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INTRODUCTION

Cormmon testing procedures for the laboratory measurement of material

properties for use in ground motion calculations have generally consisted

of standard hydrostatic, uniaxial-strain and triaxial tests. It has recently

been recognized that these paths are not necessarily the ones that are

followed in actual field applications, i.e., conventional and nuclear

explosions in the earth. Since difficulty is often experienced in developing t
accurate constitutive models that are valid for a wide range of loading

conditions, it seems important to follow, as closely as possible, the stress-

paths (or strain paths) that are experienced by material elements in actual

field conditions. Furthermore, since measurement techniques do not yet

allow the field determination of these stress paths (or strain paths), one

must rely on numerical calculations and an initial best estimation of the

material constitutive properties. In this report we present the results

of one-dimensional numerical finite-difference calculations for cylindrical

and spherical wave propagation, which define the stress and strain paths

followed by material elements at varying distances from cylindrical and

spherical explosive ources in the earth. The purpose of these calculations

is to define laboratory tests best suited for the definition of material

constitutive behavior in the analysis of GIST (Cylindrical In Situ Tests)

and other subsurface explosive events. On the basis of these calculational

results, static laboratory tests are conducted which represent strain

Paths experienced by material elements in the vicinity of cylindrical and

spherical explosions in an infinite medium. The material tested in the

experimental program is Kayenta sandstone.
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STRESS PATH DETERMINATION FROM FINITE-DIFFERENCE SOLUTIONS

The quantities which are obtained from the finite-difference solution

are ai and ci as functions of time at various distances from the explosive

source. For purposes of definite laboratory tests, it is useful to express

the output of these calculations in terms of the load L = a Pc and p

in the triaxial test configuration. Here aa is the axial stress and pc is the

confining fluid pressure. It is also more convenient to deal with axial

and transverse strain components (Ca and ct in the triaxial test rather than

Ei defined in the finite-difference solution. In the case of spherical

flow, one would simply make the identification that L = a, - 03,

Pc = 03' Ea = E, and ct =3. For cylindrical flow the identification

is slightly more complicated.

In general, let us assume that we have values of stress and strain

invariants defined by

T(t) E [(oi-o2)2 + (o2-03)2 + (o3o)2]1/2/ -6 6 (1)

p(t) (01 + G2 + 02)/3 , (2)

Ev (t) - C1 + E2 + F3 , (3)

cd(t) - [(U1-C2)2 + (E2-E3)2 + (E3-61)2]1/ 2/7 (4)

as functions of time at a fixed spatial position as provided by the finite-

difference calculation. If the material constitutive behavior involves

only first and second invariants of the stress and strain tensors, the

quantities defined by Eqs. (1) - (4) can also be written in the following

terms for the purpose of defining laboratory test paths:

6
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TMt = ( a  PC)!3 (5)

p(t) = (Ga + 2p(/3 (6)

v(t) = a +2e t  (7)

Ed(t) (Ea - et)/ (8)

and hence laboratory stress and strain paths become in parametric form

(t as the parameter):

L = VY (t) (9)

PC = p(t) - (t)/ r , (10)

Ea = v (t)/3 + 2ed(t)/l ' (11)

Et = Lv(t)/3 - Ed(t)// (12)

Calculational Results

Stress (and strain) paths for cylindrical and spherical wave propagation

have been calculated with the use of elastic-plastic constitutive descriptions

presented in the Appendix. The material parameters are chosen to be

representative of Mixed Company (Kayenta) sandstone. In all cases a radial

stress given by

0 r = p e t (13)

is applied at the interior cavity surface of radius Ro = 1 m. The peak

radial stress, p0 , is taken to be 10 kbar and the decay constant, I/a, takes

on values of 0.1 msec, 1.0 msec and 10 msec. -All results are presented in



terms of c a vs. ct (axial strain vs. transverse strain) and L/w vs. pc/K

(load/shear-modulus vs. confining-fluid-pressure/bulk-modulus), i.e., the

quantities related directly to static triaxial laboratory tests.

