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Approximate Analytic Solutions for the Primary
Avuroral Electron Flux and Related Quantities

1. INTRODUCTION

The problem of calculating the distribution function for auroral electrons may
be approached from two points of view. One approach is to neglect collective
effects and treat short range particle-particle collisions using linear transport
theory; the other is to neglect short range collisions and treat collective effects
using quasilinear or nonlinear plasma kinetic theory, At high altitudes the latter
approach is often used as the plasma is essentially collisionless, whereas at low
altitudes {below about 250 km) linear transport theory is generally used as the
plasma is neutral particle collision dominated. The question of how to combine
the short range and collective aspects of the problem is, and should be, an active
area of research. In this paper we confine our attention to the lower ionosphere
and apply the methods of linear transport theory to calculate the auroral primary
electron flux,

There is an extensive literature on the subject of electron transport in the
auroral ionosphere, The various approaches may be categorized as semi-
empirical, range theoretic, Fokker-Planck, Monte Carlo, and transport theoretic,

Farly work on transport properties of KeV auroral electrons comes from

Chamberlain., Estimates were made of ionization rates as a function of altitude

(Received for publication 2 March 1981

1. Chamberlain, J.W. (1961) Physics of Aurora and Airglow, Academic Press, N. Y.
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for energetic KeV electrons, The rates were based on deposition results of

Spencer who solved the electron transport equation using the continuous energy

loss approximation, 1{9054 (a semi-empirical approach) applied an energy
dissipation function based on laboratory data by Grun, 5 The forms of the func-
tions obtained by Rees provided altitude profiles of the energy deposition and
ionization rates for monoenergetic and energy distributed sources with various
pitch angle dependences,

Walt et al, were the first to provide altitude, energy, and pitch angle infor-
mation on auroral electron fluxes in the KeV range. 6 To do so they obtained a
numerical solution of a Fokker-Planck equation which was originally used to study
the properties of electrons trapped in the radiation belts, 7 The method assumes
continuous energy loss and small angle scattering, Banks et al, 8 joined together
Walt's Fokker-Planck method and a low energy approximate two-stream transport
method by Banks and Nagy, 9 previously applied to photoelectron transport, The
resulting equation was solved numerically.

Beger et al, chose to examine auroral electron transport by applying Monte

Carlo techniques. 10, 11

Backscatter yields, backscatter spectra, and altitude
profiles of the energy deposition rate are among the transport quantities that were
calculated by this method, In the first of the two papers noted above, information

was also given on the lateral spreading of KeV, narrow electron beams,

2. Spencer, L.V, (1955) Theory of electron penetration, Phvs, Rev, 98:1507,

3. Spencer, L.V. (1959) Energy dissipation by fast electrons, National Bureau
of Standards Monograph 1,

4. Rees, M., H. (1963) Auroral ionization and excitation of incident energetic
electrons, Planet, Space Sci, 11:1209.

5. Grun, A.E. (1957) Lumineszenz-photometrische mo-sungen der energic-
2hsorption im strahlungsfeld von electronquellen, cindimensionaler fall in
luft, Z. Naturforsch., Ser. A, 12:89.

6. Walt, M., MacDonald, W, M., and Francis, W. I, (18967) Penetration of

auroral electrons into the atmosphere, Physics of the Magnetosphere,

R. L. Carovillano, J.F. McClay, and H. R. Radoski, eds., D. Reidel,

Dordrecht, Netherlands, 534.

7. MacDonald, W.M. and Walt, M. (1961) Distribution function of magnetically
confined electrons in a scattering atmosphere, Ann. Phys. 15:44,

8. Banks, P.M., Chappell, C.R,, and Nagy, A.F. (1974) A new model for the
interaction of auroral electrons with the atmosphere: Spectral degradation
backscatter, optical emission, and ionization, J. Geophys. Res. 79:1459,

9. Banks, P.M. and Nagy, A.F. (1970) Concerning the influence of elastic
scattering upon photoelectron transport and escape, J. Geophys. Res,
75:1902,

10. Berger, M.J., Seltzer, S.M., and Maeda, K. (1970) Energy deposition by
auroral electrons in the atmosphere, J. Atmos. Terr. Phys. 32:1015,

11, Berger, M.J., Seltzer, S.M., and Maeda, K. (1974) Some new results on
electron transport in the atmosphere, J. Atmos. Terr. Phys. §_Q:591.




