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ABSTRACT

We consider the problem of reconstructing the flexural rigidity r(x)

and the density p(x) of a beam. The unknown beam is assumed to have a free

left end and a clamped right one. The data consist of the displacement and

angle of the center line of the free left end following an initial impulse.

The information content of this seismogram-like impulse response is

equivalent to three spectra {w n1, {v n), {p n } and two gross constants F1,

F 2 . This data do not specify the structure of the vibrating beam uniquely,

but rather a class of beams. All the beams in this class share the same

structure over that portion of their length which is actually set in

motion; they can differ over the portion which is stationary. A method

for constructing r(x) and o(x) is presented. It consists of two steps:

first P(x) and r(x) are determined over a small interval (O,x) adjacent

to the free left end. Next, this known portion of the beam is stripped-

off and the response of the resulting truncated beam is computed via the

initial data. The procedure is then repeated. Finally, the question of

the existence of a solution is discussed. More specifically, conditions on

{fn
}W {vn and tun } are given which insure that r(x) and p(x) are phvsicallvn n n

meaningful.
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LIST OF SYMBOLS

a
bC coefficients in boundary conditions of canonical 4th order problem

d

e

f : forcing; flaccidity of clothespin (discrete beam)
h : arbitrary function in eigenfunction expansion
i : index

j : index
k,k*: constants of proportionality between eigenfunctions
I : separation of clothespins (discrete beam)
m : mass of clothespin (discrete beam); index
n : index

variable in canonical 4th order problemq !

r flexural rigidity
s Laplace transform variable
t time; dummy variable of integration

u fundamental solutions

x coordinate
y generic displacement of beam; modal shape

AB coefficients in canonical 4th order problem

D auxiliary function associated with free/clamped configuration
F 0,F,F zeroth, first and second moment of flaccidity

G Green's function
I auxiliary function associated with clamped/clamped configuration
J auxiliary function associated with non-self adjoint/clamped configuration
K auxiliary function associated with Rayleigh/clamped configuration
L length of beam
N Green's function for non-self adjoint eigenvalue problem

Q logarithmic derivatives of p and q

U: eigenfunctions of canonical 4th order problemn

W : Wronskian

X f dx, WKBJ variable

0

Y auxiliary variable associated with supported/clamped configuration
Z dimensionless variable for homogeneous beam.
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generic parameters

r? : forcing; eigenfunctions in (3.7)

e : slope of center line

X: eigenfrequencies of clamped/clamped beam
n
U : eigenfrequencies of supported/clamped beam

n

v: eigenfrequencies of non-self adjoint/clamped beam

: coordinate in canonical 4th order problem

X

x ( )r dx

0

: X(L)

p : density

a : eigenfrequencies of Rayleigh/clamped beam

T : stress

0 : fundamental solution

X : moment

: fundamental solution

w;w n : frequency; eigenfrequencies of free/clamped beam

I

j:(P ) dx

0

0 auxiliary function for non self-adjoint/clamped configuration

A eigenvalues in (3.5)
n
4'

fundamental solutions

Q Green's function for free/clamped beam.
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INTRODUCTIEON

This paper is devoted to a review of the current status of the

inverse problem Eor a vibrating beam. This inverse problem consists in

reconstructing the flexural rigidity r(x) and the density p(x) as a function

of position x from data associated with natural frequencies of vibration of

the beam.

The reconstruction of r(x) and P,(x) is made without assuming any

a-priori knowledge about the structure of the beam. Consequently, this

approach differs from the traditional approach for the geophysical problem

dealing with the reconstruction of the internal structure of the Earth from

data on toroidal and spheroidal oscillations. There, the spectral data are

used to correct a model which incorporates knowledge from travel-time,

surface waves, etc... Thus, the Backus-Gilbert technique, which is ideally

suited for such correcting tasks, is not suitable here.

The above mentioned geophysical problem is a primary motivation for

the investigation of the inverse problem for a vibrating beam. Indeed, if

one neglects the gravitational force, the rotation, the oblateness, etc...

and considered the Earth as an elastic, radially stratified sphere, then

its normal modes are of the two types previously alluded, namely the

spheroidal modes and the toroidal modes. The latter are governed by a 2nd

order equation of Sturm-Liouville type whereas the former are governed by

a 4th order system. The bulk and shear modulii as well as the density,

which characterize the elastic properties of this idealized Earth are assumed

unknown. The inverse problem consists in retrieving these characteristics.

In order to understand this difficult inverse problem, it might be helpful

to consider simpler inverse problems, and in particular, simpler inverse

problems associated with 4th order equations since the inverse Sturm-Liouville
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problem is well understood. The inverse problem for the vibrating beam is

an ideal candidate.

This problem can also be viewed as an example of an inverse problem

associated with a class of differential operators of order 2n, namely

L _,n ad d d d d d
L2  l ~o x '1 dx ... dx ndx " dx a 1 dx 'o

where all the at's are positive. For certain boundary conditions, the Green's

functions associated with these operators are oscillating kernels. The

theory of such kernels plays an important role in the solution of the inverse

problem.

The outline of the paper is as follows: in §1, we shall introduce

the terminology associated with the five eigenvalue problems which will be

required in the sequel. Various properties of fundamental solutions will

also be given. The question of the uniqueness of the inverse problem is

taken up in §2. We shall show that the impulse response, which contains

information equivalent to three spectra and two gross constants, determines

a class of beams. The beams in this class have the same massive, flexible

front end of length L, and a weightless, infinitely rigid back end of

arbitrary length. By selecting that non-pathological beam without any

back-end we shall achieve uniqueness. The actual construction of this beam

is presented in 53. The construction procedure requires a discretization

of the vibrating system: this is accomplished by replacing the beam by a

series of massive clothespins of various stiffness connected to each others

by weightless, infinitely rigid rods. Formulas for the characteristics of

the clothespin nearest to the excitation are given. Once this clothespin
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is determined, it is "stripped-off" the structure; the spectra for the

reduced beam are found in terms of the given data. The same procedure is

repeated until all of the characteristics are determined. This procedure

fails if the given data is not bona fide data. The question of what

constitutes bona fide data is also discussed.

0.3

1.1



PRELIMINARY RESULTS

We shall be concerned with various solutions of the equation

d2 rx) d = 2 p(x) y , 0 < x L(.)

The flexural rigidity r(x) and the density p(x) are non-negative

functions, i.e.,

r(x) > 0,

pkx) > 0

In the section dealing with the uniqueness of the inverse eigenvalue pro-

blem, we shall assume that r(x) and p(x) are differentiable and in

fact that they possess four derivatives. These requirements are very

restrictive and can be relaxed in places.

We also find it convenient to write (1.1) as a system of first order

differential equations, namely

dye

dx

de 1
dx rt (1.2)

dr

dx W2P

dX _

The variables e , and x have a simple physical meaning: a is

the slope of the central line, T is the stress and x the moment.
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Several fundamental solutions of (1.1) will be useful in the sequel.

In particular, we shall define (X, W2) and ,(X, W2) thus:

0~(0, W2) - '(,WI) = p''(O, WI) = p'''(O, ,2) = 0 (1.3a)

4O, W2) = p'(0, W21 - 1 = ,''(O, W2) = p-Co(, W2) =0 (1.3b)

when primes denote derivatives with respect to x . p(x, w2) and w(x, w')

are entire functions of w2  of order I.* To prove this assertion one4
would show (i) that the Taylor series expansions of and i~are convergent

throughout the entire complex w2-plane and (ii) that and ~pare

dominated by entire functions of w2 of order T . The reader is referred

to Titchmarsh (1962) p. 6-11 where a similar proof is given for the Sturm-

Lionville case.

The growth of 0 and q0 can also be seen from their asymptotic be-

haviors obtained via the WKBJ method, viz.

0(x, -s) P3 r0 cos X cosh X (1.4a)

ipCx, -s) 'I~x r~x {cos X sinh X + sin X cosh X) (1.4b)

where

X S. Ix dx .(1.5)

~ J0 r

see Boas (1954) p. 8 for the definition of "order".
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By replacing s by - , we see that the entire functions p and

are indeed of order T

and are particularly well suited for studying the vibrations

of a beam with a free left end, i.e. a beam satisfying the boundary con-

ditions

y = (ry'')' = 0 at x = 0. (1.6)

Insofar as the right end is concerned, we shall exclusively deal with the

clamped case, i.e.

y = y' = 0 at x = L . (l.7a)

To that effect, we introduce two additional fundamental solutions of (1.1),

say, u and v such that

u(L, W2) = u'(L, W2 ) = u''(L, W2 ) - 1 = u"'(L, w2) = 0 , (l.7b)

v(L, W2) = v'(L, W2) = v''(L, W2) v.'(L, W2) - = = 0 . (l.7c)

Needless to say, u and v are also entire functions of w2 of order I

The Wronskian W(x, w2) which is:

U V
I l Iou V

W(x, a2) p" " u"' v" (1.8)
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satisfies the following differential equation:

d [rl(x) W(x, w2)] = 0 (1.9)

Consequently

r'(x) WAx, w 2) = r2(O) W(O, w2) ,(1.10a)

= r2(L) W(L, w2) (l.lOb) i
But

W(O, W2) = u''(O, 2) v'''(0, 32) - u'"'(0, W2) v''(0, W2 ) (l.lOc)

and

W(L, W2) = (L, w2 ) ip'(L, w2) - ('(L, z) (L, 2) (l.lOd)

Therefore the Wronskian W(x, w2) vanishes whenever w coincides with the

eigenfrequency wn of the beam in the free/clamped configuration.

The eigenvalue problem

(ryn ,)'' :2 p y
n n P n

y'' (ry'')' = 0 , for x =0 , (1.1)

Yn= Yn = 0 for x=L,

will be the central eigenvalue problem of the paper. However, other eiqen-

value problems will occasionally be needed. They differ from (1.11) only

insofar as the left boundary conditions are concerned: the right end is

always as in (1.11), i.e. clamped. For instance, if the left end were
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clamped, then we would have:

(rYR' : n n

: y' = 0 , for x =0 (.12)Yn =Yn = '

' =0, for x LY n = Yn = "

Of course the eigenfunctions of (1.12) are different from those of (1.11):

nevertheless, we use the same notation, viz. yn to denote both eigen-

functions since no confusion will arise. In fact, we shall only make use

of the eigenfrequencies f{n 1  and not of the eigenfunctions.

The other eigenvalue problems needed in the sequel are those associated

with the supported/clamped configuration:

(ryn ') '  '  n Yn

" = 0 at x = 0 , (1.3)
Yn = Yn t

J= , at x=L 3

and the Rayleigh*/clamped configuration:

(rYn'')" = an Yn

' = (ryn'')' : 0 , at x = 0 , (1.14)

=0 at x=L.Yn = Yn =

In honor of Lord Rayleigh who touched upon it in his theory of sound
(1945) p. 259.
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The eigenvalue problems (1.11), (1.12), (1.13) and (1.14) are

self-adjoint and physically meaningful. The next pair of eigenvalue pro-

blems are neither. However, they do enter in our analysis:

V2 0 y,(ry~n , ) , =n o n

Yn= (ryn)' 0 at x = 0 , (1.15a)

Yn = Yn 0 at x=L;

(ryn' : n on

y:=y' 0 at x = 0 , (1.15b)
Yn = n

: y 0 at x= LYn = n

(l:15b) is the adjoint of (l.15a): hence they have the same eigenfrequencies.

