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I.  INTRODUCTION 

The application of digital filter techniques has had a substantial 
impact on numerical analysis of test data in recent years.  In a previous ■ 
report, reference (1], the author described software available on the 
BRL CYBER system for the design of multiple band digital filters and 
differentiators.  It is the purpose of this report to illustrate the 
techniques by which such filters may be exploited in the analysis of time 
series data taken during various types of ballistic experiments.  This 
report will also describe numerical methods for verification of results 
obtained through the use of digital filters. 

It is important to define carefully the type of data to which these 
techniques apply.  In a general sense, any analog data taken from a 
system which has governing differential equations with solutions in terms 
of FoLirier scries is a candidate for such analysis.  More specifically, 
these techniques assume the data to consist of a discrete set of points 
sampled from an analog signal at equal time intervals.  In addition, it 
will be assumed that sufficient care has been taken in the sampling 
process to avoid aliasing, (i.e., the data has not been biased by over 
or under-sampling) and that no component of the recording or playback 
sN'stem has been "overdriven" in frequency response or amplitude. 

Finally, it should be noted that there will be instances in which 
all of tlie above assumptions are satisfied, and yet 1-ouricr analysis 
fails to provide the desired information.  This report contains at least 
one such example.  The important point to be remembered is that these 
techniques cannot be used as "black box" processes.  Moreover, it is 
possible to obtain seemingly reasonable results which are in fact totally 
erroneous if insufficient care is given to the analysis process. 

II.  FREQUENCY ANALYSIS VIA THE FAST FOURIliR TRAXSlOiy-l 

It is not the purpose of this report to relate in detail the theory 
of the Fast Fourier Transform (FFT).  The reader will be assumed to have 
some knowledge of the subject, and is referred to various texts, references 
[2, 3),   for additional information.  It suffices to say that FFT subroutines 
are readily available, and provide the background for this report, since 

J.N.   Walbert,   "Computer Algorithms for the Design and Implementation 
of Linear Phase Finite Impulse Response Digital Filters",   BRL leahr.iaal 
Report   (to be published). 

9 
Bede-Liu,   editor.   Digital Filters and the Fast Fourier Transform, 
Halsted Press,   1975. 

"^L.R.  Rabiner,  B.   Gold,  Theory and Application of Digital Signal 
Prooessina,   Prentice-Hall,   1975. 
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I'oiiricr ;m;il\'si.s without the Fl-T is far too time-consuming computation- 
a11y to be feasible.  One additional comment should be made:  in 
anal\.:ing liallistic data, one deals generally with relatively small 
numbers of data points (say 1000 to 2000) during a specific event.  For 
this reason, an Tl'T routine based on powers of 2 is not as useful as 
one which can transform a data set of arbitrary length.  The subroutine 
used for tiie analysis presented in this report is one given to the 
autlior by Dr. Carl de Boor at the Mathematics Research Center, Madison, 
IVi sconsiir*.  A listing of this subroutine in BASIC is given in Appendix 
A. 

1 
Tliere are numerous methods for using the FFT to compute a frequency 

s]iectruin of a time series, and perhaps even a greater number of techniques 
b>- wliich one may empliasize certain spectral characteristics.  References 
4,.''i, and (i provide a great deal of insight into the various methods which 
can be used.  For the processes used in this analysis of the data 
discussed in this report, it is not necessary to obtain the most precise 
sjiectral estimates possible, either in frequency or amplitude.  One need 
only be able to determine the frequency ranges within which certain 
]-)hcnomena of interest occur in order to design filters to isolate them. 
Once these individual components are separated, a more precise frequency 
analysis on each component of the original data can be performed, if 
desired.  It suffices, therefore, to use a simple amplitude spectrum, 
normalized either to the spectral peak or by some other suitable means. 

For example, if x[t) are the data, sampled at intervals equally 
spaced in time t, then the discrete Fourier transform of x(t), X(f), is 
a complex valued function 

X(f)=R[f)+iI(f), I 

wiicre i''=-l and R and I are real valued functions of the discrete 
frequencies f. The magnitude of X(f), denoted by |X(f)|, is given by 

X(f] I =  yR^(f)+I^[f) 

^Private aormuniaation during a visit by the author in May,   1979. 

4 
R.B.   BLaakman,  J.W.   Tukey,  The Measurement of Power Spectra,   Dover 
Pixbli cations,   1958. 

'''\K.   Yuen,  D.  Eraser,  Digital Spectral Analysis,  Pitman Publishing, 
197t). 

J.S.   Bendat,  A.G.   Piersol,  Random data:    Analysis and Measurement 
J'pncedures,   Wiley Intersaience,   1971. 
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Let 

M=max|X(f)|, 

taken over all f.  Then at each frequency f,   the value S(f) of a 
normalized amplitude spectrum is defined by 

S(f) = |x(f) /M. 

This admittedly crude spectrum will be shown to be entirely adequate 
for the first stage of data analysis. 

The remainder of this report will demonstrate the process of spectral 
analysis on 5 types of data curves.  These same five examples will be used 
to illustrate the application of digital filters.  In each example, the 
data has not been converted to engineering units; the vertical axis has 
been labeled signal amplitude for reference.  This was deliberately done 
to illustrate the fact that the vertical scaling of the data is not 
important in the process of the analysis.  Moreover, each example is . 
taken from test data; since the analysis of this data will appear in 
other reports, a discussion here concerning magnitudes of signal compon- 
ents in engineering units would serve no purpose. 