There ave at least three transport models utilizing the linear transport
equation which have recently been apptlied "o auroral studies, These ave the
madels of Strickland et al, 12 I\lantas13 and Stamnes, 14 All three models give a
detailed description of elastic scattering and alloa for discrete energy loss, Dif- !
ferences arvise in the representation of the flux within the collision integral and in '
the method of integration over depth.  Strickland et al, allow the flux to vary
quadratically in {n E and .inearly in g within any given E, 4 cell. 12 The quadratic

dependence was introduced because of energy conservation problems for a linear

dependence when treating energetic fluxes above several KeV. The integration
over depth is carried ou* by either a finite difference method (second order
pred ctor-corrector) or an eigenvalue method, The latter approach was found to

be mu-h faster and more accurate, Mantas allows the flux to vary linearly in

‘4‘,_,.__,._..‘

both F and 4 within any F, u cell. 13 He also uses a linear dependence within a

given » cell which leads to the standard finite difference expression for the first
order 7 derivatives, Stamnes treats the u dependence of the problem by the dis-
crete ordinate method and considers the flux to be constant within a given F cell

. . . 4 . . .
(commonly called the multigroup approximation). ! For a good discussion of the
12

discrete ordinate and multigroup methods see Davison, 15 Like Strickland et al,
Stamnes uses an eigenvalue technique to carry out the integration over depth. 14 |
The discrete ordinate method for treating the angular dependence of the electron k
flux converges poorly for highly anisotropic scattering kernels, Therefore, the i
angular dependence of the results of Stamnes at high energies in the backward
direction are quastionable. All of the transport methods lead to a truncated
matrix equation which is solved numerically.

Thne new feature of the work presented by us in this paper is that we give
i approximate analytic solutions for the primary auroral electron flux in the down-
ward hemisphere and related quantities. All previous work on this problem has

resulted in numerical solutions, The analytic results, though approximate, are

useful in giving insight into the physics of auroral electron precipitation and in
carryving out further analvtical studies of auroral phenomena. For example, in
work currently in progress using the multiple scattering method, we show that

elastic scattering can be included rigorously and that the solution given in this

12, Strickland, D.J., Book, D, L., Coffey, T,P., and Fedder, J. A, (1976)
Transport equation techniques for the deposition of auroral electrons,
J. Geophys. Res. 81:2755.

13. Mantas, G. P. (1975) Theory of photoelectron thermalization and transport
in the ionosphere, Planet, Space Sci, 23:337,

14, Stamnes, K, (1978) A theoretical investigation of the interaction of auroral
electrons with the atmosphere, Ph. D, thesis, University of Colorado,
Colorado.

t
:

15, Davison, B. (1957) Neutron Transport Theory, Oxford Press, London.




paper is just the leading term in an iterative sequence of solutions which treats
In work also in

the complete problem including secondary electron production.

progress the method presented in this paper is used to solve the coupled proton-

hvdrogen precipitation problem for the proton aurora. These solutions for the

proton and hyvdrogen flux and related quantities are similar to the ones nresented
here for the electron precipitation problem,
2. BASICEQUATION

For a one constituent atmosphere the linear transport equation for energetic

electrons in plane-parallel geometry is

[u 9—7 . n(/,)Q[(]‘:)] ®(s, ) H(Y)(‘Qy“'j)f Al dat ROE'w - P @z, B, u’Y

3
(1)
where ¢ is the electron flux, n is the neutral density, and
2m
Dut . Fu) = S N SUTISN . 2
RUta! - 1) = oy 2 oglEw - ) (2)

i
Heve, z is the altitude, I the particle energv, u the cosine of the angle hetween
the particle velocity and the positive z-axis, und o, the differential cross section
per unit energy range (referred to hereafter as the differential cross seetion) for
electron-neutral particle scattering where the neutral particle makes a transition
from the ground state to the final state i.  The total cross section, QI(I-I), 15 re-

Iated to the differential cross section by the formula

QUK = 27 f(u-;' dut ol - En) (3)

i

3. EQUATION FOR THE PRIMARY ELECTRON FLUN

The differential cross sections describe elastic, excitation, and 1omration-

type collisions between the electrons and the neutral particles., Inionization-type

collisions additional (secondary) electrons ave produced, The electron flux in

Eq. (1) includes both primary and secondary eleetrons, The secondary electiron

10




spectrum is highly peaked at low energies (dimm
16

) [n the auroral tonosphere f
min min

arbitrary but is on the order of 12 KeV for primary clectrons ranging from

) with very few secondary elec-
trons at higher cnergies (GE is samewhat
1 to 60 KeV. If we restrict the energyv range of Fq. (1) to high energles, we may
approximate the electron flux by neglecting the secondaries compared to the

primaries; that is,

LR o for DS
primaries

(DI , (4)
min

and use a differential cross section for ionization-type collisions that describes

only the scattering of the primary electrons, Viewing the ionizatton=type collhi-

stons in this wav we may approximate the differential cross sections for KeV

auroral electrons by

o (B ) (2n)'1c90(1-:')m:' S p () ()
NG DL ) > (2m vak(l-.')é[l-.' - (B - W k)I pl\xk(“"“) . (s)
r*gl‘.ﬂ(l‘:'u' o b)) (27)'1({‘{’) (11, 1) pf'{’) W) . (N

Here, the subscripts ¢, ex, and 1 refer to elastic, exeitation, and tontzation-tvpe
collisions, respectively, § 15 the Divae delta function, the pofunctions are syvim-
metrie 1 ! oand g oand ave normabised to one, the total cross section for each
process is denoted by Q. and the superscmpt porefers o primary clectrons, AV
N
1= the excitation enevav,  For a discussu of Lo clastie, exertation, and o o=
tion tvpe cross sections see Strickland e !
The equation for the primary electron flux s Fq. (1) wath the diffesential
Cross sections given by bas, (3), () and (), and s valud for o l::nm'

