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Computationally Fast Algorithms for

ARMA Spectral Estimation

by

Koji Ogino and James A. Cadzow

(ABSTRACT)

The high performance method for obtaining an ARMA model
spectral estimate of a wide-sense statiomary time series has been
found to provide typically superior performance when compared to
such comtemporary approaches as the Box-Jenkins and maximum
entropy methods. In this report, fast recursive algorithmic
implementations of the high performance method are developed. They
are recursive in the sense that as a new element of the time series
is observed, the parameters characterizing an ARMA spectral estimate
are algorithmically updated. The number of multiplications and
additions required at each recursive stage are of the order p with
p being the number of denominator coefficients of the ARMA model.
Methods of modification of the data are applied to achieve a
significant computational improvement. The development is predicated

on utilization of various projection operators.
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Chapter 1

INTRODUCTION

The mathematical development of digital signal analysis has
been an area of primary concern since the digital computers develop-
ment over two decades ago. The analysis of the frequency character-
istic of a signal is of particular interest in the field known as
"time series analysis.”" Time series analysis encompasses such
areas as statistics, economics, and communications. Most of the
work in time series analysis has been carried out by statisticians.
More recently, however, many advancements in the analysis of time
series have been made in the field of signal processing based on
power spectral estimation concepts and time domain analysis.

The need for power spectral estimates arises in a variety of
contexts, including the measurement of noise spectra for the design
of optimal linear filters, the detection of narrow-band signals in
wide-band noise, and the estimation of parameters of a linear system
by using a noisy excitation.

Current methods of spectral estimation can be broadly classified
into two categories. One is the classical approach which includes
the perfodgram method, autocorrelation methods and its variants

(Bartlett, 1953; Blackman and Tukey, 1958; Grenander and Rosenblatt,

1957; Jenkins and Watts, 1968; Koopmans, 1974). The second is




modern power spectral density estimations based on parameters
modeling. This includes the maximum entropy method (Burg, 1967), one-
step linear prediction (Parzen, 1969), and spectral estimation using
ARMA model (Tretter and Steiglitz, 1967; Gutowski, Robinson and
Treitel, 1978). 1In practical signal processing applications, classical
approachs have been incorporated by many researchers and users.

This is because classical methods are fairly easy to implement

and can be computed efficiently by using the fast Fourier transform
(Cooley and Tukey, 1965). However, the spectral estimates obtained

by classical methods can provide unsatisfactory results when the data
length is short. For example, variance of estimates is large and

the resolution capability of noise embedded sinusoids is poor in such

cases. To overcome these difficulties, the modern spectral estimation

methods were developed. These methods provide better spectral

performance than classical methods. For example, one of the widely

used modern spectral methods referred to as the Maximum Entropy

method (Burg, 1967) possesses better resolution capability than the §
classical periodgram approaches for short data lengths. The Maximum i
Entropy method is classified as an autoregressive (AR) model. The AR

! model is also known as an all-pole model which uses only a denominator

polynomial of a rational model. 1In recognition of this constraint,

a more general form, the autoregressive and moving average (ARMA)

model which has numerator polynomials as well as denominator poly-

A nomial has been proposed. A variety of procedures has been developed

for generating ARMA models. One of these methods is the so-called 'high




performance' ARMA method which was recently developed by Cadzow (1979).
% The 'high performance' ARMA method has provided excellent spectral tu
estimation performance when compared with the Maximum Entropy and
its variants. However, its computational efficiency is relatively
burdensome. |
Recently, attention has been directed towards developing 'fast’ g
spectral estimation algorithms. These include the generalized Levinson's
algorichm. As an example, it is possible to use this approach for

estimating the autoregressive coefficients of a p-th order AR model

with the number of required additions and multiplications being on
the order of pz (i.e., O(pz)). Recently, Morf developed the doubling
algorithm which reduced the required computations to O(p log p) by
using the divide and conquer approach (Morf, 1980). More recently,

recursive methods which have an ability to compute necessary parameters

at the arrival of each new data point has been proposed (Lee and
Morf, 1980). This algorithm does not require any matrix formulation ]
and the computational requirements can be reduced to 0(p) to update

the AR model parameters with each new data sample.

' In this report, the development of fast algorithms for the high

. performance spectral estimation method is treated. To begin our
development, in Chapter 2, the mathematical definition of power
gspectral density function is stated and two classical methods referred
to as the periodgram and the autocorrelation method are discussed.
The common weakness of these classical techniques are examined. In

Chapter 3, a standard procedure of modern spectral estimation,




namely, the rational function model is discussed. Modern spectral
linear estimators can be classified into three types of models:

(i) AR (Autoregressive) model, (ii) MA (Moving Average) model, and
(ii1) ARMA (Autoregressive and Moving Average) model. It is widely
known that the ARMA model is a desired form from a parameter parsimony
viewpoint. In Chapter 4, the 'high performance’ ARMA spectral estima-
tion is described. Although this method gives excellent spectral
performance, the computational requirements are relatively burdensome.
To achieve a higher degree of computational efficiency, fast algorithms
are developed in Chapter 5 and data modification methods are intro-
duced. 1In Chapter 6, a recursive algorithm which requires 0(p)
computations at the arrival of each new data sample 1is developed.
Development of this algorithm is predicated on various projection

operator decompositions.




Chapter 2

e ——

CONVENTIONAL SPECTRAL ESTIMATIONS

2.1 Introduction

e

The spectral density function is mathematically defined in

Section 2.2, Conventional spectral estimation techniques have been
developed based on the Fourier transform relationship between the
power spectral density function and the autocorrelation sequence

(Bartlett, 1953; Blackman and Tukey, 1958; Grenander and Rosenblatt,

1957; Jenkins and Watts, 1968; Koopmanns, 1974). For example Blackman

and Tukey developed an autocorrelation method (Blackman and Tukey,

1958) which includes following steps: ij
(1) Estimate the autocorrelation sequence from the observed e

data; ,1

(ii) Window the autocorrelation estimate; gﬁ

I

(iii) Fourier transform of the windowed data record.
While various procedures are used in step (i) to estimate the auto-

correlation function, the objective is usually to obtain a minimum

bias and minimum variance estimate of the true autocorrelation
sequence. In step (ii), windowing is used to reduce the bias and the
variance of the power spectral estimate. However, the windowing
process decreases the resolution of the power spectral estimate.

This autocorrelation method demonstrates tyvpical weaknesses of

conventional spectral estimation approaches. Spectral estimation




performance had not been improved until the development of modern

spectral estimation techniques.

2.2 Definition of Power Spectral Density

Let us consider a discrete time random sequence {x(n)} with [

autocorrelation sequence {rx(m)} defined by ,

rx(no = E [x(n + m) £?n)] (2.2.1) y

where E and * denote the expected value and complex conjugate operation,

respectively. We will denote the z-transform of {rx(no} by

o

s, (2) = I 1 (m z (2.2.2)

m=2—-w

The associated power spectral density is then defined to be

= - -jwm
S, (w) sxfz)lz=ejw = I orme (2.2.3)

Applying the inverse z-transform to eq. (2.2.2), we have

-1 -m dz

rx(m) i § Sx(z) z > (2.2.4)
C

where C is a simple closed contour contained within the region of

convergence for Sx(z). If C is chosen to be the unit circle, by

making the change of variable zaer, we derive the discrete inverse

Fourier transform relationship

M o A




n

r, (m) = ELEI 5, () 39 4y (2.2.5)

-1

The variance of the random time series {x(n)} is equal to rx(O) and
can be expressed by
2 1 [T
E{|x(n)|"} = rx(o) = 5r S, (w) duw (2.2.6)

-

It follows that the average power in the incremental frequency band

< w < w, + do (Tretter, 1976) is found to be

Yo = 0

dw
Px(“’g) = Sx(mo) P

(2.2.7)
As shown in eq. (2.2.6), the time series variance is equal to the
total power of the signal which is a scalar multiple of the area
under the curve Sx(w). Observing the relation between expressions
(2.2.6) and (2.2.7), one can see that the integral over the incremental
frequency band is proportional to the total power of the signal in
that band. For these reasons the function Sx(w) is called the power
spectral density.

The frequency response of a linear shift-invariant system and
the frequency domain representation of a discrete-time signal are
essential concepts in digital signal processing. In this section we
describe another interpretation of the power spectral demsity
function using the theory of linear discrete-time systems for the
case when the input is a random time series (Oppenheim and Schafer,
1975). Consider a stable linear shift-invariant system with unit-

sample response h(n). Let ¢(n) be a real input sequence that is a

[P S .
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sample sequence of a wide-sense stationary discrete-time random
process. Then the output of the linear system is a sample function
of a random process related to the input process by the linear

transformation

x(n) = & h(n - k) (k) (2.2.8)

k=ex

It can be shown that if the input is stationary, then so is the'output.
The input signal may be partially characterized by its mean and its
autocorrelation function rs(uo, or we may also have additional

information about first or higher order probability distributions.

In characterizing the output random process {x(n)}, we desire similar
information. For many applications, it 1s sufficient to characterize
both the input and output in terms of simple averages, such as means,
variances, and autocorrelations. Therefore, we shall derive input-

output relationships between these quantities. Generally we consider
zero mean processes and our analysis is restricted to the examination

of the autocorrelation sequence. The autocorrelation function of the

output process is readily shown to be given by

r,m = I r(@-n I kK Wen + k) (2.2.9)
fim—00 ka_w

To characterize the response of a linear time-invariant system to a
discrete time input, we apply the z-transformation to expression

(2.2.9) to yield

(3

s (2) = H(z) H(z) S_(2) (2.2.10)

LRSS G PRI O
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where H(z) is the transfer function of the linear shift-invariant

system. In terms of the power spectral density, (2.2.10) becomes
5. = [BEI) (% s () (2.2.11)

where the impulse response {h(k)} is taken to be a real sequence.
If the input random process is a white noise with variance oez, it

follows that

2

5. = a2 o (2.2.12)

Relationship (2.2.12) is extensively used in analysis concerned with

modern spectral estimation.

2.3 Discrete Fourier Transform Approach

As shown in Section 2.1, the power speccrai density and auto-
correlation functions are related by the discrete Fourier transform,
Suppose that the sequence {x(n)} is a wide-sense stationary random
time series and the complete knowledge of the associated autocorrela-

tion {rx(m)} is given, the spectral density can be simply obtained by

-]

5. (@ = £ r(m o Jum (2.3.1)

m--aa

In relevant signal processing applications, it is never feasible

to measure an infinite number of autocorrelation sequence elements

{rx(m)}.
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We will now begin to examine the problem of estimating Sx(w)
from a finite observation of the time series {x(n)}. This observation

can be represented by a set of N contiguous samples
x(0), x(1), ... , x(N-1) (2.3.2)

About two decades ago, spectral estimates had been mostly accomplished

by the periodgram and autocorrelation methods.

2.3.1 Periodgram Method

To include an additional degree of flexibility, suppose that the

observed sequence is modified to form the auxiliary signal
f(n) = w(n) x(n) 0 <n<N-1 (2.3.3)

where w(n) = 0 for n < 0 and n > N. The sequence w(n) is frequently
called a data window. The sample autocorrelation function for the

modified observed sequence can be written as

-]

re(n) =% I £(k) £ (2.3.4a)
ke—x
=% £ * £(-n) (2.3.4b)

where * denotes the operation of convolution. Denoting the z-transform

of rf(n) and £(n) by Rf(z) and F(z), respectively, the convolution

and time reversal theorems yield the following relationship

Re(2) = % F(z) F(z™ 1) (2.3.5)
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Evaluating this expression at z = er, we have !

Re(e?) = ] s.(w |2 (2.3.6)

The function Rf(er) is known as the periodgram of {f(n)}. Two

decades ago, the periodgram method became popular because Rf(eJm)

could be computed efficiently by using the fast Fourier transform ¢

(FFT see Cooley and Tukey, 1965).

2.3.2 Autocorrelation Method

When the true autocorrelation function rx(m) is unknown, it is

desired to calculate an estimate of the autocorrelation function.

The associated spectral estimate can then be obtained by taking a

Fourier transform of this autocorrelation estimate (Blackman and

Tuckey, 1959). Two common estimates

N-m %
Z x(1i) x(i+m) (2.3.7)

i=1 m=0, ..., N-1

-

rx(m) =

1
N-m

N-m *
I x(i) x(i+m) (2.3.8)

i=1 m=0, ... , N-1

are typically used for estimating the autocorrelation function.

Applying the expected value operation on expression (2.3.7), we obtain

- i Y¥m *
E [rx(m)] - 151 E [x(1) x(i+m)) (2.3.9a)

= rx(m)
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The autocorrelation estimate fx(m) is seen to be an unbiased estimate.
On the other hand, one can similarly show that éx(m) is a biased
estimate. Because ;x(m) is an unbiased estimate, it might be thought
;x(m) is the better estimate. For several reasons, however, §x(m)

is sometimes preferable to ;x(m). First, the biased estimate does

not violate a property of a valid autocorrelation functions, that is
r (0 > [r (m)] (2.3.10)

while the unbiased estimate can violate this property. Second, the
biased estimate produces a nonnegative spectral estimate, while the
unbiased estimate may not (Burg, 1975). Third, the mean-square error
for the biased estimate is less than that for the unbiased method
(Jenkins and Watts, 1968). And finally, Parzen provides an argument
in favor of the biased estimate by claiming that éx(m) has less
variance than ;X(m) (Parzen, 1974).

Various procedures may also be used to estimate the autocorrela-
tion function. The objective of these procedures is usually to obtain
a minimum variance estimate of the true autocorrelation function.
Similarly, the estimate of the autocorrelation function is windowed
to reduce the bias and variance of the power spectral estimate, but
increases its statistical stability. Various window functions have
been used which are generally unrelated to the data or the random
process being analyzed. Both the finite record length of the auto-

correlation function estimate and the windowing process applied to

the autocorrelation function decreases the resolution of the power

T

TR
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spectral estimate. An additional disadvantage of windowing is that
unless one performs good windowing, e:cessive side lobes may be
introduced in the power spectral estimate. Side lobes may be reduced
by employing well designed windows but we then lose spectral resolution,
particularly when the data record is short.

The autocorrelation method and its variants were developed to
achieve better spectrum estimate performance in comparison to the
periodgram method. As indicated above, however, the autocorrelation
method has still several disadvantages. These disadvantages had not

been overcome until the development of modern spectral estimation

techniques.

) -
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Chapter 3

MODERN SPECTRAL ESTIMATION

3.1 Introduction

One of the most widely used models for spectral estimation is
the rational model. The stochastic time series {x(n)} is said to

have a rational power spectrum if its power spectral density can be

expressed in the form
s = [aed|? o (3.1.1)

where 02 is a positive constant and the characteristic rational

function
: =juw ~jqu
. b.+ b, e + ... +b e
el9y - B 207 71 q

A(ejw) 1+ a, e 3% 4 ..+ ap e IPV

(3.1.2)

is composed of the ratio of the polynomials A(ejm) and B(ejw) which
may have real coefficients and the zeros of A(ejw) are all contained
within the unit circle. The rational power spectral density (3.1.1)
is said to have order (p, q) and its zeroes and poles are seen to
occur in reciprocal complex conjugate pairs.

A particularly convenient interpretation on how a stochastic
time series with rational spectrum may arise follows directly from
tﬁe characteristic rational function. This entails treating the
characteristic rational function (3.1.2) as being the transfer function

of a causal, time-~invariant linear system. It then follows that this

14
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system will be characterized by the recursive equation

q P
x(n) = I b, e(n-1) - a; x(n-1) (3.1.3)
i=g * i=1

where the time series {e(n)} and {x(n)}! are taken to be the excitation
and response signals, respectively. It has been shown in section 2.1
that when the excitation time series {e(n)} is a zero mean stationary
white noise time series with variance 02, then the power spectral
density of the response time series is given by relationship (3.1.1).
Thus a stationary random time series with rational power spectral
density can be interpreted as being the response of a stable causal,
time-invariant linear system to a white noise excitation.

The general linear system (3.1.3) is commonly referred to as an
autoregressive-moving average (ARMA) model in the spectral estimation
literature. This ARMA model is said to be of order (p, q) and it
gives rise to the rational spectrum (3.1.2) which possesses zeroes
as well as poles. The ARMA model is the most general of rational

spectrum models possible and its a, and b

" K coefficients uniquely

characterize the spectrum.
In the spectral estimation literature, most of activity has been
directed towards the special class of ARMA models known as auto-

regressive (AR) models. An AR model is one in which the numerator

3

polynomial B(e Y is equal to the constant b As such, the AR

0

model is also referred to as an all-pole model since its transfer

function is specified by
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L

H(ejw) = -
Aled?)

(3.1.4)

This all-pole model is the one most often used in spectral estimation.
Another subclass of rational spectrum models which has received
attention is the so-called moving average (MA) model as characterized
by A(ejw) = 1. The transfer function of a MA model is given by
B(ejm) and it is therefore also referred to as an all-zero model.
In summary, Table 3.1 shows the rational spectrum associated with

_each of these models.

3.2 Moving Average Model

Many conventional methods of spectral estimation are classified
as MA models. For example, the periodgram and correlation methods
which have been discussed in Section 2.3 can be described in terms
of a MA model. Generally, little attention has been focused on MA
models. Welch has introduced (Welch, 1967), however, a MA model
technique which is particularly applicable to the direct computation
of a power spectrum estimate that uses the FFT. In this technique,
the data record is first sectioned into K = N/M segments of M samples

each as defined by

D () = x(@+ M-  O0<n<Ml, 1<i<K (3.2.1)

A window w(n) 1is next applied directly to the data segments before

computation of the periodgram. Then, the K modified periodgrams as

specified by

i,
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Model Spectrum
MA 8(e3*) |2
iby |
AR 0 3
ae?™ |
jw
ARMA | Ble )2
A(e?Y)
A(ejw) = g a e_jkm » 3 1
k=0
q
B(ejw) = I bk e_jkw
k=0

Table 3.1 Rational Spectrum Models
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. M-1 , .
3By =2 s P @) wmy eI a1, 2, LK
M MU
n=0
(3.2.2)
are computed, where
M-1
v=3i 1 V@ (3.2.3)
Mo
n=0
and the final spectrum estimate is defined as
K
B =2 1 1P () (3.2.4)
X K ojap M

By taking average of periodgrams of each data segment, the
desired smoothed periodgram is obtained. In using this segmentation,
the variance of the spectrum is reduced. The price paid for this

reduction, however, is a loss in frequency resolution and an increased

bias of the estimate.

3.3 Autoregressive (AR) Model

In the last decade, much attention has been focused on the
analysis of AR models. Two major spectrum estimation methods for AR
models, referred as one-step linear prediction and the maximum
entropy method (MEM) appeared in the literature of mathematical
statistics (Parzen, 1969) and geosciences (Burg, 1967; Lacoss, 1971;
Ulrych, 1972). Although these two methods take different approaches,

it has been shown that they give the same spectral estimate (A van den

Bos, 1971).
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3.3.1 One-Step Linear Prediction

In the application of one-step linear prediction, one seeks to
characterize the spectral density of a time series based upon a finite

set of time observation
x(1), x(2), ... , x(¥) (3.3.1.1)
As described in Section 3.1, the AR model is structured by

x(n) +a, x(n-1) + ... + ap x(n - p) = (n) (3.3.1.2)

1

in which e(n) is a white noise time series with zero mean and variance
092' The objective of spectral estimation will be that of modeling
an underlying time series {x(n)} with the AR model structure (3.3.1.2)
in which the a, coefficients are estimated from the given finite set
of observations (3.3.1.1). This is readily achieved by applving
the well known method of one~step linear prediction.