III.  EXAMPLE 1:  THE HALF SINE PULSE ANALYSIS 

The data curve in this example, shown in Figure 1, is the record 
of the response of a force gage mounted on a small mass as this mass 
impacts an essentially infinite mass.  One would expect the force to be 
a half sine pulse, as indeed it is, but there is an additional sinusoidal 
component present in the signal.  It is the purpose of the present analysis 
to separate the two components in the data. 

The first step is the computation of the Fourier spectrum, shown in 
Figure 2.  Some preliminary comments concerning the appearance of a 
spectrum are in order.  In general terms, the more one-sided the time 
series, [i.e., the larger the absolute value of its mean) the larger the 
magnitude of the spectrum near zero on the frequency axis.  In this 
example, one therefore expects to see the large zero Hz component.  In 
some cases, this component may in fact be so large that it obscures other 
components in the spectrum.  One solution frequently mentioned in the 
literature is to adjust the data so that it has zero mean prior to comput- 
ing the spectrum.  This technique works quite well when the amplitude of 
the data is nearly symmetric about its mean; in other instances, such as 
the present example, mean adjustment has little or no effect on the 
spectrum.  At any rate, it is not a goal of this analysis to determine 
the precise amplitude spectrum; to identify the frequency ranges of the 

11 
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signal components the spectrum of Figure 2 is entirely adequate. Moreover, 
for analysis of trends or other baseline variations in ballistic data, 
such as in Example 4, adjustment of the data for zero mean may actually 
obscure the phenomenon which is to be detected. 

Returning to the spectrum of Figure 2, one notes the peak at zero 
Hz, and the side lobes steadily decreasing in amplitude out to about 
4.1 kHz. This portion of the spectrum is the classic shape generated by 
a pure half sine pulse.  The rounded peak centered at 6 kHz is the 
component of interest here.  It represents that portion of the data which 
is extraneous to the half sine pulse. One feature of this peak which 
should be noted here is that it is not sharp. This is an indication 
that more than one isolated frequency is present in this data component. 

There are two possible causes for this resolution problem: 

1) there are numerous data components present with frequency 
responses too close together to be distinguishable in the 
spectrum. 

2) there is one data component, the frequency of which varies over 
the duration of the spectrum. 

In the first case, the data was not sampled at a sufficiently high rate; 
in the second case, the spectral duration must be shortened for more 
precise determination of frequency content. 

From Figure 1, it can be seen that there is probably only one 
component which must therefore have a time-varying frequency. At this 
stage of the analysis, there is no need to recompute the spectrum; 
application of a low pass filter with a cutoff frequency somewhere in the 
range of 2 to 4 kHz will effectively remove the higher frequency component. 
In this instance, choosing a cutoff frequency of 2 kHz with a transition 
band* from 2 to 4 kHz, the resulting filtered curve is shown in Figure 
3.  Depending on the reason for conducting the analysis, this curve may 
be entirely satisfactory. There is, however, one obvious difference 
between the curve in Figure 3 and that anticipated from Figure 1: in 
the original data curve, the start of the pulse is defined by a rather 
sharp corner; whereas in the filtered curve, this corner appears rounded. 
If this portion o£ the curve is important to the analysis, then this 
distortion is not acceptable. 

The "rounding" is an undesirable side effect of the filtering process; 
a technique for eliminating this problem is the main purpose of the 
present example. To begin with, one must understand how and why the 
problem occurs.  It is vital to realize that only digital data can have 
sharp corners; no analog system has components with the infinite response 

*All filtere used in this report were designed and applied using the 
software described in Reference 1.    The reader is assumed to he familiar 
with this material or with filter design in general, 

14 



0083  0081   00t'T  000 T   009   003   003- 

opn^ncl«"H   l«u8js 

cr 

<+- 
o 

+-> 

■o 

■ s- 

(/) 
a. 

(U 
to 

0) 
£1 

LO 

(O 

n 

s- 

15 



necessary to produce such output. The analog systems are nevertheless 
presumed to have a sufficiently rapid response to record the event, and 
any useful digital filtering technique should not degrade the quality 
of that response. The implication is, then, that the response of the 
digital filter is at fault. 

Those familiar with this type of problem in numerical analysis will 
realize that there are two solutions: use more data points in the 
vicinity of the "corner", or use a shorter filter, i.e.:  one with fewer 
coefficients.  Each of these solutions has drawbacks.  The first solution 
requires sampling the data at a higher rate, which may be physically or 
economically impossible for some types of data. One might, of course, 
sample at a higher rate only in the vicinity of the corner, but non- 
constant sampling rates pose a myraid of analysis problems and are best 
avoided altogether.  In addition, increasing the sampling rate increases 
the bandwidth of the data. This means that, as a percent of bandwidth, 
any low pass filter of a specified cutoff frequency has smaller pass band 
and transition band, which may in general lead to a degradation of the 
filter amplitude response. The second solution, shortening the filter, 
may also cause degradation of amplitude response.  In this case, one is 
required to design a filter response with what may prove to be an inadequate 
number of points. 