1. FORWARD SCATTERING AND AVERAGE DISCRETE ENFRGY.
LOSS APPRONXIMATIONS

In the auroral region two facts about the differential eross sections at high
energies ave apparent,  Thev are that 1) the differential cross sections are nehis

peaked in the forwnrd divection, the exeitation, and fonzation tvpe cellisiens beme

v, Opal, (,B,, Peterson, WoK., and Beaty, HLC, (1071 Measurenionts of

seconda:

v-eleetron spectra produced by electron impacet onieation L a
number of simple gases, J, Chem, Phys, a004100,




even more highly peaked than the elastic collisions, and 2) the average energy
loss per inelastic collision (excitation and ionization) is a weak function of the in-
cident electron energy. This suggests that for inelastic collisions we make the

forward-scattering and average discrete energy-loss approximations:

Z °exk(E'“' - Eu) —~ (21r)'1 (Z Qexk(E')> SIE' - (E+W)] 6@ -u) ,
k k

(8)

Y o P« g - en (Z Q”(E')>6[E' SEFWIsW -, (9)
{ {

where W is the average primary electron energy lost per inelastic collision

defined by

_ . . S TITON §>) PR
W = [Z“erka* zfdn (E - EYo, (h,h)]
k f

-1
. FRR €} PRS-
X [Z Qeyi(E) + § [arr offE, m] . (10)
k 1

W as a function of E for the auroral cross sections used by Strickland et al, is
32, 36, 42 and 48 in eV for 1, 3, 10 and 30 KeV primary electron energies,
respectively. 12 In the average discrete energy-loss approximation W is assumed
constant. For elastic cross sections a screened Rutherford cross section is

often used:

O (Emt = Eu) ~ 20 1QuEN 61 - B pla,ut ) (11)

2n(1 + (L + 2n ~ u'u)
f(1+2n 'u'u)z ~(1 - u'z)(l _“2)]

p("l,u',u) = 3/2 , (12)

where n is a function of energy. For graphs of p as a funtion of n, u' and 4, and

n as a function of E see Strickland et al, 12

12

-y

~— o




Inserting Eq. (8) through Fq. (12) into Eq. (D) and transformmg Fa. (1) to

an equation in terms of the optical depth, 7, where
dr - -n(2)Q(E) dv (13)
we obtain

, . QUE + W e e
ST 1\¢(7, S —WTJT\') Bz, 10 W), B W, W)

Q1) -
+ —Q(—')_ - 3T b,y + f du pln, pt, w) o7, uh) s
-1

(14)

where Q and Q() denote the total inelastic and total elastic eross sections, respec-
tively, and 7 denotes 7(z, ). The ratio Q(F - W) QE) is near 1 and the ratio
Qt\(I-J) QI7), as given by Strickland et al, 15 0,84, 0.62, 0,45 and 0,37 for 1, 3,
10 and 30 KeV primary electron energies, respectively, 2 On the right -hand side
of Fq. (14) we may view the second and third terms as producing a correction to
the first term.  This correction is not necessarily small, For example, we know
that in the backward hemisphere elastic scattering is the dominate process and
contributes the most to the backscattered flux. The solution here is very sensi-
tive to the ratio Qp ‘Q and to the precise shape of pO7, u’, u). However, in the
downward hemisphere we expect the first term on the right-hand side of Eq. (14)
to produce a contribution to & which is comparable to or larger than the contribu-
tion made by the second and third terms, In this paper we seck an approximation
to the flux in the downward hemisphere.  An equation for such an approximate
solution is obtained from kq. (14) by taking the limit of the function p as I - «

(n - 0)., It can be shown that

pl{n, u’, u) »0 slu' - u) . (15)
77"’

In the high-energy approximation elastic scattering becomes highly peaked in

the forward direction and drops out of Eq. (14). We obtain

oy L Tz, B, B ) Q(_gﬂ%w_) o{T(z, I+ W), K+ W, u) . (16)




kquation (16) is a partial differential-difference equation for the primary electron

flux now denoted by ¢, as a function of 7, I and y, approximately valid for

< k <o, and -1 <y < 0.

0=< T« | DY
) %, min

5. MULTIPLE SCATTERING METHOD

The multiple scattering method may be applied in principle to any linear
transport equation satisfyving certain general requirements, For a discussion of
the multiple scattering method applied to elastic scattering see Goudsmit and
Snundorson17 and Wang and Guth, 18 to inelastic scattering see Fano, 19 and to
both types of scattering see Case and Zweifel, 20 In our case we wish to apply it
to Eq. (16) which contains only inelastic scattering, To do so we rewrite

Eq. (16) as

<—ug—;’l>d> Lo | an

where JLis the linear operator that shifts the energy variable of ® by W and
multiplies by Q(t + W)/Q(E). The multiple scattering method consists of writing

o0
ST, E,p) = ) (T ) (18)
n-0

where the ¢, satisfy the infinite system of equations

9
<-u 37 * 1>¢” o, (19)

<—u &+ 1)¢1 - 2o, (20)

17. Goudsmit, S. and Saunderson, J. L. (1940) Multiple scattering of electrons,

Phys. Rev. 57:24.
18. Wang, M.C. and Guth, E. (1951) On the theory of multiple scattering, par-
ticularly of changed particles, Phys. Rev, 84:1092,

19. Fano, U. (1953) Degradation and range straggling of high-energy radiations,
Phys. Rev. 92:330.

20, Case, K. M, and Zweifel, P, L. (1967) Linear Transport Theory, Addison-
Wesley, Reading, 48.




