fig 5.5a).

(2) If a key attribute of the entity is restricted in the

predicate, the entity record(s) is(are) constructed starting from

FWWSCE PR TSR

o etyegd v o

»

p. 110

that key. (Fig 5.5b).
(3) If none of the key attributes are restricted in the predicate,
while a non-key attribute is, then there are two approaches:
(a) Locate those unary instances of the restricted non-key
attribute that satisfy the restriction and trace back to its
entity node instance (Fig 5.5c).
(b) Visit every entity in the set. Start from some key
attribute and collect all relevant fields, and then see
whether this entity record satisfies the predicate. Do this
for every entity in the set. (Fig 5.5d).
(4) If multiple non-key attributes are specified in the predicate, the
choice again would be either 3(a) or 3(b) or some combination of the
two.
(5) If sequence attributes are specifed, then there are again two
approaches:
(a) Construct entity records according to the sort order
(b) Construct entity records with another strategy and sort them

at the end.

To centralize this issue of retrieval strategy, a
retreival_strategy module is singled out. Conceivably, this module can
take advantage of developments in the area of query-decomposition.

(for example, <Yao79, Astrahan76>.)

When a storage operation is given (e.g., insert or delete), the
n-ary level has to carry out its semantic ramifications. For example,
in inserting a new entity instance into an Nset, those attributes that

are declared to be total (i.e., those that cannot have value

| s 4 e AT AN PP PSP G WP J Tt 3 B T

w RPN

command: RETRIEVE SET (N.EMP, (EMP#,ENAME,DEPT(DEPT#,DNAME)))

command:

Fig 5.3 & 5.4: Tree forms of access path selection

Fig 5.5a: Retrieval strategy (1)

RETRIEVE_UNIQUE (N.EMP, (EMP#,ENAME,DEPT#)) where (EMP# = '0909')

Fig 5.5b: Retrieval strategy (2)

=

p. 1li
command: RETRIEVE_ SET (N.EMP, (ENAME,ADDR)) where (DEPT(DNAME = 'SYSTEM')) | 4
*SYSTEM' i
|3
| @ ;
!
|
i (® (1:n loop)
O
e . ¥
©) ADDR
Fig 5.5c: Retrieval strategy 3(a)
command: RETRIEVE SET (N.EMP, (ENAME,ADDR)) where (DEPT(DNAME = ‘'SYSTEM'))

i e A, B SRPNG —EAIWEA

—r

if 'SYSTEM', then @®-)

Fig 5.5d4: Retrieval strategy 3(b)

'undefined') must be supplied. Also, if it 1is an 1instance of a
hierarchical arc, an instance of its hierarchical 'parent' must exist.
As another example, when an instance of an entity is deleted, all the
associations to other instances have to be deleted; and if it is a
hierarchical parent to some other node, the instance of this
hierarchical ‘'child' must be deleted; and so on. These rules must be
implemented to make sure that database assertions are maintained. (At
the wvirtual information 1level and the data validity 1level to be
discussed later in this chapter certain database assertions that are

not carried out at this level are also maintained.)

5.1.5 Entity record construction

We now show by some examples how an entity record is constructed.
The format of the Nset catalogue and data structure used during

construction are also exemplified.

Suppose we have a database composed of 3 entity definitions as
shown in Fig 5.2c. An example format of the Nset catalogue is given in
Fig 5.6. Then processing the following retrieval command:

Retrieve Set (N.EMP, (EMP#, ADDR, EMP_PROF (PROJ (PROJ#,

PNAME) ,TIMEFRAC)))
is equivalent to generating a table of a format shown in Fig 5.7a.
This command is first passed to the retrieval strategy module, which
evaluates the possible access paths, A possible access path is
depicted in Fig 5.7b. It shows a tree diagram that portrays the route

according to which the database is to be traversed in order to carry

| -

gl

p. 114

Oout the command. A data structure that corresponds to this tree is
then generated by the retrieval strategy module. An example of this
structure is shown 1in Fig 5.7c. The general 1logic of record

construction given this data structure is shown in Fig 5.8a, while the

procedure used to carry out this example retrieval command is shown in

Fig 5.8b.

. v
POV ST

p.
Nset Cagalogue
Nset name No of attr Ptr to attr list
EMP, 3 '
PROJ 3
EMP_PROJ 2
!
i
!
g Attr List
Attr name { Key Domain Attr name | Syntax | Sem
Type .name (Op_name)
|
I EMP# YES v.2p# 1:1 etc.
: ADDR V.ADDR 1:1
, EMP PROJ N.EMP PROJ 1:n

Fig 5.6 An example of the format of the Nset catalogue

115

r

Field no 1 2 3 4 5

Field name|| EMP# | ADDR| PRJ# | PNAME |TIMF

example) 0907 Camb { 015 System{ 20%
{ 0908 Iex 015 System| 50%

p. 116

Fig 5.7a: A table to be generated by a retrieval command

Fig 5.7b: A retrieval strategy for cammand in fig 5.7(a)
NO DOMAIN FIELD NO BSET NAME PREC TYPE
1 N.EMP T1 - - -

2 V.EP# 1 EMP ,EMP# 1 1:1
3 V.ADDR 2 EMP.ADDR 1 1:1
4 N.EMP PROJ T2 EMP.EMP PROJ 1 1:n
5 V.TIMF 5 EMP PROJ.TIMF4 1:1
6 N.PROJ 3 EMP PROJ.PROJ4 n:1
7 V.PROJ# 3 PRCI.PROT# 6 1:1
8 V.PNM 4 PROJ.PNM 6 1:1

Fig 5.7c:

Data structure generated by the retrieval

strategy module — an example of fig 5.7(b)

——— - m o -

!
i
i
)
i
1
.
¥
i
i
.
b
1

" B e

Record_Construction (Catalogue, Record map) p. 117

Begin: Reserve working space WS, ID for the record, and stack ST;

Initiate: /*Initiate the first record */
N=number of nodes to be traversed;
I=1;
J=Field no (I);
(WSs(J),ID(J))=Select_e first (Domain(I));
NEXT=2;
Call Rest_record;
Cail Print_record;

Continue: /*Process other records*/
Do until EOD_of starting node;
Do while stack not empty; [*checking stack for looping*/
I=ST(SP); y
J=Field no(1);

(WS(J),ID(J)))=Select_b next (Bset(I), WS(Pred), id°=ID(J)L;

If not end _of data then do;
NEXT=I+1;
Call Rest record:
Call Prin?_record;

end;
Else pop stack;
end;
/* Establish next data of starting node¥*/
I=1;

J=Field no(I);
(NS(J),ID(J)))=Select_e_next (Domain(I),id =ID(J));
NEXT=2; N
Call Rest_record;
Call Print_recerd;
end;
Return;

Rest record: /*Internal routine for completing a record*/

Do I=NEXT to N:

J=Field no(I);

If Bset(I) is 1:1 or n:l then

(WS(J),1ID(J))=Select_b(Bset(Il),WS(Pred));

Else do;
Push I on stack;
(WS(J),ID(J))=Select b first (Bset(I), WS(Pred)):
end; -

end;

Print_record: /*Internal routine for output the record just constructed®

Print WS;
End Record_Construction;

Fig 5.8a: _A Ceneral Logic for Record Construction

(Given scnema catalogue and record map
produced by Retrieval_modulﬂ

e

f pvc it

e A — Y, A

N T B N N e -

p. 118

For example, the following procedure will be executed by the j
record-construction module when invoked to build the table shown [.
in Fig 4.7a:

1 /*Reserve WS, ID and ST as follows:*/ 4
1 2 3 4 5 T1 T2 T3 ST ‘

WS | EMP# | ADDR| PROJ# | PNAME| TIMEFRAC |[N.EMP|N.E J|N.PRJ Sp -

ID

2 /*Establish the first record: starting node:*/
(ID(T1),WsS(T1l) = SELECT E FIRST(N.EMP)
2.1 /*Next node:*/ (ID(1l),EMP#) = SELECT B (EMP .EMP# ,WS (T1))
/*Next node:*/ (ID(2),ADDR) = SELECT_B (EMP.ADDR,WS (T1))

/*Next node is E_J, which has one-to-many relationship
with N.EMP a stack entry is made to control the loop*/

ST(SP) = 4
(ID(T2) ,WS(T2)) = SELECT B_FIRST(EMP.E_J,WS(T1))
/*Next node:*/ (ID(5),TIMEFRAC) = SELECT B(E_J.TMFR,WS(T2))
/*Next node:*/ (ID(T3),WS(T3)) = SELECT B(E_J.PRJ,WS(T2))
/*Next node:*/ (ID(3),PROJ#) = SELECT B (PRJ.PRJ#,WS(T3))
/*Next node:*/ (ID(4),PNAME) = SELECT B (PRJ.PNM,WS (T3))

3 /*The first record is completed; It is printed; now the next
record:

3.1 Since the stack is not empty, we start from the node to be
looped, which is the 4th node:*/

I=4; J=T2;
(WS(TZ),ID(TZ))==SELECT_B_NEXT(EMP.E_J,WS(Tl))

/*and establish the rest of the record;
continue doing this until end of EMP.E J is
encountered*/

4 /*Pop stack; now that the stack is empty, establish the next data
data of the first node:*/

(ID(T1) ,WS(T1)) = SELECT E NEXT(N.EMP, ido==ID(Tl))

/*Then complete the rest of the record as in 2.1 and
check stack as in 3.1;

5 Stop when no more EMP# is available*/

Fig 5.8b: An example of record construction

p- 119
5.2 Virtual Information Level

5.2.1 Introduction

Semantic or statistical relationships among elements are often

prevalent in a database. For example, an employee's age can be derived
,

from his birthday and the current date; the accrued interest of a bank

account is equal to its balance multiplied by the interest rate. If

the derived element is also stored, certain consistency problems may

occur.

