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I. STATEMENT OF THE PROBLEM

The goal of this project is to improve the accuracy of rate control
systems. The traditional direct-fire gun-type turret itas sn accuracy
requirement on the order of 0.2 milliradians which is sufficient for
ranges of from one to two kilometers. Laser designators and guided
missile directors are designed for twice the range and therefore require
twice the accuracy, i.e., approximately 0.1 milliradians. Even the best
modern turret systems have trouble achieving this order of accuracy all
the time. This effort attempts to determine which system character-
istics are limiting tracking accuracy. It will then be possible to
write specifications in terms of hardware characteristics rather than
in terwms of system performance goals.

The premise of this approach is that the solution can be found ia
the nonlinear behavior of the turret systems at very low rates. The
tracking rates of interest and changes in rate that are called for to
achieve precise tracking are very small, A 30-kilometer-per-hour target,
for example, at a range of 4 kilometers and a heading of 30 degrees
would result in a l-milliradian-per-second crossing rate. The gunner
will command small changes about this nominal rate in an attempt to
reduce the tracking error. We can infer the magnitude of these changes
to be less than 0.3 milliradians per second (referred to the output) by
the following logic. Since the desired error tolerance is on the order
of 0.1 milliradians the gunner should have the ability to make commands
at his bandwidth (3 radians per second) which would result in amplitudes
of 0.1 milliradian., Assuming a sinusoidal input of 0.3-milliradian-per-
second amplitude and 3-radian-per-second frequency the output would be a
sinusoid with 0.1-milliradian amplitude.

The nonlinear elements in the turret, i.e., backlash, coulomb
friction, and deadspace, will have more effect on the turret response
at low rates and for small commands., The gunner will notice a decrease
in gain and an increase in phase lag. He will attempt to compensate
for the turret changes within limits, but eventually the tracking
error will increase above what it would be for a linear system.
Moreover, the human's ability to compensate will vary considerably
with training and between people. The result will be unpredictable
system performance due to operator differences rather than hardware
differences.

Traditionally the” turret specifications for low rate tracking
have bheen system performance specifications with a human operator in
the loop, e.g., O.l-milliradian root-mean-~square error when tracking
a l.0-milliradian-per-second target for 10 seconds. It would probably
be better to specify the accuracy requirements aga.nst sinusoidal
inputs and better still to specify the system characteristics without
a human operator in the loop. Enough analysis of linear control
systems with human operators has been done to relate accuracy to
system characteristics (gain and phase lag) and input power spectra at

7

~NOT Flugp

Sl

N TAZ R TA M Fde farter

=




R Gt s 4
e e v BRI ORI

(gt

Aty
4
RCasciaia s Lociah g s Sal

ZEGE Bt S gy vy

i T R O N e

least for linear control systems. This report addresses the system
performance at low rates when the nonlinear system characteristics are
important. Ultimately this work should lead to specifications of
system characteristics which are required to achieve any specified
degree of accuracy.

IT. APPROACH

The overall solution to the problem requires three distinct tasks
to be carried out by three different organizations.

a. First, there 1s the characterization of a typical turret
control system at very low rates. An MAOA3 turret control is being
used because it is available now and in the future and it is typical
of current military turret control systems. Frequency response and
transient response will be measured at various amplitudes from low
rates near or below threshold up to high rates in the linear region.
This work 1s being done under contract by General Flectric,
Pittsfield, Massachusetts.

b. Second, there are experiments with humans in the loop and
with computer simulated turret response. These tests will charac-
terize the human operator and they will allow for some limited para-
meter variations of turret response. Human Engineering Laboratory is
doing this work. ‘

c. Third, there is an analysis task with both the turret
response and the human operator simulated by a computer. This task
allows for parametric variations of turret response just as with the
human experiments; but the computer allows for almost unlimited para-
meter variations bhecause the trials are faster and they are without
random human variation. This report descrihes the Phase 1 effort on
the third task.

The Phase 1 effort develops the methods and computer codes hased
on assumed system characteristics. The Phase 1I offort will do it all
again but with accurate system data from the other tasks.

The main task of Phase T was to develop a self-optimizing human
operator model. The model must minimize root mean square (rms)
tracking error, subject to constraints on human behavior, in a
consistent and rational manner. This model was then used to determine
the effects of various kinds of nonlinearities on system performance.
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IIT. PROCEDURE FOR MAN-MODEL OPTIMIZATION

The Phase 1 effort had a goal of developing techniques for
evaluating nonlinearities. This included the man model, the adaptive
algorithm for the man model, models of nonlinearities and some limited
data to show how well the models work. Complicated turret dynamics
were not important at this stage; consequently a very simplified model
of turret response was incorporated. Figure 1 shows a block diagram
of the control loop and the linear models that were used for the man
and turret. The reference signal was either white noise, a sinusoid,
or a maneuvering tank. The human model was a conventional linear
model from Sheridanl to which a noise remnant was added for reasons
that will be explained later. The turret response was given a time
constant of 0.1 seconds and a gain of 0.0l radians per second per
radian. These parameters are ahout right for a tank turret at very

low rates. Nonlinearities were introduced in the digital simulation
at the points shown in Figure 1.

The notation in Figure 1 was chosen to he consistent with the
digital simulation shown in its entirety in the Appendix. The linear

transfer functions were simulated hy the step invariant zeta transform?
method.

T T T A PR ACTI R T T Rl

T8, LTS
YH sKo" " * ml;s-
i Deadspace (4] Coulosd 1
A} p Sackspace TS - Friction T Backlash
4

Output
H

Figure 1. Block Diagram of Control lLoop .

1Man-Machine Systems, Sheridan and Ferrell, 1974, MIT Press.

2bigita1 Signal Analysis, Stearns, 1975, Hayden Rook Company Inc.
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An algorithm for optimizing the human transfer function was
developed while using white noise for a reference signal. It minimized
rms tracking error but with a penalty for open loop gain margin less
than 6 db and open loop phase margin less than 45 degrees. Secant
functions accomplished the penalty by giving a cost factor of one at 6
db and 45 degrees and a cost factor of infinity at 0 db and O degrees.

secant [15 (Gain Margin =6)], secant [2 (Phase Margin =45)]

The loop was warmed up for a few seconds, run for 52 seconds at a time
step of 0.0l seconds, and sampled every .05 seconds till 1024 samples
of input to the man and output from the plant were stored. A fast
fourier transform was taken of the input and output, The open loop
gain and phase were calculated from zero to ten radians per second at
intervals of one radian per second by adding the complex numbers in
every eight cells and then dividing the absolute values to get gain
and subtracting the angles to get phase. The computer program plots
the resulting gain and phase and it calculates the cost. It selects
new values for the human transfer function and then repeats the
simulation and cost calculations until a minimum is established.