More general boundary conditions could have been considered, but for

the sake of presentation, I have restricted myself to the above simple con-

figurations. The Table summarizes the notations and is convenient for future

reference

Left Boundary Eigenfrequencies Configuration

=y' = 0 Xn clamped

Y = y" = 0 in supported

y C ry"), = 0 Vn non self-adjoint

y' I = 0 Vn non self-adjoint

y = (ry") = 0 an Rayleigh

y (ry")' = 0 Wn free
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Let us return to our fundamental solutions 0, p, u and v and record

their values for w, = 0 :

0(x, 0) = 1 , (1.16a)

Cx, 0) = x , (l.16b)

u(x, 0) = r'(L) r(x ) dx'

x (L x-x' ,(I 
16c)fL r(x')r(L) fL T 7 dx' ,1 1 c

v(x, 0) = r(L) " "xfL dx' (l.16d)

As a result, we deduce from (l.lOd) that

W(L, 0) = (1.17)

Making use of Hadamard's Factorization theorem for entire 
functions

(Boas 1954, p. 22) for W(L, W2) which is also an entire of order ,we

can write
CO

W(L, W2) W(L, 0) T (1 - ) . (l.18a)m1l

or, on account of (1.17),

K m=l

The asymptotic behavior of the eigenfrequencies {wnI for n large,

which we shall recall presently, guarantees the copvergence of the infinite

product. Inserting (l.18a) in (l.lOb), we get
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W(x, )= (1.19)

The fundamental solutions u and v will not be used in their

present fom. Rather they will enable us to define two new fundamental

solutions, viz

u v
(x 2) : r(x) p' u' v' (1.20)

and

€ u v

T(x, W2 ) = r(x) ' u' v' (1.21)
p' ' U'' V' t

It is a simple matter to check that P and T are indeed solutions of (1)

as well as that

"(0, 2 ) = D(L, W2) = D'(L, w2) = 0 , (1.22)

(r''')'(0, w2) = Y(L, W2) = '(L, w') = 0 . (1.23)

We give the asymptotic behavior of o and T' obtained once again by means

of a WKBJ approach

3 1

1(X' -S) 12L

(1 .24a)

* {[cos v sinh - + sin T cosh -] sin(X - }) sinh(X -r)

cos-w cosh wr [sin(X - m) cosh(X - t) - cos(X - w) sinh(X -=)]l

1.8



3 1

2s ;- 2 (L) Lr t x ) p  xT

(I .24b)

f2 cos i cosh a sin(X - m) sinh(X - f )

+ [cos - sinh t - sin r cosh m][sin(X - i) cosh(X - .) - cos(X - ) sinh(X -ff)]}

where

'- dx,

and X is given in (1.5). Finally, by substituting (1.4a) and (l.4b) in

(1.10d) we can deduce that

r 2 (O) W(O,-s) r(O) r(L) {cos 2 &+ cosh 2 w} (1.25)

In view of (1.22), we can use the function 4 to solve the eigenvalue

problems (1.11), (1.13) and (1.15b). In particular, from (1.13) we deduce

that

(O, W2) = (O, 0) 2 ( - 4
m

and, making use of the formulas (1.16) which express the behavior near

x = 0 , we see that

¢(0, W2) = r 2 (L) F2 7 (1 - ) (1.26)
m

1.9



where F2 is the second moment of the "flaccidity", viz.

F2  f r dx. (1.27)

0

Similarly, in view of (1.23) and (l.15a) we can write

%Y(O, W2) F (0, 0) 1 (1-4)
m r;

and on account of (1.16)

,Y(0, w2) = r2(L) F, (l - ) (1.28)
m m

where F, is the first moment of the flaccidity:

F, : f -- . dx . (1.29)

Finally, by similar means we can show that

W2

&'(O, w2) = -r2(L) F, T (1 - = ) . (l.30a)
m m

r(O) P'..(0, w-) = r2 (L) 7 (1 - w ) . (.30b)

m m

The functions D and T are linearly independent as long as w differs

from an eigenvalue wn of the beam in the free/clamped configuration. In

this case we have

(x, +W2) = kn  (X, wn21) (1.31)
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The constants of proportionality k , can be deduced by specializing

(1.31) to x = 0 and using (1.26) and (1.28):

kn =f P
k F P (1.32)

Vm

To simplify the notations, we shall d fine

n(X) =(x, 2 ) (1.33)

Thus {n' Wn I are the eigensolutions of (1.11). We can a.lso represent

the eigenfunctions of (1.11) in terms of 0 and . Thus we have another

formula akin to (1.31):

(L, 2)n O(x, W2) - *(x, W2) = k* 'n(x) " (1.34)
.2~w) n n n Tn~

It should be noted that from the definitions (1.20) and (1.21) of

D and T we can deduce that

II"(L, w2 ) = r'(L) i(L, W2)

W"L 2) = r'(L) o(L, W2)

As a result

(L, n2 )  ' 'L, w2 )

n =n =k (1.35)
(L, ) (I. "L,1) .n1

n nl



and so (1.34) can be written as follows:

kn O(x, wz) - ipx, w2) = Ty (x) . (1.34')

In order to find the values of k* we set x =0 and use (1.28):
n

k* k (1.36)

r2(L) F, (1 - -n

m m

We consider next the asymptotic form of the eigenfrequencies of the

five problems. It is easy to see that

p(o, X2) T'(0, X2) - p'(0, x2 ) '(0, x2) = 0 (1.37a)

s(0, 2 ) = 0 (1.37b)

y(0, V2) = p'(0, V2 ) = 0 (1.37c)
M m

y(0, a2) = 0 (1.37d)

m

(r'')' (0, w2 ) = ''(0, ) = 0 (1.37e)

As a matter of fact, (1.37b) and (1,37c) are equivalent to (1.26), (1.28)

and (1.30). By replacing D and T in the above equations by their

asymptotic forms as given in (1.24a) and (1.24b) we deduce that

2 -(n + )4 TF 4/v4
n

U2 (n + 4 )4 Tr 4/-4
n

V2 n 4 / r4=4(1.38)
n
az -(n - ) 4/ -zl-

n

n
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4

where

C dx (1.39)

Other important properties of the eigenvalues will be needed. For

instance, we shall exploit the fact that the eigenvalues Xn' 1n' Vn n -

and wn are all simple eigenvalues. This result is a consequence of the

theory of integral equations with oscillating kernels [Gantmacher and Krein,

1950]. We can only give the briefest outline here. The first step is to

convert the eigenvalue problems (1.11), (1.12), (1.13), (1.14) and (1.15)

into integral equations of the form

L

y(x) = W2 f G(x, t) P(t) y(t) dt (1.40)
J0

If the kernels G(x, t) , which are the Green's functions for the

various problems, satisfy the following properties:

) G ..x . x G(x1 , tj) ... G(x2 , tn)
( G tn = G(xn , t )... G(xn, tn)"" 0 (1.41)

for all partitions

x1 < X2  < ... < xn
0 < < L, n 1, 2,...

tl < t2 < ... < t n

and

X1 ... x
(ii) GC " > 0 (1.42)

X I  . . Xn

for all partitions and all values of n , and

1.13
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(iii) G(x, t) > 0 for 0 < x, t < L (1.43)

then the kernel G(x, t) is said to be oscillating. For such kernels,

Gantmacher (1936) [see also Gantmacher and Krein, 1950] showed that the

eigenvalues of (1.40) are simple.

Gantmacher and Krein (1950) have shown that the Green's functions

for four out of the five eigenvalue problems of interest to us are indeed

oscillating kernels. These are the four self-adjoint problems (1.11), (1.12),

(1.13) and (1.14): thus xn' Sn' n and wn are simple eigenvalues.

The non-self adjoint problems (l.15a) has not been considered. How-

ever, by means of a theorem of Karlin (1971), we can state that the Green's

function for that problem satisfies 1.41, i.e. is "totally positive" in

Karlin's parlance. The fact that the kernel of the integral equation is a

"totally positive" Green's function implies that (1.42) is also satisfied:

the proof of this assertion can be found in Krein and Finkelstein (1939).

Thus we only need to prove that (1.43) holds.

It is a simple matter to check that the Green's function under con-

sideration denoted by N(x, t) is given by

N(x, t) r(x, t - dz t dz . (1.44)F x rz ft rZ_

where

fL
L z - x)(z - t) z

a(x, t) = (1.45)L (z - xl{z - t) d

t r(z) dz, x t

1.14
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Consequently,

z t) L z tdL
N(t, t) : rdzz 't z t-I dz

ttt

or better still

L z dz

N(t t) =l t r-- ] fL rt)2 dzSF1 t rz

[F, L L~J fdz ((L rz) d 1 0 (1.46)

r r z)d t z -i
L - J t -r t r" "z t r'"- (7z046

Now, over the interval (0, t)

a2N _ I L z - t)z (1.47)
r(x) aft r dz <0 0 (

and hence N is concave downward, which together with (1.46) implies that

N(x, t) > 0 for 0 < x < t

Over the remaining interval (t, L)

2N 11Lz-tz

r(x) x - t - r(tz dz

or, better still

r(x) 2N x x0(t) (1.48)

1.15
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where

xO(t) t It z dz + Lz2 dz(14)*

Clearly

t < xO(t) <L

and so N(x, t) is respectively concave downward and upward overI

(t, xO(t)) and (x0(t), L) . Note that

N(xO(t), t) = 2(x0(t) t) - xo(t) _ t] f z aUI dz
x0(t)

N(x0(t), t) = f ~ z >

x0(t)

and so

N(x, t) > 0 for 0 < x < XO(t

See Fig. 1.

We obtain the desired result, by noting that over the interval (x0(t), LQ,

N(x, t) must lie above its tangents. The x-axis being one such tangent,

N must therefore be positive in this interval. Consequently

N(x, t) > 0 , for 0 <x, t < L

i.e N(x, t) is an oscillating kernel and hence the eigenvalues vn

are simple eigenvalues.

1.16



Consequently,

IL 
L z t}  f Lr- L  z Cz " t )

N(t, t) = (z dz - Idz r~} dz
F, t t Iz

or better still

L z dz

N(t 1 t) 1 fl t r- ] f L (Z -  t ) 2

F, t r(z) d

+ [L z2dz L dz L z dz 2 > 0 .46)
Fj[ftrT7 t rTz-) (f

Now, over the interval (0, t)

r(x) 92N  - I L  z - t z dz <O (1.47)

T= -F f- t -r(z d < I.7

and hence N is concave downward, which together with (1.46) implies that

N(x, t) > 0 for 0 < x < t.