There are two approaches to the issue of database accuracy. One

is to maintain a catalogue of consistency constraints as well as some

"housekeeping” routines that traverse the database periodically to
enforce satisfaction of these constraints. Housekeeping routines may

also be invoked when a sensitive data element is to be updated. k

Alternatively the DBMS may maintain database consistency by

eliminating from the stored database those data fields that can be

TSR

derived from other data. It maintains a catalogue of functions to be
used in the derivation process. This gives rise to the term 'virtual
information', signifying information that is not physically stored but
may be computed. This approach may do away with those housekeeping
routines used in the previous method. However, it adds to the overhead
of computing and recomputing a data field whenever it 1is accessed.

Also, since they are not physically stored, it is difficult to make

direct retrieval against these fields. For example, a query to get all

the accounts that have accrued interests exceeding a certain level

p. 120

would require that the accrued interest of every account be computed.
The database designer has to take tradeoffs of these approaches into

consideration in making internal structure decisions.

Extending this concept, any information may be ‘'derived' from

combinations of algorithms and data that 1is physically stored
<Madnick73>. On one extreme, the information may be derived purely
through algorithms (e.g. Sine and Consine functions). On the other

extreme, information may be derived through a direct search 1in the

database (e.g. an employee name given his employee number). In
between these extremes, however, there is information that 1is derived
through a combination of algorithms and data (e.g., a query on a
person's age 1is derived by retrieving the current date and his
birthdate from the stored database and then performing a subtraction).

Under this framework, several categories of wvirtual information are

identified here:

(1) Computed facts: algorithms to compute from stored data;

(2) Representation: data type conversion functions;

(3) Encoding: data string encoding functions. E

5.2.2 The General Mechanism

To support the wvirtual information implementation, this 1level

v vn—— o

serves as a front gate to the level immediately lower to it, namely,

the n-ary entity level.

-

. . L e iAo . S 5 SOy~ I > B m. e
5 A A L. . oL ey =¥
*“"' - . . s oo ey aran el el e P wy ' Woaneo - X

p. 121

It keeps a catalogue of all information that is virtually defined.
Every request to create, retrieve, update or delete a unit of data |is
filtered through the gate, and if any virtual information is involved

in the request, it provides functions for the transformation of data.

(1) Computed facts:

Any attribute definition that has its wvirtual flag (VT) on is
extracted and processed at this level without being passed down to the
next level. The virtual attribute is entered into a catalogue. The
derivation function is also stored along with (or chained to) the
catalogue entry. The function may use both raw data and virtual data
in its algorithm, therefore effects nested virtual information. For
example, the attribute VOLUME is derived from AREA and HEIGHT, while

AREA may in turn be derived from LENGTH and WIDTH.

(2) Representation:

As a request for records is given, the data type of each field Iis
also given. If it 1is different from the stored data type,
transformation is done before the element is passed down to the storage
or returned to the requester. Therefore, the virtual information level

has to be aware of the data types of all the stored elements.

(3) Encoding

Attributes that need to be encoded before they are passed down are

noted at this level. Encoding functions are given. This type of

P ey

—————— -
P WY

cashar b4

ashli B2,

) el AR

i e s b R AW L

p. 122

virtual information service 1is especially useful for encoding data

definition languages (e.g. relation names) before they are processed

by lower levels.

5.2.3 Data Definition Interface

The Data Definition statements of database constructs (Primitive,
Binary or N-ary) that have a virtual flag attached to are intercepted

and processed at this level. The definition statement looks 1like the

following:

Define Nset (Nset_name, (attribute_name, y¢ATPS, véVTPS) list)

where ATPS is recognized and processed by lower levels, while VTPS
represents Virtual Parameter Space, and v is decoded at this level; if

appropriate, entries are made in the wvirtual information catalogue

accordingly.

5.2.4 Operational Interface

The operators are almost 1identical to those at the n-ary
assocition 1level. Operations on nonvirtural attributes are passed
untouched to the lower level, while operations on wvirtual attributes
are intercepted. Encoding of database mnemonics such as Nset or Bset
names is also accomplished at this point. An elaborate catalogue to

record these mnemonic designations is to be maintained.

PO T T L > TRt

———
proiiy

g =
SR - %t T SO

p. 123

While the derivation function of a wvirtual attribute can be
changed by updating the attribute definition, the individual virtual

element cannot be updated. (For example, request to update JOHN's age

is to be considered meaningless). It also follows that individual
virtual element cannot. be inserted or deleted; only the wvirtual
catalogue entry may be thus operated on. Therefore, only retrieval

operations are to be processed at this level.

124

5.3 Data Validity Level

The conceptual schema may include constraints on the set of
legitimate values some data elements in the database are allowed to
assume. For example, elements describing a date has to be confined to
12 months and 28 to 31 days in the calender; employee's salary data
may not be allowed to exceed a certain maximum; etc. These

constraints uphold the data validity of the database.

Another type of semantic restriction affects the interrelationship
among data elements. For example, a student cannot be allowed to take
courses that have conflicting schedules, or be appointed a teaching
assistant before he clears all the 'incompletes' from the last term.
Another example would be that the total budget of a year should be
equal to the sum of all the allocated budgets of the subordinate
branches. (Note that if a functional (i.e. exactly computable from
one another) relationship exists between data elements, the information
that may be derived needs not be stored, but computed when requested.
This is the task of the virtual information level mentioned in the
previous section). When these constraints are specified, the DBMS has
to translate them into routines that monitor and enforce the

realization of them. Some descriptions of the integrity constraints

are presented in <Eswaran75>.

There are also situations that are allowed to occur, but users are
to be warned or alerted immediately <Morgan75>. A sudden increase in
the death rate at a certain region detected by a system used to monitor

the health management would be an example. The DBMS is expected to

p. 125

output the alerting message when 'abnormal' conditions such as these

are detected in the databse.

The data valicity, integrity and alerting problems are targets of

the current level.

5.3.1 General Mechanism

All primitive, binary or nary sets of the database that have these
constraints attached are flagged when they are defined. The
constraints, written as part of the data definition, is to be
translated into a procedure that is to be executed at this 1level,
mostly when update of elements of these sensitive sets are encountered.
Operators implemented at levels below shall be used in the translated

procedures. Constraints may also be specified for virtual attributes.

There are two modes of enforcement: (1) periodic checking and (2)
checking invoked only when data elemnts are updated. In implementing
the first mode, a hardware timer has to be made available. An event
list, sorted by scheduled time of the events is maintained and checked
constantly, either by way of timer interrupt or through the use of a
dedicated processor. If the time of a scheduled event has arrived and
the routine 1is 1invoked the next scheduled time for this routine is
inserted into the event list. A message is printed when a database

error is detected, and the error condition may be logged or left

pending for correction,

S U

o~

p. 126

To support the second mode, this level maintains a catalogue of j

sensitive database constructs. Any update (including insert and

L s

delete) of an element of these sets has to be filtered through the
procedures that 1) precompute the result, 2) check for legit..acy of
the result, 3) determine whether to accept or deny the request, and 4)

if a request to be denied, return an explanatory message. For

e T Y e T T o e s ol

operations on non-sensitive data, the requests are passed directly to

the next level.

How to select the mode of constraint implementation is, again, a
DB designer decision, which has to have situational factors taken into

considerations.

The simplest type of constraint would be the data type, 1i.e.,
whether it must be numeric or alphanumeric. More strict constraints
may be specified in terms of 1) the range of values allowed for a
continuous data element or 2) a catalogue that contains a set of
legitimate values of a discrete data element. When inter-relationship
is a consideration, the procedure has to retrieve other data in the

database in order to do the computation.

