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ABSTRACT

The problem of accurately replicating the parameters which
define a given system for the purposes of implementing modern
control strategies is important. Using an Autoregressive-
Moving Average (ARMA) representation for the unknown system,

a model is identified by processing input/output data to esti-
mate the coefficients associated with the ARMA equation. Iden-
tification of unknown system parameters using Kalman filtering
methods was accomplished by augmenting the state vector. 1In
this thesis the Kalman filter is formulated so that parameters
can be identified explicitly. We call this approach the
Adaptive Kalman Identifier (AKI).

It is shown that the Adaptive least mean square (LMS).
Adaptive Recursive LMS and Adaptive Lattice filters are special
suboptimal cases of the AKI. The convergence and modeling
properties are compared with those of the AKI by simulation
using various types of data.

With minor modifications, the AKI algorithm was used to
identify the linear and non-linear ARMA models of the phase
locked loop (PLL). A discrete PLL using a forward Euler inte-
gration scheme was used as a source of non-linear data. The
AKI technique appears to enable one to discern when a potential

non-linear system enters into its non-linear mode of operation.
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I. INTRCDUCTION

The accomplishments in the area of microprocessor tech-
nology in the last decade have made a noticable impact in the
area of modern control. The desire to implement modern con-
trol theories taking advantage of these advancements, has
made it imperative that the engineer attempt to mathemat-
ically replicate the system he ultimately desires to control.
Efforts in this regard have, hence, generated a growing
interest in the area of system identification [Ref. 1,2,3,4].
By implication this thesis concerns itself with discrete/

digital signal processing.

A. BACKGROUND

System identification or modeling can be accomplished by
innovative application of existing techniques which were
generally considered filtering or state estimation methods
[Ref. 5]. Previous research efforts have, for obvious reasons,
focused on linear modeling; however, there is a rising interest
in non-linear modeling methods [Ref. 6,7,8]).

An attractive form for the representation of an unknown

system is the Autoregressive-Moving Average (ARMA) equation,

y(k) =

e~ 8

aju(k-i) - _Zl b,y (k-1i) (1.1)

i=0 i=

which states that the present output, y(k), is a linear com-

bination of past outputs, y(k-i), and of past and present

13
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inputs, u(k). Its attractiveness lies in its linear charac-

Py

ter and easily implementable structure using microprocessor/

computer algorithms. Its relationship to the state space ‘
representation of a linear system has already been established l
[Ref. 9,10] making it germane to consider that a system is %
identifiable by an equation of the form (1.1). The system ‘
identification problem thus entails identifying the coeffi-
cients a; and bi‘

There are several methods for computing the coefficients, :
a; and bi’ however, it is not the intent of this brief intro-
duction to attempt to develop even the majority of them.
Nevertheless, it is practical to present a referenced history 1
of those methods encountered in this thesis.

Adaptive algorithms for the purpose of estimating the
coefficients of (l1.1) have always been of interest. Widrow,

using a least means square error criterion and implementing

the method of steepest descent, developed an adaptive algorithm

which estimated the coefficients of the moving average process
associated with equation (1.1l) [Ref. 11]. That is, the moving i

average model,

ER U S

y(k) = abu(k) +aiu(k-1) +a5_u(k-2) + ... (1.2)

where,




al! = (a2 - aobz) - bl(al - aobl)

was identified. The LMS theory has since been extended to
include block LMS filtering methods [Ref. 12,13,14) using
various search techniques [Ref. 15,4(Chapter 5)]. These
methods have enjoyed much popularity in the area of Linear
Prediction and digital speech processing [Ref. 16,17].

The shortcoming of representing equation (1.1) by its
equivalent moving average model (l1.2) lies in the practical
aspect of its implementation. That is, the infinite series
represented by equation (l.2) must be truncated at some point
resulting in an approximation which may not adequately repre-
sent equation (l.1). Hence, efforts to adaptively estimate
the coefficients for both the autoregressive (bi) and moving
average (ai) processes continued [Ref. 18,19,20] with various
degrees of success. Feintuch's Adaptive Regressive LMS pro-
cedure (Ref. 18] is still a controversial issue [Ref. 19,20].

From yet a different direction, Anderson and Moore suggested

that the Kalman filtering algorithms can be used as a means
to identify the a; and bi coefficientsl of equation (l.1)

[Ref. 21, pp. 50-52). This thesis exploits this application.

lAnderson and Moore in fact formulate the technique to
compute the coefficients ai’bi i=1,2, ... p where
P = n+m.
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B. INVESTIGATIONS AND CONTRIBUTIONS

This thesis formulates an adaptive application of the Kal-
man filter to identify the coefficients of the general ARMA
equation (l.1). It is shown that the LMS adaptive filter
[Ref. 11] and the Adaptive Recursive LMS filter [Ref. 18]
are (1) special cases of the Adaptive ARMA Kalman identifier
and (2) sub-optimal with respect to the underlying least
means square (LMS) error criterion upon which the LMS adap-
tive filter, the adaptive recursive filter and the Kalman
filter are based. It is also demonstrated that the adaptive
Kalman identifier has excellent convergence properties.

By comparison, it is noted that the Kalman algorithm
accounts for measurement noise where the 1IMS algorithms do
not, a heretofore unapproached problem by LMS algorithms.

The results indicate that the suggested modification by
Griffiths (Ref. 22] of the convergence factor, ks' for the
LMS adaptive filter is justified.

The application of the Kalman filter algorithm is ex-
tended to identification of the coefficients associated with
a special case of the generalized non-linear ARMA model [Ref.
8]. The results of the non-linear simulations suggest a tech-
nique for determining when a potential non-linear system
enters its non-linear operating regime. Such a technique can
prove valuable when on-line performance evaluation of a known
non-linear system is required.

Lastly, the connection between the Kalman filter algorithm

and the lattice filter algorithm [Ref. 6] is made. An example

16
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which demonstrates and compares the performance of both

algorithms is given.

C. ORGANIZATION

Chapter II presents and exploits the Kalman filter equa-
tions emphasizing its connections with the Yule-Walker and
the discrete Weiner-Hopf equations. The theory is further
developed to investigate the general ARMA case. Chapter III
pursues the theoretical comparisons between the discrete
Weiner-Hopf equation upon which the adaptive LMS filter is
based and the MA form of the Kalman filter. The theoretical
comparison between the Adaptive Recursive IMS filter and the
general ARMA form of the Kalman filter is made in Chapter 1IV.
The software methods by which linear and non-linear synthetic
data is generated are discussed in Chapter V. A short user's
description of the data processing programs and the options
provided is given in Chapter VI. A non-linear application
for the identification of the parameters of a non-linear plant
is presented in Chapter VII followed by a discussion and pre-

sentation of the results in Chapter VIII.

17
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II. FORMULATION OF THE PROBLEM

Identifying the coefficients of the Autoregressive-

Moving Average (ARMA) equation,
y(k) + bly(k-l) + ...+ bny(k-n) = aju(k) + a;u(k-1)

+ ... + amu(k-m) (2.1a)

m n
y(k) = 7§ a,u(k-i) - 7§ b,y(k-i) (2.1b)
j=0 * LT 1

i=1
can be formulated as an adaptive Kalman identification problem.
That is, instead of using the well known Kalman Filter equa-
tions [Ref. 23,24] to recursively estimate the states of a
system, one can utilize the Kalman filter equations to adap-
tively estimate the coefficients of either an Autoregressive
(AR) , Moving Average (MA), or Autoregressive-Moving Average
(ARMA) process by proper definition of the quantities involved.
We call this the Adaptive Kalman Identifier for obvious

reasons.

A. THE DETERMINISTIC CASE

Consider for the moment that the a; and bi are constant.
Then by collecting a sufficient number of measurements of the
input u(k) and the output y(k), one can readily solve a set
of linear equations for the a; and bi coefficients. The

"gufficient number" that is needed is n+m+l which define the

18




n+m+l linear equations which solve the n+m+l unknown coeffi-

cients. The matrix equation to be solved takes the form:

(v 1 [uwo o .0 Ho c e 0 [
y(1) u@®  u() Ly(0) 0 |l
i
A 1 .
]
. . . b . |-
L) . L) - l - .
i
y (m) = | u(m) u(m-1) u(0) | ym=1) ym-2) y(0) 0 |la,
y (m+1) u(m+l) u(l) } y (m) y (m-1) y(l) 0 |fb
1
1
; | %2
{
. ‘ .
{
y (m+n) | u@mn) ... u(m) | y(n=1) y(n-2) y©f]- |
(2.2)
a
y = T|-- (2.3)
b

It is interesting to note that the (n+m+l) x (n+m+l) matrix,
T, is block symmetric. The solution to (2.3) is readily

apparent, namely,

a
e} = Ty (2.4)
b

where 'I‘-l is the inverse matrix of T. Since we have assumed
that the elements of T are perfect noiseless measurements,

and that we somehow know a-priori the number of unknown
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coefficients, then T is of full rank, namely rank (T) =

n+m+l, and the inverse of T exists.

B. THE NONDETERMINISTIC CASE
Rarely can the coefficients be modeled so ideally. A

more prudent and realistic model admits that the ARMA equa-

TR L TLLTETTS S

tion coefficients are subject to random perturbations. Further, j

i
i a
E it can be said that in general measurement devices introduce

ﬁ noise into the measurement data. Hence, the measurement

E model should reflect this fact. Developing the Adaptive Kalman

§ Identifier along the same lines as [Ref. 21] we let, ;

i ai(k+1) = ai(k) + wi(k) i = 0,1,2, ... m (2.5a)

(2.5b) o

it

.—l
[ |8
o

bj(k+l) bj(k) + wj(k) j

OSSP

where the {wi(k),wj(k)} are samples from a zero mean, white,

y gaussian random procaess. Additionally, we assume that the 1

noise sources are uncorrelated,

i

3 Elw (K)w (k)] = 0 for r # s (2.6a)
P a a

’ r s

E;

p Efw. (K)w. (k)] = 0 for r # s (2.6b)
' b b

g r S

| = 0 for all r,s (2.6c)

Elw_ (K)w, (k)]
ar bs

Similarly, allowing for noisy measurement devices, the

measurement equation (2.lb), is modelled as,

m n
y(k) = § aju(k-i) = ] biy(k-i) + v(k) (2.7)
i=0 i=1

7 AT e o A I B e 1
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where the {v(k)} are samples from a zero mean, white, gaussian

random process. It is also assumed that,

0 for all i

]

E[wi(k) vik)]

E[wj(k) vik)] 0 for all j

That is, it is assumed that the noise perturbations associated

{2.8a)

(2.8b)

with one coefficient are independent of the noise perturba-

tions associated with any other coefficient, and that the

measurement noise and the coefficient perturbations are

independent.

