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PREFACE

This report describes the work accomplished by Bell Helicopter
Textron under U.S. Army Contract DAAG46-79-C~0032, "Fabrica-
tion and Demonstration of an Integrally Heated and Pressurized
Mold System."

The program was sponsored by the U.S. Army Aviation Research
and Development Command, St. Louis, Missouri, through a con-
tract with the Army Materials and Mechanics Research Center,
Watertown, Massachusetts. The contract was administered by
Contracting Officer Mr. Frank Sousa and conducted under the
technical direction of Mr. Dana Granville. Contracted work
began in June 1979 and was completed through process cost
analysis in April 1980.

Technical tasks in this program were performed undeir the tech-
nical direction of BHT Project Engineer, Robert Anderson,
assisted by Principal Investigator, John Goodwin. Technical
reports were prepared by Jim Baker.

Acknowledgement is given also to Jan Cernosek, Jerry Peuch,
and the laboratory personnel who contributed to the successful
completion of the project.

This project was accomplished as a part of the U.S. Army Avia-
tion Research and Development Command Manufacturing Methods
and Technology program with the primary objective to develop
on a timely basis, manufacturing processes, techniques and
equipment for use in the production of Army materiel. Com-
ments are solicited on the potential use of the information
presented as applied to present and future programs. Such
comments should be sent to: U.S. Army Aviation Research and ,
Development Command, Attention: DRDAV-EGX, 4300 Goodfellow f
Blvd., St. Louis, Missouri 63166. |
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SUMMARY

A program was conducted to develop and demonstrate an inte-
grally heated and pressurized mold system for curing composite
rotor blades. The objective of the program was to reduce
curing costs by reducing tooling costs and cure cycle time.

An analysis was made of four types of heating media and five
mold configurations to develop the best overall system. The
system adopted consisted of a water-heated mold with removable
inserts.

Four bearingless tail rotor blades were fabricated and tested
to demonstrate the system. In comparison with autoclave
curing, the results indicated a 52 percent reduction in cycle
time, 83 percent reduction in energy consumption, and substan-
tial reductions in tooling costs.

The integrally heated and pressurized mold proved to be a
viable alternative to autoclave curing and is directly applic-
able to the curing of all main and tail rotor blades with the
potential to reduce costs significantly.
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1. INTRODUCTION {

Significant costs are associated with autoclave curing and
bonding of helicopter rotor blades. Autoclave curing is com-
paratively slow, energy intensive and requires the use of
vacuum bagging. Additionally, the tooling is costly, leaks
are common, and there are quality consideration.

LW SN

The objective of this program was to develop a new mold system
which incorporated integral heating and pressurization to re-
duce curing costs by reducing tooling costs and cure cycle
time. A system of this type would permit the use of inexpen- ‘
sive tooling while providing energy savings by utilizing an ,
efficient thermal transfer technique. ‘

This report describes the development and fabrication of such
a mold system which was proven by the production and testing
of four bearingless tail rotor blades. A cost analysis was
then performed comparing the cost of blades produced by this
system with autoclave curing and bonding.
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2. BACKGROUND

Aircraft structural bonding first came into use in the 1940's
with the use of rubber based adhesives. Along with the adhe-~
sives, the aircraft industry borrowed the technology of using
vacuum bags and autoclaves for heating and pressurized curing.
As adhesives and bonding became the state-of-the-art in
aircraft, so did vacuum bagging and autoclaves. For almost
three decades the equipment and methods used in bonding and
curing did not dramatically change.

The need for better tool utilization, faster cure cycles, and

the increasing cost of autoclaving led BHT to consider alter-

nate technology. The first electrically heated, water cooled

bonding press for metal tail rotor blades at BHT was installed
in 1974.

Increasing quantity requirements for composite main rotor
blades created new opportunities for breaking established
patterns of bonding and curing. Fabrication concepts for
composite blades favored cocuring and the use of processes
other than autoclaves. The bond press developed for main
blades was heated and cooled with pressurized water. The
closing of the press and subsequent pressurizing was accomp-
lished with a hydraulic water/oil emulsion system. The
thirty-foot press for bonding and curing composite main rotor
blades became operational in 1978.

In 1¢77, a BHT research program produced the first bearingless
tail rotor blade. The technical success of that program, com-
bined with the potential for broad application of the princi-
ples, made the blade a logical choice as a demonstration
article for this program to develop an energy efficient, low
cost integrally heated and pressurized mold,

14




3. PROGRAM PLAN

The program plan for fabricating and demonstrating an inte-
grally heated and pressurized mold system consisted of five
tasks. A description of these tasks is presented below:

3.1 TASK I - ARTICLE SELECTION

A composite main or taill rotor blade and/or assembly was to be
selected as the demonstration article. The article produced
would be a minimum of 75 percent of the full blade length.

3.2 TASK II - MOLD DESIGN AND MANUFACTURE

A self-contained mold system was to be designed and fabricated
having integral heating, cooling and pressurization capabili-
ties for curing the demonstration articles. The selection of
materials was to be based on thermal and heat flow aunalysis
for optimum cycle times and energy requirements. The mold
system would be designed to cure a minimum of 1000 demonstra-
tion articles.

3.3 TASK III - FABRICATION OF DEMONSTRATION ARTICLES

A minimum of three demonstration articles of identical mater-
ials and configuration as found in the production or develop-
ment rotor blade were to be fabricated and cured in the mold
system. Detailed records of time, temperature and pressuie
for each cure cycle were to be kept.

3.4 TASK 1V - QUALIFICATION TESTS

One of the demonstration articles would be subjected to the
same qualification tests required of the production or develop-
ment blade to verify its integrity after cure in the mold
system. Two demonstration articles were to be dslivered to

the Army.

3.5 TASK V - COST ANALYSIS

A cost analysis would be prepared to determine the cost of
curing 10, 100 and 1000 demonstration articles in the inte-
grally heated and pressurized mold system as compared to using
existing curing techniques. The analysis would included costs
such as materials, labor, tooling, and energy.

15




3.6 FINAL REPORT

The final report would reflect all work accomplished under
the contract. Detail descriptions would be included for the
mold design, fabrication of demonstration articles, qualifica-
tion and the cost analysis.

3.7 INDUSTRY BRIEFING

An industry briefing would be held to present the program in
its entirety to the Army and industry with an Executive Sum-
mary made available at that time to briefly describe the
program and the results.

16




4. RESULTS AND DISCUSSION

This program consisted of five tasks:

- Task I - Article selection
- Task I1 - Mold design and manufacture
Task III - Fabrication of demonstration blades
Task IV = Qualification of demonstration blades
- Task V - Cost analysis

4.1 TASK I - ARTICLE SELECTION

The contract required the demonstration article to be a com-
posite main or tail rotor blade in current production or
developmental status. The article produced would be a full
chordwise section incorporating at least 75 percent of the
blade's length with a minimum of 3 feet.

4.1.1 Candidate Components

Three blades were considered as demonstration articles. The
candidates were the 214 and 412 main rotor blades and the
599-318-103 bearingless tail rotor. All of these blades met
the criteria in that they were composites and either produc-
tion or developmental products.

The main rotor blades were determined to be too costly for
this project in tooling and materials. Both blades were 23
feet or over in length which would require a section at least
17 feet long for demonstration. In addition, the 412 blade
was early 1in its production cycle and neither blade was imme-
diately applicable to a military ship.

4.1.2 Bearingless Tail Rotor Selection

The bearingless tail rotor (Figure 4-1) was a developmental

project with a half-span mold in existence which could be used

as a full mold tracing pattern. The tip-to-tip length of an
untrimmed tail rotor was 74 inches. Therefore, a full tail
rotor could be molded at one time at a low tooling cost while
incorporating an advanced heating and cooling technique. The
technology appeared to be scaleable to any size blade. 1In
addition, the bearingless tail rotor had been successfully
test flown and had the potential for retrofit on the OH-58's
in service (Figure 4-2).
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4.2 TASK II - MOLD DESIGN AND MANUFACTURE

This task consisted of analyzing the different types of heating
and cooling systems along with evaluating the various mold and
restraint configurations. It was felt that substantial
improvements in cycle time and energy consumption could be

made over the conventional integrally heated and pressurized
mold (Figure 4-3).

4.2.1 Heating and Cooling Design Analysis

Four methods of heating the mold were considered: steam, oil,
electricity, and pressurized water.

Figure 4-3. Conventional Concept - Integrally
Heated and Pressurized lold.
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Steam is an excellent medium for transferring heat but has
some drawbacks as follows:

- system requires conformance to boiler codes
- requires a licensed operator

- rigid safety requirements necessary

- corrosion

0il is also a good heat transfer medium but offers some serious
problems as noted:

a bigh contaminate in a bonding environment. 0il systems

are almost impossible to seal off, allowing oil contami-

nation of most surfaces through direct and airborne

means.

~ substantial storage capacity is required along with a
heating system and hydraulic pumps.

- a high maintenance system.

- expensive.

