SIMPLE METHODS FOR CALCULATING THE AZIMUTHAL COVERAGE OF HF DIR-ETC(U)
Simple methods for calculating the azimuthal coverage of HF directional antennas.

by

Procurement Executive, Ministry of Defence
Farnborough, Hants
ROYAL AIRCRAFT ESTABLISHMENT

Technical Report 81018

Received for printing 10 February 1981

SIMPLE METHODS FOR CALCULATING THE AZIMUTHAL
COVERAGE OF HF DIRECTIONAL ANTENNAS

by

G. May

SUMMARY

Methods of calculating the azimuthal coverage of HF directional antennas are described and worked examples are given. Particular attention is paid to spherical trigonometry formulas employing auxiliary quantities because of their suitability for use with simple hand-held electronic calculators. The relationships between sides and angles of oblique spherical triangles, collated from several sources, are listed and the value of applying tests based on these relationships prior to making detailed solutions of spherical triangle problems is demonstrated.

Departmental Reference: Rad-Nav 104

Copyright ©
Controller HMSO London
1981
LIST OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>2 CALCULATION OF RANGE AND BEARINGS BETWEEN TWO LOCATIONS WHOSE</td>
<td>4</td>
</tr>
<tr>
<td>CO-ORDINATES ARE KNOWN</td>
<td></td>
</tr>
<tr>
<td>3 CALCULATION OF THE AZIMUTHAL COVERAGE OF HF DIRECTIVE ANTENNAS</td>
<td>4</td>
</tr>
<tr>
<td>3.1 Azimuthal coverage parameters</td>
<td>4</td>
</tr>
<tr>
<td>3.2 To find the latitude and longitude of the points at the extremities of the beam at a given range</td>
<td>5</td>
</tr>
<tr>
<td>3.3 To find the latitude of the point where the extremity of the antenna beam crosses a known meridian</td>
<td>5</td>
</tr>
<tr>
<td>3.4 To find the longitude of the point where the extremity of the antenna beam crosses a known parallel of latitude</td>
<td>5</td>
</tr>
<tr>
<td>4 CONCLUSIONS</td>
<td>6</td>
</tr>
<tr>
<td>Appendix A Formulas for solving spherical triangle problems</td>
<td>7</td>
</tr>
<tr>
<td>Appendix B Relationships between the sides and angles of oblique spherical triangles</td>
<td>9</td>
</tr>
<tr>
<td>Appendix C Solution of oblique spherical triangle problems using auxiliary quantities</td>
<td>10</td>
</tr>
<tr>
<td>Appendix D Detailed calculations of great circle distances and bearings between two points whose co-ordinates are given</td>
<td>13</td>
</tr>
<tr>
<td>Appendix E Detailed calculations of azimuthal coverage of an antenna at Exeter directed to Bodø</td>
<td>17</td>
</tr>
<tr>
<td>Appendix F Conversion factors and constants</td>
<td>21</td>
</tr>
<tr>
<td>References</td>
<td>22</td>
</tr>
<tr>
<td>Illustrations</td>
<td></td>
</tr>
<tr>
<td>Report documentation page</td>
<td></td>
</tr>
<tr>
<td>Accession For</td>
<td></td>
</tr>
<tr>
<td>NTIS GAA&I</td>
<td></td>
</tr>
<tr>
<td>DTIC TAB</td>
<td></td>
</tr>
<tr>
<td>Unannounced</td>
<td></td>
</tr>
<tr>
<td>Justification</td>
<td></td>
</tr>
<tr>
<td>Distribution/</td>
<td></td>
</tr>
<tr>
<td>Availability Codes</td>
<td></td>
</tr>
<tr>
<td>Avail and/or Dist</td>
<td></td>
</tr>
<tr>
<td>Special</td>
<td></td>
</tr>
</tbody>
</table>
INTRODUCTION

With the increasing use of directional antennas for HF communications on point-to-point and ground-air links the determination of the azimuthal coverage obtained at a given range and bearing from the ground antenna is of considerable interest and importance. Whilst methods of calculating the distance and bearing between two locations on the earth's surface can be found in commonly available mathematical and radio engineers' handbooks, it is apparent that a number of simple aids for resolving the associated spherical triangle problems are not generally known. The reason for this appears to be that these aids are scattered amongst a number of texts. Consequently an attempt has been made to gather these aids together along with the conventional methods and to demonstrate their application and value.

The advent of the cheap electronic hand-held scientific calculator has also meant that several methods, which in the past would have been very time-consuming and tedious to use, can now be employed swiftly, simply and accurately. As an example the use of the haversine formula, which previously would have required access to haversine tables, can now be readily employed since the conversions between haversine and cosine functions can be carried out using a few key strokes on the electronic calculator. It is of interest to note that one of the greatest British mathematicians, John Napier (1550-1617) Eighth Laird of Merchiston, near Edinburgh not only invented logarithms but also Napier's analogies or relationships in spherical trigonometry (see Appendix A). Moreover he was the first to attempt the construction of a calculating machine for the performance of multiplication and division by means of metal plates in a box.

Basic formulas used in solving spherical triangle problems are stated in Appendix A while in Appendix B useful relationships between the sides and angles of oblique spherical triangles are given. In Appendix C the solutions of oblique spherical triangle problems using auxiliary quantities, a method very appropriate for use with electronic calculators, are derived.

