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Computationally Fast Algorithms for

ARMA Spectral Estimation

by

Koji Ogino and James A. Cadzow

(ABSTRACT)

The high performance method for obtaining an ARMA model

spectral estimate of a wide-sense stationary time series has been

found to provide typically superior performance when compared to

such comtemporary approaches as the Box-Jenkins and maximum

entropy methods. In this report, fast recursive algorithmic

implementations of the high performance method are developed. They

are recursive in the sense that as a new element of the time series

is observed, the parameters characterizing an ARMA spectral estimate

are algorithmically updated. The number of multiplications and

additions required at each recursive stage are of the order p with

p being the number of denominator coefficients of the ARMA model.

Methods of modification of the data are applied to achieve a

significant computational improvement. The development is predicated

on utilization of various projection operators.

"L 'i : -' " ' *:", " " ,... . .•"



Chapter 1

INTRODUCTION

The mathematical development of digital signal analysis has

been an area of primary concern since the digital computers develop-

ment over two decades ago. The analysis of the frequency character-

istic of a signal is of particular interest in the field known as

"time series analysis." Time series analysis encompasses such

areas as statistics, economics, and communications. Most of the

work in time series analysis has been carried out by statisticians.

More recently, however, many advancements in the analysis of time

series have been made in the field of signal processing based on

power spectral estimation concepts and time domain analysis.

The need for power spectral estimates arises in a variety of

contexts, including the measurement of noise spectra for the design

of optimal linear filters, the detection of narrow-band signals in

wide-band noise, and the estimation of parameters of a linear system

by using a noisy excitation.

Current methods of spectral estimation can be broadly classified

into two categories. One is the classical approach which includes

the periodgram method, autocorrelation methods and its variants

(Bartlett, 1953; Blackman and Tukey, 1958; Grenander and Rosenblatt,

1957; Jenkins and Watts, 1968; Koopmans, 1974). The second is
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modern power spectral density estimations based on parameters

modeling. This includes the maximum entropy method (Burg, 1967), one-

step linear prediction (Parzen, 1969), and spectral estimation using

ARMA model (Tretter and Steiglitz, 1967; Gutowski, Robinson and

Treitel, 1978). In practical signal processing applications, classical

approachs have been incorporated by many researchers and users.

This is because classical methods are fairly easy to implement

and can be computed efficiently by using the fast Fourier transform

(Cooley and Tukey, 1965). However, the spectral estimates obtained

by classical methods can provide unsatisfactory results when the data

length is short. For example, variance of estimates is large and

the resolution capability of noise embedded sinusoids is poor in such

cases. To overcome these difficulties, the modern spectral estimation

methods were developed. These methods provide better spectral

performance than classical methods. For example, one of the widely

used modern spectral methods referred to as the Maximum Entropy

method (Burg, 1967) possesses better resolution capability than the

classical periodgram approaches for short data lengths. The Maximum

Entropy method is classified as an autoregressive (AR) model. The AR

model is also known as an all-pole model which uses only a denominator

polynomial of a rational model. In recognition of this constraint,

a more general form, the autoregressive and moving average (ARMA)

model which has numerator polynomials as well as denominator poly-

nomial has been proposed. A variety of procedures has been developed

for generating ARMA models. One of these methods is the so-called 'high
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performance' ARMA method which was recently developed by Cadzow (1979).

The 'high performance' ARIL4A method has provided excellent spectral

estimation performance when compared with the Maximum Entropy and

its variants. However, its computational efficiency is relatively

burdensome.

Recently, attention has been directed towards developing 'fast'

spectral estimation algorithms. These include the generalized Levinson's

algorithm. As an example, it is possible to use this approach for

estimating the autoregressive coefficients of a p-th order AR model

with the number of required additions and multiplications being on

the order of p2 (i.e., O(p2)). Recently, Morf developed the doubling

algorithm which reduced the required computations to O(p log p) by

using the divide and conquer approach (Morf, 1980). More recently,

recursive methods which have an ability to compute necessary parameters

at the arrival of each new data point has been proposed (Lee and

Morf, 1980). This algorithm does not require any matrix formulation

and the computational requirements can be reduced to 0(p) to update

the AR model parameters with each new data sample.

In this report, the development of fast algorithms for the high

performance spectral estimation method is treated. To begin our

development, in Chapter 2, the mathematical definition of power

spectral density function is stated and two classical methods referred

to as the periodgram and the autocorrelation method are discussed.

The common weakness of these classical techniques are examined. In

Chapter 3, a standard procedure of modern spectral estimation,
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namely, the rational function model is discussed. Modern spectral

linear estimators can be classified into three types of models:

(i) AR (Autoregressive) model, (ii) MA (Moving Average) model, and

(iii) ARMA (Autoregressive and Moving Average) model. It is widely

known that the ARMA model is a desired form from a parameter parsimony

viewpoint. In Chapter 4, the 'high performance' ARMA spectral estima-

tion is described. Although this methoo gives excellent spectral

performance, the computational requirements are relatively burdensome. V
To achieve a higher degree of computational efficiency, fast algorithms

are developed in Chapter 5 and data modification methods are intro-

duced. In Chapter 6, a recursive algorithm which requires O(p)

computations at the arrival of each new data sample is developed.

Development of this algorithm is predicated on various projection

operator decompositions.

_______________ *t



Chapter 2

CONVENTIONAL SPECTRAL ESTIMATIONS

2.1 Introduction

The spectral density function is mathematically defined in

Section 2.2. Conventional spectral estimation techniques have been

developed based on the Fourier transform relationship between the

power spectral density function and the autocorrelation sequence

(Bartlett, 1953; Blackman and Tukey, 1958; Grenander and Rosenblatt,

1957; Jenkins and Watts, 1968; Koopmanns, 1974). For example Blackman

and Tukey developed an autocorrelation method (Blackman and Tukey,

1958) which includes following steps:

(i) Estimate the autocorrelation sequence from the observed

data;

(ii) Window the autocorrelation estimate;

(iii) Fourier transform of the windowed data record.

While various procedures are used in step (i) to estimate the auto-

correlation function, the objective is usually to obtain a minimum

bias and minimum variance estimate of the true autocorrelation

sequence. In step (ii), windowing is used to reduce the bias and the

variance of the power spectral estimate. However, the windowing

process decreases the resolution of the power spectral estimate.

This autocorrelation method demonstrates typical weaknesses of

conventional spectral estimation approaches. Spectral estimation

5
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performance had not been improved until the development of modern

spectral estimation techniques.

2.2 Definition of Power Spectral Density

Let us consider a discrete time random sequence {x(n)} with

autocorrelation sequence {rx(m)) defined by

xxrx(in) =E E[x(n +m) (n](2.2.1)

where E and * denote the expected value and complex conjugate operation,

respectively. We will denote the z-transform of {r x(m)) by

Wx

Sx(z) rx(m) zi (2.2.2)

The associated power spectral density is then defined to be

S s= Z r (m) e- jwm (2.2.3)Sx() =Sx() z=eJ tm,,-oo I

Applying the inverse z-transform to eq. (2.2.2), we have

r (m) = -- Sx(z) z-m dz (2.2.4)x 27rj j x z
C

where C is a simple closed contour contained within the region of

convergence for S x(z). If C is chosen to be the unit circle, by

making the change of variable z=e , we derive the discrete inverse

Fourier transform relationship

L 4 .- . - - --
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r (m)= f Sx(w) dw (2.2.5)
x ~2

The variance of the random time series (x(n)} is equal to r (0) andx

can be expressed by

E{=x(n) 12 } - r (0) S (W) dw (2.2.6)

It follows that the average power in the incremental frequency band

w0 ! w < 0 + dw (Tretter, 1976) is found to be

Px(W0) . Sx(W0) - (2.2.7)

As shown in eq. (2.2.6), the time series variance is equal to the

total power of the signal which is a scalar multiple of the area

under the curve Sx (). Observing the relation between expressions

(2.2.6) and (2.2.7), one can see that the integral over the incremental

frequency band is proportional to the total power of the signal in

that band. For these reasons the function Sx(w) is called the power

spectral density.

The frequency response of a linear shift-invariant system and

the frequency domain representation of a discrete-time signal are

essential concepts in digital signal processing. In this section we

describe another interpretation of the power spectral density

function using the theory of linear discrete-time systems for the

case when the input is a random time series (Oppenheim and Schafer,

1975). Consider a stable linear shift-invariant system with unit-

sample response h(n). Let e(n) be a real input sequence that is a
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sample sequence of a wide-sense stationary discrete-time random

process. Then the output of the linear system is a sample function

of a random process related to the input process by the linear

transformation

x(n) = Z h(n - k) e(k) (2.2.8)

It can be shown that if the input is stationary, then so is the output.

The input signal may be partially characterized by its mean and its

autocorrelation function r n(m), or we may also have additional

information about first or higher order probability distributions.

In characterizing the output random process (x(n)}, we desire similar

information. For many applications, it is sufficient to characterize

both the input and output in terms of simple averages, such as means,

variances, and autocorrelations. Therefore, we shall derive input-

output relationships between these quantities. Generally we consider

zero mean processes and our analysis is restricted to the examination

of the autocorrelation sequence. The autocorrelation function of the

output process is readily shown to be given by

r(m) (r Cm - n) Z h(k) h (n + k) (2.2.9)
n=- k-

To characterize the response of a linear time-invariant system to a

discrete time input, we apply the z-transformation to expression

(2.2.9) to yield

Sx(z) - H(z) H(z) S,(z) (2.2.10)

MENNEN-
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where H(z) is the transfer function of the linear shift-invariant

system. In terms of the power spectral density, (2.2.10) becomes

Sx(w) M IH(ej w)12 S (W) (2.2.11)

where the impulse response {h(k)} is taken to be a real sequence.

2
If the input random process is a white noise with variance a , it

follows that

S x(w) = HI(e j W) 12 o 2  (2.2.12)

Relationship (2.2.12) is extensively used in analysis concerned with

modern spectral estimation.

2.3 Discrete Fourier Transform Approach

As shown in Section 2.1, the power spectral density and auto-

correlation functions are related by the discrete Fourier transform.

Suppose that the sequence {x(n)} is a wide-sense stationary random

time series and the complete knowledge of the associated autocorrela-

tion {rx(m)} is given, the spectral density can be simply obtained by

S M)= E r(m) e-jw m  (2.3.1)

In relevant signal processing applications, it is never feasible

to measure an infinite number of autocorrelation sequence elements

{rx(m)}.

...._ _ 4 ' 4
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We will now begin to examine the problem of estimating Sx(W)

from a finite observation of the time series {x(n)}. This observation

can be represented by a set of N contiguous samples

x(0), x(1), ... , x(N-l) (2.3.2)

About two decades ago, spectral estimates had been mostly accomplished

by the periodgram and autocorrelation methods.

2.3.1 Periodgram Method

To include an additional degree of flexibility, suppose that the

observed sequence is modified to form the auxiliary signal

f(n) = w(n) x(n) 0 < n < N-i (2.3.3)

where w(n) - 0 for n < 0 and n > N. The sequence w(n) is frequently

called a data window. The sample autocorrelation function for the

modified observed sequence can be written as

1

rf(n) Z f(k+n) f(k) (2.3.4a)
1k-

- f(n) * f(-n) (2.3.4b)N

where * denotes the operation of convolution. Denoting the z-transform

of rf(n) and f(n) by Rf(z) and F(z), respectively, the convolution

and time reversal theorems yield the following relationship

1

Rf(z) -1 F(z) F(z"I) (2.3.5)

f
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Evaluating this expression at z = e , we have

Rf (ej ) N sf(W) 2 (2.3.6)

The function Rf(e ') is known as the periodgram of {f(n)}. Two

decades ago, the periodgram method became popular because R f(eJW)

could be computed efficiently by using the fast Fourier transform

(FFT see Cooley and Tukey, 1965).

2.3.2 Autocorrelation Method

When the true autocorrelation function r x(m) is unknown, it is

desired to calculate an estimate of the autocorrelation function.

The associated spectral estimate can then be obta 4ned by taking a

Fourier transform of this autocorrelation estimate (Blackman and

Tuckey, 1959). Two common estimates

1 N-m
x(M) = m E x(i) x(i+m) (2.3.7)

ii M = 0, ... , N-I

and

N-m
r() Z x(i) x(i+m) (2.3.8)

i=l i 0, ... , N-i

are typically used for estimating the autocorrelation function.

Applying the expected value operation on expression (2.3.7), we obtain

N-M

E [ x(m)] - N-Z E [x(i) *(i+m)] (2.3.9a)X N-r = I

= r () (2.3.9b)
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The autocorrelation estimate r (m) is seen to be an unbiased estimate.

On the other hand, one can similarly show that rx(m) is a biased

estimate. Because rm) is an unbiased estimate, it might be thoughtx

rx (m) is the better estimate. For several reasons, however, x(m)

is sometimes preferable to r x(m). First, the biased estimate does

not violate a property of a valid autocorrelation functions, that is

rx (0) > Irx (m)l (2.3.10)

while the unbiased estimate can violate this property. Second, the

biased estimate produces a nonnegative spectral estimate, while the

unbiased estimate may not (Burg, 1975). Third, the mean-square error

for the biased estimate is less than that for the unbiased method

(Jenkins and Watts, 1968). And finally, Parzen provides an argument

in favor of the biased estimate by claiming that rX(m) has less

variance than rx(m) (Parzen, 1974).

Various procedures may also be used to estimate the autocorrela-

tion function. The objective of these procedures is usually to obtain

a minimum variance estimate of the true autocorrelation function.

Similarly, the estimate of the autocorrelation function is windowed

to reduce the bias and variance of the power spectral estimate, but

increases its statistical stability. Various window functions have

been used which are generally unrelated to the data or the random

process being analyzed. Both the finite record length of the auto-

correlation function estimate and the windowing process applied to

the autocorrelation function decreases the resolution of the power

LI
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spectral estimate. An additional disadvantage of windowing is that

unless one performs good windowing, e:.cessive side lobes may be

introduced in the power spectral estimate. Side lobes may be reduced

by employing well designed windows but we then lose spectral resolution,

particularly when the data record is short.

The autocorrelation method and its variants were developed to

achieve better spectrum estimate performance in comparison to the

periodgram method. As indicated above, however, the autocorrelation

method has still several disadvantages. These disadvantages had not

been overcome until the development of modern spectral estimation

techniques.



Chapter 3

MODERN SPECTRAL ESTIMATION

3.1 Introduction

One of the most widely used models for spectral estimation is

the rational model. The stochastic time series {x(n)} is said to

have a rational power spectrum if its power spectral density can be

expressed in the form

S I M H(e J)l 2 a2 (3.1.1)

where 2 is a positive constant and the characteristic rational

function

H(eJw) = B(eJW) = b 0 + b1 e - 3  + + bq (3.1.2)A(e j  I + a I e
jW + + ape j pW

is composed of the ratio of the polynomials A(eJW) and B(eJW) which

may have real coefficients and the zeros of A(ejW) are all contained

within the unit circle. The rational power spectral density (3.1.1)

is said to have order (p, q) and its zeroes and poles are seen to

occur in reciprocal complex conjugate pairs.

A particularly convenient interpretation on how a stochastic

time series with rational spectrum may arise follows directly from

the characteristic rational function. This entails treating the

characteristic rational function (3.1.2) as being the transfer function

of a causal, time-invariant linear system. It then follows that this

14
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system will be characterized by the recursive equation

q p
x(n) = Z b. c(n-i) - Z ai x(n-i) (3.1.3)iJ0 i=l

where the time series {c(n)} and {x(n)} are taken to be the excitation

and response signals, respectively. It has been shown in section 2.1

that when the excitation time series {e(n)} is a zero mean stationary

2white noise time series with variance a , then the power spectral

density of the response time series is given by relationship (3.1.1).

Thus a stationary random time series with rational power spectral

density can be interpreted as being the response of a stable causal,

time-invariant linear system to a white noise excitation.

The general linear system (3.1.3) is commonly referred to as an

autoregressive-moving average (ARMA) model in the spectral estimation

literature. This ARMA model is said to be of order (p, q) and it

gives rise to the rational spectrum (3.1.2) which possesses zeroes

as well as poles. The ARMA model is the most general of rational

spectrum models possible and its ak and bk coefficients uniquely

characterize the spectrum.

In the spectral estimation literature, most of activity has been

directed towards the special class of ARMA models known as auto-

regressive (AR) models. An AR model is one in which the numerator

polynomial B(e j ) is equal to the constant b 0. As such, the AR

model is also referred to as an all-pole model since its transfer

function is specified by

. . ... ' . . ... . ' .... .. ,, "- . . . " " ,, . . .. . . .. ,- : : ,.. . ..:_
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We )W b 0(3.1.4)
A(e j W)

This all-pole model is the one most often used in spectral estimation.

Another subclass of rational spectrum models which has received

attention is the so-called moving average (MA) model as characterized

by A(eiW) 1. The transfer function of a MA model is given by

B(e ") and it is therefore also referred to as an all-zero model.

In summary, Table 3.1 shows the rational spectrum associated with

*each of these models.

3.2 Moving Average Model

Many conventional methods of spectral estimation are classified

as MA models. For example, the periodgram and correlation methods

which have been discussed in Section 2.3 can be described in terms

of a MA model. Generally, little attention has been focused on MA

models. Welch has introduced (Welch, 1967), however, a MA model

technique which is particularly applicable to the direct computation

of a power spectrum estimate that uses the FFT. In this technique,

the data record is first sectioned into K = N/M segments of M samples

each as defined by

x (i) (n) = x(n + iM - M) 0 < n < M-1, 1 < i < K (3.2.1)

A window w(n) is next applied directly to the data segments before

computation of the periodgram. Then, the K modified periodgrams as

specified by
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Model Spectrum

MA 1B(e j ) 12

AR 
[ b e I 2

ARMA 1B(e ) 12

A(eJ= = P -jkw

k=T o

Table 3.1 Rational Spectrum Models

~. &I
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M-1
(i) (w) E xi(n) w(n) e- 2
M i = 1, 2 ... Kn= 0

(3.2.2)

are computed, where

M-1
U - M Z w2(n) (3.2.3)M

n=0

and the final spectrum estimate is defined as

1 M E i) (W) (3.2.4)

x K i. 1 ~M (w

By taking average of periodgrams of each data segment, the

desired smoothed periodgram is obtained. In using this segmentation,

the variance of the spectrum is reduced. The price paid for this

reduction, however, is a loss in frequency resolution and an increased

bias of the estimate.