Electric heating eliminates the need for a transfer medium and
the system is relatively simple to fabricate. However, the
following constraints inhibit its selection for use in large
bonding installations:

- expensive to set up due to multiple elements and controls.
- heater burn-out is frequent and expensive to replace.
heating tends to be localized and nonuniform.

~ dangerous when used in conjunction with water cooling.

Pressurized water is an excellent heating and cooling medium
which can be circulated through a closed system. It provides
uniform heating and cooling, 1is inexpensive to supply, is
clean and is low in maintenance. Installation costs are rela-
tively low when compared to the other systems. When all con-
siderations were complete, electricity and pressurized water
were the heat medium choices for the candidate mold systems.

4.2.2 Mold Closing Mechanisms

Four types of mold closing mechanisms were studied for cost,
speed, and ease of operation.

A mechanical closing mechanism composed of gears and/or chains
and levers is quite simple and inexpensive to build with mini~
mum maintenance requirements. A mechanism of this type, how-

ever, is usually slow and lacks the compliance sometimes
needed during mold closing.




Hydraulic cylinders are the most popular method of mold closing
due to their speed and operational ease. They are expensive to
install and maintain along with being a possible contaminate 1in
a bonding environment.

Pneumatic cylinders are also popular and have speed and opera-
tional ease. They are noncontaminating but are expensive to
install and maintain.

The most promising method evaluated was a pneumatic inflat-
able tube concept that could be fabricated from double
jacketed fire hoses, pressurized with air and the circumferen-
tial expansion used to actuate the mold platen (Ref. Figure
4-19). The mechanism would be inexpensive to fabricate and
maintain and be noncontaminating. Advantages in cost, sim-
plicity and effectiveness made this concept a logical choice
for the mold closing mechanism.

4.2.3 Mold Configuration Evaluation

Five different concepts in mold configuration were evaluated
for efficiency of heat transfer, energy consumption, edase of
operation, and simplicity of manufacture.

4.2.3.1 Electrically Heated and Water Cooled Sculptured Steel
Mold. A mold of this type, as shown in Figure 4-4, 1s effi-
cient in heat transfer, but has inherent fabrication and
operational disadvantages. Drilling of ports for heaters and
cooling fluid makes the mold expensive to manufacture. Fur-
thermore, this configuration requires a large platen (2895
pounds) to accommodate the ported volume and still retain
structural integrity. The consequence of a large mass is high
energy consumption and an extended cure cycle time. Opera-
tional problems arise as heat rods break down and cause local
overheating. Maintenance and repair costs for this configura-
tion would be high. Safety hazards resulting from high
voltage and water in close proximity were also considered.

4.2.3.2 Water Heated and Cooled Sculptured Steel Mold. Figure
4-5 illustrates a mold that iIs also efficient in heat transfer
and has definite advantages over an electrically heated sys=-
tem. The single port, sculptured mold has fewer components,

is more reliable, and provides uniform heating.

This system shares several undesirable features with the elec-
trically heated unit, such as a large mass (1716 pounds) and
both are costly to machine.
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Figure 4-4. Sculptured and Ported lMold Halves
with Electric Heaters and Water Cooling.
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Figure 4-5. Sculptured and Ported lold Halves for
Water Heating and Cooling.

4.2.3.3 Electrically Heated and Water Cooled Steel Platens
with Removable Sculptured Inserts. The configuration shown
in Figure 4-6, introduces an element of versatility not
possible with the drilled, ported and sculptured mold de-
scribed in 4.2.3.1. The shape of the part to be cured is
sculptured into thin removable inserts. Thermal gains can be
realized by fabricating the inserts from aluminum.

It should be noted that calculations were made to explore the
feasibility of curing the fiberglass tail rotor in aluminum
inserts. It was determined the thermal expansion differences
would occur in directions and amounts that would not adversely
affect the operation.




The normal disadvantages of electrical systems, such as non-
uniform heating and high maintenance costs still exist with

this configuration. Total mass for the mold system platens
would be 2361 pounds.

4.2.3.4 Water Heated and Cooled Steel Platens with Removable
Sculptured Inserts. The system shown in Figure 4-7 1incor-
porates removable inserts with the advantages of light weight,
lower cost, uniform heating, versatility, and the reliability
of a single port heating and cooling system. The use of
aluminum inserts reduces the sum of the upper and lower platen
mass to 1357 pounds.

s ELECTRIC ROD
HEATERS

"\‘ WATER PORTING

FOR COOLING

Figure 4-6. Sculptured Mold Incerts and Ported P}atens
with Electric Heaters and Water Cooling.

WATER PORTING
FOR HEATING
AND COOLING

Figure 4-7. Sculptured lMlold Inserts and Ported Platens
for Water Heating and Cooling.
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4.2.3.5 Panel Coill With Removable Sculptured Inserts. The

fifth candidate mold design (Figure 4-8) features a low mass

panel coil heat exchange unit (Figure 4-9) used in conjunction -
with the sculptured aluminum insert concept. Water is used !
for the heating and cooling medium.

Each platen assembly 1s comprised of a structural steel back-up
plate, a transite insulating plate and a steel panel coil with
passages to permit high volume flow of hot or cold water.

This system 1s less massive than the other design considera-
tions and has excellent thermal transfer. An aluminum face
plate is used between the panel coil and mold insert to dis-
tribute any point locads that might damage the coi1l face.

.

The removable inserts, as discussed previously, afford good
heat transfer, light weight, and easier fabrication. Wwhen
they are combined with the panel coils, the result i1s a rela-
tively low cost, energy efficient system.

Panel Coil and Sculptured Insert Construction

Figure 4-8. _
B with Water Heating and Cooling.

Figure 4-9. Cross Section of Panel Coil
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4.2.4 Mold Energy Requirement Analyéis

All five mold configurations evaluated in 4.2.3 were subjected
to an analysis of their energy requirements. Table 4-1 indi-
cates the reference data used in the formulas (Table 4-2) to
calculate the energy consumption for a cured bearingless tail
rotor blade. A typical calculation is shown in Table 4-3, and
complete calculations for all five configurations can be found
in Appendix A.

Table 4-1. Reference Data.

e WT WATER -~ 8.34 LBS/GAL

e WATER FLOW - 10.2 GAL/MIN

e WT OF 10.2 GAL WATER - 85.068 LBS

e SURFACE HEAT LOSS STEEL - 180 WATTS/SQ FT/HOUR
e SURFACE HEAT LOSS ALUMINUM - 90 WATTS/SQ FT/HOUR
e SPECIFIC HEAT

STEEL - .120
ALAL - 230
GLASS - 197
WATER - 1.000
e HP ELECTRIC MOTORS ON PUMPS
PSI X GPM
1714 Hp

1 HP = 745,7 WATTS




Table 4-2. Formulas for Calculating Energy Requirements.

For In1T1AL HeaT Up: KWH

WEiGHT oF MATERIAL x SPECIFIC HEAT TEMPERATURE DIFFERENTIAL
(IN POUNDS) (BTU’s PErR POUND -OF) (FINAL LESS INITIAL -OF)

3412 (BTU's PER KILOWATT HOUR)

For Heat Losses: KWH

ExposeD AREA X HEAT LOSS AT TEMPERATURE WORKING CYCLE TIME

(SQUARE FEET) {(WATTS PER SQUARE FOOT) (HOURS)

1000 (WATTS PER KILOWATT)




Table 4-3. Typical Energy Calculation

POWER REQUIREMENT FOR INITIAL HEAT-UP ESTIMATED

1. Heat absorbed by: INTEGRAL STEEL MOLD - ELECT. HT./WATER COOLED

Weight of Material Specific Heat Temp. Dif. (Final-Initial)
(Lb) x (BTU/LbL-F) x (F) KWH
3412(BTU/KWH) % (Time in Hours)
2. Heat absorbed by: STEEL MOLD
2892 LBS x .12 x 200°F x 30 MIN. 10.68 KWH
3412 x .5
3. Heat absorbed by: TAIL ROTOR BLADE
3.4 LBS x .197 x 200°F x 30 MIN OBy
3412 x .5
4. Heat absorbed by: WATER
85.068 LBS. X 1.0 X 200°F X 30 MIN 9.97 _ _ Kwid
3412 x .5
5. Beat absorbed by:
X X KWH
3412
6. Heat absorbed by:
X X KWH
Total Heat Requirement for Initial Heat-up: KwH
Total Power Requirement for Initial Heat-up: 50.73 KwH
POWER REQUIREMENT FOR OPERATING HEAT
1. Heat Required to Replace Heat Losses: L
(Exposed Surf. Area) (Heat Loss at Final Oper. Temp) (Cycle Time}
(sq. ft) x (W/sq ft} x Hrs) KWH
1000 (W/KW)
2. Heat Required to Replace Heat Losses: STEEL MOLD
19.01 Sq. Ft. x 180 WATTS/Sg. Ft. x 1 HR 3.42 KWH
1000
3. Heat Required to Replace Heat Losses:
KWH
1000
4. Heat Required to Replace Heat Losses:
KWH
1000
Circulation Pump: 3.0 KWH
Total Encrqgy Use 57.15 KWH
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The calculated energy consumption for the integral sculptured
and ported steel molds (Figures 4-10 and 4-11) was 57.15 kwh
for electric heating and 39.62 kwh for water heating. The

44 percent difference in consumption is due to the extra mass
required for separate electric heating and water cooling

ports.