At this point it is ncessary to use judgment and experi-

ence and utilize all the information known about the physical

system which equation (2.7) represents to assign variances for

the random processes {wi(k)}, {wj(k)} and {v(k)}.

wi(k)
Q = E [wi(k) wj(k)]
wj(K)-
Ql 0
Q =
4] de

where, Q, = diag (2 ), Q, = diag (o2 ) and,
i 3

R = E[v(k) v(k)]

and E[x] is the expected or average value of x.

Let

(2.9a)

(2.9b)

(2.9¢c)




'.II:::::—-Il-llIIIIIIIlIl-IIIllIIlIIlIlIl-l-llIIIIIIIIIIIIl-----'

Instead of using x's denoting the commonly used notation
for state variables, we retain the flavor of the problem by
using the ai's and bi's as the "states" of the Adaptive Kalman
Identifier. It is hoped that a more meaningful understanding

of the Adaptive Kalman Identifier may thus be gained. There-

fore, define the state vector,

-
ao(k)

al(k)

! a_ (k) a
{ m -
S I = |--- (2.10)
1 b, (k) b
; bZ(k)
% .
a b (k)
5 -

Combining equations (2.5) and (2.10), we have the discrete,

first order Gauss-Markov process [Ref. 3],

a(k+l) a(k)
N = -——=| + wik) (2.11)
' b (k+1) b (k)

where,
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Note that w(k) is an n+m+l vector whose elements are a con-~
catenation of the noise sequences associated with the a; and

bi' To complete the Adaptive Kalman Identifier formulation

we define the measurement vector,
H(k) = [u(k) u(k-1l) ... u(k-m) =-y(k-1) ... =-y(k-n)] (2.13)

and its associated measurement equation,

y(k) = H(k) | -———=| + v(k). (2.14)

Then the solution to the Adaptive Kalman Identifier problem

[Ref. 21] is,

a(k+l]|k) a(k|k-1)
-------- = [I-K(k)H(K)] | =======m| + K(k)y (k) (2.15a)
b(k+1 k) b (k |k-1)
K(k) = P(k|k(l) HT (k) [H(k) P(k|k-1) HY(k) +R]™% (2.15b)
P(k+1]k) = P(k|k-1) - K(k)H(K)P(k|k-1) + Q. (2.15¢)

Equations (2.15) are initialized by assuming an initial value
for the coefficients (2.10) and assigning to our assumption
a measure of our confidence in the initial guess. That is,

we pick the values,




3! where P(0|-1) is defined as the error covariance of the

coefficients,

: a (k) a(k[k) a (k)
i P(k|k-1) = E ———] = | mm———- -
: b (k) b (k | k) | b (k)
; -a(klk) T !
. SR [P \ (2.17) :
: b (k [k) 3
: - ;

for k = 0. Equation (2.15b) is generally referred to as the

Y LT L

Kalman gain. Two special cases are of interest: case (1);

a; = 0 for all i, and case (2);: bi = 0 for all i.

" 1. Autoregressive Form (a; = 0)

For case 1, equation (2.7) takes the form,

n
i v(kk) = - 7 b.yk-i) + v(k). (2.18) :

. 1 :
4 i=1 ;

3 This is a recursive equation stating that the present output
is a linear combination of past outputs corrupted with addi-

tive gaussian noise, v(k). Equation (2.18) is more formally

a recognized as an autoregressive prcoess of order n [Ref. 25,

ﬂ 26]. Writing the Kalman solution for the coefficients of the

AR process,

b(k+l|k) = [I -K(K)K(k)Ib(k|k-1) + K(k)y(Kk) (2.19a)

1

(2.19b)

K(k) = P(k|k-1) HT(k) [H(K)P(k|k-1) H® (k) +R]~
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P(k+1|k) = P(k|k-1) - K(k)H(k)P(k|k=1) + Q. (2.19¢)

Alternate forms of the Kalman equations given by Maybeck

[Ref. 27] are,

b(k+l]k) = B(k|k-1) P(k|k-1)"1 5(k|k-1)
| T - l
+ P(k+1 k) H (k) R “y(k) {(2.20a)
p(k+l]k) = (P(k|k-1)) Y +8T (k) R™L H(k)7L. (2.20b)

We c¢an model the fact that we have no a-priori knowledge

about the initial wvalues of the coefficients by letting,

(pol-1)1"t = o. (2.21)

Further, if we remain ignorant and totally doubt our previous

estimate, then P(k|k-1) is modeled as,

(e k|k-1)17Y = 0. (2.22)

Equations (2.20) reduce to,

1 1

bk+llk) = (H(k) R Pt 5o Ry, (2.23)

the weighted least squares estimate, previously encountered
by Swerling [Ref. 28,29,30], of the coefficients, b. Carry-
ing the analysis further and letting R‘-l = 1, we have the

Penrose pseudo-inverse solution [Ref. 31,32],

b (k+1 |k) Hx) BT )17 B(K v (k) (2.24)

25
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Swerling [Ref. 28] has shown that if the weighting matrix
in (2.23) is not the inverse of the covariance matrix of
the measurement errors, then the accuracy of the estimated
coefficients (2.24) will be degraded.

The aforementioned notwithstanding, we press further

AR W) . il it

& into the analysis of equation (2.24). The product H(k)HT(k)

can be written as,

: [y (k-1)]
f y (k=2)
E; HK)HT (k) =] . [y(k-1) y(k=2) ... y(k-n)] (2.25)°
LY(k‘n)
- -
2 (k-1) y(k=1)y (k=2) ... y(k=1)y(k-n)
y(k-2)y(k-1) y2(k=-2) )
HK)H (k) = . . . (2.26)
vyl . .. y(k-n)y(k-n)

As we let k » » the expected value of (2.26) becomes the

autocorrelation matrix,

E{lim H(k) HY(k)} = R_ (k) (2.27)
. vy

where,




| |
PRyy(O) R .. Ryy(n)q

Ryy (<11 R (0) .
3 Ry, (K) = : . . (2.28)
. 1
! Ry (m e Ry

Similarly, the product H(k)y(k) as k - » becomes I

f Ryy(’l)
' Ryy(-Z) - %
ryy(k) = : . (2.29) i

f R __(-n)
Yy i

The steady state solution for the estimate of the coeffi-

cients b(k+l|k) is,

PTG v

o -1
Ess(k+llk) R v (k)ryy(k) . (2.30)

4

F . Equation (2.30) is one of the starting points from which
v, Perry [Ref. 6] develops his Lattice modeling algorithms. i
Equation (2,30) can also be recognized as the solution to
the Yule-Walker or Normal equations ([Ref. 26].

2. Moving Average Form (b, = 0)

Referring once again to equation (2.7) and setting

the coefficients b, = 0 for all i we have case (2), ]

m
yk) =} u(k-i) + v (k) (2.31)
i=0
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i Since v(k) is by definition noise associated with the

| measurement, we can combine y(k) and v(k) such that,

m
z(k) = y(k) - v(k) =} aju(k-i). (2.32)
i=0

Equation (2.32) simply states that the present measurement
is a linear combination of past and present inputs or by
. definition, a Moving Average (MA) process [Ref. 25,33]}. The
Adaptive Kalman Identifier estimate for the coefficients of

the MA process is as before,

;(k+l|k) = [I-K(k)H(k)] é(k+l|k) + K(k)z(k) (2.33a) f
. _ T T -1 i
3 K(k) = P(k|k=1) H (k) [H(k)P(k]|k-1) H (k) + Rl (2.33b) -
| P(k+1]k) = P(k|k-1) =K(k)H(K)P(k|k-1) +Q. (2.33c) j
d i
- |
! i
M Using the alternate forms of the above equations we arrive
3 at,
3 alk+llk) = [P(k+1l|k)[P(k|k-1)] "la(k|k-1)
; + [P (k+1]k) HT (k) R M1z (k) (2.34a)
| !
‘ P(k+l]k) = ([P(k|k-1)1"1 +8T(k) R H(K)17L. (2.34b)

Arguing as we did for the autoregressive case, no a-priori
knowledge about the initial values of the moving average

coefficients, implies that,

AL A 0 AR
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(p(o}-1)1"t 1+ o. (2.35)

And even if after we processed one measurement we still
admitted no knowledge as to the accuracy of the previous

estimate, we imply that,

(Pk|k-1)1"t = o. (2.36)

Substituting these implications into equations (2.34) our

estimate becomes,

1 1

é(k+1|k) = (& RTET)1™ Hk) R7Y 2(k) (2.37)

the by now familiar weighted least squares estimate [Ref. 28,
29,30]. If once again we allow R T to be unity, let k tend
toward infinity and take the expectation of equation (2.37),
one arrives at the discrete form of the Wiener-Hopf equation

[Ref. 11}, namely
~ _ -1
§(k+llk) = R " (k) ruz(k) (2.38)

u

where it can easily be shown that,

-
R (0) R (-1) ... R (-m)

uu uu
Ruu(—l) Ruu(O) “os Ruu(l-m)
R_ (k) = . . . (2.39)

uu

and,
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Ruy(k) = . . (2.40)

| Fay 7

Equation (2.38) provided another point of departure from
which Perry [Ref. 6] develops the MA Lattice modeling algorithms.
Appendix A develops the Wiener-Hopf equation otherwise known
as the all-zero model from yet another approach.

The all-zero model is fundamental to Widrow least
mean sguare {(LMS) adaptive filters [Ref. 1ll] and linear pre-
diction theory [Ref. 16].