There is a third option. The major underlying assumption in Fourier 
analysis is that the data to be analyzed is periodic.  This assumption 
is violated by the half sine component of the raw data curve.  Since the 
corner point in the raw data set can be identified easily by numerical 
search, one can reflect the data set through this point, to obtain a curve 
which is more periodic. Such a reflection is shown in Figure 4. Assuming 
no data of interest occurred prior to the reflection point no information 
is lost. Using the same low pass filter as before on this reflected curve, 
and then zeroing out the reflected portion and truncating the data set 
to its original length, one obtains the filtered curve shown in Figure 5. 
The corner is now preserved to the same degree of accuracy with which 
it appeared in the raw data. This reflection process, or odd periodic 
extension, is trivial to implement in a computer and avoids the problems 
encountered with changes in filter design or data sampling. One could 
treat the trailing end of the half sine pulse in a similar fashion 
although it will subsequently be shown that this may be inappropriate. 

Although Figure 5 shows that the extraneous component has been 
completely removed, this example is obviously simple. How one can determine 
the adequacy of the process in a more complex data set will be demonstrated 
in other examples, but one such method can be shown in this example.  The 
Fourier spectrum of the curve in Figure 5 is shown in Figure 6.  In 
comparison with the spectrum in Figure 2, it will be seen that the spectra 
are virtually identical out to about 4.1 kHz, beyond which the spectrum 
of the filtered data set shows no significant content, as desired. Thus, 
post-filter spectral analysis (with the same normalization as the original 
spectrum) will verify not only that the appropriate components have been 
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removed, but also to what extent, if any, the remaining components have 
been altered. 

Tt is an indisputable truth that any analysis of this type of data 
must be done with an understanding of the physical and mechanical aspects 
of the experiment.  In the present example, a small cylindrical deform- 
able mass impacted an infinite nondeformable mass. A careful examination 
of Figures 1 and 5 with the aid of a straight edge will reveal the fact 
that the force curve did not return to zero after the event.  This is 
evidence of the fact [physically measured) that the small mass was 
deformed during the impact.  If one does a numerical point-by-point 
subtraction of the curve in Figure 5 from the curve in Figure 1, one 
obtains the curve in Figure 7. This component is obviously the sinusoidal 
Shockwave, decaying in both amplitude and frequency, generated internally 
in the small mass by the impact. 

Two parts of this curve, at the beginning and end of the half sine 
pulse, seem to deviate from its otherwise clean appearance.  This curve 
is quite useful in analysis of the material properties of the small mass. 
The envelope of the curve is a measure of the damping; the frequency decay, 
used in conjunction with the physical dimensions of the mass, is a measure 
of the velocity of the shock through the mass, as well as an indication 
of the compression during impact.  The deviation at the beginning of the 
curve may have been caused by the impacting surfaces not being parallel 
initially, setting off more than one shock wave, with phase differences. 
The deviation near the end of the half sine pulse may be due to the 
rounded corner in Figure 5, but a numerical simulation of this impact by 
a Duhamel integral produced a curve with an initial sharp corner and a 
terminal rounded corner.  For this reason, it may not be appropriate 
[or possible) to obtain a sharp terminal corner. 

IV.  EXAMPLE 2:  DAMPED VIBRATION ANALYSIS 

The data curve of this example, shown in Figure 8, is from a force 
gage mounted on the elevation link of a weapon system.  The impulse of 
recoil sets off vibrations in the link which damp out in time.  It is of 
interest to isolate vibration modes and, if possible, the actual impulse. 
The spectrum of the data, Figure 9, shows peaks of interest at about 9, 
24, and 47 Hz. There is also a poorly defined peak at 5 or 6 Hz, which 
suggests the impulse component.  The spectrum near 9 Hz shows two peaks, 
but these are so close it seems doubtful they can be separated using 
filters.  In this analysis, they will be treated as a single component. 

Using a band pass filter* passing frequencies from 3 to 7 Hz, one 
obtains the curve shown in Figure 10. This is the impulse.  It should 

^Throughout this report^ band pass filtering is aooomplished in two 
stages^ using a low pass and a high pass filter.    The process is 
described in detail in section VIII. 
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be noted that in isolating each component in this example, the reflection 
process demonstrated in example 1 was used.  This provides an accurate 
common reference point on each curve.  The accuracy of this particular 
data curve can be verified by the fact that a numerical simulation of 
the weapon system recoil predicted an impulse on the elevation link which 
agrees with the curve to within 1%.  Applying a band pass filter passing 
frequencies from 8 to 12 Hz produces the output shown in Figure 11. 
This represents the first mode of vibration and shows clearly the mode 
shape and the damping. 

The output of a band pass filter passing frequencies from 22 to 25 
Hz is shown in Figure 12.  This curve represents a higher vibration mode, 
with at least one phase change early in the record.  The particular item 
instrumented in this case has numerous mechanical stops to prevent free 
vibrations; these stops produce the phase shifts in the higher modes. 
A band pass filter passing frequencies from 44 to 50 Hz has the output 
shown in Figure 13. This mode shows at least two phase changes.  One 
feature of the modes shown in Figures 11-13 is the symmetry about the 
zero amplitude level.  This symmetry is one indication that these modes 
have been isolated correctly by the filtering process. 