3.3 Autoregressive (AR) Model

In the last decade, much attention has been focused on the

analysis of AR models. Two major spectrum estimation methods for AR

models, referred as one-step linear prediction and the maximum

entropy method (MEM) appeared in the literature of mathematical

statistics (Parzen, 1969) and geosciences (Burg, 1967; Lacoss, 1971;

Ulrych, 1972). Although these two methods take different approaches,

it has been shown that they give the same spectral estimate (A van den

Bos, 1971).

Alt
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3.3.1 One-Steo Linear Prediction

In the application of one-step linear prediction, one seeks to

characterize the spectral density of a time series based upon a finite

set of time observation

x(l), x(2), ... , x(N) (3.3.1.1)

As described in Section 3.1, the AR model is structured by

x(n) + aI x(n - 1) + ... + ap x(n - p) = E(n) (3.3.1.2)

in which E(n) is a white noise time series with zero mean and variance

2
a The objective of spectral estimation will be that of modeling

an underlying time series {x(n)} with the AR model structure (3.3.1.2)

in which the ak coefficients are estimated from the given finite set

of observations (3.3.1.1). This is readily achieved by applying

the well known method of one-step linear prediction.

A p-th order one-step linear prediction, by definition, estimates

the value of a random time series using a linear combination of

the most recent p samples. Namely, the sample x(n) is estimated by

means of the relationship

p
x(n) =- Z ak x(n - k) (3.3.1.3)

k=l

The difference between this predicted value and the observed value

x(n) over the observation interval is called the prediction error

and is specified by

e(n) = x(n) - x(n) p < n < N (3.3.1.4)
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or

p
e(n) = x(n) + Z a k x(n - k) p < n < N (3.3.1.5)

k-i

Writing these error expressions in matrix form yields

e - x + X a (3.3.1.6)

whete a, e, and x are p x 1, (N - p) x 1, and (N - p) x I column

vectors, respectively, given by

a- laI ... , a p T  (3.3.1.7a)

e- [e(p + 1), e(p + 2), ... , e(N)]T (3.3.1.7b)

X- Ex(p + 1), x(p + 2), ... , x(N)] T  (3.3.1.7c)

and X is an (N - p) x p matrix specified by

T
x(p) x(p + 1) x(N - 1)

x(p -) x(p) . . x(N -2)

x(l) x(2) . . . x(N -p) (3.3.1.7d)

where the superscript T denotes the transpose operation.

The ak coefficients are to be now selected so as to cause each

of the prediction error terms e(n) to be close to zero. This

selection process will give rise to the so-called optimal one-step

predictor. To achieve the required objective of setting the e(n) to

be near zero, one typically appeals to the least squares method which
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minimizes a squared error criterion of the form

f(a) = eT We (3.3.1.8)

where W is an (N - p) x (N - p) nonnegative definite square matrix.

The minimization of this quadratic functional with respect to the

column vector a is straightforwardly carried out and results in

XT W X a° = XT Wx (3.3.1.9)

It can be shown that the resulting power spectral density estimate

of the time series (x(n)} is then given by

2a
Sx M jW C w12 (3.3.1.10)

1 +a' e-* + a2 ej2w + ... + a e(3 1
12 p

where the a0 coefficients are obtained upon solving relationship

(3.3.1.9).

3.3.2 Maximum Entropy Method (MEM)

The MEM is a result of Burg's attempt (Burg, 1967) to derive

a procedure for increasing spectral resolution when only a small

number of samples or estimates of autocorrelation function are avail-

able. As mentioned in Section 2.3.2, in the autocorrelation method

one first estimates the autocorrelation function, append zeroes to in-

crease the length of the estimated autocorrelation, and then applies the

Fourier transform. In contrast, the MEM suggests that the estimated

autocorrelation function should be extrapolated beyond the data
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limited range. The principle used for this extrapolation process is

that the spectral estimate must be the most random or have the maximum

entropy of any power spectrum which is consistent with the sample

values of the estimated autocorrelation.

In the analysis of MEM, it is assumed that we possess a partial

autocorrelation sequence {r(O), r(+l), ... , r(+M)} which is a subset

of a infinite extent autocorrelation function {r(O), r(+l). .......

It is desired that we produce from this partial autocorrelation

sequence a spectral representation

Sr() = Z r(k) e-jw n  (3.3.2.1)

which is a Fourier transform of the autocorrelation function of

infinite length. For some spectral density function Sf(w), we may

associate a time series (f(n)} by means of inverse Fourier transform

iT

f(n) S() ejwn d for n = 0, +1, ... (3.3.2.2)

so that

r(n) - f(n) for n = 0, +1, ... , +M (3.3.2.3)

This expression does not provide us with a unique expression for the

spectrum Sr (). To overcome this difficulty, Burg developed a new

spectral estimator called the maximum entropy method (Burg, 1967).

The entropy associated with power spectrum density Sr (w) is defined

to be
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if

H f log [Sr(w)] dw (3.3.2.4)

-it

Maximizing the entropy with respect to the unknown r(n) for In > M

with the constraint

r(n) - M S() e dw for In > M (3.3.2.5)
-f r

results in the maximum entropy spectral estimate. This estimate

expresses maximum uncertainty with respect to the unknown information

that is consistent with the known information. The problem of

estimating S r(W) becomes a calculus of variations problem. The solution

procedure which begins with the introduction of a Lagrange multiplier

for each of the constraint equations is not difficult and results

in the spectral estimate (Burg, 1967)

- MSr( j 0 -jMW 2 (3.3.2.6)
(1 + al e-j + ... + aM e I

1

where optimum selection of a k coefficients ak (k - 1, ... M) are

obtained by solving the following matrix system of equations

r(O) r(l) . . . r(M) 1 PM

r(l) r(O) . . . r(M-l) a1  0

r(M) r(M-l) . . . r(O) aM 0 (3.3.2.7)

L~.
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Equation (3.3.2.7) can be solved efficiently by using Levinson's

Algorithm which requires 0(M2) computations (Levinson, 1947).

3.4 ARM& Model

A variety of procedures have been developed for generating ARMA

spectral models. These include the whitening filter approach which

is typically iterative in nature, generally slow in convergence, and,

usually requires an excessively large number of time series' obser-

vations to be effective (Tretter and Steiglitz, 1967; Gutowski,

Robinson and Treitel, 1978). More desirable closed form procedures

which overcome these deficiencies have been offered. These include

the so-called Box-Jenkins method and its variants (Box and Jenkins,

1976; Kaveh, 1979; Kinkel, Per1, Scharf and Stubberud, 1979), and,

more recently, Cadzow has developed a "high performance" method

(Cadzow, 1981). In this section, three ARMA methods, namely, the

Whitening method, Gutowski ARMA method and Box-Jenkins method are

briefly discussed.

3.4.1 Whitening Method

If we assume that the Gauss-an random series {x(n)} is given,

the method of maximum likelihood (Haykin, 1979) can be used to estimate

the coefficients of rational spectrum in the following way. Suppose

the time sequence {x(n)} is passed through a transfer function

A(ejW)/B(eji) to give the output sequence {(n)}. The spectrum of

{((n)} is given by



25

S( )=JA(e) 2 Sx(W) (3.4.1.1)
B (e J ) S

If one could choose the coefficients of A(eiW) and B(eJW) so that

S (W) = a 2, the spectral density of {x(n)} would be given by

x( = Me) 2 2 (3.4.1.2)

In this case, fe(n)} is a white Gaussian process. The maximum likeli-

hood parameter estimation is equivalent to finding the minimum of a

function of several variables (Tretter and Steiglitz, 1967). This

is called the minimum residual criterion and, intuitively, one attempts

to "whiten" {x(n)} as much as possible. The whitening process is sugges-

tively depicted in Fig. 3.4.1.1.

Because of the rational spectrum model's structure, the minimum

residual criterion leads to nonlinear equations which cannot be

solved explicitly. This suggests the using of an iterative technique

to optimize the denominator and numerator coefficients. Many such

techniques are available, ranging from steepest descent to the

Newton-Raphson algorithm.

3.4.2 Gutowski ARMA Method

This section discusses the theoretical motivation for the ARMA

modeling technique described by Gutowski (Gutowski, Robinson,

Treitel, 1978). Consider the discrete time linear system

shown in Fig. 3.4.2.1 with input u(k), output x(k), and

L.
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B (ejW)

S (w (e'' 2
X ~ A(eiW

Fig. 3.4.1.1 Spectrum Estimation by Whitening Approach
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u(k) h(k) X(k)

X(z) = H(Z) U(Z)

- ~)U(Z)
=A( z)

Fig. 3.4.2.1 Time Invariant Linear System
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impulse response h(k). If the transfer function H(z) is assumed to be

a rational function of z, then it may be written as

H(z) - B(z) (3.4.2.1)A(z)

where A(z) and B(z) are polynomials of zof order p and q, respectively.

This assumption in turn implies that the output is described by

B(z)X(z) W -- U(Z) (3.4.2.2)

where X(z) and U(z) denote z-transform of (x(k)} and {u(k)}, respectively.

Gutowski's ARMA method assumes that u(k) is equal to the Kronecker

delta function and it therefore follows that

B(z) = X(z) (3.4.2.3)

Gutowski's method uses Equation (3.4.2.3) in an iterative procedure

to estimate A(z) and B(z) from the data sequence {x(k)}. Each iteration

may be described in terms of the following three equations:

A(z) X(z) = B(z) (3.4.2.4)

C(Z) - 1 (3.4.2.5)

C(z) B(z) = X(z) (3.4.2.6)

The basic iterative technique may be seen by using equation (3.4.2.4)

through (3.4.2.6) and assuming that one starts with a reasonably good

estimate of B(z). At k-th iteration, the following steps are

required.

.-. .-
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(k) (k) (k)
Step 1 Compute A(z) with X(z) input and B(z) as desired output.

(k) (k)
Step 2 Compute C(z) by synthetic division of the value 1 by Ak).

(k) (k) (k)
Step 3 Compute B(z) with C(z) as input and X(z) as desired

output.

(k) (k)

After each iteration, if A(z) and B(z) are better than the previous

iteration, then the fit will improve. At the completion of m-th

iterations, the ARMA spectral estimate is given by

SB(W)  B(m) (ej) 2  (3.4.2.7)
A(m)(ej 1)

The above procedure is repeated until convergence occurs. The

minimum delay characteristics of Am(z) is guaranteed by the fact that

the inverse is computed using a Toeplitz formulation. This is the

strong point of this algorithm.

3.4.3 Box-Jenkins Method

The ARMA model with order (p, q) can be characterized by the

following recursive relationship

p q
x(n) - ak x(n-k) + E bk e(n-k) (3.4.3.1)

k=1 kOk

n = p + 1 " +

2where {f(k)} is a white noise with variance a . The autocorrelation

function of the mixed process may be derived by multiplying each

L4
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side of (3.4.3.1) by x (n-m) and taking expectations to yield

p q
rx (m) = E ak r. (m - k) + E bk rxE (m - k) (3.4.3.2)

k-l k:O

where rx (n) and rx C(n) denote the autocorrelation of the sequence

{x(k)} and cross covariance function between {x(k)} and {e(k)},

respectively. Since x(n-k) depends only on inputs which have occurred

up to time n-k, it then follows that

rx (n) = 0 n > 0 (3.4.3.3a)

r" (n) # 0 n < 0 (3.4.3.3b)

We see that (3.4.3.2) implies

p
r (n) = - E ak r (n - k) for n > q + 1 (3.4.3.4)

k-l

and yields the following matrix system of equations

r x (q) . . . r x (q-p+l) a1  x

rx (q+p-1) . . . rX (q) a rx (q+p (3.4.3.5)

The ak coefficients will be obtained by solving the equation (3.4.3.5).

The numerator dynamics of the ARMA model is characterized by

coefficients (Kaveh, 1979) which can be expressed as
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p p

k -k Z~ Z~ a.~ ca r( Ii-j-kj) (3.4.3.6)

k 0, 1, .. ,q

wherec a l=Iand a, -a . foril - .1, p. The AMA spectrum

representation is then found to be

q -Jcwk
z ck e

S =(W k= p jk (3.4.3.7)

k=l



Chapter 4

HIGH PERFORMANCE ARMA MODEL

4.1 Introduction

It is widely recognized that an ARMA spectral model is generally

the most effective linear rational model from a pvarsimony

viewpoint (see Section 3.1). In recognition of this fact, a variety

of procedures have been developed for generating ARMA models

(Steiglitz, 1977; Box and Jenkins, 1976; Kaveh, 1979; Kinkel, Perl,

Scharf and Stubberud, 1979). Some of these methods were discussed in

Section 3.4. As indicated in Section 3.4, it is recognized that

these methods share certain deficiencies. To overcome these

deficiencies, the 'high performance' ARIA method was developed

(Cadzow, 1979, 1980, a,b). It provides an excellent spectral estima-

tion performance when compared with other spectral estimation methods.

In this chapter, the 'high performance' method is described and

numbers of numerical examples are provided. This chapter is basically

identical to references (Cadzow, 1979, 1980 a, b). The development of

this method is based upon some fundamental concept governing ARMA

time series which will be discussed in next section.

4.2 Fundamental Concepts

The stationary random time series {x k } whose power spectrum is

of a rational form may be modeled as the response of the causal ARIA

32
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system of order (p, q)

P q
xk+ a ki = Z bi Ek-i (4.2.1)

i=l i=O

where the time series ck } is taken to be a zero mean white noise

excitation signal. The autocorrelation description of this system

is obtained by first multiplying each side of expression (4.2.1) by

the entity xk-m and then taking the expected value. This results in

the well known Yule-Walker equations as specified by

p
r x(m) + Z ai r x(m - i) = 0 for m > q (4.2.2)

i=l

The Yule-Walker equations (4.2.2) will serve as the basis for esti-

mating the ARMA model's denominator coefficients (i.e., ak coefficients).

4.3 Denominator Coefficient Selection

In this section, a novel procedure for estimating an AILMA model's

denominator coefficients shall be presented (Cadzow, 1979, 1980 a).

This development is begun by first evaluating the model equation

(4.2.1) over the integer set p + 1 < k < n to obtain the time series

relationships

Xp+r x x xI  a1
p ~lp-1i

Xp2  p+ p x2  a 2

+ " I

x . .x a.,
n Xn-l xn-2 n-
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p E . . . b
P+i p p-q+l 0

ep+2 Ep+l .p-q+2 bl

E - . E b (4.3.1)n n-i n-q q

It will be compactly written in the matrix format

x + X a C= b (4.3.2)

where x, a and b is (n-p)xl, pxl and (n-p)xl column vector, respectively.

The symbols X and S denote (n-p)xp and (n-p) x (q+l) Toeplitz type

matrices, respectively. The entries of these vectors and matrices

are directly obtained from expression (4.3.1).

It is now desired to utilize relationship (4.3.1) in conjunction

with the Yule-Walker equations (4.2.2) to effect a procedure for

estimating the ARMA model's autoregressive coefficients. As we will

see, this objective is attained by first introducing the following

(n-p)xt Toeplitz type matrix

[ xp q Xp q_ 1  p q t+ I

Y = Xp-q+l Xp-q . . p-qt+2

SXn-q- Xn-o-2 xn-q-t (4.3.3)
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where the convention is adopted of setting to zero any matrix entry

xk for which k lies outside the observation set 1 < k < n. The

integer t which specifies the number of columns of this matrix will

also be found to correspond to the number of Yule-Walker equations

that are being approximated (i.e., relationship (4.2.2) for

q < m < q + t). It thus follows that this integer parameter must

be selected to at least equal p (i.e., t > p) so as to assure a

well defined set of equations for the p autoregressive coefficients.

The above mentioned Yule-Walker equation approximation is

achieved by premultiplying each side of relationship (4.3.2) by the

complex conjugate transpose of matrix Y as denoted by Y' to yield

Y x + Y X a = Y C a (4.3.4)

To demonstrate that this system of equations yields a logical choice

for the Yule-Walker equation approximations, let us now take the

expected value of each of its sides. This is found to result in

P
(n - m) {r x(m) + Z ak rx(m - k) = 0 (4.3.5)

k=l

for q < m < q + t

Thus, the system of linear equations (4.3.4) is seen to provide an

unbiased estimate of the underlying Yule-Walker equations. It is to

be noted that the right hand side term has zero expected value due to

the fact that the expected value of the matrix Y 6 is the null

matrix. This is a direct consequence of the ARMA model's causality and

the whiteness of the excitation process which results in E (x* Ek 7 0n
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for all n < k.

With these thoughts in mind, a logical procedure for selecting the

ARMA model's autoregressive coefficients is suggested. Namely, they

will be selected so as to cause the left hand side of relationship

(4.3.4) to be close to its expected value which is the zero vector

(i.e., E {Y' t b} = 9). If this selection procedure is adopted, an

approximation of the Yule-Walker equations which in some sense is

"most consistent" with the given time series observations is at hand.

A computationally tractable measure of the closeness to which the

left side of relationship (4.3.4) is to the zero vector is provided

by the following quadratic functional

f(a) = [Y x + Y X aIJ+ Y X x + X a] (4.3.6)

in which A is a t x t positive-semidefinite diagonal matrix whose

diagonal elements are chosen to possibly weight differently various

elements of the error vector Y x + Y X a. It is a simple matter to

show that a minimizing autoregressive coefficient vector must satisfy

the consistent system of p linear equations

X' Y A Y X a = -X' Y A Y' x (4.3.7)

in the p autoregressive coefficient unknowns. One then solves this

system of p equations for the most data consistent set of auto-

regressive coefficient estimates.
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4.4 Numerator Dynamics

A variety of procedures exists for determining the numerator

dynamics of an ARMA time series once the AR coefficients have been

estimated. In this section, two procedures which have been found to

be particularly effective shall be described. Each makes use of th!

governing ARMA relationship that models the underlying time series.