A p-th order one-step linear prediction, by definition, estimates
the value of a random time series using a linear combination of
the most recent p samples. Namely, the sample x(n) is estimated by
means of the relationship

R %
x(n) = -I a x(n-k) (3.3.1.3)
k=1

The difference between this predicted value and the observed value
x(n) over the observation interval is called the prediction error

and is specified by

e(n) = x(n) - x(n) p<n<XN (3.3.1.4)

e+ ——
s
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or

P
e(n) = x(n) + £ a x(n - k) p<n<N\N (3.3.1.5)
k=1

Writing these error expressions in matrix form yields

e=x+Xa (3.3.1.6)

whete a3, ¢, and x are px 1, (N -p) x 1, and (N - p) x 1 column

vectors, respectively, given by

a= [al, cee s ap]T (3.3.1.7a)
e=le(p+ 1), elp+2), ... , e)]* (3.3.1.7b)
X = [x(p + 1), x(p+2), ..., x(N)]T (3.3.1.7¢)

and X is an (N - p) x p matrix specified by

- . T
x(p) x(p+1) . .. x(N - 1)
x(p - 1) x(p) . . . x(N - 2)
X =
| x(1) x(2) e x(N - p)_ (3.3.1.74)

where the superscript T denotes the transpose operation.

The 3, coefficients are to be now selected so as to cause each
of the prediction error terms e(n) to be close to zero. This
selection process will give rise to the so-called optimal one-step
predictor. To achieve the required objective of setting the e(n) to

be near zero, one typically appeals to the least squares method which

. T, 4 AR
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minimizes a squared error criterion of the form
T
fa) = e We (3.3.1.8)

where W is an (N - p) x (N - p) nonnegative definite square matrix.
The minimization of this quadratic functional with respect to the

column vector a is straightforwardly carried out and results in
X Wxa’=Xx Wx (3.3.1.9)

It can be shown that the resulting power spectral density estimate

of the time series {x(n)} is then given by

2
g
3
Il-+a° e ¥ 4+ ad ™2 ¢+ [+ a° e_pjwlz
1 2 P

Sx(m) = (3.3.1.10)

where the aE coefficients are obtained upon solving relationship

(3.3.1.9).

3.3.2 Maximum Entropy Method (MEM)

The MEM is a result of Burg's attempt (Burg, 1967) to derive
a procedure for increasing spectral resolution when only a small
number of samples or estimates of autocorrelation function are avail-
able. As mentioned in Section 2.3.2, in the autocorrelation method
one first estimates the autocorrelation function, append zeroes to in-

crease the length of the estimated autocorrelation, and then applies the

Fourier transform. In contrast, the MEM suggests that the estimated

autocorrelation function should be extrapolated beyond the data
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limited range. The principle used for this extrapolation process is
that the spectral estimate must be the most random or have the maximum
entropy of any power spectrum which is consistent with the sample
values of the estimated autocorrelation.

In the analysis of MEM, it is assumed that we possess a partial
autocorrelation sequence {r(0), r(+1), ... , r(¥M)} which is a subset
of a infinite extent autocorrelation function {r(0), r(+1), ......}.
It is desired that we produce from this partial autocorrelatiom

sequence a spectral representation

o

S = I r o Jum (3.3.2.1)
m-co

which is a Fourier transform of the autocorrelation function of
infinite length. For some spectral density function Sf(w), we may

associate a time series {f(n)} by means of inverse Fourier transform

T
f(n) = é%-[ Sf(m) 3" 4y for n = 0, +1, ... (3.3.2.2)
-7
so that
r(n) = £(n) for n = 0, +1, ... , 4M (3.3.2.3)

This expression does not provide us with a unique expression for the
spectrum Sr(m). To overcome this difficulty, Burg developed a new
spectral estimator called the maximum entropy method (Burg, 1967).

The entropy associated with power spectrum density Sr(w) is defined

to be
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L
H= f log [Sr(w)] dw (3.3.2.4)
-
Maximizing the entropy with respect to the unknown r(n) for lnl >M
with the constraint
Ui

r(n) = 2%[ S, (w) 3" 4o for |n| > M (3.3.2.5)

-7

results in the maximum entropy spectral estimate. This estimate
expresses maximum uncertainty with respect to the unknown information
that is consistent with the known information. The problem of
estimating Sr(m) becomes a calculus of variations problem. The solution
procedure which begins with the introduction of a Lagrange multiplier
for each of the constraint equations is not difficult and results '

in the spectral estimate (Burg, 1967)

- PM
S _(w) = — — (3.3.2.6)
r |1 + ai P L a§ e JMm(Z

where optimum selection of ak coefficients aﬁ (k =1, ... , M) are

obtained by solving the following matrix system of equations

-r(O) r(l) . .. r(M) -| i 1 ¥ PPMT

r(1) r(0) . .« . (M1 ay 0

r(M) r(M-1) . .. r(0) ay 0 (3.3.2.7)
L JL 1 U |




24

Equation (3.3.2.7) can be solved efficiently by using Levinson's

Algorithm which requires O(Mz) computations (Levinson, 1947).

3.5 ARMA Model

A variety of procedures have been developed for generating ARMA
spectral models. These include the whitening filter approach which
is typically iterative in nature, generally slow in convergence, and,
usually requires an excessively large number of time series' obser-
vations to be effective (Tretter and Steiglitz, 1967; Gutowski,
Robinson and Treitel, 1978). More desirable closed form procedures
which overcome these deficiencies have been offered. These include
the so-called Box-Jenkins method and its variants (Box and Jenkins,
1976; Kaveh, 1979; Kinkel, Perl, Scharf and Stubberud, 1979), and,
more recently, Cadzow has developed a "high performance" method
(Cadzow, 1981). In this section, three ARMA methods, namely, the
Whitening method, Gutowski ARMA method and Box-Jenkins method are

briefly discussed.

3.4.1 Whitening Method

If we assume that the Gauss’an random series {x(n)} is given,
the method of maximum likelihood (Haykin, 1979) can be used to estimate
the coefficients of rational spectrum in the following way. Suppose
the time sequence {x(n)} is passed through a transfer function

A(eju)/B(ejw) to give the output sequence {¢(n)}. The spectrum of

{e(n)} 1is given by
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jw
5 (w) = | Ale” ) 12 g () (3.4.1.1)
B(ejw) X

If one could choose the coefficients of A(ejw) and B(er) so that

Se(w) = Gez' the spectral density of {x(n)} would be given by

jw
Bler) (2,2 (3.4.1.2)

Sx(w) = I A(ejw) €

In this case, {e(n)} is a white Gaussian process. The maximum likeli-
hood parameter estimation is equivalent to finding the minimum of a
function of several variables (Tretter and Steiglitz, 1967). This
is called the minimum residual criterion and, intuitively, one attempts
to "whiten" {x(n)} as much as possible. The whitening process is sugges~-
tively depicted in Fig. 3.4.1.1.

Because of the rational spectrum model's structure, the minimum
residual criterion leads to nonlinear equations which cannot be
solved explicitly. This suggests the using of an iterative technique
to optimize the denominator and numerator coefficients. Many such
techniques are available, ranging from steepest descent to the

Newton-Raphson algorithm.

3.4.2 Gutowski ARMA Method

This section discusses the theoretical motivation for the ARMA
modeling technique described by Gutowski (Gutowski, Robinson,

Treitel, 1978). Consider the discrete time linear system

shown in Fig. 3.4.2.1 with input u(k}), output x(k), and




x{(n)

A(ejw!

Fig. 3.4.1.1 Spectrum Estimation by Whitening Approach

B(ejw)

e(n)

- B3y 2

S (w)
X A(ejm)
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u(k) h(k) x(k)

X(z) = H(z) U(2)

- B(z)
NG U(z)

Fig. 3.4.2.1 Time Invariant Linear System
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impulse response h(k). If the transfer function H(z) is assumed to be

a rational function of z, then it may be written as

B(z)
(z)

H(z) = (3.4.2.1)

>

where A(z) and B(z) are polynomials of z of order p and q, respectively.

This assumption in turn implies that the output is described by

o

(z) U(z) (3.4.2.2)

X(z) = A(2)

where X(z) and U(z) denote z-transform of {x(k)} and {u(k)}, respectively.
Gutowski's ARMA method assumes that u(k) is equal to the Kronecker
delta function and it therefore follows that

B(z)
A(2)

= X(z) (3.4.2.3)

Gutowski's method uses Equation (3.4.2.3) in an iterative procedure
to estimate A(z) and B(z) from the data sequence {x(k)}. Each iteration

may be described in terms of the following three equations:

A(z) X(2) = B(2) (3.4.2.4)
c(z) = A(lz) (3.4.2.5)
C(z) B(z) = X(z2) (3.4.2.6)

The basic iterative technique may be seen by using equation (3.4.2.4)
through (3.4.2.6) and assuming that one starts with a reasonably good
estimate of B(z). At k-th iteration, the following steps are

required.

PSRN
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(k) (k) (k)
Step 1 Compute A(z) with X(z) input and B(z) as desired output.

(k) (k)
Step 2  Compute C(z) by synthetic division of the value 1 by A(k).

(k) (k) (k)
Step 3 Compute B(z) with C(z) as input and X(z) as desired

output.

(k) (k)

After each iteration, if A(z) and B(z) are better than the previous
iteration, then the fit will improve. At the completion of m-th
iterations, the ARMA spectral estimate is given by

8™ (39) 2

Sx(w) = { A(m)(er)

(3.4.2.7)

The above procedure is repeated until convergence occurs. The
minimum delay characteristics of A?(z) is guaranteed by the fact that
the inverse is computed using a Toeplitz formulation. This is the

strong point of this algorithm.

3.4.3 Box~Jenkins Method

The ARMA model with order (p, q) can be characterized by the

following recursive relationship

P q
x@) = -1 a x(n-k) + I bk e{(n-k) (3.4.3.1)
k=1 k=0

n=p+1, ... , + =

where {€(k)} is a white noise with variance cez. The autocorrelation

function of the mixed process may be derived by multiplying each
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*
side of (3.4.3.1) by x (n-m) and taking expectations to yield

P q
r (m) = I r (m-%k+ I b r (m - k) (3.4.3.2)
b3 k=1 A Tx k=0 k "xe

where r. (n) and rxe(n) denote the autocorrelation of the sequence

{x(k)} and cross covariance function between {x(k)} and {e(k)},

respectively. Since x(n-k) depends only on inputs which have occurred

up to time n-k, it then follows that

rxs(n) =0 n>0

(3.4.3.3a)
rxe(n) #0 n<o (3.4.3.3b)
We see that (3.4.3.2) implies
r, (n) = -3 a T (n - k) forn>gq+ 1 (3.4.3.4)
k=1
and yields the following matrix system of equations
r 1r A I N
r, (@ ... ot (q-ptd) a, r (q+l)
T, (g+p-1) . . . r. (@ _j _aE‘ er (q+pi (3.4.3.5) 2

The a coefficients will be obtained by solving the equation (3.4.3.5).

The numerator dynamics of the ARMA model is characterized by %

coefficients (Kaveh, 1979) which can be expressed as

-

7 v ARy e ¥



P P
= o = z
L j=0
where ay = 1 and a, = -a, fori=1, ...,

representation is then found to be

I a, a, i-j-k
aJ aJ r(}i-j-k|)
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(3.4.3.6) 1

k=0,1, ... ,

p. The ARMA spectrum

q
5 CK e—jmk
S (w) = ——4 (3.4.3.7)
X p
[1+ % oJuk | 2

k=1




Chapter 4

HIGH PERFORMANCE ARMA MODEL

4.1 Introduction

It is widely recognized that an ARMA spectral model is gemerally
the most effective linear rational model from a parameter parsimony
viewpoint (see Section 3.1). In recognition of this fact, a variety
of procedures have been developed for generating ARMA models
(Steiglitz, 1977; Box and Jenkins, 1976; Kaveh, 1979; Kinkel, Perl,
Scharf and Stubberud, 1979). Some of these methods were discussed in
Section 3.4. As indicated in Section 3.4, it is recognized that
these methods share certain deficiencies. To overcome these
deficiencies, the 'high performance' ARMA method was developed
(Cadzow, 1979, 1980, a,b). It provides an excellent spectral estima-
tion performance when compared with other spectral estimation methods.
In this chapter, the 'high performance' method is described and
numbers of numerical examples are provided. This chapter is basically
identical to references (Cadzow, 1979, 1980 a, b). The development of
this method is based upon some fundamental concept governing ARMA

time series which will be discussed in next sectiom.

4.2 Fundamental Concepts

The stationary random time series {xk} whose power spectrum is

of a rational form may be modeled as the response of the causal ARMA

32
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system of order (p, q)

b (4.2.1)

0

I 1.0

a, x, .= T
i k-1 i k-1i

i=1 i
where the time series [sk} is taken to be a zero mean white noise
excitation signal. The autocorrelation description of this system
is obtained by first multiplying each side of expression (4.2.1) by
the entity x:_m and then taking the expected value. This results in
the well known Yule-Walker equations as specified by
P .
rx(m) + iil a; rx(m -1i) =90 form > q (4.2.2)

The Yule-Walker equations (4.2.2) will serve as the basis for esti-

mating the ARMA model's denominator coefficients (i.e., ak coefficients).

4.3 Denominator Coefficient Selection

In this section, a novel procedure for estimating an ARMA model's ﬂ
denominator coefficients shall be presented (Cadzow, 1979, 1980 a).

This development is begun by first evaluating the model equation

(4.2.1) over the integer set p + 1 < k < n to obtain the time series z
relationships E
r Tr . .
X1 x5 N i a;
X 42 Xot1 X, X, a,
+
x X X .. X a
o | |Lm 1 n-2 P | P
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[~ i b
€p+l Ep . e . 8p-q+lT b0
€ € . e € b
pt+2 ptl p-q+2 1
L € €o1 en—q L bq | (4.3.1)
It will be compactly written in the matrix format
x+Xa=¢&b (4.3.2)

where x, a and b 1is (n-p)xl, pxl and (n-p)x1l column vector, respectively.
The symbols X and & denote (n-p)xp and (n-p) x (q+1) Toeplitz type
matrices, respectively. The entries of these vectors and matrices

are directly obtained from expression (4.3.1).

It is now desired to utilize relationship (4.3.1) in conjunction
with the Yule-Walker equations (4.2.2) to effect a procedure for
estimating the ARMA model's autoregressive coefficients. As we will
see, this objective is attained by first introducing the following

(n-p)xt Toeplitz type matrix

o -
X o s s s X
*p-q p~q-1 p-q-t+1

Y = xp_q+1 xp_q e e e e Xp_q_t+2

. .

T S s Y
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where the convention is adopted of setting to zero any matrix entry
LN for which k lies outside the observation set 1 < k < n. The
integer t which specifies the number of columns of this matrix will
also be found to correspond to the number of Yule-Walker equations
that are being approximated (i.e., relationship (4.2.2) for
q<m<q-+t). It thus follows that this integer parameter must
be selected to at least equal p (i.e., t > p) so as to assure a
well defined set of equations for the p autoregressive coefficients.
The above mentioned Yule~Walker equation approximation is
achieved by premultiplying each side of relationship (4.3.2) by the

complex conjugate transpose of matrix Y as denoted by Y to yield
Y x+Y Xa=Y € a (4.3.4)

To demonstrate that this system of equations yields a logical choice
for the Yule-Walker equation approximations, let us now take the

expected value of each of its sides. This is found to result in

P
(n - m) {rx(m) + kil a rx(m -k} =0 (4.3.5)

for g <m<qg+t

Thus, the system of linear equations (4.3.4) is seen to provide an
unbiased estimate of the underlying Yule-Walker equations. It is to
be noted that the right hand side term has zero expected value due to
the fact that the expected value of the matrix Y+E is the null

matrix. This is a direct consequence of the ARMA model's causality and

*
the whiteness of the excitation process which results in E {xnek? =0
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for all n < k.

With these thoughts in mind, a logical procedure for selecting the
ARMA model's autoregressive coefficients is suggested. Namely, they
will be selected so as to cause the left hand side of relatiomship
(4.3.4) to be close to its expected value which is the zero vector
(i.e., E {Y+€— b} = 8). If this selection procedure is adopted, an
approximation of the Yule~Walker equations which in some sense is
"most consistent' with the given time series observations is at hand.
A computationally tractable measure of the closeness to which the
left side of relationship (4.3.4) is to the zero vector is provided

by the following quadratic functional
+ + T - +
f(a) = [Y x+Y Xxal'a[Y x+ Y X a] (4.3.6)

in which A is a t x t positive-semidefinite diagonal matrix whose
diagonal elements are chosen to possibly weight differently various
elements of the error vector v X + Y x a. It is a simple matter to
show that a minimizing autoregressive coefficient vector must satisfy

the consistent system of p linear equatiomns
+ + + +
X YAY Xa=-X" YAY x (4.3.7)

in the p autoregressive coefficient unknowns. One then solves this
system of p equations for the most data consistent set of auto-

regressive coefficient estimates.
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4,4 Numerator Dymamics

A variety of procedures exists for determining the numerator

dynamics of an ARMA time series once the AR coefficients have been

estimated. In this section, two procedures which have been found to
be particularly effective shall be described. Each makes use of the

governing ARMA relationship that models the underlying time series.

4.4.1 Yule-Walker Equation Method (Cadzow, 1979)

In this approach to estimating the numerator dynamics, we first
introduce the so-called causal image of a time series autocorrelation

sequence as specified by
+
rx(n) = -l rx(o) §(n) + rx(n) u(n) (4.4.1.1)

in which §(n) and u(n) designate the unit-sample and unit-step
sequences, respectively. Making use of the complex conjugate
symmetrical property of stationary autocorrelation sequences, it then
follows that the autocorrelation sequence can be uniquely recovered

from its causal image according to the simple relatiomship
< L+t + * , "
rx(n) rx(n) +r (-n) (4.6.1.2)

Upon taking the discrete-Fourier transform of this relationship,

it follows that the time series spectral density is given by

s, (@) = St + [stw]*

+
=2 R, [Sx(w)] (4.4.1.3)
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where S:(w) denotes the discrete Fourier transform of the causal
image r;(n). According to relationship (4.4.1.3), one may attain a

spectral density estimate by estimating S:(w). This will be the
approach taken in this section.

An estimation of the Yule-Walker equations (4.2.2) which govern
the ARMA model time series indicates that the causal image sequence

will generate the auxiliary {ck} sequence according to

+ P +
e, = rx(m) + kZ a, T, (m - k) (4.4.1.4)
=1

m=0,1, ... , s for s = max (q,p)

It is to be noted that the {ck} sequence will be identically zero out-
side the time range 0 < k < s. Upon taking the discrete Fourier

transform of relationship (4.4.1.4), we have S;(w) in the form

-jsw
e d

_jw
) + c1 e + .. .+ cS

Sl 4 a TdRe

s;’(w) = (4.4.1.5)

1+ a1

If this expression is substituted into relationship (4.4.1.3), the

required formulation of the spectral density estimate is completed.