The use of the formulas, detailed in Appendices A and C, in the calculation of range and bearing between two locations are discussed in section 2 while detailed calculations and examples are given in Appendix D, where the usefulness of the relationships stated in Appendix B is illustrated.

In section 3 consideration is given to the problems of finding the azimuthal coverage obtained by the use of directive HF antennas and this is amplified by the worked examples of Appendix E.

The choice of units for the calculations of Appendices D and E is not easily made owing to the practical use in military and world-wide airline operations of both Imperial and metric units. The convention has been adopted, therefore, of calculating ranges and distances in nautical miles. A table of conversion factors and constants is given in Appendix F.

A further factor in the writing of this Report has been the preparation of revised material on great circle bearings and distances and new material on the azimuthal
coverage aspects of HF directional antennas for use in the Air Publication dealing with the general principles of HF and MF antennas for ground stations.

2 CALCULATION OF RANGE AND BEARINGS BETWEEN TWO LOCATIONS WHOSE CO-ORDINATES ARE KNOWN

Two quantities that commonly have to be calculated in planning and deploying HF antennas are the bearing and distance between two points. Moreover these quantities have often to be found before other factors, such as the azimuthal coverage given by an antenna having a known beamwidth, can be calculated.

Fig 1 shows the two locations P and Q both of which will be seen to lie on meridians through the North Pole. Thus by joining P and Q by the great circle through these two points, one has only to solve the spherical triangle NPQ in order to determine the value of PQ and the two angles NPQ and NQP. The latter enable us to find the bearings, from true North, of one point to the other, care being taken to remember that by convention bearings are always taken in a clockwise manner from North (see Appendix D, section D.1).

Several methods of solving the problems of distance and bearing are demonstrated in Appendix D and a choice can be made depending upon whether one has access to either a small pocket electronic calculator or a set of mathematical tables.

It should be noted that in Appendix D all the calculations of great circle distances and bearings are made on the assumption that the earth is truly spherical. Whilst, as is pointed out, this assumption is not strictly correct it is nevertheless a reasonable one for the reasons given. Very accurate calculations of the distance between two widely separated points on the earth's surface, i.e. the length of the geodesic line, can be made but it is not a simple matter and is beyond the scope of this Report. Also, in Appendix D, section D.4 the value of using the relationships between the sides and angles of the spherical triangle, as listed in Appendix B, is demonstrated. These relationships help to reduce the uncertainties as to which quadrant and hence which sign of the trigonometrical function should be taken.

3 CALCULATION OF THE AZIMUTHAL COVERAGE OF HF DIRECTIVE ANTENNAS

3.1 Azimuthal coverage parameters

The need to reduce the level of unwanted signals and interference has led to the use of directional antennas such as rhombics, log-periodic and Beverages, both for transmission and reception. From the specifications for these directional antennas one can obtain their azimuthal beamwidth in degrees; typically the half and tenth power beamwidths are quoted. The problem then arises as to the azimuthal coverage that will be obtained for the stated performance. Typical questions that arise are as follows:

(a) Given the beamwidth in degrees what will be the latitude and longitude of the points at the extremities of that beam at a given range?

(b) What is the latitude of the point where an extremity of the beam crosses a known meridian?
(c) What is the longitude of the point where the beam extremity crosses a known parallel of latitude?

A diagram showing the main features of these azimuthal coverage problems is shown in Fig 2 and represents a directional antenna assumed to be located at Exeter, point P. The maximum response of the main lobe is directed towards Bodø, point Q, in Northern Norway. The lobe is assumed to be symmetrical and to have a total beamwidth of 20 degrees, ±10° from the maximum response along PQ.

Calculations showing how the questions posed in (a), (b) and (c) above may be answered in this particular case are given in Appendix E and are summarized below.

3.2 To find the latitude and longitude of the points at the extremities of the beam at a given range

In Fig 2, J and K are the points where the ±10° beam extremities cross the line at right angles through the antenna centre-line at Bodø, point Q. It is shown in Appendix E that the range PQ from Exeter to Bodø is 1155 nautical miles and the bearing NQ of Bodø from Exeter is 21.9349°.

The latitude of point J, λ_J, is found from the co-latitude 90° - λ_J, i.e. the arc NJ. The longitude φ_J is obtained using the angle PNJ since this is the angle from the meridian through Exeter, whose longitude, φ_P, is known.

The calculations of Appendix E show [equations (E-3) and (E-4)] that the co-ordinates of point J are

$$\lambda_J = 69^\circ 10'N, \quad \phi_J = 06^\circ 57'E.$$

Similarly from (E-7) and (E-8) the co-ordinates of K are

$$\lambda_K = 65^\circ 05'N, \quad \phi_K = 20^\circ 33'E.$$

3.3 To find the latitude of the point where the extremity of the antenna beam crosses a known meridian

In Fig 2 let PJ be the northern limit of the beam which intersects, at point H (latitude λ_H), the meridian NQ through Bodø. Here we have to find NH the co-latitude of H. Solving for NH using the two angles and included side method, case 2 of Appendix C, it is shown [see equation (E-9)] that NH = 15.8993° and thus

$$\lambda_H = 90° - NH = 94.1007^\circ N = 74^\circ 06'N.$$

3.4 To find the longitude of the point where the extremity of the antenna beam crosses a known parallel of latitude

The antenna beam PJ is assumed to cross the parallel of latitude, λ_D, at point D. The intersection of the meridian NP and the parallel of latitude, λ_D, is at point E (Fig 2).