The aluminum inserted steel platen mold systems (Figure 4-12
and 4-13) were calculated at 50.12 kwh energy consumption for
electric heating and 35.67 kwh for water heating. The 41
percent difference in consumption again is due to mass
difference.

The most energy conserving system was the water heated steel
panel coil with aluminum inserts (Figure 4-14). The calcul-
ated energy consumption was a low 23.62 kwh per cure cycle. A
substantial mass reduction contributed by the panel coil plus
its high heating capacity and thin walls enabled the system

to transfer easily a large amount of the heat contained in the
water to the inserts.

Figure 4-15 compares the calculated energy consumption for
each of the five mold design candidates. It clearly illus-
trates why the panel coil approach was chosen for the MM&T
mold system.
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Figure 4-10. Energy Consumption - Sculptured and Ported

Steel Mold Halves with Electric Heaters and
Water Cooling.

WATER PORTING .
FOR HEATING
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Figure 4-11. Energy Consumption - Sculptured and Ported Steel
Mold Halves with Water Heating and Cooling.
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ELECTRIC ROD
HEATERS

A
\— WATER PORTING

FOR COOLING

Figure 4-12. Energy Consumption - Sculptured Aluminum Inserts
and Ported Steel Platens with Electric Heating
and Water Cooling.

WATER PORTING
FOR HEATING
AND COOLING
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Figure 4-13. Energy Consumption - Sculptured Aluminum

Inserts and Ported Steel Platens with
Water Heating and Cooling.
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Figure 4-14. Energy Consumption - Sculptured Aluminum
Inserts and Panel Coil Construction with
Water Heating and Cooling. (MM&T Mold)
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Figure 4-15. Comparison of Calculated Energy Consumption
for Five Mold Design Candidates.
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4.2.5 Design and Fabrication of Mold

The mold was designed in two parts consisting of a panel coil
restraining system and removable inserts. This versatile
design enables inserts with other molded shapes to be made for
the same restraint system.

The mold system design is presented in Appendix B.

4.2.5.1 Mold Restralning Structure. The restraining struc-
ture consisted of two 1/2-inch vertical steel plates bolted to
3/8-inch wall tubular steel top members and a 1/2-inch steel
base plate. The upper platen was composed of a 1/2-inch steel
back-up plate and a steel panel coil. A l-inch thick sheet of
transite was used for thermal insulation between the struc-
tural back-up plate and panel coil.

The platen assembly was completed with a 3/8-inch aluminum face
plate to provide point load protection for the coil and act as
a thermal conductor between the panel coi1l and the insert.
Grooves were milled into the face plate to accept the weld
beads on the panel coil as shown in Figure 4-~16. Thermal con-
ductivity was enhanced by using an aluminum-filled epoxy
between the aluminum and panel coil. The entire upper platen
was bolted together and held stationary by steel support brack-
ets. Figures 4-17 and 4-18 show the structure including the
top and bottom platens prior to installation of panel coils.

-~

Figure 4-16. Panel Coil with Aluminum Face Plate
' Milled to Accept Weld Beads.
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Figure 4-17. 1!old Restraint Structure with Viewing Ports.

Figure 4-18. Mold Restraint Structurc - End View.




The lower platen was fabricated in the same way except that it
was not held stationary but floated on two 3-inch double-~
jacketed fire hoses. A cut-away view is shown in Figure 4-19.

BACK-UP PLATE

R
INSULATION //////i::;;77—

ESTRAINT

HOT WATER ~
PANEL COIL

3" ID PRESSURE

INSERT FIRE HOSE

HOT WATER
PANEL COIL

INSULATION- BASE PLATE

BACK-UP PLATE
Figure 4-19. Cutaway View.

4.2.5.2 Insert Design and Fabrication. The inserts were
fabricated from 6061-T6 aluminum. Studies described in
4.2.3.3 established that the differences in thermal expansion
between the blade and inserts during cure would not produce
unacceptable results.

A half-span mold (Figure 4~20) from the previous bearingless
tail rotor research program was used as a tracing pattern for
sculpturing the aluminum inserts. The pattern was shimmed at
an 8° angle (Figure 4-21) so that the 18° twist could be
machined into the tool. Figures 4-22 and 4-23 show the rough
and finish machining of the upper insert.

Grooves for matching keys were milled into the inserts (Figure
4-24) to ensure positive alignment upon closing.

The combined outside dimensions of the inserts were 8.8 inches
wide x 2.7 inches high x 83 inches long. They weighed 178
pounds.

4.2.5.3 Mold Installation. The mold structure was placed
adjacent to the BHT blade bonding press. The top platen inlet
of the panel coil was connected into the water line from the
bonding press. A line was then connected from the outlet of
the top platen to the inlet of the bottom platen and then
returned from the bottom platen outlet to the bonding press.
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Figure 4-20. (alf-span Rescarch Blade Mold

Used as Tracing Pattern.

Figure 4-21. Tracing attern Right Foreground Jlonnted
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Figure 4-22. Rough Cut on Upper Insert Half.

Figure 4-23. Completed Sculptured Arca.
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Figure 4-24. 1!Milling Hub Area on Finished Upper Insert,

Figure 4-25 shows the schematic layout of the presses. Water
1s circulated through a closed loop containing a hot water
generator and heat exchanger (Figure 4-26), attaining a tem-
perature of 400°F and 400 psi. When cooling 1s required,
chilled tower water is circulated through the heat exchanger
thereby cooling the closed loop water.

Thermocouples were installed on both the supply and return
lines along with a flowmeter (Figure 4-27) on the return line.
The readings from these instruments were used in calculating
the actual energy usage and to monitor the water temperature.

Safety precautions were taken due to the potential danger of a
hot water system. All hot water lines were insulated and
wrapped (Figure 4-28). The flowmeter and alr pressure regu-
lator were mounted on the wall (Figure 4-29) away from the
mold structure. A plywood partition was erected between the
mold and operator area as a precautionary measure. The maxi-
mum pressure ratings were obtained for all major components
and are listed in Appendix C.

4.2.5.4 Mold Systems Operation Test. An aluminum block,
approximately equal in volume to the mold inserts, was placed
between the platens and subjected to a simulated cure cycle to
verify that all mold functions were operating properly.
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MM&T MOLD

M < HEAT SOURCE TAP
N (AUXILIARY FITXURE)

MAIN PRESS CONTROL

Figure 4-25. Schematic Layout of Presses.

COOLING SHUT OFF
WATER VALVE ]
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i
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CHARGE STRAINER DRAIN
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WATER SUPPLY
Figure 4-26. Hot Water Generator.
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Figure 4-27. Hot Water Flowmeter Design.

Figure 4-28. 1Installed llold Restraint System with

Insulated and Wrapped Hot Water Lines.
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Figure 4-29. Flowmeter and Air Pressure Regulator !lounting.

Four thermocouples continuously recorded the temperatures
during the ninety-minute test (Figure 4-30). The insert shows
the location and number of thermocouples that can be traced by
following the small stamped numbers on the chart.

The water inlet thermocouple, TC7, did not appear clearly on
the strip chart and has been enhanced. The 10°F difference
between the inlet and outlet water temperature indicates that
the panel coil system distributes the heat uniformly even with
a large heat sink.

The following observations were made:

wWater flow rate: 10.2 gallons per minute
Temperature rise: 90°F to 270°F in 24 milnutes
Heat up rate: 7.5°F per minute

- Total time of test from 90°F: 83 minutes

The system test indicated all functions to be operating prop-
erly, and that the unit was ready to begin bonding blade
assemblies.
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4.3 TASK III - FABRICATION OF DEMONSTRATION BLADES

4.3.1 Comparison to Research Blades

It is recognized that in an optimized production environment
only the spar of the bearingless blade would be precured. All
other assembly would be accomplished in a single cocure opera-
tion that would include simultaneous curing of the skins and
bonding to the honeycomb. Since the thrust of this program
was the development of an advanced mold system, establishing

a manufacturing procedure was considered secondary. There-
fore, the decision was made to produce the MM&T demonstration
blades by the same procedure used for the 1977 research units.
In this way the test values from both programs could be
directly compared.

The blade design was not altered from the 1977 research pro-
gram. In both programs the upper and lower blade skins were
autoclave precured and the spar strap was press cured. The
main difference in fabrication between the programs was the
use of a full-span mold in this program to assemble both ends
of the blade in the same bond sequence.

4.3.2 Blade Detail Fabrication

The spar strap layup ranged from 28 plys of epoxy preimpreg-
nated unidirectional glass roving in the hub, to two plies at
the tips. Both ends of the strap are canted 8° to build twist
into the blade. The spar strap was then placed in a produc-
tion bonding press and cured for 90 minutes at 265°F. Figure
4-31 shows a partial spar strap cured and trimmed.