4.4.2 Smoothed Periodgram Method (Cadzow, 1980 b)

In the smoothed periodgram method, one first generates the

auxiliary ''residual" time series elements according to the relationship

P
e(k) = x(k) + ¢ a; x(k - 1) p+l<kc<n (4.4.2.1)
i=1

in which the ARMA model's a, coefficients as generated by relationship
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(4.3.7) is utilized. Upon examination of relationship (4.2.1) and
under the condition that the time series being characterized is an
ARMA model of order p with the calculated a, coefficients, it follows
that the resi&ual time series will have a moving average spectral

density as given by

q -
s, = | b e dk?
k=0

K (4.4.2.2)

This observation in conjunction with the ARMA model representation
then provides the vehicle for estimating the underlying time series
spectral density, that is

P s
S (w) = S (w) / Ikio a e

,a =1 (4.4.2.3)

With this in mind, the final step of the spectral estimation procedure
requires fitting a q-th order moving average (MA) model to the
residual time series segment (4.4.2.1) to effect an estimate of Se(w).

The approach to be presented for obtaining the q+1St order MA
model is an adaption of the well-known method of Welch for obtaining
smoothed periodgrams (Welch, 1967). 1In essence, one first segments
the calculated residual elements (4.4.2.1) into L segments each of

length q + 1 according to

ei(k) = w(k) e(k + 1 + p + id) (4.4.2.4)
0 <k=xq
0<i<L-1




where w(n) is a data window and "d" is a positive integer which

gpecifies the time shift between adjacent segments. These individual

segments are seen to overlap for a shift selection of d < q.

Furthermore, in order to include only the observed time series i

elements, the relevant parameter must be selected so that p + q +

(L - 1)d < n. Finally, the q + 1 order periodogram of each of the
L segments (4.4.2.4) is taken, and, these periodograms are in turn

averaged to obtain the desired smoothed q + 1 order MA estimate given

by 1

N 1 L-1 1 q
S, =T I =7 | T w(k) e(k + 1+ p + id)e
i=0 T k=0

Sluk 124 (4.4.2.5)

where the data window is normalized according to I wz(k) = 1.

In using this smoothing procedure, the variance of the estimate
Se(w) is reduced. The price paid for this reduction, however, is a

loss in frequency resolution and an increased bias of the estimate.

Fortunately, the basic resolution capability of this and other ARMA
model procedures is primarily influenced by the autoregressive co-
efficient selection. If one is mainly interested in resolution
performance, an examination of the ARMA models’ pole locations then

need be investigated.

4.5 Numerical Examples

. P
P

In this section, the classical problem of detecting the presence

of sinusoids in additive noise is considered. In particular, we

will investigate the specific case in which the time series observations
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are generated according to

x(n) = A1 cos (nfln) + A2 cos (nfzn) + w(n) (4.5.1)
l1<n<N
where w(n) is a white Gaussian time series with variance one. This ‘

particular problem serves as an excellent vehicle for measuring a ‘
spectral estimator's performance relative to: (i) detecting the
presence of sinusoids in a strong noisy background, and (ii) resolving ‘

two sinusoids whose frequencies £, and f2 are nearly equal. The

1
individual sinusoidal signal-to-noise ratios (SNR) for the above signal
are given by 20 log (Ak//f) for k = 1,2, 1In order to consider the
effectiveness of the high performarce ARMA spectral estimator in
different noise enviromments, we shall consider two cases. These

cases have been examined in reference (Sullivan, etc., 1978) where the

performance of many modern spectral estimators are empirically compared.

CASE I: A, = v20, £, = 0.4

= /2, £, = 0.426

A 2

2

In this example, we have two closely spaced (in frequency) sinu-
soids for which the stronger sinusoid has a SNR of 10 dB while the
weaker sinusoid has a SNR of 0 dB. For this relatively low SNR case,
the ability of a spectral estimator to resolve closely spaced sinusoids
and identify their frequencies will be tested. Upon generating
sequence (4.5.1) with the postulated parameters for a data length of

N = 1024, spectral estimates were obtained using a 12-th order model
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with the high performance ARMA method (diagonal element of the
matrix A is (N—m)z), maximum entropy method, and the Box-Jenkins
method incorporating biased autocorrelation estimates. In additionm,
a standard periodgram spectral estimate was obtained using the same
data. The resultant spectral estimates are displayed in Fig. 4.5.1
where a number of observations can be made
(1) The indirect ARMA spectral estimate provides excellent
results with two sharp peaks at El = 0.400 and
%2 = 0.427, and with the spectrum near 0 4B (the noise
level) for most other frequencies.
(ii) The maximum entropy and Box-Jenkins methods were unable
to resolve the two sinusoids in the prevailing low
SNR environment.

(iii) Although the periodgram is able to resolve the two
sinusoids, the well-known random fluctuation behavior
which characterizes the periodgram method is in
evidence.

This example nicely demonstrates the potential capability of the high
performance ARMA spectral estimation method relative to existing
procedures.

In many practical problems, one does not have available exceedingly
long data lengths upon which to make a spectral estimate. To demon-
strate the ability of the high performance ARMA spectral estimator to
perform in such situations, the first 64 samples of the data sequence

in the above example were used to generate a spectral estimate. The
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resultant 15-th order high performance ARMA spectral estimate obtained
is shown in Fig. 4.5.2 where the ability to resolve the two closely ¢
spaced sinusoids is again evident. The sinusoid's frequency estimate
%1 = 0.399 and %2 = 0.423 are also of good quality in this low SNR

environment.

[}
N
!
n

H
o
(o8]
N
[0 4]
'—l
N

CASE II: A1

We are now examining the ability of the ARMA spectral estimator
to detect sinusoids in a low SNR environment. For a selection of
N =64, w(n) = (N - n)z and p = 5, the resultant ARMA spectral
estimation is displayed in Fig. 4.5.3(a). Clearly, one is able to
detect the presence of the two sinusoids, and, the frequency estimate
; = 0.3202 and %2 = 0.5012 a;e of good quality considering the
prevailing SNR environment. A 15-th order maximum entropy spectral
estimator was then found to generate the spectral estimate displaved
in Fig. 4.5.3(b). Although the two sinusoids were properly detected,
a number of false peaks are in evidence.

Next, we treat the time series recently considered by Bruzzone
and Kaveh (1980). Specifically, their ARMA time series is characterized
by

- 2 - "
Xy xk + xk + 0.5 o (4.5.2a)

1 2 .
where the time series X and X, are autoregressive process generated

by

. aa—

e
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1 1 1 1
X = 0.4 X1~ 0.93 X2 + Ek (4.5.2b)
2 2 2 2
x = -0.5 X~ 0.93 X9 + €y (4.5.2¢)

in which the ¢ and ei are uncorrelated Gaussian random variables

K %k
with zero mean and variance 1. The spectral density of the above

time series (4.5.2a) is given by

S (w) = |1 - 0.4 e 3Y 4 .93 72|72

+ 1+ 0.5 e 40,93 73272 L 025 (4.5.20)

Using this time series (4.5.2a), twenty different independent sampled
sequences each of length 64 were generated. These twenty observation
sets were used to test various spectral estimation methods. In

Fig. 4.5.4, twenty superimposed plots of the ARMA model spectral
estimates of order (4.4) as obtained by using the Box-Jenkins method, the
high performance method with t = 4, 8 and 20 are shown. For comparison
purposes, the ideal spectrum is also plotted. Comparing the two top
most plots, the high performance method with the minimal value of t=4
was fcund to yield a marginally better spectral estimate than the
Box-Jenkins method. 1In the lower two plots, one can observe that the
high performance spectral estimates improve significantly as t is
increased. Next, twenty different samples sequence of length 200 were
generated according to time series (4.5.2a). With this longer data

length, it was anticipated that an improvement in spectral estimation

performance would result. As shown in Fig. 4.5.5, a marked improvement
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Box~Jenkins Method

=/A

n

Exact

Fig. 4.3.4 ARMA Spectral Estimates of Order (4,4%),
Data Length of 64, and, A = 0.95.
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Box~-Jenkins Method

(a4
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Exact

Fig. 4.5.5 ARMA Spectral Estimates of Order (4,4),
Data Length of 200, and, X = 0.95.
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is evident, where the ARMA model spectral estimates of order (4.4)
are shown for the Box-Jenkins method and the high performance method
for selections of t = 4, 8, and 20.

It is also possible to use the high performance ARMA method for
synthesizing digital filters., To illustrate the approach that is
taken, let us consider the specific case of designing a low-pass
filter of normalized cutoff frequency fc. One may readily show that
the impulse response of an idealized version of this low pass filter
is given by sin (nfcn)/ﬂn. With this in mind, one then applies the

herein developed ARMA procedure to the specific sequence
x(n) = sin [nf (n - 0.5 N)]/n(n - 0.5N) 1 <n<N (4.5.3)

The resultant ARMA model obtained in this manner will have attenuation
characteristics of the desired low-pass filter. To illustrate this,

a 15-th order ARMA spectral estimate of this sequence was made for

fc = 0.2, N = 128 and w(n) = (N-n). The resultant filter's magnitude

characteristics are displayed in Fig. 4.5.6 where the low-pass

characteristics are in evidence.

4,6 Summary

The "high performance' ARMA model spectral estimation has been
described. This estimation approach provided an excellent spectral
estimation performance when compared with such contemporary procedures

as the maximum entropy and Box-Jenkins Methods. The above mentioned

i i
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"high performance"” ARMA spectrum estimation will be developed

further in Chapter 5 to achieve computational efficiency.

)

IS L3




Chapter 5

COMPUTATIONALLY EFFICIENT ARMA SPECTRAL ESTIMATION

5.1 Introduction

Recently, much attention has been focused on developing spectral
estimation algorithms. Unfortunately, direct application of the linear
prediction method as described in Section 3.3.1 results in an
excessive computational requirement, since it is necessary to solve
a pxp matrix system of equations which generally requires 0(p3)
computations. For this reason, a number of computationally fast
algorithms have been developed to overcome this difficulty. These
include the Levinson algorithm (Levinson, 1947). The Levinson
algorithm is found to be dependent on the Toeplitz structure of
the matrix characterizing the system of equations. With this very
restrictive constraint in mind, Kailath, etc. developed the concept
of the displacement rank so as to yield efficient solutions for non
Toeplitz system of equations. The displacement rank measures how
"close" to Toeplitz a given square matrix is (Kailath, etc., 1979).
If a given matrix T is Toeplitz, then its structure is characterized

by the following property

T = [t (5.1.1)

1,33 = Ciam, imd

where ti 3 denotes the (i,j)-th element of the pxp Toeplitz matrix

T and m is a scalar integer (1 < i+m, j+m < p). That is, the elements

57
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of the matrix T are identical along the diagonal and subdiagonal
directions. 1In recognition of this key property of a Toeplitz

structure, the displacement rank of the pxp matrix A is defined by

a(A) = min{a+ 4), a_ (A} (5.1.2a)
where
a (A) = rank {A - S A ST}

(5.1.2b)

T

a_ (A) = rank {A -~ 8" A S}

in which @ (A) and a_ (A) are called the positive and negative
displacement ranks of matrix A, respectively, and S denotes the pxp

down shift matrix defined by

O o (5.1.3)

It can be straightforwardly shown that the displacement rank of a

Toeplitz matrix T is 2, that is
aT) = a, (T =a_(T) =2 (5.1.4)

If a given matrix A has a displacement rank a, then it has been
shown that the inversion of A may be accomplished with the number of
required computations being O(aPZ) (Friedlander, etc., 1979).

Based on these concepts, a number of computationally efficient
algorithms for AR spectral models have been developed (Friedlander,
etc., 1978, 1979; Morf, etc., 1977; Morf and Lee, 1978; Lee and Morf,

1980; Morf and Kailath, 1975; Mullis and Roberts, 1976; Morf, 1980;

- o

Ay
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Bitmead and Anderson, 1979). Some of these methods are classified
by Morf, etc. (Morf, etc., 1977).

In this chapter, fast algorithms which are applicable to the
"high performance' ARMA method (see Chapter 4) are developed. To
achieve the fast algorithm solution capability, it will be necessary
to restrict the number of Yule-Walker approximation to be p (i.e.,
t = p). Unfortunately, the vestriction t = p will generally result
in an associated decrease in spectral estimation performance. Thus,
in obtaining a computationally fast algorithmic solution procedure
for the a, coefficients, an accompanying sacrifice in spectral
estimation performance is the price being paid. One must therefore
carefully consider the tradeoff for any given application. Fortunately,
the degradation in performance is not great for many relevant
applications in which the data length n adequately exceeds the ARMA
model order parameters p and q.

The achievement of fast algorithms requires data modifications
which will be discussed in Section 5.2. In Sections 5.3 and 5.4,
algorithms which requires O(pz) and O(p log p) multiplications,
respectively are discussed. An algorithm which requires 0(p)

computations is developed in Chapter 6.

5.2 Data Modification

In this section, we will discuss three types of data modifications

referred to as the pre-modification, post-modification and pre- and
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post-modification methods (Cadzow and Ogino, 1981). These are modi-
fications of the 'high performance’ ARMA spectral estimation methods
as discussed in Section 4.3 in which t is restricted to be p. It will
be recalled that in this unmodified case one must solve the matrix
system of equations (4.3.4). Without loss of generality, this

matrix system of equations may be represented as

+ +
Y Xa=Y x (5.2.1)

where Y and X are (n - p) x p Toeplitz matrices, while x and a are

(n-p) x1and px 1 colum vectors, respectively defined by

x x X 17
p-q’ prqtl’ T T T T Tamg-l

v=]-" . .

xl—q xz_q, « e e e e 4y xn-q-p (5.2.1a)

oy -

- T

Fxp xp+1 ce e e e X g
X =" .

Lxl X, e e o s 4 » xn_p.J (5.2.1b)

T

x = [xp+l’ Xopr t ot xn] (5.2.1¢)
a=[a . . a ]T (5.2.1d)
— 1! . ’ P

where the entries of the matrices X, Y and column vector x can be

determined from expression (4.3.4). The entries of the column vector
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a in expression (5.2.1d) denote the denominator AR coefficients to be
found. It can be shown that the displacement rank of the matrix
Y+X is 4. As suggested in Section 5.1, it is possible to find an
algorithmic solution procedure which requires O(Apz) computations.

In fact, in Section 5.3, a generalized Levinson's algorithm will be
developed.

It is possible to realize significant computational savings in
the 'high performance' ARMA spectral estimation procedure. This
improvement will entail a slight modification in the vector x and
matrices X and Y. Although the suggested modifications will typically
result in biased estimates of the Yule-Walker equations, it is shown
that when the data length n adequately exceeds the order parameter
p and q then these estimates are virtually unbiased (Cadzow and Ogino,
1981).

With the above high performance spectral estimation method
representation serving as a basis, we shall now consider the afore-
mentioned modifications required to achieve computationally efficient

algorithmic solution procedures.

5.2.1 Pre-modification Method

In expressions (5.2.la) and (5.2.1b), the addition of lower

triangular matrices to the top of matrices X and Y yields the Toeplitz

matrices

:

P

it fod o
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M« X - T
1_q . . ') (] p_q ] Y . . . n_q_l i
T L . xt
O xl-—q e e« & o o n-q-p (5.2.1.13) ‘
T

™ . Ld ] L[] - o Y a a2 - “

1 xP *a~1
= O L. )

i KT Fag) (5.2.1.1b)

with Y1 and X1

the structure of expression (4.3.1), the vector x will be modified

each being (n ~ 1) x p matrices. While maintaining

to

x, = [x . X . . X ]T (5.2.l.lc)

=1 2 p+1 n
Substitution of expressions Yl’ Xl andz:_1 in place of Y, X and x,
respectively, yields

!
+ +
Yl xl-é = Yl 51 (5.2.2) b

-
!

It can be shown that the displacement rank of the matrix Y1 X1 is 3
(Cadzow and Ogino, 1981). It is possible to find a generalized
Levinson algorithm which requires 0(3p2) computations to invert fol.
More importantly, because of this specific structure, an algorithm
which requires 0(p) computations has been developed and will be

discussed in Chapter 6. ]




A

e ..

63

5.2.2 Post-modification Method

Following a similar procedure as employed in Section 5.2.1,

the addition of an upper triangular matrix to the main body of the

matrices specified by (5.2.1.a) and (5.2.1b) yields the Toeplitz

matrices
rx . . . . . b.4
P-q n-q-1
=1, .
xl_q [ - » LY . L] xn—q—p
r ] a . e o o
xp xn-l
Xz - [ ] ]
Lxl * L3 » . o L] - xn_p [ Y

where X2 and Y2 are each (n - 1) x p Toeplitz matrices.

manner, the column vector x

2 is defined by

xn-H

T
52’[xp+l"°°"’xn’ 0 . .0]

P

Zeros

(5.2.1.3a)

(5.2.1.3b)

In a similar

(5.2.1.3¢)

The displacement rank of the matrix Yé X, is found to be (Cadzow

and Ogino, 1981)

a, (Yy X)) = a_ (Y, X,) =3

(5.2.1.4)
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thereby offering a generalized Levinson solution procedure requiring
a computational complexity of 0(3p2) for solving the system of

equations
2 leg = Y2.§ (5.2.1.5)

A more computationally efficient algorithm associated with the post-
modification will be developed herein. It is shown that the number
of computations is reduced to O(p log p) if p = q where p and q are
the order of denominator and numerator coefficients of the ARMA model,

respectively.

5.2.3 Pre- and Post-Modification Method

The combination of the previously discussed two modification
methods yields the pre~ and post-modification method. The matrices

and vector are modified in the following manner

rx '] s ¢ X L] . « X 7] T
1-q P-q n-1-q O
Y, = . : ‘ .
O xl_q . . [ xn_p_q e o a xn—-l—q
L .
(5.2.3.1a)
. e e s T
xl xp « ¢ @ xn_l O
- [ ] » 4 ]
x3 » » [ [}
O ' '
xl e & o xn_p o o e xn—l (5.2. 3- lb)
L J
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X4 = [x2 e .. xp+l . . xn 0. ....0] (5.2.3.1¢c)
Pieros

where Y3 and X3 denote (n + p - 1) x p matrices and X, is a
(n+p -1 x 1 column vector respectively.
It can be shown that the matrix Y; X3 is a Toeplitz matrix. A

conventional approach for solving the Toeplitz system of equations

Y Xy a= Y] x, (5.2.4)
was developed by Levinson (Levinsom, 1947), which requires 0(p2)
computations. More recently much effort has been conducted in
developing more efficient AR algorithms whose computational require-
ment is O(p log p). Gustavson, etc., presented their algorithms
which were based on the use of Pade approximates and the rational
Hermite approximation (Gustavson and Yun, 1979). Mor¢

developed the so-called doubling algorithm which requires

0(p log p) (Morf, 1980). Bitmead and Andersom also independently
found a doubling algorithm (Bitmead and Andersom, 1979). In Section
5.4, an application of the doubling algorithm to the ARMA model is

developed.