Over the remaining interval (t, L)

x 2N t L (z - t)z dzr(x) 5 =X t r - r(z) d

or, better still

B 2N

r(x) x - x0(t) (1.48)

1.15
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IMPULSE RESPONSE AND UNIQUENESS
OF THE INVERSE PROBLE14

The impulse response: Let us consider the following artificial problem

r~)3 =- P y 0 < x , L (2.1)

with

2(L, 0):=L (L, t) = 0, j(2.2)
After making a Laplace transform where

y(x, -s) = [o e-st 2(x, t) dt
00

we can write (2.1) as follows:

(r1)1+ P s y P (2.3)

with

Y'=(y' =0 at X =O (2.4)

y =y' = 0 at x =L

2.1



In order to solve the above boundary value problem, we introduce the

appropriate Green's function

(r ') + os = 6(x - z)

0 at x = 0 (2.5)

=0 at x = L 0

which enables us to write

y(x, -s) = ( a(x, z; s) p(z) rj(z) dz . (2.6)

'0 m

4

If we were to replace s by -W2 , then we would be back to our beam which

is here excited by a force n(x) applied at time t = 0 . The case

1(x) = 6(x)/p(o)

would then correspond to a point force applied at the force left end

time t = 0 . By impulse response, we shall denote the measurements of

the displacement and slope of the center line at that left end, i.e.

y(O, -s) = £(0, 0; S)
(2.7)

a(0, -s) (0, 0; s)

Now, making use of the functions o, i, and Y. introduced previously,

we can check that

(Cx, -S) 'D(z, -s)-, (x, -S) Y (z, -s)

a~,Z;-)r4 (0) W(O, -S) x < z(28
z(x, Z; -S) = -S(2.8)

r/2(O) W(O, -S) x Z
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Consequently

yCO, -S) -S
r/(O) W(O, -S)

and

e(o, -S) 1-s)
r (0) W(O, -s)

or, in view of (1.19), (1.26) and (1.28)

1 + S/U2
00 my(O, -s) = F2 11 1 + s/W (2.9a)

m=l m

1 + s/V2

e(O, -s) : - F , 1+ s/W2  (2.9b)
m=l m

The impulse response contains the following information:

i) the first and second moments F, and F2  of the

"flaccidity"

Cii) the three spectra ( ni, {VnI and {PnI corresponding

respectively to the free, non-self adjoint and supported

boundary conditions at the left end.

Is the information contained in the impulse response sufficient to char-

acterize a beam uniquely? This is the question we wish to discuss.

Beams with identical spectra: Let us say that the beam characterized by

r(x), p(x), of length L , clamped at the right end, has spectra {Xnil

{pn}, {Vn}, {an} and { n. There are other distinct beams with the

same spectra. Indeed, the two parameter family of beams characterized by
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r =x : ( )~ x),

(2.10)
p ( x) ,

have the same spectra. (The parameters a and e are positive.) The lengths

of these beams are

L (2.11)

The first and second moments of the flaccidity of these beams are:

22 j (2.12)

1 F2

If we were to impose the additional requirement that these two moments

match those of the beam under consideration, then we would obviously see

that a = a = 1 . Hence, the role of F, and F2  is to set the scale of

the beam which is being reconstructed.

Pathological Beams with the same impulse response: It is possible to con-

struct two distinct beams with the same impulse response?

Consider a beam p(x), r(x) of length L , clamped at the right end.

Construct a second beam with the following characteristics:

pCx) 0 < x <L

P ) :(2.13a)

I L x<

2.4
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r(x) = (2.13b)
I r L<x<E

In other words, the second beam is identical to the first one over the

interval (0, L) and then has constant properties over the section

CL, t) . Abusing our notations, let us denote by O(x, W2), p(x, W2 )

two fundamental solutions of (1.1) which satisfy the boundary conditions

at x - 0 appropriate for either one of the three configurations entering

in the impulse response.

The solution over the interval CL, t) is written in terms of functions

cos[( E2 ) (x - i)) - cosh[( .2 ) (x -
r r

and

sin[( ) (x - t)] -sinh[(Lw_2 )4 (x - t)]
r r

which satisfy the clamped conditions identically.

Piecing the solutions in (0, L) and (L, i) by requiring that

[3' = 1 = [(s'')I ] = 0 (2.14)

where [ ] denotes the jump from L + 0 to L - 0 , we obtain the

determinantal equations yielding the various spectra, viz.,
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~(L, w 2 p(L, w 2 Cos Z sin Z

-cosh Z -sinh Z

04(~2 0' (L~ 21 W;5{inZ{Cos Z
r

+ sinh Z} - cosh ZI

0- (2.15)

(r (,w2 (q" Lw2 F2 liWCsZ-r p wdsin Z

+ cosh ZI + sinh ZI}

-sinh Z,' + cosh ZI

where

'4
z pw (L-L)
r

2.6



Now, we consider the limit

0 (2.16a)

but such that

p (2.16b)

This means, that in the limit the added section is made up of a weightless

rod of infinite rigidity. Then, dividing the last column of (2.15) by

1 3
4 and taking the limit mentioned above, we note that (2.15) becomes:

' 0 0

0 0

re" ' -2aw -W

3
0 -2w2

or better still

=0 .

But this is the generic determinal equation for the smaller beam! In

addition, since the flaccidity of the second beam is zero over the
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additional interval (L, i)

= Fi

and

2= F2

Thus, for the clamped right end case, given any beam with impulse response

{Xn } , {vn } , {Wn , F, and F2 , we can construct a class of beams with the

same impulse response, by simply tacking onto the original beam, an infinitely

rigid weightless rod of arbitrary length.

This result is easy to understand physically: the section (L, i)

because of its very nature, is never set in motion by the initial excitation

and hence, never felt.

The question remains: are there other types of less pathological

beams which have the same impulse response? The answer is no.

Toward the Uniqueness Theorem: We assume that two beams p(1) r(1 ) and

S(2) , r(2) have the same impulse response. Since the information about

the length of the beams is not part of the impulse response, we must assume

that their lengths, L(1 ) and L (2) , are not necessary equals. This pre-

sents a first obstacle to the adaptation of Levinson's (1949) classical

proof of the uniqueness of the inverse Strum-Lionville to the problem at

hand. Indeed, in order to compare the two beams we must bring them to some

common ground. If x(I ) and x(2) are coordinates suitable for each beam,

then, we can accomplish our aim by introducing a new variable { as follows:
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.. .. . .. ....- .. I

x 1)  _r ] dx (2.17a)

and

fx (2) (2) ]
= -2) ]" dx .(217b )

Note that as x(I ) and x(2 ) vary from 0 to respectively LO ) and

L 2  varies from 0 to which was defined in (1.39). This is a

consequence of the fact that eigenvalues of the two beams have the same

asymptotic behavior.

The functions C(x(I )) and (x (2)) defined in (2.17) are nondecreasing,

and hence are invertible:

XM = Xl) (0(2.18)

x(2) = x(2)(W

We are now ready to define the following strange integral of a hybrid version

of the Green's function Q given in (2.8), namely

(2 (2) 2,1) (2) (1) (2)_

271i

(2.19)
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where

(2I(x ), x(1W ; -S)

(2) (x (2) ( ),s),(1) (x(1) (0)-s). (2) (x (2) (),-s)v (l)(x () )(),-s)

r2(O)w( )(O,-s)

for x(2) < x
(I)

1x(x )(0, -c ), (2)(x(2)( ),_s)

r 2 (0)W(2(0, -s)

for x(1) < x(2)

(2.20)

and h( ) is an arbitrary function.

We digress at this stage to explain why r(O) enters in the definition

of S1(2,1) without any superscript. This is due to the fact that

r(l)(0) = r(2) (0) (2.21)

This result , as well as

p(1)(O) = p(2)(O) (2.22)

will be derived next.

End-Point Identities: The above results are obtained by confronting

the product representation (1.26) of (i)(O,2) with its asymptotic

representation (1.24a). Indeed, this implies that
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[ri(L)(i]2 F2 + (i , I s 1 r ri(L(i))]? r : L0

where i 1 , 2 . Consequently.

'.4

[r L (i) Ej (L r11 (0) 0)

(2.24) ir12) 1 1-4
rr(2)(L (2))] [ (2)(L(2))]2 P ( 2 ) ( 0)0

The samre p applied to (i)(o, 2), viz

rF (I + s 1 [r (L(i))]

M~l vm 2 s [p(i)(L(i))] '

( cosh2(-j_ =) - COS2( 2-:=)) , (2.25)

yields

(2.26)

Cr 2) L ())J C(2)((2))J 2) > (2Y

[-ril)(L~l))] " [p(1)(L~l))] [r 2(L2)] " 02(L2)]

In the same vein, we can confront the product representation (1.19) for

W(O, -s) with its asymptotic representation (1.26), viz.
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[r(i)(L(i))]2 + ( + S(i)
m=l m (

{cosh2  + Ws2 S (2.27)

from which we deduce that

r l ( 12[ (l)(0) r [(2)r~I 0 2f(2) () 1
r()(r()) [ ()(L1)) C2)L (2 ) (2.281

Making use of (2.26) we can rewrite (2.24) and (2.28) as follows

r (0) .( (0)o(l)(oi 10_(2 0

r (1) (0) p(l)(0) =r(2)(0) P(2)(0)

which imply (2.21) and (2.22). Therefore, if the two beams clamped at the

right end have the same impulse response, their densities and rigidities

must coincide at the left end. Therefore, we are justified in omitting the

superscripts.

In addition, they must satisfy (2.26), i.e.

r(1)(L(1)) p(1)(1)) = r(2)(L (2)) P(2)(L(2))

Note that the above product is finite even for the pathological beams pre-

viously discussed.
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Evaluation of $(c) by Calculus of Residues: An examination of the

integrand of 1(z) reveals that the path of integration can be closed by

a half-circle in the left half of the s-plane. The only singularities

are simple poles at s = -w2  and a straight-forward application of then
calculus of residues yields:

{ ( 0* 0(2)(x(2) 0(2)(x( ) d(2) d
( ) nl)(x(1)) n _) d
n=1 J O "

W21
(1) () P (2)(x(2) (2) (x(2) ,2)h dx (2) d n[ (1) ( 1( ) )]2  T l

[ r (L .4)0W

~(1) (1) r) (2) (2) (2) (2) dx (2)
+ (x n J p(x n (x )h J- d

(x ' P ( n d (2) (2))] n

[r (L )J T (1-~

... (2.29)

In the above formula, we have not bothered to write explicitly that x(l)

and x (2) are functions of E and . We have also used the representation

(1.19) for the Wronskians.

