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Nonequilibrium Superconducting States
with Two Coexisting Energy Gaps

Gerd 8ch6n(a)

Institut fiir Theorie der Kondensierten
Materie, Universitédt Karlsruhe, BRD

and

André-M. Tremblay

Laboratory of Atomic and Solid State
Physics, Cornell University, Ithaca
New York, 14853

The effect of tunnel currents in superconducting
junctions on the energy gap is calculated. For certain
parameters two different gaps can exist. The stability
of these solutions is investigated and at a certain
voltage a "first order transition" is found. This result
explains the experimentally observed inhomogeneous states
in superconducting tunnel junctions.




Recent experiments on superconducting tunnel junctions
suggest that for certain injection currents and voltages a
superconductor sustains simultaneously two different values
of the energy gap. Existing phenomenological models(3)
predict that above a critical density of the excitations n.,
the superconductor has an intrinsic instability with respect
to the formation of a spatially inhomogeneous state. This
is not in agreement with the experimental results of Gray
and w111emsen(2). These authors interpreted the effect.
by inhomogeneities in the probes, with a lower gap value,

which grow with increasing total current.

In this letter we describe microscopically a super-
conducting tunnel junction consisting of an injector and a
probe and find that two stable values of the energy gap
can exist in the probe. In accord with the experiments,
at a certain voltage a first order phase transition takes
place where the part of the probe with the lower gap and
larger injection current density grows while the part with
the larger gap and lower injection current density decreases.
The relative size of the two regions is controlled by the
total injection current. This is analogous to a liquid-
gas transition at a certain pressure where the relative
volumes are controlled by the total volume. Our result differs
from the model of Ref.2 insofar as we find the existence
of two gap values to be an intrinsic property of the system.
Furthermore, our approach describes the gap enhancement by
quasiparticle extraction, investigated in the experiments
of Chi and Clarke(4). We will present a detailed analysis
in two limits, near Tc and near T = 0. Qualitatively, the
same results can be obtained for any intermediate temperature.

We assume that the injector is thick and not appreciably
perturbed by the current and that the phonons remain in
equilibrium. Thus, the probe can be studied using the
kinetic equations for the guasiparticle distribution function
and the order parameter derived in Ref. 5. 1In general

(1) (2)
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there is no simple relation between the injected current

(branch imbalance(s)) and the total number of excitations
@lectron-plus hole- like) created in the probe. Only the 4Q%
latter quantity modifies the magnitude of the order parameter. 77 Q%
The corresponding deviation of the distribution function §f '//0“0 3 ’Qz
which is odd in energy, is obtained from the Boltzmann

equation®

[} . o .
Ny (B)8E, - R(6E) = Py = V| (E)3O@)/3E - 8b/E . (1f % jbf 2 ”/\

N, (E) is the normalized BCS density of states and K(§f) ~
1l

.
describes inelastic electron-phonon scattering. It suffices '~ //

~

to know that K(6f) can be split into a "scattering out" term \\\\\/
AffE)GfE, and a "scattering in" term, an integral operator.

The perturbation is Py =B (E) [4]1(E - ev)(th E/2T ~th(E - ev) /2T) +

(eV++ -eV)] where B~l = RRB8e2No, R is the resistance of

the junction, 2 the volume of the probe, N, the normal density

of states,and A/li refers to the injector. The thickness

of the probe is small, and no spatial variations in this

direction occur. For the moment we also neglect spatial

variations in the junction plane. The effect of GfE on

A, the magnitude of the order-parameter, follows for tempera-

tures near the critical temperature of the probe from the

Ginzburg-Landau (G- L) equation(s)

7A/8T - xA = (a-B8A%)4 . (2)

where x = ~\dE 1/EA{(E) 6 and o = (T_-T)/T_,8 = 75(3)/8n°72,

We obtain analytic results if we assume that the energy
gap of the injector and the voltage are small Ai/T,leVI/T<<‘L
The linear term of an expansion of PE in powers of eV/T is
localized in a narrow energy region |E| s A, + |ev] <<T.
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Consequently, the corresponding contribution GfE(l)==r°PE/wfllE)

to the stationary nonequilibrium distribution, is obtained
neglecting the "scattering in" term and taking the scattering
time e at E = 0. Depending on the relative values of

A,Ai and V, SfE(l)describes an increase or decrease of the
density of excitations near the gap edge. The resulting
x(l)(A,V) also changes sign, and both gap reduction or gap
enhancement are possible. By contrast, the quadratic term
of the expansion of PE
Since GfE(Z) is not localized near the gap edge, the

always results in a gap reduction.