Figures la, lb and lc show stress and strain paths at various distances

from a cylindrical explosion. At the radial position R = 2R0 the stress

path intersects the failure surface during loading and remains in contact

during unloading. The corresponding strain path initially approximates

conditions of uniaxial strain, but exhibits considerable transverse strain

during the latter stages of deformation. At R = 3R0 it can be seen that

the strain path is approximated by loading in uniaxial strain followed by

unloading at constant axial strain, while at R = 5R0 the axial strain is

seen to decrease during unloading. Of course, at much greater distances

from the explosive source plane-wave conditions are achieved, and the load-

unload path remains on the Et = 0 axis.

Figures 2a - 2e show similar behavior for spherical wave propagation.

Figures 1 and 2 give an indication of how strain and stress paths depend

on distance from the source. Another important consideration is that of

pulse shape or pulse duration. This is controlled by the parameter a in

Eq. (13). A number of calculations were performed for cylindrical geometry

with 0/ .= .1 msec, 1.0 msec and 10 msec. The peak radial stress p0 remains

the same in all calculations (p = 10 kbar). The resulting stress and strain

paths are shown in Figure 3 at radial positions 1.5R o , 2Ro , 3Ro , 4R and

5R . One sees immediately that not only does the position have influence

on stress and strain paths, but also that pulse duration has a significant

effect. It will therefore be important to represent, as accurately as

possible, the time history of the cavity stress due to the explosive source.
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Figure la. Strain paths and stress paths at R 2R cylindrical wave
propagation in Mixed Company sandstone. A radial stress
given by a = p exp(-ctt), with (1/at) 1 nI sec and p0 10
kbar, is a~plie8 at R 1 m.
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Figure 3. Continued.
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STATIC EXPERIMENTAL SIMULATION OF LOAD-UNLOAD PATHS

Stress and strain paths were determined experimentally in the (L, pc)

and (Ea , Ct) planes using the results suggested by various one-dimensional

finite-difference solutions given previously. A detailed discussion of

experimental techniques used in these tests is presented in Appendix II.

The stress and strain paths considered here correspond approximately to

those given in Figure 3 for R = 3Ro and three separate decay constants

(1/a = 0.1 msec, 1.0 msec and 10 msec). Figures 4a, 4b and 4c show the

three characteristic strain paths generated from the numerical solution and

the strain paths to be followed in the static laboratory tests. The percent

strains indicated here are used only to indicate orders of magnitude and are

not the actual values achieved during testing. No attempt was made to follow

the numerically determined strain paths exactly; they were used simply to

indicate the qualitative nature of load-unload paths in the vicinity of

buried explosions. Figure 4a shows the calculated and experimental paths

corresponding to a decay time of 1/a = 0.1 msec; this consists essentially

of uniaxial-strain loading and constant-axial-strain unloading followed by

uniaxial-strain unloading. Figure 4b shows the theoretical path corresponding

to I/ = 10 msec in comparison to the experimentally followed path. The

experimental strain path to be used consists of a uniaxial-strain loading

and a constant-axial-strain unloading. Finally Figure 4c shows the theoretical

path for l/a = 10 msec in comparison to the experimentally followed path.

The experimental strain path to be used consists of uniaxial-strain loading

and constant-volume-strain unloading. Kayenta sandstone from the Mixed

Company site was the material tested in this investigation.

20
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V 810

Theoretical Path---- _

EXPER!MENTAL PATH __

,, IO
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4t
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Figure 4c. Comparison of the theoretical
(calculated) strain path to the
experimental strain path to be followed
during testing of path III (I/r=
10 msec). The experimental path
shows a uniaxial-strain loading
with a constant-volume-strain
unloadinq. The percent strains
indicated here are used only to
indicate orders of magnitude and
are not the actual values achieved
during testing.

