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INTRODUCTION

Common testing procedures for the laboratory measurement of material
properties for use in ground motion calculations have generally consisted
of standard hydrostatic, uniaxial-strain and triaxijal tests. It has recently
been recognized that these paths are not necessarily the ones that are
followed in actual fieid applications, i.e., conventional and nuclear
explosions in the earth. Since difficulty is often experienced in developing
accurate constitutive models that are valid for a wide range of loading
conditions, it seems important to follow, as closely as possible, the stress
paths {or strain paths) that are experienced by material elements in actual
field conditions. Furthermore, since measurement techniques do not yet
allow the field determination of these stress paths (or strain paths), one
must rely on numerical calculations and an initial best estimation of the
material constitutive properties. In this report we present the results
of one-dimensional numerical finite-difference calculations for cylindrical
and spherical wave propagation, which define the stress and strain paths
followed by material elements at varying distances from cylindrical and
spherical explosive sources in the earth. The purpose of these calculations

is to define laboratory tests best suited for the definition of material

constitutive behavior in the analysis of CIST (Cylindrical In Situ Tests)
and other subsurface explosive events. On the basis of these calculational
results, static laboratory tests are conducted which represent strain

paths experienced by material elements in the vicinity of cylindrical and
spherical explosions in an infinite medium. The material tested in the

experimental program is Kayenta sandstone.




STRESS PATH DETERMINATION FROM FINITE-DIFFERENCE SOLUTIONS

The quantities which are obtained from the finite-difference solution
are o, and €; as functions of time at various distances from the explosive
source. For purposes of definite laboratory tests, it is useful to express
the output of these calculations in terms of the load L = of = P and Pe
in the triaxial test configuration. Here 9, is the axial stress and Pe is the
confining fluid pressure. It is also more convenient to deal with axial

and transverse strain components (e. and et) in the triaxial test rather than

a
€5 defined in the finite-difference solution. In the case of spherical
flow, one would simply make the identification that L = ¢; - o5,

Po = 03> €5 = €1, and ¢, = e5. For cylindrical flow the identification

c
is slightly more complicated.
In general, let us assume that we have values of stress and strain

invariants defined by

t(t) = [(o1-02)2 + (02-03)% * (03-01)217%/6 (1)
p(t) = (o, *+ oy + 0,)/3 , (2)
e (t) = ep +ex t ey , (3)
eglt) = [(er-e2)2 + (e07e3)2 + (256206, (@

as functions of time at a fixed spatial position as provided by the finite-
difference calculation. If the material constitutive behavior involves
only first and second invariants of the stress and strain tensors, the
quantities defined by Eqs. (1) - (4) can also be written in the following

terms for the purpose of defining laboratory test paths:




i
W) = (oy - B )E (5) |
pt) = (oy+20)/3 (6) tj
e (t) = e, * 2, , (7) .4
eqlt) = (e, - )3 , (8) |

and hence laboratory stress and strain paths become in parametric form

(t as the parameter):

L = /3 <(t) , (9)

p. = p(t) - <(t}/V3 . (10)

e, = e (t)/3 4 2c,(t)3 (1)

e = g (t)3 - e (t)/V3 . (12) t

.y

Calculational Results

Stress (and strain) paths for cylindrical and spherical wave propagation

have been calculated with the use of elastic-plastic constitutive descriptions

presented in the Appendix. The material parameters are chosen to be

representative of Mixed Company (Kayenta) sandstone. In all cases a radial

stress given by

(13)

is applied at the interior cavity surface of radius R0 = 1 m. The peak

radial stress, Pos is taken to be 10 kbar and the decay constant, 1/a, takes

on values of 0.1 msec, 1.0 msec and 10 msec. -All results are presented in




terms of ey VS. £y (axial strain vs. transverse strain) and L/p vs. pc/K .o
(1oad/shear-modulus vs. confining-fluid-pressure/bulk-modulus), i.e., the
quantities related directly to static triaxial laboratory tests.

Figures la, 1b and lc show stress and strain paths at various distances
from a cylindrical explosion. At the radial position R = ZRO the stress
path intersects the failure surface during loading and remains in contact {
during unloading. The corresponding strain path initiaily approximates 1

conditions of uniaxial strain, but exhibits considerable transverse strain

during the latter stages of deformation. At R = 3R0 it can be seen that
the strain path is approximated by loading in uniaxial strain followed by
unloading at constant axial strain, while at R = SRO the axial strain is

seen to decrease during unloading. Of course, at much greater distances

from the explosive source plane-wave conditions are achieved, and the load-

unload path remains on the ¢, = 0 axis. ;

t
Figures 2a - 2e show similar behavior for spherical wave propagation. i
Figures 1 and 2 give an indication of how strain and stress paths depend §
on distance from the source. Another important consideration is that of %
|

pulse shape or pulse duration. This is controliled by the parameter « in

Eq. (13). A number of calculations were performed for cylindrical geometry
with 1/ = 0.1 msec, 1.0 msec and 10 msec. The peak radial stress Po remains
the same in all calculations (p0 = 10 kbar). The resulting stress and strain

paths are shown in Figure 3 at radial positions 1.5R0, 2R 3Ro, 4R0 and

o)
SRO. One sees immediately that not only does the position have influence
on stress and strain paths, but also that pulse duration has a significant

effect. It will therefore be important to represent, as accurately as

possible, the time history of the cavity stress due to the explosive source.
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STATIC EXPERIMENTAL SIMULATION OF LOAD-UNLOAD PATHS