There is another method by which one can determine whether all 
significant portions of the data have been identified, and to what extent 
the amplitudes of the vibration modes are correct.  This method is simply 
to form a point-by-point sum of all the components. Adding the curves 
in Figures 10-13 produces the curve of Figure 14,  It will be noted that 
this curve bears a reasonable resemblance to the raw data curve of Figure 
8, particularly from 0.5 seconds on.  It is clear, however, that some 
significant amplitudes are absent prior to that point.  A re-examination 
of the spectrum in Figure 9 reveals the presence of other peaks which 
are evidently of sufficient significance to merit further study.  In 
particular, the peak at 18 Hz has somewhat higher amplitude than the 
peak due to the impulse. 

A band pass filter passing frequencies from 15 to 20 Hz produces 
the output of Figure 15.  This plot shows a rapidly decaying signal, with 
amplitude concentrated in precisely the area in which the reconstructed 
curve of Figure 14 was deficient.  Adding this curve point-by-point to 
that of Figure 14 produces the curve of Figure 16.  With the exception of 
some higher frequency content, this reconstructed data agrees quite well 
with the raw data in Figure 8, providing good confidence in the results. 
One might continue the analysis by isolating the spectral peaks at 35, 
40, and 53 Hz, and so on.  It is clear at this point, however, that the 
major components have been identified. 

V.  CLOSED COMPARTMENT BLAST PRESSURE ANALYSIS 

As was indicated earlier in this report, the techniques of Fourier 
.inalysis and digital filtering are not always completely successful.  This 
next example illustrates the point.  Figure 17 is a plot of pressure vs. 
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time recorded interior to a closed chamber. The chamber, which held 
several containers of propellant of the type used for the ballistic 
launch of projectiles, was subjected to penetration by a shaped charge 
jet; this in turn ignited the propellant.  The data therefore contains 
a pressure component due to the burning of the propellant, a blast 
component with probably several reflections from the chamber walls, and 
quite possibly some pressure waves. 

Figure 18 is the spectrum of the raw data, showing the main non- 
periodic contribution at zero Hz and two secondary components at about 
450 Hz and 1 kHz.  In an attempt to isolate the nonperiodic zero Hz 
component, a low pass filter with cutoff frequency of 200 Hz is applied 
to the data.  The problem which arises is that the transition band of 
the filter is not sufficiently narrow to eliminate all of the higher 
frequency components.  As a result, the filtered curve appears as in 
Figure 19, which shows the pressure component from the burning propellant 
with some additional residual higher frequency components. 

There are several options available.  First, one could design a 
filter with a more narrow transition band.  One possible consequence is 
greater deviation from the design specification in the filter pass band, 
as described in reference 1; this could result in undesirable amplitude 
distortion.  A second option is presented by the fact that, having low 
pass filtered the data, the data can be processed at an increment.  For 
example, the bandwidth in the spectrum of Figure 18 is 10 kHz.  If one 
uses every other point (increment by 2) in the data of Figure 19, then 
the bandwidth of the incremented data is 5 kHz. The significance of this 
fact is that, since the filters are designed based on fractions of band- 
width rather than on actual frequencies, the range between the 200 Hz 
cutoff point and the 450 Hz spectral component is now twice as great. 
At increment 4, the range is 4 times larger, and so on.  Thus, using the 
same filter, the transition band is effectively narrowed by incrementing 
the data. 

While this second option works in this example, there is one drawback: 
incrementing the data means a loss of data points.  While there is no 
information lost when incrementing is done in conjunction with low pass 
filtering, one can no longer perform point-by-point operations on the 
incremented data with some other component at a different increment, 
without resorting to interpolation.  Depending on the goal of the analysis, 
this option may be perfectly acceptable. 

A third option will be pursued here, to demonstrate another useful 
technique in digital data analysis.  The previous example demonstrated 
that components A, B, C, and D of a raw data curve R could be summed 
point-by-point, with the sum being nearly equal to the curve R.  That is. 

A+B+C+D 
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It would seem reasonable to expect that this expression can be manipulated 
so that, for example. 

R-B-C-D 

That is, to isolate component A, one could just as well isolate components 
B, C, and D, and subtract them point-by-point from the original data R, 
leaving an approximation to A. 

This method works especially well in cases like the present one, 
where there is a large amplitude component near zero Hz with numerous 
low amplitude components close by.  In particular, the low amplitude peaks 
can be separated out one at a time by high pass filtering, beginning with 
the highest frequency. Using this method, one applies a high pass filter 
with cutoff frequency of 950 Hz to the raw data.  A copy of the output 
at this stage is stored for future use, and then, the output is low pass 
filtered at a cutoff frequency of 1.2 kHz. The output of this 2-stage 
band pass filtering process is shown in Figure 20. 

This curve contains several features of interest.  The initial part 
of the curve, the first three positive and two negative peaks, show a 
nicely decaying wave. Just beyond the third positive peak, this pattern 
is disturbed in both phase and amplitude by the second of the two main 
peaks seen in the raw data in Figure 17.  Beyond this point, the curve 
has little recognizable regularity. The important fact to note is that 
the clean symmetry of some of the components in the previous example is 
absent here. 