"scattering in" term cannot be neglected. A variational
calculation(v) yields x(z) = ~-1.4 Bty (eV/2T)2. This
contribution can be interpreted as an effective increase in
temperature. For the following discussion we shall neglect
it, although it may be important for a quantitative analysis.

In the considered limit (4,4,,|eV{<<T), we find

xa,v) = ~20(A+4, - |ev]) Bt |ev/2T| g{(a~ |eV]) K(k) + (c - d)m(a®, k) }

(3)

where K and 7 are complete elliptic integrals of the first

and third kind, g = 2/[(a-¢c)(b-a)]1/2, a? = (b-c)/(b-a),

kz = az (a~d)/(a-c), and a,b,c,d are the parameters |eV| tAi and
+tA assigned such that a>b>c>d. 1In order to obtain the
stationary solution of the G- L equation including the non-
equilibrium term, we employ graphical constructions. The
intersections of -x(l)(A,V) and the curve a-—BAz yield
possible solutions of A. A large positive value of x(l)(A,V)
at |ev| = Ai'-A (for Ai_>A), corresponding to a net extraction
of excitations, results in a large gap enhancement at this
voltage. This is in qualitative agreement with the ex-

perimental results of Chi and Clarke(4).

For our present problem, larger voltages are of interest.
As shown in Fig. 1, x(l)(A,V) has a step structure at
|ev]| = Ai-+A. This step corresponds to the step in the
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I(V) characteristic of an ideal SIS tunnel junction at the
same voltage, however, x(l) is finite at low voltages

lev]| < A+-Ai and zero above. In the vicinity of the step,
we can approximate Eq. (3) by

xa,v) = Br_ |ev/2r|n/E 7RO (a+ 4, - [ev]). (4)

For suitably chosen parameters (e.g., eV = 2’2Ai in Fig.l)
we find three solutions of the G -L equation denoted by
Al' Az, A3.
step actually has to be replaced by a finite slope, therefore,
A2 is also a solution.) In addition A = O is a solution.

From an analysis of the time dependent equations, we find

(In the presence of any level broadening, the

that A = 0 and Az are unstable, whereas Al and A, are locally

stable. At low voltages, we find only one enhanzed super-
conducting solution, whereas at high voltages we find
only the unperturbed solution. In the inset of Fig.l, the
solutions A as a function of the voltage are shown.
Obviously,in the range where A(V) has two values with

Ay + 4> |ev| >Ay + 4,
of the current dengity are obtained.

, two significantly differing values

In order to find which of the two locally stable
solutions is globally stable, we follow the analysis
performed by Schmid(e). The probability of a solution A is
given by W(A)a exp (- F(A)/T), where the generalized free
energy is ¥ (4) = —2N°Q§ dA'Ex-BA'Z + x(A')]a' . F is

o
plotted in the inset of Fig. 1. The situation is clearly

analogous to a first order phase transition. At low
voltages, Al is the globally stable "phase". At a certain
voltage V. where 4, +4, > |ev |>Ai
(Al) = T(A ), and a transition between A; and A3 can take
place. With increasing total current, the size of the
region in the A1 "phase” with small injection current

density decreases in favour of the region in the A

+A3. we have

3
"phase"” with large injection current density. At high
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enough voltages, the A3 "phase" is globally stable. 1In
addition, the metastable states will result in a hysteresis
under suitable conditions. The effect of x(Z) or generally
of heating will be to reduce 4, and 4, below the values
found here, but these processes are "smooth" enough that the
difference Al-A3 will be preserved.