(_“ 5;_4, ]> d)n - an—l s (21)

and then solving for the d)n subject to appropriate boundary conditions, If & exists
it is referred to as the multiple scattering or orders of scattering solution, The
fact that Eq. (18) is a solution to Eq., (17) is seen by adding the above infinite
system of equations for the ¢n.

The function d’n which we may call the nth order partial flux has a simple
physical interpretation. éo is the flux of particles per unit energy per unit solid
angle at z, E, and y which have experienced no collisions, ¢1 is the flux of
particles per unit energy per unit solid angle at z, E, and u which have scattered

once, and so on for each order of scattering denoted by n.

6. MULTIPLE SCATTERING SOLUTION

The boundary condition for electrons incident at the top of the ionosphere is

(0, E,u)=d(E ) , for -1=yu<0 . (22)
This implies that for n = 0,

¢o(0, E,u) = d(E,n) , for -1=u<0 | (23)
and for n > 1,

¢n(0, E,u)=0 for -1=yu<0 , (24)
No particles are incident from below the ionosphere.

The solution to Eq. (16) may be found as follows. The solution for ¢O subject

to the above boundary condition is

S(E,udexp(T/u) , -l= u<0

¢O(T, E,u) = (25)

15




L and the solution d>n in terms of ¢n-1 forn=1is

T

0,7, B, u) = - exp (T/u) fdt ut by ooy (byyt B+ Wou) exp (-t/w) , (26)

O

for -1 <y <0. For0=<yu=1the d)n are zero. The complete solution is

o
(7, E,u) = &(k, u) exp (T/u) + Z o(k + nW,u)bnl(IrJ)
n=1
XM (7/u, E) - 0 (0, E) exp (T/u)} (27

for -1< 4 <0, and & = 0 for 0 < u < 1., The recursion relation for the H func-

tions is

exp (-x) Hn+1(x, E) -~ Hn+1(0' E) =

X
- f dx' exp (-xD{H (b, X', E + W) = H (0, + W) exp (b, ;x] . (28)
()

An explicit formula for the general H function has been worked out by mathemat -
ical induction but, as it is quite lengthy, only the first three functions will be

given here:

}ll(x, FY a 1 UXp (b, .x) (20

1 1%

H,(x, 1} - Aypityy OXP (lx)l.\:) -0 exp (b

0® (20

22711

}]‘,‘(x, F) - Aq3itgadgy ©XP (hRIX) = Aggfgafy g X {b“x)

" Afgyap OXP Dy X+ agaagga g exp (b x) (31)

In the above formulae we have introduced the following definitionss

hnm hnm(l',‘) = QE + nW)'QE + (m - DW)Y

32)




"-MWM-W. s o R MU A -
\
|
= ]
a_=a (E)=l1-b_(EN! . (33) {
nm nm nm r‘
Equation (27) may be rewritten in an alternative form as E"
-] n
&(7, E, 1) = ®(E, ) exp (T/u) + Z 3(E + nW, 4) Z A,
n=1 1=1
X [exp (Bl T/u) - exp (T/u)] (34)
where
B,(E) = B, = b, (E) , (35)
and the first few An! = Anl (E) are
All =+ bllall , (36)
Agp = * bya089; 37
A21 = - b21a22a11 , (38)
Agg = * b3 ag3a5035, (39)
| ;"" Asz 7 7 31833392701 (40)
] t Agy 7 - bgy [+ aggagyayy -agzagyayl . (41)
¢

Several comments about this solution are in order. The primary electron
flux, &, is an exact solution to Eq. (16) which {s in turn an approximation to
Eq. (1). The fact that it solves Eq. (16) exactly can be verified by direct sub-

stitution, The value of & depends linearly on its boundary value; doubling the

!
o ]
i 3

incident flux doubles the flux at all altitudes. The solution yields no backscattered
primary electron flux. The reason for this is that in the forward scattering ap-
proximation elastic scattering drops out and no particles are scattered into the N

backward direction.
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7. HEMISPHERICALLY AVERAGED FLUX, ENERGY DEPOSITION
RATE AND IONIZATION RATE

The hemispherical electron flux, P is defined as the average value of the
electron flux over the downward hemisphere and is