5.3.2 DD Interface

The most complex problem at this 1level 1is the data definition
interface where by the specification of the validity and consistency

constraints are crossed. Commands are also available to make changes

TUNE NPEP

to these constraints.

p. 127

Define_Vset (Vset_name, other parameters, w VLPS) or Define Nset

(Nset_name, (attribute_name, w VLPS, v VTPS, y ATPS) list)

where VLPS stands for Validity Parameter Space, to be intercepted and

interpreted at current level, while parameters in the rest parameter

spaces are passed down. (See section 5.1.2 and 5.2.3 for explanation).

5.3.3 Operational Interface

Commands to manipulate data elements are passed through. The

operators are identical to those to be accepted by the next level, and

checking is performed for sensitive data sets.

IS YRV - 5

ke K ba

- o

VI. USER VIEWS AND DATABASE SECURITY

6.1 Introduction

The conceptual schema designer may have structured the information
!

into entities and attributes. Operators to operate upon these

L constructs are implemented in the levels below. End users of the

database, however, may see a structure of the data that 1is different

from that of the conceptual data model. In particular, they may want

to look at the data as organized into a different set of relations or a

hierarchy of segments. They then choose various sublanguages

accordingly to operate on these "external constructs". In this manner,

the end user 1is allowed to look at data in a way most natural to his

application and choose a data sublanguage that he feels most

comfortable to |use. In addition, existing application programs are

protected from becoming obsolete due to <changes 1in data structure.

These different ways of 1looking at the structure of the database

constitute different "user views", also called “"external views", of the

database. To support external views, these views have to be defined

and mapped onto conceptual structures. Operators performed upon

external views have to be translated into operators upon entity sets

defined at the conceptual level.

In addition to providing user views, the DBMS is also required to

maintain database security. Database security refers to the control of

access to the database. Since an integrated database is accessed by a

number of users, and since each of them may be granted permission to

2 mAM

p. 129

only part of the database, the DBMS has to have the capability to
identify a user, determine his access limitations, and accept or reject
an access request. Furthermore, permissions may be differentiated in
terms of Read and Write. There are denerally two approaches to
maintaining database security control <Hsiao79>. The first one 1is by
way of view definitions, and the second one 1is through query

modification. Here we choose to use the first approach.

We have identified a three-level hierarchical structure for
handling wuser views and security control. At the top, the View
Authorization Level authentiates a log-on user and authorizes the user
to a particular view. Next, the View Translation Level keeps track of
mappings between constructs defined in external views and the
conceptual schema, and translates the operators. Below it, the View

Enforcement Level checks for legality of the operation of a view.

Before going into these individual levels, a formal definition of
mapping between external constructs and conceptual constructs is given
in the next subsection. To illustrate transformations in a coherent
fashion, a single database example is used throughout this chapter.
The conceptual definition of this example database 1is shown 1ia Fig

6. 1. 1.

6.1.1 Mappings

Mapping herein refers to the correspondence between an external

scehma and the conceptual schema. One of the reasons why we choose to

p. 130

DATABASE EMP_ASSIGNMENT .

CONCEPTUAL DEFINITION:

EMP (E#, EN,ADDR,DEPT,E_P, JB_HSTRY,MGR OF,PRJ=E_P(PRJ))
DEPT (D#, DN, LOC, EMP)

PRJ (P#, PN, MGR, EMP=E_P (EMP) ,E_P)

E_P(EMP,PRJ, TIMEFRAC)

J_H(EMP,JOB, DATE)

JOB (JB#,JBN,JB_HSTRY)

e e e i g =

Primitive/Binary Data Structure Diagram of EMP_ASSIGNMENT:

o W P S

Fig 6.1.1: An example database

p. 131

use binary relations as the underlying conceptual structure, as
mentioned earlier in section 2.2, 1is for its flexibility in
transformation (or “"deconceptualization"). In our system, mapping Iis
provided for constructs in three different external data models, or
"types of views", namely, the relational, the hierarchical, and the
network data models. Constructs in these models are mapped using a
common mapping language which describes any external construct in terms

of the following conceptual constructs:

(1) Entities and their direct attributes or derived attributes;
(2) Binary relations between entities and/or attributes;

(3) Predicates restricting above constructs;

In essence, any external construct (e.g., a relation or a segment) is
to be mapped to a portion of the integrated database described by the
conceptual schema, and the mapping statements specify this "portion".
The BNF specificatin of this mapping language is given in Fig 6.1.2a.
Some examples of mapping language statements and their <corresponding
graphical representation, called the tree form of the mapping, which is

basically a "clipping” of the data structure diagram of the integrated

conceptual schema, are given in Fig 6.1.2bL.

B

p. 132

Mapping_statement ::= Entity_statement| Binary_ statement
Entity_statement ::= Entity_attribute_clause, predicate clause
Entity_attribute_clause ::= Nset_name (attr_list)

attr_list attr_phrase | attr_list attr_phrase
attr_phrase attr name | attr_name(attr_phrase)
Binary_statement Nset_name (attr_phrase)

predicate_clause (condition_list

condition_list condition | condition_list condition

e oo e we o4 oo sa
e 0 00 e e se oo we
{1 | A L I {1 Y | I

condition#* attr_phrase, comp_op, target_phrase
comp_op Yizsl«t >s{ <z [a={€l3
target_phrase variable_name | literal

*; Conditions can be further elaborated to include set-theoretic
comparisons.

Fig 6.1.2a: A BNF specification of mapping language

p. 133

(1) External construct e mapped to unrestricted entities
and attributes:

el = EMP (EN,ADDR,DEPT{D#))
treeform:
(2) e, mapped to restricted entities and attributes:
e2 = PRJ(PN,P#) WHERE (EMP(EN)=Var.EN)
treeform:

PRJ

2o O)—O—0O
(=) @

(3) e, mapped to a binary relation

e, = EMP(JB_HSTRY)

3

treeform: I H EMP

Fig 6.1.2b Mapping statements and their 'treeform' graph

-

v A

p. 134
6.2 View Enforcement Level
6.2.1 Introduction
This level integrates and coordinates all external views. It

performs two major tasks: (1) process operational security parameters

1
of the views and check for compatibility of these parameters among all

views; and (2) enforce these operational security requirements.

The first task is performed during view definition. It enables

the DBMS to identify conflicts or inconsistencies among different

views. A conflict of this kind occurs when one view designates a

portion of the integrated database to be of its own exclusive use,

while another view attempts to include that part of the database

into
its domain. These conflicts are not easily detected at the view
translation level because, as will be explained later in this chapter,
views are not made to communicate with each other at the view

translation level. The view translation 1level performs mapping c¢f

constructs and translation of operations in each view independent of

the existence of other views. On the other hand, constructs and

operations are expressed in terms of tiue common conceptual data model

when they reach the view enforcement level, therefore coordination can

be facilitated here. This is graphically shown in fig 6.2.1.

The second task of this 1level 1is performed during database

operation. All operations on a particular view, after being translated
into operators on conceptual constructs by the view translation level,

are checked against the security parameters maintained at this

level.

p. 135
(Next
J Higher
[Level)
Héererchical Rglational Ngtuork
View View View VIEW
TRANSLAT .
jew-1 iew-73 : Level
T lew-5
View-2 View-% _
VIEW
ENFORCEMENT
LEVEL
Fig 6.2.1 View Enforcement Level integrates
and coordinates views
CONCEPTUAL_
VIEWS CONSTRUCT
(:> SECURITY
view_id O
other () O
attributes construct other
Seﬁﬁf&ﬁgters attributes

Fig 6.2.2:1 Catalogue structure at View
Enforcement Level

A

P

-

p. 136

Aemin,

6.2.2 General Mechanism

This level accomplishes its tasks by maintaining a catalogque,
which contains information on views and conceptual constructs. It
lists, for each conceptual construct (e.g., entities and attributes), ‘

the views that are allowed to read, write, share or exclusively use the

H construct. This enables the current level to identify conflicts

? between views and generate messages to effect intervention by a data

base administrator to resolve the conflict. On the other hand, this

information is also used during database operation to prevent a user

- s

from issuing operations not allowed within the view he is using.

This catalogue itself can be defined as entities and attributes.

ot

Two basic entities are VIEWS and CONCEPTUAL CONSTRUCT. A third entity,
i called SECURITY, may be used to designate the many-to-many relationship
'% between them. The binary network model of this catalogue is shown in
| Fig 6.2.2. This strategy of catalogue implementation makes use of
functions provided at lower levels and releases the burden of catalogue

maintenance from the view enforcement level.