At this stage, we make use of the fact that n ix(i), and

T (i)(x(i)) for i 1, 2 are related by a constant of proportionality kn
n n

which, as (1.32) reveals, is soZey dependent on the inpuZse response data, and

hence identical for both beams. As a result (2.29) becomes
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WzI

mn Z [rI)(LCI))] - 2  P C2)(x(2))[k c(2)(x(2), w2)

n=l 1 (1 Wn 
n

m~n W m

(2) (x (2) 22)hd_ d"- T(l)x(1)
- d(d n(x

r (2)L(2)-2 ( 2) (2) (2) (2) (x 2)

+ r (L )I- j Cx ) im(x )h d

[kn t 1 (x( ' W2 - (1)(x(1)' wn)] I

The above expression can be further simplified by means of C1.34'), i.e.

by recalling that

where, as (1.36) indicates

[r1)L())2k(
I )*  C r(2)(L (2))]2 k (2)*

n n

kn

F1 n(l - n )
m m

As a result

2.14



2 k 2

W2 kYO n n

= (lr(1)CLCl))rC2) (2) F

- 2) (2) (2) (2)) (2

j (x Cx h )h- d; 1 1
I n dx(2

0 )(x ) (2.30)
2 2n

m~n Wm m In

To avoid problems in the pathological cases, it is preferable to free the

above expression of the terms r(1)(L (I))  r(2)(L (2)) This can be done

by defining the norm of TO) , viz.
n

S 12 L(i)(i)(X(i))[,(i)(x(i))]2 dx(i)
yn ) n -- p (2.31)

The superscripts are not necessary for the actual evaluation of the above

norms; hence they shall be omitted temporarily. We recall the equations for

o(x, -s) and n(x), viz.

d2  d2o
dx2 r dx s P ,

and

dd2  n =

x2 r d = n n

Multiplying the first by 'n the second by ' , subtracting, inte-

grating the resulting expression over (0, L), we get after making use of
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(1.22) and (1.23)

IF (0) r(O) p'"1(0, s) = W2(l + -s dx (2.32)n n -n 0 n

The product representations (1.28) and (l.30b), enable us to write:

4 L)~ F, ~ -~( n n2 L
r(L Fy (I + n_)(- ) = f p f n dx

n M#n W m

It only remains now to let s - -w2  to see that
n

2W 2
r 4nL Fm1 -wn l - -) - = k jJ 2  (2.33)

Wn m~n 4Wm

and consequently (2.30) becomes

f P(2)(X(2)) (2) (x (2)h (2) dc
0ndc T, l (x (1) (2 .3 4 )

( l  2nn "- I ' T I I I 'v (n  1

Needless to say, if the two beams were identical, then we could drop the

superscripts altogether and get the classical eigenfunction expression

L P Tn h( (x)) dx n(x)
n=l IIFn ll

2.1 C,



as a special case of that more general eigenfunction expansion. Incidentally,

in this particular case, J( ) is just h( )

Evaluation of .(g) via residue of pole at infinity: An alternative

expression for J(E) is obtained by taking the contour in the s-plane to be

a very large circle and replacing o(2, 1 )(x (2), x(1); -s) by its asymptotic

expression for large sj . The calculation is straightforward by tedious.

Once this is done, we perform the integration over 4-from (0, 4) and

(E, =) asymptotically: this requires a mere integration by parts, provided,

of course, that r, p are differentiable. The remaining integral over s is

now trivial since to leading order the s-dependence of the integrand is 1
s

The upshot of these calculations is

Sr(2)(x (2).35)

Equating the two expressions for. (4) we get:

f (2) (2) d(2)

r(l ))(x( l)) (x l )  v l)jj ljY(2)jj" n

... (2.36)

But the left hand side can also be written in terms of a standard eigen-

function expansion, viz.
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... (2.37)

from which it follows that

..(2.38)

and since the function h is completely arbitrary

2)[0(2)

(2 2) (2) 1(2) x (  
2 ) (x ()( ))

0 [ 1(x (1)) [r (xl ((_))

for n , 2,

(2-39)

We must again digress before we can draw any conclusion from (2.39).

2.18
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The Liouville transformation and the canonical 4 th order equation: Willy nilly,

we have been pushed first into the introduction of the variable

f=C P- ) d.

and now into considering the functions

U~ 'Y = p((X)] [rx()) (2.40)

We can think of these new variables as constituting a Liouville trans-

formation. In terms of them, the original eigenvalue problem, viz.

d2 dT

T n T'= 0  at x =L,

is transformed into

dUn+d A& n+B( ) U~ = 2 n (2.41)

with

d2U n d U
n& + C n b 0

d~un dl.1 d Uat =0 (2.42a)

d4U -d2 - d& Un
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and
d U

U : n = 0 at = (2.42b)n d9

The coefficients A( ) and B( ) are related to p and r thus:

A q q qP P' P2 (2.43a)

q q 2 q
q Tz - =q 6

_qi

q p q p 02j q p
+ q { + {, 3 a p { qPP

q-p qp 7p qp

=q -P+ 6 -. 2 q (2.43b)

where

p(X) = ( , (2.44)

and

q( ) : o- (x) r- (x) . (2.45)

Also
_2q +P
2q p

q +

C 2 -  (2.46)
q

d: 3-s 4q4- 2 q + P" 2 2-
q q- qp P

e qq q ;& Pra q-&

e - - -- + -2
q pq2

2.20



Since we have been led to a consideration of the canonical 4 th order

equation (2.41), one may ask why did we not consider this equation from the

beginning? As a matter of fact, I have considered the inverse eigenvalue

problem for this equation in a previous paper (Barcilon, 1974). That

analysis was valid only in the case where the eigenvalues were simple.

This assumption is correct provided that the canonical equation can be

written as

d d d d 2
-O dx-1 I - 02 - a3 T-c C4 U = w U (2.47)

where l, , a2 a3 and a4 are positive and if the boundary conditions

satisfy certain requirements (Karlin, 1971). Thus, one is not dealing with

the most general canonical 4th order equation, but with that subclass which

has simple eigenvalues. Under those circumstances, it is preferrable to

deal with the beam equation.

Before resuming our discussion about uniqueness, we shall introduce

some new variables which will simplify the formulas for A(;), B( ), a, ..., e,

namely

M 0(2.48)

) q{
q

or equivalently

(0) exp ( J P() d4) (2.48')

q( ) = q(O) exp( Q( ) d )
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With these variables, (2.43) becomes

4Q +P -2Q2 -2P .p 2 - A =0 (2.49a)

and

Q + QP~ + Q - 4Q2Q~ + Q

(2. 49b)

- 4QQ E + Q p2 + 2QPP -2Q
2p.

+ Q4+ 2Q3p - 4Q2p2 
-B =0

or better still

QC F(Q) + A (2.50)

where

0 0 (2.51)

Q.

F Q (2.52)

4Q + 4QQ + 2Q P + 2QP + 2PPL 4QQ~ - Q -Q + 2QQ P - 4P

- Q p + Q4+ 2Q3p- 4Q2P2
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and

00
A 0 (2.53)

BA~
B -QA

Finally, the equations (2.46) can be written as follows

c 1

a - 2c

Q(0) =b + c2 - ac (2.54)
d - 3b - 2c2 + ac I

e + cb - ac2 - cd + 2c3

Uniqueness results: Let us summarize the current state of affairs. Given

two beams o(1)(x(1)), r(1)(x (1 )) and p (2)(x (2), r 2)(x (2 )  with the same

impulse response, then, provided that these functions are sufficiently

smooth, we can make a Liouville transformation and write

d4U n  dd1 Und +T& A (1  &+d B (1 ) U n = n Un (2.55a)

and

d4 Un +d A(2) dUn (2 U 2 U (2.55b)
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.1

4

The fact that Un  has no superscript is a consequence of (2.39), viz.

l )(x (l ) (2) (x (2)
(U nc) q' 2) 2) for every n.

q()( n I 1  n1 L' 2

The coefficients A(), B(1 ) and A (2 ) ,  (2 ) are obtained by substituting

p(1) q(1) and p(2), (2) in (2.43). Now, if we were to subtract (2.55b)

from (2.55a) we would get

dUn
U- ( 1  - A(2) d + (B(l  B n = 0. (2.56)

Since Un  satisfies (2.42b), we are forced to conclude that

A(')(&)= A (2)(C) A( )

(2.57)
B(1)( ) B B(2)( ) BC )•

or else, U n  would be identically zero. In a similar way, a consideration

of the boundary conditions (2.42a) at 0 , implies that

a(1) =a (2) =a,

b(I = b(21 = b

c(1) =c 2 =c , (2.58)

P = 6 21 = d

e(1) e(2) e.

(This can be seen, for instance, by considering eigenfunctions associated

with large values of n .) As a result, the vectors Q(l and Q(2) are

solutions of the same differential equation (2.50) with initial conditions
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(2.54). Assuming that the solution of this initial value problem exits,

it is unique since F is Lipchitz. Consequently

(1) = (2)

and in particular

Q (1 ) = Q(2 )()
(2.59)

p(l)( ) =p(2)()

This, in turn, implies that

p(1)() = p(2) cc

PC' (0)

and

1O) (2)

and finally, in view of (2.21) - (2.22)

(1) (1) (2) (2) i (2.60)
r (1) (x (1) ({)) =r(2) (x (2)()

For the smooth class of functions which we have been considering, we can
in fact go further and see that L(1) = L(2) , and hence
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p.--

(1)(x :(2)(x
00 Wx = p () W

(2.61)
r(l)(x) = r(2)(x). J

However, because of the pathological beams previously discussed, I suspect

that (2.60) is the best result possible. Thus, if we are willing to dis-

regard the pathological beams, we can say that the impulse response deter-

mines a bear uniquely.
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EXISTENCE AND CONSTRUCTION OF SOLUTION

In this section we shall outline two procedures for reconstructing a

beam from its impulse response. One of these procedures was previously

presented by Barcilon (1979a, 1979b). The central idea revolves around the

use of continued fractions and owes much to the work of Krein (1951, 1952a).

The procedure for reconstructing c(x) and r(x), given F1 , F, and

no n' n will work provided that the data are bona ,,ide data. Thus,

we shall have to elaborate criteria for recognizing whether or not a solution

exists for a given impulse response. We do not have definitive results about

all such criteria: we shall derive a few and suggest the need for more.

Before embarking on this program, it might be useful to review the

situation for the inverse problem for a vibrating string. The impulse

response for a string in the free/fixed configuration consists of (i) the

length L of the string and (ii) the spectra {X nI and { n}l associated with

the fixed/fixed and free/fixed configurations. The numbers L, (W n
n' nil

constitute a bona ide impulse response if they satisfy the following

conditions:

(i) asymptotic behavior

nir

ni as u-* (3.1)n n L0!

f P!(x)dx
0

(ii) interlacing

Ul < I <  12 < X2 " (3.2)
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(iii) global condition

E 2 co2 < (3.3)1

k~n Uk k  k

The asymptotic condition is easy to understand and can be deduced in a

straightforward manner form the direct problem. The interlacing condition

is also sensible: after all the -'s are associated with a configuration

freer than that for the N's. Less obvious is the fact that this condition

insures the positivity of p(x). This is connected to a theorem of

Stieltjes (1894) which we shall discuss in the sequel. The third

condition insures that the total mass of the string is finite. It

plays an essential role in the construction of the solution to the

inverse problem for a vibrating string. We would like to find the

conditions for the beam analogous to (3.1) - (3.3) for the string.

Interlacing of eigenvalues. One would expect that the following ordering

would hold:

Wi < a1 < 'I < ;I < <  <  "  <  a i < 1 < i < <

However, this is not the case. Indeed, by considering the homogeneous

beam (i.e. o and r constants), we can see that the spectrum associated

with the clamped/clamped configuration, namely 0N 1 , does not inter-

lace with that for the free/clamped one, i.e. f n (Platzman,

private communication).

3.2
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To elucidate this question, we appeal to a paper of Krein (1939).

If we were to apply the theorem stated in that paper to the case of the

beam at hand, we would get:

< X < Wi2(3.4a)1 1 +

0i < i < ai+2 
(3.4b)

Vi i <V+2 (3.4c)

<i i <i+2 (3.4d)

These results are general results stemming from the properties of Green's

functions of fourth order operators which are so-called "oscillating".