(o]
24(7, B = 27 fdu o(1, E, u)/21 .0 42)
-1

The energy deposition rate, Ny is defined as the energy deposited pcr unit vol-
ume per unit time by the precipitating electrons, and is given in plane-parallel

geometry by

o0 +1
np(2) = 21r_/' dE f dup En() QE) 22 8(7, E,u) . (43)
o -1

The ionization rate, i is defined as the number of electron-ion pairs produced
per unit volume per unit time, This can be found to a good approximation from

g by using Bethe's t'ormula21

n(2) @ ES (44)

where . is a constant, A good value for Eg for auroral electrons has been
found to be 34 eV, In this way we find an approximate formula for uh without

solving explicitly for the secondary electron flux,

8. SOLUTIONS FOR SPECIFIC INCIDENT ELECTRON FLUXES

8.1 Preliminary Remarks

In this section we give analytic expressions for the quantities defined in
Section 7 for several specific forms of the incident electron flux, Before we do
so, we remind the reader that our analytic solution for the electron flux is only
valid for E > Em'm'

we note that the contribution to the integral below Emin only amounts to a few

However, in the energy integral from 0 to o which defines

g
percent for auroral electrons,

21. Bethe, H.A. (1933) Hanbuch der Physik, Verlag Julius Springer, Berlin
24:491,




8.2 Unidirectional-Monoenergetic Incident Flux

For a unidirectional-monoenergetic electron flux incident at the top of the
ionosphere the boundary condition is

Q
®(E, u) = (5;5—;—) §(E -E )6 +u) , (45)
[e]

1E where Qs is the total energy flux in the downward direction, Eo is the electron

energy, and Ho is the cosine of the angle of incidence, x, where 0 < x < 7/2,
The electron flux is

-

Q
®(T, E) = <ms—“—> 8+ u,) {6(}':1 - E_) exp (1/y)
o0

4 + Z S(E + nW - Eo) bnl(E)[Hn('T/u, E) - Hn(O, E) exp ('r/u)]}
n=1

3 (46)

{ The hemispherical flux is

~ QS -
QH(T, E) = m {6(13 - ho) exp (-T’/“O)

+ Z §(E - (EO - nW))br11 [Hn(-'r/uo, E) - Hn(O, E) exp (-T,’uo)]}
n=1

The energy deposition rate is

np(z) = & QUE In(2) Jexp (-7(z, E Y/u ) + Z (1 W/E b2 (E N
E M o { P '+ ol Ho - oW/ o nl(Lo-n\)

(6]
n=1

X [ (-7(z, E_ - nW)/u_, E_-nW) - H (0,E_ - nW)

X exp (-7(z, E - nW)/uO)]} . (48)
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where the I functions are
5 ]
> = N 3
In(x, E) = % Hn(x, E) . (49)
It should be pointed out here that the above sums do not extend to o but to a max-~
imum value, N, given by NW = EO - Lm'm'
8.3 lsotropic-Maxwellian Incident Fiux 1
For an isotropic-Maxwellian electron flux incident at the top of the ionosphere
the boundary condition is
&(E, u) = 53 Eexp(-E/E) , for -l=u<0 , (50)
. o
27K
5 \
;
where Qs is the total energy flux in the downward direction and Eo is the charac-
teristic energy. The resulting electron flux is given by

a0

Qs
o(1, E,u) = —3 {L exp (-E/E ) exp (T/u) + Z (E + nW)
ZWE( ° n=1

X exp (- (E+nW)/E )b . [H (T/u, E) - H (0, E) exp (T/u)] ,
o nl''n n

LT T AT ks M & Ao

51D
with ® = 0 for 0 = 4 =1, The hemispherical flux is
Q o0
- S - e
@H(z, E) = P {E exp ( E/Eo) Ez('r) + Z (E + nW)
o n=1
X exp (-(E + nW)/EO) b [Kn('r, E) - H (0, E) Ez('r)]} i (52) &
where E2(x) is the second exponential integral function defined by
o0
E,(x) f a2 exp (-xt) . (53)

1
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The first three K-functions are

K, (x, E) -~ a; Eyb %) (54)
Kz(x, E) = 2y 2119(b x) - 3y “E2(b , (55)
Kg(x, E) = aggagoas Ey(by %) - 438558, 1 Ey(by %)

33899891 155(by X) + agsay,ay Eyby x) (56)

The general rule for the K functions is the same as that for the H functions with

the exponential function replaced by the second exponential integral function.
The energy deposition rate is

nE(z) = § n(z) f dE EQ(E) {E exp (—E/EO) E2(7)

[+ o]
Z (E + nW) exp (-(E + nW)/E ) b [L (7, E) - H (9, E)E2(7))}

(57)
The rule for the L functions is the same as that for the I functions except that the
exponential function is replaced by the second exponential integral function.

performing the integral over the total inelastic cross section, Q
may be truncated at some E

In
, the integral

max’ When this is done the infinite sum terminates
€

at a maximum value, N, given by NW = E -E ..
max min

8.4 Isotropic-Monoenergetic Incident Flux

For an incident isotropic-monoenergetic flux the boundary condition is

Q
. o(E, u) = <”L > S5(E - E ) for _-l=u<0 (58)

! where Qs is the total energy flux in the downward direction and E

o is the electron
energy, The expression for & is

bR P
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TE

QS o
&(T, E,u) = . {6(12 - E)) exp (T/u) + z S(E+nW - E )b .

n-=1
X (1 (T/u, 1) = H_(0, E) exp (wn} , (59)
with @ 0 for 0= 4 < 1.