6.2.3 Data Definition Interface

There are two parts in this interface. One 1is the conceptual
schema definitions, whereby the view enforcement level obtains all
construct names in the conceptual schema. More complicated parameters i
embodied in these conceptual schema definitions (such as virtual

information and other semantic parameters) are of no concern to the

SO Gy D Berr il o b A

VP WL 02N Sk L 4py AT v g 7. i

p. 137

current level, and are passed down intact. The other part of this
interface is the view definition, which consists of identification of a
view and the corresponding conceptual schema this view is mapped to, as
well as security requirements. The current level builds its catalogue

using this information. The data definition interface is shown below:

Define Nset (Nset name, attr_ list)

Define_View (View_id, conceptual_construct_ list)

where the conceptual construct_list is a list of conceptual constructs
the view is mapped to and their corresponding operational security

parameters.

6.2.4 Operational Interface

Operators to manipulate conceptual data elements are passed
through. The operators are identical to those to be accepted by the
next lower level, except for a tag which identifies the view based on
which this operation 1is 1issued. Security checking is performed to
enforce legality of this operation, and wunauthorized operations are

denied.

p. 138

6.3 View Translation Level

This level incorporates several parallel modules, called external
data model processors, each designed to handle a particular type of
views, or external data model. 1In this section we describe mapping and
translation from three data models, relational, hierarchical, and
network, to the common conceptual data model. We shall illustrate how
the mapping language introduced 1in section 6.1.1 is wused to map
constructs 1in these external dafa models, and how operators in these

models are translated.
6.3.1 View Translation Level -- Relational View

6.3.1.1 Definition and Mapping

Relational views are defined in terms of relation names, domain
names, attribute names and sequence attribute(s) (i.e. the attribute
according to which the relation is to be sorted, if any). The mapping
of these names to the conceptual constructs are also specified. Data
types may be declared to be different from the form physically stored.
The relation name gives rise to an entry in the relation catalogue,

where information about this relation and its mapping is stored.

Since each attribute in a relation has to be atomic, an attribute
name has to be mapped to a value set, The relation definition and
mapping may take a format exemplified in Fig 6.3.la, and Fig 6.3.1b
shows the tree form of the mapping. Due to the great similarities

between the relational data model and our conceptual n-ary entity sets,

i e L B

e "f e T«

p. 139

Relational View '

EMP !

E# |ENM| ADDR| DEPT#

DEPT EMP_PROJ

p# | oy 1oC E# |P#| DFRC
PROJ JOB_HISTRY
[P4 | P | MGR E [e# | JB# | DATE|
JOB

| JB4 | JENM|

Relation definition and mapping

Define Relation EMP(E#,ENM,ADDR DEPT#)
=EMP (E#,EN, ADDR, DEPT (D#))

Define Relation DEPT (D#,DNM,LOC)
=DEPT(D#,DN, LOC)

Define Relation PROJ (P#,PN, MGR E#)
= PRJ (P#,P_, MGR(E#))

Define Relation EMP PROJ (E#, P#,TMFRC)
= E P (EMP(E#), PRJ(P#),TIMEFRAC)

Define Relation JOB (JB#, JBNM)
= JOB(JB#,JBN)

Fig 6.3.1a A relational view of the EMP ASSIGNMENT database

Mapping tree form for relations EMP, DEPT, PROJ & JOB:

rw
L S DUV

-

M e PR S O

v
PRSI T Y

— -
~— -
— —

5
i 3
,
'
b ¥
,r
i

JOB_HISTRY EMP_PROJ

Laemslt N
a4 o

Fig 6.3.1b: Tree form of the relational view of EMP_ASSIGNMENT

R

- Rohas ariong e S as LT e Y L T

p. 141

mapping and translation of operators are fairly straightforward.

6.3.1.2 Tuple Construction

In our model, actual construction of the tuples does not take
place when the relation is defined; onlyFthe mapping is stored with
the relation name. Tuples of a relation are built one by one when an
output command of the relation is encountered. It is built by passing
n-ary entity retrieval commands extracted from the mapping definitions
down to next levels. Because no relations are built when they are

defined, redundancy of data is completely eliminated. Again, there are

no restrictions on the normality of the relations.

6.3.1.3 Operations

Relational operator JOIN, SELECT, SELECT_WHERE, INSERT_TUPLE,
DELETE_TUPLE, and UPDATE_TUPLE are supported. Get_next tuple is also a
command available for examining tuples one by one. This section
describes the general logic how these operators may be translateca and

performed.

JOIN, SELECT and SELECT_WHERE commands are set operators that give
rise to new relations. These relations, as usual, are not constructed,
but their mappings are generated automatically and then stored. In the

following discussions, the effect of these operations is exemplified by

the tree form of the map.

W—

5t

p. 142

JOIN operation involves joining two relations over a common
domain. An Example is given in Fig 6.3.2.

SELECT operation would result in a 'pruned' tree, as shown in Fig
6.3.3. Note that selection that incorporates lower level roles
but eliminates some intermediate level role would result in the
latter being marked in the tree, but not eliminated. The reason
for this is that, if we eliminate the intermediate level from the
tree, the semantics of this relation may become ambiguous. In
this example, if a command SELECT (R, (EMP_NO, LOC)) is given, the
resulting relation shall have a form as shown in Fig 6.3.3b, while
the tree shown 1in Fig 6.3.3c has an ambiguous semantics between

the node EMP-NO and DEPT.

SELECT_WHERE is used to impose restrictions on values of certain
attributes in a relation; this command is easily implemented by
incorporating this restriction into the mapping tree. It is
readily translated into Retrieve commands with WHERE clause

implemented at the n-ary level. An example is given in Fig 6.3.4.

Due to semantic considerations, the update commands are restricted to
normalized relations. However, if this restriction is lifted, other

measures may be taken to remedy the semantic ambiguity.

INSERT_TUPLE: 1Inserting a tuple into an n-ary relation is
equivalent to inserting a record into an nary entity sets. This
command is translated into Insert_entity or Insert_attribute,
depending on the context.

DELETE_TUPLE: Deleting a tuple from an n-ary relation is treated

P. 143
4
J l
.« R(E#,ENM,ADDR, D#,DNM, LOC) = EMP(E#,EN,ADDR,DEPT(D#,DN,LOC))

Fig 6.3.2: Join operation results in a joined tree

Rl = SELECT(R, (E#,D#,L0C))

., RL(E%,D#,LOC) = EMP(E#,DEPT(D#,LOC))

Fig 6.3.3a: Select operation results in a 'pruned' tree

R2 = SELECT(R1, (E#,LOC)) R2 = SELECT(R1, (E#,LOC))

— ——m— men emm— —— —

'« R2 = N.EMP(E#,DEPT(LOC))

Fig 6.3.3b: D3 is marked not to be
output

Fig 6.3.3c: Ambiguous tree map

— — o— — — ———

ol i ML o N G el &

p. 144

R3 = SELECT (R, (E#, D#, LOC)) WHERE 5
(LOC = "NEW YORK") ;

!

i

(Restricted by
= "NEW YORK")

* R3(E#, D#, 1LOC) = EMP (E#, DEPT(D#, 1OC))
WHERE. (DEPT(ILOC) = “NEW YORK") {

Fig 6.3.4: SELECT WHERE operation J]

p. 145

as deleting the entity designated by the key of this relation from
the corresponding entity set. (It is clear at this point why a
normalized relation should be referenced. Suppose that the
relation is not normalized. Then one might ask the question:
"what exactly does this user want to delete from the database?”
Note that, in a tuple where several entities and binary relations
are involved, removal of any of these would result in removal of
the tuple.) This command 1is translated into Delete_entity or
Delete_attribute, according to the context.

Update Tuple: This operation may be translated into a sequence of

Update commands to be passed down to the n—ary level.

6.3.1.4 Defining Relations Using Relational Operator

New relational views may be defined by commands JOIN, SELECT and
SELECT_WHERE. A relation generated by these commands would be
considered a temporary one, therefore not entered into the permanent
relation catalogue unless attempt to save it is made. Once a relation
is saved, it may be treated as a view, and other users may be granted
access to it by calling the relation name and satisfying the access
constraints. Therefore two commands are also available at this 1level

to dynamically. add entries to or remove them from the catalogue of

relations:

Save Relation Rel name, access constraint parameteres

Delete_Relation Rel name

3
o ?

p. 146

where access parameters are extracted and processed at the next higher

level, namely, the view authorization level.

6.3.1.5 Relational Sublanguage

The relational operators just described are wused to manipulate
relations in our model. However, the end users may still find them
cumbersome to use, and query or manipulating 1languages of an even
higher 1level, such as SEQUEL <Astrahan76>, may be desired. The
database sublanguage facility, which will be described in section 6.4,

provides translators to facilitate ease of user interface.