The longitude, φ_D, of D can be obtained if we find the angle PNĐ which is the difference of longitudes of P and D. In Appendix E it is shown, equation (E-14),
that

\[\tan \text{PND} = \frac{\sin(\lambda_D - \lambda_P) \tan \text{DPN}}{\cos \lambda_D} \]

and the value of \(\text{PND} \) is 8.7854°.

Hence

\[\phi_D = \phi_P - \text{PND} = 4.25^\circ \text{W} - 8.7854^\circ = 4.5354^\circ \text{E} = 04^\circ 32' \text{E} \]

4 CONCLUSIONS

Various approaches to obtaining great circle distances and bearings have been examined and the advantage of the auxiliary-quantities method when using an electronic calculator has been shown. The methods of solving the spherical triangles that occur in finding the azimuthal coverage of HF directional antennas have been discussed and the value of examining the relationships between the sides and angles of the triangles, prior to making detailed calculations, has been demonstrated.
Appendix A

FORMULAS FOR SOLVING SPHERICAL TRIANGLE PROBLEMS

Adopting the usual conventions the sides (arcs) are denoted by a, b, c and the angles opposite them by α, β and γ respectively (see Fig 1).

Law of sines

\[
\frac{\sin a}{\sin \alpha} = \frac{\sin b}{\sin \beta} = \frac{\sin c}{\sin \gamma}.
\] (A-1)

Law of cosines for sides

\[
\cos a = \cos b \cos c + \sin b \sin c \cos \alpha
\] (A-2)

\[
\cos b = \cos c \cos a + \sin c \sin a \cos \beta
\] (A-3)

\[
\cos c = \cos a \cos b + \sin a \sin b \cos \gamma.
\] (A-4)

Law of cosines for angles

\[
\cos \alpha = -\cos \beta \cos \gamma + \sin \beta \sin \gamma \cos a
\] (A-5)

\[
\cos \beta = -\cos \gamma \cos a + \sin \gamma \sin a \cos b
\] (A-6)

\[
\cos \gamma = -\cos \alpha \cos \beta + \sin \alpha \sin \beta \cos c
\] (A-7)

Napier’s analogies

\[
\tan \frac{a - \beta}{2} = \frac{\sin \frac{1}{2}(a - b)}{\sin \frac{1}{2}(a + b)} \cot \frac{\gamma}{2}
\] (A-8)

\[
\tan \frac{a + \beta}{2} = \frac{\cos \frac{1}{2}(a - b)}{\cos \frac{1}{2}(a + b)} \cot \frac{\gamma}{2}
\] (A-9)

\[
\tan \frac{a - b}{2} = \frac{\sin \frac{1}{2}(a - \beta)}{\sin \frac{1}{2}(a + \beta)} \tan \frac{c}{2}
\] (A-10)

\[
\tan \frac{a + b}{2} = \frac{\cos \frac{1}{2}(a - \beta)}{\cos \frac{1}{2}(a + \beta)} \tan \frac{c}{2}
\] (A-11)

other forms can be obtained by cyclic changing of the letters.

Gauss’ or Delambre’s analogies

\[
\sin \frac{a - \beta}{2} = \frac{\sin \frac{1}{2}(a - b)}{\sin c/2} \cos \frac{\gamma}{2}
\] (A-12)
\[\sin \frac{\alpha + \beta}{2} = \frac{\cos \frac{1}{2}(a - b)}{\cos c/2} \cos \frac{\gamma}{2} \quad (A-13) \]

\[\cos \frac{\alpha - \beta}{2} = \frac{\sin \frac{1}{2}(a + b)}{\sin c/2} \sin \frac{\gamma}{2} \quad (A-14) \]

\[\cos \frac{\alpha + \beta}{2} = \frac{\cos \frac{1}{2}(a + b)}{\cos c/2} \sin \frac{\gamma}{2}. \quad (A-15) \]

Again other forms can be obtained by cyclic changing of the letters.

Haversine formulas \(^{13}\) for the sides

\[
\begin{align*}
\text{hav } a &= \text{hav}(b - c) + \sin b \sin c \text{ hav } \alpha \\
\text{hav } b &= \text{hav}(c - a) + \sin c \sin a \text{ hav } \beta \\
\text{hav } c &= \text{hav}(a - b) + \sin a \sin b \text{ hav } \gamma \\
\end{align*}
\]

where \(\text{hav } \theta \) is the haversine of an angle \(\theta \) and is defined by

\[\text{hav } \theta = \frac{1}{2}(1 - \cos \theta) = \sin^2 \frac{\theta}{2} \quad (A-19) \]

from (A-19)

\[\cos \theta = 1 - 2 \text{ hav } \theta \quad (A-20) \]

and

\[\theta = \arccos(1 - 2 \text{ hav } \theta) . \quad (A-21) \]

Haversine formulas \(^{13}\) for the angles

\[
\begin{align*}
\text{hav } \alpha &= \sin(s - b) \sin(s - c) \text{ cosec } b \text{ cosec } c \\
\text{hav } \beta &= \sin(s - c) \sin(s - a) \text{ cosec } c \text{ cosec } a \\
\text{hav } \gamma &= \sin(s - a) \sin(s - b) \text{ cosec } a \text{ cosec } b \\
\end{align*}
\]

where \(s = \frac{1}{2}(a + b + c) \).
Appendix B

RELATIONSHIPS BETWEEN THE SIDES AND ANGLES OF OBLIQUE SPHERICAL TRIANGLES

In solving problems associated with oblique spherical triangles the following relationships between the sides and angles are found to be of considerable value. It should be noted that they are restricted to those triangles in which each side and angle is less than 180°.