The human transfer function optimization algorithm worked fine

with a white noise input, There was enough power at every frequency
of interest to make good calculations of gain and phase. The gain
calculation becomes noisy when the input (the denominator) gets near

zero, The phase calculation gets noisy when either the input or

output power gets too small to make an accurate phase measurement,
The algorithm requires smooth monotonically-decreasing gain and phase
for at least one frequency band beyond 180 degree phase lag. Such
data were obtained with a white noise input with and without
nonlinearities in the loop. Unfortunately real targets do not present
a white noise tracking spectrum,

A realistic target motion was constructed from the following
considerations:

a. The algorithm wants as much power as possible and so does the
maneuvering target; therefore a course made of segments of 0.2g turns
was used,

b, The target wants to move forward rather than go in a circle;

therefore the turns were limited to plus and minus 45 degrees from the
line of sight between the target and tracker.

10
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frequency band, therefore the turning radius and speed were selected
to produce a fundamental frequency at 0.5 radian per secoud so that
the harmonics would fall at 1.5, 2.5, 3.5, ..., radians per second.
The relationships for radial acceleration were used.

radial acceleration = rw? = v2/r = 0,2g
r = radius = 8 meters
w = angular rate = 0.5 radians per second

g = acceleration of gravity = 10 meters per second squared

d. The range to target was set at four kilometers to reduce the
angular tracking rates co the low rates of interest,

Maximum rate = 4 m/s * (sin 45)/4 km = 0.7 mrad/s

These considerations resulted in a course which was roughly sinusoidal
at 0.5 radians per second. The abrupt changes in radial acceleration
every 90 degrees of turn gave strong enough harmonics to allow the
algorithm to calculate gain and phase when there were no nonlinear-
ities in the loop, although it did require double precision in the
calculations. When nonlinearities were introduced the gain and phase
curves became noisy and the optimization algorithm would not work.

Additional power was required at both the input and output at
frequencies of interest (1.5 through 8.5) to make the optimization
algorithm work properly. Fortunately the addition of noise power is
justified as the so-called remnant term of the human transfer function
(YH)‘ Although it can be added either before or after the linear
portion of Yy, here it is added before Yy to enhance the
optimization algorithm operation, but after the rms calculation to
avoid improperly affecting it. The appropriate amount of noise was
calculated by the following steps:

a. Sheridan page 241 shows the noise power to be 20 percent of
the total power at the output of the man., Page 242 shows it to be
uniform with frequency.

b. The Yy can be approximated by a pure gain for power
calculations, because the transportation delay does not affect power
and the lead-lag terms are very small.

c¢. Sample trials have shown the rms error to be approximately
0.3 milliradians.

d. There are approximately eight bands of interest.

11
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e. Therefore power from a sinusoid with an rms amplitude of 0.05
milliradians should be introduced at each frequency band.

0.3 y0.2/8 = 0.05

This additional power helped but sooner or later as the magnitude of
the nonlinearities was increased the algorithm would become too noisy.
There are still a couple of tricks to try, i.e., longer running time and
extrapolation of the phase curve to 180 degrees lag rather than inter-
polation as was done here, These will be tried in the Phase II effort. The
current effort was finished by using the simple expedient of minimizing rms
error and forgetting about the phase and gain calculations. This procedure
raised the gain until the system went unstable. It is a consistent method
but it is probably not typical of human operation.

IV. EFFECTS OF NONLINEARITIES ON THE TURRET RESPONSE

Three nonlinearities were added one at time, Deadspace was added at G3
on Figure 1. It corresponds to the deadspace in a gunner's control for the
first couple of degrees of rotation., Coulomb friction was added at G4, 1t
corresponds to the friction on the turret itself. Backlash was applied to
the output at H and it can also be applied to the input at G3.

Figure 2 through Figure 6 show the effects of these nonlinearities on
the gain and phase characteristics of the turret, i.e., from G3 to H,
Figure 2 shows the turret with no nonlinearities for a comparison., The
turret parameters were B = 10, KB = 1,0, and J = 1.0. These curves were
generated by using a single sinusoid by itself at each frequency. The
family of curves in Figure 3 through Figure 6 represents successive doubling
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Figure 2. Turret Response Without Nonlinearities.
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of the ratio of the nonlinearity to the input. It was done by changing the
input rather than the turret. This procedure is cquivalent to the way the
test data would be collected on a turret. The input amplitudes were 0.125,
0.25, 0.5, 1, 2, 4 and 8 milliradians.

The phase lag shown in Figure 2 points out a limitation of this
methodology. A quick calculation would predict a lag of 135 degrees at 10
radians per second, The figure shows a lag of 150 degrees. The difference
of 15 degrees must be due to the analysis technique which uses the Zeta
transform and the Fast Fourier Transform. The time step used with the
simulation can account for 6 degrees of error (0.0l seconds x 10 radians per
second x 60 degrees per radian). The rest is either due to the FFT or it is
unknown,

GAIN IN DB
6B, 4B.

-88.

188.

128,

IN DEGREES

PHOSL

. T T T 1 T T T " T 1
d. 1 2. 3. 4. S. n, 1. 8. a. 12.

FREQUENCY IN RADIANS PER SECOND

Figure 3. Turret Response with Coulomb Friction.

Figure 3 shows the effect of coulomb friction applied to G4. The
magnitude was 0.1 pound-foot applied to a turret of one slug-foot-squared
polar moment, The ratio 1is about right since a tank has a 22,000
slug-feet-squared polar moment and about 2000 pound-feet of coulomb friction
referred to the turret. The gain decreased as the input was decreased but
the phase lag decreased as well.
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Figure 4. Turret Response With Dead Space at the Control Mandle.

Figure 4 shows the effect of deadspace applied at G3. The
magnitude of the deadspace was 0.1 milliradians. A typical turret
might have 0.04 radians deadspace at the turret control handle. The
turret gain during these turret response runs was 0,1 compared to a
typical turret gain of 0.02 radians per second per radian. Obviously
the problem will require new coefficients for a quantitative analysis
but these figures show the trends,
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Figure 5. Turret Response With Backlash at the Control Handle,

Figure 5 shows the effect of backlash apolied at the turret
control. The magnitude of the backlash was 0.04 milliradians. Once
again the level chosen was not necessarily representative of real
turrets, however it does show the relative effects of backlash on gain
and phase, Backlash at the control handle will cause a phase lag

without changing the gain substantially.
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Figure 6. Turret Response With Backlash at the Turret Output.

Figure 6 shows the effect of 0.00) milliradian of backlash on the
output, Here the backlash can be seen to have a greater effect at
higher frequencies as compared to backlash on the input. The
reduction in amplitude with increased frequency at the output causes
this effect.