3. Autoregressive-Moving Average Form

Returning to the alternate form (equations 2.20) of
the Kalman Filter equations (2.19) the development of the
Autoregressive Moving Average (ARMA) Adaptive Kalman Iden-

tifier follows. The estimate for the a; and bi coefficients

is,
a (k+1|k) a(k|k-1)
-------- = [P(k+1]k) [P (k|k=1)1"1] | —m=mmmm-
b (k+1 k) b (k [k-1)
T -1
+ [P(k+1|k) H (k) R “ly(k) (2.41a)
p(k+1]k) = [(@k|k-1)"F+uTx) R oo 1™h . (2.41b)

30
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Progressing in the same manner as in the previous two cases,

we assume,

1

(P(O|-1)1"" = o0 (2.42a)
(p(klk-1)1"% =+ o . (2.42b)
The estimate then becomes,
a(k+1 (k)
-------- = Tl R ERIT B Ry . (2.43)
b (k+1|k)
Taking equation (2.43) a step further by letting RL be

unity, letting k approach infinity and taking the expectation

we have,
-1
a(k+1|k) R, (k) —Ruy(k-l) Ruy(k)
-------- T _————— (2.44)
- T
b(k+l k -R k~1
b(k+1{k) uy( ) Ryy(k) Ryy(k)

Note that the time varying measurement vector, H(k), is of

the form

H(k) = (u(k) u(k-1) ... u(n-m) { -y (k-1) =y (k=2) ... =-y(k=-n)]
(2.45)

Shown in detail, equation (2.44) has the characteristic form
(equation 2.46, next page). It is the Toeplitz and symmetric
nature of equation (2.46) that is exploited by the Levinson

[Ref. 34] and Lattice [Ref. 35] algorithms.
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The Adaptive Kalman ARMA modeling technique can be
best visualized by a block diagram. Referring to Figure 2.1,

the unknown system is excited by a white, zero mean, gaussian

noise sequence of sample values from a random process. The ‘
input and its associated output are then passed through M

and N delays respectively in serial form. The parallel inputs
(M+1) and the outputs (N) are concatenated to form the
measurement vector H(k) which is represented by equation
(2.13). The inputs N and M are selected a-priori as the

model orders for the Autoregressive and Moving Average pro-
cesses one desires to identify. It can be easily seen that
the remainder of the figure simply implements equation (2.1l5a}).
The outputs of the Adaptive Kalman Identifier are an estimate

of the coefficients,

and a one step prediction, y(k|k). !

C. OBSERVATIONS

In this section it has been shown that a direct connection

can be established between the Adaptive Kalman Identifier and
the Yule-Walker equations associated with an AR process.
Secondly, the steady state Adaptive Kalman Identifier closely
resembles the discrete Weiner-Hopf equation associated with
the MA process when the measurement matrix, H(k), is of the

form,
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H(k) = [u(k) u(k~1l) u(k=2) ... u(k-m)]

And, thivdly under the same assumptions as in the previous

two cases, the Adaptive Kalman ARMA Identifier is similar to

the form Perry [Ref. 6] exploits using Lattice modeling.




III. COMPARISON BETWEEN THE ADAPTIVE MA KALMAN
IDENTIFIER AND THE WIDROW LMS ADAPTIVE FILTER

A. PRELIMINARIES

It is instructive to investigate the similarities between
the Adaptive Kalman Identifier and the Widrow LMS Adaptive
Filter when the concepts are applied to system identifica-
tion. Basically, the LMS algorithm implementation of system
identification considers a block diagram as is shown in
Figure 3.1. The output, y(k), of the Adaptive filter is simply
a weighted linear combination of the past and present known
inputs. The same input is fed into both the unknown system
to be identified and the adaptive filter. The output of the
unknown system is designated the desired response, d(k), from
which an error signal, e(k), is derived. The error signal,
e (k), provides the criterion through which the weights, Wi
are adjusted such that the error, e(k+l), is 4driven toward
its minimum. A more detailed analysis of the operation of
the LMS algorithm can be found in Ref. 1ll.

The weights w; are adjusted from time step to time

step in the following manner,
w(k+l) = w(k) - 2ks e (k) X(k) (3.1)

where we define the following quantities,
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r-wo(kﬂ

wl(k)

w(k) = : (3.2)

wm(kl

the weight vector at time step k,

-

fu(k)
u(k=1)

X(k) = : (3.3)

[u (k-m)
the input signal vector at time step k,

e (k)

d (k) - y(k) (3.4)

wl (k) X(k) (3.5)

y (k)

the error, e(k), and the output, y(k), at time step k, and,
k_, a scalar constant controlling the rate of convergence and

the stability of the adaptive filter.

B. THE COMPARISON

Substituting (3.4) and (3.5) into (3.1) gives,

wk+l) = w(k) =2k_ X(K) [d(K) -w (X)), (3.6)

38




Recalling the MA form of the Adaptive Kalman Identifier,

equation (2.33a), rewritten here for convenience as

a(k+l|k) = a(k|k-1) +K(k) [z(k) -H(k) a(k|k-1)],

one can make the following associations:

;(k+l[k) (= wi(k+l) (3.8a)

a(k|k-1) (= wik) (3.8b)

z (k) = d(k) (3.8¢c)

BT(k) (= X(k) (3.84d)

K (k) & -2k X(3) (3.8e)

Recall that for the MA form of the AKI, the measurement

vector H(k) represents a vector of past and present inputs.

Namely,

H(k) = [u(k) u(k-1) . u(k-m)] (3.9)

Therefore the associations (3.8a)-(3.8d) are straightforward.

However, it is not so clear as to what is meant by the

association (3.8e). Digressing a moment to present an equi-

valent expression [Ref. 27] for the Kalman gain, K(k),

RK(k) = P(k|k) H (k) R™Y (3.10)

into the association (3.8e) and enter-

and substituting (3.10)

taining the conjecture that the gquantities are equivalent



under certain conditions, we have:

P(k(k) BT(k) RTF = =2k_ X(k) . (3.11)
The conditions alluded to are (1) that the Adaptive Kalman
Identifier is in steady state and (2) that the statistics of
the input forcing function are stationary. Denoting the steady
state error covariance, P(k|k), as P_, equation (3.11l) can

be solved for ks’

kSI = - -2—R Poo . (3.12)

Invoking the entire Kalman gain history in its more popular

form of equation (2.33b) and equating it to the Widrow gain

(3.8¢), we instead arrive at,

-2k _X(k) = P(k|k-1) HT(k) [(H(K) P(k|k-1) H (k) +Rr]7L
(3.13a)

BT (k) = X(k) . (3.13b)
Solving for the convergence factor, ks’ we obtain,

1

!} -2k5§(k)§T(k) P(k|k=1) X(K) (%% () P (k[ k=1) X (k) +R)" 3

1 1

,, —2k I = P(k|k-1)X(k) (xT(k)P(k|k=1)X(k) +RI K" (k) (X(K)XT (k) 17T,

1

| But [XT(k)P(k|k-1)X(k) +R]1™~ is a scalar. Therefore,

P(k|k-1)
-2k I = —T— (3.14)
S XT(k) P(k|k-1) X(k) + R
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Griffiths [Ref. 22] suggests that the convergence factor ks’

which he denotes as u(n), should be chosen such that,

u(n) = (3.15)

K NR

L §%(n)

where 0 < a < 1 is a normalized adaptive stepsize parameter
and the term Si(n) is an estimate of the input power level
which may be computed using a geometrically-weighted average

for an L weight adaptive filter,

2m) = -3 2w+ ExPm . (3.16)

Comparing equation (3.14) and (3.15), one observes that if

P(k k-1) is equal to the identity matrix then we obtain a

term proportional to éhe input power. Further if measurement
noise is considered negligible, R - 0.0, then 3.14 and 3.15

are essentially equivalent. The salient point to make, however,
is that the choice of the convergence constant, kg, in the

LMS algorithm provides no clue as to how to deal with measure-
ment noise whereas the Adaptive MA Kalman Identifier explicitly

incorporates measurement error into its algorithm.

C. OBSERVATIONS

It has been known that the LMS algorithm was suboptimal
since the actual gradient of equation (3.1) is replaced by
the approximation, 2¢(k) x(k), [Ref. 24]. However, the degree
of suboptimality is difficult to quantify. In previous

linear prediction research no mention was made regarding the




role of measurement noise. Equation (3.14) gives us some

insight into wiser selections of the rate of convergence con-
stant, ks' since it takes into account the effects of measure-
ment noise. Further, it appears that the LMS adaptive filter

is a special case of the Adaptive MA Kalman Identifier.
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IV. COMPARISON BETWEEN THE ADAPTIVE ARMA KALMAN IDENTIFIER
AND THE ADAPTIVE RECURSIVE LMS FILTER

This chapter endeavors to investigate the similarities and
differences between the Adaptive ARMA Kalman Identifier and
the Adaptive Recursive LMS Filter [Ref. 18]. LMS filters
[Ref. 11] have enjoyed much popularity in the recent past due
to their ease of implementation, simple unimodal algorithm,
robustness and ability to "adapt" to the unknown statistics
of the signal environment. Being transversal in nature, they
have a finite impulse response being able to produce only
zeros in the input/output transfer function. One may, how-

ever, decide to model the transfer function,

_ 1

H, (z) = (4.1)
1 1-.9z"1

using a transversal filter, only to realize that a large
number of delays are required in order to arrive at an
adequate approximation. The germane point which is being

made is that one weighted feedback tap can realize an infinite
string of feed-forward coefficients. Moreover, it is very
desirous to adjust the feedback weights adaptively in some

optimal fashion to the statistics of the signal environment.

A. PRELIMINARIES

The approach taken by Feintuch [Ref. 18] is patterned
after the analysis first presented by Widrow [(Ref. 11]. A
summary of Feintuch's derivation will be presented here with

emphasis on its application to ARMA modeling.
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Recall the general ARMA equation (2.1b),

n
a;u(k-i) + } b,y(k-i) (4.2a)
0 i=1 *

yk) =

W e~15

i

which can be rewritten in vector notation,

T T

ylk) = au+by (4.2b)
where,
T = ] (4.3
a = ag a; ... ap .3a)
b’ = (b, b b_] (4.3b)
b 1 55 -0 B .
T
y = lyk-1)y(k=-2) ... y(k-n)] (4.3c)
T
u = [u(k) u(k-1l) ... utk-m)] (4.34)

Given that (4.2) is the assumed mathematical description of
the unknown system where u and y, the input and output data
sequences, are known, then by solving (4.2) for a and b,
identification of the unknown system can be made. The LMS
algorithms, in general, employ a "desired" signal d(k) with
which to "train" the adaptive filter. If the desired signal
was assumed to be the response of some unknown system to a
known input signal, then the algorithm presented by Feintuch
[Ref. 18) can be used as a means by which to identify the
system parameters.