Continuing the analysis, by subtracting the output of the highpass 
filter with cutoff frequency of 950 Hz from the raw data, the output of 
Figure 21 is obtained. Comparing Figure 21 with Figure 19, one sees that 
the data in Figure 19 does not contain the full 450 Hz component.  In 
order to separate the two remaining parts of the data, use is made of the 
incrementing technique described earlier.  It turns out that by incre- 
menting the data in Figure 21 by two (i.e., using every other point) the 
two components can be separated using a high pass filter with a cutoff 
frequency of 200 Hz. Since the original data, with bandwidth 10 kHz, 
has had all content above 950 Hz removed, one could take increments as 
high as 10 (a bandwidth of 1 kHz) without aliasing the data. Using 
increment 2 simply means that for a frequency of say 500 Hz, one has 20 
points per cycle instead of the original 40. The implication is that 
linear interpolation after filtering should be entirely adequate. 

Incrementing the data in Figure 21 by two, applying a high pass 
filter with cutoff frequency 200 Hz, and using linear interpolation on 
the output to obtain the same number of points as the original data set, 
results in the curve in Figure 22. This curve also shows a well defined 
envelope of waves up to the end of the third negative peak, at which 
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point there is a phase change and a loss of symmetry.  This curve bears 
some resemblance to the first part of the curve in Figure 20, with one 
major difference; in Figure 22, the waves seem to increase in frequency, 
rather than decrease as one might expect. As the temperature increases 
inside the chamber, the wave velocity (and hence frequency) will also 
increase; this may in fact explain the increase seen here. 

At any rate, subtracting the data in Figure 22 from that in Figure 
21 results in the curve shown in Figure 23. There are two features of 
this curve which lead one to question its accuracy.  First, on the down- 
ward slope there appears to be some residual variation from the 450 Hz 
component.  More importantly, the pressure decreases to a level below 
zero amplitude for a short time, and then returns to zero.  This negative 
pressure level is really a part of the blast wave, an idealization of 
which is shown in Figure 24.  The data of this example contain parts of 
two such curves, one at each of the main peaks in Figure 17.  Thus, the 
analysis here has failed to isolate the data in Figure 23 properly, and 
the actual blast curve shape is partially in the data of Figures 20, 22, 
and 23. 

The curve in Figure 25 is the sum of the curves in Figure 20, 22, and 
23, and shows that the mathematical, if not physical, components have been 
isolated properly.  Thus, this particular example demonstrates that not 
all physical phenomena are amenable to Fourier analysis.  The above 
analysis was not totally in vain, however.  First, the data in Figure 23 
is a reasonable representation of the desired curve.  Conceivably, one 
could use a filter with a slightly lower cutoff frequency to remove the 
residual higher frequency content on the down slope of this data curve. 
The peak value would seem to be reliable, as well as the maximum value 
of the integral of this pressure curve.  Finally, were it possible to 
isolate the blast pressure curve similar to that of Figure 24, the 
integral of this curve should approach a constant value which is a measure 
of the force applied to the chamber by the blast.  If one integrates the 
450 Hz component, the result is the curve shown in Figure 26.  Although 
there are some early cyclic variations, the integral does finally attain 
a fairly constant value. This value may in fact be a measure of the 
blast impulse.  It should also be noted that the fact that the final 
constant value of this integral is nonzero is proof that the 450 Hz 
component does not consist solely of pressure waves. 

VI.  EXAMPLE 4:  ACCELEROMETER BASELINE CORRECTION 

A frequent problem occurring in acceleration data is an apparent 
change in baseline (zero level) during the event.  A typical example is 
shown in Figure 27.  In this case, the level change is obvious; in some 
cases it may not be so apparent. There is a way of checking for baseline 
variations which is simple yet effective: the physical component being 
studied has a velocity which returns to zero after the data event.  That 
is, the integral of the acceleration must return to zero.  In Figure 28, 
which is the integral of the data in Figure 27, one sees that there is 
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indeed a problem. 

In analyzing this particular difficulty, one commonly made mistake 
is to assume that at some point during the data event an abrupt level 
change occurred, giving the baseline the appearance of a step function. 
While this is possible (although the change can occur no faster than the 
fastest response of any part of the transducer/recording/playback system) 
it is more likely that the analog components responded in a "smooth" 
fashion.  Specifically, if a step function such as that in Figure 29 is 
applied to the input of an analog device, an output of the form of that 
m Figure 30 is likely to occur.  Alternately, it may be that a "spike" 
will occur at the top of the input step, as seen in Figure 31. This 
overshoot may result in an analog response such as that seen in Figure 
32.  The point is that one should anticipate that the actual baseline 
variation has the appearance of the curves in Figures 30 or 32, or some 
combination thereof. 

A further indication of a problem in the raw data is given by the 
presence of a large peak at zero Hz in its spectriim, shown in Figure 33. 
The spectral contribution of this component includes side lobes similar 
in appearance to the spectrum of Figure 6.  To remove the component, 
a low pass filter with a cutoff frequency of 80 Hz was used.  This cutoff 
frequency is well below the frequency of the first vibration mode of the 
system.  The output of this filter is shown in Figure 34.  The similarity 
of this curve to that of Figure 32 is readily apparent.  If this curve 
is subtracted point-by-point from that in Figure 27, the result is the 
corrected acceleration data shown in Figure 35. 