Operations other than those described here may be added (e.g., an
operator that tests to see if two relations are equal, etc.). Due to
the modularity of the system, the current repertoire of operators may

be easily expanded to accommodate future needs.

p. 147

6.3.2 View Translation Level -- Hierarchical View

6.3.2.1 Definition and Mapping

This type of external structure may be treated in a similar way as
the relational structure. When the data definition and mapping of a
hierarchy of segments are received, they are translated and stored in a
catalogue. To 1illustrate, we again adopt the EMP_ASSIGNMENT database
example shown in Fig 6.1. Now suppose a hierarchical view of this
database, as shown in Fig 6.3.5, is to be generated. The definition of
the view, which is very similar to an IMS type of DDL <IMSa>, with the
addition of mapping specifications, may look like what is shown in Fig
6.3.6. Taking these definition statements as input, the DD translator
may translate them into a set of parameters to be stored in the
hierarchical view catalogue. A tree form of this hierarchy is shown in

Fig 6.3.7.

6.3.2.2 Basic construct At Work

Comparing Fig 6.3.7 with tree forms demonstrated when we were
discussing relational views, one may see how underlying binary
relations may be used freely in constructing views. In essence,
primitive and binary sets serve as the basic construct of the database,
which are flexible enough to be built into any kind of external
expressions, and has the property of relative stability over time.

Another benefit that may be read from these figures is the clear

st aBethis

24 o

DEPT

D# DNY | LOC

EMP lin

E# |ENM |ADDR

PROJ JOB_HSTR

P# PN |TMFR{ MGR J#

JNM |DATE

Fig 6.3.5: A Hierarchical view of EMP_ASSIGNMENT '

HIERARCHY NAME = EMP_ASSIGNMENT;

33, PARENT = SEG.DEPT f

R e |

p. 148

S

P

.

= SEG.EMP

SEG NAME = DEPT, BYTES = 45,
FIELD NAME = D#, CHAR 5, SEQ,
FIELD NAME = DNM, CHAR 20,
FIELD NAME = LOC, CHAR 20;
SEG.DEPT = DEPT(D#,DN,LOC) SEQ(D#);
SEG NAME = EMP, BYTES = 45, PARENT = DEPT,
FIELD NAME = E#, CHAR 5, SEQ,
FIELD NAME = ENM, CHAR 20,
FIELD NAME = ADDR, CHAR 20,
PARENT (DEPT) — CHILD(EMP) = DEPT (EMP)
SEG.EMP = EMP(E#,EN,ADDR) SEQ(E#);
SEG NAME = PROJ, BYTES =
FIELD NAME = P#, CHAR 5, SEQ,
FIELD NAME = PN, CHAR 20,
FIELD NAME = MGR, CHAR 5,
FIELD NAME = TMFR, I3
PARENT (EMP) —— CHILD(PROJ) = EMP (PROJ)
SEG.PROJ = E_P(PRJ (P#,PN,MGR(E#)), TIMEFRAC)
SEQ (P#)
SEG NAME = JOB_HSTR, BYTES = 31, PARENT
FIELD NAME = J#, CHAR 5, SEQ,
FIELD NAME = JN, CHAR 20,
FIELD NAME = DATE, 16,
PARENT (EMP) — CHILD(JOB_HSTR) = EMP(J_H)

SEG.JOB_HSTR = J_H(JOB(JB#,JBN)

+DATE) SEQ(JB#%)

Fig 6.3.7: A tree form of Hierarchical view

149

-
|
|
l
i
|

d

TIMEFRAC

A tree form of Hierarchical view

Fig 6.3.7:

X T s

p. 150

semantics in an external view derived from binary associations. Not
only may it help the DBA in clarifying the path during data definition,

it also provides better documentation of the meaning of a database.

6.3.2.3 Operations

Conventional hierarchical operators GET_UNIQUE, GET_NEXT
GET_NEXT_WITHIN PARENT, DELETE, INSERT and REPLACE are supported.

<IMSb>.

(a) GET commands

GET commands invoke the segment construction module which, by
looking at the map and the content of the current buffer, determines
how various data elements are to be retrieved and placed into output

buffer. For example, a typical IMS retrieval command against our

example database:

GU DEPT (DNAME='system')
EMP

JOB_HISTRY (JOB_NAME='programmer"')

may be translated into operations on the nary entity sets, as shown in

Fig 6.3.8.

(b) Update commands

B -

p. 151

Retrieve unique (J H (JOB (JB#,JBN), DATE))WHERE
(EMP (DEPT (DN="SYSTEM"))) AND (JOB (JN ="PROGRAMMER")})
SPQ (EMP (DEPT(D#) ,E#))

The tree form of a strategy to satisfy this request is:

Fig 6.3.8: GU operation: tree forw of the retrieval

p. 152

Insertion of a segment is broken down into compatible
Insert_entity and Insert_attribute commands. However, semantics of
DELETE and REPLACE operations may need to be clarified in order to
ensure proper update of the database. These issues are, again, similar
to those discussed under relational views, and require special

attention during design of data definition and manipulation 1languages.
|

(c) "Subschema"

A subset of a hierarchy of segments may also be defined to
generate various views on this hierarchy. DDL is input to specify the
name of the new 'subview' to be defined, as well as its connection to
the original hierarchy. Access information is also given. Then this
'subview' is entered into the catalogue and may be operated upon by

legitimate users.

S bt v e S

m ..";'. N A 2 25a - Mo, g

r

p. 153

6.3.3 View Translation Level -- Network View

6.3.3.1 Definition and Mapping

In this section we discuss definition and mapping of network views
<DBTG71>. Based on the conceptual definition of the database
EMP_ASSIGNMENT of Fig 6.1, the system would lgke to present to the user
a DBTG type of network view as shown in Fig 6.3.9a. The definition and
mapping 1language is shown in Fig 6.3.9b. 1In essence, the records
defined in the network are mapped to entity sets, their identifiers
mapped to key attributes of the entities, and DBTG 'sets' are mapped to
underlying binary associations. A tree form of this mapping is shown

in Fig 6.3.9c.
6.3.3.2 Operations
Operations on a network view include <Date77>:
Find: Retrieves any record or a specific record within a set

Modify: Writes content of a record back to the database

Insert: Insert a record into a set

Remove: Removes a record from a set
Delete: Deletes a record from the database
Store: Inserts a record into the database

The 'currency' concept used in DBTG model is utilized in the tranlation

of these commands. The user is given a UWA (User Working Area),

s Ca b e cearad koo

Fig 6.3.9a:

DEPT

D#

DNAME

PROJ

p. 154

A network view of the EMP_ASSIGNMENT database

T e I e YA gy . Y

£ o pue-gn

p. 155

NETWORK EMP_ASSIGNMENT
RECORD DEPT, IDENT IS DEPT# IN DEPT
02 DEPT#, CHARS
02 DNAME, CHAR20
02 LoC, CHARZ20
* REC.DEPT = DEPT(D#,DN,10C) ;
RECORD EMP, IDENT IS EMP# IN BEMP
02 eMP#, CHARS
02 ENAME, CHAR20
02 ADDR, CHAR30
* REC.EMP = EMP(E#,EN,ADDR) ;
RECORD JOB, IDENT IS J# IN JOB

02 J#, CHARS
02 JN, CHAR20

* RPC,JOB = JOB(JB#,JBN) ;
RECORD JB H, IDENT IS J# IN JOB, EMP# IN EMP
02 J#, CHAR 5
02 EMP#, CHARS
02 DATE, CHARS
* REC.JB H = J H (EMP(E#), JOB(JB#), DATE)
SET S D E, OWNER IS DEPT, MEMBER IS B'P

* SET(SDE) O M
Ma 0O

DEPT (EMP)
EMP (DEPT)

noa

Fig 6.3.9b: An example of data definition and mapping of
a network view

A

et S rvmTn ST

p. 156

4
Treeform of DEPT record: :

Treeform of S D E set:

(04m) [} (mv0)

Fig 6.3.9c: Treeform of a newtork view of EMP_ASSIGNMENT

p. 157

containing a buffer for every record type defined in the view. The
content of this UWA, together with the mapping definition, is wused to
generate retrieval/update commands against the nary entity level. To
illustrate, suppose that the network and mapping definitions are stored
in a data structure exemplified by Fig 6.3.10., During run time, a UWA
buffer is reserved as shown in Fig 6.3.11; and the basic logic

together with some examples of translation of the DBTG commands 1is

shown in Fig 6.3.12.