Stress and strain paths were determined experimentally in the (L, pc)
and (ea, et) planes using the results suggested by various one-dimensional
finite-difference solutions given previously. A detailed discussion of
experimental techniques used in these tests is presented in Appendix II.

The stress and strain paths considered here correspond approximately to

those given in Figure 3 for R = 3Ro and three separate decay constants

(1/o = 0.1 msec, 1.0 msec and 10 msec). Figures 4a, 4b and 4c show the

three characteristic strain paths generated from the numerical solution and
the strain paths to be followed in the static laboratory tests. The percent
strains indicated here are used only to indicate orders of magnitude and are
not the actual values achieved during testing. No attempt was made to follow
the numerically determined strain paths exactly; they were used simply to
indicate the qualitative nature of load-unload paths in the vicinity of

buried explosions. Figure 4a shows the caiculated and experimental paths
corresponding to a decay time of 1/a = 0.1 msec; this consists essentially

of uniaxial-strain loading and constant-axial-strain unloading followed by
uniaxial-strain unloading. Figure 4b shows the theoretical path corresponding
to 1/a = 10 msec in comparison to the experimentally followed path. The
experimental strain path to be used consists of a uniaxial-strain loading

and a constant-axial-strain unloading. Finally Fiqure 4c shows the theoretical
path for 1/a = 10 msec in comparison to the experimentally followed path.

The experimental strain path to be used consists of uniaxial-strain loading
and constant-volume-strain unloading. Kayenta sandstone from the Mixed

Company site was the material tested in this investigation.
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Figure 4c. Comparison of the theoretical
(calculated) strain path to the
experimental strain path to be followed
during testing of path III (1/a =
10 msec). The experimental path
shows a uniaxial-strain Jloading
with a constant-volume-strain
unloading. The percent strains
indicated here are used only to
indicate orders of magnitude and
are not the actual values achieved
during testing.
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TEST RESULTS

The three strain paths, I, II and III, used in testing the Kayenta
sandstone are shown in Figures 5a, 6a and 7a, respectively. Since all
loading was conducted under uniaxial-strain conditions, a composite loading curve
is shown for each path type. Individual unloading curves are shown for
each test, departing from the composite loading curve at their respective maximum
strains. The stress paths generated from the three strain paths are shown
in Figures 5b, 6b and 7b. Composite loading curves are shown along with
individual unloading curves. Included in each stress path figure is the
triaxial failure envelope generated from this material. Tables I, II and
111 give computer listings for each test. Table Column 1 gives the data
point while columns 2 through 8 give confining pressure (pc) in kilobars,
axial load (oa-pc) in kilobars, axial strain (sa) in percent, the two
)

transverse strains (e, and €t ) in percent, volume strain (ea +e, +¢
2

t t
1 1
in percent and mean stress [1/3(oa+2pc)] in kilobars. All plots were

t

constructed from these tables.
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STRAIN PATH FOLLOWED DURING PATH I TESTING

AXIAL STRAIN, %
T
x

COMPOSITE STRAIN CURVE DURING LOADING
TEST 1236 STRAIN PATH — & —
TEST 1239 STRAIN PATH — X —
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o
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Figure 5a. Strain path followed during uniaxial-strain
loading and constant-axial and uniaxial-
strain unloading.
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STRESS PATH FOLLOWED DURING
STRAIN PATH 1 TESTING
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T MPOSITE LOADING STRESS PATH
7 36 UNLOADING STRESS PATH — " —
4 TETT 39 UNLDADING STRESS PATH — X ——

D ONF NING PRE SSURE (03). kbar

»1qure S5b.  Stress path followed during uniaxial-
strain loading and constant-axial
and uniaxial-strain unloading. The
resulting stress path is a composite
of four tests.
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Figure 6a. Strain path followed during uniaxial-
strain loading and constant-axial-
strain unloading. The resulting
stress path is a composite of four
tests.
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Figure 6b.
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Stress path followed during uniaxial-
strain loading and constant-axial-
strain unloading. The resulting
stress path is a composite of four
tests.
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Figure 7a. Strain path followed during
uniaxial-strain loading and
constant-volume-strain un-
loading. The resulting stress
path is a composite of three
tests.
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Figure 7b. Stress path followed during
uniaxial- strain-loading and
constant-volume-strain unload-
ing. The resulting stress
path is a composite of three
tests.
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DISCUSSION AND CONCLUSIONS