The objective of presenting these figures is to indicate that it
will be possible to shape the gain-phase characteristics of the turret
model. This will be done when the test data from the tank turret
become available.
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V. EFFECTS OF NONLINEARITIES ON LOOP RESPONSE

The intent at this point was to calculate the rms error for the
closed-loop system when tracking the target course developed earlier. The
gain-phase plots for the open-loop response of the man and turret were also
of interest, but as explained earlier the gain-phase plots were usable only
for the condition with low levels of nonlinearities, Figure 7 shows these
plots for a condition with no nonlinearities. This condition had a phase
margin of 41 degrees, a gain margin of 4.8 db and an rms error of 0.3l
milliradians, The cross-over frequency (0 db gain) was 3.0 radians per

gsecond,

0 v v v - - v
. + = -+ " + N N

:

o 1

" 3 " N " i n
[

[ ] 1 2 3 ) 1 3 ? ] ; 19
Frequency, radians per second

Figure 7. Gain-Phase Plot Without Nonlinearities.

When the nonlinearities were added the loop was optimized for minimum
rms error. The rms error for no nonlinearities dropped to 0.26 milliradians
but the loop was not nearly as stable. The phase margin was only 13 degrees
and the gain margin was 1.4 db., The growth in rms error with increased
levels of nonlinearities is shown in Figures 8, 9, and 10. The deadspace in
Figure 8 is at the control handle. The turret gain was changed to 0.0l (BK

= 0.10, B = 100) for these runs. The coulomb friction in Figure 9 was
applied to G4, The backlash in Figure 10 was applied to the control
handle.
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RMS ERROR, MILLIRADIAN
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Figure 9. Tracking Error With Coulomb Friction at the Turret Output.
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Figure 10. Tracking Error with Backlash at the Control Handle.

The only conclusion that can be reached at this time regarding Figures
B, 9, and 10 is that the level of nonlinearities that were used did have an
influence on tracking error. It remains to be seen if these are the
appropriate levels, The turret measurement tests will determine the
appropriate levels to use. It also remains to be proven that the man-model

used here is appropriate for this task. The human tracking tests will
determine that,

VI. SUMMARY

A control loop with a man-model and with provision for nonlinearities
was developed. An optimization algorithm for the adaptive man-model
worked well for low levels of nonlinearities, but it had to be simplified to
work for high levels of nonlinearities. Nonlinearities vere shown to
influence tracking error.

The next phase of this effort will have the benefit of quantitative
descriptions of the turret response. The turret will be simulated in more
detail and the correct parameter values will be used for nominal conditions.
Another attempt will be made to improve the adaptive man-model to work wi.h
the appropriate nonlinearities,
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PROGRAM CUNTRL

THIS PROGRAM SIMULATES A TANK GUNNER TRACKING A TARGET.
ON DEMAND IT WILL ADJUST THE PARAMETERS OF THE MAN

TO GIVE THE LOWEST COST OR ERROR.

IT WILL ALSO PRODUCE BODE PLOTS ON PRINTER AND IN A
FILE FGR USE BY A PLOTTLAR.

THE PROGRAM IS INTERACTIVE, AND PROMPTS ALL INPUTS.
A CARRIAGE RETURN (S8 SUFFICIENT FOR AN ANSWER OF
ZERO OR NO.

TWO PROMPTS REQUIRE MULTIPLE INPUTS
ON ONE LINE, SEPERATED BY COMMAS.
FIRST SET:

TRAILING ZERO VALUES MAY BE IGNORED,
COMMAS ARE SUFFICIENT FOR NONTRAILING ZERO FIELDS.
TAU TRANSPORT DELAY IN SECONDS
B VISCOUS FRICTION
BK PLANT GAIN
BKLSH BACKLASH AT OUTPUT IN RADIANS
CF COULOME FRICTION
DEDSPC DEADSPACE AT INPUT IN RADIANS

“ECOND SET:
Tl INTEGRATION TIME IN SECONDS
K GAIN OF MAN
TL LEAD TIME IN SECONDS

INSTEAD OF THE SFCOND SET, DEFAULTS OF
TI = .01, K=2,5 % B, ANDTI = TI + 1/B
MAY BE CALLED BY A CARRIAGE RETURN.

THE PLANT 1S NORMALIZED TO A MASS OF 1.

SUBROUTINES IN THE PACKAGE:

i,

DN
Qe aGa66o0

T

A

i
v e e o

IR W e

A

NN TSI SR e

T SN

THE MAIN PART OF THE PROGRAM DOES ALL THE INTERACTIVE
CONVERSATION AND CALLS PLANTO, AUTO, FUN, AND MACHINE.

SUBROUTIRE AUTO

SETS UP THE AUTOMATIC OPTIMIZATION

CALLS FUN AND FNMIN.

THE PARAMETER ACRCY IN AUTO TELLS FNMIN

THE PRECISION DESIRED.

THE AUTOMATIC MINIMIZATION ALSO TERMIKRATES IF TI
BECOMES LESS THAN .0035

o T SO MR 2 Y e

% k

SUBROUTINE FNMIN

DOES THE AUTOMATIC OPTIMIZATION

CALLS FUN

IF AUTOMATIC MINIMIZATION 1S CHOSEN

FNMIN SYSTEMATICALY VARIES

¥C1)=1/7TI, X2 ) =K, AND X( 3 ) = TL
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TO MINIMIZE THE COST RETURNED BY FURCTION FUN.
X( 1 ) IS INVERTED TO AVOID NEGATIVE VALUES,

FUNCTION FUN
MODELS THE CONTROL LOGP
COMPUTES THE COST OF TRACKING
CALLS MANO, PLANT!, STATS®, MANI, TGTS, STATS1, PLANT2,
STATS2, STATSW, AND FFT,
THE PARAMETER NN IS USED AS A FLAG IN FUN:
NN > 0, AUTOMATIC REDUCTION, NO BODE PLOT.
NN = 6, BODE PLOT OF MAN-MACHINE SYSTEM
USING THE MODEL TARGET AS INPUT.
NN = -1, BODE PLOT OF MACHINE WITH MODEL TARGET
AS INPUT TO MAN.
NOTE THAT IN THIS CASE THE TARGET IS FILTERED THRU
THE MAN AND THE PLOT IS8 THEREFORE AN IMPLICIT FUNCTION
OF THE MAN.
NN < -1, BODE PLOT OF MACHINE WITH SINE WAVE INPUT.

SUBROUTINE MACHINE
MAKES BODE PLOTS OF THE MACHINE
CALLS FUN AND PLOT.

SUBROUTINE PLOT

PRODUCES A PRETTY BODE PLOT IN A FILE READY FOR PLOTTING
PLOT ASSUMES THE PLOTTING PACKAGE

TIG ( TERMINAL INDEPENDENT GRAPHICS ) WHICH WAS

WRITEN IN C AND REQUIRES A C COMPILER.