B1 The sum of any two sides is greater than the third.

B2 The sum of the three sides is less than 360°.

B3 If two sides are equal, the angles opposite are equal and conversely.

B4 The sum of the three angles is greater than 180° and less than 540°.

B5 Half the sum of two sides and half the sum of the two angles opposite them belong to the same quadrant.

B6 If a side (or an angle) differs from 90° by a larger number of degrees than another side (or angle) then the first side and its opposite angle belong to the same quadrant.
Appendix C

SOLUTION OF OBLIQUE SPHERICAL TRIANGLE PROBLEMS USING AUXILIARY QUANTITIES

In many problems it is required to find only one or two of the unknown parts of a spherical triangle. It is evident from Appendix A that any part can be found using any three other parts through the use of the general formulas given there. By the introduction of auxiliary quantities the basic sine and cosine formulas have been adapted to logarithmic computation and are therefore in a form that can be easily processed on an electronic calculator. As these methods may not be generally known a full statement will be given of the derivation for one case, two sides and the included angle. Formulas for the remaining cases which can be derived in a similar fashion are also given. Again the usual conventions are employed (see Appendix A and Fig 1).

Case I. Two sides and the included angle

Let a, b and γ be the given parts.

To find c from (A-4) we have that the relation between a, b, γ and c is

\[\cos c = \cos a \cos b + \sin a \sin b \cos \gamma. \]

(C-1)

Let

\[m \sin M = \sin b \cos \gamma \]

(C-2)

and

\[m \cos M = \cos b \]

(C-3)

from (C-1), (C-2) and (C-3) by eliminating b

\[\cos c = m \cos(a - M). \]

(C-4)

From (C-2) and (C-3)

\[\tan M = \tan b \cos \gamma \]

(C-5)

and from (C-3) and (C-4)

\[\cos c = \frac{\cos b \cos(a - M)}{\cos M}. \]

(C-6)

To find β Similarly using the relationship between a, b, γ and β it can be shown \(^{14}\) that

\[\cot \beta = \frac{\cot b \sin a - \cos a \cos \gamma}{\sin \gamma} \]

and again using (C-5) it can also be shown that

\[\tan \beta = \frac{\tan \gamma \sin M}{\sin(a - M)}. \]

(C-7)
Appendix C

To find α Interchanging a and b and consequently α and β in (C-5) and (C-7) and calling the auxiliary angle N we have

\[\tan N = \tan \alpha \cos \gamma \] \hspace{1cm} (C-8)

and

\[\tan \alpha = \frac{\tan \gamma \sin N}{\sin(b - N)} \] \hspace{1cm} (C-9)

$\cos c$ also can be found using N as an auxiliary angle

\[\cos c = \frac{\cos \alpha \cos (b - N)}{\cos N} \] \hspace{1cm} (C-10)

Case 2. Given two angles and the included side

Let α, β and c be the given parts.

To find γ and α we have

\[\tan M = \frac{1}{\tan \alpha \cos c} \] \hspace{1cm} (C-11)

then

\[\cos \gamma = \frac{\cos \alpha \sin(\beta - M)}{\sin M} \] \hspace{1cm} (C-12)

and

\[\tan a = \frac{\tan c \cos M}{\cos(\beta - M)} \] \hspace{1cm} (C-13)

To find b we have

\[\tan N = \frac{1}{\tan \beta \cos c} \] \hspace{1cm} (C-14)

and

\[\tan b = \frac{\tan c \cos N}{\cos(\alpha - N)} \] \hspace{1cm} (C-15)

Case 3. Given two sides and an angle opposite one of them

Let a, b and α be the given parts.

To find c using

\[\tan M = \tan b \cos \alpha \] \hspace{1cm} (C-16)

\[\cos(c - M) = \frac{\cos \alpha \cos M}{\cos b} \] \hspace{1cm} (C-17)

To find γ and β using

\[\tan N = \tan \alpha \cos \beta \] \hspace{1cm} (C-18)
\[\sin(y + N) = \frac{\sin N \tan b}{\tan a} \] \hspace{1cm} (C-19)

and

\[\sin \beta = \frac{\sin b \sin a}{\sin a} \] \hspace{1cm} (C-20)

Case 4. Given two angles and a side opposite one of them

Let \(\alpha, \beta \) and \(a \) be the given parts.