An initial observation of the experimentally observed stresses

indicates that there is little difference between the load-unload paths 1

for strain path types II and III. Figures 6b and 7b suggest that if the
yield condition is reached during uniaxial-strain loading with the stress
paths following along the yield surface, then the unloading stress paths
are similar in direction and magnitude for either constant-axial-strain or
constant-volume-strain unloading. The numerial analysis solutions agree

with the above observation in that regardless of the strain path, the

stress path would follow along the yield surface during unloading (provided
that yield was reached during uniaxial-strain loading). A1l of the
experimentally observed stress paths show the unloading curve to go initially
above and then cross through and go below the loading curve. The experimental
unloading curves did not remain on or intersect (as in the case of strain
path 2) the yield surface as illustrated by the numerical analysis.

Such variations in unloading material behavior may be modeled by 1

including additional phenomena into the constitutive equations. Phenomena

to be included in the equations would be permanent volume compaction and
work-hardening of the shear failure envelope. The former effect will
mainly influence the strain paths and the latter will change the stress
paths, particularly in the unloading portion. It was experimentally
determined that the material behaved nonlinearly during initial loading

as compared to the linear model used in the numerical analysis. Such
nonlinearities may be also handled by the aforementioned considerations.
The observation that the unloading path lies below the Toading path in
stress space may be related to fracture and the resulting loss of cohesion,

rather than ductile plastic flow, as asumed in the calculations.

35




Inclusion of pore pressure effects into the model would be of interest
in future work. Both the calculations and laboratory strain-path tests
should be performed under various saturation conditions. Much of the previous
theoretical work, including the finite-difference computer code, already
contains this capability; it has just not been exercised yet. Also of future
interest would be some theoretical results for two-dimensional dynamic loading
situations, expressed in terms of €as Et° L and P This could be done
by calculating the following invariants as functions of time at a particular

material element:

1(t) = {(1/6)[(011-022)2 + (022-033)2 + (033-011)%] +

1/2
0122 + 0132 + 0332 R (14)
p(t) = (o1 + 0pp + 033)/3 s (15)
e (t) = 1y * ez + £33 , (16)
eglt) = 1 (1/6)[(e11-€22)? + (e22-€33)% + {e33-€11)2] +
1/2
a1 tept o632 . (17)

The desired quantities used for comparison with laboratory tests are then
obtained from Eqs. (9) - (12).
The results presented here have shown that
(1) We can define strain paths for static testing of rock (and soil)
samples that are more representative of actual field situations that
those commonly used heretofore in constitutive modeling, and that

(2) It is possible to reproduce these paths in laboratory tests.
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APPENDIX I

woae ML

General Relationships and Finite-Difference Calculations

_“.,_..‘

The equation for momentum conservation in Eulerian coordinates is
given by 1

R g, - 0

. _ r _ r t ,
s =gy (18)

where . is the material density, v is the radial particle velocity, Op 9

and o are the radial and tangential stress components, and g is 1 (for

t
plane flow), 2 (for cylindrical flow) or 3 (for spherical flow). A dot !
over a variable indicates time differentiation at a fixed material element i
and r is the Eulerian spatial coordinate. It is inconvenient to deal with
Eulct "an coordinates, hence we choose to express Eg. (18) in terms of

Lagrangian coordinates representing the initial configuration. We define

R as the initial radial coordinate of a material element whose current “
radial location is at r. Radial and transverse stress components in the
initial configuration (lLagrangian) are denoted 9R and Iy If the initial ﬁ

density is given by Pg? then mass conservation requires that

o R

o dR = prg_] dr . (19)

If the forces on a material element are to be the same in the two

representations, then




Now write Eq. (18) as t

I d(rg-]cr) - o, ar9°1 , (22) !

keeping in mind that the differentials on the right-hand side are taken

at constant time. Substitution of Eqs. (19) - (21) into Eq. (22) then gives ”
o BV ary = d® o) - o a8 (23) :
o] R 0] >
or i
90 On = @ i
. _ R R~ % .
‘pov = B_R_ + (9'1) R s (24) i
in Lagrangrian coordinates. E

In order to use Eq. (24) in a finite-difference solution, an artificial
viscous stress g is included. The following equations, with the addition

of a constitutive law, then form the basis of the numerical calculations:

90 Op = 0O
. R 1y CR o) ag
oV T sp T 6D T - R (25)
V2 v
q = p A (aR)? I5x1% > 3g <0
(26)
- v
= 0 . 3R >0
. oV . - v
'R T fe T TR (e7)

where A is nondimensional constant on the order of unity, AR is the spatial
increment in the finite-difference solution, and éR and éo are the radial ;

and tangential strain rates in the initial configuration. A straight-forward

centered difference scheme is used and Eqs. (25) - (27) are written in
38




finite-difference form as

(28)

YA B L R (29)
. V. . 2
(ée)1+% =_.Al__7__411l (30)

The stress rates (6R and 69) are obtained from éR and ¢ _, and therefore

@’
the stresses and strains are calculated from

i1 i “ 4
s = X + X5 ot , (31)

X s

where X represents Ops 94 €R and €0

The constitutive model used here is expressed in terms of the principal

stress and strain components o5 and €5 (i =1, 2 and 3) with the following

identification:

ooty .