22



TEST RESULTS

The three strain paths, I, II and Il1, used in testing the Kayenta

sandstone are shown in Figures 5a, 6a and 7a, respectively. Since all

loading was conducted under uniaxial-strain conditions, a composite loading curve

is shown for each path type. Individual unloading curves are shown for

each test, departing from the composite loading curve at their respective maximum

strains. The stress paths generated from the three strain paths are shown

in Figures 5b, 6b and 7b. Composite loading curves are shown along with

individual unloading curves. Included in each stress path figure is the

triaxial failure envelope generated from this material. Tables I, 11 and

III give computer listings for each test. Table Column I gives the data

point while columns 2 through 8 give confining pressure (pc) in kilobars,

axial load (a-p C ) in kilobars, axial strain ( a ) in percent, the two

transverse strains (t and t2 ) in percent, volume strain (E a + tI + t2

in percent and mean stress [1/3(a +2p )] in kilobars. All plots were

constructed from these tables.
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Figure 5a. Strain path followed during uniaxial-strain
loading and constant-axial and uniaxial-
strain unloading.

-- T - r -
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STRAIN PATH I TESTING

*A .1 FALURE ENVELOPE --
AtP SJ E LOADING STRESS PTH

" 6 uNLOADING STRESS PATH - -

' "f 9 LNLADiNG STRESS PATH-

'A

4 5 6 7 8
0FNiNG PRESSURE (0 3) , kbor

'lure t. Stress path followed during uniaxial-
strain loading and constant-axial
and uniaxial-strain unloading. The
resulting stress path is a composite
of four tests.
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STRAIN PATH FOLLOWED DURING
PATH "I TESTING
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0 A,
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Figure 6a. Strain path followed during uniaxial-
strain loading and constant-axial-
strain unloading. The resulting
stress path is a composite of four
tests.
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Figure 6b. Stress path followed during uniaxial-
strain loading and constant-axial-
strain unloading. The resulting
stress path is a composite of four
tests.
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Figure 7a. Strain path followed during
uniaxial-strain loading and
constant-volume-strain un-
loading. The resulting stress
path is a composite of three
tests.
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Figure 7b. Stress path followed during
uniaxial- strain-loading and
constant-volume-strain unload-
ing. The resulting stress
path is a composite of three
tests.
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DISCUSSION AND CONCLUSIONS

An initial observation of the experimentally observed stresses

indicates that there is little difference between the load-unload paths

for strain path types II and III. Figures 6b and 7b suggest that if the

yield condition is reached during uniaxial-strain loading with the stress

paths following along the yield surface, then the unloading stress paths

are similar in direction and magnitude for either constant-axial-strain or

constant-volume-strain unloading. The numerial analysis solutions agree

with the above observation in that regardless of the strain path, the

stress path would follow along the yield surface during unloading (provided

that yield was reached during uniaxial-strain loading). All of the

experimentally observed stress paths show the unloading curve to go initially

above and then cross through and go below the loading curve. The experimental

unloading curves did not remain on or intersect (as in the case of strain

path 2) the yield surface as illustrated by the numerical analysis.

Such variations in unloading material behavior may be modeled by

including additional phenomena into the constitutive equations. Phenomena

to be included in the equations would be permanent volume compaction and

work-hardening of the shear failure envelope. The former effect will

mainly influence the strain paths and the latter will change the stress

paths, particularly in the unloading portion. It was experimentally

determined that the material behaved nonlinearly during initial loading

as compared to the linear model used in the numerical analysis. Such

nonlinearities may be also handled by the aforementioned considerations.

The observation that the unloading path lies below the loading path in

stress space may be related to fracture and the resulting loss of cohesion,

rather than ductile plastic flow, as asumed in the calculations.
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Inclusion of pore pressure effects into the model would be of interest

in future work. Both the calculations and laboratory strain-path tests

should be performed under various saturation conditions. Much of the previous

theoretical work, including the finite-difference computer code, already

contains this capability; it has just not been exercised yet. Also of future

interest would be some theoretical results for two-dimensional dynamic loading

situations, expressed in terms of F a , t, L and pc* This could be done

by calculating the following invariants as functions of time at a particular

material element:

T(t) = {(I/6)[(o11-o22)2 + (o22-033)2 + (o33-011)2] +

1/2

0122 + 0132 + 0232 , (14)

p(t) = (o11 + 022 + a33)/3 , (15)

Cv(t) = + C22 + C33 (16)

C d(t) = (1/6)[(c l-E22)2 + (C22-C33)2 + (c33-11)2] +

1/2
12 + C13 + £232) (17)

The desired quantities used for comparison with laboratory tests are then

obtained from Eqs. (9) - (12).