Aar b i,

p. 158

MAP1:

ReC_name |NSET [Key attr

DEPT DEPT (D# ,DN) ‘D# |

JB_H J H(EP(E#),JOB(JB¥)] (EXP (E#) ,JOB (JB#))

DATE)

MAP2:

Set_name NER REC [MFM TO OWNER ATTR | REC |[OWNER TO MEM ATTR

SDE DEPT DEPT EMP EMP

Fig 6.3.10: An exarple format of data structure of the network
database mapping

DEPT
DEPT#
ID
JOB EMP PRI
]] G Pt]
ID D ip

JB H EMP_PRJ

{ze4 |B# 1 ©#|pa#

ID IDp

Fig 6.3.11: WA of EMP_ASSIGNMENT network

p. 159

FIND Fec_nane H

Retrieve_unique (NSET(Rec name))where
(Key_attr(Rec_name)=ID(Rec_name))

(Here NSET(Rec name) refers to the second colum of MPAL in
Fig 6.11; Key attr(Rec name) refers to the 3rd colum of MAP];
ID(Rec_name) refers to the ID field of the record Rec_name

in UWA; etc.)

FIND FIST(NEXT) MEMBER WITHIN Set__r‘man'e:
Retrieve first(next) (NSET(MEM REC(Set name)) where

(MEM _TO OWNER ATTR(Set name) =
ID(OWNER REC(Set name)))

FIND OWNER WITHIN Set name:

Retrieve unique (NSET(OWNER REC(Set name))) where
(OWNER_TO MEM ATTR(Set name) = ID(MEM REC(Set name)))

Fig 6.3.12a: General logic for translating FIND commands

p. 160

L e

MOVE "15" TO DEPT# IN DEPT;
FIND DEPT;
| * RETRIEVE UNIQUE (DEPT (D#,DN,IOC)) WHERE (D#= DEPT# in DEPT in UWA);
DNAME IN DEPT = "SYSTEM";
MODIFY DEPT;
* UPDATE (DEPT) (D#=DEPT# in DEPT in UWA) (DN= DMAME in DEPT in UWA,
I0C=10C in DEPT in UWA);
FIND FIRST EMP WITHIN S D E;
* RETRIEVE UNIQUE (EMP (E#,EN)) I~IHE:RE(DEPT(D#)— DEPT# in DEPT in UWA);
FIND FIRST EMP PROJ WITHIN S E EP;
* RETRIEVE UNIQUE (E P (EMP (E¥#) ,PRJ (P#) , TIMEFRAC) WHERE
(EP (E4)=EMP# in EMP in UWA);
FIND OWNER WITHIN S P PJ;
* RETRIEVE UNIQUE (PRJ '(_P#,PN)) WHERE (P#= P# in EMP PRJ in UWA);
PRINT PROJ; -
FIND NEXT EMP WITHIN S D E;
* RETRIEVE NEXT (EMP (E#,EN)) WHERE (DEPT(D#)—DEPT# in DEPT in UWA)
SEQ(E#) CURRENT IS (EMP# in EMP in W) ;

Fig 6.3.12b Example of trnaslation of a set of network |
data model cormands \
(* denotes translated statements) f

PR TR T Y VAR i~ -

p. 161

6.3.4 Database Sublanguage Facility and Summary of View Translation

Level

As mentioned in section 6.3.1, a user of the relational data model
may wish to use a relational sublanguage such as SEQUEL to dquery the
database. In general, any very-high-level wuser-oriented database
sublanguage may be incorporated into our system, so long as the data
model it assumes s supported at the view translation level and
operators it uses can be mapped to the operators of that particular
data model. A graphical representatﬁon of this concept is shown in Fig
6.3.13. Note that some sublanguages may be built on top of different
external data models simultaneously, depending on the application it

supports.

In summary, the three types of views discussed are very different
from each other in terms of definitions and the set of operations
allowed. However, implementation of these views on top of our
conceptual sets is similar, since all of them involved breaking the
views into the basic constructs. Therefore the final mapping may have

a common format.

In general, other views may also be provided, so long as they can
be broken down into a clearly defined collection of basic constructs
supported by the conceptual schema. Once this is done, any operation

on the views may be translated.

Finally, we should take note of the issue of performance. Since

we have truely established a system of many levels of indirection, care

PR SR P

p. 162

r‘ DB sublanguagel DB sublanguage?2
Database
Sublanguage
Facility DBSL1 EDM1

mapping DBSL2 EDM2
L mapping DBSL2 EDM3
i mapping

r /
External External v
Data Data Model 1 External Data External
Model Model 2 Data Model 3
Processors

L

Fig 6.3.13 Architecture for handling
Database Sublanguages

p. 163

has to be taken to address the problem of overhead. How we may proceed

to take advantage of sequential processing by penetrating throujh these

levels in order not to lose connectivity between one transaction and

the next is one of the vital performance issues we shall look at when

an external view and processings against it are established.

-y

p. 164

6.4 View Authorization Level

6.4.1 Introduction

Every external view (e.g. a set of relations or a hierarchy of
segments) has associated with it a set' of legal 'viewers', which is
designated by a set of accounts. Legitimate user accounts of a view

are specified when a view is defined.

Hierarchy of authority: The access power of accounts may be
organized hierarchically; for example, accounts beginning at letter A
may have all the access capabilities of accounts beginning at letter B,
but not vice versa. Also, those accounts that are capable of defining
views will have the authority to designate a set of accounts as legal
users and specify their capability (e.g. read or write). On the other
hand, a view definition may only be changed or deleted by an account
that has the authority to define the view. Therefore a hierarchy of

authorization is constituted.

Log-on: As conventionally done, a user gains access to an account
through its password which is to be supplied to the system when he
attempts to log on. Once the user is in the system, a process is
created. The process controller at the front end 1level maintains

information of all active processes.

View authorization: For the purpose of security control, this

level maintains several control tables. The first one is an access

g pasorrmtuivin. S SR

.. s . RS T——— * ‘ V?‘

p. 165

List. It lists, for each view defined for the database, the accounts
that are allowed to retrieve or update the view. It also lists those
accounts that have the authority to change the view definition. An

example is given in Fig 6.4.1.

The other table is an active process table, which, for each active

process in the system, lists the view currently in use by the process.

A process has to declare the view it wishes to operate upon before any
access command is given. Once the view 1is declared (through an
OPEN_VIEW command), and the accesg list checked for legality of this
declaration, an entry in the active process table is made. The format
of the table is shown in Fig 6.4.2. The view authorization level also
posts this information with the view translation 1level, which then
proceeds to <create a 'process control block' for this process within
the appropriate external data model processor. This 'process control
block' also maintains working space necessary for those view
construction procedures to ‘serve this process. A process may change
the view it wants to see by closing the previous one (by CLOSE VIEW

command) and declaring a new one. A summary of the command flow at

this level is shown in Fig 6.4.3.

6.4.2 DD Interface

Database designers have to spell out access information when the
database or a view of it is defined. All authorization parameters in
DD statements are intercepted and entered 1into the catalogue, and

further manipulation on the database are checked against this security }

~mams Ty -

p. 166

VIEW NAME READ WRITE DEFINITION
Hier EMP B0O1- A00] A900

B0O09 {A030
Hier DEPT B010- A020 A901

B019 :

Fig 6.4.1 An example of the format of the access list

ROCESS ID CCOUNT VIEW OPENED CAPABILITY
B001.1 B0O1 Hier EMP Read
A001.1 A00L Hier EMP Write
B001.2 B0OO1 Rel DEPT Read

Fig 6.4.2 Active process table

p. 167

VAL: BEGIN;
Case command Of
"Define View": Do;

Process View Authorization definition;
If definition legal then do;

Make entry in the access list;
Pass the rest of the data definition
to an appropriate EDMP;

end; !

Else do;
Formulate error message;
Pass error message out;
end;

end;

"Open _View": Do;

Check against the acess list;
If legal then do;

Make entry in the active process table;
Pass command to the appropriate FEDMP;
end;

Else do;
Formulate error message;
Pass error message out;
end;

end;

"Close View": Do;

Erase view entry in the active process table;
end;

"Operations": Do;
Check against active process table:
Pass command to the EDMP which processes the view;
end;

END;

(EDMP: External Data Model Processor)

Fig 6.4.3: Command flow in the View Authorization Level

p. 168

information in the catalogue.

A special module called authorization_ parameter processor is used
to decode the security parameters and make entries in the security

cataloqgue before passing the rest of the DD statement down.