These results can be improved for the particular case of the beam operator.

The first step consists in examining the first eigenvalues of our five

eigenvalue problems. We start by considering u1 and v I" To that effect

we introduce a hybrid eigenvalue problem as follows:

(r = 2 p y , 0 < x < L

ay-(l-cy' = y" = 0, at x = 0 (3.5)

y = y' =0 , at x = L

where a is a parameter ranging over (0,1).

Clearly
An(O) = vn (3.6a)
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and

A (1) =(3.6b)
n n

The adjoint problem, which will also enter into our discussion, is

(rn")" = ,A n , 0 < x < L

n = c(rn") - (1-a) (rn")' = 0 , at x = 0 (3.7)

n0' 0, at x =L

After differentiation with respect to the parameter a, we can easily

see that

dA - y'(0,a)(rn")(0, a ) (3.8)

da L
CI(1-a) f pyndx

0

We shall specialize this result to the first eigensolutions of (3.5)

and (3.7) and appeal to a result of Gantmakher* (1936), namely that

yl(xC) > 0

for 0 < x < L (3.9)

n1 (x,a) > 0

*Strictly speaking, we should prove first that (3.5) and (3.7)

can be transformed into integral equations with oscillating kernels.
This is indeed the case thanks to a theorem of Karlin (1971).
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Consequently

yl (0,U) > 0

and in view of the boundary condition at x=O

Yl (Oa) > 0 (3.10)

We prove next that

(rn1 )(0,) < 0 (3.11)

Let us assume the contrary. Then, by continuity there exists an interval,

say, (0, ), over which

If
ri >0.rn I >0

This interval must be smaller than the length of the beam. Indeed, other-

wise nI would be an increasing function throughout (0,L) and since

nI (O,a) must be positive, it would follow that nI 9(L,a) is also positive.

But this is impossible on account of the boundary condition. Thus

0 < , < L. We can be more specific and define such that

it

(rn )(,ci) = 0

Now, integrating (3.7) twice from 0 to , we see that

-[(rn )(0,cc) + (rn1 ) (O,a)] A 2' (-t)cn dt
1 0

3.5
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and since (rnI )(0,a) is positive, it follows from the boundary condition

that (rnI ) (0,a) is also positive. Hence, the left hand side of the above

equation is negative whereas the right hand side is positive. Therefore
2

(3.11) must be true and as a result, the derivative of A1 with respect

to a is positive, i.e.

VI < )I (3.12)

By considering a problem similar to (3.5) but with the boundary

conditions

ay - (l-a)y' = (ry") =0 at x = 0

we could show that

a 1 < Vl (3.13)

In a similar vein, we could also prove that

wi < a1  (3.14)

Combining all of these results, we get

WI < 0l < Vl < Ul <  i(.5

The technique used to establish (3.15) is not suitable for the

higher eigenvalues. To order them I have found that the introduction

of certain auxiliary functions is very helpful.
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Auxiliary functions. Recall that u(x,-s) and v(x,-s) were fundamental

solutions of the beam equation chosen in such a way as to satisfy the

clamped boundary conditions at x=L (see (1.7)). Recall also the forced

problem (2.3)-(2.4) which led to the impulse response when p(x)n(x) was

set equal to 6(x). We can rewrite this problem as follows:

I'

(ry") =-spy

ry" = (ry") - 1 = 0 , at xO , (3.16)

y -y' 0, at x=L

We can avail ourselves of the functions u and v to solve this problem.

In fact

y(x,-s)-- u(x,-s)(rv")(O,-s)-v(x,-s)(ru")(°,-s) (3.17)
(ru")(O,-s)(rv") (0,-s)-(rv')(O,-s)(ru") (0,-s)

and as a result, the impulse response given in (2.9) can also be

written as

u(O.-s) (rv") (O,-s)-v(O,-s) (ru") (0,-s)
y(O,-s)- - (3.18a)

(ru") (0,-s) (rv")' (0,-s)-(rv") (O.-s) (ru")' (0,-s)

and

u' (0, -s) (rv") (0, -s)-v' (0, -s) (ru") (0, -s)
e(,s- - (3.l8b)

(ru") (0,-s) (rv") (0,-s)-(rv") (0,-s) (ru") ' (,,-s)

3.7



These expressions suggest that we define the following functions:

Y( , W2 = u(x, 2) - v(x, 2)(ru")(x,w2) , (3.19)

o(x, 2) = u' (x,w2 ) (rv")(x,w2  v'2(x,w 2 ) (ru")(x,) 2 (3.20)

D( , 2)  2) , 2) ( u '

D(xw ) (ru")(x,w) (rv")' (x, - (rv")(xw ) (ru") '(x,L) , (3.21)

and that we work directZi? with them rather than with u and v. Numerically,

this approach has the advantage of minimizing the loss of accuracy due to

cancellations in the computation of Y, 3 and D.

We can look upon Y, 0 and D as determinants obtained by con-

sidering the 2 x 2 submatrices arising from the 4 x 2 matrix

U V

Ul V
9

ru" rv"

(ru') ' (rv"I)

Three other such determinants can be formed, namely

I(x,) = (3.22)
up V)

J(x,W 2) - (3.23)
(ru")' (rv8
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and

U' V

K(x,w2 (3.24)
(ru") ' (rv")

It is a simple matter to check that these six auxiliary functions

satisfy the following differential equations:

I=-y , (3.25a)
r

Y, 0 + J , (3.25b)

V K , (3.2 5c)

0' K , (3.25d)

K' = D - 12 , (3.25e)
r

D' -W 2PY , (3.25f)

where primes indicate differentiation with respect to x. These

auxiliary equations, rather than the beam equation, will occupy

the center stage during the reconstruction procedure. Note that in

view of (1.7), the boundary conditions associated with (3.25) are

I = Y - J - 0 = K- D-r2 (L) = 0 at x-L. (3.26)

Keeping in mind the definitions (3.19)-(3.24) of the auxiliary

functions, it is a simple matter to show that

I(Ow 2) r2 (L)(FF 2 F1 2) (1- W- ) 2 (3.27a)
2 1 2

3.9
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r4
2

Y(0,'j 2) (L)F ( (3.27b)

JO 2 (0,W 2  r r2  (1- 2( (3.27c)

2 222

K(0,w 2 -r 2(L)F 7 (1 -L2 (3.27d)

n=1 n

2 2 2
D(0,w 2 r 2(L) (1- 2 (3.27e)

n=1

In the above expressions F1 and F2 are the first and second moments of'

the flaccidity defined in (1.27) and (1.29) while F 0is the zeroth

moment, namely

L

F = rt) (3.28)

0

Note that (3.25c) and (3.25d) together with the boundary conditions

(3.26) imply that

O(x,w 2 J(x,w 2 (3.29)

This result is easy to understand: it means that the eigerifrequencies

of the truncated beam (x,L) are identical if the boundary conditions

at the left end are y - Cry")' - 0 or y' ry" 0. As we already
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know, these two problems are adjoint of one another.

2
In deriving the expression (3.27a) for I(0, 2 ) we made use of an

identity for the auxiliary functions which will play a crucial role in

the sequel, namely

-I(x,w 2)D(x,w 2) + Y(xW 2)K(x,w 2) - 02 (x,W 2) = 0 . (3.30)

This identity can be established from the differential equations (3.25).

However, its character is algebraic in nature and it is best obtained

from the very definitions of the auxiliary functions.

The product representations (3.27) for x=0, can be viewed as

special cases of product representations for arbitrary x's. Indeed,

the auxiliary functions are entire functions of 2 of order 1/4. Con-

sequently, we can write

I(xu 2) r2 (L) dt (t-x)2dt - { -x dt (1 _ ) (3.27'a)j r r j r 17 2 Wx

x x X n=l n

2L (tx)2 2
Y(x, 2 )-r()j r dt (I 2 (3.27'b)j r (227b2~ (x)

x n

n 1

2 L w 2~,2) =2(L t-x d(i W
rr L) (1 (3 .2 7 'c)

Jrt11 (x)

i
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r

'ii'

K(x, 2)= -r2(L) {t (l- (3.27'd)

a 2 (x)
x n-l n

D(x,w 2 ) = r2(L) i W (3.27'e)
7 ~2Wn=1 tn

2 (x)

n(X), n(x), v a (x), a nW and w (x) are the nth eigenfrequencies of a

truncated beam (x,L) clamped at the right end and satisfying respectively

the clamped, supported, non self-adjoint, Rayleigh and free boundary

conditions at the left end. These eigenfrequencies are real, positive

and simple as a consequence of the theory of oscillating kernels.

These eigenfrequencies have an additional property,--namely they

are increasing functions of x. This is easy to understand physically:

as the original beam is stripped-off of the section (O,x), its inertia

is decreased and as a result the natural frequencies are increased. We

sketch a proof of this statement, or more specifically of the fact that

dX 2(x)/dx > 0. (A second proof will be given in the sequel). To thatn

effect consider the truncated beam (a,L). Then

2(ryn ItY = X 0 Yn a < x < L
n n n

Yn ( a ) = Y'n() - 0

Yn(L) - Yn (L) = 0

3.12
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Indicating a derivative with respect to a by a dot, we deduce that

(ry")"= 2XnPy + A 2 (3.31)
nnn n n3.31

and from the boundary conditions:

I.t

y +y'=y'+y =0 at x = an n Yn Yn

Yn '=0 at x = L

Multiplying (3.31) by yn and integrating over (a,L) we get:

2
-r(a)yn (0" a)y 'n (,a) = 2XnnI Ynil

which, after some simple manipulations, yields

dX (a) r(a)[y n(a,)] 2

da 2X (00 IIynil 2

A similar procedure could be used for the other spectra.

The grand interlacing. We are now in a position to resume our discussion

about the interlacing of the various spectra.

Let us consider the curve I(x,'W 2 ) for a fixed value of 2 lying
2 2 (e i.

between I2 and X2(see Fig. Z

Insert Fig.
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I(xW 2) is positive for x in (0,2) and negative for x in (2,L) where

12 (

2 2
(3.25a) implies that the zeros of I' coincide with the curves w =u (x).

n

Therefore I' vanishes only once in (k,L) since an immediate generalization

of (3.15) would yield

iUl(x) < l)•
1 (x)

Over (O,Z), ' could either vanish or not vanish. If I' were different

from zero for all x's in (O,Z(w 2)) and for all w's in the interval (11,2),

then we would have

2 > X'2

which contradicts (3.4d). On the other hand if I' vanished three or

more times, then we would have

4 < X2

which also contradicts (3.4d). Therefore I' can vanish either once or

twice in (O,Z). Let us examine the second case more closely. Graphically,

the situation is as indicated in Fig. 3 Consider the

Insert Fig.

the structure of I on the straight line w = 2. Certainly
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I(Ok 2
2) = 0 , (3.32)

and 4

2l(X,A, < 0 (3.33) '

over the interval (0,Z(, )). Now

Y(0,X22) > 0

But, because of the auxiliary equation (3.25a), this inequality implies

that

2
I'(0, 2 2 > 0

and hence for small values of x, it follows from (3.32) that

l(x,X, ) > 0

which contradicts (3.33). Hence I' can only vanish once and as a result

1 < Xl < 2 < X2

Repeating this procedure, we can conclude that

i < Xi < 1i+l < X i+l (3.34)
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Bv exploiting (3.25b), or rather

Y' = 20

we could show in a similar manner that

'J <  'Ii <  + <  Ui+l (3.35)

Similarly, (3.25d) and (3.25f) would yield

ai < vi < ai+l < Vi+1 (3.36)

and

w. < i <W < i (3.37)Si i+l Ui+l

Additional interlacings can be obtained by means of the quadratic

identity (3.30). Indeed, setting x=O and w=w in (3.30), we see thatn

Y(O, n2 K(O,n2) - 2(0,n 2 ) = 0

which, together with (3.37) implies that

Wi <a i < "i+l < °i+l (3.38)

Had we set x=0 and w=0n in (3.30), we would have obtained

-I(0,On 2) D(,O n2 ) - 02(0,0) = 0

3.16



which, together with (3.38) implies that

i < Xi < ai+l < Xi+l (3.39)

By combining all of these interlacings we can write the grand inter-

lacing

" " < i < V i < Ui <  ( Wi l <  i+l <  i+1 , i+l (W i+l) <  ... (3.40)

The bracket ( wI I ) indicates that the order between these two eigen-

values cannot be decided. As we alluled to, the homogeneous beam

provides an instance where one can check that the A's and the w's do not

interlace.