4.4.1 Yule-Walker Equation Method (Cadzow, 1979)

In this approach to estimating the numerator dynamics, we first

introduce the so-called causal image of a time series autocorrelation

sequence as specified by

+

rx (n) - r (0) 6(n) + r (n) u(n) (4.4.1.1)
x x x

in which 6(n) and u(n) designate the unit-sample and unit-step

sequences, respectively. Making use of the complex conjugate

symmetrical property of stationary autocorrelation sequences, it then

follows that the autocorrelation sequence can be uniquely recovered

from its causal image according to the simple relationship

rx(n) - r+ (n) + r  (-n) (4.4.1.2)

Upon taking the discrete-Fourier transform of this relationship,

it follows that the time series spectral density is given by

S () - s+(w) + [s+(W)]

- 2 Re [S+(W)] (4.4.1.3)
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where S+(W)denotes the discrete Fourier transform of the causal
+

image r+(n). According to relationship (4.4.1.3), one may attain a
x+

spectral density estimate by estimating S (). This will be the
x

approach taken in this section.

An estimation of the Yule-Walker equations (4.2.2) which govern

the ARMA model time series indicates that the causal image sequence

will generate the auxiliary {ckI sequence according to

+ P +
cm -r (m) + Z ak rx (m - k) (4.4.1.4)

k=l

m = 0, 1, ... , s for s = max (q,p)

It is to be noted that the (c k } sequence will be identically zero out-

side the time range 0 < k < s. Upon taking the discrete Fourier

transform of relationship (4.4.1.4), we have S () in the form

Co + c1 e - j w + . .+ cs e-JS
S+(W) = -(4.4.1.5)

1 + 1 e + . . + a e- jpw

If this expression is substituted into relationship (4.4.1.3), the

required formulation of the spectral density estimate is completed.

4.4.2 Smoothed Periodgram Method (Cadzow, 1980 b)

In the smoothed periodgram method, one first generates the

auxiliary "residual" time series elements according to the relationship

p
e(k) - x(k) + E a. x(k - i) p + 1 < k < n (4.4.2.1)

i=l 1 -

in which the ARMA model's ak coefficients as generated by relationship
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(4.3.7) is utilized. Upon examination of relationship (4.2.1) and

under the condition that the time series being characterized is an

ARMA model of order p with the calculated ak coefficients, it follows

that the residual time series will have a moving average spectral

density as given by

q e j k,2

Se(w) = b k e (4.4.2.2)
k=0

This observation in conjunction with the ARMA model representation

then provides the vehicle for estimating the underlying time series

spectral density, that is

Sx(X) = S e(w) / I Z ak e, a0 
= 1 (4.4.2.3)

k=0

With this in mind, the final step of the spectral estimation procedure

requires fitting a q-th order moving average (MA) model to the

residual time series segment (4.4.2.1) to effect an estimate of S (u).e

The approach to be presented for obtaining the q+lst order MA

model is an adaption of the well-known method of Welch for obtaining

smoothed periodgrams (Welch, 1967). In essence, one first segments

the calculated residual elements (4.4.2.1) into L segments each of

length q + 1 according to

el(k) w(k) e(k + I + p + id) (4.4.2.4)

0 < k <q

0 < i<L-I

.1
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where w(n) is a data window and "d" is a positive integer which

specifies the time shift between adjacent segments. These individual

segments are seen to overlap for a shift selection of d < q.

Furthermore, in order to include only the observed time series

elements, the relevant parameter must be selected so that p + q +

(L - l)d < n. Finally, the q + 1 order periodogram of each of the

L segments (4.4.2.4) is taken, and, these periodograms are in turn

averaged to obtain the desired smoothed q + 1 order MA estimate given

by

1L-1l _w
Se E { l w(k) e(k + 1 + p + id)eJ mk 12 } (4.4.2.5)

i=0 k=0

where the data window is normalized according to Z w 2(k) - 1.

In using this smoothing procedure, the variance of the estimate

Se(w) is reduced. The price paid for this reduction, however, is a

loss in frequency resolution and an increased bias of the estimate.

Fortunately, the basic resolution capability of this and other ARMA

model procedures is primarily influenced by the autoregressive co-

efficient selection. If one is mainly interested in resolution

performance, an examination of the ARMA models' pole locations then

need be investigated.

4.5 Numerical Examples

In this section, the classical problem of detecting the presence

of sinusoids in additive noise is considered. In particular, we

will investigate the specific case in which the time series observations
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are generated according to

x(n) = AI cos (wf n) + A2 cos (nf2
n ) + w(n) (4.5.1)

l<n<N

where w(n) is a white Gaussian time series with variance one, This

particular problem serves as an excellent vehicle for measuring a

spectral estimator's performance relative to: (i) detecting the

presence of sinusoids in a strong noisy background, and (ii) resolving

two sinusoids whose frequencies f and f2 are nearly equal. The

individual sinusoidal signal-to-noise ratios (SNR) for the above signal

are given by 20 log (Ak/r2) for k - 1,2. In order to consider the

effectiveness of the high performance ARMA spectral estimator in

different noise environments, we shall consider two cases. These

cases have been examined in reference (Sullivan, etc., 1978) where the

performance of many modern spectral estimators are empirically compared.

CASE I: AI = /0, fl = 0.4

A2 = /r, f2 = 0.426

In this example, we have two closely spaced (in frequency) sinu-

soids for which the stronger sinusoid has a SNR of 10 dB while the

weaker sinusoid has a SNR of 0 dB. For this relatively low SNR case,

the ability of a spectral estimator to resolve closely spaced sinusoids

and identify their frequencies will be tested. Upon generating

sequence (4.5.1) with the postulated parameters for a data length of

N - 1024, spectral estimates were obtained using a 12-th order model

' . . ..... ...... ... . . . .. . . . . . . . . . . . . . . . . .n..7.I
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with the high performance ARMA method (diagonal element of the

matrix A is (N-m) )2, maximum entropy method, and the Box-Jenkins

method incorporating biased autocorrelation estimates. In addition,

a standard periodgram spectral estimate was obtained using the same

data. The resultant spectral estimates are displayed in Fig. 4.5.1

where a number of observations can be made

(i) The indirect ARMA spectral estimate provides excellent

results with two sharp peaks at f = 0.400 and

f2 = 0.427, and with the spectrum near 0 dB (the noise

level) for most other frequencies.

(ii) The maximum entropy and Box-Jenkins methods were unable

to resolve the two sinusoids in the prevailing low

SNR environment.

(iii) Although the periodgram is able to resolve the two

sinusoids, the well-known random fluctuation behavior

which characterizes the periodgram method is in

evidence.

This example nicely demonstrates the potential capability of the high

performance ARMA spectral estimation method relative to existing

procedures.

In many practical problems, one does not have available exceedingly

long data lengths upon which to make a spectral estimate. To demon-

strate the ability of the high performance ARMA spectral estimator to

perform in such situations, the first 64 samples of the data sequence

in the above example were used to generate a spectral estimate. The
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resultant 15-th order high performance AROMA spectral estimate obtained

is shown in Fig. 4.5.2 where the ability to resolve the two closely

spaced sinusoids is again evident. The sinusoid's frequency estimate

fl = 0.399 and f2 = 0.423 are also of good quality in this low SNR

environment.

CASE II: A, = YT, fl = 0.32812

A2 = V2, f2 = 0.5

We are now examining the ability of the ARMA spectral estimator

to detect sinusoids in a low SNR environment. For a selection of

N = 64, w(n) - (N - n)2 and p = 5, the resultant ARMA spectral

estimation is displayed in Fig. 4.5.3(a). Clearly, one is able to

detect the presence of the two sinusoids, and, the frequency estimate

f = 0.3202 and f2 = 0.5012 are of good quality considering the

prevailing SNR environment. A 15-th order maximum entropy spectral

estimator was then found to generate the spectral estimate displayed

in Fig. 4.5.3(b). Although the two sinusoids were properly detected,

a number of false peaks are in evidence.

Next, we treat the time series recently considered by Bruzzone

and Kaveh (1980). Specifically, their ARMA time series is characterized

by

1 2
k= xk + x~k + 0.5 Ek(4.5.2a)

where the time series xk and x2 are autoregressive process generated

by
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1 1 Xkx= 0.4 X~K I  0.93 -C2 4*£ (4.5.2b)

-0.5 - 0.93 -2 + (4.5.2c)

in which the Ek ck and ek are uncorrelated Gaussian random variables

with zero mean and variance 1. The spectral density of the above

time series (4.5.2a) is given by

S x(w) = I1 - 0.4 e- jw + 0.93 e-J2w-2

+ 1l + 0.5 e- jw + 0.93 e-j2w,-2 + 0.25 (4.5.2d)

Using this time series (4.5.2a), twenty different independent sampled

sequences each of length 64 were generated. These twenty observation

sets were used to test various spectral estimation methods. In

Fig. 4.5.4, twenty superimposed plots of the AR-MA model spectral

estimates of order (4.4) as obtained by using the Box-Jenkins method, the

high performance method with t - 4, 8 and 20 are shown. For comparison

purposes, the ideal spectrum is also plotted. Comparing the two top

most plots, the high performance method with the minimal value of t -4

was fcund to yield a marginally better spectral estimate than the

Box-Jenkins method. In the lower two plots, one can observe that the

high performance spectral estimates improve significantly as t is

increased. Next, twenty different samples sequence of length 200 were

generated according to time series (4.5.2a). With this longer data

length, it was anticipated that an improvement in spectral estimation

performance would result. As shown in Fig. 4.5.5, a marked improvement



52

Box-Jenkins Method

t 4

t 8

Exact

Fig. 4.3.4 AIMA Spectral Estimates of Order (4,4),
Data Length of 64, and, k - 0.95.
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Box-Jenkins Method

ago4

t=

t 12

Exact

Fig. 4.5.5 ARMA Spectral Estimates of Order (4,4),
Data Length of 200, and, X -0.95.
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is evident, where the ARMA model spectral estimates of order (4.4)

are shown for the Box-Jenkins method and the high performance method

for selections of t = 4, 8, and 20.

It is also possible to use the high performance ARMA method for

synthesizing digital filters. To illustrate the approach that is

taken, let us consider the specific case of designing a low-pass

filter of normalized cutoff frequency fc" One may readily show that

the impulse response of an idealized version of this low pass filter

is given by sin (if cn)/nn. With this in mind, one then applies the

herein developed ARMA procedure to the specific sequence

x(n) = sin [f C(n - 0.5 N)]/IT(n - 0.5 N) 1 < n < N (4.5.3)

The resultant ARMA model obtained in this manner will have attenuation

characteristics of the desired low-pass filter. To illustrate this,

a 15-th order ARMA spectral estimate of this sequence was made for

f = 0.2, N = 128 and w(n) = (N-n). The resultant filter's magnitudec

characteristics are displayed in Fig. 4.5.6 where the low-pass

characteristics are in evidence.

4.6 Summary

The "high performance" ARMA model spectral estimation has been

described. This estimation approach provided an excellent spectral

estimation performance when compared with such contemporary procedures

as the maximum entropy and Box-Jenkins Methods. The above mentioned

"-*ICL
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'"high performance" ARMA spectrum estimation will be developed

further in Chapter 5 to achieve computational efficiency.



Chapter 5

COMPUTATIONALLY EFFICIENT ARMA SPECTRAL ESTIMATION

5.1 Introduction

Recently, much attention has been focused on developing spectral

estimation algorithms. Unfortunately, direct application of the linear

prediction method as described in Section 3.3.1 results in an

excessive computational requirement, since it is necessary to solve

a pxp matrix system of equations which generally requires 0(p3 )

computations. For this reason, a number of computationally fast

algorithms have been developed to overcome this difficulty. These

include the Levinson algorithm (Levinson, 1947). The Levinson

algorithm is found to be dependent on the Toeplitz structure of

the matrix characterizing the system of equations. With this very

restrictive constraint in mind, Kailath, etc. developed the concept

of the displacement rank so as to yield efficient solutions for non

Toeplitz system of equations. The displacement rank measures how

"close" to Toeplitz a given square matrix is (Kailath, etc., 1979).

If a given matrix T is Toeplitz, then its structure is characterized

by the following property

T- [t ,j] (5.1.1)

where ti'j denotes the (i,j)-th element of the pxp Toeplitz matrix

T and m is a scalar integer (1 < i+m, j+m < p). That is, the elements

57
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of the matrix T are identical along the diagonal and subdiagonal

directions. In recognition of this key property of a Toeplitz

structure, the displacement rank of the pxp matrix A is defined by

a(A) = min{a+ (A), a- (A)} (5.1.2a)

where
wher a +(A) = rank A - S A S T }( 

. . b+A ak{-AI(5.1.2b)

a (A) = rank (A - ST A S}

in which a+ (A) and a- (A) are called the positive and negative

displacement ranks of matrix A, respectively, and S denotes the pxp

down shift matrix defined by

.0 (5.1.3)

It can be straightforwardly shown that the displacement rank of a

Toeplitz matrix T is 2, that is

a(T) = a + (T) = a (T) = 2 (5.1.4)

If a given matrix A has a displacement rank a, then it has been

shown that the inversion of A may be accomplished with the number of

required computations being 0(ap 2) (Friedlander, etc., 1979).

Based on these concepts, a number of computationally efficient

algorithms for AR spectral models have been developed (Friedlander,

etc., 1978, 1979; Morf, etc., 1977; Morf and Lee, 1978; Lee and Morf,

1980; Morf and Kailath, 1975; Mullis and Roberts, 1976; Morf, 1980;
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Bitmead and Anderson, 1979). Some of these methods are classified

by Morf, etc. (Morf, etc., 1977).

In this chapter, fast algorithms which are applicable to the

"high performance" ARMA method (see Chapter 4) are developed. To

achieve the fast algorithm solution capability, it will be necessary

to restrict the number of Yule-Walker approximation to be p (i.e.,

t = p). Unfortunately, the restriction t = p will generally result

in an associated decrease in spectral estimation performance. Thus,

in obtaining a computationally fast algorithmic solution procedure

for the ak coefficients, an accompanying sacrifice in spectral

estimation performance is the price being paid. One must therefore

carefully consider the tradeoff for any given application. Fortunately,

the degradation in performance is not great for many relevant

applications in which the data length n adequately exceeds the ARMA

model order parameters p and q.

The achievement of fast algorithms requires data modifications

which will be discussed in Section 5.2. In Sections 5.3 and 5.4,

algorithms which requires 0(p2) and O(p log p) multiplications,

respectively are discussed. An algorithm which requires 0(p)

computations is developed in Chapter 6.

5.2 Data Modification

In this section, we will discuss three types of data modifications

referred to as the pre-modification, post-modification and pre- and
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post-modification methods (Cadzow and Ogino, 1981). These are modi-

fications of the 'high performance' ARMA spectral estimation methods

as discussed in Section 4.3 in which t is restricted to be p. It will

be recalled that in this unmodified case one must solve the matrix

system of equations (4.3.4). Without loss of generality, this

matrix system of equations may be represented as

Y X a = Y' x (5.2.1)

where Y and X are (n - p) x p Toeplitz matrices, while x and a are

(n - p) x 1 and p x 1 column vectors, respectively defined by

T
x x ..p-q' p-q+l' xn-q-l

x1  ~ x X (5.2.1a)

T

xp xp+l ...... xn-i

X :

x I  x 2  . n-p  (5.2.1b)

x p x xp+2, . n] T (5.2.1c)

a l= a, . a. ,a]T (5.2.1d)

where the entries of the matrices X, Y and column vector x can be

determined from expression (4.3.4). The entries of the column vector

4.l
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a in expression (5.2.1d) denote the denominator AR coefficients to be

found. It can be shown that the displacement rank of the matrix

Y X is 4. As suggested in Section 5.1, it is possible to find an

algorithmic solution procedure which requires 0(4p 2) computations.

In fact, in Section 5.3, a generalized Levinson's algorithm will be

developed.

It is possible to realize significant computational savings in

the 'high performance' ARMA spectral estimation procedure. This

improvement will entail a slight modification in the vector x and

matrices X and Y. Although the suggested modifications will typically

result in biased estimates of the Yule-Walker equations, it is shown

that when the data length n adequately exceeds the order parameter

p and q then these estimates are virtually unbiased (Cadzow and Ogino,

1981).

With the above high performance spectral estimation method

representation serving as a basis, we shall now consider the afore-

mentioned modifications required to achieve computationally efficient

algorithmic solution procedures.

5.2.1 Pre-modification Method

In expressions (5.2.1a) and (5.2.1b), the addition of lower

triangular matrices to the top of matrices X and Y yields the Toeplitz

matrices
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X l q  . . . p q - . . X n q I

Xl q . n-q p  (5.2. 1. la)

Tx 1 x n-1

x0 . .... Xn p  (5.2. 1. lb)

with Y and X1 each being (n - 1) x p matrices. While maintaining

the structure of expression (4.3.1), the vector x will be modified

to

i= [x~. . . xp+l . .X (5.2.1.1c)

Substitution of expressions YI. X1 and x,

respectively, yields

YI X, a = Y (5.2.2)

It can be shown that the displacement rank of the matrix Y' X is 3

1 1

(Cadzow and Ogino, 1981). It is possible to find a generalized

Levinson algorithm which requires O(3p 2) computations to invert YIXI .

More importantly, because of this specific structure, an algorithm

which requires O(p) computations has been developed and will be

discussed in Chapter 6.

6"1
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5.2.2 Post-modification Method

Following a similar procedure as employed in Section 5.2.1,

the addition of an upper triangular matrix to the main body of the

matrices specified by (5.2.l.a) and (5.2.1b) yields the Toeplitz

matrices

Xp-q n Xi.q-1.~

Y2 
0 , 0

Xl~q " xn.q. p  .(5.2.1.3a)
lqn-q-p n-q-l

Xp .n n 1 T

L1 ... . X .. ... xn_ (5.2.1.3b)

where X2 and Y2 are each (n - 1) x p Toeplitz matrices. In a similar

manner, the column vector 22 is defined by

x 2 - Fxp+ ..... , X , . . r (5.2.1.3c)

Pzeros

The displacement rank of the matrix Y2 X is found to be (Cadzow

and Ogino, 1981)

a (Y X2) a_ (Y' X2) 3 (5.2.1.4)
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thereby offering a generalized Levinson solution procedure requiring

a computational complexity of 0(3p2) for solving the system of

equations

Yt X 5215
2 A2 a = Yx (5.2.1.5)

A more computationally efficient algorithm associated with the post-

modification will be developed herein. It is shown that the number

of computations is reduced to O(p log p) if p = q where p and q are

the order of denominator and numerator coefficients of the ARUMA model,

respectively.