It indeed appears that the level shift has been removed by this 
process, and in fact, the spectrum of the data. Figure 36, shows the zero 
Hz component and its side lobes to be absent. The real proof of the matter, 
however, is the integral of the corrected acceleration data, shown in 
Figure 37.  Whereas the final value of the integral in Figure 28 was about 
75 units, the final value of this integral is indeed zero (precisely, 
the computed value was 0.3 units, although had the integration been stopped 
earlier, say at 22 milliseconds, the computed value would have been 0.01 
units).  In any event, this integral provides immense confidence in the 
baseline correction process. Moreover, the shape of this velocity curve 
is exactly as expected. 

VII.  EXAMPLE 5:  PRESSURE WAVE ANALYSIS 

This final example demonstrates the fact that it is not always 
possible to detect the presence of signal components by looking in the 
time domain.  Figure 38 is a plot of the numerical difference between 
the aft and fore chamber pressures in a particular gun tube.  One 
phenomenon frequently present in this pressure difference is waves 
reflecting between the base of the projectile and the rear face of the 
tube.  In this particular example, it would appear that one or both of 
the pressure curves may have failed to correctly represent the physical 
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phenomenon, since the difference curve does not return to the zero level. 

The spectrum of this data, Figure 39, shows the large zero Hz peak, 
reflecting the problem noted in the data. There are well defined spectral 
peaks: 200 Hz, 420 Hz, and 650 Hz. Based on the appearance of the 
original data, the 200 Hz is the gross cyclic variation in the curve. 
There is a higher frequency present in the data which is not noticeable 
in the spectrum. The 420 and 650 Hz components are not apparent in the 
original data. 

Nevertheless, if one applies a band pass filter to the data, passing 
frequencies from 400 to 600 Hz, the result is the curve shown in Figure 
40.  This relatively pure waveform, decaying in both frequency and 
amplitude, is a typical example of pressure waves found behind the 
projectile in-bore. What is especially interesting here is that although 
the original record was of questionable validity, the wave structure 
remained intact. 

VIII.  SPECIAL TECHNIQUES FOR DIGITAL FILTER APPLICATION 

In the foregoing examples, frequent reference has been made to the 
use of band pass filtering.  As indicated in Example 2, the band pass 
filters employed were actually two filters, a low pass and a high pass, 
applied in succession. The reason for using a two-stage process is 
simply that low pass and high pass filters with the required frequency 
response were readily available. The assumption here is, of course, 
that it is accuracy and not time which is of the essence, since it 
takes twice as long to apply the two filters. 

This process is shown graphically in the frequency domain in the 
next two illustrations. In Figure 41 is a spectrum containing three 
peaks (solid lines). Suppose it is desired to isolate the middle spectral 
peak. One begins by applying a low pass filter (dashed lines) with a 
transition band situated so as to exclude all of the spectral peak on 
the far right and to include all of the spectral peak in the middle. 
The second step, shown in Figure 42, is to apply a high pass filter 
(dashed lines) with a transition band situated so as to exclude all of 
the spectral peak on the far left and to include all of the sole remain- 
ing spectral peak to the right. Note that the original peak on the far 
right is gone, having been removed by step 1. Obviously, the same thing 
could have been accomplished by using the high pass filter first, 
followed by the low pass filter. 

In Figures 41 and 42, the spectral peaks were sufficiently far apart 
to allow the filter transition bands to fit between them. Suppose this 
is not true. That is, suppose the spectrum of a particular data set has 
peaks too close to allow the transition band of a given filter to fit 
between them. In particular, the spectrum of Figure 43 has four peaks 
(solid lines), and it is desired to remove the two peaks at the right. 
Using the same low pass filter as in Figure 41 (dashed line), it will be 
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seen that the peak on the far right is removed, but the second peak from 
the right is not completely removed.  It will instead be reduced in 
magnitude by about half. 

One option is to design a new low pass filter with a more narrow 
transition band. Another option which is very convenient is simply to 
apply the same low pass filter a second time. This has the effect of 
squaring the magnitude response.  In the pass bands, where the magnitude 
is nearly 1, the squared response will remain nearly 1 (the ripple, or 
deviation, will of course be squared, but if it is small to begin with, 
this is of no consequence).  In the stop bands, similarly, the values 
are nearly 0 and, when squared, remain nearly 0.  It is in the transition 
bands where the significance of the procedure becomes apparent.  Positive 
numbers less than 1, when squared, decrease in value.  The net effect of 
two filter applications, or squaring the magnitude response, is that the 
transition band is more narrow, as shown by the broken line (not drawn to 
precise scale) in Figure 43. 

Thus, if the second peak from the right is multiplied by Q.5 in,each 
application of the filter, the net effect of two applications is to leave 
the peak with 0.5x0.5=0,25 times its original amplitude. 

In general, a filter may be applied as many times as desired, 
provided the amplified deviation in the pass bands can be tolerated.  If 
the spectrum of the data is sufficiently clean, even large amplitude 
deviations in the pass band of a filter can be corrected.  For example, 
suppose, as in Figure 44, a relatively narrow spectral peak (solid lines) 
has been isolated by repeated application of a low pass filter (dashed 
lines).  The resulting excessive deviation is shown by the arrows.  The 
output of this filter process, being a single frequency, can then be 
multiplied in the time domain by the amount necessary to offset the 
deviation. This is, in effect, a digital amplifier.  It must be emphasized 
that this works only at isolated frequencies and not across a band of 
frequencies. 