To find \(\gamma \)

\[\tan M = \frac{1}{\tan \beta \cos a} \] \hspace{1cm} (C-21)

then

\[\sin(y - M) = \frac{\cos \alpha \sin M}{\cos \beta} \] \hspace{1cm} (C-22)

To find \(c \)

\[\tan N = \tan a \cos \beta \] \hspace{1cm} (C-23)

then

\[\sin(C - N) = \frac{\tan \beta \sin N}{\tan a} \] \hspace{1cm} (C-24)

To find \(b \)

\[\sin b = \frac{\sin \beta \sin a}{\sin a} \] \hspace{1cm} (C-25)
Appendix D

DETAILED CALCULATIONS OF GREAT CIRCLE DISTANCES AND BEARINGS BETWEEN TWO POINTS Whose Co-Ordinates Are Given

D.1 General principles

It is desired to determine the great circle distance and bearing between the two locations P and Q depicted in Fig. 1. It will be seen that the great circle arcs NP and NQ are part of the meridians through P and Q. Let the latitudes of P and Q be denoted by \(\lambda_p \) and \(\lambda_q \), and the longitudes by \(\phi_p \) and \(\phi_q \). In the triangle NPQ, \(NP = b = 90 \pm \lambda_p \) and \(NQ = a = 90 \pm \lambda_q \) depending whether P and Q are south or north of the equator. The angle \(\gamma \), is derived from the difference in longitudes of P and Q. However, one must always take the minor arc, thus \(\gamma = \phi_p - \phi_q \) or \(360 - (\phi_p - \phi_q) \) depending upon whether \((\phi_p - \phi_q) \) is less or greater than 180°.

To find the great circle distance between P and Q we have to calculate the value of the arc PQ in degrees, i.e. \(c \), and then multiply by 60 to obtain the answer in nautical miles. This can also be stated in kilometres using the internationally agreed conversion factor\(^{15} \) of \(1 \text{ NM} = 1.852 \text{ km} \). The assumption is made in using these conversions, that the earth is truly spherical. Whilst it has recently been determined that the earth is slightly pear-shaped\(^{16} \) the variations are relatively small (see Appendix E) and are usually neglected.

The value of \(PQ \) can be determined since we know the values of NP, NQ (b and a respectively) and the included angle \(\angle PQ \) (i.e. \(\gamma \)). Similarly angle \(\angle NPQ \) designated \(\alpha \), or \(\angle QNP \) designated \(\beta \) may be determined. By convention true relative bearings are always taken in a clockwise direction from North. Hence though \(\beta \) is the true bearing of P relative to Q, the true bearing of Q relative to P is \(360 - \alpha \).

D.2 Use of cosine and sine laws

From equation (A-4) we have

\[
\cos c = \cos a \cos b + \sin a \sin b \cos \gamma
\]

but \(a = 90 \pm \lambda_q \), \(b = 90 \pm \lambda_p \), \(\gamma = \phi_p - \phi_q \) or \(360 - (\phi_p - \phi_q) \). When \(\lambda_p \) and \(\lambda_q \) are both north or both south of the equator then

\[
\cos c = \sin \lambda_p \sin \lambda_q + \cos \lambda_p \cos \lambda_q \cos \gamma . \tag{D-1}
\]

When \(\lambda_p \) is north and \(\lambda_q \) is south of the equator or vice versa

\[
\cos c = - (\sin \lambda_p \sin \lambda_q) + \cos \lambda_p \cos \lambda_q \cos \gamma . \tag{D-2}
\]

As an example find the distance from Seattle, USA to Sydney, Australia

<table>
<thead>
<tr>
<th>Location (point)</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seattle</td>
<td>47°27'N</td>
<td>122°21'W</td>
</tr>
<tr>
<td>Sydney</td>
<td>33°54'S</td>
<td>151°12'E</td>
</tr>
</tbody>
</table>
The difference in longitude is $273^{0}33'$ but this is the major arc whereas as noted in section D.1, γ is taken as the value of the minor arc so

$$\gamma = 360^{0} - 273^{0}33' = 86^{0}27'.$$

Substituting for λ_p, λ_q and γ in equation (D-1) and evaluating we find

$$\cos c = -0.3761 \quad \text{and} \quad c = 112.0941^{0}.$$

thus the distance PQ is 6726 NM.

D.3 Use of haversine formula

A great advantage of the haversine method is that there is a single positive angle less than 180^{0} having a given haversine value, thus eliminating the uncertainty as to which quadrant an angle or side belongs.

Using equation (A-18) and decimalising the values for Seattle and Sydney quoted in section D.2

$$a = 123.9^{0}, \quad b = 42.55^{0}, \quad \gamma = 86.45^{0}$$

hav C = hav(a - b) + sin a sin b hav γ

$$= \text{hav} 81.35^{0} + \sin 123.9^{0} \sin 42.55^{0} \text{hav} 86.45^{0}.$$ (D-3)

Using (A-19) to find the haversine values

$$\text{hav} 81.35^{0} = 0.424801$$
$$\text{hav} 86.45^{0} = 0.469040.$$

Thus (D-3) becomes

$$\text{hav c} = 0.424801 + 0.263264$$
$$= 0.688065.$$

Using equation (A-20)

$$\cos c = -0.376130$$
$$c = 112.09415^{0}$$

and the distance is 6726 NM.

D.4 Use of auxiliary quantities to find the distance and bearing of one location from the other

In many applications one has to find only the bearing from one's location to some other location, and it is here that the method described in Appendix C where an auxiliary angle is used, proves to be especially useful.