Figure 4-31. Edge View of Spar Strap Section.
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The mold 1nserts were used to layup and precure the blade
skins. Dummy doublers and abrasion strips were installed in
the 1nserts (Figure 4-32) to cCreate setbacks 1n the skins for
bonding these details in the next assembly. Layup ot the skin
plies 1s shown 1n Figure 4-33. The left side shows one ply of
120 fiberglass cloth and the right one ply each of 120 and 1lgl
fiberglass cloth. Root end reinforcements were laid at
thirty-degree angles and a once-quarter inch wide reinforcement
ply was laid along the trailing edge (Filigure 4-34).

Two layers of peel ply were appllied for bond line protection
and to absorb excess resin tlow (Figure 4-3%). The second
ply was stripped away atter the cure cycle.,

Figure 4-32. Iold with Dummy Doublers at Blade Root
and Dummy Abrasion sStrip.

Uigure 3=, Siin baesuy,
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Figure 4-34. Thirty Degree Unidirectional Fiberglass
Reinforcement at Blade Root.

Figure 4-35. Application of Peel Plies to Bond Surfaces.




The skin set was prepared for autoclaving by wrapping with
fiberglass cloth wicking, bagging and sealing (Figures 4-36
and 4-37). Autoclave vacuum lines where then attached and the
skins were placed in the autoclave for a 90-minute cure at
265°F and 40 psi (Figure 4-38).

S Uity

Figure 4~36. Heavy Weave Wicking Cloth Wrap Prior to Bagging.

Figure 4-37. Skins Bagged for Autoclave Cure.
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Figure 4-33.
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Figure 4-39, shows the skin set prior to trimming. One layer
of peel ply is retained for protection.

The root blocks were formed in place by casting epoxy tooling

resin into and around the yoke of the spar using the spar tool
as a moid. The resin, Epocast 31-D with #9216 hardener, con-

tained 5 percent (by weight) chopped glass fiber and was cured
for 24 hours at room temperature.

The tip blocks were machined from solid blocks of fiber rein-
forced phenolic (Figure 4-40), then drilled, cleaned, baked
and primed.

Aluminum doublers were cut to size, trimmed, anodized, and
then primed with 2271-A for bonding.

Figure 4~39. Cured Skin Set Prior to Trimming.

Figure 4-40. Machining Phenolic Tip Block.
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Aluminum honeycomb was machined in the HOBE as shown in Figure
4-41. It was then expanded, cut in half to yield the right

and left blade cores and prepared for bonding by vapor
degreasing.

Figure 4-41. Machining Honeycomb Before Expansion (HOBE).

The stainless steel abrasion strips and bushings were pur-
chased parts. The strips were sulfuric acid etched for bond-
ing while the bushings were solvent cleaned and primed.

4.3.3 Blade Assembly and Cure

All details were prefitted into the assembly prior to bonding. <
ﬁ Figure 4-42 shows the layup sequence and components for the !
; blade. The upper and lower mold inserts with details assem-

‘ bled for the final bond cycle are shown in Figures 4-43 and
l 4-44 .

}
Narmco 1113 epoxy supported film adhesive was used between 5
skins, strap and skins, and skins and honeycomb. Unsupported ‘
film was used between all other glass and metal surfaces

including strips, doublers, root, and tip blocks.

the insert has been closed on the assembled details. A plastic
sheet was used only on the first blade to catch any excess

resin flow that might result in damage to the mold. No excess
resin problems occurred.

Figures 4-45 and 4-46 show the final loading operation after 1
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Figure 4-42. Layup Sequence for Upper Half of Blade -
Lower Half Typical.

Figure 4-43. Details Assembled for the Final Bond Cycle.

PgIIC R v a3




o R p— ————
1"‘

TRIM\UNE

R N Wy

Vr N et emlos

¢ / { “TEST SECTION
; X! /
HONEYCOME CORE ] : [ PHENOLIC TIP BLOCH
LEADING EDGE — L5TRAP
ROOT pLocn “BRASION STRP SKINS

Figure 4-44. Close~up of Assembly with Specific Details Itemized.

Figure 4-45. Loading !leld Insert.
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Ciare d-=46.0 0 Mold Insert Loaded and Ready oy Cure.

A typical temperature printout for the bearingless taill rotor
bond cvele along with the placement of all themocouples 1is
detailed in Figure 4-47. The insert thermocouples were placed
in the bond line of the blade for optimum temperature monitor-
1ing and produced readings at 45-second intervals throughout
the cycle. Fourteen minutes were reguired to bring the
assembly into the cure range of 240°F to 280°F. The Narmco
1113 requires a cure of 60 minutes. A l6-minute cool down
tinished the cure for a total 90-minute cure cycle. The com-
plete bond cycle 1s illustrated in Figure 4-48.

4.4 TASK IV - QUALIFICATION OF DEMONSTRATION BLADES

Under this task, the contract required that one demonstration
blade be subjected to the same qualification tests as the re-
search blade. These requirements were ectablished 1n the
approved test plan shown 1n Figure 4-49.
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LEGEND OF TESTS (599-318-103 TAIL ROTOR)
SECTION I - SHEAR TEST, UPPER TO LOWER SKIN, T.E. 2000
PSI BOND FAILURE OR 1600 PSI GLASS FAILURE,
SECTION 11 - SHEAR TEST, STRAP TO TIP BLOCK, TOP AND BOTTOM.
1100 PSI MINIMUM,
SECTION III - SHEAR TEST - SKIN TO STRAP, TOP AND BOTTOM,
2500 PSI BOND FAILURE OR 1600 PSI GLASS FATILURE.
SECTION IV - SHEAR TEST - ABRASIVE STRIP TO SKIN, TOP AND
BOTTOM, 2500 PSI BOND FAILURE OR 1600 PSI GLASS
FAILURE,
SECTION Vv - RESIN CONTENT - STRAPS, TOP AND_BOTTOM, RESIN
CONTENT (CURED) SHALL BE 26 TO 31 PER CENT,
SECTION VI - BOND LINE QUALITATIVE EVALUATION, REMAINDER OF
TIP SAMPLE, THERE SHALL BE NO VvOIDS OR
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, NON-DESTRUCTIVE TESTS WILL CONSIST OF VISUAL INSPECTION,
: TAPPING AND ULTRASONIC/RADIOGRAPHIC TECHNIQUES AS NECESSARY.
i Figure 4-49. Test Plan - Outboard Tip Sample.
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4.4.1 Destructive Tests

The blade portion of each rotor was fabricated 6 inches longer
than required to provide excess for destructive testing. The
tip block and spar strap extended into this area with addi-
tional honeycomb core added outboard of the block. In this
way, all major elements of the blade were represented for
testing purposes. Figure 4-50 shows both ends of the trimmed
off sections before cutting into test specimens.

.gm s il KX %ﬁi]’ h

R & R

Figure 4-50. Blade Tip Test Sections.

Figure 4~51 1s a typical laboratory report recording results
for tests performed on that particular blade. A summary of
destructive tests for all of the demonstration blades 1s shown
in Table 4-4. Lab test reports are included in Appendix D.

The results from all tests were as anticipated except for a
trailing edge glass failure and a bottom abrasion strip bond,
both on blade No. 2. Although the trailing edge values were
low, 1t was demonstrated that the bond line produced in the

| mold was adequate to force a failure in the skin laminate

» which was a precured detail. It was concluded that low values
for the abrasion strip bond test resulted from over heating of
the steel during preparation of the specimen.
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Figure 4-51. Destructive Test Laboratory Report.
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wWhen specimens yielded shear values below minimum require-

ments, additional specimens from the same section were pre- '
pared and tested. Difficulties were encountered in preparing '
lap shear specimens due to the thin skin laminate. In some

instances cuts too shallow or past the bond interface resulted {
in interlaminar shear rather than lap shear. Figure 4-52

illustrates fabrication of the lap shear specimens.

[ - |
| o
C | n | / i
| —JL -
C 1 % — i
| — 3

— i

arsk.

Figure 4~52. Preparation of Lap Shear Specimens.

All lap shear tests were conducted on the Speedy Tester
(Figure 4-53) located in the BHT Methods and Materials Labo-
ratory. All destructively tested specimens (Figure 4-54
typical) were retained for future examination and reference.

4.4.2 Nondestructive Tests

The demonstration blades were nondestructively evaluated by
the BHT Quality Assurance Department. The blades were exam-
ined visually, tested for voids by tapping hammer method, and
x-rayed for detail fit and location. Figure 4-55 shows both
the root end and tip. The dark stripe represents the stain-
less steel leading edge. Tracer fibers in the fiberglass spar
can be seen running the span. No defects of consequence to
the program were revealed.

The three demonstration blades along with a research bearing-
less tail rotor are displayed in Figure 4-56. One demonstra-
tion blade was painted and included as one of the two required
for delivery to the Army. Figure 4-57 shows both of these
blades boxed for shipment.




Figure 4-53.