SUBROUTINE FFT
FAST FOURIER TRANSFORM

THE MAN:
SUBROUTINE MANO
INUTIALIZES THE MAN
CALLS TGTAO
SUBROUTIHI. MANt
THE MAN'S PART OF THE CONTROL LOOP
CALLS TGTAL
THE PLANT:

SUBROUTINE PLARTO
INITTALIZES THE PLANT

SUBROULTINE PLANTI
RYSETS PLANT AT START OF EACH RUN

SUBRQUTINE PLANT2
THE NACHINERY'S PART OF THE CONTROL LOOOP

THE STATS:

24
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SUBROUTINE STATS6
INITIALIZES STATISTICS PACKAGE

SUBROUTINE STATS1
COLLECTS THE DATA

SUBROUTINE STATS2
FINDS RMS ERROR, MEAN INPUT OFFSET, ETC

SUBROUTINE STATSW
WRITES THE STATS

THE TARGET:

SUBROUTINE TGTA®
SETS UP TARGET

SUBROUTINE TGTAl
RUNS TARGET

SUBROUTINE TGTS
SINE WAVES FOR BODE PLOTS

THE PROGRAM WAS WRITEN TO BE RUN ON A PDP 11,70
USING THE CULC F4P COMPILER AND THE UNIX OPFRAT:NG
SYSTEM.

THE PROGRAM 1S IMPLICIT DOUBLE PRECISION,

AND USES COMPLEX ARITHMATIC.

GENERIC NAMES HAVE BEEN USED FOR FUNCTIONS, IE ABS,
AND THE F4P COMPILER SELECTS THE PROPER FUNCTION,
IE ABS, CABS, DABS, ETC.

common b, delta, deltat,
Jmax, Jmaxt, Jmod, k, nc, nt, pi, tmax, unlin
common 7/ x 7/ x( 10 )
external fun
real * 8 3, kk

write ( 6, 8§ )

format ( ' NOW TYPE VALUES FOR TAU, B, BK, BACKLASH,
* COULOMB FRICTION, AND DEAD SPACE * )

accept 10, taun, b, bk, bklsh, c¢f, dedspc

format ( 7£10.0 )

unlin = abs¢ bklsh ) + abs( ef ) + abs{ dedspc )

k =10

Jmod

Jmax

Jmaxt =
tatep =

pi

nc

nn

4
2 %%k k
ax % Jjmod

Jm

2,
3.1415926535
8

0 un

0
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fne = no
tmax = fno % 2, * pi
delta = tmax / float( Jmax )
deltat = tmax /7 float( Jmaxt )
write ( 6, 18 ) tau, delta, b, bk, bkish, of, dedspo, Jmex
& 18 format ( » * TAU DELTA B BK BKLSH CLFR DEDSP JMAX ' ~
\ + 2f6.8, f6.1, £6.3, 8pf6.2, 0pf6.3, 3pf6.2, 18 /)
nt = tau 7/ deltat + .8
call plant@( b, bk, bklsh, bklshi, of, dedspo, deltat )

write ( 6, 20 )
20 format ( * DO YOU WANT TO LOOK AT THE MACHINERY? ' /

* ' TO ANSWER, TYPE 1 FOR YES, 0 FOR NO. ' )
accept 30, m

write ( 6, 28 )
25 format ( / * DO YOU WANT AUTOMATIC REDUCTION ? ' /

+ ' TYPE 1 FOR YES, OR 0 FOR NO * )
acoept 30, n

RS R

oy
T2
>

RSN

30 format ( 110 )
38 write ( 6, 40 )
40 format ¢ » ' NOW TYPE VALUES FOR TI, K, AND TL * )

accept 19, ti, kk, tl
if ( t1 .gt. 0. ) go to 45

ti = .01
kk = 2.8 ¥ b
tl = ti +1, /7 b
45 xC 1) =1, /7 ti
x( 2 ) = kk
x( 3 ) =t}
if (n .gt. 6 ) call auto
cost = fun( x, nn )

i1f (m .eq. 1 ) call machine
if ( .le. ) go to 35
stop

=

end
subroutiine auto

implicit double precision ( a-h, o-z )
common b, delta, deltat,
+ Jmax, Jmaxt, Jmod, kj, ne, nt, pi, tmax, unlin
dimension eps( 10 )
common / x / x( 10 )
real % 8 kk
external fun

k=1
nn = O
cost = fun( %, nn )
t1 = t. 7 x(C 1)
kk = x( 2)
t1 = x(C 8)
write ( 6, 15 ) cost, ti, Kk, tl
15 format ( ~» * THE INITIAL COST WAS ', 38pf8.3 /

26
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+ * FORTI = *, Opf?7.4, ' KK ="', 8.1, ', TL = *, f7.4 2/
TL

+ ' TI KK RMS PHASMR GAINMR COST SLOPE' /)
acrcy = .00
e =0,
n =38
do 81 =1, n
5 eps( 1 ) = acroy * x( 1 )
call famin( n, x, cost, fun, e, cpa, k)
ti =1, 7 xC 1)
kk = x( 2 )
tl = x(8)
write ( 6, 10 ) cost, ti, kk, tl
10 format ( ~/ ' THE MINIMUM COST WAS °® 3pf6.3 /
, + *FORTI = ', Opf7.4, ', KK ="', f8.1, ', TL = *, f7.4 )
SN return
RN end
38
i function fun( x, nn )

implicit double precision ( a-h, o~z )
common b, delta, deltat,

+ Jmax, Jjmaxt, Jmod, k, nc, nt, pi, tmax, unlin
common 7/ gp /7 gaan( 10, 7 ), phaas( 10, 7 )
dimension gain( 81 ), phase( 81 )
dimension gi( 100 )
dimenslion frinC 1024 ), fiin( 1024 ), frout( 1024 ),

+ fionut( 1024 )
dimension x( 10 )
complex cin, cout, orin, crout, serin, scrout, cxx, cyy
real®4 fitni, fiouti, frini, frouti
data costom / 1., /

if ( xC 1) .le. 8. .or. x( 2 ) ,le, 0, .or. x( 3 ) .le. 0. )
+ cost = l.e+2

if ( xC 1) .le. 0. Jor. x( 2 ) .le. O, .or. x(C 3 ) .le. 0. )
+ go to 900

call man@( deltat, nt, x )

call plan**( h )

points = jmax

if ( nn .eq. 0 ) write ( 6, 35 )

55 format ( / 27x, 4h-1.0, 6x, 4h-0.5, 7x, 3h0.0, 7x, 3h0.5,
H + ’ 1.0 7/
B + ' SEC REF IN OUT +*, 4¢ 9x, Lh+ ) )
= 7 if ( nn .eq. -1 ) write ( 6, 36 )
4 56 format ( 27x, '-250 -125. 0.0 125.°
gc + ) 2500 7
; + SEC REF IN OUT +', 4( 9x, th+ ) )
: call stats@( delta, Jmax )
;1 Jom = 2
L % Jnx = Jmaxt
3 Jel = jem
4 @ if ¢ nn .ge. -1 ) Jecl =1
i c NOW MODEL THE CONTROL LOOP
¥
)
t ;
H
H
H 27
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90
100
101