6.4.3 Operational Interface

The set of operators accepted at this level for data manipulation
purposes is 1identical to those accepted at external view levels. 1In
addition, a process must open a view before it issues an operator
against it, and close the view before it wishes to change to another
view or becomes 1inactive. Therefore two additional commands are

identified:

OPEN_VIEW (process_id, account_id, view_name)

CLOSE_VIEW (process_id)

p. 169

VII. SUMMARY AND FUTURE RESEARCH DIRECTIONS

7.1 Summary of report

The INFOPLEX database computer project has provided the motivation
for this report. It is our belief that, while information processing
is and will be playing the central role 1in the application of
computers, the conventional computing-oriented computer architecture is
not adequate for handling large—scéle information processing. The
INFOPLEX database computer is geared toward design of a highly-parallel

computer system specialized in information processing.

In chapter 1, the general background and basic architectural
concepts of the INFOPLEX database computer are introduced. The
INFOPLEX consists of two parts, the Storage Hierarchy and the
Functional Hierarchy. The Storage Hierarchy handles an ensemble of
storage devices and supervises data movement among them, supporting a
large virtual storage; while the Functional Hierarchy performs all
other database management functions. This report presents a
preliminary design of the latter component based on the concepts of

hierarchical functional decomposition and multiple microprocessor

implementation. -

The first task during preliminary design is to identify the

functional requirements of the system. In chapter 2, a search into the

literature of database systems has helped clarifying the picture. Most

notably, two concepts in stratification of database managment systems,

L laa

P

[

p. 170

namely, information abstracton and functional abstraction, are reviewed
to provide insights into functions to be supported by a contemporary
database system and how to organize them into hierarchical level. The
following are important functional objectives of the functional
hierarchy: (1) multiple types of external views; (2) a high-level
conceptual data model; (3) a variety of stoHed data structures (i.e.
a flexible internal model); (4) expliéit support of security,

validity, alerting and virtual information; and (5) concurrent use of

the database.

A Binary Network data model is developed as the conceptual data
model in the functional hierarchy. The model is shown to provide
natural mapping to the external views and the stored data structure,
and incorporates clean semantics. The internal data model and external
view support are also outlined. Chapter 2 concludes with a 10-level
hierarchy of functions, which are further detailed in later chapters.
These functions may be grouped into memory management, internal
structure management, conceptual structure management, and external

structure management.

The memory management level uses the id approach to insulate the
byte detail from the upper 1levels, and keeps track of free storage
space and performs compaction and garbage collection. The id approach
enables all wupper levels to use an id as the location of a data item,
and not to be concerned about the byte address. The internal structure
management is broken into three 1levels, integrated by the Basic
Encoding Unit (BEU) concept. The data encoding level provides 'final

touches', such as text editing, compaction and encryption, to the data

i -l P ; f 3 g
- W R TR . i p

R Lo Y T S e . i ; " e T U OB ks N 350 3
b e o . _ PR T S R

Y

p. 171

before the data enters into the storage hierarchy. The unary set level
organizes data elements into unary sets, and is capable of performing
intellignent search into a wunary set for a particular unary data
element. The binary association level maps binary relations described
in the conceptual schema to their implementation, and pieces together
unary data elements (records) and pointers among them. These three
internal structure levels provide insulation between the conceptual
organization of information and its internal structure such that
changes in internal structures will be reflected only in the mapping
between the two. The interface to the binary association level enables
upper levels to dedicate search and storage of their own house-keeping
information (e.g. catalogues) to the internal levels, thus realizing
functional abstraction. Furthermore, the BEU concept reflects a

parametric and modular approach to internal structure building.

The conceptual structure management is also broken into 3 levels.
The n-ary level processes the core part of the conceptual schema,
keeping track of entities and attributes and enforces binary semantic
relationships among them. The wvirtual information level builds new
consructs whose values are not stored, but derived. The validity level

maintains more complex update constraints.

The external structure management provides user views onto the
integrated database. Three types of views are demonstrated to be
mappable to the conceptual structure. The view translation level keeps
track of construct mapping and performs operator translation. Finally,

system security is maintained through a view mechanism contained in the

view enforcement level and the view authorization level.

o

WO RGP SN N S SR S

v
PPN T WY

To summarize, processing of a request in the database is described
below. It is first <checked for entry legality by the view
authorization 1level; then it enters into the view translation level,
which translates its references to external constructs into those in
the conceptual schema. The request then goes into conceptual structure
levels, which in turn call up internal structure levels to retrieve or
update the target elements. Each level in performing its task may call
upon lower levels for information or subtasks. The system employs both
transaction pipelining and functional abstraction. It also supports
the notion of 'family of systems' by having levels communicate with
others through implementation-independent interfaces, allowing easy

reconfiguration of the system.

7.2 Future research directions

We plan to conduct further research in the area of the functional

hierarchy along the following dimensions.

7.2.1 Formal Design Methodology

In this report, we have identified functional requirements of a
database system and organized them into a hierarchical structure. A
formal design methodology will be utilized such that the current design
can be verified and alternative designs examined. A formal design

methodology will also help in detecting potential ambiguities in the

design before implementing a software prototype of the system. We plan

e A et s Y &

to build our methodology based on the Systematic Design Methodology
(SDM) developed by Huff <Huff79>. Some extensions of SDM may have to
be generated to tie this design methodology more closely to the design
of the functional hierarchy. This research will include both

investigation and application of the methodology.

7.2.2 Locking Mechanisms

To support concurrent uses of a shared database, interlock

mechanisms must be used to coordinate update operations. Care has to
be taken in designing and implementing this locking mechanism to avoid
adversely affecting performance of the system. Current research in

this area includes 1its theoretical aspects <e.g., Bernstein80b,

Eswaran74>, strategies used for concurrency control in database systems
<e.g., Gray76, Bernstein80a>, and certain performance issues <e.g., *

Badal80, Ries77>. They will be reviewed in an attempt to develop a ¢

method that 1is most suited to the architecture of the functional

7

hierarchy. The relationship between concurrency control at the ¢

functional 1level and at the physical level will also be investigated.

7.2.3 Mapping of the operators

The need for mapping stems from the fact that the functional
hierarchy 1is composed of layers each of which supports a different set
of operators. The differences in data structures and data models

between 1levels contribute most to the differences in these operators.

p. 174

Further research is required to

1) specify in more detail the meaning of the operators at each
level;

2) show how these operators are translated into those implemented
at the next lower level;

3) prove that the translation algorithms preserve the desired

meaning of the operators.

Current-day research in the area of data models, much of it having
been reviewed in chapter two (notably section 2.2.3), will be drawn

upon to obtain insights into this problem.

7.2.4 Implementation of a software prototype

For better understanding of the functional hierarchy,
implementation of a software prototype shall be planned. One of the
major purposes of this software prototype is to facilitate measurements
of parameters for performance evaluation. The following steps will be

taken for carrying out this implementation:

1) Select a member system from the family of the database systems

supported by the functional hierarchy;

2) Resolve the detailed design issues and algorithms in the

selected system;

3) Conduct coding and testing of the system in PL/1;

-

4) Identify properties in performance of the system. o

p. 175

7.2.5 Performance evaluation

Models will be built to examine performance of the proposed

architecture,. Measurements will be taken from the software prototype
|

discussed above as estimates of some of the parameters in the model.

Experiments will be conducted to closely examine performance of the

system in various user environments and implementation alternatives. A

comparison in performance will also be made between the proposed,

highly parallel and decentralized computer architecture and the

conventional architectures.

7.2.6 Recovery and reliability

One of the advantages of the proposed architecture of the
functional hierarchy 1is its ability to recover from isolated software
and hardware breakdowns. Further research is required to identify the
methods and protocols to be used by the functional hierarchy to detect
and recover itself from possible breakdowns. Measurements of

reliability are to be taken for comparison with the conventional

architecture.