9. RELATIONSHIP BETWEEN THE, ENERGY DEPOSITION RATE
AND CHAPMAN AND J FUNCTIONS

9.1 Preliminary Remarks

Chapman functions are functions of altitude which arise in the Chapman theory
of the davtime 1onosphere. The functions gives the ionization rate, which is re-
lated to the energy deposition rate, for a single Chapman layver, The ionization
rate profile is produced by the photoionization of the neutral particle gas by
wntzing electromagnetic radiation from the sun. In the auroral zone at night,
the 1onized laver is produced by a different process; the precipitation of encrgetic
electrons incident at the top of the atmosphere, It has been known for some time
that the auroral tonization rate profile (or energy deposition rate profile) is much
more highly peaked as a function of altitude than is a single Chapman function,

[n this section we establish the connection between the Chapman functions and
the auroral 1omzation rate, specifically we show that the solution for the energy
deposition rate in the auroral ionosphere is a superposition of Chapman functions
for unidirectional incident electron fluxes, and a superposition of what we call
J functions for isotropic incident electron fluxes. In order to do this we use the

alternative expression for Ny we obtain when Fq. (34) is substituted into Fq. (43).

0 o]
"I-:(Z) - 27 n(z) f dE f du EQ(1) {d)(l::,u) exp (T(z, 1) w)

B -1
min

[ ] n
£y BB W, Y A (E)
n-1 -1

X [Bl(l‘l) exp (B‘,(]‘:)T(Z, EY/uY - exp (1(z, 1) u)ﬂ( . (60)
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9.2 Generalized Chapman and J Functions

The Chapman functions as introduced by Chapman i522

o0
Ch(z) = n(z) exp |- “—f f dy n(y) s
o

4

(61)

where [ is a constant and He is the cosine of the angle of incidence, x, where
0< x <n/2, Letus

ments

Ch <z, L r<rc>>
u

where 0 <= z < 0, -1

now define a generalized Chapman function of three argu-

o0
n(z) exp @ fdy n(y) ,

z

(62)

< u <0, and f is a positive function of E, where 0 < E < o0,

By analogy with the Chapman function let us introduce a J function

o]

- o)
f .
fd# n(z) exp by f dy n(y) , (63)
-1 z

J(z)

i

and a generalized J function

(¢]

0
J(z, (E)) = fdun(z) exp f(TQ f dy n(y) s

-1 z

(64)

where 0 = z < w0, and f is a positive function of E, where 0 < E < w0,

ing Eq. (64) to an integral ont, wheret =

Transform-
-1
= -y °, we see that

a0
J(z, {(E)) = n(z) Fgy f(E) f dv n(v) ,

A

(65)
where E, is defined by Eq. (53).

22, Chapman, S. (1931) The absorption and dissociative or ionizing effect of
monochromatic radiation in an atmosphere on a rotating Earth, Proc.
Phys. Soc, 43:26,
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9.3 Energy Deposition Rate for Unidirectional Incident Fluxes

For a unidirectional incident flux (“o ccos x, 0 < x <7/2) the energy depo-

sition rate given by kq. (60) is

Emax
rlF(z) = 27 f dE EQ(E) { #(1) Ch (2, -—1—, Q(E)>
) kK iy
‘min

N n
" Z z o(1 +nW) A, (E)
n=1 £-1

X B (E) Ch </ - Bf(r:)Q(E)) - Ch </ - Q(M)
“0 “0

(63)

Thus, the exact solution of Fg. (16) vields the energy deposition rate as un encegy
integral over a finite superposition of generalized Chapman functions,

The explicit solution for a unidirectional-monoencrgetic meident flux -

Qs 1
nE(z) - . Q(}fo) Ch [z, -Hg, Q(Eo)

N n
)y (- aW/E DB (E ~nWA L (E - nW)
n-1 (=1

\

N OB - W) Chz, -l B(E -aW)QE - nw)!
o T £ o o /

N S o .
- Ch (z, ;‘T; Q(L0 n\\)) . (67)

This explicit solution reduces to a finite superposition of generalized Chapman

functions with shifted energy arguments,




—

9.4 Energy Deposition Rate for lsotropic Incident Fluves

For an isotropic mmeident flux the energy deposition rate 1s

l':mzlx N n
2y 2 f dE EQEY (@ () Iz, Q(E) - Z Z ®(H 4 W) A (1)
| DI n=1 (1
min
v [B((r:)J(y, B (1) Q) - J(z, Q(EN] . (1i8)

Here, the exact solution of Eq. (16) vields an energy deposition rate as an energy
integral over a finite sum of generalized J functions.