120
121

159
140
141
142
170
175

do 101 Jjot

eq., Jom ) Jmx

if ( nn .ge, =1 )
+ call stats2( avein, aveout, rms )
do 120 J = 1, Jmax

frout( jJ ) = frout

float( J ) % delta
if ( nn .eq. 0 ) n
if ( nn .1t.
ref = frin( J ) + frout( j

write ( 6,
if ( n .le.

format ( 1ix,
format ( Ix,
format ( 7.2, 3p3f7.2 )
if ( nn .eq. 0 ) call statsw
call fft ¢ frin,
call fft ( frout,

if ( nn .1t.
-1 ) iradm

-1 ) irads
iradm

if (. nn L1t.
do 500 irad =

if ( nn .ge. - 1 ) call maniC h, J, nt, diffdt, difft, g3 )
if ( nn .1t. -1 ) call tgts( 3, g3 )

Jdt. jem ) go to 90

if ( mod( J, jmod ) .ne. 0 ) go to 90
if ( nn .ge. @) frin( jm)
if ( nn .1t. 0 ) frin( jm ) = g3
frout( jm )
fiin( Jm ) = 0O,
fiout( jm ) = 0,

call statsl( difft, frin( jm ), frout( jm ), jm )
call plant2( g3, h )

) -
J)
if ( an .gt. 0 .or. nn ,1t. -1 ) go to 170

frin(
frin(

ref,
-21 ) write ( 6,

f6.2, 3p3f7.2,

k)
fiout, k

1

nav ¥ ( irad - 1 ) + ]

frin( j ), frout( j )

frin(C § ), frout( j)
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frini = frinC 1 )
fiini = fiin( 1 )
cin = omplx( frini, fitni )
frouti = frout( t )
fioutli = fiout( i )
cout = cemplx( frouti, fiouti )
crin = cin ¥ conjg( oin )
crout = oout * conjg( cin )
if ( abs( orin ) .le. 1.e-10
+ ,or. nn .lt. -1 .or. nn .gt. O
+ .or. 1 .gt. 80 ) go to 391

oxx = crout / corin

cyy = aba( oxx )

gan = 20, % logl0( renl( cyy ) )

faz = atan2( aimag( orout ), real( crout ) )
faz = 180. ¥ faz / pi

eni = real( orin )

enl = sqrt( eni )

cyy 2 abs( ocout )

eno = real( oyy )

iIf ¢ abs( eno ) .gt. 1.0-10 ) write ( 6, 390 )
+ 1, frinC 1 ), fiinC 1 ), frout( t ), flout( i ),
+ gan, faz, oni, eno
390 format ( i85, 4f8.4, 2f8.2, 218.4 )
391 continue
sorin = scrin + crin
scrout = scrout + crout
400 continue
if ( serout .eq. 0. ) write ( 6, 450 )
if ( aba( scrout ) .gt. l.e+10 dwrite ( 6, 4731 )

+ 1. 7xC1 ), x( 2), x( 3)
451 format ( ~ 7.4, 2.2, 7.4, * UNSTABDLE * /)
430 formant ( ~ * INPUT TOO SMALL ' /7 )
it ( scrout .eq. 0. .or, abn( scrout ) .gt. l.e+10 )
+ cost = l,e+]
if ( scrout .eq. 0. .or, abs( scrout ) .gt, l.e+10 )
+ go to 900
cxx = 0.

if ( abs( scrin ) .gt. 1.e~30 ) oxx = scrout / scrin
cyy = abs( cxx )
galn( irad ) = real( cyy )
phase( irad ) = atan2( aimag( scrout ), veal( scrout ) )
if ¢ phase( irad ) .gt. 0. )
phase( irad ) = phase( irad ) - 3, ¥ pi
500 continue
it ( nn .gt. 0 ,or. nn .1t. -nc ) go to 540
if ( nn .eq. 0 ) tdbmn = -10
if ( nn .eq. -1 ) idbmn = -60
if (. an .1t, -1 ) idbmn = -70
idbmx = idbmn + 30
write ( 6, 510 ) ( idb, idb = idbmn, idbmx, 10 )
510 format ( 7/ 20x, 'PHASE SHIFT’, 20x, 7hDB GAIN /
* FREQ PH GAIN -180', 13x, '-90°,
i4, 8¢ 7%, 13 ) )

+

+ +
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write ( 6, 830 )

8530 format ( Ix, th+, 4( 8x, lh+ ), 8x, th+, 83( 9x, th+ ) )
3540 xx = 180. / pi

radf = 2, % pi % float( nav ) / tnax

npm = 52

if ( nn .1t, 0 ) npm = npm - idbmn - 10

11 = 1

im = 40

if ( nan .1t, -1 ) 11 21 - nn

if ( an J1t, -1 ) im =1 - nn

do 600 1 = {1, Im
if ( gain( i1 ) .le., 1. .or. gain( 1+1 ) .gt. 1. )

+ go to 590
phasmr = 180. + xx ¥ ( phase( { ) -
+ ( phase( i1 ) - phase( 1+1 ) )
+ * ( gain( 1 ) - 1.,
+ / { gain( 1 ) = gain( 1+1 ) ) )
if (1 .eq.
+ slope 2 20, % loglO( gain( 1 ) / gain( i+1 ) )
+ / loglo( 1, 7 8.
if (1 .gt. 1)
+ slope = 20. * loglO( gain( i-1 ) / gain( 1+2 ) )
+ 7 loglO( ( float( i~-1 ) -~ ,§ )
+ 7/ ( float( i+t ) + .3 ) )

590 n = phase( { ) * xx
np =n/§H
gan = 20, % logl0( gain( } ) )
m = gan
rf = radf ®* ( float( 1) - .83 ) '
if (an 1t -1 ) rof = pf - .6/ float( no )
nrf = rf + ,001
if ( nn .oq. -no ) i1 = 111 + 1
if ( nn ,go. -1 ,or, nrf .It. | .or, 111 .1t. 1 ) go to 595
if ( an ,1t, =1 ) gaan( arf, iti ) = gan
if ( non ,1t. -1 ) phaas( nrf, i1 ) = phase( 1 ) ¥ xx

5935 continue
if ( nn .le. 0 .and. np .gt. =83 .and. m .gt. Z2-npr )
+ write ( 6, 610 ) rf, n, gan

if ( an .le. 0 .and. { np .le. =88 .or. m .le. 2-npm )
.and. gan .gt. ~100, )
write ( 6, 611 ) rf, n, gan
if ( phase( 1 ) .gt. -pi .and. phase( i+1 ) .1t. =-pi )
gainme = - 20, ¥ logl0( gain( 1 )
- ( gainC i ) - gainC {+1 ) )
* ( phase( { ) + pi )
7/ ( phase( i1 ) - phase( {+1 ) ) )
if (nm .1t, -1 ) go to 60O
tf ( phase( 1 ) .1t. -pi .and. gain( 1 ) .1t. 1. ) go to 700
600 continue
610 format ( Ix, £3.2, i3, 5.1, t<inp+36>, 1lh¥, t<m+npm>, lh+ )
611 format ( 1x, £35.2, 135, £5.1 )
620 format ( Ix, f10.1, 110, £10.3 )
if ( nn .ge. -1 ) write ( 6, 630 )
630 format ( ° FELL THRU 660 LOOP * )