PN

S e

o gt e S, R, 3

2HE L e N gy R

T ol ".."
p. 176
REFERENCES
Abraham79: Abraham, M., ‘'Properties of reference algorithms in
multilevel storage hierarchy' Master Thesis, Sloan School of

Management, MIT, 1979

Astrahan76: Astrahan, M.M. et al. ‘'System R' ACM TODS, Vol 1, NO.
2, June 1976

ANS175: ANSI/X3/SPARC study group on DBMS interim report, Feburary
1975

Bachman77: Bachman, C.W., and Daya, M., 'The role concept 1in data
models', Proc., VLDB, 1977

Badal8o0: Badal, D.Z., 'The analysis of the effects of concurrency
control on distributed database system performance', VLDB 1980

Bernstein76: Bernstein, P.A., 'Synthesizing third normal form
relations from functional dependency', ACM TODS, Vol. 1, No. 4, Dec
1976

Bernstein80a: Bernstein, P.A., Shipman, D.W., and Rothnie, J.B.,
'Concurrency control in a system for distributed databases (SDD-1)' ACM
TODS Vol. 5, No. 1, March 1980

Bernstein80b: Bernstein, P.A., and Goodman, N., 'Fundamental
Algorithms for concurrency control in distributed database systems',
Technical Report CCA-80-05, Computer Corporation of America, Feb 1980

Borkin78: Borkir, S.A., 'Data model equivalence', Proc., VLDB, 19%7&

Bracchi74: Bracchi, G. et al. 'A multilevel relational model for
database management systems', in Data Base Management, North-Holland
Publishing Company, 1974

Bracchi76: Bracchi, G., Paolini, P., and Pelagatti, G., 'Binary
logical associations in data modelling', in Modelling 1in Data Base
Management System, (ed., Nijssen), North-Holland, 1976

Chen76: Chen, P. P., 'The entity-relationship model -- toward a
unified view of data', ACM TODS Vol 1, No. 1, March 1976

P

—_ A

RO S

p. 177

Codd72: Codd, E.F., 'Further normalization of the database relational
model', in DataBase Systems, Prentice-Hall, 1972

Codd?9: Codd, E. F., 'Extending database relational model to capture
more meaning' ACM TODS, vol 4, no. 4, December 1979

Date77: Date, c.J., 'An introduction to database systems'
Addison-Wesley Publishing Company, 1577

DBTG76: Data Base Task Group of CODASAL Programming Language
Committee, COBOL Journal of Development, 1976

Eswaran74: Eswaran,K.P., et.al., 'The notions of consistency and
predicate locks in a database system', IBM RJ 1329, December 1974

Eswaran?5: Eswaran,K.P. and Chamberlin, D. D., 'Functional
specifications of a subsystem for database integrity', Procd., VLDB,
1975 :

Fagin77a: Fagin, R. 'Multivalued depencdencies and a new normal from
for relational database', ACM TODS, Vol. 2, No. 3, September 1977

Fagin77b: Fain, R., 'The decomposition versus the synthetic approach
to relational database design', Proc., VLDB, 1977

Falkenberg76: Falkenberg, E. 'Significations: the key to unify data
base management', Information Systems, 1976, Vol 2, No.l

Falkenberg77: Falkenberg, E., 'Concepts for the coexistence approach
to database management', Proc., Int. Comp. Symp., April 1977

FODS76: 'Proposal for research on the design of a family of data base
systems' CISR Draft, Sloan School of Management, MIT, December 1976

FUs76: Madnick & Goldberg, 'Family of Operating Systems', Sloan School
»f Management, MIT, 1976

bry"7:; Fry, J.P. et al., 'Stored-data description and data
*+anslation: a model and language', Information Systems, Vol 2, 1977,

b4t -, 48

p. 178

Gray76: Gray, J.N., Lorie, R.A., Putzolu, G.R., Traiger, I.L.,
'Granularity of locks and degrees of consiStency in a shared database’
in Modelling in database management systems, North Holland Publishing
Company, 1976

Hall76: Hall, P., Owlett, J., and Todd, €., 'Relations and Entities’,
in Modelling in Database Management System, North-Holland, 1976

Housel79: Housel, B.C., Waddle, V., and Yao, S.B., 'The functional
dependency model for logical database design', Proc., VLDB, 1979
i

Hsiao77: Hsiao, D. K., Madnick, S.E. ‘'Database machine architecture
in the context of information technology evolution', Proceeding, VLDB
1977

Hsiao79a: Hsiao, D.K., Kerr, D.S., Madnick, S.E., 'Computer security’
Academic Press 1979

Hsiao79b: Hsiao, D.K., ed., 'Collected readings on a database computer
(DBC)', Department of computer and Information Science, The Ohio State
University, Columbus, March 1979

Huff79: Huff, S.L., 'A systematic methodology for designing the
architecture of complex software systems', Ph.D. Thesis, Sloan School
of Management, MIT, June 1980

IMSa: IBM Information Management System/ Virtual Storage Utilities
Reference Manual

IMSb: IBM Information Management System/ Virtual Storage Application
Programming Reference Manual

Kerschberg77: Kerschberg, L., Klug, A., and Tsichritzis, D., 'A
taxonomy of data models', Proc., VLDB, 1976

Klug77: Klug, A. and Tsichritzis, D., 'Multiple view support within
the ANSI/SPARC framework', Proc. VLDB, 1977

Lam79: Lam, C., Madnick, S.E., 'Properties of storage hierarchy
systems with multiple page sizes and redundant data' ACM TODS,
September, 1979

Madnick69: Madnick, S.E. and Alsop, J.W., 'A modular approach to file

p. 179

system desing', Proc., AFPIS, 1969

Madnick73: Madnick,S.E. et al., 'Virtual Information in data base
systems', Sloan School of Management, M,I.T.

Madnick?74: Madnick, S.E., Donovan, J.Jd. 'Operating Systems',
McGrqw-Hill, New York, 1974

Madnick75: Madnick, S.E., ‘'Design of a general hierarchical storage
system', IEEE International Conference Procedings, 1975

Madnick79: Madnick, S.E., 'The INFOPLEX database computer: concepts &
directions' Proceedings, IEEE Computer Conference, Feburary 1979

Madnick80: Madnick, S.E., 'Proposal for Research on the Desgin of a
high-erformance high~availability 1intelligent memory system', Sloan
School of Management, MIT, May 1980

McLeod78: McLeod, D. 'A semantic database model and its associated
structured user interface', Ph.D. Thesis, L.C.S., MIT, August 1978

Morgan75: Morgan, H.L., and Buneman, O.P., 'Alerting in database
systems: concepts and techniues', working paper 75~12-02, The Wharton
School

Navathe76: Navathe, S.B., and Fry, J.P., 'Restructuring for large
databases: Three levels of abstraction', ACM TODS, Vol 1, No. 2 June,
1976

Navathe77: Navathe, S.B., 'Schema analysis for database
restructuring’, VLCB Proceedings, 1977

Navathe78: Navathe, S.B. and Schkolnick, M., 'View representation in
logical database design', Proc., ACM SIGMOD 1978

Nijssen76: Nijssen G.M, ed., Modelling 1in Data Base Management
Systems, North-Holland Publishing Company, New York 1976

Paolini77: Paolini, P. and Pelagatti, G., 'Formal definitions of
mappings in a database', Proc., ACM SIGMOD 1977

e

L Ty

oy o reitom w

p. 180

Ries77: Ries, D.R., and Stonebraker, M., '‘Effects of locking s
granularity in a database management system', ACM TODS Vol.2, No.3,
September 1977

|
|
Rothnie76: Rothnie, J.B. and Hardgrave, W.T., 'Data model theory: a J
beginning', Texas Conference on computer Systems, 1976 i

Roussop?5: Roussopoulos, N. and Mylopoulos, J., 'Using semantic 3
networks for data base managment', Proc., VLDB 1975

Schkolnick78: Schkolnick, M., 'A survey of physical database design 4
methodology and techniques', IBM Research RJ 2306, August 1978 3

Schmid75: Schmid, H.A., Swenson, J.R., 'On the semantics of the
relational data model', ACM SIGMOD Conference Proceedings, 1975

Senko73: Senko, M.E., 'Data structures and accessing 1in database
systems: II. Information Organization', and 'III. Data
representations and data independent accessing model', 1IBM Systems
Journal, No.l 1973

Senko77: Senko, M.E, 'Data strucutre and data accessing in database
systems: past, present and future', IBM Systems Journal No.3, 1977

Smith71: Smith, D.P., 'An approach to data description and H
conversion', Moor School Report No. 72-20, University of Pennsylvania,
1971

Smith77a: Smith J.M., Smith D.C.P., 'Database abstractions:
Aggregation and generalizations', ACM TODS Vol 2, No.2, June 1977

Smith77b: Smith, J.M., and Smith, D.C.P, ‘'Database abstractions:
Aggregation', CACM, Vol 20, No. 6, 1977

Toong80: Toong, H.D., 'A general multi-microprocessor interconnection
mechanism for non-numeric ©processing', Fifth Workshop on Computer]
Architecture for non-numeric processing, March 1980 i

Tsichritz78: Tsichritzis D. et al. 'The ANSI/SPAC DBMS framework',
Information Systems, 3,3,1978, pp.173-192

Vetter77: Vetter, M., 'Database design by applied data synthesis',

e el T e T e

p. 181

VLDB Proc., 1977

Yao79: Yao, S.B., 'Optimization of query evaluation algorithms', ACM
TODS Vol 4, No. 2, June 1979

Yourmark77: Yormark, B. 'The ANSI/X3/SPARC/SGDBMS architecture' 1977

e e e

[S AT TP T e Sl