Clearly, the data ought to satisfy (3.40) in order for a solution

to exist. More specifically, since only {w }, N } and i n are given,n n n

the data should satisfy the small interlacing, namely

Wi < V < l < 2 < 2 < W2 < (3.41)

We are prepared, of course, to require that the w, v and w spectra have

the asymptotic behavior given in (1.38) and perhaps some other gross

condition(s) akin to (3.3) for the vibrating string. But, as we shall

soon see, the situation is far more complicated and other conditions

must come into play. Some of these additional conditions arise quite

naturally in the process of constructing the solution to the inverse

problem. Therefore, we must examine this process; the first step is a

discretization of the direct problem.
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A useful discretization. The basic idea for solving the inverse problem,

is to look upon the beam with given spectra {w ,V, n n l as the limit
n N-

of a simpler beam with truncated spectra {wn V 9 N-' as the

number of eigenfrequencies tends to infinity.

Beams with a finite number of eigenfrequencies must have a

finite number of degrees of freedom. Thus, they must be made up by a

finite number of point masses. Consequently, their density structure is

of the form

N-1
p(x) = mi 6(x-xi). (3.42)

i=l

The structure of the flexural rigidity is not dictated as clearly. One

useful approximation is

I N

r(x) = f. (x-x.) (3.43)

I have discussed already such discrete N- beams (Barcilon 1979a,b):

they can be thought of as being made of N+l weightless segments of

length { }N  and of infinite rigidity, connected by clothespin-like
N-

devices of mass (mI}1  and "flaccidity" (or limpness) {fiN (see
1 1

Fig. 4 ).

Insert Fig. 4

N
These elastic joints are located at (x IN where
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Xi+l - x, = 2i , (i=O, 1, ... , N) (3.44)

It is important to realize that the structure (3.42) of the density is

solely responsible for the finite number of eigenfrequencies of the

resulting beam. The structure (3.43) of the flaccidity is chosen for

convenience. In fact, other forms could have been chosen which might

indeed be preferable in other problems. For instance, we could have

written

1 1 for x < x < x.
r(x) ri_ 1-1

i.e. we could have considered the weightless segments to have finite

constant rigidity. This case is briefly discussed in an appendix.

Since we are interested in the discrete version of (3.25) it

would seem expedient to substitute in these equations P(x) and r(x) by

their expressions as given in (3.42) and (3.43). However, this

approach is dangerous because of the occurrence of products of

generalized functions. We shall follow therefore the long route

and discretize (1.2) first.

Over a generic interval (xi I xi) the equations (1.2) become

=' 0
6' =0,

(3.45)
T' =-X,

'= 0

Integrating once, we see that for xil < < x,
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,1

y(x,W 2  = () [x-xi_] + Yi( (W

2(x,w2  (W 2 )

(3.46)

T(X,w) = -Xil(W 2 )[x-x + Tl(W2)

X(x,W
2) = Xi (t 2

Clearly yil' 8 i-' Ti-i and )i-l correspond to the values of y, 9,
T and atx i-l+0. At x=x, the following jump conditions hold:

Y(xi+O,W2) - y(xi-0,W2 ) = 0

8(xi+O, 2 ) - 6(xi-0,W 2 ) = fiT 9

(3.47)

T(xi+O,w2 ) - T(xi-0,9W ) = 0

2 2 2
X(xi+O,w ) _ X(xi-O,w 2 ) = -mi 2yi

Substituting the expressions (3.46) in the above jump conditions we

obtain the discrete version of (1.2), namely

Y= Yi-l + ii i-i

ei 0 8i-l + fi Ti 9

(3.48)

Ti T - i i-i

2

X, )(i-1 - m i Yi
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We next define two fundamental solutions of the above difference

equations, clcsely related to the functions u(x,w 2 ) and v(x,w 2).

We denote these solutions by a superscript (3) and (4), and characterize

them by their values at x=x+l:

_(3) (3) (3) _ i (3) 0

YN+l eN+l *tN+l XN+l

(3.49)

(4) (4) (4) (4) +
YN+l = N+l = TN+l= XN+l l '

or, in view of (3.46)

(3)= (3) T (3) 1 (3) 0

(3.50)

(4) (4) (4) (4)
S N =N N XN+lO.

Pursuing the analogy with the continuous case, we define

(3) (4)
Yi Yi

li( 2) = 0 (3.51a)
(3) (4)

.(3) (4)

i i

Yi(W 2)  (3.51b)

T(3) T(4)

(3) (4)
Y2

(3 .51c)(3) (4)
XI  X i

3.21
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(3) (4)

= 2 (3.51d)
(3) (4)

T|

(3) (4)
K 2i i . .

K (2) = _ (3.51e)

i (3) (4)

D i(W 2 )  (3.51f)

(3) (4)

xi xi

Making use of (3.48), we can deduce that these discrete auxiliarv

variables satisfy the following difference equations:

I = I1 + fYi , (3.52a)
i i-i i1

Yi =y i-l + z i-i i-+i 
(5

J.=J + z Ki (3.52c)

1, 
= )i-l + zi- Ki-i (3.52d)

2
Ki , Ki~ I + fiDi - W mi iI (3.52e)

2
Di = Dil - W2 i g (3.52f)
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The advantage of following this procedure is now clear: we do not have to

worry about whether the derivatives are to be discretized as forward, back-

ward or centered differences. The choice is made quite naturally. As

an additional bonus, we can check that the discrete version of the

quadratic identity (3.30), namely

-ID + YiK - 2 0 (3.53)

is compatible with the equations (3.52). Equation (3.53) takes into account

the face that

J. .(3.54)1 1

which follows from (3.52c), (3.52d) and the end conditions

I,, = YN JN, =  0N = KN = DN- = 0 .(3.55)

Eventhough the generic N-beam under discussion has a length

XN+i, we ended up applying the boundary conditions at xN . As a matter

of fact, the length of the last infinitely rigid, weightless segment

Z as well as the mass of the clast clothespin mN do not enter into

the equations of the discrete beam. This is a consequence of the

clamped boundary conditions at the right end. Indeed, the last

segment remains stationary during the vibration. Similarly, the last

clothespin flexes but does not move up or down. This situation is

reminiscent of that for the pathological beams previously discussed.
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Starting from the values of the discrete auxiliary variables .1
at x - xN and making use of (3.52), we can show that I.(w 2  is a

polynomial in w2 of degree N-i-2 whereas Yi(w), 1 (W
2), Ki(W 2) and

D i(W 2) are polynomials of degree N-i-i. In particular, at the point
i

x-O which is associated with i=0, we have

N- 2
N N N-"

1I (W) fi x.2f. ( xif. iII (1- 2-) ,(3.56a)

n1 nN N- 2

( 2 ) = x 2fil (- , (3.56b)

N-I

o(W ) f (- ) (3.56c)

n = 1n

N-1

N-i 2
D 2) _I i-~- (3.56d)
0 ( I

These expressions are the discrete anaiogues of (3.27). We are now in

a position to outline a program for solving the inverse problem. Given

the impulse response, i.e. given {w n, ,~ , F1 and Fwe shall

attempt to construct that N-beam whose elgenfrequencies are

I adh that
1 n. 24 c
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1

N
.xf = F,

(3.57)

Nxi f i= F 2
NN2

In other words, given the 3N-1 bits of data {w, n' Vn -11 , F1, F2
N r N-1, {f N

we set out to find the 3N-1 unknowns {xi}l, {m i 1

Construction of I (w ) and K (w 2). With the given data, we can constructo o

the polynomials Y (w 2 ) 0 (W 2) and D (w 2). By means of the polynomialso 0

and the quadratic identity (3.53) for i=O, we can find the value of Io

at N-i points. Indeed, by setting w=un in (3.53) we deduce that

~ e 2 ( o 2)

lo(Pn 2)  0 2 n n- 2, ... , N-I (3.58)D (p 2)...
0 n

I (W2 ), which as indicated by (3.56a) is a polynomial of degree N-2,
0

is therefore completely determined:

N- 2

2 (n k#n k

o 2 D ( 2  N-I 2
n l n(- n )

k#n k

Note that the zeros of the above polynomial are real and positive. Indeed,

2)"N-i
since w and ,i interlace, the terms in the sequence {Do( n l

3.25



9

alternate in sign. As a result the sign of I o( n) alternates with n.

2 (N) N-2We shall denote the zeros of I (w ) by { n the superscript IN

being used to remind us that these eigenvalues are associated with

the N-beam. We shall drop this superscript whenever there is no

possible source of confusion.

We have just outlined a procedure for finding the eigenfrequencies

of the N-beam in the clamped/clamped configuration. The fact that we can

find these eigenfrequencies is not surprising since Fl, F2 and

N-I
{Wn, Vn } n 1l define the N-beam completely. What is surprising is

that we can do it without having to first solve for the structure of

2
the N-beam! In the same way, we can deduce K (w ) and its zeros. We

should point out that the fact that we were successful in determining

I (W 2) and K (W 2) is related to the way in which the given spectra

entered into the quadratic identity. As discussed in Barcilon (1979b)

three spectra and two gross constants a sufficient to determine a non-

pathologic beam, provided that these spectra are sympathetic, i.e.

provided that they are such as to yield two other spectra from the

quadratic identity.

aN- n %(N) N-2
Having established the interlacing of {n and n }i

i.e.