+ +

+ 4+ +
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700 cost = rms
go to 701
if ( phasmr .ne. 0, )
+ cost = rms / sin{ phasmr * pi /7 90. )
if ( gainmr .1t. 6. .and. gaipmr .gt. 0. )
o + cogt = cost / &in( gainmr / 6. * pi ~ 2. )
701 continue
if ( nn .eq. 0 )

B R Ay

g vl
S IE

ti =1, 7 xC1)
if ( nn .gt. 0 .and. oost ,1t. 1, ) write ( 6, 800 )

5 + write ( 6, 730 ) phasmr, gainmr, cost, slope

e kg 1) format ( / * THE PHASE MARGIN IS ', £5.0, ' DEGREES ' /
b + * THE GAIN MARGIN IS *, f6.1, * DB, ' /

% + * THE COST IS ', 8pf12.8 /

3 + ' THE SLOPE IS °', opf6.1, ' DB PER DECADE., ' /)

"
b 2
et s

5t + ti, x(2), x( 3 ), rms, phasmr, gainmr, cost, slope
L 800 format ( 7.4, £7.2, 7.4, 3pf7.3, 0p2f7.3, 3pi* 3, 0pf7.2 )
e if ( ti .1t. .000 .and. cost .l1t. costmn ) coat = - ocost
% costmn = min( ocost, costmn )

b fun = coat

b 900 return

e

13 end

b3

2 subroutine machine

f implicit double precision ( a~h, o-z )

i common b, delta, doltat,

b +  Jmax, Jmaxt, Jmod, kJ, nc, nt, pi, tmax, unlin
L common 7/ gp 7/ gann{ 10, 7 ), phaas( 10, 7 )
3 common / mark / mark( 8 )

common / tgte 7/ a, w

oommon 7/ x 7/ x( 10 )

byte or
dnta mnrk/ ‘+" ‘*', ‘x\’ 'o“ ‘S‘. 9#‘. '.|' ln. /
or = "01§
write ( 6, &)
5 format ( ~/ * HNOW LOOK AT MACHINE ONLY * /)
n = -}

cost = fun( x, n )
write ( 6, 10 )
10 format ( ~/ ' BODE PLOTS FOR SINUSOIDAL DRIVING FUNCTIONS * /)
do 200 k =}, 7
a = .17 2%k ( k~-1)
write ( 6, 20 ) a

S o R or
LS A A

. 20 format ( 7/ 1x, 3pf6.2, * MILLIRABIANS PER SECOND AMPLITUDE. * )
" km = k

s do 100 1 = 1, 10

k- w = deltat % float( 1 )

- n=-nc*ki

iz cost = fun{ x, n )
. if ( cost .gt. 1. ) go to 300

g~ 100 continue

S

£
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++ 4+ +

if ( unlin .eq. 0 ) go to 300

continue

write ( 6, 320 )
format ( ~/ ' CONSOLIDATED PLOT ' ~//

20x, ' PHASE SHIFT ', 20x,
s * TFREQ -228
' <%0 -60

10x, 1h+, 8( &x, 1h+ ),

10

write ( 6, 330 ) i

format ( 15, 8 )

itpm = uwrite ( 1, or,

l' km

m = gaan( i, k)

np = phaas( i, kK ) 7 8.

if (m .gt. -100 .and. np .ge, -54
.and. m .1t., 6 ,and. np .1t, 0 )

write ( 6, 340 ) mark( k ), mark( k )

do 400 § = 1,

do 330 k =

format ( t<np+06>, al,

ftpm = uwrite( 1, cor

continue

write ( 6, 360 )
format ( 1x )

continue

call plot( km )

return

end

subroutine plot( n )}

-180 -138
~50

* DB GAIN °*

-90 '

-40' /

8x, lh+, 8(9x, 1ht ) )

1)

1)

tim+112>, al, 8 )

implicit double precision ( a-h, o-z )

common 7/ gp /7 gaan( 10, 7 ), phaas( 106, 7 )
common / mark 7 mark( 8 )
dimenston ixp( 10 ,, iyp
byte dev( 4 ), file( 10 )
external ffaxis, ffline,
data dev 7 'V, '
data file 7 *d', ’a*, 't

2% 0/

‘', ‘e

(10 ), tygl 10)

ffneworig
o/
y 'a’, 'p

call callc( ffoutput, file, 6 )

call ealle( ffneworigin,
call calle( ffaxis, * FREQUENCY IN RADIANS PER SECOND °,

o, 0, 6000, 0.0, 0, 0.,

call calle( ffaxis,
0o, 0, -6000, 90., O,

Jux = 10
do 100 1 = 1,
do 90 §j =1
tyg€ 3 )
iypC 3
ixp( 3 )
continue

n

10

gaan( J,
phaas( j,
J * 600

* PHASE

in, ffoutput

"‘l."0‘|‘t"

1000, 1000 )

1., 600 )

i) % 30.
i) % 30.

32

IN RADIANS == GAIN IN DB ',
-200., 20., 600 )

+ 6000.
+ 6000,
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call calle( ffline, ixp, iyp, 10, mark( i ),
call calle( ffline, ixp, iyg, 10, mark( i ),
100 continue
return

1)
1)

&
e
g
&
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end
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e ] subroutine tgtad

implicit double precision ( a-h, o~z )

common b, delta, deltat,
+ Jmax, Jmaxt, Jmod, k, no, nt, pi, tmax, unlin
common / tgta 7 dt, h, hdt, hlim, ood, pos, vdt

diat0 = 4000,

dt = deltat

hlim = pt 7 8,

pos = 0O,

h = hlim

vel = 10,

hdot = vel 7/ 80.
hdt hdot % deltat
ood 1, 7 distO
vdt vol ¥ deltat
return

end
subroutine tgtal( j, dither, g ?

inplicit double preooision ( a-h, o~z )}
common / tgta / dt, h, hdt, hlim, ocod, pos, vdt

if ( abs( h ) .ge, hlim .and. h % hdt .gt. 0. )
+ hdt = - hdt
h = h + hdt
pos = pos + sin( h ) % vdt
dtf = dt * float( J )
angle = ood * pos
dither = ood #® ( .1
+ .1 % sin(C 1, + 2,
+ .1 % ( sinC 2, +
+ sin( 3. + 4.5
+ sin( 3. + 6.5
¢ = angle
return

sin( 1.3 x dtf )
¥ dtf )
S % dtf )