The first step in the Recursive LMS derivation is to form

the error between the desired signal, d(k), and the output
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of the filter, y(k},

e(k) = d(k) - y(k) = d(k) - alu - b7y (4.4)

Forming the square of (4.4) and taking the expectation,

we have the mean square error representation of the filter,

E{ez(k)} = E{@&°(x)} +a* R _a+b' R b ...
a’ Rga+ b R.b
- 22" Ry - 2b" Ry + 2a’ R, B (4.5)
where,
R, (0 = Eluk) v’ (k) (4.6a)
R,y (k=1) = Ely(k-1) yT (k-1)} (4.6b)
Riy (k) = E{d(k) u(k)} (4.6¢c)
- Ry, (k) = E{d(k) y(k)} (4.6d)
Ry, (k=1) = Efu(k-1) y(k-1)} . (4.6e)

It is assumed that the statistics (4.6) are constants allowing
the gradient of (4.5) to be taken with respect to the a; and
bi' This assumption does not stretch the theory since in
practice one uses an input test signal with stationary char-
acteristics and if the unknown system's output process is

not stationary, then no identification of the system parameters

can be made. The respective gradients are,
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EE[E{e (k) }] 2Ruu(k)§_-2Rdu(k) +2Ruy(k)§ (4.7a)

3 2 T
splEte” U0 )] 2R, (K)b - 2Ry (k) +2R", _(K)a . (4.7b)

Since the second order statistics are assumed to be known,

equations (4.7) can be solved for a and b by setting the

gradients equal to zero. In matrix partitioned form we have,

------ . (4.8)
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At this point we digress momentarily to mention that Johnson

and Larimore (Ref. 19] and Widrow and McCool {Ref. 20] agree
with Feintuch's derivation. The following steps, however,
are controversial [Ref. 19,20].

Feintuch continues and states that in general, the statis-
tics involved in (4.8) are not available a-priori. One method
of estimating the statistics is to make the filter adaptive
in an iterative fashion using the method of steepest descent.

The method of steepest descent employs an algorithm of the

form,
= d 2
a(k+l) = a(k) + k_ E[E{e (k) }] (4.9a)
_ ) 2
b(k+l) = b(k) + ky §-§[E{e (k) }1. (4.9b)

The gradient involved in (4.9) can be approximated using the

techniques outlined in [Ref. 1l1}. The iterative LMS algorithm
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for estimating the coefficients a and b is,

a(k+1) a(k) - 2k e(k) ul(k) (4.10a)

b (k+1)

b(k) - 2k e(k) y(k). (4.10b)

Figure 4.1 is a block diagram implementation of the Adaptive
Recursive LMS Filter algorithm as applied to system identifi-
cation. The input signal, u(k), to both the unknown system
and the adaptive filter is a zero mean, white gaussian noise
sequence of samples from a random process. The output of

the unknown system is d(k) which is used as the training
signal for the filter. The output of the adaptive filter,
y(k), is compared with the desired signal, d(k), from which
an error signal is derived. The error signal, e(k), is then
used in the LMS algorithm, equation (4.10), to iteratively
adjust the a and b coefficients. Theoretically, when the
coefficients of the zeros-producing adaptive filter and the
poles-producing adaptive filter correspond exactly with those
of the unknown system, the error sequence should be zero and
the unknown system is modeled by the Adaptive Recursive LMS
Filter. The convergence constants, ka and kb' are chosen
a-priori as are the initial values, a(0) and b(0), for the

coefficients.

B. THE COMPARISON
One can begin the comparison between the Adaptive Kalman

Identifier and the Adaptive Recursive LMS filter by noting
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the similarities between the equations (2.43) and (4.8),

repeated here for convenience,

|
|
a(k+1]|k) Ry (K) | -R (k=1) Ruy(k) ,
-------- = --—------—1---—-——--- —————— (2.43a) |
~ T 1
b(k+1llk -R k-1) ! k k :
b( tk) yu( )= Ryy( ) Ryy( )
A, = B ¢ (2.43b)

FR k i k-1

au®) R (k-1 | a Ry (k)
_________ 1-_-_--__- -——— = —————— (4.8a)

T -1y |
-R uy(k 1)= Ryy(k) b Rdy(k)
[ 3 R_(k) 1R (k-1 71 R, (x)

= uu {  uy du

— = | mmmccc——a 1 --------------- (4.8b)

A T

b R k<1) I' R k
| = uy ! >} yy Ray (%)

A, = B, C, (4.8¢c)

The upper left partitions of Bl and B2 are obviously identi-
cal, in that the AKI and the Adaptive Recursive LMS both
implement instantaneous estimates of the input covariance
functions, Ruu(k). The lower right partitions of Bl and 32
are similar with one subtle difference. Both are instantaneous J
covariance functions; however, Bl employs the covariance,

Ryy(k), of the actual data whereas 82 uses, in fact, previ-
ous filter estimates to compute the output covariance, Ryy(k),

more properly denoted by R§§(k). The negative sign of the

upper right and lower left partitions in Bl’ in comparison

with B is a result of the initial definition for the recursive

2!




f |

weights, gi. That is, the transfer function for the general

ARMA equation can be written as,

T -i
ag + I a;z
- i=1
Hppma (2) o " (4.9a)
1 - 7 b,z
i=1
or,
T -i
ag + izl a;z
. _ =
H ARMA(Z) = o " (4.9Db)
1+ ) blz
i=1

The second and more important observation is that cross-~
correlations employed by equation (4.8b) use the instantane-

ous values for the past estimates of the outputs while (2.43a)

uses the actual past values for y(k). Similarly, comparing
C1 with C2' one finds that the lower partition of C2 uses the
cross-correlation between the desired signal and the past
estimates of the adaptive recursive LMS filter.

Equation (4.8a) can convey the above information more

clearly if it is instead written as,

|
~ ' n -
a R (k) 1 Rptk=1) | [ Ry (K)
S IR el el T (4.10)
b T ai(k-1)! R~~ R.~(k
b Ry (k=1) | Rog (k) ap (%)

The convergence factors, ka and kb' can be compared to

the steady state Adaptive Kalman Identifier gains by making
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the identical analogies (3.8) as was done in the previous

chapter. One also observes that since the output data that

is processed by the Adaptive Recursive LMS filter are in
actuality filter estimates, a more correct version of Feintuch's

original algorithm (4.10) is written as,

a(k+1)

]

a(k) - 2k, e(k) u(k) (4.1la)

[/

b (k+1) b(k) - 2k e(k) y(k) . (4.11b)

In agumented form, equation (4.11) is,

(a(k+1) ] [a(x) ] 2k, u(k) ]

------ = | ==-=] = |=mm===--|lA(k) -a(k) u(k) - b(k) y(k)]
| b(k+1) | ;E(k)- _2kb x(k>-

[ (k+1) ] [ a(x) ] [2k_ U (x) ] a (k)
----- = | emmm| = | mmmmememflak) - luk) oy (k)] |-=—| .
b(k+1) b (k) | 2K, ¥ (k) b (k)

(4.12)

Recalling equation (2.15a) in a slightly different form we

have,
a(k+1 k) é(k\k-l) a(k|k=-1) 1
-------- = |ecmmemee| + K(K) [2(k) ~H(K) |=mm——mm- |
b(k+1 |k) b(k |k-1) b(k |k~1)

(4.13)

It is a simple matter to explore the similarities between

(4.12) and (4.13) and make the following associations,




b

:
?’

PR ey

AKI Adaptive Recursive LMS

[a(k+1]k) ]
—mmm——- (=
| bik+1]k) |
P/\ -
a(k|k-1)
et (=
b(k|k-1)
z (k) =
H(k) = [u(k) ... =
u(k-m) y(k-1)
v y(k=n)]l
K (k) =

Ca(k)

b (k)
d(k)

(u(k) gkl

(4.14a)

(4.14b)

(4.1l4c)

(4.144)

(4.1l4e)

The associations (4.14d) and (4.14e) are the major differences

between the AKI and the Adaptive Recursive LMS.

It has been

shown that the mean square error surface employing not only

estimated feed forward coefficients but also estimated feed-

back (recursive) coefficients is in general multimodal [Ref.

36]. Hence, the Adaptive Recursive LMS algorithm does not

minimize the mean square error [Ref. 19,20], and in general

the gradient algorithm in this case does not seek the global

minimum.
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C. OBSERVATIONS

The complex nature of estimating recursive coefficients
is yet a formidable problem [Ref. 19,20]. It seems that
Feintuch's algorithm is successful due to the a-priori knowledge
of the minimal order generating the desired signal. This
knowledge is used in setting the order of the adaptive

recursive filter.
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V. SYNTHETIC DATA GENERATING PLANTS

The Adaptive ARMA Kalman Identifier was tested using
computer derived data from several models. The input/output
data was collected by driving a known plant with a zero mean,
unit variance, white gaussian noise sequence of samples.

The AKI algorithm was repeatedly tested using data from

progressively more complex models.

A. AUTOREGRESSIVE~-MOVING AVERAGE DATA
Autoregressive-Moving Average (ARMA)} data was generated

using an equation of the form,

y(k) = byy(k-1) + b,y(k=2) + ... + b y(k-n)

+ aou(k) + ...+ amu(k—m) (5.1)
Taking the Z-transform of (5.1) we have,

Y(z) = b,z Y¥(z) + b,z %¥(z) + ... + bnz'“Y(z)

1 2

+agl(z) + ...+ amz"“U(z) (5.2)

where Y (z) (U(z)) represents the Z-transform of the output
-n
0

(input) and z

Y(z) (z ~U(z2)) represents the Z~transform
of the output (input) delayed ng, time steps. Equation (5.1)
has already been defined as the general form of the ARMA
process provided that the sequence u(k-i) 1 = 0,1,... comes

from a gaussian random process [Ref. 25]. The ratio,
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-1 -m
¥(z) _ agtaj;z " +... az (5.3)
(z) 1 *

- -n
1 -blz e bnz

H(z) =

c

can then be readily recognized as the general transfer func-
tion {Ref. 37] of a digital plant. That is, the u(k) is the
observed input and the y(k) is the perfectly measured output.
Consider that the measurements of the output include some ran-
dom error, v(k), due to the inaccuracy of the measuring instru-
ments, then the resulting situation is as depicted in Figure
S.1. A practical, judicious and reasonable description of
the measurement error is that this be a stochastic process
whose distribution is zero mean gaussian. The noisy measure-
ment, z2(k), is then the output, y(k), plus the measurement
error, vi(k).

There are three cases of interest: Case 1: bi = 0 for
all i; Case 2: a; = 0, i=1,2,....m; Case 3: a; # 0,
bi # 0 for all i.

1. Moving Average Data (Case 1)

Case one is readily recognized as the all zero plant
which produces moving average data. A simple second order
= 1.0,

plant was defined where a = 2.0 and a, = 3.0. The

0 2
gaussian noise sequences, u(k) and v(k), were obtained using
the general purpose IMSL subroutine, GGNML, provided by the
computer center at the Naval Postgraduate School.