5.3 Generalized Levinson's Approach for the ARMA Model:
The Unmodified Method

In this section, an algorithm which can be applied to the direct

approach (i.e., no modification) will be developed. Without loss of

n
1l,m

generality, the m x m matrix R will be defined by
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N L L (5.3.1a)
1l,m i,m l,m
where X? o denotes (n - m + 1) x m matrix defined by
s
r X X X 1T
m mFl : "
n
xl,m . :
i Xy X, e e e . xn—m+1J (5.3.1b)

with the subscript m designating the number of columns of matrix

X? o’ 1 is the smallest and n the largest index of the observation
3’

data to form the matrix X. _. In a similar manner, matrix ¥ is
1,m 1,m
obtained by
ryh ym+l « e e e yn T
Y?,m' : '
Y1 Yo - . yn—m+lJ (5.3.1c)
where the entries of the matrix Y? o 2Tre given by
9’
*
v, = xi-q for i=1, ... , n (5.3.1d)

This particular representation has been chosen so that in the develop-
ment of the generalized Levinson's algorithm for an ARMA model,
notational complexity can be eased. It then follows that the matrix
expressed by (5.3.1a) has the following shift invariance structures

which characterizes the near Toeplitz structure of the matrix R; o’
»

that {is

P s e

T LTSS
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n _ .n-1 n  nT
Rl,m " R1,m t Y (’—‘m) (5.3.2a)
=Ky T T (5.3.2b)
2,m Xm —m 3.
i B
n T
n - w . )
Rl,m"l~ %‘*-:1?:’:1__--.]
: n-1
. R1,11\
).: (5.3.2¢)
L )
-
] n ¥
Rom .
X
n 4T (5.3.2d)
where )!:;, E;, 2:1 and _}_{:: are m X 1 colum vectors defined by
a= Dy -y I (5.3.2e)
In n’ " > Tpemtl - 3.
x =[x x i (5.3.2f)
—m n’ " " " Tp-mbl e
a= b I (5.3.2g)
zm m? " yl . 3.
2 = [x %17 (5.3.2h)
-m m’ s o e 1 e

)T denote the first and last rows of the

n T n
while (znﬂ-l) and <ymkl

n n
matrix Rl,m+1 respectively, and the m x m matrices R2,m is defined by
B =) 17 (5.3.3)

,m 2,m 2,m T

i s o SR P Y P
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From a structural viewpoint, relationship (5.3.2a) is called time

update, since the matrix R; o is explicitly defined as a sum of two
’
mal:rices:Rn_l which includes all of the past observations up to

1l,m
previous time index n-1 and zg(x;)T which includes the most recent data.

n-1

In expression (5.3.2¢), R is seen to be a submatrix of RO It

1,m 1,m+l’
then follows that relationship (5.3.2¢) is called order and time
update.

A computationally efficient algorithm will be obtained by using
various combinations of the above shift invariance structures. This

fast algorithmic procedure for finding the solution is similar to

Levinson's algorithm (Levinson, 1947). The overall solution is

updated from the solution of a lower order to that of higher order
system of equations (order update) and from the solution of previous

time instance to that of present time (time update). To develop this

algorithm, we apply an induction hypothesis. Suppose at order m

and time n, we have the relationship

€,0 T
4 0 y
n n n n - 1,m m
g v b o gl’m] , . .
: r,n
0 cl,m le (5.3.4a)

where a" , b » and d® are m x 1 colum vectors defined by
=1l,m’ —1,m =1,m
i
n n n T
£ (1, 8 s s al’m(m-l)] (5.3.4b) i
b =[BT (n-1), b} (n-2) b (1), 117 (5.3.40) 3
=1,m l,m > "1,m L S U D te




and

=1,m

Specifically, a

AR coefficient vectors, respectively.

; q 2nd E? are called the forward and the backward
? ?
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n n
= la) 40, 4; (@,

1,m

n
» 4y

@It

(5.3.4d)

In the development of the

computationally efficient algorithm, the auxiliary vectors g: o 3Te
9

needed to cancel the end effects due to the non-Toeplitz nature of

matrix Rg o’ At the previous time index n-1l, we have the relationship
»
F €,n-1 7
;1 o 0 Ym
Rn-—l [ n-1 bn-l dn-l] - ’ . .
im " 1lm “1l,m —1l,m 0 . .
. 0 .
0 2L g (5.3.4e)
- 1’m lJ

Based on the relationship (5.3.4a) and (5.3.4e), we will develop a recur-~

n

. . n n
sive solution procedure for the vectors 31’m+1, bl,m+1 and 91,m+1 as a
function of n. Applying the shift invariance structure (5.3.2b) to
(5.3.4a) yields the following expressions
n n _ _e,n - m
R2,m ~31,m Cl,m £ T tn iy (5.3.5a)
n n
R2,m-91,m = (1 - fm) 32 (5.3.5b)
where € and fm are scalars defined by
n,T n
€ (Em) 2) n (5.3.6a)
mT n
fm (Em) ‘gl’m (5.3.6b)

e -
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and & is the m x 1 unit basis vector expressed by

e =1, 0...01" (5.3.6¢)

Expressions (5.3.5a) and (5.3.5b) lead to the following

relationship
m n n
Room 22,m = %2,m & (5.3.7a)

where 3; n and z; p 3re amx 1 column vector and a scalar respectively,
2 s’

defined by

€ €
n n m n m n
By =B n v T & VT 4 (D) (5.3.79)

m m

€
g,n _ _E,0 m n
Sm = Cim ! At TTE = dy (D} (5.3.7¢)

where d° (1) denotes the first entry of the vector a? (see
1l,m =1,m

eq. (5.3.4d)). Expressions (5.3.2c) and (5.3.2d) lead to the relation-

ships

e (5.3.8a)

r,n
1,ml °1,mHl  °1,m+l Sml (5.3.8b)

where e is the (mt+l)xl unit bases vector defined by

—mt+1
; T
Snb1 ™ o, ..., 1] (5.3.8¢)
? €40 r,n
In expressions (5.3.8a) and (5.3.8b), cl,m+l and El,m+l are scalars

defined by
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n €,n *m Bm
9 = 9 - ———
*1,mH1 C2,m Cr,n—l (5.3.9a)
1,m
o B
R, r,n~1 m m
Cl,m+1 Cl,m e (5.3.9b)
2,m
in which o and Bm are scalars specified by
a = (zn )T al W (5.3.10a)
m =mt+1 —2,m tT
L 0
=™ )T .
Sm (Em+l) 0 ) (5.3.10b)
n-1
=1,m
L -
n n ]
The m x 1 column vectors 3) w1 and 21,m+1 in expressions (5.3.8a)

and (5.3.8b), respectively, are defined by

n m m 0
2,001 | 2,0f T Trn1 | .01 (5.3.11a)
4 b
lsm —l,m
0
L d
B 0 ' 8
n m n
E1,rrr*~1 p0-1 - e 2 (5.3.11b)
~1,m 2,m 0
L -

Expressions (5.3.11la) and (5.3.11b) are seen to be very similar to
Levinson's algorithm (Levinson, 1947). 1In fact, one can show that
these two expressions can be converted to Levinson's algorithm, if the
pre- and post-modification method is applied on the matrix R: o

]

Next, we will verify the relationship which updates the vector

n
d, . The m x 1 column vector gl,m+1

41 m is found to be
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Pl - 0 + Y+l Ym al
—-1,mr+l n Ce,n =1,mt+1 (5.3.123a)
d 1,m1
=1,m

|

n T 0
Yp = (Eh+l) . (5.3.12b)
d
-=1,m
4
It can be straightforwardly shown that }
n n mt+l
Ry, okl 81,41 = Ip1 (5.3.13)

Finally, combining expressions (5.3.1la), (5.3.11b), and (5.3.13),

the following relationship is obtained. ;
[;5:2 0 )
RY [an bn 4 ] = Cl,m+1 Yo+l
I,ml —1,ml —1,m+¢l -—=1,mt+l 0 ‘ :
. 0 . i
. . .
0 f1,m1 1
L o
(5.3.14)

In the above development, the generalized Levinson's algorithm for
ARMA model is verified based on the induction hypothesis. The number
of computation of the algorithm is readily found to be 0(3p2) where
p designates the number of denominator coefficients of the ARMA model. i

We will now detail steps of the computations required in

this recursive algorithm. The algorithm starts with the initialization

procedure at n = q+1 and order m = 1, The solution aN 1 of the matrix
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equation (5.3.4a) with m = p+l is obtained by recursively updating
Q: fromm = 1 to p + 1 (order update) and from n = g+l to N (time
update). Meanwhile, auxiliary vector Q; is also recursively updated.

The above algorithm can be presented as follows

Step 1: Initialization for time update (n = q+l)

1 - 1 4T r,1 _ _e,1 _
[3541] lz; 3 =81 =e) Yo+l ¥q+1

Step 2: n = ntl

Step 3: 1Initialization for order update

R =

A AN T m=1, ... , M
n_ n-l1 -

Ttz F Ya+1-M *ntl-m m=1,. » M

where M = min (p+l, n-q) m=1, ... , M
€, _ T,m _ n

Sim = fim ~EH WD

n
where 5;(1) denotes the first element of columm vector z,

= n = n = E,N
1,070,101 479/,

Step 4: Compute recursively fromm = 1 to M where M = min

(p, n-q-1)
o, T n m\T ,n
‘n (zm) él,m’ fm (Em) ‘gl,m

R A V.
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n n Em n € n
= + —
Syp =2 P T ) T £ d; oD}
€E,0 €,0 Em n
) = ’
:Z,m ';1,m /{1 + T fm gl’m(l)}
0
n T n - n T
o = Ca | 3oa By = (g a-1
=1,m

* Update forward and backward solutions

a
an = an _ m 0
-1,mt+1l =2,m r,n-1
z n-1
1l,m b
=1l,m
bn = 4] _ Bm n
=1,m+1 n-1 Cs,n =2,n
b 2,m
=1,m
a B
c - a;e,n __m m
1,m+l 2,m Cr,n—l
i,m
r 5.1 - ;r,n—l c‘m Bm
1,m+l 1,m Ce,n
2,m
* Compute auxiliary vector gt
=1i,m ¢
j
_.mn (Tl O :
Ym = (w 1)
4"
=1l,m
dn - 0 ym-l-l Ym an
=1,m+l n Ce,n =1,mt+1
d 1,m+l
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Step 5: If n < N go to Step 2
Step 6: End of algorithm

In above, N is taken to be the last index of vector EN'

5.4 ARMA Doubling Algorithm: The Pre- and Post-Method

As described in section 5.2, one of the data modification
methods referred to as the pre- and post-modification method leads

to the following set of equations
A a=b (5.4.1)

where Ap is a pxp Toeplitz matrix and gp is a pxl column vector

given by

Ap = Y3 X3 (5.4.2)
= vI
b Y3 x3

where matrices Y3, X3 and column vector Xq are previously defined in
expressions (5.2.3.1a), (5.2.3.1b) and (5.2.3.1lc), respectively. The
displacement rank of the matrix Ap is readily shown to be 2. This
being the case, it is possible to apply the doubling algorithm (Morf,
1980; Bitmead and Anderson, 1979).

Without loss of generality, we now assume that p = Zk for some
integer k. The matrix Ap can be partitioned into 4 matrices whose

(k=1) _ 5 (k-1)

Z(k_l). Each 2 matrix is then also

sizes are Z(k—l) X

RV SN

i s,
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(k-2) % 2(k—2)

partitioned into 2 matrices. This procedure is called

the doubling or halving procedure. In this procedure, we can express

a 22 x 22 matrix AZz in terms of % x 2 submatrices Bz, Cz, D2 and
E2 in the following manner
B C
L '3
A22 (5.4.4)
Dz El
and its inverse is found to be the form
) T
-1 2 2
Azz (5.4.5)
Ul Vl
where Sl, Tl, UZ and Vz are £ x 2 square matrices given by
_ -1 ~1 -1
S2 = B2 + Bl CQ VQ Dl Bl (5.4.6a)
T =-5 ¢, E.L (5.4.6b)
X 2 2 7L
u, =-El D, s (5.4.6¢)
A L L 7L )
-1 -1 -1
V2 Eg + E2 D2 Sz C2 E2 (5.4.64)

Relationships (5.4.6a) - (5.4.6d) are straightforwardly derived from
the Schur complements theorem (Aho, etc., 1974)., From the above

relationships, we can obtain A;; from B;l and Ezl. The solution of
the equation (5.4.1) requires 0(2 c(m)) computations where c(m) is

the number of operations required to multiply a vector times a

triangular Toeplitz matrix.

e ———
dcanshh,

gy

sy
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The number of computation c(m) is obtained in a following manner.

By definition (Kailath, etc., 1979), A22 can be decomposed in the form

2 \
i i
A22 = 151 LZl UZQ (5.4.7)

where L%Z and U;2 are lower and upper triangular Toeplitz matrices,

respectively, which can be obtained recursively (Bitmead and B.

Anderson, 1979). The matrices Li and US  are expressed by

22 2%
- ™ r} 1
i i
LZE = Lz(l,l) <::> (5.4.8a)
i i
L2(2,l) LZ(Z’Z)J
L
i 1 T
U2£ = Uz(l,l) UE(I,Z) (5.4.8b)
i
O e
L o

where Li(l,l) and Li(2,2) are 2 x £ lower triangular Toeplitz matrices,
Ui(l,l) and Ui(Z,Z) are 2 x % upper triangular Toeplitz matrices,

and Li(Z,l) and Ui(l,Z) are % x 2 full Toeplitz matrices. Substitution
of expressions (5.4.8a) and (5.4.8b) into (5.4.7) yields the

partitions of the matrix A,, in expressions (5.4.4) to be

2
P § i
BQ = =l Ll(l,l) Uz(l,l) (5.4.9a)

2 i 2 i
C, = I L,(1,1) [u2(1,2>]L + I L.(1,1) [Uz(l,Z)]U

isl i=1
(5.4.9b)

2 . : 2
D = I [Lz(Z,l)]L U (L1 + 2

(ie,nl, vra,n
| =1 * vt

(5.4.9¢)
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21 £ 2 4 1
g, = oL via,n + o 1e vhe.n (5.4.9d)
1=1 i=1

where the following relationships are implicitly used
vir,2) = [via,2 ] + [via,2)] (5.4.10a)
L Lt L L U e
t
tie,n = iie,nl + tie,n] (5.4.10b) ﬂ
g AN ) L7y o

in which [Ut(l,Z)]L and [Li(Z,l)]L denote L x £ lower triangular
matrices, and [Ui(l,Z)]U and [Lt(z,l)]u denote 2 x L upper triangular
matrices. The partitions given by equations é5.4.9a) - (5.4.94d)

are expressed in terms of lower triangular and upper triangular

matrices. It turns out that the use of above relationships reduces

the computational complexity c(m) to be 0(p log p) (Morf, 1980).

The algorithm which makes use of the doubling method can be found in {
(Morf, 1980). Morf described the algorithm by introducing high
computer language which necessitates frequent subroutine calls. Om
the other hand, the step-~wise description of the halving method is 1
presented in (Bitmead and Anderson, 1979). Implementation of the halv-~
ing algorithm is relatively complex and a rather large value of p is
required before the computationally complexity O(p log p) is

approached.

5.5 Numerical Example

In this section, the spectral performance of the pre- and the K

post-modified methods are compared with the unmodified method. As
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a test example, /e treat the time series (4.5.2a). Using this time
series (4.5.2a), twenty different independent sampled sequences each
of length 64 were generated.

The modification methods were applied to these twenty different
sampled sequences of length 64 to obtain ARMA model spectral esti-
mates or order (4,4). The resultant spectra are shown in Fig. 5.5.1.
It is apparent that only a small degradation in spectral estimation
performance has been shown by the modified method. It might be
conjectured that the implementation of the fast algorithms will not

much degrade spectral performance in many practical examples.

5.6 Summary

In this chapter, computationally efficient ARMA spectral
estimation algorithms have been developed. These algorithms are
predicated on the utilization of data modification methods.
Specifically, two algorithms referred as the generalized Levinson's
algorithm and the doubling algorithm were developed for obtaining

AR coefficients of ARMA model. These algorithms have a computational

complexity of O(pz) and O(p log p), respectively.

il L
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Box~Jenkins
Method

Unmodified
, Method

Premodified

AR
/,,* W4

INRZ2N\ Postmodified
PN Method

Exact

Fig. 5.5.1 ARMA Spectral Estimates of Order (4,4), -
Data Length 64, and, A = 0,95.




Chapter 6

A RECURSIVE ARMA SPECTRAL ESTIMATOR:
THE PREMODIFIED METHOD

6.1 Introduction

A recursive ARMA spectral estimation procedure is developed in
this section. It is recursive in the sense that as a new element of
the time series is observed, the parameters of a spectral estimation
model are algorithmically updated. The recursive algorithm requires

0(p) computations to update the model's parameters for each new data

point. The development of this algorithm is predicated on utilization

of certain projection operators. In Section (6.2), a vector space is

formulated by making use of the given observation data. The method

of linear predictions will give rise to projection operators which
decompose relevant vector spaces into subspaces spanned by the
prediction error vector and the observation vectors. Linear prediction
methods used in this chapter include forward prediction, backward
prediction and delayed backward prediction. Each of these methods is

associated with its own projection operator. The decomposition of

s oo e wan e

these projection operators is discussed in Section (6.4). The order
update and time update recursions, as described in Sections (6.5) and
(6.6) play a central role in the overall recursive algorithm. Finally

in Section (6.7), a recursive algorithm is outlined.

b e

=
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6.2 Vector Space Formulation

In this section, the given spectral estimation problem will be
cast into a convenient vector space setting. It will be assumed that

the following observations of the time series {x(n)}

X1y Xy een s Xy (6.2.1)

are given. This in turn will give rise to the associated column

data vector

T
xe =[x x50 oy %] (6.2.2)
It is convenient to form an auxiliary column vector In specified by
Iy = sd Xy (6.2.3a)
= T
fo...ox ... xN_q] (6.2.3b)

where S denotes the NxN down shift matrix (see eq. (5.1.3)) and q is the
numerator order of the ARMA model. The vectors EN and XN lie in the

product space

RN =RxRx... xR (6.2.4)

We next construct the subspace which is spanned bv the set of

vectors Si Xgs vee s s® p.P This subspace will be suggestively denoted

by
i+l

i m
MEN[i,m] = {§ EN, S _Y:N, ces 5 S _)gﬂ} (6.2.5)
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where the first integer i may take on any value in the set {0, 1, ... ,
m}. As will be described in Section (6.3), the recursive algorithm
is derived for particular selections of indices i and m. Similarly,
for the vector N contained in the product space RN, the associated

subspace M zN[i m] is defined by
9

1

_ i i+ m
M xN[i,m] = {8 Iy S Jgs v o S XN} (6.2.6)

where the first integer i may take on any value in the set {0, 1, ... ,

m}. Next, we let P EN[i,m] designate the projection operator on the

subspace M EN[i,m] along the subspace orihogonal to M Xﬂ[i,m] (this

orthogonal subspace will be denoted by M Yuli ). This projection
(i,m]

operator which depends on p. Y and Yy can be shown to have the form

A -
P xelin] = A Sta] 1A % i0] A &(eall | A ¥(1,0]
(6.2.7)

where A §N[i,m] and A zN[i,m] are the N x(m-i+l) matrices composed

of the following ordered set of columm vectors

A Zyry o] " [st X gitl xg e SUx] (6.2.8)

A Ye[g.n] = (st Y gitl Yy e s® XN] (6.2.9)

The projection characteristics of operator (6.2.7) are depicted

in Fig. 6.2.1. It will be convenient to introduce a projection opera-~

tor on the complement of subspace M xV[i . This operator 1is defined
N[1,m]

by

7 IR BTG 4 TN VA -~ 4T
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) A10] = T P E[i,n] (6.2.10)

where I is the NxN identity matrix. In a similar fashion, the projection

1
operator on the subspace M zN[i n] along the subspace M EN[i n] is
? ?

specified by

P Yyla,n] & A Ele,] A Se0] A Wieal) A (0]

(6.2.11a)

It is to be noted that the following projection operator identity

holds as is apparent from expressions (6.2.7) and (6.2.1l1a).