The results presented here have shown that

(1) We can define strain paths for static testing of rock (and soil)

samples that are more representative of actual field situations that

those commonly used heretofore in constitutive modeling, and that

(2) It is possible to reproduce these paths in laboratory tests.
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APPENDIX I

General Relationships and Finite-Difference Calculations

The equation for momentum conservation in Eulerian coordinates is

given by

- ' o' r -
+ (g-)(18)

r r

where , is the material density, v is the radial particle velocity, ur

and are the radial and tangential stress components, and g is 1 (for
,i.

plane flow), 2 (for cylindrical flow) or 3 (for spherical flow). A dot

over a variable indicates time differentiation at a fixed material element

and r is the Eulerian spatial coordinate. It is inconvenient to deal with

Eu'cz an coordinates, hence we choose to express Eq. (18) in terms of

Lagrangian coordinates representing the initial configuration. We define

R as the initial radial coordinate of a material element whose current

radial location is at r. Radial and transverse stress components in the

initial configuration (Lagrangian) are denoted OR and oo. If the initial

density is given by po, then mass conservation requires that

o Rg -1 dR = prg -l dr (19)

If the foroes on a material element are to be the same in the two

representations, then

Rg-I ,jR = rg-l 1r (20)

dRg -l = dr g -I  (21)
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Now write Eq. (18) as

-pr dr , d( r) Cie dr
g  , (22)

keeping in mind that the differentials on the right-hand side are taken

at constant time. Substitution of Eqs. (19) (21) into Eq. (22) then gives

-poFg -I dR ' = d(Rg-laR) - odRg-I (23)

or

-P R + (g-1) a R GO (24)

0 3R R

in Lagrangrian coordinates.

In order to use Eq. (24) in a finite-difference solution, an artificial

viscous stress q is included. The following equations, with the addition

of a constitutive law, then form the basis of the numerical calculations:

P R _ (g I R c, ) 2a (25)

0 = R (g-l) R - R

q p A2  (AR)2  J V , DV 0

(26)

0 av > 0

= 0R , =a- (7

9 v ov (27)
R =  3 a'R 0 R '

where A is nondimensional constant on the order of unity, AR is the spatial

increment in the finite-difference solution, and e R and e are the radial

and tangential strain rates in the initial configuration. A straight-forward

centered difference scheme is used and Eqs. (25) - (27) are written in
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finite-difference form as

v+ i- i _ (OR)

- . - I - -2

0 At AR

(OR) + (OR)' - (oo)-

2R.

i -- i -
- AR (28)

i+ - i+
(vR) _ v L -J!_ (29)

Rj+ AR

i + i +
i+ 2R j+(30)

The stress rates (6R and 60 ) are obtained from ER and E and therefore

the stresses and strains are calculated from

xi+l = X i+

j+ = j + X At 9 (31)

where X represents GR, 00, ER and co"

The constitutive model used here is expressed in terms of the principal

stress and strain components a. and F-i (i = 1, 2 and 3) with the following
i

identification:
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g = I (Plane Flow):

£1 = -av/@R 2= 3 = 0

01 = 0R9 02 03 OZ

g = 2 (Cylindrical Flow)

E, -3v/R , = -v/R , £3 0

a' = R  , = G0 03 z

g = 3 (Spherical Flow):

= v/R , E2 3 = -v/R

G1 = 02 0 = C3 = 0

Let us define the volume strain c the mean stress p, the stress

deviators si and the second invariant of the stress tenser according to

Ev El + C2 + E3 (32)

P = (Ul + 02 + 03)/3 (33)

Si = ai - p (34)

J2 = (s2 + S2 + s2)/2 (35)
1 2 3

The elastic-plastic constitutive relation used here is then defined

according to the following equations:
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p P( v) , (36)

s. : 2( i - v/3) - 21-1--- (37)

The variable is determined by the condition that the stress state must

remain on the failure surface, defined by

'J =  f(P) , (38)

when a material element is undergoing plastic deformation.