5.2.3 Pre- and Post-Modification Method

The combination of the previously discussed two modification

methods yields the pre- and post-modification method. The matrices

and vector are modified in the following manner

Xl-q p-q n-l-q

3 0

0l-q n-p-q n- l-q
J

(5.2.3.1a)

X1  X • a Xn_ 1

" 0

oXl n-p . x (5.2.3.1b)
n-p n-
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=Ex 2  . .x+1  . x 0 ..... 0] (5.2.3.1c)

Pzeros

where Y and X denote (n + p -i) x p matrices and x is a

(n + p - 1) x 1 column vector respectively.

It can be shown that the matrix Y3 X3 is a Toeplitz matrix. A

conventional approach for solving the Toeplitz system of equations

Y X =Y 3 3  (5.2.4)
3 3- Y -

was developed by Levinson (Levinson, 1947), which requires O(p )

computations. More recently much effort has been conducted in

developing more efficient AR algorithms whose computational require-

ment is O(p log p). Gustavson, etc., presented their algorithms

which were based on the use of Pade approximates and the rational

Hermite approximation (Gustavson and Yun, 1979). Morf

developed the so-called doubling algorithm which requires

O(p log p) (Morf, 1980). Bitmead and Anderson also independently

found a doubling algorithm (Bitmead and Anderson, 1979). In Section

5.4, an application of the doubling algorithm to the ARMA model is

developed.

5.3 Generalized Levinson's Approach for the ARMA Model:
The Unmodified Method

In this section, an algorithm which can be applied to the direct

approach (i.e., no modification) will be developed. Without loss of

generality, the m x m matrix Rn  will be defined by
l,m
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IR n Yn IT Xn  (5.3.la)lm Yl,m l,m

where Xn  denotes (n - m + 1) x m matrix defined by
l,m

Tx x . . . . xn

nXl1 =

x1  x2  x nm+1  (5.3.1b)

with the subscript m designating the number of columns of matrix

lm' 1 is the smallest and n the largest index of the observation

n ndata to form the matrix X . In a similar manner, matrix Y isl,m" 1 ,m i

obtained by

7Ym Ym+l .. . .. Yn T

l,m

yl Y2 ..... Yn-rl- (5.3.lc)

where the entries of the matrix Yn are given by

Y, M x iq for i - 1, ... , n (5.3.1d)

This particular representation has been chosen so that in the develop-

ment of the generalized Levinson's algorithm for an ARMA model,

notational complexity can be eased. It then follows that the matrix

expressed by (5.3.1a) has the following shift invariance structures

which characterizes the near Toeplitz structure of the matrix R 
n

that is
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n n-1 n n T C .a

R m Rl + Y ( mT )C5.3.2a)

n +M mT

n nw T
R lm1F~

x

R n-I

* (5.3. 2c)

x
n

n T (5.3.2d)

n ni n mwhere -Y x M , and x Mare m x 1 column vectors defined by

Y. E., ,Y._ml]T(5.3.2e)

X, =Ex ,x iT(5.3.2f)

Xm = Y., ,yl]T(5.3.2g)

n T n T
while (z ) and (w M) denote the first and last rows of the

matrix Rn respectively, and the m x m, matrices R is defined by
l'm+l 2,m.

n [Yn IT X n(.33
R~m £2,m, 2,m(53)
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From a structural viewpoint, relationship (5.3.2a) is called time

update, since the matrix R n is explicitly defined as a sum of two
l,m

matrices:R which includes all of the past observations up to
l,m

n n.T
previous time index n-i and Xm(xm) which includes the most recent data.

In expression (5.3.2c), R m is seen to be a submatrix of R n  It
lm 1,m+l"

then follows that relationship (5.3.2c) is called order and time

update.

A computationally efficient algorithm will be obtained by using

various combinations of the above shift invariance structures. This

fast algorithmic procedure fDr finding the solution is similar to

Levinson's algorithm (Levinson, 1947). The overall solution is

updated from the solution of a lower order to that of higher order

system of equations (order update) and from the solution of previous

time instance to that of present time (time update). To develop this

algorithm, we apply an induction hypothesis. Suppose at order m

and time n, we have the relationship
F

n n  n ;l,m 0 Ym
R,m [lm --l,m l,m ]

0

0

o ~ r,nrl~ Y (5.3.4a)

n n nwhere a blm' and d are m x 1 column vectors defined by-l,m
n -n-1 , nm

m WE, a (1), a l,m_-)] (5.3.4b)
lm a m

bn - Cbn (n-1) b n(n-2) n ( 1) ]T (5.3.4c)
I'm ' , 1
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and

ddn d (1), dn (2), , d", (m)]T (5.3.4d)

Specifically, alnmand b are called the forward and the backward

AR coefficient vectors, respectively. In the development of the
computationally efficient algorithm, the auxiliary vectors d are

needed to cancel the end effects due to the non-Toeplitz nature of

matrix R n . At the previous time index n-1, we have the relationship

,n-i 0l
R n-1 [an-1 b n-I n-i 1
1'm I'~m ,m ~ ] = 0

0

r~n-I0l ,m Yl (5.3.4e)

Based on the relationship (5.3.4a) and (5.3. 4e), we will develop a recur-
n n an

sive solution procedure for the vectors an, b and d n as a
-1, m+l1 , m+l Z-l,m+l

function of n. Applying the shift invariance structure (5.3.2b) to

(5.3.4a) yields the following expressions

R2,m -l,m l,m - £mm (5.3.5a)

Rn d n U - ff) YM (5.3.5b)

where e and f are scalars defined by
m T

X m)alm (5.3.6a)

fm nm n (5.3.6b)
-n -l'm
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and~t is the m x 1 unit basis vector expressed by

Expressions (5.3.5a) and (5.3.5b) lead to the following

relationship

R m a n (5.3.7a)

where a and n are a m x 1 column vector and a scalar respectively,

defined by

rn,+d, /l+d (1)1 (5.3.7b)-2fm 1 - f 1 m

Le.l C ~ 1 m n (5.3.7c)

2,m 1 m f m d'

where dan (1) denotes the first entry of the vector dn (see
1, m -l ,m

eq. (5.3.4d)). Expressions (5.3.2c) and (5.3.2d) lead to the relation-

ships

Rn an = Cn e (5.3.8a)

R n b n r n e(5.3.8b)

where 2, is the (m+l)xl unit bases vector defined by

e .. (5.23.8c)

in expressions (5.3.8a) and (5.3.8b), E'~l and r' n are scalars

defined by
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Cn CE,n m m (5.3.9a)gl:m+l : 2,m r,n-i

I'm

rn ,r,n-i am m
l, m+ l,m f,n (5.3.9b)

2,m

in which a and 8 are scalars specified by

am =(n A2 T (5.3.10a)

0

(W -n) T 0 (5.3.lOb)
bn-1

n n
The m x 1 column vectors al,m+1 and bf,m+l in expressions (5.3.8a)

and (5.3.8b), respectively, are defined by

n m m 0 (5.3. 1a)

al, m+l , A r~n-1 bn-L o 1 m --lm

b [ b -  - -- a } (5.3.11b)
-I'mj 2,m 0

Expressions (5.3.11a) and (5.3.11b) are seen to be very similar to

Levinson's algorithm (Levinson, 1947). In fact, one can show that

these two expressions can be converted to Levinson's algorithm, if the

pre- and post-modification method is applied on the matrix Rl,m'

Next, we will verify the relationship which updates the vector
dnn

The m x 1 column vector d m+l is found to be

-1 1,m-
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n [0 +Ym+l - "m n
l,m4=dn E:,n Al, m1 +l (5.3.12a)

-m --l1[ m+l

where y is a scalar given by

Ym n (~)T 531b

It can be straightforwardly shown that

R d = m+1 (5.3.13)

Finally, combining expressions (5.3.11a), (5.3.11b), and (5.3.13),

the following relationship is obtained.

n ,n 0
nm4l -lml 11,m+l -1l,2l 0m

0

r
L0 C1,M1 y

(5.3.14)

In the above development, the generalized Levinson's algorithm for

ARMA model is verified based on the induction hypothesis. The number

2
of computation of the algorithm is readily found to be O(3p ) where

p designates the number of denominator coefficients of the ARMA model.

We will now detail steps of the computations required in

this recursive algorithm. The algorithm starts with the initialization

Nprocedure at n - q+l and order m - i. The solution ap~ of the matrix
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equation (5.3.4a) with m = p+l is obtained by recursively updating

an from m =1 to p + 1 (order update) and from n = q+l to N (time
-m

update). Meanwhile, auxiliary vector d n is also recursively updated.

The above algorithm can be presented as follows

Step 1: Initialization for time update (n - q+l)

[wI I i T Ir o 1I
-l,1 = bll 1 1 =q+l Xq+l

Step 2: n n+l

Step 3: Initialization for order update

wn- wn-l + 1, M
-m -m + Yn xn+l-m

n n-l M
z - + Yn+I-M Xn+l-n

where M = min (p+l, n-q) mi=1 ... , M

en =C r m z n (1)
1:m l,m -m

where z n(1) denotes the first element of column vector z
n

-M --

an -b n  1 dn  
= ,n

,1 1,1 1 = Yll,m

Step 4: Compute recursively from m 1 1 to M where M = min
(p, n-q-l)

mm(XT f X
m AlQ' fm -- l,nm

*
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EE
n~' n m n

'2,m = 1,m + 1 -f m (1)}m

ct nz )T ani a = (,n )T

Update forward and backward solutions

n n Mli ~i+i [2,mj r- - -
b:

0 1,m

rn 0~- m nn
ll-, 1,m n A2,m

C2 m 0-

C C1, n j

+:M, 2,a~-

1, m -1 -,*

4rn1 
rn-

1--- ---- ---- -- V
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Step 5: If n < N go to Step 2

Step 6: End of algorithm

In above, N is taken to be the last index of vector

5.4 ARMA Doubling Algorithm: The Pre- and Post-Method

As described in section 5.2, one of the data modification

methods referred to as the pre- and post-modification method leads

to the following set of equations

A a - b (5.4.1)
p- -p

where A is a pxp Toeplitz matrix and b is a pxl column vector

given by

A = Y3 X (5.4.2)
p 3 3

b = YT
-p 3-3

where matrices Y3, X3 and column vector x3 are previously defined in

expressions (5.2.3.1a), (5.2.3.1b) and (5.2.3.1c), respectively. The

displacement rank of the matrix A is readily shown to be 2. ThisP

being the case, it is possible to apply the doubling algorithm (Morf,

1980; Bitmead and Anderson, 1979).

Without loss of generality, we now assume that p - 2k for some

integer k. The matrix A can be partitioned into 4 matrices whose
p

sizes are 2 (kl) x 2 (k-l) Each 2k-l) x 2 (kl) matrix is then also

*1

"nt ,j...
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partitioned into 2 (k
-2) x ?(k-2) matrices. This procedure is called

the doubling or halving procedure. In this procedure, we can express

a 2Z x 2Z matrix A2 Z in terms of Z x Z submatrices B, C£, D£X and

E in the following manner

A2£ [, (5.4.4)
D£ E£

and its inverse is found to be the form

A22 Z (5.4.5)

U£ V 4

where S. , T, U. and V are £ x 2 square matrices given by

Sz = BzI + B 1 Cz Vz Dz B 1  (5.4.6a)

T. = -S CE (5.4.6b)

U = -E Dz S (5.4.6c)

V = E I + E-I D S C m- (5.4.6d)

Relationships (5.4.6a) - (5.4.6d) are straightforwardly derived from

the Schur complements theorem (Aho, etc., 1974). From the above

relationships, we can obtain A2 from B and E . The solution of

the equation (5.4.1) requires 0(2 c(m)) computations where c(m) is

the number of operations required to multiply a vector times a

triangular Toeplitz matrix.
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The number of computation c(m) is obtained in a following manner.

By definition (Kailath, etc., 1979), A29 can be decomposed in the form

2 2

A 2 Z Z L2k U (5.4.7)
i-l

i

where L and U1 are lower and upper triangular Toeplitz matrices,

respectively, which can be obtained recursively (Bitmead and B.

Anderson, 1979). The matrices L and U are expressed by

U2 -- U U(1,2j (5.4.8b)

i i
ui£(2,2)

where Li£(l,l) and L9.(2,2) are Z x 9 lower triangular Toeplitz matrices,where 9 upe

U 1(,1) and U1(2,2) are Z x 9 upper triangular Toeplitz matrices,
9. 9

and L9.(2,1) and U 9 (1,2) are Z x 9 full Toeplitz matrices. Substitution

of expressions (5.4.8a) and (5.4.8b) into (5.4.7) yields the

partitions of the matrix A2 in expressions (5.4.4) to be

2

B- L(111) ui(1,l) (5.4 .9a)
Z i- Z

2 2 1

(5.4.9b)

2 2
z E [L z (2,1)] L U (1,1) + Z CL z (2,1)1 u (11l)

i-i i-i
(5.4.9c)
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2 2

Ez = Z L9z(2,1) U91(1,2) + Z L9z(2,2) U9z(2,2) (5.4.9d)
i=l i=1

where the following relationships are implicitly used

U (1,2) = [LU(1,2)] + [U(1,2)] (5.4.10a)

zLL
9 L k. U

ii
in which [uz(1,2)]L and [Li(2,1)]L denote Z x £ lower triangular

matrices, and [Ui(l,2)]U and [Li(2,1)]U denote £ x £ upper triangular

matrices. The partitions given by equations (5.4.9a) - (5.4.9d)

are expressed in terms of lower triangular and upper triangular

matrices. It turns out that the use of above relationships reduces

the computational complexity c(m) to be O(p log p) (Morf, 1980).

The algorithm which makes use of the doubling method can be found in

(Morf, 1980). Morf described the algorithm by introducing high

computer language which necessitates frequent subroutine calls. On

the other hand, the step-wise description of the halving method is

presented in (Bitmead and Anderson, 1979). Implementation of the halv-

ing algorithm is relatively complex and a rather large value of p is

required before the computationally complexity O(p log p) is

approached.

5.5 Numerical Example

In this section, the spectral performance of the pre- and the

post-modified methods are compared with the unmodified method. As
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a test example, ze treat the time series (4.5.2a). Using this time

series (4.5.2a), twenty different independent sampled sequences each

of length 64 were generated.

The modification methods were applied to these twenty different

sampled sequences of length 64 to obtain ARMA model spectral esti-

mates or order (4,4). The resultant spectra are shown in Fig. 5.5.1.

It is apparent that only a small degradation in spectral estimation

performance has been shown by the modified method. It might be

conjectured that the implementation of the fast algorithms will not

much degrade spectral performance in many practical examples.

5.6 Summary

In this chapter, computationally efficient ARMA spectral

estimation algorithms have been developed. These algorithms are

predicated on the utilization of data modification methods.

Specifically, two algorithms referred as the generalized Levinson's

algorithm and the doubling algorithm were developed for obtaining

AR coefficients of ARMA model. These algorithms have a computational

complexity of O(p ) and O(p log p), respectively.

- _L_ * b
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Box-Jenkins

Unmodif ied

Premodified

Postmodified

Data Length 64, and, X 0.95.



Chapter 6

A RECURSIVE ARMA SPECTRAL ESTIMATOR:
THE PREMODIFIEDMETHOD

6.1 Introduction

A recursive ARMA spectral estimation procedure is developed in

this section. It is recursive in the sense that as a new element of

the time series is observed, the parameters of a spectral estimation

model are algorithmically updated. The recursive algorithm requires

0(p) computations to update the model's parameters for each new data

point. The development of this algorithm is predicated on utilization

of certain projection operators. In Section (6.2), a vector space is

formulated by making use of the given observation data. The method

of linear predictions will give rise to projection operators which

decompose relevant vector spaces into subspaces spanned by the

prediction error vector and the observation vectors. Linear prediction

methods used in this chapter include forward prediction, backward

prediction and delayed backward prediction. Each of these methods is

associated with its own projection operator. The decomposition of

these projection operators is discussed in Section (6.4). The order

update and time update recursions, as described in Sections (6.5) and

(6.6) play a central role in the overall recursive algorithm. Finally

in Section (6.7), a recursive algorithm is outlined.

81
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6.2 Vector Space Formulation

In this section, the given spectral estimation problem will be

cast into a convenient vector space setting. It will be assumed that

the following observations of the time series {x(n)}

X19 x(6.2.1)

are given. This in turn will give rise to the associated column

data vector

3= x1 X2' XN]T (6.2.2)

It is convenient to form an auxiliary column vector Y specified by

_YN = Sq xN (6.2.3a)

= [0 ... 0 xI ... - iN T ~ (6.2.3b)

where S denotes the NcN down shift matrix (see eq. (5.1.3)) and q is the

numerator order of the ARMA model. The vectors N and YN lie in the

product space

R N - R x R x ... x R (6.2.4)

We next construct the subspace which is spanned by the set of
vetr i Sm

vectors S .,.. 'S N" This subspace will be suggestively denoted

by

MN[i,m] -{S -N' Si+l 2N'm -,x, (6.2.5)
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where the first integer i may take on any value in the set {0, 1,

m}. As will be described in Section (6.3), the recursive algorithm

is derived for particular selections of indices i and m. Similarly,

for the vector contained in the product space R N , the associated

subspace M N~im] is defined by

M Y[N m] { N' 5 i+l N}  (6.2.6)

where the first integer i may take on any value in the set {O, 1, ... 1

ml. Next, we let P xifi,m] designate the projection operator on the

subspace M x[im] along the subspace orthogonal to M 4Nim] (this
I

orthogonal subspace will be denoted by M4 rim]). This projection

operator which depends on 2N and can be shown to have the form

P Ci,m] A iN[,m] [A [im] A ,N[,,m] At N~im]

(6.2.7)

where A xNi,l] and A N[im] are the N x(m-i+l) matrices composed

of the following ordered set of column vectors

A 2SN[rm] = [Si~ 2 Si+l S * 5 N] (6.2.8)

Ai+l 5 m j (6.2.9)

The projection characteristics of operator (6.2.7) are depicted

in Fig. 6.2.1. It will be convenient to introduce a projection opera-

tor on the complement of subspace M xNri i]. This operator is defined

by
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pC c -Ii,m] I - X N[i,m] (6.2.10)

where I is the NxN identity matrix. In a similar fashion, the projection

operator on the subspace M 4N[im] along the subspace M T[m

specified by 
:~ ~]i

P' YNy[,rn] 1A yN[i,m] [AtAN[im] A yN[im] 1 At Eim]

(6.2.11a)

It is to be noted that the following projection operator identity

holds as is apparent from expressions (6.2.7) and (6.2.11a).