Frequently one has to find both the distance and the bearing between two points but still only one auxiliary angle need be calculated. Before proceeding with the calculation
it is advisable to ascertain which quadrant the required angle will be in thus avoiding the uncertainties that can arise. The relationships between sides and angles of an oblique spherical triangle are stated in Appendix B and an application of these will now be shown using the Seattle-Sydney co-ordinates again.

We know from (D.1) that we have to find the third side \(c \) and either angle \(\alpha \) or angle \(\beta \) (Fig I) if we wish to find the distance and the bearing between the two points \(P \) and \(Q \). We can, therefore, use equation (C.8) to find the auxiliary angle \(N \) and equations (C.9) and (C.10) to find both the bearing and distance, respectively, of Sydney from Seattle knowing that

\[
Q = 123.90^\circ, \quad b = 42.55^\circ, \quad \gamma = 86.45^\circ.
\]

Applying the tests in Appendix B we can deduce the following:- from B6 we see that

\[
90 - b > a - 90 \text{ but } b \text{ is in the first quadrant hence } \beta \text{ also is in the first quadrant.}
\]

It then follows that \(\frac{1}{2}(\beta + \gamma) < 90^\circ \) so from B5 \(\frac{1}{2}(b + c) < 90 \) and thus \(c < 137.45^\circ \).

From B1 \((b + c) > a \), \(\text{i.e. } c > a - b \text{ thus } c > 81.35^\circ \) consequently \(81.35^\circ < c < 137.45^\circ \).

We can now see that \(\frac{1}{2}(a + c) \) must be in the second quadrant and hence again from B5 \(\frac{1}{2}(\alpha + \gamma) \) is also in the second quadrant thus \(180^\circ < (\alpha + \gamma) < 360^\circ \).

Now

\[
\gamma = 86.45^\circ \text{ so } 93.55^\circ < \alpha < 273.55^\circ.
\]

Knowing also that \(b \) and \(\beta \) are in the first quadrant and applying the sine rule we see that in order that \(\sin \alpha \) may remain positive, \(\alpha \) must be in the second quadrant.

Since \(a \) and \(\alpha \) are in the same quadrant, the second, then \(a - 90 > c - 90 \) thus \(a > c \), \(\text{i.e. } c < 123.9^\circ \).

Summarizing we have

\[
93.55^\circ < \alpha < 180^\circ, \\
81.35^\circ < c < 123.9^\circ.
\]

Now from (C.8)

\[
\tan N = \tan \alpha \cos \gamma \\
= \tan 123.90^\circ \cos 86.45^\circ
\]

and

\[
N = -5.2647^\circ
\]

substituting in (C.10)

\[
\cos c = \frac{\cos a \cos(b - N)}{\cos N}
\]

\[
= \frac{\cos 123.90^\circ \cos(42.55^\circ + 5.2647^\circ)}{\cos(-5.2647^\circ)}
\]

and

\[
c = 112.0941^\circ.
\]
From (C-9)

\[
\tan \alpha = \frac{\tan \gamma \sin N}{\sin(b - N)}
\]

and substituting we have

\[
\tan \alpha = \frac{\tan 86.45^\circ \sin(-5.2647^\circ)}{\sin(42.55^\circ + 5.2647^\circ)}
\]

\[
\alpha = 116.6103^\circ = 116^\circ 37'.
\]

Thus as noted in (D-1) the true bearing of Sydney from Seattle, by convention taken as clockwise from North, is

\[
360 - \alpha = 243.3897^\circ = 243^\circ 23'.
\]
Appendix E

DETAILED CALCULATIONS OF AZIMUTHAL COVERAGE OF AN ANTENNA AT EXETER DIRECTED TO BODØ

E.1 Geometry of the situation

The geometry of the situation is depicted in Fig 2 where Exeter is at point P and Bodø is at point Q. The latitudes and longitudes of Exeter and Bodø are as follows:

<table>
<thead>
<tr>
<th></th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exeter</td>
<td>50.40°N</td>
<td>4.25°W</td>
</tr>
<tr>
<td>Bodø</td>
<td>67.27°N</td>
<td>14.33°E</td>
</tr>
</tbody>
</table>

Using one of the methods described in Appendices C or D the distance along the great circle PQ is found to be 19.2431°, i.e. 1155 NM and the bearing of Bodø from Exeter, NPQ, 21.9349° from true North.

The half-power beamwidth is assumed to be 20° thus JPK = KPK = 10° where points J and K are on the line JK at right angles to the great circle PQ and passing through Bodø, point Q.

Thus

\[J\hat{Q} = K\hat{P} = 90°. \]

Since NPQ = 21.9349°, \(\hat{N}JP = 11.9349° \) and \(\hat{N}PK = 31.9349° \).

Also NP = co-latitude of P = 90° - 50.40° = 39.60°.

E.2 To find the latitude and longitude of points at the extremities of the beam at a given range

For this example we will take the points J and K (see Fig 2).

(a) Point J

In the spherical triangle JPK we know the values of JPK, JQP and PQ so we can now use equations (C-14) and (C-15). Noting that auxiliary angle N = 0° since \(\tan J\hat{Q} = \tan 90° = \infty \), we find \(\tan PJ = \tan PQ/\cos JPK \).

This expression could also have been found from the tables of formulas for right spherical triangles 1,2,3,13.