From Eq. (35) we find that

2 VJr - = sis i  (Summation) (39)

and

VJ2 = (u /Jl-2) si i - 2p = f'(p)p (40)

Therefore, the variable in Eq. (37) is given by

2p = (V/J-2) si i  - f'(P)p , (41)

or, in terms of ai and p, as

2p = (b/J-)(0 i&i - p~v) - f'(p)p (42)

If it is desired to include effects of fluid saturation defined by

nonzero pore pressure pp, ai is replaced by the effective stress components

<ai> E - nP (0 < n < 1) in the elasticity relationship and by ci* - - Pp
1 p

in the failure surface relationship:

<p>= p - nPp = p(ev) , (43)
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S.

<si> = si = - v/3) - 2p -  (44)

2pE (p/J2)(ai i - pv) - f'(p*)(1-m)5 (45)

where

m dp (46)

The function f(p) is taken to be of the form

f(p) = So + AS(l e-p/a) (47)

Analytical Determination of Elastic Stress and Strain Paths for a
Spherical Explosion

If u(r,t) is the radial displacement, the spherical wave equation

for purely elastic deformation can be written as

32u/ t2 = C2[32u/ar 2 + (2/r) au/er - (2/r2)u] , (48)

where r is the radial coordinate, t is the time and c is the longitudinal

elastic wave speed. This expression takes a simpler form if it is written

in terms of a displacement potential T such that

u(r,t) = c2 / r (,/r) (49)

In this case

a2T/3t2 = C2  2 y/ar 2  
, (50)

whose solution for outgoing waves is given by the familiar expression

r - r0) (51)
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The displacement, strain components and stress components can be expressed

in terms of T and its derivatives Y' and T" according to

u(r,t) = -(c/r)y' - (c/r)2 y , (52)

-:a = au/er = (1/r)T" + (2c/r 2),'y + (2c2/r3)y , (53)

-E t = u/r = -(c/r 2)T' - (c2/r3 ) , (54)

a  = (1/r) [(A+2p)T" + (41jc/r)' + (4pc 2/r2 )Y] , (55)

-0t = (1/r) [xq" - (2uc/r)y' - (2pc 2/r2 )v] , (56)

where x and w are the Lame constants. The sign convention used throughout

this work is that stresses and strains are positive in compression. For

a pressure history at r = r0 given by

or(ro ,t) = 0 , t < 0

(57)

Gr(rot) = poe - t  , t > 0

The function T must satisfy the following ordinary differential equation:

(x+2p)T"(t) + (4pc/r )T'(t) + (41vc 2/r0
2)y(t) (58)

-ropoe

subject to the conditions, from Eqs. (52) and (58), that jumps in T

and T' at t = 0 obey the following relationships:

(A + 2p) [T'] + (4pc/r) [i] 0

(59)
[,'] + (c/r0) [v] = 0
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where [ ] indicates the jump in the function, i.e., [f] = f(O+ ) - f(O-).

Equations (59) thus require that T and T' each be continuous at t = 0 as

long as x 2w. Hence, a solution to Eq. (58) can be written as

T(t) = e- 2t (M cos lt + N sin lt) + Y0
e-  , (60)

where

M = -Y (61)
a2(x+2p) - 4.cu/r°0 + 4Wc

2 /r 2

N = ar0 (x+2p) - 2pc
2c xo (62)

= 2c E l (63)

r (x+2p) (4
0

2= 2p~c (64)

In the case of an elastic fluid P = 0 and the displacement potential

and its first two derivatives become

rP (1- e-a t at) (65)
ru p0- -c -t

SrOP° (e - t -1) (66)

0p0 _- (67)

If a = 0 (i.e., the cavity pressure remains constant at po) in the case of
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a fluid, the displacement potential and its first two derivatives become

2= - , (68)

r 0P t (69)

r pO
= - (70)

In the special case of spherical wave propagation we can make the

identification that L = 0a - rt and PC = at, in which case the stress and

strain paths can be written parametrically as

L = -(2p/r)[" + (3c/r)y' + (3c2/r2)v] , (71)

Pc = -(1/r)[f"- (2ic/r)y' - (2tc 2/r2)] , (72)

Ca = -(1/r)[Y" + (2c/r)' + (2c2/r2 )y] , (73)

Et = (c/r2)[' + (c/r)y] (74)

Equations (7]) to (74) in the case of spherical elastic waves are the

analytical counterparts of Eqs. (9) to (12) for numerical solutions.