2. Autoregressive Data (Case 2)

Case two results in the all pole plant producing auto-

regressive data. The coefficients were selected such that the
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plant of Figure 5.1 produced stable data. In precise terms,

the poles of the function,

H(z) = (5.4)
26 -1 _,9 -2 1 -3
ttagr tmr ot t

were located completely within the unit circle in the Z-plane
ensuring a stable plant {[Ref. 37,38]. The noise sequences

were obtained as before.

v (k)
m z(k) y (k)
-1
e k) ao-+i§laiz
H(Z) = ———
P n _ o 2 -
1- ] bz L \_/
&1

Figure 5.1. ARMA Digital Plant

3. Autoregressive-Moving Average Data (Case 3)

Case three follows from a logical combination of the

two previous cases. That is, the transfer function, H(2), now

has both zeros and poles. In order to compare with previous
work done in the area of system identification [Ref. 6], one
of Perry's models [Ref. 6] was used. Namely, the transfer

function H(z) used for this case was,

-1 -2
H(z) = l+1.42 é+'982 : -4 (5.5)

1-1.142"1 +1.45492"% - .884902"°> + .407452"
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The input, u(k), was obtained as in the previous two cases
using the IMSL subroutine GGNML set to unit variance and zero
mean. The output measurement noise sequence, however, was
set to a variance of .000l1. The basic software, program ARMA,
which generated the different data is included as Appendix B.
Basically, the coefficients Al-Al10 change the character of the
general ARMA equation (5.1) which can be selected to produce
the desired plant data. The input/output data is then written
onto a disk file for subsequent analysis.

In order to compare some of the findings in this the-
sis with the results previously obtained by Feintuch [Ref. 18],

the transfer function,

-1
H(z) = 0.05 - 0.40z , (5.6)

1.0 -1.1314z"% +0.252"

was also used as a source of synthetic data. Feintuch used
(5.6) as a source of data with which to analyze the operation

of his Adaptive Recursive LMS Filter.

B. PHASE LOCKED LOOP DATA

The second class of data used to exercise the Adaptive
ARMA Kalman Identifier was derived from a computer simulated
phase locked loop (PLL) developed by Romeo (Ref. 7]. The
basic PLL algorithm, however, implemented a forward Euler
integration scheme.

Briefly, in block diagram form, the phase tracking
characteristics of the PLL in the frequency domain can be

depicted as in Figure 5.2.
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Y(s) !
- i
|
g , .
8 Figure 5.2. PLL Block Diagram
3
! Where: ﬁ
A 1is the input voltage %
§
K is the loop gain :
F(s) 1is the filter transfer function ¢

For most applications, it is assumed that ¢(t) << 7n/2 allowing
one to make the approximation, sin a z a . This is the !
linear mode of operation. Romeo [Ref. 7] chose the filter i
characteristics F(s) = 1 + K/S and the same characteristics
: were used in this thesis in order to compare results. The
3 parameters of the overall system were adjusted to obtain
a damping coefficient, ;, of 0.3 and a natural frequency, v i
of 3.33 rad/sec. This resulted in a step response overshoot
of about 46.7% at t < .75 sec. Solving for the time domain

step response analytically in the linear region one obtains,

t

y(t) = 1 + 1.048e - sin(3.178t -1.266) (5.7)

The final block diagram of the PLL system is shown in Figure 5.3.




Y(s)

10 Ll

Figure 5.3. Final PLL Block Diagram

Normalized step responses for several step magnitudes
using Digital Simulation Language (DSL) were obtained. Figure
5.4 shows the step responses of several step inputs in the
range 0 < u(t) < 30. It is obvious that the PLL is in its
approximate linear region and does not exhibit any discernible
distortion. Figure 5.5 is a repeat of the above test; how-
ever, the range of step inputs are 30 < u(t) < 170. It is
apparent from Figure 5.5 that the sin (+) nonlinearity begins
to have some effect on the operation of the PLL in that the
amplitude of the responses are reduced and delayed.

The DSL PLL system, however, was not used as a source of
synthetic data because of the problem of nonstationary statis-
tics of the input signal using the random sequence generators
available under DSL already discussed in Ref. 7. These
simulations were nevertheless used as a basis for comparison
of the operation of the discrete PLL developed in Reference 7
but modified to implement a forward Euler integration scheme

which is used in this thesis.
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Figure 5.4. PLL Step Response, Linear Region
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The forward Euler integrator takes the form,

-1
l._<—._> Tz ,
s 1 _z-l

T= .01 (5.8)

The block diagram of Figure 5.3 changes character to appear

as in Figure 5.6.

u(z) = 1
s Sin(-) AL = Tz | Tz - ¥ (2)
- 2.0 555 1-z- % 1-z

Figure 5.6. Discrete PLL Block Diagram

Applying Mason's gain rule to the block diagram of Figure 5.6

in the linear region we arrive at,

-1 -2
g(;) - H(z) = 0022 - 0.018890z7 (5.9)
(z] 1-1.9802 " +.981110z

the linearized PLL transfer function. The discrete PLL sys-
tem has zeros at (0.0,.9445) and a complex conjugate pole
pair at (0.990 * j.03178).

The discrete PLL system was implemented using a Fortran
program on the IBM 370 in double precision. The source code

for the discrete PLL is included as Appendix C. The discrete
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PLL was tested using various magnitude step inputs. Results
were similar to those from the DSL simulation. That is, the
discrete PLL exhibited the same approximate overshoot, rise
time, natural frequency and nearly identical time of max over-
shoot in the linear region. To implement the PLL using forward
Euler integration, the block diagram of Figure 5.6 was recon-
figured to appear as Figure 5.7. ©Note that Figure 5.7 does

not employ any delay free loops, hence it is easily programmable.

e (k-1) I

ulk=1) }
sin(-) 0232220432 — y(k)
1-2z “+z

v (k=1) -1

Figure 5.7. Programmable PLL Implementing
Forward Euler Integration

Figure 5.8 summarizes the results of the discrete PLL simula-
tion for normalized step inputs in the range 0 < u(t) < 30.
Similarly, the discrete PLL was tested in the nonlinear region
using normalized step inputs in the range 30 < u(t) < 170.

The discrete PLL displayed the same characteristics of de-
creased output amplitude and delay which was first observed

in the DSL simulation. Figure 5.9 summarizes the test results

of the discrete PLL in the nonlinear region.
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It was felt that the PLL was adequately modeled for use
as a source of data to be subsequently analyzed by the Adap-

tive Kalman Identifier.
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Vi. MODEL IDENTIFICATION SOFTWARE

Three basic Fortran IV programs for use on the IBM 370

were developed:

(1) ADAPTSN: Adaptive Kalman Identifier

(2) LMS: Adaptive Least Mean Square Filter

(3) LMSR: Adaptive Recursive Least Mean Squaie Filter
All three programs used double precision arithmetic to minimize
the effects of truncation error, limit cycles and roundoff
error. In all cases the orders of the autoregressive and
moving average processes were read in unformatted form from
a disk file along with the input/output data of the unknown
system to be analyzed. An attempt was made to minimize memory

storage, but not at the expense of program flow and clarity.

A. ADAPTIVE KAIMAN IDENTIFIER

Program ADAPTSN is a versatile Fortran 1V software program
which implements equations (2.15) to identify the coefficients
of an MA, AR, or ARMA process. Additionally, at each iteration
the poles and zeros of the evolving transfer function are com-
puted. ADAPTSN can also be used to perform regression analysis
on non-linear terms as discussed in Chapter VII. The versa-
tility of the AKI lies in the various options which are avail-
able to the user. By properly selecting the flags N, M, and
NL, the user can perform regression analysis on data whose
combined order (N+M+l) is less than or equal to 20. Table 6.1

lists the ascribed meanings of the various flags,
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Table 6.1

AKI FLAG MEANINGS

N: the order of the autoregressive process
) M: one greater than the order of the moving average

; process

¢ NL = 0: AKI is used to identify the coefficients associated
: with the general ARMA equation (2.1b) (linear

1 regression)

NL = 1: AKI is used to identify the coefficients of the
linear general ARMA equation ?nd the weighting
coefficient associated with u”(k-i)

NL = 2: AKI is used as in NL = 0,1 and additionally iden-

t%fies the weighting coefficient associated with
yo (k=-1i)

NL = 3: AKI is used as in NL = 0,1,2 and additionally iden-
tifies the weighting coefficient associated with
u? (k-i)y (k-i)

NL = 4: AKI is used as in NL = 0,1,2,3, and additionally
identifies the weighting coefficient associated with
y2(i-i)u(k-1i)

NL = 5: AKI is implemented to analyze time series and
identify the ARMA coefficients associated with
the Box-Jenkins model [Ref. 26].

The option given by NL = 5 was not extensively tested and as
such only limited results are available. Table 6.2 outlines
the allowable flag combinations which will produce a valid
analysis of the data.

For purposes of this thesis, the non-linear (NL) options
were configured to implement the expansion terms associated
with the Taylor series expansion of the sine function. This,
however, can be changed at the user's discretion to implement
any other series expansion by inserting the appropriate Fortran

statements at the proper location in the AKI program.
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Table 6.2

VALID FLAG COMBINATIONS

| OPTION (NL) MAX COMBINED ORDER
0 N +M< 20
1 N+ 2M < 20; NM #O0
2 2N + 2M < 20; N,M # O
3 3N + 2M < 20; N,M# O
: 4 4N + 2M < 20; N,M # 0
: 5 N+ M<

[
o
ittt

The overall structure of the AKI program uses subroutine

calls to compute the various quantities necessary for the

eventual computation of the system ARMA coefficients. These

subroutines are: GAIN, RECKON, PRINT, NEXT. A brief des-

cription of the function each performs is given at the

o earw

beginning of each subroutine. Figure 6.1 describes the
general program flow of the AKI. The source code for program

ADAPTSN is included as Appendix D.

B. ADAPTIVE LEAST MEAN SQUARE FILTER ﬂ
Program LMS uses the equations developed in Chapter IIX
to compute the coefficients (or weights) associated with a

moving average process. The LMS filter program is capable of

computing up to 12 MA coefficients; or equivalently, is capable

of identifying an eleventh order moving average process. The

general program flow of the LMS filter is presented in

Figure 6.2 and the annotated source code is included as Appen-
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C. ADAPTIVE RECURSIVE LEAST MEAN SQUARE FILTER

Program LMSR realizes the algorithm proposed by Feintuch
and recapped in Chapter IV. It was designed to handle a
combined AR and MA order of 1ll. That is, the program can be
used to estimate m + 1 = M coefficients associated with the
MA process and n = N ccefficients associated with the AR
process such that N + M < 12. The general program flow for
the Adaptive Recursive IMS filter is shown in Figure 6.3 and

the source code is included as Appendix F.
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VII. NON-LINEAR IDENTIFICATION

The Adaptive Kalman Identifier can be modified to estimate
the weighting coefficients associated with higher order terms
produced by some non-linearity within the unknown system. In
general, much has to be known about the non-linearity such
that the functional description chosen for it is a close
approximation to the effects it causes. In this thesis one
i possible application of the Adaptive Kalman Identifier toward
identifying a system with a known non-linearity is explored.