-~ oy

Figure 4-54.

Lap Shear Tests.

Destructive Test Specimens.
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Figure 4-55. X-rays of Blade Showing Location
of Details.
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Figure 4~56, Three Finished Demonstration Blades
with Rescarch Blade,

Figure 4-57. Two Bearingless Tail Rotor Blades
Boxed for Shipment.

4.5 TASK V - COST ANALYSIS

A cost analysis was conducted to establish the economic bene-
fit of the system. The analysis encompassed tooling, manutac-
turing labor, materials and energy.

Studies were conducted to determine the cost of producing

gquantities up to 1000 blades using the MM&T mold. Addition-
ally, comparisons were made between the research and demon-
stration programs and the MM&T mold versus autoclave curing.
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Since the thrust of the program was the development of a low
cost, energy efficient mold system, optimization of the
manufacturing approach was secondary. The prinary purpose
for the cost analysis was to generate comparative data to
substantiate the performance of the mold.

4.5.1 Tooling

Actual tooling costs were analyzed for the research and MM&T
demonstration programs and estimated for production.

The research blades were fabricated using a half-span mold

and a spar strap mold. The tooling package for this blade was
vendor fabricated for BHT at a cost of $5,200 in 1977.

Fabrication cost of the integrally heated mold was $4,149 for
raw material and 1,026 man-hours in design and manufacture.

A breakdown of the raw materials is listed in Table 4-5 with
a comparison of both blade programs in Table 4-6.

Table 4-5.

® HARDWARE

STEEL
ALUMINUM
PIPE

MISCELLANEOUS
VALVE

® HOSES

® INSTRUMENTATION

® [NSULATION BOARD

® PANELCOILS

o e AT o s

Tooling Raw Material Costs for IMM&T
Blade Mold

$2,632.51 |
ELATS, ANGLE, TUBING, ROUNDS, BAR
SHEETS, ANGLE, BILLET
TEES, NIPPLES, ELBOWS, REDUCERS, CAPS,
BUSHINGS, UNTON, SLEEVES, FLARE NUT ;
SCREWS, NUTS, WASHERS, CAP SCREWS 5
BALL
FLEX 240,60
401,39
THERMOCOUPLES, FLOWMETER, GAUGE
194,50 i
:
680,00 '
$4,194,00
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Table 4-6. Program Cost Comparison
&1 RESEARCH
P&g%RAM VS PROGRAM
o TOOLING
DESIGN 242 MH $5,200
FAB 784 MH FOR
RAW MATERIAL $4,149 HALF SPAN
e BLADE MATERIAL $ 327/BLADE $327/BLADE
e BLADES PRODUCED 4 3
e LABOR (BLADES) 775 MH 440 MH

In a production situation, the integrally heated mold is esti-
mated to have a capacity of five blades per two-shift day.
Five sets of autoclave tools would be required to produce an
equivalent quantity of blades. As noted in Table 4-6, the
fabrication cost of an integrally heated mold was 784 man-
hours and $4,149. 1In comparison, an autoclave tool is esti-
mated to cost 300 man-hours and $750 in tooling materials.
Table 4-7 compares the tooling cost for producing five blades
per day by mold and by autoclave.

Table 4-7. Comparison of Capacity Cost

Quantity of Tooling Tooling

Tools Required Man-Hours Material
MM&T Mold 1 784 $4149
Autoclave Tools 5 1500 $3750

Based on a $50 per hour labor rate, tooling costs for five
blades per day capability would be $35,401 less for the mold
than autoclave. The autoclave would also consume $15 of
perishable bagging material per blade.




4.5.2 Labor

Labor cost analysis took into account the allocation of opera-
tions into direct and indirect labor categories. Table 4-8
lists these operations in their respective categories. For
the sake of simplicity, hour totals used in this presentation
include all vendor work converted from dollars to man-hours.

Table 4-8. Labor Operations.

INDIRECT LABOR DIRECT LABOR
© LOAD AND UNLOAD OVEN o GATHER MATERIALS
* BAG FOR AUTOCLAVE o CUT TEMPLATES
o AUTOCLAVE CURE o LAYUP GLASS
o DEBAG o MACHINE HONEYCOMB CORE AND TIP BLOCKS
o WEIGH DETAILS o CAST FORM ROOT BLOCKS ON SPAR
o CHEMICAL TREAT METAL DETAILS o TRIM DETAILS
* WRAP, PACKAGE DETAILS o STRETCH FORM ABRASION STRIP
® BOND ASSEMBLY o PREPARE MOLDS

i * FINISH ® PREFIT DETAILS 1
o DEGREASE * APPLY ADHESIVE ‘ﬂ
* DEBURR '
© INSTALL BUSHINGS
* PAINT i
i




The research program produced three blades at a labor cost of
440 hours. It should be noted that these hours were extracted
from the history of a program that had ac its primary purpose,
the development and flight test of a bearingless tail rotor.
The low labor content recorded for the research blades is
attributed to the fact that judicious tracking of associated
blade fabrication hours was not a program requirement as was
the case for the MM&T demonstration blades.

Four prototype demonstration blades were fabricated at a cost
of 775 man-~hours as shown in Table 4-6. The first blade was
used for tool tryout and was destructively tested. Actual
man-hours were recorded to assist in projecting production
costs. The first blade consumed 271 man-hours and the last,
131 man-hours showing a learning curve of about 75 percent.

The manufacture of 1, 10, 100 and 1000 blades in the MM&T
mold was projected using an 85 percent learning curve, to
accommodate production methods and tooling (Figure 4-58).

The plot shows the first production blade would take 114
man-hours and blade number 1000 would require 23 man-hours.
This shows the economies of scale in operator proficiency and
the additional tools to provide precut kits and separate skin
assemblies.

Autoclave curing from the standpoint of the learning curve
would add three man-hours to the whole curve making it 117
man-~-hours at blade number one and 26 man-hours at 1000 blades.
The difference is attributed to bagging, debagging, and other
autoclave related labor requirements.

Cocuring the skins during assembly bonding would eliminate the
processing associated with precuring. The resulting labor
savings would be 29 hours at blade number 1 and 4 hours at
blade 1000 (Figure 4-59).

4.5.3 Energy

In Section 4.2.4, it was pointed out that the calculated
energy requirements for the panel coil system was far lower
than that for the other systems. When the blades were cured
as described in 4.3.3, it was found that the system perform-
ance surpassed expectations. Measured units of temperature,
water volume and time revealed energy consumption of 19.71 kwh
for a complete cure cycle rather than 23.62 kwh as originally
calculated. Figure 4-60 shows the actual calculations and

Figure 4-61 is a final energy comparison of all of the candi-
date systems.




— - - T TF ewe = = ey — L) b aabh o P—— ] -.i1 i R
R 1 S . R R LY
- -

*PTIOK L3 Y3ITM padnpold sapeld X037
suoT3ooloxg anocy-uel] uorjionpoad pue adijojzoiad -g85-% 2Inb1g

S3avig

<
>
2z
I
o)
C
oo
A1
| L. 9%G/ | 2
(L'8ANIN) HNGLL . . - oms /,_,rﬁxv >
€61 >~ -
LEL ﬁ _ W -
Sa1 | . \ R VX
PNN * W&>.F°_P°m_& '
ﬂ L
i _ < n j
T _
L b J

67




B T vy
T 8 S T R

B A AN KAt S 4 = Aok -~ v

"ATquossy po.indo) snsiop ATqUOSSY [Te39q pPoinosig *66-p 2anbrg

s3avis
0001 00} ol
r !
61
€2 a3¥nd09d
z€
>
6¢
SS 2
e
o 99
ENDRERT o6
-~
P S
>
r




-

A. POWER REQUIKEMENT FOR INITIAL HEAT-UP ACTUAL

1. Heat absorbed by: COMPLETE CURE CYCLE (PANEL COIL - AL INSERT)

Weight of Material Specific Heat Temp. Dif. (Final-Initial)
(Lb) Xx__ (BTU/11.-F) X (F) KWH
3412 (BTU/KWH) x (Time in Hours)
2. Heat absorbed by: WATER
10.2 GAL. 85.068 LB. x 1.0 x 200°F x 30 MIN. 9.98 KWH
3412 x .5
3. Heat absorbed by: WATER TO RATSE PARTS TO TEMP.
85.068 LB/MIN. 1.0 x 10°F x 30 MIN. 7.48  KkwH
3412 x .5
4. Heat absorbed by: WATER TO MAINTAIN OPERATING TEMP (CURE)
85.068 LB/MIN. 1.0 x 1°F 60 MIN. 1.5 KWH
3412 x D
5. Heat absorbed by:
X X KW
3412
6. Heat absorbed by:
_ X X KwH
Total Heat Regquirement for Initial Heat-up: . Kwii
Total Power Kequircment for Initial Heat-up: 18.9¢6 KWH
B. POWER REOUIREMENT FOR OPEKRATING HEAT
1. Heat Required to keplace Heat Losses: _ -
(Exposed Surf. Area) (Heat Loss at Final Oper. Temp) (Cycle Time)
(sg. ft) x (W/sa ft) X Hrs) KWH
1000 (W/KW)
2. Heat Required to Replace Heat lLosses:
KwWH
1000
3. Heat Required to Replace Heat Losses:
- S KwWH
1000
4. Heat Reguired to Replace Heat losses:
KWH
J000
Circulatica Pump: .75 XV'H
Total Encrgy Use 19,71 KWh

Figure 4-60. Energy Consumption - Panel Coil
Actual Cure Cycle Calculations.
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Additional energy savings could be realized by using stack
molds as in Figure 4-62. Estimated savings are 25 percent in
the second blade of a two-blade stack.