S< (N) < (3.60)1N < N-2 UN-1

we can establish in a similar manner that

1( <  N) <  N (N (3.61)1 ' N-1 CN-1 3.1

and
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(N) (N) < A (N) (N) (3.62)
1 1 N-2 < N-i

To these interlacing relations, we can add those that the data must

satisfy, i.e. the small interlacing (3.41), or rather

Wi < V < < " < N-i < VN-i < 1N-i (3.63)

However, the grand interlacing (3.40) is equivalent to nine interlacing

conditions; we are missing the following three:

(N) < (N) < (364a)(N < <  <a <v- -

1 1 1- N-i136a

(N) < P <  (N) (3.64b)
1 .. <N-I < N-I ,

and

1< N) < (N)-2 N- (3.64 c)

These three interlacing conditions are related to each other. In fact,

(3.64c) implies (3.64a) and (3.64b). One can see this by writing the

quadratic identity as follows:

I (V ) -0 n 2 Y o(V n) Ko (v n 2 (3.65)

Then (3.64c), toqether with (3.63), implies that K (v n) alternates0 fl

in sign, i.e. (3.64a) holds. In addition, (3.64a) and (3.61) imply
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(3.64b). Thus, we only need to focus our attention on (3.64c). This

interlacing condition 2annot be deduced from (3.63). We present in

the appendix an example of a trio of spectra satisfying the small

interlacing, which give rise to a X-spectrum which violates (3.64c).

N-i N-i
Therefore, not aZi interZacing sequences {wni I and {i

n1 ni 14

:re s'ona fide spectra ofa n 1-beam. (This is to be contrasted with

the situation for an N-string). To be such, these sequences must

satisfy the additional constraints

2)
(-l)" Io (Vn 2 , n=l, 2, .... N-1 (3.66)

or, in terms of the data,

N-I 2 N-1 2

N-1i Vr (1- 2 2
(_1) n il " i i

N-I 2 N-i 2

;'a.

j=l 7 (1- 2 ) (-32
i=l i i j i

The stripping procedure. Let us assume that we have determined I (w 2)
0

and Ko(w ), and that X (N) and a (N) thus found satisfy all the necessary
n n

interlacing conditions. The next step consists in writing (3.52) for

i=l as follows:

2 2
o A12 = - (3.67a)
K (w2) 0 K (w 2)

0 0
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=y(2) ol 2)
Y (W- ) + W + ( 2(W (3.67b)
1 0 0 0 0

W2 (W4Io(2) I(2 )

2 = f (3.67c)
YI(w) Y (W 2)

Do )  2 D ( 2)

yl(2) ml2 +2 D 1 (3.67d)

2 1( 2 1 ( 2)Kjw 2 K 0(w 2 + f- W m 1 0 (W 2 (3.67e)

o 11 0
By dividing -e 0(w 2 ) by K (w ), which are two polynomials of the same

degree, the quotient is a constant Z and remainder a polynomial of
0

degree N-2 in w , namely 1(w ). Knowing Z0 and 1 (W ), we can find

Y(W ). Dividing next 2 by ), once again two polynomials

of the same degree, we infer the quotient for and the remainder 1(W 2

2
Similarly, by dividing D 0(w") by Y 1 (w ) which is of lower degree, the

2 2
quotient is m 1w and the remainder is D 1 (W ). Finally, we can

2
evaluate K (W ) and start the cycle over again.

We postpone a discussion of this formal construction procedure

until later and simply remark at this stage that by setting w-O in

(3.67d), (3.67e), (3.67a) and (3.67b) we would get:
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'I

D (0) =1

N
(N)+

KI(0) = -F + f - fi
0 2

N) 
N

(0) = F 1 -Z
o F = Y (x-o) fi (3.68)

Y1( 2 o 1 0 0

N 
(

= 0 1 x-) f
2

where

(N) 
N

I(0) can be deduced from the quadratic identity:

N N N
I(0) fi I (xi- o)0 f - (  X (- 0 fi

2 2 2

These expressions are similar to those for D (0), ..., I (0) except for

the fact that the first segment as well as the first clothespin are

missing. Thus, by means of this procedure we have "stripped-off" a
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little segment of the beam. This is reminiscent of other inverse problems

such as in seismic prospecting wherr this stripping-off is usually

carried out in the time domain (Berkhout & van Wulfften Palthe, 1979).

The Stielties theorem. The procedure we have outlined is formal since

it does not necessarily yield values of Zi. mi and f.i which are positive

and hence physically meaningful. Indeed, numerical experiments carried

out with spectra satisfying the grand interlacing have revealed that

conditions (3.41) and (3.66) are not sufficient to guarantee the

positivity of the physical characteristics of the N-beam. In contrast,

the interlacing (3.2) is sufficient to guarantee the positivity of the

density of the corresponding vibrating string. This is a direct result

of a theorem of Stieltjes which we can state thus:

Part 1. If 0 < < 1 < ... < aN-1 < aN-l Ithen

N-1 N-2P2 2
n= l OLn n=l n( . 9n n1

2 = £ + -l 2(3.69)N-1I N-1I

7 2 2

n-l 8n n-l n

where

z>0

and

1i < Yi < ai+i i-i, 2, .... N-2 (3.70)
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Part 2. If 0 < ~1~< <N-2 < N-1 then

N-1 N-2

Th1 W22-7 2 2

n ~ - - 2 + n--l 6 n-(.1
N-2 -N-2 '(.1

where

m >0

and

S< 6 1< ,i i=l, 2, . .. , N-2 (3.72)

We can apply Part 1 of Stieltjes theorem to (3.67a) to show

that Z. > 0. In fact
0

N-1
F1  (N)2

1 (Na (3.73)

0n

or, equivalently

N-1

= 2 13(3.74)

o F1  2

n-i
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Both of the above expressions for Z are compatible on account of the
0

quadratic identity. Also, if we denote the zeros of 0 (W ) by

2}N-2
n , then (3.70) implies that

V' <  i t <  i+ 1 i=l, 2 , . ... , N-2 (3.75)

Eliminating Z. from (3.67b), we get

0 2(W2 2(W2o(w 2) 012(w)

yl(W 2 ) = Yo(W 2 )  +

1 0o 0( 2 K W2)
K(w 2) Ko(w)

which, because of the quadratic identity, we can also write as

Y (W2)D( ) 12(w2)

K (w2) K (w)
O 0

By setting w=X in the above equation, we deduce that

2 2X 12
1 o£ 2 1=1, 2, ..., N-1

Since ai and X interlace, Ko ( 2) changes sign as i goes from 1 to N-i.
9 o 2

Consequently the zeros i' of YI (2 ) and Xi interlace. In fact, we

can show that

1 iI  ' NN-2 AN 2  (3.76)
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This is the condition which is necessary if we were to apply Part 1

of Stieltjes theorem to (3.67c). As a consequence it follows that

f 1> 0 and that

i ,i< i1i=l, 2, . .. , N-3 .(3.77)

In fact

F (N N-2
-F) 27 , 2

f 2 21 n!. (3.78)
F'
2n

n-I

where

F' 2f
2 1 x~ 0  .2

A more useful expression for f can be obtained by writing (3.52e)

thus:

K=K 0+f ID 0-W2

from which we deduce that

N- 1 2

f F () l (3. 79)
1- o 7 0 (N)

2

n-I n
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Incidentally, as a result of the interlacing between w and a(N) f 1
n n'

is smaller than F (N) Hence KI(0) as given by (3.68) is negative.

00 1In thee 1' vein, (3.73) shows that oFo is smaller than F and

hence 'i(0) as given by (3.68) is positive. Finally, in this same

formula, Y1 (0) can be seen to be negative. In summary

K (0) < 0

a (0) > 0 , (3.80)

YI(0) < 0

i.e., they have the same signs as K (0), 0 (0) and Y (0) respectively.

We next turn to the equation (3.67c) for K1 and proceed to eliminate

f and mI from it. In other words, we write it thus:

II-I o  To-D 1

K K +-I D -- I
1 0 Y 1 o

which after simplifications brought about by the quadratic identity

for i-l, becomes

DoI + Y o 0 0 (3.81)

Setting w-u'. in this hybrid quadratic identity, we see that1

-2 1 ( i
Do(Ui2) I1(i2)

of
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I
Making use of (3.76) we deduce that

WS i < Wi+l i=l, 2, .... N-2 . (3.82)

We are now in a position to apply Part 2 of Stieltjes theorem to

(3.67d). As a result m > 0 and

Wi < W' i < W' , i=l, 2, ... , N-2 (3.83)

In fact

N-2
-7 I n I 2

I nl (3.84)
1 F, N-I

2 -77- 2

n=l

For the record, we also write an alternative formula for mi, namely

N-I
F (N) 2

m 2 (N)2  (3.85)
1 Fo (Nr- 2 a N)

o '2 'l n=1l

We can derive two more interlacings by setting w equal to wi and

in the quadratic identity. These are

W,' 1 ' < , il, 2, ... , N-2 (3.86)
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and

< < a ' i=l, 2, ... , N-2 (3.87)

In summary, starting with the polynomials I (w-) ... , D (w )
0 0

whose zeros satisty the grand interlacing (3.40) we can deduce

(i) o f and m1 which are positive,

2 2

(ii) new polynomials I , ... , D (W) of lower degree; these

polynomials have the same structure as the original ones at w-0. How-

ever, their zeros satisfy only cur interlacing conditions. These

conditions are

l'< i'< < I' < '
N-3 N-2

01 < < N-3 <  N2

(3.88)

Wi < Ul < < w- < 
W

ul < '0 < ... ' 0ml~ ~ < I '"-2 < N-2

Thus, we do not close the circle: other conditions must be placed

on the data to insure that the eigenvalues of the "stripped" beam

satisfy the grand interlacing.

3. 37

. . ..... . . . . . . .



Another method for reconstructing the N-beam. We return to the

continuous beam and to equations (3.27'). After stripping-off the

portion (O,x) from the original beam, its nth eigenfrequency in the

clamped/clamped configuration will be X (x) such that
n

l(X,X n2 (x)) - 0 . (3.89)

Varying x a little, we see that

2

I'(x,A 2(x)) + i(x,x 2(x)) n = 0 (3.90)n n dx

2where a dot represents a differentiation with respect to w . But

according to (3.27 'a)

L( L L2

i(x,x 2 -(x) r 2 (A ) t x? d- t-x d J
S2 (x)x

I (i- n ) , (3.91)
Ak (x)

k#n

and I' can be obtained from the auxiliary equations (3.25).

Consequently
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L W (x

dX2x2WL Zd 2 W_

ciA2 2 (tx1

L(t-x) if- t-x~ 1t

o x k Wx

2(x 1) (3.92)

Note that each term in the right hand side is positive. Hence A (x) is
n

an increasing function of x. The reader may recall that we gave a

different proof of this result earlier.

In the same manner, we can show that

L 2

du 2 f -x-dtVW

dx 1n L2 W-
2 n (x n x

x r 1k~x

2 2(

dv 27 GL 12 VW
n. x V W 9  -t 1) k (3.94)

dx n x r k~n I-C
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2

a (x)
don x 2. Wk2(x Xk (x) n'( .5

dxL r~ x L dt ( 2 21
dt I1-n

- 2 (

2 L 2

W d1-
4 x L r 2 22 Wkx a 2

a (~o~) dt((tx) t-(I- 1t - (1 2W

an ZL dt no be rtivdad (ir 0htteeaeN
2
(x eievle (x)

th clme/lme cofgrto as oposd oN-1  fo h tes

Keepng n mid tese essns, et s dicreize he boveforula

ths
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N-i

2 2 2 k=l k

' f=XfX-F- fi X j N-2 (3.92')
n n n FoF2_ - 1

k#n k'

N-i 2

F -2
,2 2 1 k=l k(-- i - 2Z°'n N-i22 (3.93')
n n onF2 N-1 2

k#n

N-i 2

' 2 k 0 k=1 k (3.94')
n n o n 0 N-I 2

k#n k

N-I 2

2 2 21 k=l k
Sn I n F- N-i 2

n7 in F O a n

kin k

N-2 2

+ma4 Fk0F 2F k (3.95')

FF2 71  
k2

1 mln F N-i 2

kin k
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N-1 2

-7 (1_ U- n)
,2 2 ln2F, k=li

W) 2 2 + mW (3.96')
n n in 2 N-i 2

-7(1- ---'2

k#n Wk

The reconstruction of the N-beam proceeds as follows:

(i) by means of the interpolation formula (3.59) for 10(w 2) we

infer F and {X N2o {nil

(ii) from the quadratic identity we get K (w 2) and hence
0

{a I N-1

nl

(iii) we compute ko' fl and m1 by means of (3.74), (3.79) and

(3.85);

(iv) we compute A' n' 1'n' V9, a'n and w'n from (3.92')-(3.96').