P 4i1'.) = P t2S[Ei, m] (6.2.11b)

The complement of the projection operator (6.2.11b) is formally given

by

P Yi[im] = - P Y-~,](6.2.12)

A particular estimate XN[i m) of the vector 2Scan be specified as

the projection of on the subspace M rim'that is

L'Ni,m) P N[i,m] -:L (6.2.13)

The error vector relative to estimate xN[,im and 2Nis then given by

-x~~] - ~im (6.2.14a)

PC 25~~]-N(6.2. 14b)

which is expressed as a projection of the vector 14on the complement
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subspace of M XNci,mi . It can be straightforwardly shown that

x M(6.2.15)

SN[i,m] i M [im]

x
where L denotes orthogonality, that is, the error vector !Nim] is

orthogonal to the subspace M vN[i ,  The vector space formulation

described in this section is suggestively depicted in Fig. 6.2.1.

6.3 Linear Prediction and Projection Operator

In this section we will define three methods of linear predictions,

namely, forward prediction, backward prediction, and delayed backward

prediction. These methods will play a central role in the algorithmic

solution procedure to be developed.

6.3.1 Forward Prediction

The m-th order forward prediction is referred to as that

specific procedure for estimating the column vector x and Y, by

means of a linear combination of the set of m shifted vectors
{S I, S2 .... , Is } and {S1 SN .. sm },respectively.

--N~ SN~ S. , S nd S

Considering the projection operator defined in Section 6.2, the

associated estimates 1m] and Nl,m] are seen to have the form

"tN[l,m] ' P -x N[l,m] "SN (..b

TNd ,m] Nhem] ae(6.3.1lb)

The difference between the estimate and the given vector is
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called the forward prediction error vector and is specified by

x (6.3.2a)
N,m = 4 N - -N[l,m]

while the forward prediction error vector of Y. is of the form

,= N- yN,m] (6.3.2b)

Now these error vectors are each orthogonal to the subspaces M

and M x[lm]' respectively. Use of complement projection operators

defined by (6.2.10) and (6.2.12) yields

xNm = P c[lm] (6.3.3a)

-,, = P (6.3.3b)

6.3.2 Backward Prediction

The m-th order backward prediction is that procedure of

estimating the column vector S xN and S y by a linear combination
of the set of m shifted vectors {S0XN, Si I ... sm-1i6} and

-- N' S S and

{S , N .... , sm-1 N1, respectively. In the same manner as with

forward prediction, by applying the projection operator, it can be

shown that the backward estimate is given by

m

-N[0,m-1] = P -N[O,m-l] Si (6.3.4a)

where the double caret notation designates backward prediction. The

backward prediction error vector is then found to be

4,i
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bX, M PN[,l'ME (6. 3. 4b)

6.3.3 Delayed Backward Prediction

The m-th order delayed backward prediction is similarly defined

to be that procedure of estimating the column vector S M Nand

5mIl 1 2
S v by a linear combination of the sets of vectors {S -NS-N'

-.1and {S 4, 1 5 , respectively. It can be

shown that the delayed backward prediction is given by

while the delayed backward prediction error is specified by

x M= S ~ (6.3.5b)

A little thought will convince oneself that the projection operators

P can be expressed as

P [l,m] = A xElm]AyNl,m] A _N[l,m]] A'4y lm

0 00. 0

LA ~~E,~j(6.3.6)
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This formula is straightforwardly obtained by making use of the

structure of matrices A _N[lm] and A yN[l,m] defined by (6.2.8) and

(6.2.9). The relationship between the backward error and the delayed

backward error is then readily found to be

x , m [ 0 b x T ( . . a

= [ b ]T (6.3.7b)_% m ' -N-l,m (..b

It then follows that the N-th delayed error is equal to the (N-l)-st

backward error, that is

x x
X,m (N) b (N-1) (6.3.8a)

,m ~-N-l,m(-)

V (N) = b (N-1) (6.3.8b)

The relationship between forward, backward, and delayed backward is

suggestively depicted in Fig. 6.3.1.

6.4 Decomposition of Projection Operators

The development of a computationally efficient algorithm is depen-

dent on the decomposition of the above projection operators. This

decomposition makes use of the specific matrix structure referred to

as shift invariancy. A matrix which has a displacement rank 3 will

possess this shift invariancy (see Chapter 5). In this section, the

shift invariant structure is utilized to decompose projection

operators. The formulae obtained in this section will be used for
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the development of order update recursions in section 6.5.

First, we will discuss the decomposition of the projection

operator P 7[O,m]" This projection operator P xN[om] may be

expressed as

P x[0,m] -A xN[Om] [R xN[0,m]] - I AN[0,m] (6.4.1) I ,
which is obtained by substituting i - 0 in expression (6.2.7). The

matrix R xN[0,m] is defined by

R [0,]= A [Om] A O,m] (6.4.2)

Substitution of expressions (6.2.8) and (6.2.9) into (6.4.2) yields

R [0 = (6.4.3a)

A'N, R N[l,mR

where R 3N1m] is defined by substituting I in place of 0 in

expression (6.4.2). If we denote the inverse of matrix R x[l,m] by

R -1xNm], it then follows that

o .......0 0: A CNl,m] R- x1 .m

R o[,m] R-l 1 1
R0"!

0 0,

(6.4.4) I
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where I denotes the m x m identify matrix. Upon examination of

expression (6.4.3a) and (6.4.4), it can be readily shown that

+ T
+m+l R x.[ ] (6.4.5)

where e denotes the (m + 1) x 1 unit basis vector and u is a

(m + 1) x 1 column vector given by*

1- t -

U i,- A i

-M+-l 1, RNl,m] m[l,]/fN,m (6.4.6)

in which f is a scalar defined by
N;,i

e t x x (6.4.7)

In a similar fashion, let us define a matrix R YN[0,m] by

RNOm] = A 4N [0,m] A Y[o,m] (6.4.8)

It then follows that

-# T
2 m+l R yN[Om] - e1  (6.4.9)

where " 1 is a column vector expressed by

A yll,, - A R)R-I [lm f N * (6.4.9a)

Taking the complex conjugate vector transpose of expression (6.4.9),

yields

*In general, .k represents the standard unit basis vectors whose

components are also zero except for its k-th which is one.

.1.
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R N[0,m] ym+l - (6.4.10)

The inverse of the matrix R N[0,m] is found to be

0.........0-

R-1E+R[Im] + fNm m+l m+ (6.4.11)

Substitution of expression (6.4.11) into (6.4.1) then leads to the

following relationship.

P xN[0,m] = P  N[lm] + A xN[0,m] fN,m in-l nsl A [0,m

(6.4.12)

After a simple algebraic manipulation, the projection operator

P XN[0,m] is decomposed by the following relationships

x

N[0,m] m] + P EN,m (6.4.13a)

N[l,m] + (I - P xN[lm]) P N,m (6.4.13b)

P N[1,m] + P fN'm (I - P -xN[I,m,])  (6.4.13c)

where it is readily shown that P mx is a projection operator onto the
M

subspace spanned by _Nm along the subspace which is orthogonal to the

subspace spanned by eNm and is defined by

-x 1 X (,) (6.4.14)
-m N,m

r .%, . ,
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Furthermore, expression (6.4.13c) leads to the following relationship

I P x (I - P xNm)(I - P xN~l,m]) (6.4.15)

The projection operator decomposition as expressed in (6.4.15) will

be used to find a backward error recursion in the next section.

Next, we will decompose the projection operator P -%[I'M+,] which

is necessary to compute the forward prediction error. The projection

operator P YC1l ] is given by

PN[l,m+l] , A 1N[l,m+l] ER N[l,m+l]] - AxN[l,m+]

(6.4.16)

which is obtained by substituting i = I in expression (6.2.7). The

matrix R xN[l,m+lj is defined by

R N[l,m+] = A yN[l'm+l] A N[l,m+,] (6.4.17)

Substitution of expressions (6.2.8) and (6.2.9) with i = 1 into

(6.4.17) yields

mi-

-AN[l,m] S

(Sm YA x (S m + 1 I

__N~ 1N*A, YN).;S* lx

L!

(6.4.18)

It then follows

.4. -.- . --
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.0

n*1 ----o o ~~(S 4)AJii )

(6.4.19)

Upon examination of (6.4.18) and (6.4.19), the following relationship

can be derived

t R xiq[l,mIl Tj4 (6.4.20)

where is a unit basis vector whose in-I-i element is 1 and si4~

is a (mn + 1) x 1 column vector defined by

!in+1 [-(SU yN,)t A xN[l,m] R71 X[l1M] 1]/ f~

(6.4.21)

in which f is a scalar defined by

fd, - (sI- M ZZ %'m dm (6.4.22a)

-(by )bX (6.4.22b)
-N-1,m -N-l,m ,-m

Relationship (6.4.22b) is obtained from (6.3.7a) and (6.3.7b). After

applying a similar analysis to the matrix R it can be shown

that

- T~in4l R4~1i.I-] -(6.4.23)
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where !1~ is a (m + 1) x 1 column vector expressed as

t - (Sm ~ -x ~l m A 1  
1 y) fd *

__N) A~~] 7 I,

(6.4.24)

Applying the vector transpose operation to both sides of expression

(6.4.23), we have

RNlm1 SMl'- l (6.4.25)

The inverse of the matrix R xcmi is readily found to be

0

R 1 2 ['~]R71 im + fd t

LO .Ei . . . . . .1. 0-

(6.4.26)

Substitution of expression (6.4.26) into (6.4.16) then yields

XC A INl~ j, (6.4.27)

After a simple algebraic manipulation, equation (6.4.27) is compactly

expressed as

P i' Pr~m + -P Cim) (6.4.28b)
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P FX X (I - m (6.4.28c)

where it is readily shown that P m is a projection operator onto the

subspace spanned by dm along the subspace which is orthogonal to the

subspace spanned by Ym and is defined by

x 1 x 'm )
P 1 m X M M (6.4.29)

fN,m

Furthermore, equation (6 .4.28c) can be expressed in the form

~N[l,ml] = (I - P ,m (I - P XN[i,m]) (6.4.30)

Expression (6.4.30) will be used to find the forward error recursion

in the next section.

In a similar manner, the following relationship may be also

obtained

- P 0, - (I - i e ) (I - P YNCl,m]) (6.4.31)

I - N (I - P ) (I - P [lm]) (6.4.32)

where the projection operators P S and P dy are defined by

y Y ( e )y (6.4.33)

-Nm , -Nm SNM
fNm

y Y 1 y ( x )t
y , 1m (6.4.34)

fN,m

Expressions (6.4.31) and (6.4.32) will be used to find the recursion
y by

of forward error and backward error b
._N-.. . .m
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6.5 Order Update Recursions

In this section, we describe the order update recursive formulas

which recursively compute the optimum m+lst order prediction error

from the optimum m-th order prediction error. Expressions (6.4.15),

(6.4.30), and (6.4.31) and (6.4.32) play a central role in obtaining

these order update recursions.

'Let us first derive the order update recursion for the forward

prediction error vectors. Applying the projection operator (6.4.30)

to the column vector x. yields

x ( x x
EN ,m+l MI -- N.,m (6.5.1)

Substitution of expression (6.4.29) into this relationship then yields

x x 1 x y x
EN, + ,m fd ,m (g,m) ,m (6.5.2)

The order update recursion for the N-th component of the forward

prediction error vector is found to be

x x (N) - m b (6.5.3)
fN, ~l -E~m r :-N1 ,m(l

fN-l,m

where the partial-correlation coefficients are specified by

SN 1 y M).,m a (Sm+ZN) (I - P 2N[l,m] ) xN (6.5.4)

In a similar manner, applying the projection operator (6.4.32) to the

column vector leads to

. -. -
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MY 1 (N) - 0 N'(N) - I'm-m by (N-i) (6.5.5)

where

t Y (sm l (I - P l N (6.5.6)

Next, we will find the order update recursion for the backward

prediction error vector. Applying the projection operator (6.4.15)

to the column vector SM4ixN is found to yield

xx~ x

, (I - P ) , m (6.5.7)

Substitution of expression (6.4.14) into this relationship yields

x x (N c, (N) (6.5.8)-JN,I(m= fCl,mf -S
N,m

where the partial correlation coefficient t is specified byN,m

tNm = m -,m = (I - P [,m]) sm Nl  (6.5.9)

Similarly, applying projection operator (6.4.31) to the column

vector S N is found to yield

s*

by (N) = by (N-i) - -NYm 0,r(N) (6.5.10)
-N,m+l -N-l'm fE *-

N,m

since

* x- (4, )4
,,m = (I - P MS (6.5.11)

.frM - 'm ( -lm]S -
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Next, we will derive the recursion for fE and f r Manipula-
N,m N,m

tion of expressions (6.4.7), (6.4.28c) and (6.4.29) eventually leads

to the form

ff ,m = m (6.5.12)

N,ni N,m f r
fN-l,m

Expressions (6.4.22b), (6.3.4b) and (6.4.13c) yield the recursive

formula

r = r SN~m f f -l,m - f a (6.5.13)

N,m

Consequently, expressions (6.5.2), (6.5.5), (6.5.8), (6.5.10),

(6.5.12) and (6.5.13) represent the order update recursions.

6.6 Time Update Recursions

As a new element of the time series is observed, the partial

reflection coefficients, forward errors, and backward errors may be

recursively computed by making use of these values obtained at the

last time instant. This being the case, these parameters are said to

be "time updated" for each new data point.

The matrix A cN[i,m] may be expressed in the recursive form

= A xN[im] - (6.6.1)767- o-N-

where PN is the N x N projection matrix given by

kN



101

PN = eT (6.6 2)
PN -N -N

in which e is an N x 1 unit base vector. The matrix R may

also be expressed as

R N-l[im] - R i - A _N[i,m] PN AN im] (6.6.3)

It then follows that the matrix R -  l[i] is recursively updated

by (see Appendix C)

R-1 R-i1 1 R-I
R- -ri,m] = R- ] + i - imN 1

XEA N[i,m] AN A x (6.6.4)

where y is a scalar defined by
i,m,N

T "

Y Re. A Nim] x (6.6.5)

Premultiplying expression (6.6.4) by (I - P) A
PN <ii,m] and then

postmultiplying that result by A'YN[i,m] (I - PN) leads to the

recursive relationship

i (I PN P (N Ni,m][  -

+ Y i,m,N N P [im] P N

(6.6.6)

.. WON
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Since the vectors vN and K are elements of vector space RN, the

time update recursion is given by

-IN (i-P [im) -YN-1 I P Nl[i,m3) -

V(I - P Yi, m ] 4N (6.6.7)

where V(I - P K[im]) designates the time difference of the projection

operator defined by 0

V( - PN[i,m]) PN - N[i,m] + P-Nhl[i,ml

0 . . . . .•

(6.6.8)

Substitution of expression (6.6.6) into this expression yields

V(I - P N[im]) N - P SN[i,m] + (1 - PN) P E[i,m] (I-PN )

+ 1
IYi,m,N (I -PN ) P N[i,m] PN P  N[i,m] (I - PN)

(6.6.9)

Expression (6.6.9) is straightforwardly carried out by a simple

algebraic manipulation and yields (see Appendix C)

'(I -EN~~m = - 17-im, (I- P XN[i,m]) PN (I -P N[i,M)

(6.6.10)

I.
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Expression (6.6.10) is used to find the time update recursion formula.

The partial correlation coefficient sx is recursively calculated bySN,m

by *(N-1.) x (N)
b+ -N-lm -N'm (6.6.11)

SN,m ' SN-l,m 1 - Y
l,m,N

In a similar manner, the partial correlation coefficients tm is

recursively calculated by

S *(N) (N-)(6.6.12)
tNm + 1 - Yl,m,N

The time update recursion for forward error is found to be

x
Y *(N) x (N)f = fe + f-,m -N~m (6.6.13)

N,m N-l,m 1 - Y l,m,N

The backward error is also given by

y *(N) bx (N)
f r 'fr + Nm -=Nm (6.6.14)
N,m N-l,m 1 - om-1,N

A recursive formula for auxiliary parameter y can be obtained by
l,m,N

using relationship (6.4.28c) to yield

+ x-m(N-1) Y-1,m(Nl)
flY +,N= N-ll.mN m (6.6.15)

N-l,ni

Finally, y o,m,N can be computed by using the following relationship

o N '(N) y *(N)
fNomlN YlmN + e (6.6.16)

N;,m
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which is directly obtained from expression (6.4.13c).

Thus we can use equation (6.6.11) and (6.6.12) to update the

partial correlation coefficients. Equations (6.6.13) and (6.6.14) can

be used to time update the forward and backward covariance errors
e r

fm and f N,m The auxiliary parameters and Y are

recursively computed by expression (6.6.15) and (6.6.16), respectively.

6.7 An Algorithm for Recursive ARMA Spectral Estimation

In this section, we summarize the recursive ARMA spectral estima-

tion algorithm developed in the previous sections. For programming

convenience, the following notations shall be used: E (M), EY(m),

b x(m), by(m), f,(m), f,(m), sn(m), tn(m), Yo (M) and y1,(m) in

n n n n n n mo and (m~i
x x

-N,m -,,m '-Nm N,m' N,m N,m N,m'

Yo,m,N and yl,m,N' respectively. At each new data point, the para-

meters are recursively time updated (see section 6.6) and order updated

from m-O to m=p-i (see section 6.5). The recursive ARMA spectral

estimation algorithm can be presented as follows.