P Ili,m] ~ P+§N[1,m] (6.2.11b)

The complement of the projection operator (6.2.11b) is formally given

by

chu[i,m] =TI -P IN[4,m] (6.2.12)

A particular estimate EN[i,m] of the vector X, can be specified as

the projection of EN on the subspace M EN[i m]’ that is
’

N[1,0] = ? Bn[1,0] B 6.2.13)

The error vector relative to estimate iN[i mn] and b is then given by
H]

X -
ENli,0] T & T M[1,m] (6.2.14a)
C
= PUR[1,m] X (6.2.14b)

which is expressed as a projection of the vector Xy on the complement

g ¥ L

T T o Y A PO TR N SRR <t e
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subspace of M EN[i n]’ It can be straightforwardly shown that
. .

E_;;[i’m] L M X[4.m] (6.2.15) ‘

, X .
where | denotes orthogonality, that is, the error vector EN[i m] is i
. !

orthogonal to the subspace M xN[i n]* The vector space formulation .;
s .

|
described in this section is suggestively depicted in Fig. 6.2.1. ‘

6.3 Linear Prediction and Projection Operator

In this section we will define three methods of linear predictionms,

namely, forward prediction, backward prediction, and delayed backward

prediction. These methods will play a central role in the algorithmic

solution procedure to be developed.

6.3.1 Forward Prediction

The m~th order forward prediction is referred to as that

specific procedure for estimating the column vector Xy and Iy by

., means of a linear combination of the set of m shifted vectors
1 2 m 1 2 m
{
(S %y S Kyr ++0 2 S EN} and {S Yy S Yyr oo S XN},respectively.
Considering the projection operator defined in Section 6.2, the

associated estimates EN[I,m] and XN[l,m] are seen to have the form

’—A‘N[Lm] =P X[1,m] X (6.3.1a)
iNfl,m] =P Yy[1,0] W (6.3.1b)

The difference between the estimate gu and the given vector Xy is p




called the forward prediction error vector and is specified by

x - _ -~
EN,m =X zN[l,m] (6.3.2a)

while the forward prediction error vector of Yy is of the form

y = - v o
Eom T Iy T Iyf1,m] (6.3.2b)

Now these error vectors are each orthogonal to the subspaces M Ty
(1,m]
and M 5N[1 n]’ respectively. Use of complement projection operators
2

defined by (6.2.10) and (6.2.12) yields

x c

SNm = P Ey(1,0] X (6.3.3a)
Yy _ pC

ENom s P I9[1,m] v (6.3.3b)

6.3.2 Backward Prediction

The m-th order backward prediction is that procedure of
estimating the column vector Sm§N and SmXN by a linear combination
of the set of m shifted vectors {SO§N, SI§N, oo Sm-lgN} and
{SOXN, SlzN, cen Sm-lxN}, respectively. In the same manner as with

forward prediction, by applying the projection operator, it can be

shown that the backward estimate is given by

éN[O,m-l] =P Zfo,m-1] SmEN (6.3.4a)

where the double caret notation designates backward prediction. The

backward prediction error vector is then found to be
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b = pS s™ (6.3.4b)
—N,m EN[O,m—l] X T

[

6.3.3 Delaved Backward Prediction

The m-th order delayed backward prediction is similarly defined

to be that procedure of estimating the column vector Sm+¥§N and

Sm+%zN by a linear combination of the sets of vectors {SlEN’ Sng,

m 1 2 m
, S EN} and {S pAT S pATERPRI S XN}’ respectively. It can be

shown that the delayed backward prediction is given by

" 1
A1,m] © P AN(1,m] 5™ N (6.3.5a)

while the delayed backward prediction error is specified by

EES S W s (6.3.5b) |y
s + ’ “

A little thought will convince oneself that the projection operators

P EN[I,m] can be expressed as

+ -1 ¢
P Xyi1,m] = A &[1,m]0 IWl1,m] A &[n]) A ¥n[1,a]

=1
00....0

= A+zN-l[o,m-ljA 2-1[0,m-1]
A Xn-1[0,m-1]

(00 . ... 9]

(6.3.6) ‘

A Yy 170,m-1]
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This formula is straightforwardly obtained by making use of the
structure of matrices A EN[I ] and A XN[l . defined by (6.2.8) and
(6.2.9). The relationship between the backward error and the delayed

backward error is then readily found to be

a0, by, 17 (6.3.7a)
Y =fo,b). 1% (6.3.7b)
SN.m > ON-1,m -3

It then follows that the N-th delayed error is equal to the (N-1)-st

backward error, that is

p.<

dyn M = by o (D (6.3.8a)
g,i;,m ) = by ; , (=D (6.3.8b)

The relationship between forward, backward, and delaved backward is

suggestively depicted in Fig. 6.3.1.

6.4 Decomposition of Projection Operators

The development. of a computationally efficient algorithm is depen-
dent on the decomposition of the above projection operators. This
decomposition makes use of the specific matrix structure referred to
as shift invariancy. A matrix which has a displacement rank 3 will
possess this shift invariancy (see Chapter 5). In this section, the

shift invariant structure is utilized to decompose projection

operators. The formulae obtained in this section will be used for
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the development of order update recursions in section 6.5.

First, we will discuss the decomposition of the projection
erator P . This projecti tor P may b
op 0 EN[O,m] s projection operato EN[O,m] y be _

expressed as

P Xy{0,a] = * %[o,u] (® %y[0,a]] & %[0,a] (6.4.1)

-

which is obtained by substituting { = 0 in expression (6.2.7). The

g i e ——s——

matrix R EN[O n] is defined by
’

b B

*y

R Xlo,m] ~ AJT‘Y‘N[O,m] A X[o,m] (6.4.2)

Substitution of expressions (6.2.8) and (6.2.9) into (6.4.2) yields

B ' T 1
EX 1 &
In X v Ay A X(1,n]
adiadieadi g A LI - - e of
R = \ (6.4.3a)
%[O,m] , 1
" ! . i
‘ ' [
Ayl1,m] B R X[1,n] i
L ! . g
where R EN[l,m] is defined by substituting 1 in place of 0 in
expression (6.4.2). If we denote the inverse of matrix R EN[I n] by
-1
R EN[I,m]’ it then follows that
~ 1( " o+ -1 ]
0. .. .. '
0 0¥y A X(1,0] ® H[1,n] )
. -'- ----------- - e ey o .'..
R . = |04 g
"%][0,“1] . W1 I 1

Al A it

Li

o ird 2k
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where I denotes the m x m identify matrix. Upon examination of

expression (6.4.3a) and (6.4.4), it can be readily shown that

+ _ T
Y1 ® Xf0,m] T 21 (6.4.5)
where & denotes the (m + 1) x 1 unit basis vector and U is a
(m + 1) x 1 column vector given by*
T + -1 €
UL NS ST I WS D12 (6.4.6)
in which f; o is a scalar defined by
’
e _Jb.x _ .y + ox
fN,m >4 EN,t!.'l (-E-N,m) %‘I,m (6.4.7)

In a similar fashion, let us define a matrix R XN[O m] by

R ¥yfo,m] © AT%:[o,m] A Yelo,m] (6.4.8)

It then follows that

+ T
A\ +1 R zn[o’m] = El (6.4.9)
where v 1 is a column vector expressed by
+ + -1 €
= - * .
2m+1 [1’ EN A XN[l,m] R XN[l,m]]/ fN,m (6.4.9a)

Taking the complex conjugate vector transpose of expression (6.4.9),

yields

*In general, e, represents the standard unit basis vectors whose
components are also zero except for its k-th which is one.

ot

R A Al e

.
e

(RPN




R X[0,m] Ymt1 = &1 (6.4.10)

The inverse of the matrix R §N[0 m] is found to be
9’
0 - - . . .0l

€ +
* iym Yol Seel (6.4.11)

R-15»1[0 ] 1
’ R %[l,m]

I'so. .
[

Substitution of expression (6.4.11) into (6.4.1) then leads to the

following relationship.

€ + +
P Xi0,m] T F A[1,m] ¥ A X[0,n] fv,m Ymr1l Y1 A I[0,n]
(6.4.12)

After a simple algebraic manipulation, the projection operator

P EN[O,m] is decomposed by the following relationships

_ X
P 30,m] T F XN[1,0] * T SNym (6.4.13a)
X
P }—KN[l,m] + (I -P }—{N[l,m]) P EN,m (6.4.13b)
X
P XN[1,n] + P N,m (I-7 EN[l,m]) (6.4.13c)
where it is readily shown that P §§ o is a projection operator onto the
’
subspace spanned by 5; n along the subspace which is orthogonal to the
L]
y

subspace spanned by N and is defined by
’

m

) (6.4.14)
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Furthermore, expression (6.4.13c) leads to the following relationship

X
I-P Xlo,m1] ™ TP gy T-Pxe; pp (6.4.15)

The projection operator decomposition as expressed in (6.4.15) will
be used to find a backward error recursion in the next section.

Next, we will decompose the projection operator P EN[I,m+1] which
is necessary to compute the forward prediction error. The projection

operator P ENCI m+1] is given by
bl

-1 -
P, el < A X[1,eH1] (» l‘u[l,mﬂ]:I A Yyi1,m1]
(6.4.16)

which is obtained by substituting i = 1 in expression (6.2.7). The
matrix R EN[I w+1] is defined by
’

R Xl1,m1] ~ A+1N[1,m+1] A X001, m1] (6.4.17)

Substitution of expressions (6.2.8) and (6.2.9) with i = 1 into

(6.4.17) yields

r ' I
ot 1
R X[1,m] v A In[1,m] ™ xy
R xN[1,m+1] = _-_.-_________4____-_--_----
(Sm+l IN)+ A Eﬁ[l,m] :(Sm+l XN)T Sm+l EN
N ! ]
(6.4.18)

It then follows

T - S

e %

T - R Y
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[ a | Eo-
: I '
-1 . «
Rl ® ®[1,m].| ™ 'o
0 - (.)_J (SMIXN)+A 5«[1,m]R-1’—"N[1.m] EOJ
e = ]

(6.4.19)

Upon examination of (6.4.18) and (6.4.19), the following relationship

can be derived

+ T
Spr1 B X[1,0+1] © Sph1 (6.4.20)
st
where Em+l is a unit basis vector whose m+l element is 1 and Sl
is a (m+ 1) x 1 column vector defined by
+ mt+l * -1 d
Sy = 06T 20" Axery o] R A1) Y
(6.4.21)
in which fd is a scalar defined by
N,m
d _ (ol t+ .x ¥y o\t X
fN,m (s XN) gN,m = (QN,m) -SN,m (6.4.22a)
= (WY toox R 1
(EN—I,m) EN-I,m fN-l,m (6.4.22b)

Relationship (6.4.22b) is obtained from (6.3.7a) and (6.3.7b). After
applying a similar analysis to the matrix R zﬂ[l 1] it can be shown
v ’

that

+ T
Lol R In[1,0¢1] T Smb1 (6.4.23)
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where t is a (m + 1) x 1 column vector expressed as

ol
m+1l -1 d
Loy T [T 1) Ay ) R oyra,m) Y Ey
(6.4.24)

Applying the vector transpose operation to both sides of expression

(6.4.23), we have

R XN[1,0¢1] Em1 ™ Smh1 (6.4.25)
The inverse of the matrix R EN[I 1] is readily found to be
- -
0
-1 ~1 . d ¥
R "2(1,m+1] R ,m] ] F N ol Senl
0 . ... .o_J
(6.4.26)

Substitution of expression (6.4.26) into (6.4.16) then yields
P =P + A d t s+
(1, m+1] X(1,m] XN[1,m+1] N,m Lo+l Sl

-f.
XA zN[l,m+l] (6.4.27)

After a simple algebraic manipulation, equation (6.4.27) is compactly

expressed as

X
P xef1,me1] = ® X[1,0] ¥ P o (6.4.28a)

X
= P %‘I[l,m] + (I - P EN[J.,MJ) P %’m (6.4.28‘))
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X
" PXri,m] P TP [  (6-4.280)

where it is readily showm that P g: o is a projection operator onto the
K )
subspace spanned by g§ n along the subspace which is orthogonal to the
»

subspace spanned by Y and is defined by
,1

x 1 X

—_— Y 57
P gN,m = fg gN,m (QN,m) (6.4.29)
,

Furthermore, equation (6.4.28c) can be expressed in the form

X
T=P X1,man] = T - P dy ) 0= Pxery o7 (6.4.30)

Expression (6.4.30) will be used to find the forward error recursion
in the next section.

In a similar manner, the following relationship may be also

obtained
- - - y -
I-~-P XN[O,m+1] (I1-7P EN,m) (I -P xN[l,m]) (6.4.31)
- = - y -
I P zN[l,nH-l] (I P Q_N’m) (I P zN[l,m]) (6.4.32)
where the projection operators P Ez,m and P _?ﬁ,m are defined by
Pef =—2 3 (& (6.4.33)
~N,m fe % N,m =N,m
N,m
Pa =a—2 ¥ (@) (6.4.34)
gN,m fd * gN,m gN,m
N,m

Expressions (6.4.31) and (6.4.32) will be used to find the recursion

y y
of forward error EN,m and backward error EN,m

S e




6.5 Order Update Recursions

In this section, we describe the order update recursive formulas
which recursively compute the optimum m+1St order prediction error
from the optimum m-th order prediction error. Expressions (6.4.15),
(6.4.30), and (6.4.31) and (6.4.32) play a central role in obtaining
these order update recursions.

‘Let us first derive the order update recursion for the forward
prediction error vectors. Applying the projection operator (6.4.30)

to the columm vector b yields

X X X
N1 T TP Y o (6.5.1)

Substitution of expression (6.4.29) into this relationship then yields

(6.5.2)

The order update recursion for the N-th component of the forward

prediction error vector is found to be

S,
* » f ?
N-1l,m

where the partial-correlation coefficients are specified by

w (a¥ T X o oeml ot
S ™ Wy SNt R T-Px xR (6259

In a similar manner, applying the projection operator (6.4.32) to the

columm vector 2& leads to
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c,:
y = y __;m_ y -
VR COR R OO e by 1 oD (6.5.5)

fN-l,m*

e

where
* X Py L eml ot
tN,m (gN,m) EN,m (s EN) (T -P xN[l,m]) Yy (6.5.6)
Next, we will find the order update recursion for the backward [

prediction error vector. Applying the projection operator (6.4.15)

to the colum vector Sm+l§N is found to yield g

X X X
t—)N,m-l"l =(@-P EN,m) gN,m (6.5.7)

Substitution of expression (6.4.14) into this relationship yields

X - nX _ _ fﬁig X
O A T (6.5.8)
N,m
where the partial correlation coefficient tN o is specified by
1

vy oytoax ot o m+1
m” G Sm I T -PXaP S % (6:5.9

Similarly, applying projection operator (6.4.31) to the columm

vector Sm+lzN is found to yield

*

s

y = b 1y - Nm v

EN,m+1(N) EN-l,m(N 1) < EN,m(N) (6.5.10)
N,m

since

%,m = (g B atxg TP IN[1,a] sy, (6.5.1D)
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Next, we will derive the recursion for f; m
’

tion of expressions (6.4.7), (6.4.28¢c) and (6.4.29) eventually leads

r .
and fN,m' Manipula-

to the form

(6.5.12)
N-1,m

Expressions (6.4.22b), (6.3.4b) and (6.4.13c) yield the recursive

formula
T = £f _ *N,m N,m
R N (6.5.13)
N,m

Consequently, expressions (6.5.2), (6.5.5), (6.5.8), (6.5.10),

(6.5.12) and (6.5.13) represent the order update recursions.

6.6 Time Update Recursions

As a new element of the time series is observed, the partial
reflection coefficients, forward errors, and backward errors may be
recursively computed by making use of these values obtained at the
last time instant. This being the case, these parameters are said to
be "time updated" for each new data point.

The matrix A EN[i n] may be expressed in the recursive form
9

A Zg-1(i,n]
= A ﬁ\l[i,m] - PN A E_\I[i,m] (6.6.1)

00...0

where PV is the N x N projection matrix given by
A
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-

T .
PN EN EN (6.6 2) 4

in which &y is an N x 1 unit base vector. The matrix R ﬁN[i,m] may

also be expressed as

R X-1l1,m] = ® XN[i,n] ~ ATXN[i,m] Py A X[1.a] (6.6.3)

It then follows that the matrix R-l is recursively updated
5N—l[i,m]

by (see Appendix C)

-1 -1 1 -1
fEealie] TR Rlae] FToy, o F Ilia]

BN

: -1 ,
XA % 0] PN A Xi,2] R X[i,m]] -8

where \f is a scalar defined by

,m,N

Yim,N 5; Aria[i,m] R-IEN A Xli,m] & (6.6.5)

Premultiplying expression (6.6.4) by (I - PN) A EN[i,m] and then

-+
postmultiplying that result by A'vy

Yl1,m) (I - PN) leads to the

recursive relationship

i e o oew s e =snene ,

0
Payeafi,m] | T QB PXygm] T 0B
0 .- 0
1
+ T-v, .y (r-rde %y(1,0] Py P EN[i,m][I - 2]

(6.6.6)
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,
Since the vectors In and 2z, are elements of vector space Rh, the

time update recursion is given by

Iy T-Prsm) & " 4o O - P X q0i,0) &al

= 2& V(1 - P zﬂ[i,m]) 2y (6.6.7)

where V(I - P EN[i m]) designates the time difference of the projection
>

operator defined by

VA -Pxers w] B TP X[i,p] *

(6.6.8)

Substitution of expression (6.6.6) into this expression yields

VA -P Xy ] =Py P E[ia] T TR P Xy ] (T-F

T o T P Ale] By T Alem] B
(6.6.9)

Expression (6.6.9) is straightforwardly carried out by a simple

algebraic manipulation and yields (see Appendix C)

V(I -P }_{N[i’m]) = (I - P %[i,m]) P‘ (I-P -’%\I[i,m])

1- Yi,m,N

(6.6.10) ;




103

Expression (6.6.10) is used to find the time update recursion formula.

The partial correlation coefficient s; o is recursively calculated by
1]

bl . *(N-1) eX (N
B-1,0" D 2y @ ' (6.6.11)

m
N,m N-1l,m 1 - Yl,m,N

In a similar manner, the partial correlation coefficients t:\I o is

Ny

recursively calculated by

T % X -
- p " By WD (6.6.12)
tN,m tN-l,m 1 - Y{ m.N :
’ ]

The time update recursion for forward error is found to be

Y % X
€ € EN,m ™) —N,m(N)
_ fN o fN-l ot 1 (6.6.13)
, ? ? Yl,m,N
! The backward error is also given by
Y o« x (N)
T T ENlp (N) EN,m
EV . fN-l ot = (6.6.14)
B ? Yo,m—l,N
A recursive formula for auxiliary parameter Y{.m.N €30 be obtained by
’ ’
using relationship (6.4.28c) to yield
x - y *(N-
Y =y 21D By g D (6.6.15)
1,m+1,N 1,m,N r .
N-1,m
Finally, Yo.m.y S0 be computed by using the following relationship
L] E)
x Y &
\ -y o Ha® &yt (6.6.16)
o,m+1,N 1,m,N €

N,m

e s

S e . A A

LML 2 % vais L i




which is directly obtained from expression (6.4.13¢).