For an isotropic-Monoenergetic incident flux the enervy integral can be done
explicitly and for an isotropic-Maxwellian incident flux the energy integral can be

done by quadrature,

10, USE OF PSEUDOPARTICLES TO APPRONIMATE THE sSUMS

In the formulae of Sections 6 through 9, W is a number on the order of 40 eV

and the primary auroral electron energies range from about 1 to 60 KeV., As a
result, the sums in the formulas extend to a3 many as 1500 terms representing as |
many as 1500 scatterings before an energetic electron loses all its energy. How-
cver, it turns out that a good approximation to these large sums may be obtained

by introducing the notion of pseudoparticles which, in turn, allows us to take ‘
many fewer terms in each sum. A pseudoparticle is a particle which as a cross 1
section W'W 5 times smaller than the real particle but has an average energyv loss
per inelastic collision \\")x"\\' times greater, such that the produst of the two re-
muains the same. With :his approximation a good answer is obtained for the sums
given in Sections 6 through 9 with many fewer terms in each sum, }‘

In order to introduce pseudoparticles into the equations of Sections 8 through

O we simply replace Q by Qp and W by “.p‘ that is,

Q(E) —~ Qp(l;‘) = (W V\\'p) QIEY (69

LW o= (W W)W -
W “p (“p/\\)\\ . (70)

We have examined the convergence of the pseudoparticle method as we

approXximate the sums by a smaller and smaller number, N, of pseudoscatterings




spanning the energy range from I to k.,
spanning ti e & max min

can be obtained with a surprisingly small number of pseudoscatterings. For

We have found that a good answer

example, for ansotropic-AMaxwellian incident flux with I'S() ranging between I and
10 KeV only 10 to 15 pseudoscatterings spanning the energy range are needed to
obtain answers to within a few percent of the full solution 1t maost altitudes of
interest,

In Figure 1 we show the hemispherically averaged partial fluxes, LT for a
sequence of n values for an isotropic-Maxwellian incident flux with I-Z“ 2 KeV

2
and Q_ = 1 erg, em™s for the case where N 12, That is to say, 12 pseudoscat-
]

terings spanning the energy range of inferest from lim-nx = 13 KeV to
Emin -1 KeV, In Figure 2 we illustrate the rate of convergence of oy by show -

ing the sequence of partial sums of ¢I]n for the same case, In Figure 3 we show
the partial ionization rates (nm : nlin"'34) for the same case, Note that for .,
we obtain a J function profile and for n,m(n > 1) we obtain functions with a single
node, each of which subtracts from n,, at high altitudes and adds to n,, At low
altitudes. In Figure 4 we show the rate of convergence of n; by showing the

sequence of partial sums of Min for the above case,

Z (km)

140

100

108 0° 10*

¢, (2,E=25KeV) (el/cm’ s eV sr)

Figure 1, Hemispherically Averaged Partial Fluxes for
an [sotropic Maxwellian with E = 2 KeV, Q_ = 1 erg/
cemés and N = 12 ° s
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Figure 2. Sequence of Partial Sums of Hemispherically
Averaged Partial Fluxes for an Isotropic-Maxwellian as
in Figure 1
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Figure 3. Partial lIonization Rates for an lsstropic-
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Figure 4. Sequence of Partial Sums of Partial Ioniza-
tion Rates for an Isotropic-Maxwellian as in Figure 3

As a general rule we find that the lower the altitude the morve pseudoscatter-
ings (the larger the N) covering the range from I'Im“x to “min are needed to oh-
tain a good answer, For example, we find that in the above cas+~ the difference
in the energy deposition rate for N = 12 and N = 20 is -0.25 percent at 160 km,

+0. 8 percent at 110 km and +1, 6 percent at 104 km,

11. COMPARISONS

11.1 Preliminary Remarks

In this section, we compare our analytical results to other transport caleula-
tions. Quantities of interest are the electron flux, its hemispherically averaged
value, and the energy deposition rate. Selected comparisons will be made for
monoenergetic and Maxwellian sources,

The particular models we use for comparisons are the Rees, Range, and
Strickland models, A Range model was specifically developed for this work and

to follow will be a brief description of its contents, We start with the loss
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function, L(E), which one can obtain from the Bethe t'ormula21 for energies above
several hundred eV or from cross sections using

- ; : R £1) PR .
LEY = ) Wy Qu(B)+ O de (B - Enoltie By . 1)
k £

L{(E) has been calculated from the cross sections in Strickland et al, for N
12

5, and

from current tabulations for 0, and 0. The formula needed to specify the
energy loss is '

7z
¢

)
o . P B
Bz, Eu) B, z f LT I CN
i d

Jo,uo))ni(?") , (72)

where b, is the cosine of incident angle, 2 is ailitude, E is the starting energy
(o]

at [ and n].(z) is the particle density of the jth neutral species. The energy

deposition rate is

nE(z) = fdlt)“ fdQU Z nj(z)tb(Eo,uO) Lj(E(z, }':o""o)) . (7:3)
3

For all four models compared in this section the Jacchia (1000”)23 model
atmosphere was used. For the Strickland and Range models the same individual
inelastic cross sections and constituent neutral densities were used and for the
analvtic model the same total inelastic cross section was used. The weighted
total inelastic cross section, Q(E), was 2,83, 1.31, 0,568, 0,221, 0,0895, and
0.0297 times 107 1% in em? for 0.3, 1, 3, 10, 30, and 100 KeV, respectively.