Step 1 Initial Condition (Time Update n=l)

E x (0) ()- bx(0) -by(O) -0

fl(0) = fr(O) = x y , (0) - ti(O) = 0 for i = 0, ... ,p-1

Step 2 Initial Condition (Order Update, m-O)

(0) b bx (0) -x~ 1 ey(0) by(O) yn n n n n
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Yi,n=l(-l) = i,n(-1) Yi,n(O) 0 i 0,1

f E() fr(o) .fr_ (0) +*n n-i Y n

Step 3 Order Update Recursions
(m = 0, 1, , M for M = min (p-i, n-i))

() Forward Error

C x +n x (m)
n f r_ (m) n-1

tf(m)
CnM f1) (n) * b(m)

(ii) Backward Error

b (in+i) b (mn) ftn(m) Cx (m)

a(n-) f 6(m) n
n

n r
fn( (m )

f Cr(m+l) - fr(m) Sn () tn(M) if n < p

nI f (u)

Yl~nbm (in) bl (in) +
n nfr (( m )

n-i

f r M~l) f,-(m) s nm) n~m) if <
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:X (m) E Y~m)
Y0 ,n(m+l) Yl,n(m) +

f m

Step 4 Time Update Recursions (m = 0, 1, , M)

i) Partial Correlation Coefficients

by_ (M) S m)m)
I - Yl,n(m)

em(m) bC (m)
1 -() tnn)

(ii) fl (m) and f rl(M)

n n )  - ) if n> p

bY(m) * bX(m)

fe(m) - f C (m) + n n if n > p
1- y 0 n (m)

Step 5 Let n - n+l, if n # N go to Step 2

Step 6 End of Algorithm

In above N is taken as a time index of a pair of the last

observations xN and YN.
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6.8 Numerical Examples

To test the recursive ARMA spectral estimation algorithm, the time

series expressed by (4.5.2a), (4.5.2b) and (4.5.2c) were generated.

A program listing of the fast algorithm used in obtaining the

denominator coefficients of the ARMA model is illustrated in Appendix

D.2. As a first example, 64 data samples were generated according to

expressions (4.5.2a), (4.5.2b) and (4.5.2c). These data samples are

plotted in Fig. 6.8.1(a). The fast algorithm was then applied to

this 64 observations to obtain an ARMA spectral estimate with model

order (4,4). The forward error sequence c 4 (n) (n - 1 ... 64)

is plotted in Fig. 6.8.1(b). Comparing Figures 6.8.1(a) and 6.8.1(b),

the forward error sequence is observed to be more random (uncorrelated)

than the given data samples indicating a desired whitening effect.

The resultant spectral estimate is shown in Fig. 6.8.1(c). The

resolution of the two peaks is evident, however, the estimated level

of the first peak is lower than that of second peak. Next, 500 data

samples of the same time series expressed were generated. These

samples are plotted in Fig. 6.8.2(a). The forward error sequence

x (n) (n - 1, 500) obtained by the fast algorithm is plotted
n , 4

in Fig. 6.8.2(b). It is observed that the forward error sequence con-

verges in a relatively rapid manner. In Fig. 6.8.2(c), the resultant

spectral estimate of model order (4,4) is illustrated. The resolution

of the two peaks is again evident. In addition, the height of

the two peaks are equal as desired. As these examples illustrate,

the fast algorithm maintains a high quality of spectral performance.

1

.1
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6.9 Summary

A recursive algorithm has been proved and stated for efficiently

updating partial reflection coefficients of an ARMA spectral estimation

model. The computational requirement for the order update recursions

and time update recursions are 12(M + 1) and 10(M + 1), respectively,

where M is taken to be the minimum of either p-l or n-l. Numerical

examples show that implementation of premodification will result in

only a small degradation of spectral performance. If q=O, the ARMA

model is converted to the AR model. A recursive AR algorithm can be

also developed based on a less general vector space approach discussed

in this chapter (see Lee and Morf, 1980).



Chapter 7

CONCLUSION

The development of computationally fast algorithms for high

performance ARMA spectral estimation was presented. The required

computation for the unmodified method was reduced to 0(4p2 ) by using

a geueralized Levinson's approach. Methods of data modifications were

applied to reduce the computational complexity. Modifications,

referred to as post-modification with p = q and pre- and post-modifi-

cation, achieved a computational complexity of 0(p log p). A fast

recursive algorithm with a computational complexity of 0(p) was

developed based on the pre-modification method.

The spectral performance of these methods was compared for

various numerical examples. Spectral degradation had been expected,

because of the restriction t = p an' the underlying data modification,

however, these numerical examples illustrated only a small degradation

in spectral performance. Moreover, the spectral estimation performance

of these new methods has been found to be typically far superior to

such contemporary approaches as the Box-Jenkin- and maximum entropy

methods.

Finally, considering the above two aspects, namely, fast computa-

tional implementations and high performance spectral estimations,

these new methods promise to be primary spectral estimation tools.
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Appendix A

RECURSIVE AR SPECTRAL ESTIMATION

A.1 Introduction

In many relevant signal processing applications, one seeks to

characterize the spectral density of a time series based upon a finite

set of time series observations. Without loss of generality, this

sample observation set is taken to be the contiguous set of N real

valued measurements as given by

x(1), x(2), .. ,x(N) (A.1.1)

One of the most widely used spectral estimation models is obtained by

postulating the following autoregressive (AR) structure

x(n) + a1x(n-l) + ... + amx(n-m) = e(n) (A.1.2)

in which e(n) is a white noise time series with zero mean and variance

2
ae . Our object will be that of modeling an underlying time series

{x(n)} with the AR model structure (A.1.2) in which the ak coefficients

are estimated from the given finite set of observations (A.1.1). This

is readily achieved by applying the well known one-step predictor.

An m-th order one-step predictor, by definition, estimates the

value of a random time series using a linear combination of the most

recent m samples. Namely, the sample x(n) is estimated by means of

the relationship
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m

x(n) = - x a x(n-k) (A.1.3)
k=l

The difference between this predicted value and the observed value

x(n) over the observation interval is called the prediction error

and is specified by

e(n) - x(n) - x(n) m < n < N (A.1.4)

or

m
e(n) = x(n) + Z ak x(n-k) m < n < N (A.1.5)

k=l

Writing these error expressions in matrix form yields

e = x + Xa

where a, e, and x are m x 1, (N-m) x 1, and (N-m) x 1 column vectors,

respectively, given by

[al, ... . amT (A.1.7a)

e - [e(m+l), e(m+2), ... , e(N) ] T  (A.I.7b)

x - [x(m+l), x(m+2), ... , x(N)]T (A.1.7c)

and X is an (N-m) xm matrix specified by

x(m) x(M+l) . x(N-l) T

X x(m-l) x(m) . x(N-2)

x (l) x(2) . . x(N-m) (A.i.7d)
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where the superscript T denotes the transpose operation.

The a k coefficients are to be now selected so as to cause each

of the predictor error terms e(n) to be close to zero. This selection

process will give rise to the so-called optimal one-step predictor.

To achieve the required objective of setting the e(n) to be near zero,

one typically appeals to the least squares method which minimizes a

squared error criterion of the form

f(a) = eT We (A.1.8)

where W is an (N-m) x (N-m) nonnegative definite square matrix. The

minimization of this quadratic functional witn respect to the column

vector a is straightforwardly carried out and results in

XT a = XT Wx (A.1.9)

It can be shown that the resulting power spectral density

estimate of the time series {x(n)} is then given by (Haykin, 1979)

2
a

S X W) 0 jW 0W12(A.1i.1i0)
11 + a1 e- + a e - 2 jw + ... + a° e jf

where the a0 coefficients are obtained upon solving relationship

(A.1.9). Generally the solution of relationship (A.1.9) requires on

the order of m3 i.e.O(m3)) number of multiplications and additions

if that relationship is directly used. This computational requirement

can be excessive in many real time applications. It has been recently

shown by Lee and Morf (1980) that this computational requirement can

be reduced to 0(m) by slightly reformulating the matrix X and column

... . . - ,, .~ ~ ~~~~~. . . .]. .. . .. ... i J li II]lliI
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vector x. In many interesting cases, fortunately, the solution to

this modified system of equations will be close to that of the desired

solution as represented by expression (A.1.9). In this Appendix the

method which is identical to the LMS algorithm of Lee and Morf (1980)

is presented with more emphasis on insightful development.

This general modification methodology shall herein be referred

tQ as data modification. Applying the specific data modification

method referred to as prewindowing, the matrix X is reformulated as the

N x m matrix given by

0 x(l) x(2) . . x(m) . . . x(N-1)

0 0 x(1) . . . x(m-l) . . x(N-2)

X 0

0 0 0.. .0 x(l) . . x(N-m) (A.1.11)

while the N x I column vector x is specified by

= [x(l), x(2), ... , x(N)]T  (A.1.12)

If these new entrants are substituted into relationship (A.1.9), an
0I

efficient solution procedure for a is possible. The structure of this

reformulated matrix X and the column vector x enables us to obtain a

recursive least square spectral estimation algorithm which has an

excellent convergence behavior and a fast parameter tracking

capability relative to the former structure. The development of

this algorithm is predicated on the utilization of projection operator

theory (Luenberger, 1969). In the sections which follow the necessary

- -



125

projection operator theory to be used in the algorithm is described.

A.2 Vector Space Formulation

In this section, the given spectral estimation problem will be

cast into a convenient vector space setting. It will be assumed that

the following observations of the time series {x(n)} as specified by

x(l), x(2 ), ... , x(N) (A.2.1)

are given. This in turn will give rise to the associated column data

vector

xN - [x(l), x(2), ... x(N)]T (A.2.2)

The vector xN lies in the product space

= Rx Rc ... xR = RN  (A.2.3)

This vector space can be made into an inner product space by

defining the following inner product between any two elements

HN

T N
<N' yN > = - x Z x(n) y(n) (A.2.4)n=l

The corresponding induced norm of xN is then given by

x Z x(n) (A.2.5)
2 4 [<-nN
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We next define the shift matrix S which is represented by the N x N

matrix

0.

1 0

1i 0 J(A.2.6)

Applying the shift matrix m times to the column vector xN is seen to

yield I
S M2 X [0, ... 0, x(!), .. ,x(N-m-1), x(N-m)]T (A27

m zeroes

We next construct the subspace N [i,m which is spanned by the set of

vectors S ,... , S " This subspace will be suggestively denoted

by

S i ,X-N % '+ N ... M -X (A.2.8)

where the first integer index i may take on any value in the set

(0, 1, ... , ml. Next, we let PN[i],m designate the projection

I
operator onto the subspace [i,mi] along the subspace %[i,m]" This

projection operator can be shown to have the form

i~]2~[~m[ TN~ 1~im]- (A.2.9)N~~~i~~~m] ~ ~ [--~ ~ lI N i m -- ~ '1 i,m]

where is the N x (m-i+l) matrix composed of the following

ordered set of column vectors

' X-ci'm] S N 5 i+l * , Al ~ (A.2.10)
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Similarly, the projection operator on the orthogonal complement of

subspace MxN[I] is denoted by

xlil=I - PN[1jMJ (A.2.11)

where I is the N x N identity matrix. It then follows that

n-LNy m if Y e (A.2.12)

P ] i < k < m, if e HN (A.2.13)

Expression (A.2.12) and (A.2.13) specify those properties of the

projection operators which will be utilized when developing a recur-

sive least square algorithm in the next section.

A.3 Linear Prediction and Projection Operator

In this section, we will define three methods of linear

prediction, namely, forward prediction, backward prediction, and

delayed backward prediction. These projection operators will play a

central role in the algorithmic solution procedure to be developed.

A.3.1 Forward Prediction

The m-th order forward prediction method is referred to as that

specific procedure for estimating the column vector x by means of a

linear combination of the set of m shifted vectors [S $2, .

S.N}. It then follows that the m-th order forward prediction

estimate of x is of the form
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lW[Im] Z a S (A.3.1)

k=1 akS

while the associated forward error vector is specified by

N,m x- N[l,m] (A.3.2a)

mN +  Z k (A.3.2b)

k=l

k
Upon examination of the structure of the shifted vector SkxN(k = 1,

m), expression (A.3.2b) leads to the aforementioned prewindowing

formula where X and x are given by (A.1.1l) and (A.l.12), respectively.

The problem at hand is to then find the scalar constants a1, a2,

... , a which minimize the squared forward prediction error

m

f(a) = SN - -[l,m 2 (A.3.3)

According to the projection theorem (Luenberger, 1969), f(a) is

minimized when the error vector is orthogonal to each of the one-

dimensional subspaces spanned by SixN(i = 1, ... m i). Thus, we have

the orthogonality relationship expressed by

QN - N[,m] i for i = l, 2, ... m (A.3.4)

which takes the inner product format

x - xN[l,m]' S > 0 for i - 1, 2, ... , m (A.3.5)

Substitution of expression (A.3.1) into (A.3.5) yields the set of

linear algebraic equations
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m k ii
E <S x, S > ak = -< N S > (A.3.6)

k=l N

for i = 1, 2 , m

for the optimum set of ak prediction coefficients. These equations

are called the normal equations and can be put into the matrix form

T T

"N[l,m] X-N[l,m] a = -N[l,m]XN (A.3.7a)

where

1 2[l ~ , S [S 2 .. ,smx (A.B.7b)

a [al, a2, .... am]T  (A.3.7c)

Solving equation (A.3.7a) for a and substituting this solution into

expression (A.3.1) then yields the optimum prediction vector

T T

xN[l,m] = XN[l,m] [im] X%[l,m]X N[l,m]itN (A.3.8)

Upon examination of the projection operator (A.2.9) and this expression,

[Ll,m] is seen to be compactly specified by

N[l,m] = P-N[l,m] (A.3.9)

Thus, we see that [l] is obtained by projecting N onto the sub-

space M [,m] and the m-th order forward prediction error vector is

obtained by projecting -N onto the orthogonal complement of N[l'm]

in the that is

(
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The corresponding minimum mean squared error is then defined to be

T T
fN,m -Nm -N,m -EN,m

A.3.2 Backward Prediction

The m-th order backward prediction method is that procedure of

estimating the m-th shifted column vector Smx by a linear combination
of the set of shifted vectors {Sx, SI . , m-l }.--

SThis back-

ward estimate is then of the form

rn-i

2 [0,m_1] = - b Sk (A.3.12)
k.0

and the backward error vector is defined by

b = m - r0,m-l] (A.3.13)

In the same manner as with forward prediction, by applying the

projection theorem it can be shown that the backward estimate is

given by

S ";
!i[0,m-l] - P-X-[O,m-1) -KN

The backward prediction error vector is then found to be

I

bm P= [0,m-l] S ,A.3.15)

and the corresponding minimum mean squared error is obtained by

fb T T m
f =b b =b S x(A.3-16)

N,m -N,m -'N, m -,m N
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A.3.3 Delayed Backward Prediction

The m-th order delayed backward prediction method is similarly

defined to be that procedure of estimating the column vector SM+l

1 2by a linear combination of the set of vectors {SIN, S2x,.

sm. It can be shown that the delayed backward estimate is given by

N[1,m] ( P,[,m] + (A.3.17)

and the delayed backward error is obtained by

m4_
m PXNCl,M] S 29(A.3.18)

The corresponding minimum mean squared error is measured by

dm T T Sin+ldm d,m = T ,m (A.3.19)

A little thought will convince oneself that the projection

operation .Nrl,m] can be expressed as

Px[:N[I,m] '" L CI N] l,m] X-xCl,m] X-INl,m]

(A.3.20)

The relationship between the backward prediction error and the delayed

backward prediction error is then readily found to be
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0 bN T (A.3.21)

It then follows that Nth delayed prediction error is equal to the
st

(N-l) backward prediction error

d b N l (N-l) (A.3.22)

The relationship of forward, backward, and delayed backward is

suggestively depicted in Figure A.I.

A.4 Decomposition of Subspaces

The development of a computational efficient algorithm is

dependent on the decomposition of subspaces. Subspaces may be decom-

posed by appealing to the well known projection theorem (Luenberger,

1969). The formulae obtained in this section will be used for the

development of order update recursions in Section A.5.

Since the forward prediction error - lies in the subspace

M1 .[O,m] but is orthogonal to M [lm], we can express MN[,] as

the direct sum of M[. m and {_N }, that is

,m[Oim] = .N[l,m]@ 'N'm (A.4.1)

where {EN } denotes the subspace spanned by the forward prediction
-N,m

error vector c . The projection operator on the subspace ENm} is
-N, m-

defined by

PC E (C E l T (A.4.2)
"N' m -N--N,m -m -N'in -EN'm
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N-n--i N-rn N-rn4- N-1 N
f_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ samples

Fig. A.i Forward, backward and delayed predictions
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Relationship (A.4.1) can be readily shown to yield the following

decomposition of the projection operator

I I

P-N[O,m] - (I - PEN,m) PN[l,m] (A.4.3)

Similarly, since the delayed backward prediction error ,m lies

in the subspace %[l,m+l] but is orthogonal to MN[l,m], we obtain

[ ,~ l l (D { m (A.4.4)

where { ,mI denotes the subspace spanned by the backward prediction

error vector. The projection operator on the subspace ({,m } is

defined by

PNm =_dNm ( m -,m)1 T (A.4.5)

Relationship (A.4.4) is found to yield the following decomposition of

the projection operator

i I
=PN[lM+l] - (I -PNm

) P-N[l,m] (A.4.6)

A.5 Order Update Recursions

In this section, we describe the order update recursive formulae

which recursively compute the optimum m+I-st order prediction error

from the optimum m-th order prediction error. Expressions (A.4.3)

and (A.4.6) play a central role in obtaining these order update

recursions.
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Let us first derive the order update recursion for the forward

prediction error vector. Applying the projection operator (A.4.6)

to the column vector x. Yields

-E~~ I- N~m -N,m (A.5.1)

Substituting expression (A.4.5) into this relationship then yields

-N ,I- _EN,m - - N,m (d4, T N -N~ T~ T

Recalling expression (A.3.22), the order update recursion for the N-th

forward prediction error is found to be

(N) - (N) - A (fb )b (N-1) (A.5.3)

where the partial-correlation coefficients are specified by

ANr~.Il -d TN m T 4 Klm m+l (A.5.4)

Expression (A.5.1) leads to

T T
.4,nr$l mr4l 'Nm (I d N, ,m) - T,m (A.5.5a)

The recursion for the forward minimum mean square error is similarly

found to be

fA f (f b) -1 (A.5.5b)
N, m*l N,m - 'N,m+l N-l,m) N,m+l

Expressions (A.5.3) and (A.5.5b) constitute the order updlate recursion

formulae for the forward prediction.