All of these results, including the dependence of
4 - 43 on the junction resistance, are in good aqréement
with the experiments. Even the hysteresis along the lower
branch of I(V) has been detected. In the case of stimulation
of superconductivity by microwaves or by phonons at a
certain temperature two stable solutions are found too(a)
(normal and superconducting or both superconducting with
different gaps, respectively). However, the transition
between these solutions occurs abruptly, since there is no
external variable, such as the total injection current in

the present problem to control the transition.

Even in the state where the two gaps coexist, the
distribution -function afE (in the limit considered) is
single valued. Therefore, spatially inhomogeneocus problems
are described by adding the space derivatives to the G -L
equation. We find (3) (10) that at V = Vo a stationary wall sep-
arating the two phases can exist. Apart from the fact that the
location of the wall can be shifted arbitrarily, this
solution is locally stable. This confirms ocur result of
the stable coexistence of the two phases at the voltage
V = Vo. On the other hand, droplets or periodic structures
correspond to saddlepoint solutions and are therefore un-
stable.

In the low temperature limit (4, 4, >>7T) qualitatively
similiar results can be found. Particularly interesting
are injection voltages close to the sum of the two gaps:
!(Ai + A) -|ev]|/A<<1l. 1In this case Py and consequently
GZE are localized near the gap edge. Integrating the
Boltzmann equation with respect to the energy, we £ind
an equation for the total number of excitations per unit

‘e e naiGR

h .
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volume n = 4No SdE,{-’l(E)GfE in the form of a linear Rothwarf-

o
Taylor equation(ll). In the stationary case,
2n/t (E=8) = 4NOS dEP, = |I(V)/en]. (5)

o
In deriving Eq.5, the localization of GfE allowed us to
neglect the energy dependence of the recombination rate and
take its value at the gap edge(lz?rR-I(E==A) =
G.STQQ'(T/A)l/zexp(-A/T). Furthermore, within terms of
order exp (-4/T), \ d4E PE is proportional to the injection
current. The effec£ of nonequilibrium excitations on the
order parameter follows from the self-consistency relation
A = A §DdE 1/'E /Vl(E) (th E/2T - 26£f;). Again the localization

o

of GfE allows us to simplify this equation by setting

A/E GfE: GfE. Thus, to lowest order in e (A-Ao)/Ao,
where Ao is the unperturbed T » O gap, we obtain

€ = -n/zquoe((levl - A = 8,) /8 -€) . (6)

The step in the injection current at the voltage |eV| = A+Ai
leads to a corresponding step in n, which is made explicit
in Eq.(6). For suitably chosen parameters, we find again
two locally stable solutions ¢ =0 and ¢ = -n/ZNvo. The
physical interpretation of the two solutions is straight-
forward. First we notice that near T=0 there are no
excitations which could be extracted from the system, and
an injected current increases their number. At a voltage
|ev| slightly below Ay +b4, the probe can be either in the
unperturbed gap state Ao with no current or in a low gap
state with finite injection current and consequently in-
creased excitation number stabilizing the low gap value.
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At any intermediate temperature O<T<T,, the strong
voltage dependence of the tunneling current at |eV[==Ai-+A
results in a steplike modification of the gquasiparticle
distribution. For this reason we expect the qualitative
result of this paper, the coexistence of two different gap

values, to be true at all temperatures below Tc.

It is a pleasure to acknowledge stimulating discussions
with V. Ambegaockar, U. Eckern, A. Schmid, M. Schmutz and
E. Siggia. Work supported in part by the Office of Naval
Research under contract #£NOOO14-78-C-0666, Technical
Report #£2.
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Figure Caption

Graphical solution of the G-L equation for voltages
|ev| >4,. The constants a,8 and B in x(l) are
chosen arbitrarily, the higher order term x(z) is
neglected. The unperturbed solution is chosen to be
A, = 4. x(l)(A,V) has a step at A = [eVl-Ai. For
the same parameters, the generalized free energy
gﬂA,V) is shown in the upper inset, while the
solutions A(V) are shown in the lower inset.
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