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Nonequilibrium Superconducting States

with Two Coexisting Energy Gaps

Gerd Sch6n(a)

Institut fUr Theorie der Kondensierten
Materie, Universit~t Karlsruhe, BRD

and

Andr&-M. Tremblay

Laboratory of Atomic and Solid State
Physics, Cornell University, Ithaca

New York, 14853

The effect of tunnel currents in superconducting

junctions on the energy gap is calculated. For certain

parameters two different gaps can exist. The stability

of these solutions is investigated and at a certain
voltage a "first order transition" is found. This result

explains the experimentally observed inhomogeneous states

in superconducting tunnel junctions.
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Recent experiments on superconducting tunnel junctions(1)(2)

suggest that for certain injection currents and voltages a

superconductor sustains simultaneously two different values

of the energy gap. Existing phenomenological models

predict that above a critical density of the excitations n

the superconductor has an intrinsic instability with respect

to the formation of a spatially inhomogeneous state. This

is not in agreement with the experimental results of Gray

and Willemsen (2) These authors interpreted the effect

by inhomogeneities in the probes, with a lower gap value,

which grow with increasing total current.

In this letter we describe microscopically a super-

conducting tunnel junction consisting of an injector and a

probe and find that two stable values of the energy gap

can exist in the probe. In accord with the experiments,

at a certain voltage a first order phase transition takes

place where the part of the probe with the lower gap and

larger injection current density grows while the part with

the larger gap and lower injection current density decreases.

The relative size of the two regions is controlled by the

total injection current. This is analogous to a liquid-

gas transition at a certain pressure where the relative

volumes are controlled by the total volume. Our result differs

from the model of Ref.2 insofar as we find the existence

of two gap values to be an intrinsic property of the system.

Furthermore, our approach describes the gap enhancement by

quasiparticle extraction, investigated in the experiments

of Chi and Clarke (4 ). We will present a detailed analysis

in two limits, near Tc and near T = 0. Qualitatively, the

same results can be obtained for any intermediate temperature.

We assume that the injector is thick and not appreciably

perturbed by the current and that the phonons remain in

equilibrium. Thus, the probe can be studied using the

kinetic equations for the quasiparticle distribution function

and the order parameter derived in Ref. 5. In general
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there is no simple relation between the injected current

(branch imbalance(6)) and the total number of excitations

(electron-plus hole-like) created in the probe. Only the

latter quantity modifies the magnitude of the order parameter.

The corresponding deviation of the distribution function 6fE, /
which is odd in energy, is obtained from the Boltzmann ..

e q u a t i o n ! b'

,Vl(E)fE K(6f) E . 1 (E)-3f 0 (E)/3E * . (1 I ,

,VI(E) is the normalized BCS density of states and K(6f)

describes inelastic electron-phonon scattering. It suffices /

to know that K(6f) can be split into a "scattering out" term

-TE 1 )¢-I(E)6f E , and a "scattering in" term, an integral operator.

The perturbation is PE =BA'(E) Ui(E - eV)(th E/2T -th(E - eV)/2T) +

(eV4-' -eV)] where B- 1 = RM8e 2No, R is the resistance of

the junction, Q the volume of the probe, No the normal density

of states,and li4 refers to the injector. The thickness

of the probe is small, and no spatial variations in this

direction occur. For the moment we also neglect spatial

variations in the junction plane. The effect of 6fE on

A, the magnitude of the order-parameter, follows for tempera-

tures near the critical temperature of the probe from the

Ginzburg-Landau (G -L) equation(5)

2
irA/8T - X = (a- 8A )A (2)

where X = "gdEI/E.(E)6f and = (Tc -T)/T c , = 7C(3)/872T.

We obtain analytic results if we assume that the energy

gap of the injector and the voltage are small Ai/T,IeVI/T<< 1.