The precise amplification factor is relatively simple to determine. 
Construct a time series representation of a sine wave with amplitude 
varying between +1 and -1 at the same sampling rate as the original data 
and with the same frequency as the isolated component. Apply the digital 
filter to this sinusoidal data; the maximum positive output amplitude is 
the inverse of the amplification factor. For example, if the output 
sinusoid has maximum positive amplitude 0.9, then the data component 
must be multiplied by 1/.9 to correct for its amplitude distortion. 

In cases such as in Example 1, where the frequency of a spectral 
component varies during the event, this amplification correction is of 
no value since the spectral peak is likely to be wide with respect to 
the period of deviation in the filter pass band as shown in Figure 45. 
It is clear that no single amplification factor will correct the distor- 
tion resulting here. It should also be clear that, if there is more than 
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one distinct frequency that has been isolated, the distortion may not 
be correctable.  In Figure 46, for example, each peak will be distorted 
by a different amount; no single correction factor can be applied to 
the output to correct this distortion. 

IX.  NUMERICAL DIFFERENTIATION BY DIGITAL FILTER 

Numerical differentiation has always been at best a tenuous process. 
The primary difficulty with most numerical schemes is their inherent 
instability at high frequencies.  In this section it will be shown that 
digital filters designed as differentiators are stable and highly 
accurate. The theoretical basis for the design of a differentiating 
filter is quite simple.  Let fft) denote a differentiable function of 
time t, and suppose F(a)) is the Fourier transform of f, where co is the 
circular frequency. 

Then 

f(t) = 

oo 

1 f      iwt 
F(w)dcij 

Similarly, if GCto) is the Fourier transform of the derivative of f[t) 
with respect to t, f'(t), then 

f(t) 

OO 

I f       icot 
G(a))dcj 

From the first of these two equations, 

f'(t) = I.   J e   (ia)F(w))daj, 

so that 

G (o)] = ia)F(a)) 

It follows, then, that differentiation in the time domain corresponds 
in the frequency domain to multiplication by u and positive rotation of 
the phase angle through TT/2 radians.  In particular, the amplitude 
response is just |a)|, since |i|=l.  Now, the variable w is the circular 
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frequency, expressed in radians per second.  One could write 

u) = 2Trf, 

where f is the frequency in units of cycles per second, or Hz. 

In the case of the discrete Fourier transform, the Nth discrete 
frequency f^, is given by 

f^ =   (N-l)/[M(At)], 

where M is the number of time series points spaced At apart. Then 

'^N 
(-)(-) ■ 

and (N-l)/M is the fraction of the sampling frequency.  The amplitude 
response of a differentiating filter can then be represented as in 
Figure 47.  It is an approximation to the straight line through the 
origin and through the point (%,%), where the first coordinate is 
amplitude and the second coordinate is fraction of sampling frequency. 
After applying this differentiating filter to a data set, the differen- 
tiated data is multiplied by 2Tr/At to correct the amplitude. 

The filter response of Figure 47 is a good approximation to the 
ideal differentiator out to about 80% of the bandwidth.  Beyond that 
point, the amplitude falls off rapidly to 0.  It is this return to zero 
amplitude that provides the stability at high frequencies.  Clearly, the 
amplitudes of frequencies above 80% of bandwidth are greatly decreased. 
Instead of increasing the noise content of the differentiated signal, 
the high frequencies are actually suppressed.  Since the magnitude response 
of the filter is constrained by design to be odd periodic, it must return 
to zero at each end; it is not possible to design a stable differentiator 
over the full bandwidth. 

As long as the data set contains no useful information beyond 80% 
of the bandwidth, this differentiator performs admirably well.  For 
example, if one computes by the trapezoidal rule the integral of the 
data in Figure 17, the result is shown in Figure 48.  On applying the 
differentiating filter of Figure 47 to the integral in Figure 48, one 
obtains the curve shown in Figure 49.  This curve is virtually identical 
to that of Figure 17; in fact, the difference between the two curves is 
shown in Figure 50.  Indeed, the spectrum in Figure 18 shows that there 
is very little content beyond 80% of the bandwidth (8kHz). 
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One could not expect the differentiating filter to do as well if 
the input data contained significant frequencies beyond the 80% point. 
For example, the acceleration data of Example 4 was deliberately 
sampled sparsely so that its spectrum (Figures 33 and 36] has significant 
content out to the very end.  Therefore, applying the differentiating 
filter to the integral in Figure 37 results in the curve in Figure 51. 
While this curve is similar to that of Figure 35, it is obvious that 
some high frequency content was lost.  In fact, the difference curve 
of Figure 52 has nearly the same maximum and minimum amplitude as that 
of Figure 51. 

If it should become necessary, in the course of analysis, to 
differentiate the data in Figure 37, there is a straightforward method 
by which this may be accomplished.  If, in a particular time series, one 
interpolates between data points to double the total number available, 
then the apparent sampling rate is doubled, as is the bandwidth of the 
data. Using a simple linear interpolation on the data of Figure 35, its 
spectrum now is as shown in Figure 53.  This spectrum is identical to 
that of Figure 36 up to the 8 kHz point. The "fabricated" part of the 
data, from 8 kHz to 16 kHz, shows a relative symmetry about the 8 kHz 
point, but with a rapidly decreasing amplitude.  The important point to 
note is the absence of significant spectral content beyond 80% of the 
new bandwidth. 