Thus

\[\tan PJ = \tan 19.2431°/\cos 10° \]

so

\[PJ = 19.5177°, \text{ i.e. 1171 NM}. \] (E-1)

Also

\[\hat{N}PJ = 11.9349°. \] (E-2)

In triangle NPJ we now know the values of NP, PJ and \(\hat{N}PJ \), thus using equation (C-5) we find the auxiliary angle M to be 19.1267° and we solve, using equations (C-6) and (C-7) to find NJ and PNJ.
From equation (D-6) \(\text{NJ} = 20.8369^\circ \).
From equation (D-7) \(\text{PNJ} = 11.2001^\circ \).

Now \(\text{NJ} \) is the co-latitude of \(J \) and thus the latitude of \(J \) is

\[
\lambda_J = 90^\circ - \text{NJ} = 69.1631^\circ N = 69^\circ 10'N.
\] (E-3)

The longitude of \(J \), \(\phi_J \), is 11.2001\(^\circ\) east of the meridian through Exeter which is at 04.25\(^\circ\)W, i.e.

\[
\phi_J = 4.25^\circ W - 11.2001^\circ = 6.9501^\circ E = 06^\circ 57'E.
\] (E-4)

(b) Point K

PK may be calculated in the same manner as for PJ. However, if PJ has been calculated there is strictly no need to calculate PK as well, since by symmetry they are equal, thus

\[
\text{PK} = 19.5177^\circ, \ \triangle 1171 \text{ NM}.
\] (E-5)

In triangle NPK we know, therefore, the values of NP, PK and NPK and using equation (C-5) we find the auxiliary angle, \(M \),

\[
M = 19.1267^\circ.
\] (E-6)

From equation (C-6)

\[
\text{NK} = 24.9103^\circ
\]

\[
\therefore \lambda_K = 90 - \text{NK} = 65.0897^\circ N = 65^\circ 05'N.
\] (E-7)

From equation (C-7)

\[
\text{PNK} = 24.8075^\circ.
\]

Therefore the longitude of \(K \), \(\phi_K \), is 24.8075\(^\circ\) east of the meridian through Exeter, i.e.

\[
\phi_K = 04.25^\circ W - 24.8075^\circ = 20.5575^\circ E = 20^\circ 33'E.
\] (E-8)

E.3 To find the latitude of the point where the extremity of the antenna beam crosses a known meridian

Here we will consider the case where the northern extremity of the beam crosses at \(H \), the meridian through Bodø. To obtain the latitude, \(\lambda_H \), of point \(H \) we need to find the co-latitude \(NH \).

In the spherical triangle HPN we know the values of the two angles HPN and HNP and the included side NP since HPN = NPJ = 11.9349\(^\circ\) see equation (E-2) and HNP = PNQ = \(\phi_P - \phi_Q = 18.58^\circ \) also NP the co-latitude of \(P = 39.60^\circ \). Thus we can calculate the value of \(NH \).
Using the auxiliary angle method of Appendix C, equation (C-11)

\[\tan M = \frac{1}{\tan \frac{NP}{
\cos M} \cos \frac{NP}{11.9349^\circ \cos 39^\circ} } \]

and

\[M = 80.7498^\circ. \]

From (C-13)

\[\tan NH = \tan \frac{NP}{M} \cos \frac{M}{\cos(h F - N)} \]

and

\[NH = 15.8993^\circ. \]

\[\therefore \lambda_H = 90^\circ - NH = 74.1007^\circ N = 74^\circ 06'N. \] (E-9)

If we calculate the values of \(\text{NH} \) and HP using equations (C-12), (C-14), (C-15) but first apply test B4 from Appendix B which shows that \(\text{NHP} > 149.485^\circ \), we find

\[\text{NHP} = 151.2371^\circ \text{ and HP} = 24.9663^\circ. \]

Applying the sine rule as a check we obtain

\[\frac{\sin 15.8993^\circ}{\sin 11.9349^\circ} = \frac{\sin 39.60^\circ}{\sin 151.2371^\circ} = \frac{\sin 24.9663^\circ}{\sin 18.58^\circ} = 1.324693 \]

thus confirming the validity of the calculations.

E.4 To find the longitude of the point where the extremity of the antenna beam crosses a known parallel of latitude

The northern extremity of the antenna beam PJ will again be used and its point of intersection, D, will be assumed to be on the 67th parallel of latitude. Denote the point where the 67th parallel crosses the meridian, \(\phi_p \), through Exeter, by E. If we then find \(\text{END} = \text{PND} \) and noting that Exeter is west of the Greenwich meridian, it will be seen that the longitude \(\phi_D \) of point D is given by

\[\phi_D = \phi_P - \text{PND}. \] (E-10)

From the sine formula (A-1) when \(\gamma = 90^\circ \) we obtain

\[\sin \alpha = \frac{\sin a}{\sin c} \text{ and } \sin \beta = \frac{\sin b}{\sin c} \]

also from the cosine formula (A-4) when \(\gamma = 90^\circ \)

\[\cos c = \cos a \cos b \]
combining the above expressions we can show that

\[\sin a = \tan b \cot \beta . \] \hspace{1cm} (E-11)

Then in triangle \(DEN\) where \(DEN = 90^\circ\) and \(EN = 90 - \lambda_D\), applying (E-11)

\[\sin(90 - \lambda_D) = \tan ED \cot DNE \]

and rearranging,

\[\cos \lambda_D \tan DNE = \tan ED . \] \hspace{1cm} (E-12)

Similarly in triangle \(DEP\),

\[\text{DEP} = 90^\circ \] and \(EP = \lambda_D - \lambda_P\).