Figure 4-62. Two-blade Stack Mold.

Cure profiles were plotted for curing the bearingless tail
rotor blade using the MM&T mold and two BHT production auto-
claves, a 4' x 9', and a 5' x 18'. Figure 4-63 shows the
large variation in cure cycles ranging from 90 minutes in the
demonstration mold to 229 minutes 1n the large autoclave. The
cure profiles show the MM&T mold can conserve large quantities
of energy while providing excellent tool utilization.

Energy requirements of 114 kwh and 787 kwh respectively were

calculated for a cure cycle in the 4' x 9' and 5' x 18' auto-
claves (Figure 4-64). The requirements per blade for multi-

blade bonding cycles are compared with the MM&T mold in Table
4-9. The values are displayed graphically in Figure 4-65.
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787
KWH
114
KWH
19.7
KWH
MM&T 4’X9’ 5'X18’
MOLD AUTOCLAVE AUTOCLAVE

Figure 4~64. Enerygy Requirements for One Cure Cycle.
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Table 4-9. Energy Required for Bonding %
Tail Rotor Blades =
MM&T Number of Small Large l
Tools Autoclave Autoclave
19.7 kwh 1 114.0 kwh 787.0 kwh
2 57.0 393.5
3 38.0 262.3
4 28.5 196.8
5 22.8 157.4
6 19.0 131.2
7 112.4
8 98.4
9 87.4
10 78.7
11 71.5
12 65.6
13 60.5
14 56.2 .
15 52.5 i 4
16 49.2

Capacity (6) Capacity (16)
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Figure 4-65. Energy Requirements Comparison -
MM&T Mold Versus Autoclave.




At production rates of less than twenty blades per month, the
MM&T mold conserves up to 83 percent of the energy consumed by
the smaller autoclave if a single tool is utilized. when
production rates in excess of one hundred blades per month are
achieved, five autoclave tools would be used versus one mold.
At that point, the energy costs are approximately equal, but
the use of the mold provides a 45 percent reduction in tooling
costs.
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5. CONCLUSIONS

The program objective to fabricate and demonstrate a low cost,
energy efficient mold system was met.

- Low Cost Mold - The MM&T system can be fabricated at a
lower cost than an autoclave and supporting production
tools. The mold insert concept developed during this
program introduced an element of versatility not pos-
sible with conventional integral molds.

- 52 Percent Reduction in Cure Cycle - The MM&T mold is
more compact and thermally efficient than an autoclave;

Consequently, the cure cycle is faster and allows better
tool utilization.

- 83 Percent Reduction in Energy - Substantially less
energy is consumed during operation of the MM&T mold
as compared to an autoclave. Savings of this type

will become even more significant as the cost of energy
continues to increase.

- Other cost savings are realized by eliminating the need
for autoclave bagging and sealing. Also, fewer tools
are required to meet production rates.




—

6. RECOMMENDATIONS

The mold developed for this MM&T program was demonstrated to

be efficient in the production of composite tail rotor blades.

The principles established are applicable to a variety of
bonding and curing operations.

Expand Technology to Laminated Structures - Additional
development is recommended to apply the principles
established to the curing and bonding of large multi-
layer, laminated structures.

Apply Technology to Curved Components - The system has
applicability to the curing of contoured panels. This
would involve manufacturing methods for contoured
panel coils.

Develop Mobile System - A transportable system based on
these principles should be developed. The need exists

for mobile units capable of supporting work cell manu-

facturing concepts and related technology such as that

emerging from the ICAM program.




Appendix A

ESTI! )
POWER REQUIREMENT FOR INITIAL HEAT-UP MATED

1. Heat absorbed by: INTEGRAL STEEL MOLD~ELECT. HT./WATER COOLED

Weight of Material Specific Heat Temp. Dif. (Final-Initial)
(Lb) X (BTU/Lb-F) X (F) KwWH
3412 (BTU/KWH) x (Time in Hours)
2. Heat absorbed by: STEEL MOLD
2892 LBS. x .12 x <200°F x 30 MIN. 40.68 KWH
3412 x .5
3. Heat absorbed by: TAIL ROTOR BLADE
3.4 LBs. x .197 x_200°F X 3Q MIN. Q8 KWH
3412 x .5
4. Heat absorbed by: WATER
85.068 LBS. x 1.0 x 200°F x 20 MIN. 9.97 KWH
3412 x .5
5. Heat absorbed by:
X X Xwi
3412
6. Heat absorbed by:
X X KwH
Total Heat Requirement for Initial Heat-up: KwH
Total Power Requirement for Initial Heat-up: 50.73 Wi
POWER REQUIKEMENT FOR OPERATING HEAT
1. Heat Reguired to Replace Heat Losses:
(Exposed Surf. Area) (Heat Loss at Final Oper. Temp) (Cycle Time)
(sq. ft) X (W/sq ft) x Hrs) KWH
1000 (W/Kw)
2. Heat Required to Replace Heat Losses: STEEL MOLD
19.01 sO. FT. x 180 WATTS SQ. FT. x 1 HR. 3.42 Kwh
1000
3. Heat Required to Replace Heat Losses:
KwH
1000
4. Heat Reguired to Replace Heat Logsses:
— _ KwH
1000
Circulation Pump: 3.0 _KwH

c

Total Energy Usc

i




POWER REQUIREMENT FOR INITIAL HEAT-UP

1.

1.

ESTIMATED

Heat absorbed by: STEEL INTEGRAL MOLD - WATER HT./WATER COOLED

Weight of Material Specific Heat Temp. Dif. (Final-Initial)
{Lb) X (BTU/Lb-F) X (F} KWH
3412 (BTU/KWH) x (Time in Hours)
STEEL MOLD
Heat absorbed by: OL
1713 LBS. x .12 x 200°F X 30 MIN. 24.1 KWH
3412 x .5
Heat absorbed by: TAIL ROTOR BLADE
3.4 LBS. x  .197 x_200°F X 30 MIN, Q8 KwH
3412 x .5
Heat absorbed by: WATER
85.068 LB. x 1.0 x 200°F X 30 MIN. 9.97 KWH
3412 x .5
Heat absorbed by:
X X KWH
3412
Heat absorbed by:
X X KWH
Total Heat Requirement for Initial Heat-up: KwH
Total Power Requirement for Initial Heat-up: 34.15 KwH
POWER REQUIREMENT FOR OPERATING HEAT
Heat Required to Replace Heat Losses:
(Exposed Surf. Area) (Heat Loss at Final Oper. Temp) (Cycle Time)
(sq. ft) X (W/sq ft) X Hrs) KWH
1000 (W/KW)
Heat Reguired to Replace Heat Losses: STEEL MOLD
13.73 SQ. FT. SUR. x 180 WATTS x ] HR 2.47  xwH
1000
Heat Required to Replace Heat losses:
KWH
1000
Heat Required to Replace Heat Losses:
—— KWH
1000
Circulation Pump: 3.0 KWH
Total Energy Use 39.62 Kwii




A. POWER REQUIREMENT FOR INITIAL HEAT-UP DTN

1. Heat absorbed by: STEEL PLATTENS, AL INSENTS = BLix T. 57, /WATER . viLED
Weight of Material Specific Heat Temp. Dif. (Final-Initial)
{Lb) X (BTU/Lb-F) x (F) o  KwH
3412(BTU/KWH) x (Time in Hours)
2. Heat absorbed by: 2 PLATENS
2138 LBS. x .12 x_200°F  x 3¢ [N, 30.08  xwH
3412 x .5

3. Heat absorbed by: AL. INSERTS

178 LBS. x .23 x 200°F x 30 MTINy. 4.8 KWH
3412 x .5
4. Heat absorbed by: TAIL ROTOR BLADE

3.4 x .197 x  200°F x 30 MIN, 08 KWH
3412 x .5

5. Heat absorbed by: WATER

85.068 LB. x 1. x 200°F x 30 MIN. 3.07  KWH
3412
6. Heat absorbed by:
X x KwWH
Total Heat Requirement for Initial Heat-up: o __Kwd
Total Power Requirement for Initial Heat-~up: 44.93 KWH
B. POWER REQUIREMENT FOR OPERATING HEAT
1. Heat Required to Replace Heat Losses:
(Exposed Surf. Area) (Heat Loss at Pinal Oper. Temp) (Cycle Time)
(sq. ft) X (W/sq ft) X __Hrs) KWH
1000 (W/KW)
2. Heat Required to Replace Heat Losses: (4 IN.) STEEL PLATENS
10.56 SQ. FT. x 180 WATTS SO. F7. x 1 HR. 1.9 KWH
1000
3. Heat Required to Replace Heat Losses: Al.. MOLD INSERTS
3.17 sQ. FT. x 90 WATTS SO, FT, X 1 HR. .29 KWH
1000
4. Heat Required to Replace Heat Losses:
o KWH
1000
Circulation Pump: 3.0 XWH
Total Encrgy Use 50.12 KWH