The linear term of an expansion of PE in powers of eV/T is

localized in a narrow energy region lEt A i + leVl <<T.
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Consequently, the corresponding contribution E = ToPE/fl'(E)

to the stationary nonequilibrium distribution, is obtained

neglecting the "scattering in" term and taking the scattering

time TE at E -_0. Depending on the relative values of

and V, 6f El describes an increase or decrease of the

density of excitations near the gap edge. The resulting

X (1)(,V) also changes sign, and both gap reduction or gap

enhancement are possible. By contrast, the quadratic term

of the expansion of PE always results in a gap reduction.

Since 6f E(2) is not localized near the gap edge, the
"scattering in" term cannot be neglected. A variational

calculation (7) yields X = -1.4 B ° (eV/2T)2 . This
0contribution can be interpreted as an effective increase in

temperature. For the following discussion we shall neglect

it, although it may be important for a quantitative analysis.

In the considered limit (&,&i,eVj<<T), we find

X (1) (A,V) = -20(A+ A,-I e V I ) B To Ie V / 2 T I g{ (d- eVI) K(k) + (c-d)r(a 2,k))

(3)

where K and w are complete elliptic integrals of the first

and third kind, g = 2/[(a- c)(b- d)3 1 / 2 , a2 = (b c)/(b d)
k2 = a2(a- d)/(a-c), and a,b,c,dare the parameters Ievl±A and

±A assigned such that a> b> c> d. In order to obtain the

stationary solution of the G- L equation including the non-

equilibrium term, we employ graphical constructions. The

intersections of -X (1)(A,V) and the curve a - O2 yield

possible solutions of A. A large positive value of X(1) (&,V)

at levi - i- (for Ai > A), corresponding to a net extraction

of excitations, results in a large gap enhancement at this

voltage. This is in qualitative agreement with the ex-

perimental results of Chi and Clarke (4 ).

For our present problem, larger voltages are of interest.

As shown in Fig. 1, X (1 ) (,V) has a step structure at

levi = Ai +A. This step corresponds to the step in the
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I(V) characteristic of an ideal SIS tunnel junction at the

same voltage, however, X (I) is finite at low voltages

leVl< A+ Ai and zero above. In the vicinity of the step,

we can approximate Eq. (3) by

X( 1 ) CA,V) = B T O leV/2T I -ff e(A+ Ai- leVi). (4)

For suitably chosen parameters (e.g., eV = 2.2Ai in Fig.l)

we find three solutions of the G- L equation denoted by

All 12, AV (In the presence of any level broadening, the

step actually has to be replaced by a finite slope, therefore,

A2 is also a solution.) In addition A = 0 is a solution.

From an analysis of the time dependent equations, we find

that A = 0 and A2 are unstable, whereas A1 and A3 are locally

stable. At low voltages, we find only one enhanced super-

conducting solution, whereas at high voltages we find

only the unperturbed solution. In the inset of Fig.l, the

solutions A as a function of the voltage are shown.

Obviously,in the range where A(V) has two values with

Ai 4 A 1  levi >A i + A 3, two significantly differing values

of the current density are obtained.

In order to find which of the two locally stable

solutions is globally stable, we follow the analysis

performed by Schmid (8 ). The probability of a solution A is

given by W(A)a exp (-,(A)/T),where the generalized free

energy is 3(A) = -2No 4 dA' a-BA' 2 + X(A')]A' . 3 is
0

plotted in the inset of Fig. 1. The situation is clearly

analogous to a first order phase transition. At low

4 voltages, A1 is the globally stable "phase". At a certain

voltage V0 , where Ai+ A1  leVol i>A+A 3 , we have

I (4 I ) = r(& 3 ), and a transition between A1 and A3 can take

place. With increasing total current, the size of the

region in the A1 "phase" with small injection current

density decreases in favour of the region in the A3
"phase" with large injection current density. At high
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enough voltages, the 43 "phase" is globally stable. In

addition, the metastable states will result in a hysteresis

under suitable conditions. The effect of X (2 ) or generally

of heating will be to reduce 4I and 43 below the values

found here, but these processes are "smooth" enough that the

difference 61 - a3 will be preserved.