The value used for L‘S was 34 eV and the values used for W are given in Section 4,

11.2 Comparisons for Isotropic-Monoenergetic Incident Fluxes

The models to be considered are the analytic, Rees, and Range models.
Incident energies to be considered are 2,‘ 5, and 10 KeV, Figure 5 shows Ny, VS 2
: for incident power deunsities of 1 m‘g/omzs. The Rees results were generated by
d us using his energy dissipation function, The analytic and Range results are sim-

ilar as expected since the corresponding models both contain the forward

23, Jacchia, L.G. (1977) Thermospheric temperature, density, and compos.tion:
new models, Rep. 375, Smithson. Astrophys. Observ,, Cambridge, Mass,

¥ 723

o et

1




150 — . .
\\ Ey ¢ 10 Kev
140 ---- ANALYTIC
——— RANGE
\3C ~ — REES-GRUN
E RANGE BASED ON
= N n »nN2¢n°2+no
N20
1o
1004 - T T e *J;
10 10° w0®
ne t21 levriem® 5)
mor N
| \ E, = 5 Kev
N
49 N ---~ ANALYTIC
~—— RANGE
130 N~ — REES-GRUN
£ N RANGE BASED ON |
x \n : n~2+ nozlrno {
N 20 !
[N - ~
IOO‘-T—M*-“(*ML%A——*“@*'~
10 10 10°
ng (21 tevriem® 5)
160 e = ey o S
r Eo : 2 KeV
150 -~ ANALYTIC
—— RANGE
— — REES GRUN
— 140
3
=
N30 -
120 s
RANGE BASED ON
n=n +n_ +n
N2 Cl2 o}
noLq - I N
10 0° 10°

ne (21 (evrem® 5)

Figure 5. Energy Deposition Rates from the
Analytic, Range, and Rees Models for 10, 5,
and 2 KeV {sotropic-Monognergetic Sources
Each Containing 1 erg/cme<s
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scattering approximation, Departures result from the differences in the descrip-
tion of energy loss, The analytic model allows for discrete energy lass and in
turn straggling., Greater differences exist between the analyvtic and Rees results,
the latter showing a broader deposition prof®  with less total energy deposition,
We expect these latter results to be the more accurate since thev include the

effect of pitch angle scattering.

11.3 Comparisons for Isotropic-Maxwellian Incident Fluxes

The maodels to be considered are the analvtic, Range, and Strickland models,
Characteristic energies to be considered are 1, 2, and 5 KeV., Figure 6 shows

the incident isotropic-NMuxwellian distributions for these energies. Again, the
incident power densities are 1 org'cm:"s. Figure 7 shows N Vs 7 for the three
models and three incident fluxes. These results exhibit l);)si;~;nll)' the same
behavior as those appearing in Figure 5. The Strickland results give a broader
distribution with a smaller total energy deposiion rate due to pitch angle scatter-
ing, contained in his model. For all the analytical results of this section, 12
pseudoscatterings were used spanning the range from 1 to 13 KeV, Basced upon
our studies 12 pseudoscatterings give a solution »f Eq. (16) to within about

2 percent for all altitudes above 104 km,

< 10 — T T —
v
> | INCIDENT MAXWELLIANS
o
w .
N ‘,
S .
S 0t 4
x L 2.0 KeV
3
-
W
=z
[@)]
E o3 5.0 KeV.
= 1o - 50Ke]
w
s |
b
F
z
"]
o
O
2 0t
0.1 1.0 10 100

ENERGY (KeV)

Figure 6. Incident Maxwellian “nergy Distributions
for Characteristic Energies of 5, 2, and 1 KeV Each
Containing 1 erg/cm?2s
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Energy Deposition Rates from the

Analytic, Range, and Strickland Models for
the 5, 2, and 1 KeV Isotropic-Maxwellian
Sources as in Figure 6
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We are interested in knowing how well the analytic model does on the electron
flux itself. Since the muodel contains the forward scattering approximation, we
are specifically referring to the downward moving flux. To investigate this point,
fluxes from the analytic and Strickland models have been compared at selected
altitudes and energies. Figure 8 allows for such a compurison at 110 km, for
the 2 KeV isotropic-Maxwellian case, As expected, the analytic results are high
near y = 1 ind low as u - 0O rlue to the forward-scattering approximation. The
differences increase with decreasing energy since scattering becomes more im-
portant at low energy. Figure 9 shows the hemispherically averaged flux for the
two models from ~ 1 to 10 KeV at 110 and 160 kin,

12. CONCLUSION

From the preceding results we conclude that the forward scattering and aver-
age discrete energy-loss approximations, which at first seem quite severe, to-
gether with the pseudoparticle method of approximating the sums, produce a sol-
ution for the primary auroral electron flux in the downward hemisphere which is
quite simple to use and is surprisingly close to most of the detailed numerical

2
results of Strickland et al, 12

The formulae we give for the primasry auroral
electron flux and the quantities derived from it give us insight into the physics of
the electron precipitation process and also provide a means of making rapid cal-

culations for the purpose of analyzing auroral data. We also hope that the reader

will find :he results presented in this paper useful in further auroral studies.
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