+ 4+ +

end
subroutine tgts( j, g )

implicit double precistion ( a-h, o-z )
common / tgts / a, w

33
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) c
. g = a % sin( w % float( J ) )
W return
e c
‘f,}.‘ end
;§ subroutine famin(n,x,fx,fun,e,eps,k)
b implicit double precision ( a~h, o-z )
o dimension x(19),eps(10),se(10),q(10),h(10,10),x1(10),%0(10)
% real*8 mJj,Ilmda,11,12,13, Imin, mjfot
E °
Bl mjfot = 2,
b c reduced from 20. in BRL version to tame subroutine
A m=n
: dO l l—"lgm
s se(i)zops(l)
g q(1)=se(i)ke
3 xi(i)=x(1)
Pt xo(i)=x1(})
2 do 2 J=l,m
) 2 h(1,j)=0.0
A f h(i,1)=1.0
p c ic 18 the iteration counter and Jjc is the
9 c function evaluation counter,
ic=1
Je=0
: ir3=§
X go to 112
=2 8 imax=20%m
k> fmin=fbar
L £0=fbar
b fj=fbar
b del=0.0
fﬁ assign 30 to irl
3 o begin iteration
[y 50 do 41 J=l,m
i aJ=ald)
| mj=s mjfet *qJ
2 go to 100
¥ 30 q(J)=max(sec(j),abs(lmda))
i if(abs(doel),.gt.abs(fj-fbar))goto 41
£ del=f j-{fbar
o Ja=j
P 41 fj=fbar
e c check convergence
i if(ic.ge.imax)goto 91
ir2=1
kl=1
psil=0.0
- emin=200,

do 63 i=1,m
t2=abs(xi (1)-x0(1))
1f(t2.eq. 0.) go to 63

A
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if(t2.ge.eps(i)) 1r2:=2
psil=psil+t2%t2
t3=eps(i1)/t2
if(t3.1t.emin) emin=t3
63 continue
go to (90,79),1ir2
° check desirability of new direction
70 do 78 i={lm
78 x(1)=xi (1 )+xi (1)~x0(i}
1r3=6
go to 112
78 f1=f0
pailagqrt(psil)
eminzeminkpei}
11s-peil
f2=fmin
12:0.0
f3=fbar
13=psil
if(f38.ge.fl)goto 72
1PC(R1=(f2+£2)+£3)%(£f1~12-del )*%2 . go. . Bkdelk(£f1-f3)%%2)goto 72

b o ° oompute new direcotion and uee direoctlions
4 (o] l=1.2.3.....Jd'l.Jd"'l...».n.new
E & J4=m-1

if(jd-m)81,83,81
81 do 82 i1=jd,jJ
se(i)=sa(i+])
qii)=q(i+l)
do 82 j1=1,m
82 h(i, jli=h(i+l,j1)
83 do 84 Jjl=1l,m
84 h(m, J1)=(xi(jl1)=-xo0(j1))/psil
se{(m)=omin
q(m)=psil
aJ=psil
mj = mjfot * psil
=m

et

assign 72 to irl
go to 400
o prepare for new iteration
72 do 71 i=1lym
71 xo(i)=xi(1)
fO=fmin
fi=fmin
del=0
ie=ic+l
assign 30 to irtl
go to §O
c prepare to return
91 k1=2
90 do 92 i=1l,m
92 x(id>=xi(i)
fx=fmin
1£f(k)93,96,93

R % (RECEE TS AL
W3 Ay umwmau.‘mrg‘w S g ek ¢,
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93 k=kl
97 return
96 1f(k1-1)94,97,94
94 write(6,95) imax,ki
93 format(24h fummin--not oconverged--,i3,13: iterations,k =,12)
stop
] find minimum along a line (initial steps)
100 12=0
f2=fmin
Imda=qJ
ir3=1
2 go to 110
i 102 if(fbar.gt.f2)goto 103
11=12
f1=212
1221mda
f2=fbar
ImdazqJj+qJ
1r322

go to 110
105 13=imda
f3=fbar
go to 400
103 13=1mda
f3=fbar
Imdaz-qJ
ir3=3
go to 1i0
104 11=1mda
f1=fbar
] find minimum along a line
400 t1=12-18
t2=13-11
t3=11-12
t4=t1%kt2%t3
to=tikf1+t2%f2+t3%f3
t4=15/t4
t1=11%11
t2=12%12
23 t3=13+13
& Imdn=.0%((t2-t3)%f1+(t3-t1)¥f2+(t1~-t2)%f3) /5
i 1£(t4)401,402,402
401 if(abs(lmda)-mj)403,403,402
402 1f(f1.1t.f3)goto 404
Imda=m]
go to 403
404 Imda=-mJ
403 1f(f1.1t.f2)goto 405
if(£f3.1t.f2)goto 406
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- Imin=12

- fmin=12

7 407 if(abs(imda-Imin).1t.se(J)) go to 471
. if(lmda.eq.0.0)goto 408

if(abs((Ilmda~imin)/Imdal).1t, .93)goto 471
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1r3=4

go to 110

Imin=11

fmin=f1

go to 407

Imin=18

fuin={3

go to 407
if(lmda.gt.12)goto
if(imda.1t.1l)goto
1f(fbar.1t.f2)goto
11s1lmda

f1={bar

go to 400
if(lmda.gt.13)goto
if(fbar.1t.f2)goto
13=1mda

f3=fbar

go to 400

13=12

£3=12

12=11

£2=f1

go to 486

13=12

f3=12

12=1mda

f2=fbar

go to 400

11=12

f1=1£2

12=13

f2=13

go to 487

11=12

f1=r2

go to 488
Imda=Imin
fbar=fmin

do 473 i=1,m
x1(i)=xi (1) +Imdath(j, 1)
go to irl, (30,72)

481
482
483

484
483

prepare to evaluate functioxn
do 111 i=1l,m
x(1)=x1(i)+Imdaxh(j,1)
Jesje+l
fbar=fun(x,m)

¢ special for control ¢ ¢ ¢ ¢ ¢ ¢ ¢ ¢

if ¢ fbar .le. 0. ) go to 91

¢ special for control c ¢ c ¢ ¢ ¢

go to (102,105,104, 480,& 7o ),ir8

end
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subroutine fft( fr, fi, k )

d
‘
H
{
‘\

fmplicit dcuble precision ( a~h, o=z )
dimension fr( 1024 ), f1( 1024 )