Thus we can use equation (6.6.11) and (6.6.12) to update the
partial correlation coefficients. Equations (6.6.13) and (6.6.14) can

be used to time update the forward and backward covariance errors

€ r
fN,m and fN,m' The auxiliary parameters yl,m,N and Yo,m,N are

recursively computed by expression (6.6.15) and (6.6.16), respectively.

6.7 An Algorithm for Recursive ARMA Spectral Estimation

In this section, we summarize the recursive ARMA spectral estima-
tion algorithm developed in the previous sections. For programming
convenience, the following notations shall be used: ez(m), sg(m),

b(m), bY(m), L@, £ (m), s (@, t (@, v, () andy) (m) in

X y X y £ r
place of EN,m(N)’ gN,m(N), By, @5 by oM £g 0o By 0 Sy owe Oy p?
Yo,m,N and Yl,m,N’ respectively. At each new data point, the para-

meters are recursively time updated (see section 6.6) and order updated
from m=0 to m=p-1 (see section 6.5). The recursive ARMA spectral

estimation algorithm can be presented as follows.

Step 1 Initial Condition (Time Update n=1)

€1(0) = €7(0) = bJ(0) = bJ(0) = 0
£,(0) = £1(0) = xly;, $,(0) = £, (0) =0 fori=0, ..., p-1

Step 2 Initial Condition (Order Update, m=0)

€x(0) = bX(0) = x_, €7(0) = bY(0) =y

- —p——
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Vi1 D = Yi’n(-l) =Y .0 =0 1=0,

i,

€ r r *
£,00) = £.(0) = £, (0) + v, X

Step 3 Order Update Recursions
(m=20,1, ... , M for M = min (p-1, n-1))

(1) Forward Error

X X Sn(m) X
en(nﬂ-l) = en(m) - -—r-—-i—)— bn—l(m)
n-1 m
y y t @
sn(m+l) = En(m) - ;}_—(m_)* bn—l(m)
n-1
(ii) Backward Error
X x £ (M) x
bn(m+1) = bn_l(m) - fs(m) en(m)
n
y y s:(m) y
by (m+1) = b7 (m) - prm e¥ (m)
(iii) f;(m), f;(m) and Yl,n(m)
s (m) t (m)
£5(m+1) = £5(m) - O 2 ifn<op
n n -
n-l(m)

s (m) t_(m)
f:(ml) = f:_l(m) - _n___a___r_x_____ ifn<p
£ ()

bx

*
(m) %4 (m)
n-1 n-1
Yl,n(m+l) = Yl,n(m) +

r
fn-l (m)
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e:(m) eZ(m) *

€
fN,m

Yo’n(m-l-l) = Yl’n(m) +

Step 4 Time Update Recursions (m =0, 1, ... , M)

(i) Partial Correlation Coefficients

b @ " eX(m)

n~1
1-v, (m

sn(m) = sn_l(m) +
1,n

e (m) * b* _ (m)

n n-1
f® T @ TN
(11) £ (m) and £ (m)
e ey(m) e (m)
fn(m) = f l(m) + T = 3 ) ifn>p
Y (m) b (m)
f;(m) = f:_l(m) + -2 I ifn>p

1- Yo’n(m)
Step 5 Let n = n+l, if n # N go to Step 2
Step 6 End of Algorithm

In above N is taken as a time index of a pair of the last

observations Xy and Yy




6.8 Numerical Examples

To test the recursive ARMA spectral estimation algorithm, the time
series expressed by (4.5.2a), (4.5.2b) and (4.5.2c) were generated.
A program listing of the fast algorithm used in obtaining the
denominator coefficients of the ARMA model is illustrated in Appendix
D.2. As a first example, 64 data samples were generated according to
expressions (4.5.2a), (4.5.2b) and (4.5.2c). These data samples are
plotted in Fig. 6.8.1(a). The fast algorithm was then applied to
this 64 observations to obtain an ARMA spectral estimate with model
order (4,4). The forward error sequence E:,4(“) (n=1, ... , 64)
is plotted in Fig. 6.8.1(b). Comparing Figures 6.8.1(a) and 6.8.1(b),
the forward error sequence is observed to be more random (uncorrelated)
than the given data samples indicating a desired whitening effect.
The resultant spectral estimate is shown in Fig. 6.8.1(c). The
resolution of the two peaks is evident, however, the estimated level
of the first peak is lower than that of second peak. Next, 500 data
samples of the same time series expressed were generated. These
samples are plotted in Fig. 6.8.2(a). The forward error sequence
22,4(n) (n=1, ... , 500) obtained by the fast algorithm is plotted
in Fig. 6.8.2(b). It is observed that the forward error sequence con-
verges in a relatively rapid manner. In Fig. 6.8.2(c), the resultant
gpectral estimate of model order (4,4) is illustrated. The resolution
of the two peaks is again evident. In addition, the height of

the two peaks are equal as desired. As these examples illustrate,

the fast algorithm maintains a high quality of spectral performance.
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6.9 Summary

A recursive algorithm has been proved and stated for efficiently
updating partial reflection coefficients of an ARMA spectral estimation
model. The computational requirement for the order update recursions
and time update recursions are 12(M + 1) and 10(M + 1), respectively,
where M is taken to be the minimum of either p-1 or n-1. Numerical
examples show that implementation of premodification will result in
only a small degradation of spectral performance. If gq=0, the ARMA
model is converted to the AR model. A recursive AR algorithm can be
also developed based on a less general vector space approach discussed

in this chapter (see Lee and Morf, 1980).




Chapter 7

CONCLUSION

The development of computationally fast algorithms for high
performance ARMA spectral estimation was presented. The required
computation for the unmodified method was reduced to 0(4p2) by using
a gen2ralized Levinson's approach. Methods of data modifications were
applied to reduce the computational complexity. Modificatioms,
referred to as post-modification with p = q and pre~ and post-modifi-
cation, achieved a computational complexity of O(p log p). A fast
recursive algorithm with a computational complexity of 0(p) was
developed based on the pre-modification method.

The spectral performance of these methods was compared for
various numerical examples. Spectral degradation had been expected,
because of the restriction t = p an: the underlying data modification,
however, these numerical examples illustrated only a small degradation
in spectral performance. Moreover, the spectral estimation performance
of these new methods has been found to be typically far superior to
such contemporary appro;ches as the Box-Jenkin~ and maximum entropy
methods.

Finally, considering the above two aspects, namely, fast computa-~
tional implementations and high performance spectral estimations,

these new methods promise to be primary spectral estimation tools.
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Appendix A

RECURSIVE AR SPECTRAL ESTIMATION

A.1l Introduction

In many relevant signal processing applications, one seeks to
characterize the spectral density of a time series based upon a finite
set of time series observations. Without loss of generality, this
sample observation set is taken to be the contiguous set of N real

valued measurements as given by
x(1), x(2), ... , x(N) (A.1.1)

One of the most widely used spectral estimation models is obtained by

postulating the following autoregressive (AR) structure
x(n) + alx(n-l) + ...+ amx(n-m) = e(n) (A.1.2)

in which e(n) is a white noise time series with zero mean and variance
cez. Our object will be that of modeling an underlying time series
{x(n)} with the AR model structure (A.l1l.2) in which the a, coefficients
are estimated from the given finite set of observations (A.1.1). This
is readily achieved by applying the well known one-step predictor.

An m-th order one-step predictor, by definition, estimates the

value of a random time series using a linear combination of the most

recent m samples. Namely, the sample x(n) is estimated by means of
¢

the relationship

)

T
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m
L)
I

x(n) = - a, x(n-k) (A.1.3)

k=1 K

The difference between this predicted value and the observed value
x(n) over the observation interval is called the prediction error

and is specified by

e(n) = x(n) - x(n) m<n<N (A.1.4)
or
m
e(n) = x(n) + a x(n-k) m<n<N (A.1.5)
k=1

Writing these error expressions in matrix form yvields

e=x+Xa

where a, e, and x are m x 1, (N-m) x 1, and (N-m) x 1 column vectors,

respectively, given by

as= [al, cen s am]T (A.1.7a)
e = [e(mtl), e(m2), ... , e)]T (A.1.7b)
X = [x(m+1), x(m+2), ... , x(N)]T (A.1.7c)

and X is an (N-m) xm matrix specified by

o

x (m) x(m+1) . e . x(N—l).l

X =} x(m-1) x(m) . .. x(N=-2)

x(N-m)

PR
s

[y
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where the superscript T denotes the transpose operatiom.

The a, coefficients are to be now selected so as to cause each
of the predictor error terms e(n) to be close to zero. This selection
process will give rise to the so-called optimal one-step predictor.

To achieve the required objective of setting the e(n) to be near zero,
one typically appeals to the least squares method which minimizes a

squared error criterion of the form
T
f(a) = e We (A.1.8)

where W is an (N-m) x (N-m) nonnegative definite square matrix. The
minimization of this quadratic functional with respect to the column

vector a is straightforwardly carried out and results in
T wRa® = X° Wx (A.1.9)

It can be shown that the resulting power spectral density

estimate of the time series {x(n)} is then given by (Haykin, 1979)

2
o

€
Sy(w) = PETIRCRC T (A.1.10)

|1+ a] +a, e + ...+ a° e Mep2

where the az coefficients are obtained upon solving relationship
(A.1.9). Generally the solution of relationship (A.1.9) requires on
the order of m3(i.e.0(m3)) number of multiplications and additions

if that relationship is directly used. This computational requirement
can be excessive in many real time applications. It has been recently
shown by Lee and Morf (1980) that this computational requirement can

be reduced to 0(m) by slightly reformulating the matrix X and column
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vector x. In many interesting cases, fortunately, the solution to
this modified system of equations will be close to that of the desired
solution as represented by expression (A.1.9). 1In this Appendix the
method which is identical to the LMS algorithm of Lee and Morf (1980)
is presented with more emphasis on insightful development.

This general modification methodology shall herein be referred
to as data modification. Applying the specific data modification
method referred to as prewindowing, the matrix X is reformulated as the

N x m matrix given by

r 1T
0 x(1) x(2) . . . x(m) . . . x(N-1)
0 0 x(1) ... x(@m1) ... x(N=2)
X =1|. . 0 . .
| 0 0 0...0 x() ... x(N—m)J (A.1.11)
while the N x 1 column vector x is specified by
x = [x(1), x(2), ... , x]T (A.1.12)

If these new entrants are substituted into relationship (A.l1.9), an
efficient solution procedure for 3? is possible. The structure of this
reformulated matrix X and the column vector x enables us to obtain a
recursive least square spectral estimation algorithm which has an
excellent convergence behavior and a fast parameter trécking
capability relative to the former structure. The development of

this algorithm is predicated on the utilization of projection operator

theory (Luenberger, 1969). In the sections which follow the necessary
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projection operator theory to be used in the algorithm is described. {
| ]
A.2 Vector Space Formulation '
§
In this section, the given spectral estimation problem will be ‘

cast into a convenlent vector space setting. It will be assumed that s

the following observations of the time series {x(n)} as specified by
x(1), x(2), ... , x(N) (A.2.1)

are given. This in turn will give rise to the associated column data i

vector .
x = [x(D, x@), ..., x@]1* (A.2.2)
The vector EN lies in the product space

Hy = Rx R ... xR =g (A.2.3)

This vector space can be made into an inner product space by

Ear ey g

defining the following inner product between any two elements Xy
Iy € By

N

<K Ty T Xy Y= I x() y(n) (A.2.4)
n=1

The corresponding induced norm of Xy is then given by

N e
[ g [ =[xy ﬁ@];’- [: z xz(n):] (A.2.5)

n=1
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We next define the shift matrix S which is represented by the N x N

matrix

(::) "10 (A.2.6)

Applying the shift matrix m times to the column vector Xq is seen to

yield

T
sy = [0, <., 0, x(D), .o, x@-w-1), x(N-W)]T (A.2.7)
L S
m zeroes
We next construct the subspace MEN[i ] which is spanned by the set of
vectors SigN, oo s SmEN- This subspace will be suggestively denoted
by

i i+1 m
MEN[i,m] = {§ P S K e S EN} (A.2.8)

where the first integer index i may take on any value in the set
{0, 1, ... , m}. Next, we let PEN[i,m] designate the projection

L
operator onto the subspace MEN[i ] along the subspace MEN[i =t This
> t

projection operator can be shown to have the form

PX[1,m] £ 5[ 1,a] [’%Ti,m Xzs:[i,mﬂ . Ry A2

where XEN[i m] is the N x (m~i+1) matrix composed of the following

ordered set of column vectors

XSy[1,n] " [s?EN, si+15N, cee s STg] (A.2.10)

g P




e
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Similarly, the projection operator on the orthogonal complement of

subspace MEN[i n] is denoted by
b4

i
PA(1,m]" T~ PN[1,m] (A.2.11)

where I is the N x N identity matrix. It then follows that

PL(N[i,m] XN = XN if X‘N € M"—‘N[i,m] (A.2.12)
1
PEN[i n] &y L SkEN i<k <m, if Yy € Hy (A.2.13)
Expression (A.2.12) and (A.2.13) specify those properties of the
projection operators which will be utilized when developing a recur-

sive least square algorithm in the next sectiom.

A.3 Linear Prediction aad Projection Operator

In this section, we will define three methods of linear
prediction, namely, forward prediction, backward prediction, and
delayed backward prediction. These projection operators will play a

central role in the algorithmic solutiom procedure to be developed.

A.3.1 Forward Prediction

The m-th order forward prediction method is referred to as that
specific procedure for estimating the columm vector Xy by means of a
linear combination of the set of m shifted vectors {SIEN, SZEN, oo s

S?EN}‘ It then follows that the m-th order forward prediction

estimate of EN is of the form




m
» k
%[1’01] z akS BJ (A.3.l)
k=1
while the associated forward error vector is specified by

S - & T 5[1,n] (A.3.2a)
o K
=Xt I as (A.3.2b)

Upon examination of the structure of the shifted vector SE§N(k =1,
, m), expression (A.3.2b) leads to the aforementioned prewindowing
formula where X and x are given by (A.1.11) and (A.1.12), respectively.
The problem at hand is to then find the scalar constants al, a5,

» ap which minimize the squared forward prediction error

JORNIFA e (A.3.3)

According to the projection theorem (Luenberger, 1969), f(a) is
minimized when the error vector is orthogonal to each of the one-
dimensional subspaces spanned by SiEN(i =1, ... , m). Thus, we have

the orthogonality relationship expressed by

(EN - ’—zN[l m]) L Siﬁq fori=1,2, ... , m (A.3.4)
which takes the inner product format

<X %N[l n]’ SiﬁN >=0 fori=1, 2, ... , m (A.3.5)

Substitution of expression (A.3.1) into (A.3.5) vields the set of

linear algebraic equations

e
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m
k i i
L <8 s S > =-<x, S > (A.3.6)
o1 LN U v Xy
for 1i=1, 2, ... , m

for the optimum set of ak prediction coefficients. These equations

are called the normal equations and can be put into the matrix form

T T
Bl1,m] Bl,e] 27 “X[1,0% (A.3.7a)

where
Xl1,m] = [SIEN, SzzN, oo smEN] (A.3.7b)

T
a= [al, g5 +es s am] (A.3.7¢)

Solving equation (A.3.7a) for a and substituting this solution into

expression (A.3.1) then yields the optimum prediction vector
-1

~ T T
AN1,m] = 2501,n] | &01,0] B501,0]| BN 01,0 (A.3.8)

Upon examination of the projection operator (A.2.9) and this expression,

éN[l ] is seen to be compactly specified by

éN[l,m] = PXe[1,0] X (A.3.9)

Thus, we see that §N[1,m] is obtained by projecting EN onto the sub-

space MEN[I ) and the m-th order forward prediction error vector is
*

obtained by projecting b onto the orthogonal complement of MEN[l,m]

in the HN, that is

1
oo = PX(1,m] X (A.3.10)

P e cameeee - —-
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The corresponding minimum mean squared error is then defined to be

A.3.2 Backward Prediction

The m~th order backward prediction method is that procedure of
estimating the m-th shifted column vector Sm§N by a linear combination
of the set of shifted vectors {S?EN, SlgN, cee s Sm_lgN}. This back-~
ward estimate is then of the form

R m-1 x
X[ o0,m-1] = -kzo b, S X (A.3.12)

and the backward error vector is defined by

= m - - ]
EN,m =S . ENEO,m—l] (A.3.13)

In the same manner as with forward prediction, by applying the
projection theorem it can be shown that the backward estimate is

given by

(0,211 = PXN[0,m-1] s"%y (a.3.7-

The backward prediction error vector is then found to be
L
m
EN,m PEN[O,m-l] S X vA.3.15)

and the corresponding minimum mean squared error is obtained bv

b T T m
fy,m = Py,n Byn " By S Ky (A.3.16)

P
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A.3.3 Delayed Backward Prediction j
The m-th order delayed backward prediction method is similarly

defined to be that procedure of estimating the column vector Sm+15N

by a linear combination of the set of vectors {SlgN, SZEN, cee s

Smgu}. It can be shown that the delayed backward estimate is given by ‘i

gN[l,m] = P07 0] sm+1§N (A.3.17) ;

and the delayed backward error is obtained by
: 1
m
Som = Py[1,m] 5 X (A.3.18)

The corresponding minimum mean squared error is measured by

d T T w1

fN,m = gN,m gN,m - gN,m S

(A.3.19)

A little thought will convince oneself that the projection

operation PEN[I,m] can be expressed as
-1

pa—"

T T
PRef1,m] = ®N([1,m] {%5(1,n] xﬁN[l,m{l X(1,m]

T

00...0 ~1100...0

........... T P BN

IR i S TCRS B S ICE Y I ST

(A.3.20)

The relationship between the backward prediction error and the delayed

backward prediction error is then readily found to be




. T
dyom = [0 byp o (A.3.21)

It then follows that Nth delayed prediction error is equal to the

(N-l)St backward prediction error

gN,m(N) = EN—l,m (N-1) (A.3.22)

The relationship of forward, backward, and delayed backward is

suggestively depicted in Figure A.1l.

A.4 Decomposition of Subspaces

The development of a computational efficient algorithm is
dependent on the decomposition of subspaces. Subspaces may be decom-
posed by appealing to the well known projection theorem (Luenberger,
1969). The formulae obtained in this section will be used for the
development of order update recursions in Sectiom A.S.

Since the forward prediction error EN,m lies in the subspace
MEN[O,m] but is orthogonal to MEN[I,m]’ we can express MﬁN[O,m] as

the direct sum of MEN[I n] and {g }, that is
N[1, N,

N,n(0,n] ~ M’—‘N[l,m]E‘L> ,m (A.4.1)

where {¢ } denotes the subspace spanned by the forward prediction

~N,m
erTor vector ¢ . The projection operator on the subspace {¢ } is
—N,m ,m
defined by
T
-1 T
P - 4.2
EN,m EV,m (EN,m EN,m) ~N,m (4 )

r— —p————




N-m-1
L

N-m  N-mtl
1 1.