This information enables to continue the stripping process.

The above procedure has many advantages over the previous one.

It is attractive from the numerical point of view since long divisions

as well as locations of zeros are avoided. It is pleasing from the

esthetical point of view since it couples the given eigenvalues to

the unknown structure without the intermediary of the eigenvalue

problem. Finally, it might prove helpful in the search for the

missing conditions satisfied by bona fide data. Indeed, (3.92)-(3.96)

indicate that the relative distribution of eigenvalues determines the

slope of the curves w-A (X), ..., W-un(x) at x-O. What should the values
n n

of these slopes be in order for the curves not to intersect each other?

The answer to this question would provide the missing conditions we are

looking for.
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The limit N-. We would like to examine whether or not the sequences

{(N) (x) and ir (N) (x)} converge, where

p(N) (x)= m (N) 6x-x (N)

andI

1f(N) 6 x-x N

r ()(x) l

We shall assume that the beam has a finite length, i.e.

L= n (N)(37L * X N (.7

or, equivalently,

lnN-1 (N) (9'
L N- 3.i7o

where

N-1

(N) 2 n n

ninl n

(N) F' 2,N2 V 2 etc. . ..
1 19 T W n2

n-1
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If the data are such that (3.97) holds, then we can define

L

F(x) dt (3.98)S r Ct)
x

and

L

M(x) } (L-t)2p(t)dt (3.99)

x

Clearly, the N-th approximation of these functions are

F (N)(X )  N f (N) (3.98')
x >xxi.>_x

and

N 2
(N) I (N) xN)) mi(N)M(N (x) ff ( - (3.99')

x.>x
1-

From their definitions, F(N)(x) and M(N)(x) are non-increasing functions

of x. In fact

(N) (N)F(x) < F 0 (3.100)

We can express F (N) in terms of the data by writing (3.59) as follows
0

(N) F 2  1o(0)
F F 2 + F2o F2  F2
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or better still

N-i 2 2

(N) F 12  F 12N-i k=i V k
F - (3.101o F F 2 n1 N-i 2 N-i 2(31)

2T 2n 2- 17 n r
k-i (LIk k~n W

Therefore, if

T7 1-V n 2(3.102)

k-i k

n-l FT 1-- ji2 1- n2

k-i w k 2kOn I

Then the limit of F 0()as N tends to infinity exists, i.e.

Fo = lrn F (N) (3.103)

and this limit provides an upper bound for F(N(x), i.e.

F (N) (x) < Fo for 0 < x < L and for every N. (3.104)

Similarly, the functions {M (N)CW) are also bounded above. We can see

this as follows. Let us substitute the series representations for

Y(x,w 2 and D(x,w 2, namely
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2 rt + (t(x-1 n (x) 2n
ir nl

x

and

D(x, 2  r 2  L) + I (_i)n d n 2n

n=l

in the auxiliary equation (3.25f). Then, the linear terms in w2 yield

rL 2
d -P (t-x) dtd1 - r(t)

x

i.e.

L L

dl(X) - p(t')dt' ( dt (3.105)

x x

Confronting this result with the product representation of D(x,w
2)

given in (3.27'e), we conclude that

L L

1 - 2 f (t')dt' dtn=l w 2 0 I r(t)

n 0 t

or, after interchanging the order of integration
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L t
rLt) (t-x) 20 (x)dx. (3.106)

n-l n 0 r(t) 0

being integrable for t in (0,L) we conclude that

t

S(t-x) 2p(x)dx <

0

As a result M(O) exists and

M(N)(x) < M(O) for 0 < x < L and for every N. (3.107)

Therefore, the non-increasing sequences of function {F (N)(x)} and

{M (x)} are bounded above. Hence, according to Helly's selection theorem

theoren (see e.g. Natanson 1955, p. 220), we can extract from these

sequences two subsequences which converge for all x in (0,L) to two

non-increasing functions. In view of the uniqueness theorem, these

limit functions must be the functions F(x) and M(x) associated with

the non-pathological beam. Finally, p(x) and r(x) are obtained after

differentiation.
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CONCLUD ING REMARKS

We saw that the information contained in the impulse response is

equivalent to the three symphathetic spectra {wi1, fv I and {w 1, and the

two moments of the flaccidity F 1 and F 2. We also saw that the information

contained in the impulse response does not, strictly speaking, determine a

single beam. Rather, it determines a class of beams: all the beams in this

class have the same oscillating portion, but they differ over that rear portion

of their lengths which is stationary. This stationary portion is made up of

a weightless rod of infinite rigidity. I was surprised by the fact that the

massive wall in which the beams are embedded is not part of the ambiguity.

The uniqueness proof has the drawback of requiring that p(x) and r(x)

be differentiable functions. This is doubly regrettable: firstly, because

the degree of smoothness of p(x) and r(x) is not easy to infer from the data

and secondly, because discontinuities are likely to occur in the more difficult

geophysical problem for which the beam is to serve as a guide. Ideally, these

smoothness requirements ought to be relaxed. To that effect, it would be

desirable to derive the uniqueness result from the construction, i.e. to show

that the approximations form a Cauchy sequence.

Our discussion of the inverse problem was carried out entirely in the

frequency domain. Yet, the stripping procedure, which unraveled progressively

the structure of the beam, is a reminder of the presence of a wave propagating

along the beam. In spite of this time domain intrusion, I believe that the

frequency approach is best suited for this inverse problem at hand. indeed,

the continued fractions reliance on the w-dependence shows very clearly the

advantage of working in the frequency domain. In addition, the theories of

entire functions and of oscillating kernels provide some very powerful tools

for the investigation of the problem in the frequency domain.
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The actual construction of the solution required a discretization of

the original problem. This discretization is an essential step which cannot

be by-passed. Indeed, the global condition (3.102) is a direct result of this

apparent detour. The same remark holds for the vibrating string: the global

condition (3.3) is a consequence of a discretization followed by the limiting

process N- .

The existence of the solution to the inverse problem is tied to very

stringent interlacing conditions on (w n}, {Nn} and {p n. These conditions

are such as to guarantee that the spectra {w n(X)}, ..., {Xn (x) for the

truncated beam spanning the interval (x,L), satisfy the grand interlacing.

Rather than having to check at each step of the construction whether the

grand interlacing is satisfied, it would be desirable to have explicit ways

of testing, from the outset, whether the data are bona fide.

In the investigation of the limiting process N- , the length L of the

beam was assumed to be finite. This convenient assumption is not essential.

Very minor modifications are needed to handle the infinite case since the

Helly selection theorem can still be used.

Finally, our analysis dealt exclusively with the beam in the free/

clamped configuration. For other vibrating configurations, the details of

the results would be modified: for instance, the impulse responses would be

equivalent to other trio of sympathetic spectra and the gross constants would

not necessarily be related to moments of the flaccidity. However, the approach

to the questions of uniqueness, existence and construction, which was used in

the present paper, ought to be applicable for general boundary conditions.
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FIGURE CAPTIONS

Figure 1: Sketch of the Green's function N(x,t) for the non self-adjoint/

clamped configuration.

The curvature of N(x,t) changes at x = x (t).O

Figure 2: Sketches of the auxiliary function I(x,w 
2 ) for a value of w-

2 2
lying between X and X22

The number of local extrema depends on the relation between the

X- and u- spectra.

2 2(x an 22

Figure 3: The w -x plane. The solid curves X1 2x) and X (x) represent the

first and second eigenvalues of the truncated beam spanning the

interval (x,L) in the clamped/clamped configuration. The dotted

curves represent the corresponding eigenvalues for the supported/

clamped configuration. By considering I(x,A2
2 ) we can show that2

this arrangement of eigenvalues is not permissible.

Figure 4: The discrete N-beam. Its structure consists of N clothespins

located at xl, x2, ... , xN . These clothespins have masses {m.}

and flaccidity If and are connected to each other by weightless,

infinitely rigid rods of length {ti}.
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APPENDICES

Alternative ciscretization. We still insist that the mass of the j.
beam be concentrated in a few points, namely that

N
0 (x) Z 5 i (x-x ).

i=l

However, we now allow the connecting segments to have a finite

rigidity:

1 1

1 for x_ < x < x.
1l

Substituting these expressions for o(x) and r(x) in the auxiliary

equations (3.25), we deduce that over the interval (xi-l, x i )

D(x,w 2 ) Dil(W2) I

K(x , 2)  i-il (W (x-xi )  + Ki (W 
2 )

2

D (w)

2(xw2 _- I  (x-x_2 + Ki-l(W2 (x-x_
2r i1  i-I i-

+ (wil( 2 ()

A..



Y~xw 22G- 1(x 
2 3+) ( ( x 2 ) + x- Y ( 2

2 K2

D (w) 2 K (w) 2

I(x,w 2  = - 2 (x-x 1 1 4 + 3rl (x-x. 3

12r 1 1 2i-i 3

+ (xwx) + i- (2) x + I(

r 2

We next match the expressions for I(x,w ) .. D(x,w 2 at x=x:

D -D =-mY - 2M
i i-1 r i i-

2.2

K -K -z K +mI
i - , i - i-I iil i-

Y, -G =2X K + D
I i-l I- i-1 2r1 1 -1 ri-

2 ~1-14

1- 1 -y +r 0, + T ,K + D
i - -i l 1-1i -i - 12r2 1 -

A.2



These are the discrete auxiliary equations. It should be noted that

they satisfy the following identity:

_ _2
-IiDi + YiKi 2 -l_ D i + Yi-i i-il i-l

This identity leads to the quadratic identity when coupled with the

boundary conditions.

Example of a violation of the grand interlacing. Let us consider a

4-beam whose impulse response satisfies the small interlacing. More

specifically, let

2 2 22 1.00, I = 2.00, 2 = 3.00 ,

2 2 2
(2 = 3.01, V2 = 4.00, W2 = 5.00 ,

)3 2= 6.00, 3 7.00, W3 = 8.00 ,

and

F1  1.00

F2 =1.33

Following the method outlined in §3, we can construct I ( ) which is

2 2a polynomial of degree 2 in w. The zeros of I (W2) turn out to be

A. 3



2x = 4.94

and

2

A 22 . 7.90

Note that

2 2

and

2 2> V32

which violates the grand interlacing. Were we to pursue the construction

of this 4-beam, we would find that some of the Z's, m's and f's are

negative.
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