A
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Next, we will find the order update recursion for the backward

prediction error vector. Applying the projection operator (A.4.3) to

the column vector S m+l is found to yield

bN,m+l = (I - P N ,M) d,m (A.5.6)

Substituting expression (A.4.2) into this relationship results in

T -I Tb- m (, -T d (A.5.7)
~~~~-N,mf'M -NM-N ) NN,m .

The order update recursion for the N-th backward prediction error is

then specified by

bN~m~lN= (N)-bl,m(N-l) - AN,,+.I (fc,m)-l ,Ne(N) (A.5.8)

Expression (A.5.6) leads to

bT b = dT (I - PC) , (A.5.9)

The recursion for b is next found to beTherecrsin fr N,m

b b f -
N,n- = fN-l,m - N,m+1l f,m) Nn- (A.5.1O)

The order update recursion formulae for the backward prediction are

represented by relationships (A.5.8) and (A.5.10).

A.6 Time Update Recursions

As a new element of the time series is observed, the partial-

correlation coefficients, forward least square errors, and the backward

least square errors can be computed recursively by using the knowledge
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of these parameters from the last time instant. This being the case,

these parameters are said to be "time updated" for each new data

point. These update recursions are obtained by utilizing a method

referred to as projection operator decomposition.

For the spectral estimation problem considered here, we decompose

the projection operator PxN[i,m] into one that projects on all past

observations and another that generates the correction due to a new

observation x(N). First, we define the component projection matrix

PN by

P T (A.6.1)
Ne' NeN

where e. is the N x 1 unit basis vector expressed by

eN = 0, . , 0, i T  (A.6.2)

Let us define the column vectors

-SPN fN PN [ ... 0, x(N)] T  (A.6.3)

I I
4N PN N 41 i I x(1), . , x(N-1), 0] T  (A.6.4)

Note that xp = T and similarly for T YPN" The
P -XNo= x-PN - 2x'N "N

projection of x. on the subspace M[i,m is now decomposed by

component projection matrix PN to obtain

I

PxN[i,m] --N = P-N[i,m] 4N + PIN[i,m] -XPN (A.6.5)
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KMultiplication of (I-PN) and the matrix )L ['iYields the so-

called oblique matrix

CN[im] = N ( ~q~~A.6.6)

whose last row is the zero row vector. We define the oblique

projection operator to be

QXCim] = %[im] LC[,Eim] C~i~ Cxi'm] (A.6.7)

and its associated orthogonal complement by

I

QN[i'm] = I - N im](A.6.8)

Upon inspection of expression (A.6.7), we see that the application of

the oblique projection operator to the vector Nimplicitly possesses

the solution of the prediction coefficients at the N-lst stage.

After simple algebraic manipulation, relationship (A.6.5) can be

expressed as

~~Ni~m 35  'N[i,m] 3X-4 + P-N[i~mJ "NQNq[i,ml - (A.6.9)

The orthogonal complement projection of can be expressed as

~N[l,m] -XN QN - Ni,n N-m]im N~~~~)~

(A.6.l0a)

which can be further developed to the form
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± 1.
1N[i,m] N -N - ri,m] 2N - N QsCi,m) -.

I ±

+ P2[im] 'N QN[i,m] N (A.6.10b)

Considering the relationships (A.6.3), (A.6.4) and (A.6.7), we obtain

i ~P N-i[i,m] 4N-1
P N[ i, m] -XN : 0O q?.i + PN[i,m] PN[i'm] 2S i

(A.6.11)

Premultiplying L _N]T on both sides of expression (A.6.11) gives

the time update recursions of the partial reflection coefficients

Am+I,N Am+I,N-l + [sm+l]T PN[l'm] PN %[l,m] N

(A.6.12)

where i was taken to be 1. Furthermore, operation of the component

projection operator PN on both sides of expression (A.6.10a) yields

i1 1 I

P.! X4~m g = PN %~im e,- T Px,,m ,eTx
'qN ~imeeN Q--Nri,m] 4

(A.6.13a)

T
- P - e. P i eN (A.6.13b)

Thus we obtain the relationship

I

N Q~N~i~m] N 1 - P N P Ni,m] N (A.6.14)

'q Q--Nci~l -XNi,m,N NPNim

- .-- --- -A
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where

eN T (A.6.15)
Yi'm' eN E,,m] e N

Directly substituting (A.6.14) into (A.6.12), we see that

x ,Xl_3 Px,4[ m]e NeN PxN[lm]N
1 T ,m,N

(A.6.16)

which simplifies to the form

N6n1 + ~im(N) m(N (A.6.17)

Nml N-l,m+l 1 - Y l,m,N

Similarly, the time-update for E: and fr can be obtained as
N 'm N,m

f C = E (A.6.18)
N 'm N -1,m 1 Y I1,mN

Nf N-r 1 r 'm1 (A.6.19)

where

Y0m-, T eN N[0)m-1] e_ (A.6.20)

Thus we can use equation (A.6.17) to update the partial reflection

coefficients. Equations (A.6.18) and (A.6.19) can be used to update

forward and backward prediction errors, respectively.
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A.8 Summary

A recursive algorithm has been presented for efficiently obtaining

an autoregressive (AR) spectral estimate. To achieve a significant

computational improvement, prewindowing was applied, and projection

operators were utilized in the vector space setting. Normalizations

of the order and time update algorithm yields more computational

advantage than the unnormalized method. Interested reader may refer

to (Lee and Morf, 1980) and (Friedlandar, 1980).

.1.-



Appendix B

ADAPTIVE SPECTRAL ESTIMATION

B.1 Introduction

In this chapter, we will discuss two adaptive techniques,

namely, the Widrow-Hoft algorithm (Widrow and Hoff, 1960) and the

Iterative LMS method. It is well known that the Widrow-Hoff algorithm

is a recursive technique which updates parameters with the arrival

of each new data sample. At each recursion, parameters are algo-

rithmically selected in a least squares sense. As the number of data

samples increases, the model's parameters "may" converge to the least

square solution which is also known as the Wiener solution (Wiener,

1949). Primary reason for utilizing the Widrow-Hoff algorithm is

computational in nature. As each new data point is obtained, only

O(p) computations are required to update the model's parameters.

The Iterative LMS method is a technique which updates the solution

for the linear system of equations which approximates the Wiener

equations (Wiener, 1949). Although the number of computations for

the Iterative LMS method to update parameters at every new data point

is O(p2 ), the Iterative LMS method gives the exact solution to a given

linear system of equations. To compare these two techniques, a number

of examples are presented.

142
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B.2 Widrow-Hoff Algorithm

The analysis of an adaptive filter can be developed by considering J

the linear configuration shown in Fig. B.2.1. An adaptive filter is

composed of a tapped delay line, adjustable weights and summers.

Delayed signals which are real valued are weighted and summed to

form an output signal d(n) which designates an estimate for the

desired signal d(n). At the n-th observation, a set of delayed

signals can be formulated in a vector form

x n [x(n - 1), x(n - 2), ... , x(n - p)]T (B.2.l)

where x is a pxl column vector. It is also convenient to denote the-n

adjustable weights at the n-th iteration by

h = [h n(1), h n(2), ... h(p)]T (B.2.2)

where h is a pxl column vector. The estimate of the value of d(n)--n

based on the vector (B.2.1) will be taken to be the linear combination

d(n) hT x
-- n -- n

p
= Z h (k) x(n - k) (B.2.3)
k-l n

The error between the desired signal and the estimate at the n-th

sample is given by

e(n) = d(n) - hT x (B.2.4)
-n-n
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d (n)

x (n) x (n-1 x(n-2) x~n-p)d(n + ()t

nn

Fig. B.2.1 Adaptive Linear Configuration
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The associated mean square error is defined by

f(hn) = E[C 2 (n)] (B.2.5)

Substitution of (B.2.4) into (B.2.5) is found to yield

f(h ~(0) - 2 hT T B26
-n dd x-hn +-hn RX -n(B26

where dd(0) is the variance of the desired signal d(n), that is,

Odd(0) = E[d 2 (n)] (B.2.7)

while rdx and Rx are the pxl cross correlation vector and the pxp

covariance matrix, respectively, defined by

rd = [Odx(l), dx( , dx(P)] T  (B.2.8a)

and

XX(0) ,  x (1), Cx(p 1 )

RX = W () (o), Oxx(p 2)

Sxx(p - 1), xx (p - 2), . xx (0) (B.2.8b)

in which Odx(i) is the cross-correlation sequence between the

individual input signal component and the desired signal defined by

*dx(i) = E[x(n + i) d(n)] 
(B.2.8c)
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and xx (i) denotes the autocorrelation sequence of the input signal

specified by

Sxxi) = E[x(n + i) x(n)] (B.2.8d)

It may be observed from expression (B.2.6) that the mean-square error

is precisely a second order function of the weightsn and is visualized

as a parabolic function of the weight variables. The adaptive

process seeks the minimizing weight variable selection by using the

well-known method of steepest descent.

In seeking the minimum mean-square error by the method of

steepest descent, one first begins with an initial guess of the model's

weight parameters. The next estimate is then obtained from that

estimate by making a change in the weight vector in the direction

of the negative of the gradient vector. The gradient is obtained

by differentiating expression (B.2.6) to yield

Vf(h)= -2r + 2 R h (B.2.9)fhn) - -dx X 2 1.-

If each change in the weight vector is made proportional to the

negative of the gradient, the method of steepest descent leads to

the following recursive relationship

h =h + VVf(h) (B.2.10)
-n1 --n --n

For a sufficiently small value of u, the mean-square error at the

(n + l)-st step is approximately found to be

f(h+) ' f(h) - 2 21, Vf(hn)11 2 (B.2.11a)
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where 117f(h n)112 is the positive scalar defined by

JjVf(hn )112 = [vf(h n)]T [Vf(hn)] (B.2.11b)

It may be observed from eq. (B.2.11a) that the mean-square error is

reduced with each change of the weight vector. For a proper choice

of u, it has been claimed that this algorithm will converge to an

optimum point regardless of the initial weights. (Widrow, 1971)

The method of steepest descent requires the determination of the

gradient vector. In practice, the true values of these gradients

are seldom available. To overcome this difficulty, the "LMS algorithm"

offers a practical procedure for implementing the method of steepest

descent. This algorithm uses gradient estimates in place of true

gradient values. These estimates may be "noisy" (i.e., contain

errors) but the effect of the gradient-measurement errors is observed

to be small in many practical applications.

A method of measuring gradients of the mean square error which

does not require squaring, averaging or differentiating is now given.

The mean square error f(h n) may be represented crudely by the

single sample c(n), the square of the n-th error value. Then the

gradient vector is approximated by

7f(h n ) ; V 2(n) -- 2c(n) x (B.2.12)

In order to approximate the gradient vector, the present input-signal

x and its associated scalar error c(n) are used. Upon taking an

expected value on expression (B.2.12), expression (B.2.9) can be
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obtained.

An adaptation cycle will proceed with the arrival of each new

input vector. From eqs. (B.2.10) and (B.2.12), the adaptation

procedure comprising the LMS algorithm is completely represented by

(B.2.13).

c(n) - d(n) - hT x (B.2.13a)

hn+l -h - 2E(n) x (B.2.13b)

Upon examination of expressions (B.2.13), we can see that the

computational requirement is 0(p). In this algorithm, the selection of

P is also an important factor. If u is made too small, convergence is

slow. On the other hand, if p is selected to be too large, the adaptive

method may not converge. In terms of selecting a best u, the

interested reader may refer to (Widrow, 1971; Luenberger, 1973;

Huffman and Nolte, 1980).

B.3 Iterative LMS Method

We will now investigate the problem of how to linearly filter an

observed, wide-sense stationary, discrete-time, random time series

{x(n)}. Our primary interest is to best estimate the desired discrete-

time random time series fd(n)} in the minimum mean square sense.

The problem is illustrated in Fig. B.3.1. Our objective is to find

the transfer function H(z) that minimizes the mean square error. We

assume that the estimate of element d(n) is of the form
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x (n) d(n)

H(z)

-~ e(n)

d (n)

Fig. B.3.1 Pictorial representation
of the optimum filtering

_JL
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p-I
d(n) = Z h(k) x(n- k) (B.3.1)

k=0

where h(k) are the filter weight elements. The estimate d(n) is then

seen to be a linear combination of the most recent p values of the

observation signal. The mean square error is found to be a function

of filter weights h(k) and is specified by

f(h) = E[{d(n) - d(n)}2] (B.3.2)

where h is the pxl column vector defined by

h = [h(O), h(l), ... , h(p - 1)] T  (B.3.3)

Substitution of expression (B.3.1) into (B.3.2) and taking the expected

value operation yields

f(h) - rd(O) - 2 hT Idx + hT R h (B.3.4)

where rd(0) - E[d 2 (n)], r is the pxl column vector whose k-th element

is given by E[d(n) x(n - k)] for k = 1, 2, ... , p and Rx is the pxp

matrix whose elements are given by Rx(i,j) = E[x(n - i) x(n - j)]

(see eq. B2.6).

The optimum filter weights vector is readily determined by taking

the gradient of quadratic functional (B.3.4) with respect to h and

setting this gradient equal to the zero vector. This is found to

result in the well-known Wiener vector selection (Wiener, 1949).

h0  Rx1 r (B.3.5)
-x -dx
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Although this approach is indeed attractive and typically results in

satisfactory performance, it suffers one serious drawback. Its

implementation requires apriori covariance knowledge which is usually

lacking in many typical applications.

In order to achieve our object without requiring any statistical

information, we introduce an estimation error criterion defined by

N
f N(h) = Z [d(k) - d(k)]2  (B.3.6)

k=p

It will be beneficial to represent this error criterion in a vector

format. Let us define the (N + 1 - p) x 1 estimation error vector

d(p) x(p) x(p-l) . . . x(1) h(o)

d(p+l) x(P+l) x(p) . . . x(2) h(l)

d(N) x(N) x(N-l) . . . x(N+l-p) h(p-l)

L L
(8.3.7)

which can be compactly expressed

- - h (B.3.8)

Using these expressions, the square error criterion can be represented

by

fN(h) = &- h T (d - X' h) (B.3.9)

Minimization of the functional (B.3.9) is straightforwardly carried

out by setting the gradient 7h fEN (h) equal to zero and yields the
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following result.

In general applications, the use of this method is not practical since