Applying the differentiating filter to the integral of the expanded 
acceleration data, and then incrementing the output by two to return to 
the original bandwidth, results in the curve shown in Figure 54.  This 
curve is much closer to that of Figure 35 than was that in Figure 51. 
In fact. Figure 55 shows the difference between Figure 35 and Figure 54 
to be insignificant except for the two high frequency peaks, one positive 
and one negative, at the center of the actual data event. While this 
technique has been relatively successful, it does demonstrate that using 
a sampling rate with only two samples per cycle at the highest frequency 
of interest may be enough to represent the data, but not enough to analvze 
it. 

More precisely, sampling rate and useful frequency content can be 
linked as follows: at the 100% of bandwidth point in the spectrum, one 
has two samples per cycle, while at the 50% bandwidth point, one has 
four samples per cycle.  It follows that at 80% of the bandwidth, one 
has about 2.5 samples per cycle (although the relationship is nonlinear). 
That is, a minimum reasonable data sampling rate is 3 samples per cycle 
at the highest frequency of interest.  In actual practice, especially 
for analysis purposes, it is not desirable to have significant spectral 
content too close to the 80% point, and hence a much more useful 
minimum sampling rate is 4 or even 5 samples per cycle. Moreover, it 
has been shown that components, the frequency of which changes through 
the data event, can be isolated from the data for further study.  If this 
additional analysis includes advanced Fourier techniques such as over- 
lapping transforms for precise frequency determination, 8 to 10 samples 
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per cycle at these frequencies may be necessary. 

To further complicate the picture, it may not be possible to 
determine an appropriate sampling rate prior to conducting an experiment, 
since some or many of the frequency ranges may be unknown.  In this 
respect, sampling rates should be tailored primarily to the frequency 
responses of the various record/playback devices and to the capabilities 
of the transducers involved.  Total system frequency response cannot be 
increased by higher sampling rates, but data can certainly be lost by 
sampling rates which are too low.  In short, instrumentation frequency 
responses and sampling rates must be chosen in consideration of the 
overall analytical plan in order to provide truly useful data.  References 
7, 8, and 9 contain more detailed discussions of these concepts. 

X.  CONCLUSIONS 

In the analysis of ballistic data such as pressure, strain, and 
acceleration, the Fourier spectrum is an extremely useful tool.  For 
nonreal-time data analysis, various numerical manipulations can be 
performed to enhance the applicability of Fourier techniques. These 
manipulations include odd periodic continuation, linear interpolation, 
and multiple-pass digital filter applications. While several less than 
successful examples have been presented, one can nonetheless conclude 
that Fourier analysis is applicable even in the presence of nonstationary 
frequencies. It can also be used to isolate aperiodic phenomena such as 
baseline variations. 

Numerous methods have been presented by which the validity of the 
results of Fourier analysis can be verified, and by which amplitude 
errors can, in some cases, be corrected.  It must be emphasized that in 
any such application, a great deal of engineering judgment is required 
for successful analysis. There is no substitute for thorough knowledge 
of engineering and physical principles as well as mathematical theory. 
Finally, specific results concerning the mechanical behavior of a system 
or revealing some fundamental physical or chemical property should be 
repeatable. The Fourier spectrum is a statistic; specific conclusions 
based on this type of analysis must be made from a sufficiently large 
sample of data. 

7 
R.K.  Otnes,  L.  Enoahson,  Digital Time Series Analifsis,  Wiley Inter- 
saienae,  1972. 

p 
E, W.  Hammingj  Numeriaal Methods for Soientists and Engineers, MoGraw- 
Eill,   1962. 

9 
A.  PapouliSj  The Fourier Integral and its Applications, McGraw-Hillj 
1962. 
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610 flrgr=l 
620 flr-gi=0 
630 S e c o n d = E e f o r €■ * R f t e r 
640 Fir s t = N o h) m o n e * S e c o n d 
650 FOR Ind6>::3.add = 0 TO Howmonesflf t tr 
6S& FOR I.a=l TO Rfter 
67Q Ind6xl=Fi r-£t+I.a 
680 FOR   Indi=x3=Index3.add+I.a   TO   Index 
690 Valijer=Z1n<l, Indexl > 
700 Val ue i =Z i ri <! 2, I ndex 1 > 
710 FOR   Index2=Indexl-Second   TO    Inde 
720 Real=Valuer*flrgr-Valuei *Rrgi +Zi n(1 
730 Val ue i =Val us r*Rf-g 1 +Val ue i *Rrgr + Z i n 
740 Valuer=Real 
750 NEXT   Index2 
760 ZoutCl,Index3>=Valuer 
770 Zout (2, Index3)=V.al uei 
780 I n d e >; 1 = I r-i d e x 1 + fl f t e r- 
790 HEXT   Indsx3 
000 Real =Rrgr*Orriegar—Rrgi *Oniegai 
810 Rrgi =Rrgi *Omegar + Rrgr*Oniegai 
820 flrgr=R6al 
830 NEXT   la 
840 NEXT IndexSadd 
850 SUEEND 
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