Comparison of strain and stress paths calculated by the two methods is

shown in Figure 8 for 1/a = 1 msec, R/Ro = 3, K = 95 kbar, c = 3 km/sec,

and Po = 2.0 gm/cm 3. It can be seen that the numerical solution gives a

good approximation of the strain and stress paths except for the peak

values associated with the main compressive fronts. This is a result of

the viscous stresses that are included in the finite-difference solution to
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damp out numerical oscillations, and has no significance with regard to

the conclusions reached in this report.
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APPENDIX 11

EXPERIMENTAL TECHNIQUE

Specimen Preparation

Specimens were prepared from Kayenta sandstone, Mixed Company Site.

Cylindrical samples 3.81 centimeters long by 1.91 centimeters diameter

were used thus maintaining a length to diameter ratio of 2 to 1. Specimen

ends were ground parallel to within ± .001 centimeters. Specimens were

air dried with weight, length and diameters being recorded for each sample

for use in determining sample density and strains. Samples were prepared

for testing by first wrapping them in urethane plastic (.025 cm thick)

with hardened steel endcaps attached at each end using stainless steel lock

wire.

Stress and Strain Determination

Stress and strain transducers were placed within the pressure vessel.

Confining pressure was measured using a calibrated 350-ohm manganin pressure

sensitive coil accurate to ± .003 kbars. Jacketed samples were placed

and centered on the load cell when in the pressure vessel. The load cell

was accurate to ± .005 kbars. Axial and lateral strain transducers were

of the cantilever type using strain gauges in a wheatstone bridge configuration

to obtain voltage output. The axial cantilevers measured total axial

displacement and were calibrated to be accurate to ± .003 percent strain.

Lateral strain cantilevers were positioned at mid-sample and sampled strains

at 90 degree intervals. Diametrically opposed arms were calibrated for lateral

strain. The lateral strains were averages with a resulting accuracy of ± .006
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percent. Figure 9 shows a schematic of the transducers when inside the

pressure vessel. Further discussion on transducer design may be obtained

in Terra Tek report TR 75-29.

Testing Procedures

Seven samples were first tested triaxially to failure to generate the

triaxial failure envelope for the material while eight samples were tested

following the three strain paths. Triaxial testing commenced by first

hydrostatically loading the samples to the desired confining pressure with

subsequent axial loading to failure, stresses and strains being recorded

during all phases of loading. A strain rate of about lO-4 sec was used

during loading.

Uniaxial-strain loading was used when following a specified strain

path. Axial load and confining pressure were applied such that zero

lateral strain was maintained. When following strain path I, II or III

during unloading, i.e., constant-axial-strain and uniaxial-strain unloading,

constant axial strain unloading and constant volume strain unloading,

respectively, the confining pressure and axial load were adjusted to

maintain the desired strain state.

Data Acquisition and Analysis

Both x-y recorders and a PDP Lab 11 computer were used for data

acquisition. The x-y recorders were used primarily for instantaneous

feedback during testing while the PDP Lab 11 computer data was used for

analysis of pressure effects, endcap effects and generation of stress and

strain load-unload curves. Tables I, II and III presented in the text

are a result of the computer analysis.
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Figure 9. Pressure vessel schematic showing the sample and
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Figure 9a. Stress path followed during strain path III testing.
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Figure 9b. Strain path followed during path I testing.
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Figure 9c. Stress path followed during strain path II testing.
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Figure 9d. Strain path followed during path II testing.
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Figure 9e. Stress path followed during strain path I testing.
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