No attempt has been made to present an extensive treatment of

pinibi-2c Xing

non-linear analysis techniques.
The approach taken has been previously explored by Parker
[Ref. 8]. A special case of the generalized non-linear ARMA

model [Ref. 8],

y() = [ atiputk-ip) + I I atip,izulk-ijdulk=iy) +...
i, =0 i,=0 i,=0
. 1 1 2
! -]
j + 01 ..o Llatiy, .oiipdutkeip) cooutkeipn)
11—0 1m—0
¢ * L b0y k-3;) " I ; DICIERPYRAC PR AL PUREEE
. 1 1 2 ;
' ® © i
' + ] Z K zb(Jl'jZ""'Jn)y(k_Jl)y(k-Jz) ...yi(k-jn) H
i Jl‘l Jn‘l
+ ] Y efi i )ulk=i)y(k=3,) +.oc ¥ ] .. ]
. & ‘ 1’71 1 1 . L L Lo L
lj—O 3= i, 0 i, 0 3y 1

oo zlc(il""im’jl"'jn)U(k'il)"‘U(k'im)Y(k‘j1>"‘Y(k'jn)

(7.1)
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is used to model the input/output relationships, non-linear
transfer function, of the phase locked locop. The non-linear
element, the sine function, of the PLL can be replaced by

a Taylor power series expansion,

3 5

sin(x) = x-§]—‘!-x +-5}!—x - ... (7.2)

Other expansions can be used, e.g., Legendre polynomials,
Volterra series, ..., etc.; however, only the Taylor expan-
sion was investigated in this thesis. Practical implementa-
tion of (7.2) suggests truncation at the third order term.

The sine function is therefore approximated as

sin(x) = x - 3i, x> . (7.3)

Substituting (7.3) into the block diagram of Figure (5.6) we

have Figure 7.1.

e @ 2 £, (2)
k

-1

u(z) + -

D e (BB L0pk2002 — Y (2)
= 3t 142z “+z

z

Figure 7.1. PLL, Third Order Taylor Series
Approximation
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The discrete time domain equations at the different nodes are:

ey (k=1) = u(k-1) - y(k-1) (7.4a)
] e (k=1) = e.(k-1) - e3(k-1) (7.4b)
i 2 1 37 "1 '
g yk) = .02e_(k-1) -~ .01889%,(k-2) + 2.0y(k-1)

- y(k-2) (7.4¢)
¢ Manipulating equations (7.4a)-(7.4c) gives

{ y(k) = .02u(k-1) -.01889u(k-2) +1.98y(k-1) - .98111y (k-2)

.003333u> (k-1) + .003148333u>(k-2)

.003333y> (k-1) - .003148333y° (k-2) (7.5)

+

: + .01u® (k-1)y (k-1) - .09445u? (k-2)y (k=2)

.0lu(k-1)y? (k=1) +.09445u(k=2)y2 (k=2) .

AT R TS T
I

Equation (7.5) indicates which non-linear terms of
equation (7.1) should be retained. Therefore, the third
order non-linear approximation model should contain the

following terms:

A4 Hae st N

5 u(k-1, u(k=2), y(k-1), y(k=2) linear terms (7.6a)
1

| ud(x-1), uwdix-2) input cubic terms  (7.6b)

: y3(k-l), y3(k—2) output cubic terms (7.6c)
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< i NG A

2 2
u(k=1)y(k=1), u”(k-2y(k=2) third order cross (; 44

2 2 product terms
y (k-L)u(k-1), y " (k=-2)u(k-2)

The AKI algorithm is primarily modified to include the
hybrid signals (7.6) in the structure of H(k), the measure-
ment vector. Since now the measurement vector, H(k) takes

the form,

HK) = [u®k) ... utk-m),=y(k-1) ... -y(k=-n),u>(k) ...
e WSk, ~y3 (k=1) ... ~y3(k=n) ,-(u? (k-1)y(k=1))...

o= (0% (k=) y (k=n)) , (@(k-1)y2 (k=1)) ... (u(k=n)y>(k-n))]
(7.7)

the AKI algorithm calculates the coefficients associated with
the special case of the generalized non-linear ARMA model,
equation (7.1).

Romeo using a similar approach [Ref. 7] computes a least
squares curve fit for the third order truncation of the
Taylor series for the sine function over the interval

(0,7/2). Beginning with the approximation,

sin(x) = ox + Bx3 (7.8)

Romeo finds the values for % and B to be .865 and -.095
respectively. Performing the same operations as those used

in obtaining equation (7.5) we arrive at,
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3 y(k) = .02qu(k-1)-.01889%qu(k~2) + (2.0 ~-.02x)y(k-1)

+ (.01889q - 1)y (k-2) - .026u3(k-l)-+.01889Bu3(k-2)

A SRS .

- .018898y° (k=2) + .068u° (k=1)y (k-1) + .028y> (k-1)

-

- .0566708u® (k-2)y (k-2) - .068y>(k-1)u(k~1)

+ .0566708y° (k=2)u (k-2) (7.9)

Table 7.1 tabulates the resulting weighting coefficients
using the three methods just described: (1) analytically
calculated values using the truncated Taylor series, (2) least
i squares estimate of the third order sine approximation, as
computed by Romeo [Ref. 7] and (3) the coefficient estimates
as computed using the AKI algorithm.

The tabulation clearly shows that the AKI outperforms
the first two methods overall. That is, the linear terms
i were identified without question; however, the AKI failed

to identify the coefficients associated with the y3(i-l),

y3(k-2), u®(k-2) y(k-2) and y°(k-2) u(k-2) terms. The reason

for the failure is not known and was not investigated.

A




Table 7.1

NON-LINEAR WEIGHTING COEFFICIENTS CALCULATED
USING THREE METHODS

: (1) (2) (3)

b TAVIOR SERTES iy im0 Gatn pase
. sin{x) = x - 3p% @ = .865, § = -.095
’ y(k-1) 1.98 1.982700 1.980
d y (k=2) -.98111 -.98366015 ~.9815
; u(k) 0.0 0.0 .00003691
u(k-1) 0.2 .01730000 .02003
u(k-2) -.01889 -.01633985 -.01892
u? (k) 0.0 0.0 .00001471
> (k-1) -.003333 .00190 ~.003278
u’ (k-2) .003148333 ~.00179455 .003032
v> (k-1) .003333  ~-.00190 -.05695
¥ (k-2) -.003148333 00179455 .05799
u (k-1)y(k-1) .0l ~.005700 .01032
WP (k-2)y (k-2) ~.09445 .00538365 -.009610
y2(k-1)y(k-1) ~.01 .005700 -.01640
v2(k=2)u(k-2)  .09445 -.00538365 .01913
'
4
]
i
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VIII. FINDINGS AND CONCLUSION

The performance of the Adaptive Kalman Identifier was
compared to the LMS Adaptive Filter and the Adaptive Recur-~
sive LMS Filter using data derived from the models discussed
in Chapter V. Results for the case where the order of the

model (that is, m and n of equation (2.1lb)) are assumed

known are presented first followed by the analysis of the
PLL data. The findings for the overmodeled case are presented
next. The graphs show typical runs and do not represent

ensemble averages.

A. ORDER OF THE UNKNOWN SYSTEM IS KNOWN

1. AXI vs. LMS Adaptive Filter

Using the MA form of the Adaptive Kalman Identifier,
its performance can be compared against that of the LMS
adaptive filter. Synthetic data derived from a plant whose

transfer function is,

1 2

H(z) = 1.0 + 2.0z - + 3.0z (8.1)

was used. However, a fair comparison necessitated that the
LMS Adaptive filter be "tuned" by adjustment of the conver-
gence factor, ks. Several values for ks in the range [-.600,
-.200] were used. The objective of tuning the LMS filter was
to achieve a fast convergence time with little or no steady
state error while not compromising filter stability. The

three filter weights were normalized and plotted for five

8l

- R




¥,

convergence factor values. It can be seen from Figures 8.1-
8.3 that convergence is essentially reached by step thirty-
five, (k = 35). As the convergence factor is further in-
creased it can be noted in Figure 8.4 that the filter weights
become more noisy, and that when ks = -.600, filter stability
is being compromised (Figure 8.5a).

Using the same data, the AKI converges to the MA coeffi-
cients in less than five iterations. Referring to Figure
8.5b, it was also noted that as the measurement noise v(k)
was increased, the LMS algorithm yielded more noisy estimates
whereas the AKI tended to compensate for measurement noise.
This is intuitively reasonable since the AKI incorporates
into its algorithm the effects of measurement error due to

noisy sensors. Comparing Figure 8.6 with Figure 8.7 the

latter figure clearly shows the faster convergence of the AKI
to the plant coefficient.

It was shown in Chapter III that the AKI gains would
approach a steady state value and indeed they did, as Figure
8.8 shows. However, the instantaneous Kalman gains display
a more erratic pattern as shown in Figure 8.9. The informa-
tion of Figure 8.8 was gleaned from Figure 8.9 by computing
the average of the individual gains at each iteration using

the algorithm,
EG(ksl) ! = E(GKI} + rla(k) -E{G(K)}] (8.2)
ehere

£:G(k+1)} 1is the one step prediction of the
average value for the gains,
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E{G(k)} is the present average value for the gain

G (k) is the present value of the instantaneous
gains
2 is the averaging gain
k+l :

This method of obtaining a "running" average is generally
well known, (see for example Ref. 39). The example presented
was not the only one used but a good representative of the
operation of the AKI when the data was derived from a moving
average process.