L e AR RO A




. A ESTIMATED
A, POWER REQUIREMENT FOR INITIAL HEAT-UP
1. Heat absorbed by: STEEL PLATEN, AL INSERiT - WATER #T./WATER COOLED
Weight of Material Specific Heat Temp. Dif. (Final-Initial)
(Lb) x (BTU/Lb-F) X (F) KWH

3412 (BTU/KWH) x (Time in Hours)
2. Heat absorbed by: STEEL PLATEN (2 IN. THICK)

1179 LBS. x .12 X 200°F x40 MTY 1¢.58 VYWH
3412 x .5

3. Heat absorbed by: AL. INSERTS

178 LBS. x .23 x 200°F X 30 MIN. 4.8 KWH
3412 x .5

TATL ROTOR bLADE

4. Heat absorbed

v

3.4 LBS. x 197 x 200°F x 30 MIN. .08 KWH
3412 x .5
AP
5. Heat absorbed by: h‘\j bt e
85.068 LBS. x 1.0 % 200°F 30 MIN, 9,97 _rwi
3412

6. Heat absorbed by:

X ] X KWH
Total Heat Requirement for Initial Heat-up: 3 KwWii
Total Power Requirement for Initial Heat-up: 3..43 KWH

B. POWER REQUIREMENT FOR OPERATING HEAT

1. Heat Required to Replace Heat Losses:
(Exposed Surf. Area) (Heat Loss at Final Oper. Temp) (Cycle Time)
(sq. ft) x (W/s7q ft) X Hrs) KIWH
1000 (W/KW)

2. Heat Required to Replace Heat Losses: _STEEL PLATENS

5.28 SQ. FT. x 180 WATTS SQ. PT, x 1 HR. .95 KwH
1000

3. Heut Required to Replace Heat Losses: AL. MOLD INSERTS

3.17 SQ. FT. x 90 WATTS SQ. FPT, x 1 HR. .29 kwH
1000

4. Heat Required to Replace Heat Losses:

1000

Circulation Pump: 3.0 KWH

Total Energy Use 35.67 XWH




POWER REQUIREMENT FOR INITIAL HEAT-UP

PSP IMATE D

1. Heat absorbed by: PANEL COTL AL. MOLD IHSERTS

Weight of Material Specific Heat Temp. Dif. (Final-Initial)
(Lb) x (BTU/1Lb-F) X (F) KWH
3412 (BTU/KWH) x (Time in dours)
2. Heat absorbed by: PANEL COIL - STEEL
223 LBS. x -12 x 200°FP x P00 M, 3.14 KWH
3412 x .5
3. Heat absorbed by: AL. INSERTS
178 LBS. x 23 x 200°F x 30 MIN. 4.8 KWH
3412 x .5
4. Heat absorbed by: 3/8 FACE PLATE - AL. AL.
75 LBS. x .23 x 200°F x 300 MIN. . 2.02 Kwi
3412 x .5
S. Heat absorbed by: TAIL ROTOR BLADES
3.4 LBS. x -197 x 200°F x 30 MIN. e KWH
— 3412
6. Heat absorbed by:
X X Yt
Total Heat Requirement for Initial Heat-up: __KWH
Total Power Requirement for Initial Heat-up: KWH
POWER REQUIREMENT FOR OPERATING HEAT
1. Heat Required to Replace Heat Losses:
{(Exposed Surf. Area) (Heat Loss at Final Oper. Temp) {Cycle Time)
(sq. ft) X (W/sq ft) X Hrs) KWH
1000 (W/KW)
2. Heat Required to Replace Heat Losses: PANEL COIL - STEEL
1.33 SQ. FT. % .180 WATTS/SQ, FT. x 1 HR. . 239 Kwh
1060
3. Heat Required to Replace Heat Losses: AL. FACE PLATES
.88 SO, FT. X 90 WATTS SO. FT. x 1 HR LOR KWH
1000
4. Heat Required to Replace Heat Losses: AL. MOLD INSERT
3.17 SQ. FT. X 90 WATTS SO. FT. x 1 HR. .285  KwH
1000
Circulation Pump: 3.0 XWH
Total Energy Use 23.62 __Kwh

T el B oot S AL




POWER REQUIREMENT FOR INITIAL HEAT-UP ACTUAL

1. Heat absorbed by: COMPLETE CURE CYCLE (PANEL COIL - AI. INSLRT)

Weight of Material specific Heat Temp. Dif. (Final-Initial)
(Lb) x (BTU/Lb~F) x (F) KWH
3412 (BTU/KWH) x (Time in Hours)
2. Heat absorbed by: WATER
10.2 GAL. 85.068 LB. x 1.0 x_ 200°F x 39 MIN, 9.98 KwH
3412 x .5

3. Heat absorbed by: WATER TO RAISE PARTS TO TEMP.

95.068 LB/MIN x 1.0 x 20°F x 30 MIN. 7.48 KWH
3412 x .5

4. Heat absorbed by: WATER TO MAINTAIN OPERATING TEMP (CURE)

85.068 LB/MIN x 1.0 x 1°F X 60 MTN 1.5 _ KwiH
3412 x .5

5. Heat absorbed by:

X X KwWH
3412
6. Heat absorbed by:
X X XWH
Total Heat Requirement for Initial Heat-up: KWH
Total Power Requirement for Initial Heat-up: 18.96 KWH

POWER REQUIREMENT FOR OPERATING HEAT

1. Heat Required to Replace Heat Losses:

(Exposed Surf. Area) (Heat Loss at Final Oper. Temp) (Cycle Time)
(sq. ft) X (W/sg ft) X Hrs) KWH
1000 (W/XW)

2. Heat Reguired to Replace Heat Losses:

KWH
1000
3. Heat Required to Replace Heat Losses:
KWH
1000
4. Heat Requirec to Replace Heat Losses:
KWH
1000
Circulation Pump: -75 KWH

19.71

Total Energy Use KWH
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Appendix C

MOLD SYSTEM SAFETY RATINGS

PANEL COIL
CIRCULATING HEATERS
HEAT EXCHANGER
FLOW METER

HEAVY DUTY PIPE

FLEXIBLE HOT WATER LINES

FLEXIBLE AIRLINES

ASME CODE PRESSURE RATING TESTED AT 591 PS]

ASME CODE PRESSURE RATING WATER TIGHT ELECTRICALS
DESIGNED FOR 400 PSI WORKING PRESSURE

5,000 PSI MAXIMUM PRESSURE

2,500 PSI MAXIMUM PRESSURE INSULATED/SAFE TO THE TOUCH

1,000 PST MAXIMUM WORKING PRESSURE
4,000 PSI MINIMUM BURST PRESSURE

300 PSI MINIMUM BURST PRESSURE




Appendix D

Bell Helicopter 128101

[SIPINISTE
POSY OFFICE BOX 482 : FORT WORTH TEXAS 761Gt

pantne 599-318-103

K% Blade No, 1A

R.R.No

corits 1O LABORATORY REPORT

B. Anderson

of Teatrong

RIPGRI NG ’ b

DATE _

TESYED BY | .. 4_.

APPROVED _

J. Baker Dostruactive Tont

J. Peach TITLE

E;bsgfizg e Bearingless Tail botor s
SPEC No 599—?18—103~m__~7 o
VENDOR By _

7872 55418

Destructive test on the 599-118-103
blade No. 1A  has been accomplishoed
Materials Laboratory in aoccordance
incorporated as pade 2 o: this rop ot

Quantitative and qualltat 1o analyses

tip cut-off sample of bLoth the "whir"
(Sta. 30.95 to Sta. 37.C, ¢ fotermln
discrepancies oxist in the bondsinos,

blade produced 1in the noew intearaliv e
mold tool.