it requires on the order of p3 multiplications to invert the pxp

matrix [x ]. We will next discuss a straightforward procedure which

reduce this computational complexity.

Upon examination of relationship (B.3.7) and (B.3.8), we can see

that when the new data element x(N + 1) is provided, the equation error

can be updated by

-N+l= d-N+ 1 - XN+l h (B.3.11)

=j- h (B.3.12)
L d (N+I) T +

where x.+1 is the pxl column vector specified by

xN+I = [x(N+l), x(N), ... , x(N-p+ 2)]T (B.3.13)

It is clear from relationship (B.3.10) that we have to invert the

matrix

T T T
[X+l -N+] X 2+N+I N+l (B.3.14)

The following recursive relationship may be used to efficiently update

the required matrix inverse

IL X .. . . . . .. ." . . . . ... ll I I . . . .. . II . . . .. ' " . .. . . .. . . . . ." T ... ". .. .' ... . ' . . .. .
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T 1 ] -1  1 T+~~~ ~ I Ii1YN + 4+1 YN+l YN+l YN+l

(B. 3.15)

where

X 1x ] N+l (B 3 16)

After a few simple manipulations, the following recursion is obtained

d(N+l) - T
0 0N+l N+ + T-i -+1 (B.3.17)

i N+l YN+I

Recursive relationships (B.3.16) and (B.3.17) constitute a more

computationally efficient method than the direct approach (B.3.10).

It can be shown that the computational complexity is of the order p2

B.4 Numerical Examples

In this section, we shall demonstrate the performance of two

adaptive methods, namely, the Widrow-Hoff algorithm and the Iterative

LMS method. This will be accomplished by investigating the time

series whose elements are given by

x(n) - 2 sin (0.1 irn) + w(n) (B.4.1)

where w(n) is a white Gaussian noise with variance one. The normarized

Weiner equation error can be defined by

(n) - JRXhn-(B. 4.2)

1I-Fdx1 1
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where R is the pxp covariance matrix of the sequence {x(n)} and

is the pxl cross-correlation vector of the sequences fd(n)} and {x(n)}.

The above scalar value (n) yields a normalized measure of how closely

the Wiener equations are being approximated. All graphs except

Fig. B.4.4 provide the plot of normalized Wiener equation error

referring to expression (B.4.2) versus iteration number (i.e., the

number of observation data). The desired signal d(n) is specifically

chosen to be x(n+l). This yields a problem of predicting one step

into the future. Unless specified, the covariance matrix is initial-

ized at 15-th iteration number.

It can be observed from Fig. B.4.1 that the normalized Wiener

equation error of the Iterative LMS method converges to approximately

zero after 2300 iterations, however, the Widrow-Hoff algorithm

with u - 0.001 fails to converge. In the Widrow-Hoff algorithm,

the value of U was next selected to be .0001 and .01 in Fig. B.4.2

and Fig. B.4.3, respectively. As we can see on Fig. B.4.2, both of

the adaptive algorithms converge reasonably close to zero. The

Iterative LMS method converges faster than the Widrow-Hoff algorithm.

Fig. B.4.3 illustrates an example which shows convergence behavior

of the Iterative LMS method and nonconvergence behavior of Widrow-

Hoff algorithm. The normalized square error 1h n - ho01/11holl where

h0 is the exact solution of the matrix equation (B.3.5) are displayed

in Fig. B.4.4. The convergence behavior of the Iterative LMS and

the nonconvergence behavior of the Wiener-Hoff are evident.
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Fig. B.4.5 and Fig. B.4.6 display the method which employs

biased estimates for the approximation of covariance matrix elements.

Fig. B.4.7 and Fig. B.4.8 display the method which uses unbiased

estimates for the approximation of covariance matrix elements. Both

the biased and unbiased methods converge to zero, however, the biased

method starts with slightly large values of normalized Wiener equation

error. Fig. B.4.9 and Fig. B.4.10 show the Iterative LMS method

whose initial covariance matrix is the identity matrix. Although the

normalized Weiner equation error at the early stage of iteration

number are relatively large, this method also converged to zero.

Fig. B.4.11 and Fig. B.4.12 display the direct method. Upon

examination of Fig. B.4.5 through Fig. B.4.12, the direct method and

the method of unbiased estimate are found to be the best, since they

started with a smaller normalized error and converged uniformly to

zero.

Comparing the Widrow-Hoff algorithm and the Iterative LMS method

from the convergence viewpoint, the Iterative LMS method is superior

to the Widrow-Hoff algorithm.

B.5 Summary

Two adaptive techniques are compared. From a computational

viewpoint, the Widrow-Hoff algorithm is less burdensome than the

Iterative LMS method. However, the comparison of Wiener equation errors

indicated that the solution from the Iterative LMS method satisfies

Wiener equations better than that of the Widrow-Hoff algorithm.
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Appendix C

DERIVATION OF EXPRESSIONS (6.6.4) AND (6.6.10)

In this Appendix, relationships (6.6.4) and (6.6.10) which play

a central role for the time update mode are derived.

C.1 Derivation of (6.6.4)

Expression (6.6.3) can be simplified to the form

t

R =R - x - (C.l.la)
n-1 n - -

where the (m-i+l)xl column vectors x and are defined by

x'a A- (C.l.lb)

= A N[i,m] (C.l.lc)

It can be seen that Rn-1 is expressed as a sum of a nonsingular matrix

and a rank 1 matrix. Expression (C.l.la) can be also expressed as

R-1 LIRa j (C.1.2a)
n-i n n

where the (m-i+l)xl column vectors a and b are defined by

a - R x (C.1.2b)
- n -n1

b 1- (C.1.2c)
-- n
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in which R-  is a NxN matrix which satisfies the relationship
n

R R R- . We will now make use of the following matrix inversen n n

relationship

[I - ak b- 1 
= I + (.y-"' a) a b (C.1.3)

Substituting (C.l.2b) and (C.1.2c) into (C.1.3) yields

[I -b ____.I_+_ R- t-1 + RR (C.l.4)
n n -n

Expression (6.6.4) can be obtained by substituting (C.1.4) into

(C.1.2a) along with expressions (C.l.lb) and (C.l.ic).

C.2 Derivation of (6.6.10)

To simplify the complexity of notations, let us define the

following compact notations

p - P N[i,m] (C.2.1a)

Q = PM (C.2.1b)

T T
Y ,mN = e (C.2.1c)

It is readily shown that

(TP (C.2.2a)(1 - Y) Q (1 Y ) N = Q (I -P) Q (..a

PQ PQ - yPQ (C.2.2b)

QP OP - YQP (C.2.2c)

.7- -
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Equation (6.6.9) may be expressed as

71- P) - Q -P + (I - Q) PCI - Q)

+-I(I -Q) P QP(I -Q) (C.2.3)
lY

Using relationships (C.2.2b) and (C.2.2c), we have

{Q - P + (I -Q) PCI - Q)I (1I y

Q - PQ + YPQ - QP + YQP -YQPQ (c.2.4)

Substitution of (C.2.4) into (C.2.3) yields

V(I -P) Y-(I -P) Q(I -P) (C.2.5)

Expression (6.6.10) can be obtained by direct substitution of

expressions (C.2.1a), (C.2.lb) and (C.2.1c) into (C.2.5).
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COMPUTER PROGRAM LISTING
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D.2 FORTRAN Program Listing for Generalized Levinson's Approach
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Appendix 1) COMPUTER PROGRA' LISTING

D.1 FORTRAN Program Listing for a Recursive ARMA Spectral Estimation

C THIS PROGRAM COMPUTES AUTOREGRESSIVE COEFFICIENTS OF
C 'HIGH PERFORMANCE' ARMA MODEL (REAL DATA, p-q).
C

DIMENSION X(1024),EXN(30),EXNMI(30),B)N(30),BXNI 4(30)
$ ,FENM1(30),FRN(30),FRNM1(30),SN(30),SNMi(30),TN(30)
$ ,GAM(30) ,GAM1(30),EYN(30),EYNMI(30) ,BYN(30)
$ ,Y(1024) ,XA(i) ,RX(30,30) ,YX(30) ,YS(1024,30)
$ ,WKAREA(30),CM(30) ,CMi(30) ,AM(30) ,AM1(30) ,BM(30)
$ ,DM(30) ,RXX(30,30) ,FEN(30) ,TNMI(30) ,BB(30) ,BM1(30)
$ ,XS(i024,30),BYNMI(30)

C
C NI: TOTAL NUMBER OF OBSERVATION DATA
C IP: ORDER OF DENOMINATOR COEFFICIENT
C

NI=64
IP-4
NPhNl-IP
N-Ni-i
IPI-IP+I
IPMl-IP-I

C
C GENERATE DATA TO BE MODELED
C

DSEED-12345
CALL KAVEH(Y,N1,DSEED) .
DO 25 I-I,NP

25 X(I)-Y(I+IP)
WRITE (6,101) (Y(I),I-I,NP)
WRITE (6,101) (X(I),I-I,NP)
Ni-NP
N=NI-I

C
C INITIALIZATION FOR TIME UPDATE
C

EXmlM (i) =0.
EYNM(1)-O.
BXNMI (1) =0.
BYNMi(1)-O.
FENM (1)=O.0
FRNM1 (1)-0.0
A12-O.0
A21-O.0
A2.2-0.0
DO I I-I,IP

loom
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C SNM1(I)=O.O

C

C
DO 2 IT-1,N1
ITM1=IT-1
AIT=IT

C WRITE(6,102) IT
102 FORMAT (/,3X,'N=',I3)

C
C INITIALIZATION FOR ORDER UPDATE
C

EXN(1)=X(IT)
BXN(1)=X(IT)
EYN(1)=Y(IT)
BYN (1)-Y (IT)
DO 20 I=1,rPi
SN(I)=O.O
TN(I)=O.O
GAM1(I)=O.O

20 GAM(I)=0.O
C
C UPDATE FEN~i) AND FRN(1)
C

FENC1)-FENM1(1)+X(IT)*Y(IT)
FRN(1) -FRiM1 (1)+X (IT)*Y (IT)
M-IP
IF(ITM1.LT.IP) M=ITIM1

IF (IT. EQ. 1) GO TO 109
C
C ORDER UPDATE
C

DO 3 I-1,M
C
C UPDATE GAMCE+1) AND PARTIAL CORRELATION COEFFICIENT
C SN(I) AND TN(I)
C

SNCI)-SNM1CI)+BYNM1CI)*EXN(I) /(1.O-GAM(I))
TN(I)-TNMI(I)+EYNCI)*BXNM1(I) /(1.O-GAM(I))

C
C UPDATE FORWARD ERRORS EXN(I) AND EYN(I)
C

EXN(I+1) =EXN(I)-(SNCI() /FRNM1(I))*BXNM1(I)
EYN(I+1)-EYN(I)-(TN(I) /FRNM1(1))*BYNM1(I)

C
C UPDATE BACKWARD ERRORS BXaNCI) AND BYN(I)
C
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3 CONTINUE
109 IFCIT.EQ.1) M11

C
C PRINT OUT AT EACH NEW DATA POINT
C

WRITE(6, 100)
100 FORMAT(/,2X, 'EXN(I)',3X,'EYN(I)',3X,'BXN(I)'

$ ,3X,'BYN(I)',2X,'FEN(I)',2X,'FRN(I)',2X,'SN(l)'

$ ,2X,'TN(I)',2X,'GAM(I)')

WRITE(6,1O1) EXN(I),EYN(I),BXN(I),BYN(I),FEN(I)
$ ,FRN(l) ,SN(I) ,TN(I) ,GAM(I)

101 FORMAT (2X,10F8.3)
IF(IT.EQ.Nl) GO TO 5

C READY FOR NEXT DATA POINT

C
EXNM1(I)=EXN(I)
EYNM1(I) =EYN(I)
BXNM1 (I) =BXN (1)
BYNM1(I)=BYN(I)
FENMiCI) =FEN(I)
FFNMiCI) =FRN (I)
SNM1 (I)=SN (I)
TNm (I) =TN (I)
GAM1 (I) =GAM(I)

5 CONTINUE
IF(IT.EQ.1) GO TO 2
A12=A12+Y(IT) *XCIT-1)
A21-A21+Y (IT-i) *X(IT)
A22=A22+Y(IT-1) *X(IT-.1)

2 CONTINUE
C
C FIND AUTOREGRESSIVE COEFFICIENTS FROM PARTIAL
C CORRELATION COEFFICIENTS
C

A11=FEN(1)
DET=A11*A22-A2 1*A12
CM(l)=(A22*Y(Nl)-Al2*Y(N1-1)) /DET

AM(1)=-A21/A22
BM( 1) -A12 /All
IF(IP.EQ.1) GO TO 23
RM=X (N 1) *BM (1) +X(N 1-1)

ETM-1.9RM*CM(2) /(1-GM)
DO 13 IORD-1,IPMI
IORDl=10RD4-1
IORD 2-IORD4-2
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C
C UPDATE AUXILIARY VECTOR DM(I)
C

DO 14 I=1,RD

TEMP=SN(IORD+1) /FRNM1(IORD+l)
C
C UPDATE FORWARD VECTOR All1(I)
C

DO 15 I=1,IORD
15 AM1(I)=AM(I)-TEMP*DM(I)

AMi (IORD+1) -- TEMP
C
C UPDATE BACKWARD VECTOR BM1(I)

TEMP-TN (IORD+i1)/FEN (IORD+1)
BM1 (1) -- TEMP
DO 16 I=2,IORD1

16 BM1(I)=DM(1-1)-TENP*AM(I-1)
C
C UPDATE AUXILIARY VECTOR CM11)
C

TEMP-BYN (IORD2) /FRN (IORD2)
DO 17 I-1,IORD1

17 CM1(I)=CM(I)+TEMP*BM1(I)
CM(IORD 1+1) -TEMP
SUM=X(N1-IORD-1)
SUM=X(N)*CMl(1)
DO 18 I11,IORD1
SUM-SUM4-FX(N+-I) *BM1(1)

18 SUMI-SUM+X(Nl-I) *CjMl(I+1)
RM1=SUM
GM1=SIM
ETM1=1.+(RM1(1.-GM1))*CM1(IORD2)

C
C SET VECTORS FOR NEXT ITERATION
C

DO 19 I-1IJORD1
AM(I)-AM1(I)
BM(I) -BM1 (I)

19 CM(I)-CM1(I)
CM(IORD2)=CM1 (IORD2)
RM-RM1
GM-GM.1
ETM-ETM1

13 CONTINUJE
23 CONTINUE

C
C PRINT OUT AUTOREGRESSIVE COEFFICIENT
C
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WRITE (6,105) (AM(I),I-l,IP)
105 FORMAT(/,3X,' RECURSIVE SOLUTION = ',//,lOF1O.5)

RETURN
END

NOTE: Above program may be applicable to complex data by making
following changes

() Declare all variables to be complex value except
integer variables (i.e. IMPLICIT Statement)

(ii) In DO loop 25, take complex conjugate on the
variable Y(I+IP) (i.e. Y(I+IP)=CONJG(Y(I+IP)))

I
I
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D.2 FORTRAN Program Listing for Generalized Levinson's Approach
of ARMA Model

Generalized Levinson's approach discussed in Section 5.3 is

programmed for the premodified method.

C
C THIS PROGRAM COMPUTES DENOMINATOR COEFFICIENTS OF
C ' HIGH PERFORMANCE ' ARMA SPECTRAL ESTIMATION
C BY GENERALIZED LEVINSON'S APPROACH (REAL DATA, p-q).

DIMENSION X(64) ,FEN(30) ,YV(30) ,XV(30)
,FRN(30),FRNMI(30),SN(30) ,TN(30)
,BNN(10,10) ,BBMN(i0,10)
,Y(64) ,RX(30,30)
,WKAREA(30),CM(30),CM1(30) ,AM(30) ,AM1(30)

,DM(30),RXX(30,30),BM(30),BM1(30)
C
C NI: NUMBER OF TOTAL OBSERVATION
C

N1=64

C
C IP: ORDER OF DENOMINATOR COEFFICIENTS
C

IP=4
NP=NI-IP
N-NI-I
IPI-IP+1
IPM1-IP-1

C
C GENERATE DATA TO BE MODELED
C

DSEED,12345
CALL KAVEH(Y,N1,DSEED)
DO 25 I-l,NP

25 X(I)-Y(I+IP)
WRITE (6, 101) (Y(I),I-I,NP)
WRITE(6,1i01) (X(I),I-I,NP)

101 FORMAT(2X,1OF8.3)
NI-NP
N-Ni-i

C
C INITIALIZATION BASED ON THE FIRST TWO DATA SAMPLES
C X(1) AND Y(1)
C

DO 40 IIPI
DO 40 J'IIPI
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BBMN (I ,J) =0.0
BMN (I, J) =Q.0

40 RXX(I,J)=O.O
A11-Y(1) *X(1)+Y(2)*X(2)
A12-Y(2)*X(l)
A21-Y(1) *X(2)
A22-Y (1) *X (1)
RXX (1, 1) =All
RXX (1, 2) =A12
RXX(2, 1)=A21
RXX(2,2) =A22
BMN(1, 1)=-Al2/A11
FNM1(2)=RXX(2,2)+RXX(2,1)*BMN(l, 1)

C
C SOLVE FOR DENOMINATOR COEFFICIENTS (AM(I) ,I=1,IP)
C AT EACH NEW DATA POINT FROM ET=3 TO IT=Nl
C

DO 38 IT=3,Nl
IPM1=IP-1
IF(IT.LE. IP) IPM1=IT-2

C
C UPDATE ROW VECTORS
C

DO 37 I=1,IP1
YV(I)=O.O
XV (I) =0.0
IF(I.LE.IT) YV(I)=Y(IT+1-I)
IF(I.LE.IT) XV(I)=X(IT-I-1)

37 CONTINUE
DO 39 I=1,IP1
JF-I
IF(I.EQ.1) JF=IP1
DO 39 J=1,JF

39 RXX(I,J)=RXX(I,J)+YV(I)*XV(J)
A11-RXX (1, 1)
A12-RXX (1, 2)
A21-RXX(2, 1)
A22-RXX(2,2)
AM(l)--A21/A22
BM(1) =-A12 fAll
IF(IP.EQ.1) GO TO 23
DO 13 IORD-1,IPMl
IORD1=IORD+l
IORfl2-IORD+2

C
C COMPUTE AUXILIARY PARAMETERS FEN(IORD+l)
C AND FRN(IORl+1)
C

SUM-RXX(l, 1)
DO 27 I-1IORD
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27 SUM-SUM4-RXX(1,I+1)*AM(I)
FEN (IORD-1) -SUM
SUM-RXXC(IORDI, IQEDl)
DO 28 I-1,IORD

28 SUM-SUM*RXX(IORD1,I)*BM(I)

FRN (IORD+-1) -SUM

C COMPUTE PARTIAL CORRELATION SN(I)
C

SUM-RXX(IORD2 .1)
DO 29 I-1,101W

29 SUM=SUM+4RXX(IORD2 ,I+1) *AM(I)
SN (IORD41) -SUM
DO 14 1-1,10RW

C 14 DMC)-BMN(I,IO1W)

C COMPUTE PARTIAL CORRELATION TN (I)
C

SUM-RXX(1,101W2)
DO 30 I-1,I01W

30 SUM-SUM4-RXX(1,I+1)*DM(I)
TN (IORD+-1)=SUM

C
C UPDATE VECTOR AM1(I) ; FORWARD SOLUTION
C

TENP-SN (IORD+1) /FM1 (IORD4-1)
DO 15 1-1,I01W

15 AM1(I)-AM(I)-TEMP*DM(I)
A141 (IORD4-1) -- TEMP

C
C UPDATE VECTOR BM1(1) ; BACKWARD SOLUTION
C

TE'MP=Th (IORfrI1) /FEN (IORD4-1)
BM1 (1) =-TEMP
DO 16 I=2,IORD1

16 BM1(I)=DM(I-1)-TEMP*AM(I-1)
SUM-RXX(I01W2 , 1012)

C
C COMPUTE AUXILIARY PARAMETER FRN (I01W2)
C

DO 31 I-1,IO11
31 SUM-SUM44RXXIOD2,I)*BM1(I)

FRN (I0RD2) -SUM
C
C SET FOR NEXT DATA POINT
C

DO 19 I-1IOR11
AM()-AM1(1)
BBN(I,IORW1)-BM1(I)

19 BM(I)-BM1(I)
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13 CGUTINUE
BM (1, 1)=-A12 /All
DO 43 I=l,IORDl
DO 43 J-2,1ORDl

43 BM (1, J) =BBMN (I,J)
DO 41 1=1,I0RD2

41 FRNM1l(I) =FEN (1)
38 CONTINUE
23 CONTINUE

C PRINT OUT RESULTED DENOMINATOR COEFFICIENTS

WRITE(6,105) (AM(I) ,I=1,IP)
105 FORMAT(/,3X,' GENERALISED LEVINSON SOLUTION

,//,1OF10.5)
STOP
END

NOTE: Above program may be applicable to complex data by making
changes as described in Section D.1 (See Expression (5.3.1d)).
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