Y

EN,m

>
4

Fig. A.1 Forward,

4

backward and delayed predictiomns
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- Relationship (A.4.1) can be readily shown to yield the following

decomposition of the projection operator
1 1

P)—‘N[O,m] = (I - PEN,m) P’—‘N[l,m] (A.4.3)

Similarly, since the delayed backward prediction error QN o lies
’

in the subspace MEN[I m+1] but is orthogonal to MEN[I n]’ we obtain
’ ?

Mor1,me] = M 01,n] @y nt (A.4.4)

where {QN m} denotes the subspace spanned by the backward prediction
]

error vector. The projection operator on the subspace {QN m} is
9

defined by

= T -1 T
Pag,m = S0 Qoo &y Som (A.4.5)

Relationship (A.4.4) is found to yield the following decomposition of
the projection operator

1 L
Pxl1,m1] = T - Py o) PEy[1,n] (A.4.6)

) A.5 Order Update Recursions

In this section, we describe the order update recursive formulae
which recursively compute the optimum mt+l-st order prediction error
from the optimum m-th order prediction error. Expressions (A.4.3)

and (A.4.6) play a central role in obtaining these order update

recursions.
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Let us first derive the order update recursion for the forward
prediction error vector. Applying the projection operator (A.4.6)

to the column vector EN yields

EN,m+-1 =a- PgN,m) EN,m (4.5.1)

Substituting expression (A.4.5) into this relationship then yields

-1 T

T
L N PN C W W Rl G . (A.5.2)

Recalling expression (A.3.22), the order update recursion for the N-th

forward prediction error is found to be

b -1
St @ = g o = &y o (B DT By (D (A5L3)

where the partial-correlation coefficients are specified by

1
T T o+l
Momel T dnnnge T Xy PR(1,0] 5 Xy (A.5.4)
Expression (A.5.1) leads to
el c ~c T(I-Pd. )¢ (A.5.5a)
“N,o+l1 N,m+l N,m gN,m —N,m

The recursion for the forward minimum mean square error is similarly

found to be

£€ € b

-1
N,m+l fN,m - An,m+1 (fN-l,m) AN,m+l (A.5.5b)

Expressions (A.5.3) and (A.5.5b) constitute the order update recursion

formulae for the forward prediction.

eSS
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Next, we will find the order update recursion for the backward
prediction error vector. Applying the projection operator (A.4.3) to

the column vector Sm+1§N is found to yield

bjmrs (7 Py o) g (a:5.6)

Substituting expression (A.4.2) into this relationship results in

- T -1 T
L T - (- e WU B (4.5.7)

The order update recursion for the N-th.backward prediction error is

then specified by

Bt @ = By @D < Ay o G DT 0 (a5.9)
Expression (A.5.6) leads to
bY .. b =df L (T-Pe ) d (4.5.9)
—N,m+l N,mt+l s N ,m ,m
The recursion for fg’m is next found to be
fl“;,m-f-l - fg—l,m = Ay, (fri,m)-l A m+1 (4.5.10)

The order update recursion formulae for the backward prediction are

represented by relationships (A.5.8) and (A.5.10).

A.6 Time Update Recursions

As a new element of the time series is observed, the partial-
correlation coefficients, forward least square errors, and the backward

least square errors can be computed recursively by using the knowledge




of these parameters from the last time instant. This being the case,
these parameters are said to be "time updated" for each new data
point. These update recursions are obtained by utilizing a method
referred to as projection operator decomposition.

For the spectral estimation problem considered here, we decompose
the projection operator PEN[i,m] into one that projects on all past
observations and another that generates the correction due to a new

observation x(N). First, we define the component projection matrix

PN by

T
PN = egey (A.6.1)

where ey is the N x 1 unit basis vector expressed by

e = [0, ... 50, 1]t (A.6.2)

Let us define the column vectors

B TPy xy = [0, 0, x() 17 (A.6.3)
1 1 T
EPN =Py X = [x(1), ... , x(N=-1), 0] (A.6.4)
1l 1

T T T T
Note that = X = and similarly for . The
EpN XpN xpNZN EgXpN EpN XpN
projection of Xy on the subspace MZN[i ] is now decomposed by
»

component projection matrix PN to obtain

1
PEol1,m0] B 7 P&[1,0] By T PA[1,0] B, (A.6.5)
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Multiplication of (I-PN) and the matrix XEN[i,m] vields the so-

called oblique matrix

Celi,m] = T By B[y a) (A.6.6)

whose last row is the zero row vector. We define the oblique

projection operator to be

Enl1,m] = ®[1,n] [C’flgti,m) “Sl1,a]] oR[i,a] 46D

and its associated orthogonal complement by
1
Wyri,m] =T Wyri,m) (A.6.8)
Upon inspection of expression (A.6.7), we see that the application of
the oblique projection operator to the vector Xy implicitly possesses
the solution of the prediction coefficients at the N-1S%t stage.
After simple algebraic manipulation, relationship (A.6.5) can be

expressed as
L
PXyli,m] & = B[1,0] & F B&[1,0] PNSN[i,m] X (A-0-9)

The orthogonal complement projection of Xy can be expressed as
1 L
Pyl1,m] B " B~ By[i,m] & " FA[1,0] Py Bl1,n] X

(A.6.10a)

which can be further developed to the form
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1 1
PXle,0] B " & T Byli,n] X~ By B[i,0] X
L L
+ Pﬁl[i,m] PN Qﬁ\l[i,m] ﬁ] (A.6.10b)

Considering the relationships (A.6.3), (A.6.4) and (A.6.7), we obtain

L
L R-1le,e] Bl L 1
el BT S T T S e] A ) K

(A.6.11)

Premultiplying [Sm+1 EN]T on both sides of expression (A.6.11) gives

the time update recursions of the partial reflection coefficients

L L
Aty T -1 T [Sm+15N]T PXel1,m] By B[1,m] X

(A.6.12)

where { was taken to be 1. Furthermore, operation of the component

projection operator PN on both sides of expression (A.6.10a) yields
L 1 1
P P = P Q - esel P T q
N EN[i,m] §N N EN[i,m] §N eNeN 5N[i,m] eNeN EN[i,m] 3-‘!‘1

(A.6.13a)
L -1

= By Quyr; o] KL - eg PXy[gn] S| (A-6:130)

Thus we obtain the relationship

L
1
Py (il BT Ty, Ly N Plea] & (A.6.14)

1,

s e g

o

%
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where

R
Yi,m,N = N PA[i,m] (A.6.15)

Directly substituting (A.6.14) into (A.6.12), we see that

L i
w1l 4T T
) LB ad P ey PAN(1,e]
AN,z = AN-1,me1 T-v, o
? ?
(A.6.16)
which simplifies to the form
b (N-1)e, _(N)
A =4 $N=lm Nom (A.6.17)
N,mtl T ON-1,m+l 1-7v, o
t] b}

Similarly, the time-update for f; and f. _ can be obtained as

, N,m
2
€ 6))
£ = y o0 7 (A.6.18)

m 1= Yl,m,N

b2

T A - L (A.6.19)
Nom o N=Lm 1 =Yg a1,y
where
T
Y0,m-1,8 - N *X[0,m-1] & (A.6.20)

Thus we can use equation (A.6.17) to update the partial reflection
coefficients. Equations (A.6.18) and (A.6.19) can be used to update

forward and backward prediction errors, respectively.
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l

A.8 Summary .
P

4

A recursive algorithm has been presented for efficiently obtaining

an autoregressive (AR) spectral estimate. To achieve a significant
computational improvement, prewindowing was applied, and projection
operators were utilized in the vector space setting. Normalizations
of the order and time update algorithm yields more computational
advantage than the unnormalized method. Interested reader may refer i

to (Lee and Morf, 1980) and (Friedlandar, 1980).




Appendix B

ADAPTIVE SPECTRAL ESTIMATION

B.1 Introduction

In this chapter, we will discuss two adaptive techniques,
namely, the Widrow-Hofr algorithm (Widrow and Hoff, 1960) and the
Iterative LMS method. It is well known that the Widrow-Hoff algorithm
is a recursive technique which updates parameters with the arrival
of each new data sample. At each recursion, parameters are algo-
rithmically selected in a least squares sense. As the number of data
samples increases, the model's parameters "may" converge to the least
square solution which is also known as the Wiener solution (Wiener,
1949). Primary reason for utilizing the Widrow-Hoff algorithm is
computational in nature. As each new data point is obtained, only
0(p) computations are required to update the model's parameters.

The Iterative LMS method is a technique which updates the solution
for the linear system of equations which approximates the Wiener
equations (Wiener, 1949). Although the number of computations for
the Iterative LMS method to update parameters at every new data point
is O(pz), the Iterative LMS method gives the exact solution to a given
linear system of equations. To compare these two techniques, a number

of examples are presented.
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B.2 Widrow-Hoff Algorithm

The analysis of an adaptive filter can be developed by considering
the linear configuration shown in Fig. B.2.1l. An adaptive filter is
composed of a tapped delay line, adjustable weights and summers.
Delayed signals which are real valued are weighted and summed to
form an output signal a(n) which designates an estimate for the
desired signal d(n). At the n-th observation, a set of delayed

signals can be formulated in a vector form -
T
x = [x(n - D, x(n-2), ..., x(n - 2] (B.2.1)

where X is a pxl column vector. It is also convenient to denote the

adjustable weights at the n-th iteration by
. T
b [h (D), h (2), oo, hn(p)] (B.2.2)

where h is a pxl column vector. The estimate of the value of d(n)

based on the vector (B.2.1) will be taken to be the linear combination

A = Ky x,

P
= I h (k) x(n - k) (B.2.3)
k=1 0

The error between the desired signal and the estimate at the n-th

sample is given by

(B.2.4)

ge(n) = d(n) - B: En

PO Ny

e e

pro—

oy

. ..".‘ F R
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d(n)

x(n) x(n-1)

Fig. B.2.1 Adaptive Linear Configuration
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The associated mean square error is defined by

2
f(h) = E[e“(m)] (B.2.5)
Substitution of (B.2.4) into (B.2.5) is found to yield
F(h) =6,.(0) -2£% h +h R _h (8.2.6)
-n dd ~dx-n -n ¥-n :

where ¢dd(0) is the variance of the desired signal d(n), that is,

$44® = Eld* (] (8.2.7)

while Tix and Rx are the pxl cross correlation vector and the pxp

covariance matrix, respectively, defined by

ry = [ (D 0,25 oo s 04T (.2.8a)
and
¢)CX(O) > ¢m(1) Y ¢'xx(P - 1)
R =| o (D, o (0, 0P = D
(P = D5 b (P = D0 O (B.2.8b)

in which ¢dx(i) is the cross-correlation sequence between the

individual input signal component and the desired signal defined by

9 41 = E[x(n + 1) d(n)]

(B.2.8¢c)

L e —
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and ¢xx(i) denotes the autocorrelation sequence of the input signal

specified by
oo (1) = Elx(n + 1) x(n)] (B.2.8d)

It may be observed from expression (B.2.6) that the mean-square error
is precisely a second order function of the weights h, and is visualized
as a parabolic function of the weight variables. The adaptive
process seeks the minimizing weight variable selection by using the
well-known method of steepest descent.

In seeking the minimum mean~square error by the method of
steepest descent, one first begins with an initial guess of the model's
weight parameters. The next estimate is then obtained from that
estimate by making a change in the weight vector in the direction
of the negative of the gradient vector. The gradient is obtained

by differentiating expression (B.2.6) to yield

Vf(hn)= -2 Tax + 2 R

< hn (B.2.9)

If each change in the weight vector is made proportional to the
negative of the gradient, the method of steepest descent leads to

the following recursive relationship

= 2
En+1 En + qu(hn) (B.2.10)

For a sufficiently small value of u, the mean-square error at the

(n + 1)-st step is approximately found to be

E(h ) ® £(h) - 2 WP Ve ] (B.2.11a)
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where ]IVf(hn)llz is the positive scalar defined by
l1ve )| 1? = [ve) 1T (vE@m )] (B.2.11b)
~n ~n ~n

It may be observed from eq. (B.2.1la) that the mean-square error is
reduced with each change of the weight vector. For a proper choice
of u, it has been claimed that this algorithm will converge to an
optimum point regardless of the initial weights. (Widrow, 1971)

The method of steepest descent requires the determination of the
gradient vector. In practice, the true values of these gradients
are seldom available. To overcome this difficulty, the "LMS algorithm"
offers a practical procedure for implementing the method of steepest
descent. This algorithm uses gradient estimates in place of true
gradient values. These estimates may be "noisy" (i.e., contain
errors) but the effect of the gradient-measurement errors is observed
to be small in many practical applicatioms.

A method of measuring gradients of the mean square error which
does not require squaring, averaging or differentiating is now given.
The mean square error f(hn) may be represented crudely by the
single sample e(n), the square of the n-th error value. Then the

gradient vector is approximated by
. 2
Vf(pn) = Ve“(n) = -2e(n) x (B.2.12)

In order to approximate the gradient vector, the present input-signal

X and its associated scalar error c(n) are used. Upon taking an

expected value on expression (B.2.12), expression (B.2.9) can be
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obtained.
An adaptation cycie will proceed with the arrival of each new
input vector. From eqs. (B.2.10) and (B.2.12), the adaptation

procedure comprising the LMS algorithm is completely represented by

(B.2.13).
. T (B.2.13a)
e(n) = d(n) - h o x
bn+l = hﬂ ~ 2ue(n) X {(B.2.13b)

Upon examination of expressions (B.2.13), we can see that the
computational requirement is O(p). In this algorithm, the selection of
u is also an important factor. If u is made too small, convergence is
slow. On the other hand, if u is selected to be too large, the adaptive
method may not converge. In terms of selecting a best u, the

interested reader may refer to (Widrow, 1971; Luenberger, 1973;

Huffman and Nolte, 1980).

B.3 TIterative LMS Method

We will now investigate the problem of how to linearly filter an
observed, wide-sense stationary, discrete~time, random time series
{x(n)}. Our primary interest is to best estimate the desired discrete-
time random time series {d(n)} in the minimum mean square sense.

The problem is illustrated in Fig. B.3.1. Our objective is to find

the transfer function H(z) that minimizes the mean square error. We

assume that the estimate of element d(n) is of the form
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x(n) d(n)
H(z)
+
+ A
d(n)
Fig. B.3.1 Pictorial representation
of the optimum filtering

e(n)
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R p-1
d(n) = I h(k) x(n - k) (B.3.1)
k=0

where h(k) are the filter weight elements. The estimate d{(n) is then
seen to be a linear combination of the most recent p values of the
observation signal. The mean square error is found to be a function

of filter weights h(k) and is specified by

£(h) = E[{d(n) - d(n)}*] (B.3.2)
where h is the pxl column vector defined by

h = [h(O), n(D), ... , h(p - ]T (B.3.3)

Substitution of expression (B.3.1) into (B.3.2) and taking the expected

value operation yields

+hi R h (B.3.4)

T
F@ = xy(0 - 28" ry v R B

where rd(O) = E[dz(n)],zdx is the pxl column vector whose k-th element
is given by E[d(n) x(n - k)] for k =1, 2, ... , p and R, is the pxp
matrix whose elements are given by Rx(i,j) = E[x(a - 1) x(n - j)]
(see eq. B2.6).

The optimum filter weights vector is readily determined by taking
the gradient of quadratic functional (B.3.4) with respect to h and
setting this gradient equal to the zero vector. This is found to

result in the well-known Wiener vector selection (Wiener, 1949).

h® = R, (B.3.5)
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Although this approach is indeed attractive and typically results in

satisfactory performance, it suffers one serious drawback. Its

implementation requires apriori covariance knowledge which is usually
lacking in many typical applicationms.

In order to achieve our object without requiring any statistical
information, we introduce an estimation error criterion defined by

N -
g = 1[4 - 412 (B.3.6)
k=p

It will be beneficial to represent this error criterion in a vector

format. Let us define the (N + 1 - p) x 1 estimation error vector

d(p) x(p) x(p-1) . .. x(l)T rh(o)

d(p+l) x(P+1) x(p) . .. x(2) h(1)
N T . ) .

d(N) x(N) x(N=1) . . . x(N+1-p) {P(p-l)

(8.3.7)

which can be compactly expressed

e =4y - X B (B.3.8)

Using these expressions, the square error criterion can be represented
by

B = (&g - X BT @ - X W (B.3.9)

Minimization of the functional (B.3.9) is straightforwardly carried

out by setting the gradient Vh.fN(h) equal to zero and vields the




152

following result.

v =[x x 170 X a4 (8.3.10)

In general applications, the use of this method is not practical since
it requires on the order of p3 multiplications to invert the pxp

matrix [Xg XN]. We will next discuss a straightforward procedure which

reduce this computational complexity.
Upon examination of relationship (B.3.7) and (B.3.8), we can see

that when the new data element x(N + 1) is provided, the equation error

can be updated by

S+l TG " X1 2 (B.3.11)

y X
= - h (B.3.12)
T
d(N+1) X4l
where X+l is the pxl column vector specified by

Kgap = (xQHD, x00, ..., x(N-p+2) 1T (B.3.13)

It is clear from relationship (B.3.10) that we have to invert the

matrix

[erz+1 Xge1) = x}; N Xh ZNT+1 (B.3.14)

The following recursive relationship may be used to efficiently update

the required matrix inverse
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T -1 T ., 4-1 1 T
(e Xl = X XN] Tl v Do+l v+l
(B.3.15)
where
PR b o (8.3.16)

After a few simple manipulations, the following recursion is obtained

T o
d(N+1) - EN EN
o o +1
Byer = by +1+ T
E+1 Inv1

+1 (B.3.17)
Recursive relationships (B.3.16) and (B.3.17) constitute a more
computationally efficient method than the direct approach (B.3.10).

It can be shown that the computational complexity is of the order pz.

B.4 Numerical Examples

In this section, we shall demonstrate the performance of two
adaptive methods, namely, the Widrow-Hoff algorithm and the Iterative
ILMS method. This will be accomplished by investigating the time

series whose elements are given by
x(n) = V20 sin (0.1 ) + w(n) (B.4.1)

where w(n) is a white Gaussian noise with variance one. The normarized
Weiner equation error can be defined by

£(n) = 1R by~ gl

(B.4.2)

gyl !
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Lo

where Rx is the pxp covariance matrix of the sequence {x(n)} and Ty

is the pxl cross-correlation vector of the sequences {d(n)} and {x(n)}.

-U_,_..“«-.»-
Sandit

The above scalar value £(n) yields a normalized measure of how closely

the Wiener equations are being approximated. All graphs except

Fig. B.4.4 provide the plot of normalized Wiener equation error .
referring to expression (B.4.2) versus iteration number (i.e., the .
number of observation data). The desired signal d(n) is specifically (
chosen to be x(n+l). This yields a problem of predicting one step
into the future. Unless specified, the covariance matrix is initial-
ized at 15-th iteration number.