1. No discrepancies noted dirimag gua
{Test Section VI,

2. Quantitative tost e sl are e

sheets of this 1o

30
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FABRICATION AND DEMONSTRATION OF AN INTEGRALLY HEATED AND PRESS-ETC(U)
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Bell Helicopter {3311

Divesuon of Teatron in

POBT OSAICE BON 482 - POAT WORTH TRAAS 74101

REPORT DT80-34A

PUSIIFUEY W PN

-

R SR

PPN PR, 1

7872 Snat1R

Material A 599-318-103
Type N1113 Adhesive OATE 3-7-50
Batch
o — LABORATORY REPORT PREPARED BY J. Puckhain
o
ADHESIVES AND PLASTICS
Primer TESTED BY J. pockham
Batch
N APPROVED  [£1G
Copras to: Destructive Test
TITLE Bonding Condition
TYPE TEST Time
Temp ©F
REF. N. B. PAGE
ps:
Average Blade No. 1A - white Material
Hugh Preparation
Low - Date

IDENTIFICATION

I

I1 Top
II Bot
I1I Top

III Bot

_ ;V qu
IV Bot
V Top
V Bot

VI

LENGTH
.263

.270

WiDTH

.268
.497
1

1

.502

PTABLE

AREA

.070

.134

BONDLINE | TYPE
LOAD |THICKNESS|FAILURE
240 Adhes.
170 iBluuk
200 }Block
300 iﬁldss
280 ﬁﬁlass
400 Glass

' .
400 :GldSS
- [ -
91

STRENGTH
Psh
{PLI

3428

2521
2276
3478
4040
24.62 p

25.00 p

REMARKS

prcent

prcent




TR %944

BeM Helicopter TTIT]

Crvse 0 Teatoe

PUBT ORI ICE BOT 487 - VORT WORTH T Ra

REPORT DTHO- 38N

Materal 599-318-103
Type N1113 Adhesive OATL Py
Batch
Roll LABORATORY REPORT PREPARKED BY J. Puouvkian
ADHESIVES AND PLASTICS
Primer TESTED BY J. Poeckham
Batch
APPROVED (&
Copres ro: TITLE Destructive Test N
tionaing Condirion
TYPE TEST Ime
Temp OF
REF. N. B. PAGE
—— —— psi
Average Blade No. 1A - Red Material
High Preparation
Low 7 Date

I l I |

'
STRENGTH | '

( i
| i ‘ D AONDUINE . TYPE | s i
IDENTIFICATION LENGTH , WIDTH ' AREA 1’ LOAD JYRICKNESS;FAiL(/RE ) 7S] ‘ hEMARRS
t L] 1 i ] ' t
l i l ! I
1 . 220 1.267 i .058 150 | loohes. ! 2586
+ ' ¢ H ‘ B
! ‘ ‘ !
1T Top L278 L4911 L1136 240 { Adhes, 1 1764
) ! ' { . .
1T Bot 281 1 .485 | .136 = 260 Block vatl
1 1 0‘ u‘ ' . [
111 Top 1.229 ) .497 iy o220 Glass 19496 ]
: + t 1 ; .
111 Bot . 285 g.4‘33 .140 . 280 Glass 2000 |
. . , . . . .
1V Top .229 | .437 .100 180 - Glass 1800 i
IV Bot L2331 .458 L 1ue 240 x Glass Jled !
! ‘ ! : : j
v Top - — e - -- 27,69 PERUENT ‘
N f } 1 , . l!
v Bot ‘ -~ ) - =T ! -- 26.47 PERCENT
| VI ' AccePTABLE | ;
! , .
{ ; | T \
| S . \ ‘
. ) ‘
! ' t : i
| ! ! '
| i . i
! ! | ! |
. 3 | )
I o
I . N

92
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T
Bell Helicopter [IZUITEL]
Owision of Textron ing
PQST OFFICE BOX 482 « FORT WORTH. TEXAS 78301
599-318~103 DTl 241
PART Neo AEPORTY No _
P Blade No. 2 oAt = 7-80
® R Ne J. Peckham
S TESTED B Y
coPits 10 LABORATORY REPORT APPROVE
B. Anderson APPROVED e e
J. Baker Destriet tve Tost TR oeK
J. Peach TiTLe
R. Sadler em Bearingless Tail Rotor Hlade
Lab Files !
599-318-1013
SPEC No
BHT
VENDOR

Destructive test on the 599-318-103 bearingless tail rotor
blade No. 2 has been accomplished by the Methods and
Materials Laboratory in accordance with the test plan
incorporated as page 2 of this report.

Quantitative and qualiltative analyses were conductoed on the
tip cut=-oft sample of both the "white" and the "red" blade
(5tu. 30.95 to sta. 37.0° to determine 17 volds or other

discrepancies exist 1n the bondiines.  This was the third
blade produced in the new 1ntegrally heated and pressuriaed
mold,

1. Nou discrepancies notoed darang gualitative evaluation
(Test Section V1),

2 Quantitative test resalts are recorded on attached
sheets of this report.

7872 55418
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veTZ 38419

T T O s TN
Sell Helicopter
Dhveseon gt Tend ot i
ST OSPRE ROB 082 < PORT ORTI TRIME T8I0
TRO-
Material 6§99 11H-10 4 RE PORT DTRO- 34
Type N1l1l3 Adhcf_li.'«;__ DATE 5=7-60
Batch
Roll LABORATORY REPORT PREPARED BY 1. Peokhan
— ADHESIVES aND PLASTICS
Primer TESTED BY d, Peckbam
Batch .
- APPROVED (/b
Copies to: pestructive Test
TITLE ) Bonding Condition
TYPE TEST Time
Temp 9F
REF. N. B. PAGE psi
Average Blade No. 2 - White Material
High Preparation
Low Dote
1
] STRENGTH i
BONDLINE ; TYPE Ps) :
IDENTIFICATION LENGTH WwiDTH AREA LOAD TNICKNESS[FAILURE tPLIY l REMARKS
o | L I see
I .220 1.307 | .068 | 100 [Gluss 1370 | petest
11 Top . 300 .462 .139 200 6ok 1438 ;
11 Bot .308 .461 1 .142 240 Block 16490 \
o ! i
111 Top .240 .470 .113 200 ;Gldbb 1764
. R ! '
111 Bot .275 |.475 | .131 | 240 iGlass | 1832 ’
: . ! ,
IV Top .233 .413 .096J 300 ‘Glass | 3125 ;
- 4 - t ’ H ~
| | See
IV Bot 271 .428 .116 \ 60 il\dhus. 517 ! Retest
H \: l
V Top -- - -— ] -- l -- 26.09 P%‘RCENT
Vv Bot - - _— - | - ' 26.58 PTRCENT
VI ACCEPT LNCE l i
e H
I RETEST|.213 |.268 | .057 60 P Glass 1052 #
I RETEST|.272 . 287 .078 60 Lnass 769 ’
IV BGt-RETEST .277|.430 .119 60 1A.nu-s. 504
v Bot—RETES‘l‘ ~.225) .421 .095 80 '.Adm.b \ 842 ‘
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Bell Helicopter)i3415(],

Division ot Textron 1ne

POST OFFICE BOX 482 « FORT WORTH, TEXAS 78101
599-318-103

L0~ 348

PART Neo REPORI No
AXRK Blade No. 2 oATE s=7-%0
R 2. Ne FESTED BY 1. Peckh
corlis TO LABORATORY REPORT APPROVE
B. Anderson APPROVED . -
J. Baker Destructive Test o e
J. Peach Tivee
R. Sadler Bearingless Tail Rotor Blade
Lab Files e
599-318-103
$PEC No
BHT
VENDOR

7872 55418

Destructive test on the 599-~318-103 bearingless tail rotor
blade No. 2 has been accomplished by the Methods and
Materials Laboratory in accordance with the test plan
incorporated as page 2 of this report.

Quantitative and qualitative analyses were conducted on the
tip cut-off sample of both +he "white" and the "red" tlade
(Sta. 30.95 to Sta. 37.0) to Jdetermine if veids or other
discrepancies exist in the bondlines. This was the third
blade produced in the new integrally heated and pressurized
mold.

1. No discrepancies noted during qualitative evaluation
(Test Section VI).

2. Juantitative test results are recorded on attached
sheets of this report.
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Bel Helicopter LIZALN

vt o Tewtran iny

POBY DAPICE £OD 442 + TORT KRR TE1al 610"

REPORT DTBN- 348

Materia! 599-318-103
Type N1113 Adhesave DATE §-T7=-40
Botch
Roll LABORATORY REPORT PREPARED BY ... I-ckhal
R ADHESIVES AND PLASTICS
Primer TESTED BY Lo ieoKhan
Batch ,
N AFPROVED 33
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KOKMK Blade No. 3 oatr N
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TESTED MY __ .

cories 10 LABORATORY REPORT APPROVE

B. Anderson Destructive Test J.olernosck
J. Baker nme
J. Peach Bearingless Tall Fotor siade
R. Sadler 1M
Lab Files 399-118-103

$PEC No

IS
VENDOR

7872 55418

Destructive test on the 5Y9-315-100 bhoosrineloss tarr rotor
blade No. 3 has heon accoornplirshed by the Methods and Matorsals
Laboratory 1in accordance with the test plan  incorporate: s
page 2 of this report.

Quantitative and qualitative analyses woere ¢onld
tip cut-off sample of both the “"white" and the "re
(Sta. 30.95 to sta. 37.0) to determine 1 ronds ar ot nes
discrepancies oxist in the bondlines. This was ti

blade produced in the new inteyrally heated and prossur oo
mold.

1. No discrepancies noted during gualirtative coaboet oo
(Test Section VI).

2. Quantitative test results are recorded an o!f tuached shoots
of this report.
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