T
e

n=2 %k
4 nr = 0
‘ nm =n -1
1 do2m=1, nn
Bl 1=n
ki 1 1=172
&d if (mr + 1 .gt, nn ) go to 1
i mr © mod( mr, 1) + 1
i if ( mr .le, m ) go to 2
i tr = fr{m+ 1)
i fr¢(m+1) = frlme + 1)
B fr{ me + 1 ) 3 tr
g th=fi(m+1)
) fitm+ 1) = fitnr + 1)
i fi( me + 1) = ti
| 2 continue
o 1 =1
- 3 if (1 .go. n ) return
# tstep = 2 ¥ 1
ol =1
1 do 4m=1,1
A a = 8.1415926585 % float( 1 - m ) 7/ el
b wr = cosl a )
- wi = sinl a)
e do 4 1 = m, n, istep
4 J=1+1
b tr = wr % fr( J ) - wi ¥ fiCJ )
i t1 = wr % £1C ) + wt % frd J >
L fr( 3 )= frC 1) - tr
& f1C )y = f1C 1) ~- i
[ frC 1 ) = fr( 1) + tv
f1C 1 ) = fiC 1) + t1
o 4 continue
s i = tstep
< go to 3
i
4
A end
3 subroutine man®( delta, nt, x )
P c
N implicit double precision ( a~h, o~z )
5 real*8 kk
. common 7/ man / gl 820 ), g2, &3, kk, expt, titi, tltme
dimension x( 10 )
c
tg = 1. 7 x(C 1)
Kk = x( 2 )
tt = x( 3)

tti = delta 7 ti

38
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expt = exp( —tti )

titi tl 7 ti
tltme = 1. - tlti - expt
do 30 n = 1, nt
850 gl n) = 0.
g2 = 0.
g3 = 0.
call tgta®
return
c
end
0
subroutine mani( h, J, nt, diffdt, difft, gm )
°
implicit double preocision ( a~h, o-z )
real*8 kk
common /7 man / gl( 320 ), g2, a3, kk, oxpt, tlti, tltme
o
do 66 n = 1, nt-1
60 gl n) = gl( ntt )
call tgtal( Jj, dither, g )
difft =g ~ h

diffdt = g + dither - h
glf nt ) = diffdt

g2l = n2

g2 = kk % gi( 1)
g3 = oxpt ¥ g3 + tltmo % g21 + tlti * g2
gm = gd
return
c
end

subroutine plant®{( b, kb, bk, bki, cf, ds, dt )

implicit double precision ( a~h, o~z )

real*8 JJ, kb

common /7 plant / expb, bdxpd, bklsh, bklshi, cfdt, dedspc,
+ delta, g3b, g4, hn, hnbl

JJ = 1.

delta = dt

ty = delta 7 JJ

expb = exp( -b * kKb * tj )

bdxpb = ( 1, - expb ) / b
bklsh = bk
bklshi = bki
cfdt = cf % tJ
dedspe = ds
return
°
end

subroutine planti( h )
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implicit double precision ( a-h, o~z )
common / plant / expb, bdxpb, bklsh, bklishi, cfdt, dedspo,
+ delta, g3b, g4, hn, hnbl
°
B g3b = 0.
8 g4 = 0.
3 h =0,
HE hn = 0.
i hnbdl = 0,
& return
B °
b end
& c
i subroutine plant2( g3, h )
‘ c
ﬁ@ implicit double precision ( a~h, o~z )
By common / plant / expb, bdxpb, bklsh, bklshi, ofdt, dedspoc,
% + delta, g3b, g4, hn, hnbl
3 c
r g3b1 = g3b
. g3b = 0O,
. if ¢ abs( g3 ) .gt. dedspoc )
0 + g3b = g3 - sign( dedspc, g3 )
e ° if ( abs( g3b - g3bl ) .gt. bklshi )
i o + g3b = g3b - sign( bklshi, g3b - g3hl )
5% g4 = expb ¥ g4 + bdxpdb % g3bl
2 g4 = g4 - sign{ min( ofdt, abs( g4 ) ), g4 )
; hnbl = hnbl + delta * g4
if ( abs( hnbl - hn ) ,gt. bklsh )
+ hn = hnbl =~ sign( bklsh, hnbl - hn )
h = hn
return
[
end
subroutine stats@( dt, Jmax )
c
implicit double precision ( a=h, o-z )
common / stats / delta, points, tmax,
+ sum, sumsq, sumin, sumout, sumi2, sumo2, <
.t sumt, sumt2, sumit, sumot
c

delta = dt
points = jmax
tmax = points * delta

sum = 0.
sumsq = O,
sumin = @,
sumout = @.
sumi2 = 6.
sumf2 = 0,
sumt = 0,
sumt2 = 0.,
sunit = 0,
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b
by
e sumot = O,
; return
& ¢
f end
(]
subroutine statsl ( difft, frin, frout, J ?
c
o implicit double precisicn ( a~h, o-z )
ke common / stats / delta, points, twax,
i + sum, sumsq, sumin, sumout, sumi2, sumo2,
1 + sumt, sumt2, sumit, sumot
©
: dt = difft
iz sum = sum + dt ¥ delta
& sumsq = sumsq + dt % dt % delta
X sumin = sumin + frin
ks sumout = sumout + frout
sumi2 = sumi2 + frin ¥ frin
sumo2 = sumo2 + frout * frout
ty = J
sumt = sumt + t}J
sumt2 = sumt2 + tJ ¥ tJ
sumit = sumit + frin * tJ
sumot = sumot + frout * tJ
return
o
end
o
subroutine stats2 ( avin, avout, rmsd )
c
implicit double precision ( a-h, o-z )
common / stats / delta, points, tmax,
+ sum, sumsq, sumin, sumout, sumi2, sumo?2,
+ sumt, sumt2, sumit, sumot
cormon / statw / rms, avein, aveout,
+ devin, devout, devid, devod, ai, bi, ao, bo
c
rms = sqrt( sumsq / tmax )
rmsd = rms
avein = sumin / points
avin = avein
aveout = sumout / points
avont = aveout
8i2 = sumi2 - sumin % avein

502 = sumo2 - sumout ¥ aveout
ptsl = points - 1,

devin = sqrt( 812 7 ptsl )
devout = gqrt( so2 7/ ptsl )
avet = sumt / points

st2 = sumi2 - sumt X avet

sit = sumit - sumin * avet

sot sumot - sumout ¥ avet
bi = sit 7/ st2
bo = sot / st2
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100

al = avein ~ bi * avet

ao = aveout - bo % avet

pts2 = points - 2

devid = sqrt ( ( 812 - bi % sit ) / pts2 )
devod = sqrt ( ( so2 - bo % sot ) / pts2 )
return

end
subroutine statsw

implicit double precision ( a~h, o-z )
common / statw 7/ rms, avein, aveout, devin, devout,
devid, devod, ai, bi, ao, bo

write ( 6, 100 ) rms, avein, aveout, devin, devout,
devid, devod, ai, bi, ao, bo
format ( * RMS AVEIN AVEOUT DEVIN DEVOUT °*
*DEVID DEVOD Al BI AO BO °
7/ 3p11£6.3 /)
return

end
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