It can be observed from Fig. B.4.1 that the normalized Wiener
equation error of the Iterative LMS method converges to approximately
zero after 2300 iterations, however, the Widrow-Hoff algorithm
with u = 0.001 fails to converge. In the Widrow-Hoff algorithm,
the value of u was next selected to be .000l and .0l in Fig. B.4.2
and Fig. B.4.3, respectively. As we can see on Fig. B.4.2, both of

the adaptive algorithms converge reasonably close to zero. The

Iterative IMS method converges faster than the Widrow-Hoff algorithm.
Fig. B.4.3 illustrates an example which shows convergence behavior
of the Iterative LMS method and nonconvergence behavior of Widrow-
Hoff algorithm. The normalized square error ]lhn - holl/[lhcll where
ho is the exact solution of the matrix equation (B.3.3) are displayed
in Fig. B.4.4. The convergence behavior of the Iterative LMS and

the nonconvergence behavior of the Wiener-Hoff are evident.
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Fig. B.4.5 and Fig. B.4.6 display the method which employs ‘
biased estimates for the approximation of covariance matrix elements. t
Fig. B.4.7 and Fig. B.4.8 display the method which uses unbiased

estimates for the approximation of covariance matrix elements. Both

the biased and unbiased methods converge to zero, however, the biased

method starts with slightly large values of normalized Wiener equation

error. Fig. B.4.9 and Fig. B.4.10 show the Iterative LMS method

whose initial covariance matrix is the identity matrix. Although the

PO

normalized Weiner equation error at the early stage of iteration
number are relatively large, this method also converged to zero.

Fig. B.4.11 and Fig. B.4.12 display the direct method. Upon

examination of Fig. B.4.5 through Fig. B.4.12, the direct method and
the method of unbiased estimate are found to be the best, since they
started with a smaller normalized error and converged uniformly to
zero.

Comparing the Widrow-Hoff algorithm and the Iterative LMS method

from the convergence viewpoint, the Iterative LMS method is superior

to the Widrow-Hoff algorithm.

B.5 Summary

Two adaptive techniques are compared. From a computational
viewpoint, the Widrow-Hoff algorithm is less burdensome than the

Iterative LMS method. However, the comparison of Wiener equation errors

indicated that the solution from the Iterative LMS method satisfies

Wiener equations better than that of the Widrow-Hoff algorithm.
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Appendix C

DERIVATION OF EXPRESSIONS (6.6.4) AND (6.6.10)

In this Appendix, relationships (6.6.4) and (6.6.10) which play

a central role for the time update meode are derived.

€C.1 Derivation of (6.6.4)

Expression (6.6.3) can be simplified to the form
R =R ~-x * (C.1l.1a)
n-1 n ~ Xndn

where the (m-i+1l)x] column vectors En and Xﬁ are defined by

.T.
_)_(n = A XN[i,m] % (C.l.lb)

2: = Eg A X4[1,m] (C.1.1c)

It can be seen that Rn- is expressed as a sum of a nonsingular matrix

1

and a rank 1 matrix. Expression (C.1l.la) can be also expressed as

e N
Ry =R*[1-2ap1" R (C.1.2a)

where the (m-i+1)xl column vectors a and b are defined by

(C.1.2b)

P ot ok
b ¥, R (€C.1.2¢)

A K ah s
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b5

in which R; is a NxN matrix which satisfies the relationship

R;% R;% = R;l. We will now make use of the following matrix inverse

relationship
ha—- T
[I - 3\_3_] 1 =1 + (1—-:‘%-.'-—3) a b* (C.1.3)

Substituting (C.1.2b) and (C.1l.2¢) into (C.l1l.3) yields

%

(C.1.4)

- - + -
(1 - é_gf] LI } TR %y y R
1_.Rxn—n n

I R X

Expression (6.6.4) can be obtained by substituting (C.l.4) into

(C.1.2a) along with expressions (C.1l.1b) and (€.1l.1c).

C.2 Derivation of (6.6.10)

To simplify the complexity of notations, let us define the

following compact notations

P=pP EN[i,m] (C.2.1a)

Q=P (C.2.1b)
T T

y = Yi’m’N = EN P %1 (C-z.lC)

It is readily shown that
(1-y) 0=g (L-v) g =Q(L-P)Q (C.2.2a)
PQ PQ = YPQ (C.2.2b)

QP QP = YyQP i (C.2.2¢c)

- em———— - i T w————— =




Equation (6.6.9) may be expressed as

V(I -P)=Q-P+ (I -Q P(I-0Q)

1

+ T-+

(I-Q PQPR(I-Q

Using relationships (C.2.2b) and (C.2.2¢), we have

{Q-P+ T ~-Q PA-Q}@@Q-7v)
=Q - PQ + YPQ - QP + YQP - YQPQ
Substitution of (C.2.4) into (C.2.3) yields

1
1-y

V(I -P) = (I -P) QI ~P)

Expression (6.6.10) can be obtained by direct substitution of

expressions (C.2.1a), (C.2.1b) and (C.2.1c) into (C.2.5).

(C.2.3)

(C.2.4)

(C.2.5)
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COMPUTER PROGRAM LISTING

. D.1 FORTRAN Program Listing for a Recursive ARMA Spectral Estimation

D.2 FORTRAN Program Listing for Generalized Levinson's Approach
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Appendix D COMPUTER PROGRAM LISTING

D.1 FORTRAN Program Listing for a Recursive ARMA Spectral Estimation

c THIS PROGRAM COMPUTES AUTOREGRESSIVE COEFFICIENTS OF
c '"HIGH PERFORMANCE' ARMA MODEL (REAL DATA, p=q).
c
DIMENSION X(1024),EXN(30),EXNM1(30),BXN(30),BXNM1(30)
$ ,FENM1(30),FRN(30),FRNM1(30),SN(30),SNM1(30),TN(30)
$ ,GAM(30),GAM1(30),EYN(30),EYNM1(30),BYN(30)
$ ,Y(1024),XA(1),RX(30,30),YX(30),¥YS(1024,30)
$ ,WKAREA(30),CM(30),CM1(30),AM(30),AM1(30),BM(30)
$ ,DM(30),RXX(30,30),FEN(30),TNM1(30),BB(30) ,BM1(30)
$ ,XS(1024,30) ,BYNM1(30)
c
C N1: TOTAL NUMBER OF OBSERVATION DATA
C IP: ORDER OF DENOMINATOR COEFFICIENT
C
N1=64
1P=4
NP=N1-1IP
N=N1-1
IP1=IP+1
IPM1=IP-1
C
C GENERATE DATA TO BE MODELED
C
DSEED=12345
CALL KAVEH(Y,N1,DSEED)
DO 25 I=1,NP
25 X(I)=Y(I+IP)
WRITE (6,101) (Y(I),I=1,NP)
WRITE (6,101) (X(I),I=1,NP)
N1=NP
N=N1-1
C
c INITIALIZATION FOR TIME UPDATE
c
EXXM1(1)=0.
EYNM1(1)=0.
BXNM1(1)=0.
BYNM1(1)=0.
FENM1(1)=0.0
FRNM1(1)=0.0
Al2=0.0
A21=0.0
A22=0.0

DO 1 I=1,IP
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SNM1(1)=0.0
1 TNM1(1)=0.0

UPDATE PARAMETERS FROM IT=1 TO IT=Nl

DO 2 IT=1,N1
IT™M1=1IT~1
AIT=IT
WRITE(6,102) IT
102 FORMAT (/,3X, 'N=',I3)

INITIALIZATION FOR ORDER UPDATE

EXN(1)=X(IT)
BXN(1)=X(1IT)
EYN(1)=Y(IT)
BYN(1)=Y(IT)
DO 20 I=1,IP1
SN(I)=0.0
TN(I)=0.0
GAM1(I1)=0.0
20 GAM(I)=0.0

UPDATE FEN(1) AND FRN(1)

FEN (1)=FENM1(1L)+X(IT)*Y(IT)
FRN(1)=FRNML(1)+X(IT)*Y(IT)
M=IP

IF(ITM1.LT.IP) M=ITML
Mi=M+1

IF(IT.EQ.1) GO TO 109

ORDER UPDATE
DO 3 I=1,M

UPDATE GAM(I+1) AND PARTIAL CORRELATION COEFFICIENT
SN(I) AND TN(I)

GAM(I+1)=GAM(I)+BXNMI (1) *BYNM1(I) /FRNM1(I)

SN(I)=SNM1(I)+BYNMI (I)*EXN(I)/(1.0-GAM(I))

TN(I)=TNM1(I)+EYN(I)*BXNM1(I)/(1.0-GAM(I))
UPDATE FORWARD ERRORS EXN(I) AND EYN(I)

EXN(I+1) =EXN(I)-(SN(I)/FRNM1(I))*BXNM1(I)
EYN(I+1)=EYN(I)~-(TN(I)/FRNM1(1))*BYNM1(T)

UPDATE BACKWARD ERRORS BXN(I) AND BYN(I)
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FEN(I+1)=FEN(I)-SN(I)*TN(I)/FRNML1(I)
FRN(I+1)=FRNM1(I)-SN(I)*TN(1) /FEN(I)
3 CONTINUE
109 IF(IT.EQ.1) Mi=1

PRINT OUT AT EACH NEW DATA POINT

WRITE(6,100)
100 FORMAT(/,2X, "EXN(I)',3X,'EYN(I)',3X, 'BXN(I)'
$ ,3X,'BYN(I)',2X, 'FEN(I)',2X, 'FRN(I)',2X, 'SN(I)"
$ ,2X,"TN(I)',2X, 'GAM(I)")
DO 5 I=1,M1
WRITE(6,101) EXN(I),EYN(I),BXN(I),BYN(I),FEN(I)
$ ,FRN(I),SN(I),TN(I),GAM(I)
101 FORMAT (2X,10F8.3)
IF(IT.EQ.N1) GO TO 5

READY FOR NEXT DATA POINT

EXNM1(I)=EXN(I)
EYNM1(I)=EYN(I)
BXNM1(I)=BXN(I)
BYNM1(I)=BYN(I)
FENM1(I)=FEN(I)
FENM1(I)=FRN(I)
SNM1(I)=5N(T)
TNM1(I)=TN(I)
GAM1(I)=GAM(1)

5 CONTINUE
IF(IT.EQ.1) GO TO 2
A12=A12+Y(IT) *X(IT-1)
A21=A21+Y(IT-1)*X(IT)
A22=A22+Y(IT-1) *X(IT-1)

2 CONTINUE

FIND AUTOREGRESSIVE COEFFICIENTS FROM PARTIAL
CORRELATION COEFFICIENTS

Al1=FEN(1)

DET=A11*%A22-A21%A12
CM(1)=(A22*%Y(N1)-A12*Y(N1-1))/DET
CM(2)=(~A21*%Y(N1)+A11*Y(N1-1))/DET
AM(1)=-A21/A22

BM(1)=-a12/A11

IF(IP.EQ.1) GO TO 23
RM=X(N1)*BM(1)+X(N1-1)

CM=X(N1) *CM(1)+X(N1-1)*CM(2)
ETM=1.+RM*CM(2) / (1-GM)

DO 13 IORD=1,IPMl

IORD1=IORD+1

IORD2=10RD+2
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UPDATE AUXILIARY VECTOR DM(I)

DO 14 I=1,ICRD
14 DM(I)=(BM(I)+RM*CM(T)/(1.-GM)) /ETM
TEMP=SN(IORD+1) /FRNM1(IORD+1)

UPDATE FORWARD VECTOR AM1(I)

DO 15 I=1,IORD
15 AM1(I)=AM(I)-TEMP*DM(I)
AM1 (IORD+1)=-TEMP

UPDATE BACKWARD VECTOR BM1(I)

TEMP=TN (IORD+1) /FEN (IORD+1)
BM1(1)=-TEMP
DO 16 I=2,IORD1

16 BM1(I)=DM(I-1)-TEMP*AM(I-1)

UPDATE AUXILIARY VECTOR CM1(I)

TEMP=BYN (IORD2) /FRN (IORD2)
DO 17 I=1,I0RD1
17 CM1(I)=CM(1)+TEMP*BM1(I)
CM1 (IORD1+1)=TEMP
SUM=X(N1-IORD-1)
SUM1=X(N1)*CM1(1)
DO 18 I=1,IORD1
SUM=SUM+X(N1+1~I)*BM1(I)
18 SUM1=SUM1+X(N1-I)*CM1(I+1)
RM1=SUM
GM1=SUML
ETM1=1.+(RM1(1.-GM1)) *CM1(IORD2)

SET VECTORS FOR NEXT ITERATION

DO 19 I=1,I0RD1
AM(T)=AM1(I)
BM(I)=BM1(I)

19 cM(I)=CM1(I)
CM(IORD2)=CM1(IORD2)
RM=RM1
GM=GM1
ETM=ETM1

13 CONTINUE

23 CONTINUE

PRINT OUT AUTOREGRESSIVE COEFFICIENT
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WRITE (6,105) (AM(I),I=1,IP)

105 FORMAT(/,3X,' RECURSIVE SOLUTION = ',//,10F10.5)
RETURN
END

NOTE: Above program may be applicable to complex data by making
following changes

(1) Declare all variables to be complex value except
integer variables (i.e. IMPLICIT Statement)

(i1) In DO loop 25, take complex conjugate on the
variable Y(I+IP) (i.e. Y(I+IP)=CONJG(Y(I+IP)))

e Sallnd C o m ekl o Rt .
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D.2 FORTRAN Program Listing for Generalized Levinson's Approach ,
i of ARMA Model

Generalized Levinson's approach discussed in Section 5.3 is

programmed for the premodified method.

i .54 N ARAISD B 4TS

c
C THIS PROGRAM COMPUTES DENOMINATOR COEFFICIENTS OF 1
Cc ' HIGH PERFORMANCE ' ARMA SPECTRAL ESTIMATION '
C BY GENERALIZED LEVINSON'S APPROACH (REAL DATA, p=q). 4
C
DIMENSION X(64),FEN(30),¥YV(30),XV(30)
,FRN(30) ,FRNM1(30),SN(30),TN(30) 5
,BMN(10,10) ,BBMN(10,10) j
,Y(64) ,RX(30,30) ;
: ,WKAREA (30),CM(30),CM1(30),AM(30) ,AM1(30) g
‘ ,DM(30) ,RXxx(30,30) ,BM(30) ,BM1(30)
C
Cc N1l: NUMBER OF TOTAL OBSERVATION
c
N1=64 ]
c H
C IP: ORDER OF DENOMINATOR COEFFICIENTS i
Y i
IP=4 ]
NP=N1-IP .
N=N1-1
IP1=IP+1 ‘
IPM1=IP~1 i
C
Cc GENERATE DATA TO BE MODELED
C
DSEED=12345
L CALL KAVEH(Y,N1,DSEED)
: DO 25 I=1,NP
25 X(I)=Y(I+IP)
WRITE(6,101) (Y(1),I=1,NP)
WRITE(6,101) (X(I),I=1,NP)
101 FORMAT (2X,10F8.3) .
N1sNP N
N'Nl"l ‘
C .
Cc INITIALIZATION BASED ON THE FIRST TWO DATA SAMPLES
‘ c X(1) AND Y(1)
! C

‘ DO 40 I=1,IP1
) DO 40 J=1,IP1

L mmaat a . s
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BBMN(T,J)=0.0
BMN(I,J)=0.0
RXX(1,J)=0.0

All=Y (1) *X(1)+Y(2)*X(2)
Al2=Y(2)*X(1)
A21=Y(1)*X(2)
A22=Y (1) *X(1)
RXX(1,1)=A11
RXX(1,2)=A12
RXX(2,1)=A21
RXX(2,2)=A22
BMN(1,1)=-A12/A11
FRNM1(2)=RXX(2,2)+RXX(2,1)*BMN(1,1)

SOLVE FOR DENOMINATOR COEFFICIENTS (AM(I),I=1,IP)
AT EACH NEW DATA POINT FROM IT=3 TO IT=N1l

DO 38 IT=3,N1
IPM1=IP-1
IF(IT.LE.IP) IPM1=IT-2

UPDATE ROW VECTORS

37

39

DO 37 I=1,IP1

YV(1)=0.0

XV(I)=0.0

IF(I.LE.IT) YV(I)=Y(IT+1-I)
IF(I.LE.IT) XV(I)=X(IT+1-I)
CONTINUE

DO 39 I=1,IP1

JF=I

IF(I.EQ.1) JF=IP1

DO 39 J=1,JF
RXX(I,J)=RXX(I,J)+YV(I)*XV(J)
Al1=RXX(1,1)

Al2=RXX(1,2)

A21=RXX(2,1)

A22=RXX(2,2)

AM(1)=-A21/A22
BM(1)=-A12/A11

IF(IP.EQ.1) GO TO 23

DO 13 IORD=1,IPM1
IORD1=IORD+1

IORD2=IORD+2

COMPUTE AUXILIARY PARAMETERS FEN(IORD+1)
AND FRN(IORD+1)

SUM=RXX (1,1)
DO 27 I=1,I0RD
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27 SUM=SUM+RXX(1,I+1)*aM(I)
FEN (IORD+1) =SUM
SUM=RXX(IORD1,IORD1)
bo 28 I=1,I0RD

28 SUM=SUM+RXX (IORD1,I)*BM(I)
FRN (IORD+1)=SUM

COMPUTE PARTTAL CORRELATION SN(I)

SUM=RXX(IORD2,1)
DO 29 I=1,IORD
29 SUM=SUMHRXX(IORDZ,I+1)*AM(I)
SN (IORD+1) =SUM
DO 14 I=1,IORD
14 DM(I)=BMN(I,IORD)

COMPUTE PARTIAL CORRELATION TN(1)

SUM=RXX(1,IO0RD2)
DO 30 I=1,IO0RD

30 SUM=SUM+RXX(1,I+1)*DM(I)
TN (IORD+1)=SUM

UPDATE VECTOR AM1(I) ; FORWARD SOLUTION

TEMP=SN (IORD+1) /FRNM1 (IORD+1)
DO 15 I=1,I0RD

15 AM1(I)=AM(I)-TEMP*DM(I)
AMI (TORD+1)=-TEMP

UPDATE VECTOR BM1(I) ; BACKWARD SOLUTION

TEMP=TN (IORD+1) /FEN (IORD+1)
BM1(1)=-TEMP
DO 16 I=2,IO0RD1

16 BM1(I)=DM(I~1)~-TEMP*AM(I-1)
SUM=RXX (IORD2,IORD2)

COMPUTE AUXILIARY PARAMETER FRN (IORD2)
DO 31 I=1,IO0RD1

31 SUM=SUM+RXX(IORD2,I)*BM1(I)
FRN (IORD2) =SUM

SET FOR NEXT DATA POINT

DO 19 I=1,IORD1

AM(T)=AM1(I)

BBMN (I, IORD1)=BM1(I)
19 BM(I)=BM1(I)

s n
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13 CONTINUE
BMN(1,1)=-A12/A11 '
DO 43 I=1,IORD1
DO 43 J=2,I0RD1

43 BMN(I,J)=BBMN(I,J) \
DO 41 I=1,IORD2 X

41 FRNM1(I)=FRN(I)

38 CONTINUE

23 CONTINUE '

Pr—
.
F U A

c PRINT OUT RESULTED DENOMINATOR COEFFICIENTS

WRITE(6,105) (AM(I),I=1,IP)
105 FORMAT(/,3X,' GENERALISED LEVINSON SOLUTION = ' 1
,//,10F10.5)
STOP J
END

NOTE: Above program may be applicable to complex data by making
changes as described in Section D.1 (See Expression (5.3.1d)).

i
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