All of these results, including the dependence of

61 - 43 on the junction resistance, are in good agreement

with the experiments. Even the hysteresis along the lower

branch of I(V) has been detected. In the case of stimulation

of superconductivity by microwaves or by phonons at a

certain temperature two stable solutions are found too(8 )

(normal and superconducting or both superconducting with

different gaps, respectively). However, the transition

between these solutions occurs abruptly, since there is no

external variable, such as the total injection current in

the present problem to control the transition.

Even in the state where the two gaps coexist, the

distribution-function SfE (in the limit considered) is

single valued. Therefore, spatially inhomogeneous problems

are described by adding the space derivatives to the G-L

equation. We find (9)(10) that at V = Vo a stationary wall sep-
arating the two phases can exist. Apart from the fact that the

location of the wall can be shifted arbitrarily, this

solution is locally stable. This confirms our result of

the stable coexistence of the two phases at the voltage

V M Vo . On the other hand, droplets or periodic structures

correspond to saddlepoint solutions and are therefore un-

stable.

In the low temperature limit (4, Ai >> T) qualitatively

similiar results can be found. Particularly interesting
are injection voltages close to the sum of the two gaps:

!(4i + 4) -JeVi I/ A< 1. In this case P and consequently

afE are localized near the gap edge. Integrating the

Boltzmann equation with respect to the energy, we find

an equation for the total number of excitations per unit



volume n= 4No dEr(E)}4fE in the form of a linear Rothwarf-

Tayor0 (11)Taylor equation 1 . In the stationary case,

2n/TR(E A) = 4No 0 dEPE = JI(V)/eS1J. (5)

0

In deriving Eq.5, the localization of 6fE allowed us to

neglect the energy dependence of the recombination rate and
take its value at the gap E

6.5To  (T/A) 1 2exp(-A/T). Furthermore, within terms of
0

order exp (-A/T), dEPE is proportional to the injection

current. The effect of nonequilibrium excitations on the

order parameter follows from the self-consistency relation

A = XA -dE liE Y2I(E) (th E/2T - 2 6fE). Again the localization

0

of 6fE allows us to simplify this equation by setting
A/E fEa 6fE . Thus, to lowest order in c = (A- Ao)/A o ,

where A0 is the unperturbed T wO gap, we obtain

v = -n/2No0 A ((IeV I - AO - Ai)/A 0 - C) . (6)

The step in the injection current at the voltage leVi = A +A
leads to a corresponding step in n, which is made explicit

in Eq.(6). For suitably chosen parameters, we find again

two locally stable solutions e= 0 and e = -n/2N A . The

physical interpretation of the two solutions is straight-

forward. First we notice that near T= O there are no

excitations which could be extracted from the system, and
an injected current increases their number. At a voltage

JeVJ slightly below Ai + A0 , the probe can be either in the

unperturbed gap state A with no current or in a low gap

state with finite injection current and consequently in-

creased excitation number stabilizing the low gap value.



At any intermediate temperature 0 < T c the strong

voltage dependence of the tunneling current at JeVj a i +A

results in a steplike modification of the quasiparticle

distribution. For this reason we expect the qualitative

result of this paper, the coexistence of two different gap

values, to be true at all temperatures below Tc.
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Figure Caption

Fig. 1: Graphical solution of the G -L equation for voltages

leVi >4i The constants a,$ and B in X(I) are

chosen arbitrarily, the higher order term X is

neglected. The unperturbed solution is chosen to be

Ah = Ai ( X(1) (A,V) has a step at A = jeVI - 1i . For

the same parameters, the generalized free energy

Y(&,V) is shown in the upper inset, while the

solutions A(V) are shown in the lower inset.
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