Again using (E-11),

\[\sin(\lambda_D - \lambda_P) \tan DPE = \tan ED , \] \hspace{1cm} (E-13)

equating (E-12) and (E-13) and substituting \(DPE\) for \(DPE\) since they are identical, we have

\[\tan PND = \tan DNE = \frac{\sin(\lambda_D - \lambda_P) \tan DPN}{\cos \lambda_D} . \] \hspace{1cm} (E-14)

Now

\[\lambda_D = 67^\circ, \; \lambda_P = 50.4^\circ \] and \(DPN = 11.935^\circ\).

\[\therefore \tan PND = \frac{\sin 16.6^\circ \tan 11.935^\circ}{\cos 67^\circ} \]

and

\[\text{PND} = 8.7854^\circ \] \hspace{1cm} (E-15)

substituting (E-15) in (E-10)

\[\phi_D = \phi_P - \text{PND} = 04.25^\circ W - 8.7854^\circ = 4.5354^\circ E \]

\[= 04^\circ 32' E . \] \hspace{1cm} (E-16)
Appendix F
CONVERSION FACTORS AND CONSTANTS

F.1 Conversion factors

1 international nautical mile = 1852 m
1 metre = 3.280 84 ft

F.2 Constants

Earth's equatorial radius 6378.160 km = 3443.845 NM
polar radius 6356.775 km = 3432.384 NM
mean radius 6371.020 km = 3440.076 NM.
<table>
<thead>
<tr>
<th>No.</th>
<th>Author</th>
<th>Title, etc</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H.V. Lowry</td>
<td>Advanced mathematics for technical students. Part 2.</td>
</tr>
<tr>
<td></td>
<td>Howard Sams</td>
<td>Indianapolis, USA, pp 28-10 (1975)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>Dictionary of national biography. Compact edition,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vol 1, p 1460, Oxford University Press, Oxford. (1975)</td>
</tr>
<tr>
<td>6</td>
<td>ICAO</td>
<td>Units of measurement to be used in air and ground operations.</td>
</tr>
<tr>
<td></td>
<td>Annex 5 to the convention on International civil aviation.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fourth edition, p 11, Montreal, ICAO (1979)</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MOD</td>
<td>HF and MF aerials for ground stations. General principles.</td>
</tr>
<tr>
<td></td>
<td>MOD Air Publication AP 116E-1717-IL (1969)</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>W.D. Lambert</td>
<td>The distance between two widely separated points on the surface of the earth.</td>
</tr>
<tr>
<td>9</td>
<td>E.V.D. Glazier</td>
<td>The Services textbook of Radio.</td>
</tr>
<tr>
<td>10</td>
<td>CCIR</td>
<td>Handbook on high-frequency directional antennae.</td>
</tr>
<tr>
<td></td>
<td>International Telecommunications Union, Geneva (1966)</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>G.E. Moss</td>
<td>The use of multi-element Beverage antenna arrays for HF transmission.</td>
</tr>
<tr>
<td></td>
<td>N. Muirhead</td>
<td>CRC 1318, Ottawa, Canada (1978)</td>
</tr>
<tr>
<td>12</td>
<td>H.L. Spong</td>
<td>A practical guide to the design and construction of a single wire Beverage antenna.</td>
</tr>
<tr>
<td></td>
<td>RAE Technical Memorandum Rad-Nav 137 (1980)</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Frank Ayres, Jnr</td>
<td>Theory and problems of plane and spherical trigonometry.</td>
</tr>
<tr>
<td>14</td>
<td>G.N. Bauer</td>
<td>Plane and spherical trigonometry. Third edition,</td>
</tr>
<tr>
<td></td>
<td>W.E. Brooke</td>
<td>D.C. Heath and Co, Boston, USA, pp 211-226 (1932)</td>
</tr>
<tr>
<td>15</td>
<td>British Standards Institution</td>
<td>Conversion factors and tables.</td>
</tr>
<tr>
<td></td>
<td>British Standards Institution, London (1959)</td>
<td></td>
</tr>
</tbody>
</table>
REFERENCES (concluded)

<table>
<thead>
<tr>
<th>No.</th>
<th>Author</th>
<th>Title, etc</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>D.G. King-Hele</td>
<td>What the silent satellite reveals.
 Spectrum, 158, 4-7 (1978)</td>
</tr>
<tr>
<td>17</td>
<td>G.W.C. Kaye</td>
<td>Tables of physical and chemical constants.
 Fourteenth edition.</td>
</tr>
</tbody>
</table>
Fig 1 Spherical triangle NPO
Fig 2 Diagram for HF directional antenna azimuthal coverage problems
Methods of calculating the azimuthal coverage of HF directional antennas are described and worked examples are given. Particular attention is paid to spherical trigonometry formulas employing auxiliary quantities because of their suitability for use with simple hand-held electronic calculators. The relationships between sides and angles of oblique spherical triangles, collated from several sources, are listed and the value of applying tests based on these relationships prior to making detailed solutions of spherical triangle problems is demonstrated.
DATE
FILMED
8