2, AKI Applied to Autoregressive Data

Before applying the AKI to identifying the coefficients
of a complex ARMA plant, it was first tested using data
derived from a plant whose transfer function specified an

autoregressive process. The transfer function used was,

H(z) = 36,0 -1l 30 <2 1.0 =3
1.0 +539% ~ *37.0%2 *327.02
a
0
_ (8.3)
=) ) =3
1l - blz - bzz - b3z

The AKI had no problem converging on the plant coefficients
(Figure 8.10) producing the following estimates at the 42nd
iteration (Table 8.1). It essentially converged on the plant
coefficients in approximately five iterations. The gains
computed by the AKI for this case also displayed convergence

to a steady state value. The gain history for this example

is depicted in Figure 8.11.
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Table 8.1

ACTUAL VS AKI ESTIMATES FOR COEFFICIENTS OF EQUATION 8.3

ACTUAL AKI ESTIMATES
a, 1.0 0.9995
bl -1.08333 ... -1.083
b2 -0.3750 -0.3756
b3 -0.04166 ... -0.04212

3. AKI Applied to ARMA Data

The next logical step was to use the AKI to identify
the coefficients of a general ARMA process. One of Perry's
models [Ref. 6] was used for this purpose. Specifically, the

transfer function of the plant was,

_ 1.0 + 1.4271 4+ L9822
H(z) = =5 =) =3 =,
1~-1.14z2 +1.4549z2 - .88490z + .407452
a +a.z ! +az?
_ 0ot 3 2
- _l _2 _3 _4 (8.4)
1l - blz - bzz - b3z - b4z

The ARMA plant was subjected to the same conditions which
Perry [Ref. 6] describes. That is, unit variance, zero mean,
white gaussian noise was used as the input. The reader is
reminded that the output signal processed by the AKI was cor-
rupted by measurement noise as described in Chapter V. The
output data used in Perry's examples, however, reflects noise-
less measurements. Table 8.2 tabulates the results for the
coefficient estimates computed by the AKI. Even though the

results presented in Table 8.2 represent the coefficient
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Table 8.2

ACTUAL VS AKI ESTIMATES FOR COEFFICIENTS OF EQUATION
8.4 AT THE 371ST ITERATION

ACTUAL AKI ESTIMATES
a, 1.00000 0.98760
a; 1.40000 1.40100
a, 0.98000 0.99280
ag 0.00000 0.01252
a, 0.00000 -0.00922
b1 1.14000 1.14000
b2 -1.45490 -1.45900
b3 0.88490 .88740
b4 -0.40745 -.40980

estimates at the 371St iteration, it can be seen from Figure
8.12 that the AKI has essentially converged by the 28th
iteration. We note also the characteristic convergence of
the averaged gains to steady state values in Figure 8.13.
As a means of comparison with Perry's results, the poles and
zeros of the AKI estimates at the 28th, 90th and 371St itera-
tion are plotted in Figure 8.l14a and Figure 8.14b. Perry's
results Figure 3.7 [Ref. 6:pp. 107,108] for his lattice
modeling of the plant represented by equation (8.4) are
reproduced for convenience.

As was noted for the previous cases, the instantaneous

gains appeared erratic, Figure 8.15, whereas the averaged

gains converged to some steady state value.

94

4




Q
~
m. o
- O
, HS (&) 4
v g < | ® ]
—~ ~NO N o i .
d @@ o Q Q e 1
u ] ] s & ]
{4 | Al is
,,,,, Mttt o ]
- D . t s
4 . =] Q
. o 3
{ . 1« = 1 5
] 0 o
ol | >
4 ﬁ . n
u V] 18 -~
O LY
1c & 1 O
o
¥ ] ¥ ko)
] o o
I + R o
_ 1 # ] o 5 n
8 S A i £ F
1- © & &
1 n n
< * - - 1 -
d ] ) <
* 0 4 Lm“ m m
] {s
] ~ 7 -
" —~ . —
A ° o0 4 [o 0]
T [} 4 L]
i M -
=} W W VNN SUUNE SN SHN SN T | PEREEE NS SRS TN U NN SR VY = }
\ 7 o S o
| T T W W N W I T SN SN S N | It L i &3 1 1 1.2 1 3 1 4 -l cl
. . .Q ¢ 7] [S) w o <9
. . . . —_ ~ " o n . .
L) ~ — o | h t = o n.v n.v -
1300W 44300 (S'h) IVd LHOLGIH NIYO (S°h) Iud
e
i e o R - - - - - o e— - gyt la.l.'“ AN N ey T, g




AD=A102 707

UNCLASSIFIED

NAVAL POSTGRADUATE SCHOOL MONTEREY CA F/6 12/1
AN ADAPTIVE KALMAN IDENTIFIER AND ITS APPLICATION TO LINEAR AND==ETC(U}
MAR 81 L M MAYORAL

NL




AKI Model
28/90th Iterations

5

- Fe(2)

L

X Model Pole
0 Model Zero
+ System Pole
¢ System Zero

\ Im(z)

Lattice Model

200 Point Averages
4th Order

dh
"]/

—e= Fe (2)

Figure 8.l4a. Pole/Zero Models Produced by AKI and

Lattice Algorithms for a Plant with the
Characteristic Transfer Function of Eqn. (8.4)
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4, AKI vs Adaptive Recursive LMS Filter

Using Feintuch's proposed algorithm [Ref. 18] and
repeating the simulation presented in the rebuttal to Johnson
and Larimore [Ref. 19], a comparison was made between the
operation of the AKI and the Adaptive Recursive LMS filter.
The Adaptive Recursive LMS filter required "tuning" of the
convergence factors, ka and kb' to what appeared to be the

optimal performance features of (1) fast convergence and
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(2) stable estimates. The "tuning" process was a trial and |
error procedure beginning with the convergence constants

given by Feintuch,
k. = -4.3x1074 (8.5a)

K -4.3x1074 . (8.5b)

b

L S Stvain s i

The Adaptive Recursive LMS algorithm was then implemented

. ®

to estimate the coefficients of the plant whose transfer

function was,

i i} -1
: H(z) = 0.05 -g.4OZ — (8.6a)
¥ 1 -1.1314z + 0.25z

fz a, + alz"1

! = - ) (8.6Db)
§ 1 - blz - bzz

The best response obtained by trial and error resulted in

the convergence constants,

X -4.3x1073 (8.7a)

a

3

k -14.3 x10"°. (8.7b)

b

N L

Feintuch reported that after 8,1922 iterations the estimates
i had converged on the coefficients of (8.6a) with a .2096

normalized rms error. Using the convergence constants (8.7)

h

convergence was essentially reached by the 4,000t iteration.

- we DAy

e

2Feintuch reports the resulting estimates for the coeffi-~
cients at several intermediate iterations from 8,192 to 65,536,
however 8,192 was the minimum number of iterations reported.
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It was felt that the operation of the adequately tuned

Adaptive Recursive LMS filter could be fairly compared with

the operation of the AKI. ' |

Table 8.3 tabulates the performance of the two system
identification methods and Figures 8.16 and 8.17 graphically
present the responses. Figure 8.18 not only shows at what

point the gains of the AKI reach a constant value but also

Table 8.3
ACTUAL VS AKI AND ADAPTIVE RECURSIVE LMS FILTER
ESTIMATES FOR COEFFICIENTS OF EQUATION 8.6

ACTUAL AKI ESTIMATES (k = 150) ADAPTIVE RECURSIVE
LMS (k = 3,990)

a, 0.05 0.05107 0.05045

a; -0.40 -0.4007 -0.3990 ;
bl 1.1314 1.13200 1.,12800 I
b2 -0.25 -0.25090 -0.2442 1

provides a measure of confidence that the unknown system has
been identified. It is evident from Figure 8.19 that both

methods seem to identify the poles and zeros of the actual

plant; however, the poles computed by the AKI are closer.

The zeros computed by the AKI are approximately .080 units

farther from the true zero than is the Adaptive Recursive

ILMS filter estimate. All aspects considered, the AKI takes

considerably fewer iterations to arrive at its estimate.
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5. AKI Applied to PLL Data (Linear Region)

To identify the coefficients associated with the
general autoregressive-moving average representation for the

phase locked loop, the input noise signal power (mean square

é value) was kept at (10 deg)z. In this manner, the linear
region of the PLL was invoked. The input/output data was
analyzed by the AKI resulting in the estimates shown in

Table 8.4. Figures 8.20 and 8.21 show the respons of the AKI

Table 8.4

ACTUAL VS AKI ESTIMATES OF THE ARMA
REPRESENTATION FOR THE PLL (LINEAR REGION)

ACTUAL AKI ESTIMATES (k = 82) AKI ESTIMATES (k = 350)
3, 0.000000 -0.0001046 -0.000692
a; 0.020000 0.0198500 0.0199800
a, -0.018890 -0.018720 -0.0188900
bl 1.980000 1.980000 1.978000
b2 -0.981110 -0.981000 -0.9790

when applied to the identification of the PLL data. It was
noted that though the AKI correctly identified the coeffi-
cients of the linear PLL, the AKI gains were large due to
the weak signals (input/output data) incorporated in the
measurement vector, H(k).

6. AKI Applied to PLL Data (Non-linear Region)

When analyzing any non-linear system the engineer
must bring to bear all his analysis techniques on the problemn.

The PLL was therefore studied using classical root locus
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techniques to preview the possible outcomes when being modeled

by the AKI. Stability analysis of a more complex PLL system
using the root locus technique has been previously presented
in the literature [Ref. 40].

The root locus technique can be applied to the PLL
presented in this thesis by first assuming that the sin(-)

block of Figure 5.7 is a variable gain, A. This is not a

restrictive assumption since the PLL during operation generally

tracks small deviations. The loop gain can be written by

inspection as,

1, -1

A(.02) (1 - .9445z )z (8.8)

(1 -z 4?2

L(z2)

A(.02) (z = .9445) 2
(2 -l)2

From equation (8.8) the root locus of L(z) is drawn as shown
in Figure 8.22, Even though the root locus technique is
generally used when the signals in the system are considered
deterministic, it is not surprising that some of the results
obtained are nevertheless valid. When a moderately strong
input noise identification signal [E{uz(u)} < (25 deg)2] was
used, the pole-zero locations of the PLL seem to follow the
classical root locus analysis. However, when the input noise
identification signal power is increased beyond (25 deg)2
the pole-zero locations do not follow the expected behavior

predicted using the root locus method as can be seen in

Figure 8.22.

X

i ik




Figure 8.22.

PLL Root Locus Analysis vs Computer Roots
of the AKI ARMA Model




The departure of the pole-zero behavior from what was
expected was analyzed by closer investigation of the linear

terms of equation (7.8).

y(k) = .02au(k=-1) - .01889%u(k=-2) + (2.0 -.02a)y(k-1)
lin
+ (.01889a ~1)y(k=2) (8.9)

Recalling that a third order Taylor series approximation of

the sine is the functional expressed by equation (7.7),

sin(x) = ax + Bx3 (7.7)

one notes that the linear region is described when o = 1 and
8 = 0. It is therefore reasonable to study the variation of
a with respect to input noise power.

The average value a of o, was computed by equating
the estimated AKI coefficients to the coefficients of like
terms in equation (8.9) for several input noise power levels.

The relation used was

~ A

_ 1[2.0—bl+l.0+b2 a3 |
& T'702 .01889 .02 .01889

+ (8.10)

at the 350th iteration. The relationship between a and the
input noise power level is readily apparent from Figure 8.23.
This result is plausible since if one considers the input-
output relationship of the sine blcck of Figure 5.7 one obtains
Figure 8.24. Superimposing the gaussian probability functions

of the different input noise signals, it can be seen that for
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low power levels of the input signal, identification of the
linear parameters of the overall system (equation 5.9) can

be made. As the input power is increased beyond (25 deg)2

the input-output characteristics of the sin x block are no
longer approximately linear, showing its effect in Figure 8.24
as a departure from its linear operation, o = 1. Therefore,
by monitoring o one can determine when the overall system is
entering its non-linear operating regime.

Since the same functional dependence between each of
the AKI estimates and a did not exist for all of the input
noise powers considered, knowing a did not provide any infor-
mation of the pole locations but did provide a measure of the

degree of non-linear operation.

B. ORDER OF THE UNKNOWN SYSTEM IS NOT KNOWN (OVERMODELING)

1. AKI vs LMS Adaptive Filter

Using the data derived by operating a plant with the
transfer characteristic of equation (8.1) the operation of
the AKI and the LMS adaptive filter was compared when the
orders used in the identifier and the LMS filter were greater
than the known process that generated it. The following
overmodeling cases were studied:

(1) MA model is greater than plant MA process
(2) ARMA model is fitted to MA plant

When the MA model order is greater than that of the

plant MA process, it was found that both the AKI and the IMS

filter would compute coefficients close to zero for the higher
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order coefficients. This effect can be seen in Figures 8.25a
and 8.25b when a fourth order MA process is used to model the
actual second order process represented by equation (8.1).
Since these are a "zeros only" plant and model the over-
modeling essentially causes zeros to appear at the origin of

the Z-plane of the model transfer function. Table 8.5 sum-

marizes the results for two overmodeling conditions at the 250th
iteration using the AKI. When a purely moving average process
represented by equation (8.l1) was modeled as an ARMA process,
one must direct his attention to the poles and zeros of the
model transfer function which the AKI computed and compare

them to the actual plant poles and zeros. It . was not readily
apparent from the resulting coefficients that the plant had
been identified. The following example will help clarify

what is happening.

For the data produced by the second order plant
(equation 8.1), an autoregressive moving average {(ARMA) model
of orders 2 and 5 respectively was fitted. It can be seen
from Table 8.6 that no firm conclusions can be drawn about which
coefficients actually identify the plant. We, the analysts,
knowing the form of the plant which produced the data, could
qualitatively state that bl’ b2, ayr a, and ag are small
enough to be ignored. Hence, we can identify the plant cor-
rectly. However, inspection of the poles and zeros of the

transfer function which the AKI computed,
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Table 8.5

OVERMODELING OF A MA PROCESS USING THE AKI (k = 250)

Actual Model
Coeffs

1.0
2.0
3.0
0.0
0.0

0.0

zeros: =-1.0+1.414j

o

o8
(3

R N -1

o

3rd Order AKI 5th Order AKI
MA Model MA Model
.9995 .9991
2.0000 2.000
3.0000 3.000
.893 %1073 .0003191
-— .001082
—- .0003198
-1.000 +1.4143 ~1.001 +1.4143
~.2077 x 1072 .0227 + 04285

-.4534

Table 8.6

OVERMODELING OF A MA PROCESS USING THE AKI OF ORDERS

AR = 2, MA = 6

Actual Plant Coefficients AKT(2,6) Model Coefficients

0.0 .00467

0.0 .10500

1.0 1.0000

2.0 1.9940

3.0 2.8840

0.0 -0,2257

0.0 -0.3142

0.0 0.0001517




1.0 + 1.994z"1 + 2.8840272 - 0.2257273
. (zy = —.0.314227% + 0.00151727°
AKI(2,6) 1 - .00467z L - .10502°2
(8.11)
results in:
poles: -.8217
.3264

zeros: =-.9996 * 1.4143
.4827 x 1073
-.3212

.3262

The observation to be made is that there are two pole-zero
combinations which are near cancellation. This suggests that
the AKI algorithm be rerun with the AR and MA orders reduced
by at least two.

The implication of the analysis of this section is
that a model can in theory be found for a given set of input/
output data. Further, a parsimonious model can be identified
by careful observation of pole-zero combinations which are
near cancellation and of stray zeros near the origin.

2. AKI Applied to AR and ARMA Data

Essentially the same characteristic results found in
Section VIII.B.l were confirmed when the data produced by
plants defined by the transfer functions of equations (8.3)
and (8.4) were analyzed by the overmodeled AKI. That is,

pole-zero pairs near cancellation and zeros near the origin
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were produced by the AKI. Figures 8,26 through 8.28 have
been chosen as representative pole~zero plots of the transfer
functions computed by the AKI for the AR plant of Section

VIII.A.2 and for Perry's model (Section VIII.A.3).

C. CbNCLUSION

This work indicates that the Kalman filter algorithm
heretofore generally used as a state estimator, or in augmented
form to estimate parameters (in which case the parameters
are treated as states), can also be formulated in an adaptive
manner to iteratively estimate the coefficients of an ARMA
equation explicitly. This approach, termed the Adaptive
Kalman Identifier (AKI), summarily identifies the unknown
system whose input/output data is being processed. The LMS
adaptive algorithm of Widrow, and its modification by Griffiths
(in which the convergence factor is selected to be inversely
proportional to the input signal power) are shown to be sub-
optimal cases of the AKI. An additional insight provided by
the AKI is that it indicates clearly how measurement noise
might be taken into account in the LMS adaptive formulation.

The operation of the AKI was checked by way of simulation
and compared with two existing identification techniques:
(1) the LMS Adaptive nonrecursive (MA) algorithm and (2) the
Adaptive Recursive ARMA IMS algorithm. It was found that not
only are the two LMS filtering techniques special suboptimal
cases of the AKI; but, further, the AKI exhibits superior

convergence and modeling properties for the cases where (1) the
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order of the unknown plant is known and (2) the order of the
plant is overmodeled. Additionally, the simulations indicate
that accuracies similar to those obtained using lattice
modeling methods, can be achieved using the AKI at a decidedly
smaller number of iterations.

By making minor modifications to the measurement vector,
H(k), that is by using hybrid signals, the AKI was used to
identify the linear and non~linear ARMA representations of a
phase locked loop with success. Interestingly, the AKI tech-~
nique appears to enable one to discern when a potential non-
linear system enters its non-linear mode of operation, by
closelymonitoring the coefficients of the linear portion of

the generalized non-linear ARMA model.

D. TOPICS FOR FURTHER CONSIDERATION

Several areas for further study directly and indirectly
related to the AKI were uncovered. Foremost, a rigorous
convergence proof is desirable. Although the connection was
made between the AKI algorithm and the initial equation from
which the lattice modeling algorithm is developed, similar
comparisons (such as Chapters III and IV) could provide more
insight into the operation of both. The multichannel AKI is
the logical development of the single channel AKI presented.
And, lastly, refinement of the AKI software (using the NL = 5
option) to include ARMA modeling of time series using a Box-
Jenkins approach [Ref. 26] is feasible. A limited number of

simulations using Monterey rain data and series C [Ref. 26]
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data seem to indicate that an application exists for the AKI

in this area.
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APPENDIX A '

THE DISCRETE WEINER PROBLEM

The discrete Weiner problem considers optimally filtering
a desired signal from unwanted stationary noise. The cri-
terion of optimality used is minimization of the mean squared
error between the output and the desired signal. Generally
one desires that the optimal filter, which is the device
being sought, be time invariant and that it be able to accept
a signal, s(k), and noise, n(k), where each are samples from
stationary random processes. In other words, we want a

device which can accept
x(k) = s(k) + n{k) (a.1)

as an input and produce at its output s(k+A) or some linear
function thereof where A is some known delay.

Assuming that the desired output, d(k), is the response
to a specified sampled data linear system whose transfer
function, Hd(z), is given, then the error between the desired

output and the output of the filter, y(k), we seek is,
e(k) = d(k) - y(k). (A.2)

Figure A.l depicts the discrete Weiner problem formulation.
The derivation from here follows the one presented by Maybeck

[Ref. 27) for the continuous case. From the block diagram

we have,




ok S rd

; n{k)

*i y (k)

s (k) p n
o x (k) ¥ h,(k-i) [-] 3 e (k)
N/ = £
+

d(k)

— h (k-1) (-]

i.—_-m

Figure A.1l. The Discrete Weiner Problem

; yO) = ] h(k-i) x(i) (a.3)
' =0 ?.
or equivalently, 2
;
yk) = ) x(k-i) he (i) (a.4)
- 1==-00

Substituting equation A.4 into A.2 and squaring we have,

e?k) = a%() - 2a(k) ] h (d)x(k-i)

' j==
i (A.5)

+ 0] x(i)hg (k=1) 10 ) x(i)h,(k-1)]

1l =e=00 T
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Taking the expected value of A.5 we obtain,

Ele®(k)} = vgq(0) =2 [ h (1), (i)
1==®
(.6)
+ _;{whf(i) i=§mhf(k)wxx(k-i)

where notation wuv(m) denotes the expected value of the

product of u(k) and v(k+m). That is,

wuv(m) = Ef{u(k)v(k+m)} = E{u(k)v(k-m)} (A.7)

otherwise known as the autocorrelation of u(k) and v(k).

Using variational techniques and letting,

hf(i) = hopt(i) + eAh(i) (A.8)

substituting equation A.8 into equation A.6, taking the
partial derivative with respect to epsilon, &, and setting

the partial derivative equal to zero we have:

! sh(n) ([ } hopt(i)wxx(n-i) - begfml = 0 (a.9)

n=s=x 1 ==

The term within the brackets is the discrete form of the
Weiner-Hopf equation and must be equal to zero if equation A.9

is to be valid since Ah(n) > 0 by definition. Therefore,

]

) hopt(i)wxx(n-i) = Yyq(m) (A.10)

i==w
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Equation A.10 is the most often encountered in truncated form
in linear prediction theory, Pade approximation, adaptive
filtering and lattice filtering. The truncated version of
A.10 which is generally used in solving the discrete Weiner

problem is,

M

i£0 hopt(i)wxx(n-i) = Yq(n) (A.11)

or in matrix form,

b (0 Ve -1 e v (om ] [ )] Tug g0
wxx(l) wxx(O) cee wxx(l-n) hopt(l) de(l)

. . . = . (A.12)

@) ¥ (n=l) oo v (0) bt

(n) lde(n)J
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