N
«
H
ju—

€1 = =3v/aR . €
op = ops 0y = 03 =
g = 2 (Cylindrical Flow)
€1 = -93v/3R , €
o1 T op s o3 = g,
g = 3 (Spherical Flow):
€ = -3v/aR s €y =
g1 = 0op s o, = 03

-v/R

0

’ €3 = 0
g3 = UZ
-v/R

Let us define the volume strain €y the mean stress p, the stress

deviators S; and the second invariant of the stress tenser according to

ey = €1 Y eg toeg ’
p = (oy + 0y +03)/3
S,i - U_i"p Y

J, = (s? + s2 +s2)/2

1 2 3

(32)

The elastic-plastic constitutive relation used here is then defined

according to the following equations:




ple,) (36)

©
1]

S.
. . 1
Zu(ei - ev/3) - 2u5—3;- . (37)

w .
{l

The variable ¢ is determined by the condition that the stress state must

remain on the failure surface, defined by

A, = flp) , (38)

when a material element is undergoing plastic deformation.

From Eq. (35) we find that

2/3, /j; = si;i (Summation) (39)
and
75 ) sgy - e = fep (40)

Therefore, the variable ¢ in Eq. (37) is given by
2ue = (W/Y33) s;¢5 - £(p)p , (41)

or, in terms of o and p, as

2ug = (u//j;)(ciéf - pév) - f'(p)p . (42)

If it is desired to include effects of fluid saturation defined by

nonzero pore pressure pp, oy is replaced by the effective stress components

<0.> = oy - an (0 < n < 1) in the elasticity relationship and by Oi* =0y - Pp

in the failure surface relationship:

<p> = p-nP p(ev) s (43)

P




DA it oo e

. . S.
<s;> = s, = (&, - £./3) - 2ug—— , (44)
1 1 A v /J;
ue = (W) (055 - pe) - FHpM(-mp (45)
where
dp
mo = d—pﬂ (46)

The function f(p) is taken to be of the form

flp) = s, +as(1-eP? (47)

Analytical Determination of Elastic Stress and Strain Paths for a
Spherical Explosion

If u(r,t) is the radial displacement, the spherical wave equation

for purely elastic deformation can be written as
a2u/at2 = c¢2[a2u/sr2 + (2/r) du/ar - (2/r2)u] , (48)

where r is the radial coordinate, t is the time and ¢ is the longitudinal
elastic wave speed. This expression takes a simpler form if it is written

in terms of a displacement potential ¥ such that
u(r,t) = c23/3r (¥/r) . (49)
In this case

32¥/at2 = ¢2 32y/yr? . (50)

whose solution for outgoing waves is given by the familiar expression

-

vo=ow(t - — r°) . (51)

Bac s




The displacement, strain components and stress components can be expressed

in terms of ¥ and its derivatives ¥' and ¥" according to

u(r,t) = -(c/r)y' - (c/r)2 v , (52)
ey = du/er = (V/r)e" + (2¢/r2)y' + (2c2/r3)y , (53)
-ey = u/r = -(c/r2)y' - (c2/rd)y , (54)
-0, = (1/r) [O#20)¢" + (Quc/r)e’ + (8uc?/r2)y] , (55)
-op = (I/r) D" - (2uc/r)y' - (2uc?/r2)y¥] , (56)

where x and , are the Lamé constants. The sign convention used throughout
this work is that stresses and strains are positive in compression. For

a pressure history at r = "o given by

o (rgst) = 0 , t <0
(57)

or(ro,t) t>0

It
o
o
(4]
-

The function ¥ must satisfy the following ordinary differential equation:

(#20)¥"(t) + (due/rg)¥' (£) + (4uc2/r 2)u(t) = (8)

-at
ropoe s

subject to the conditions, from Eqs. (52) and (58), that jumps in v

and y' at t = 0 obey the following relationshins:

(A +2u) [v']+ (4uc/ry) [¥] = 0O ,

(59)
[v']+ (c/r)) [¥] = 0O ,
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where [ ] indicates the jump in the function, i.e., [f] = f(0+) - f(07).
Equations (59) thus require that v and y' each be continuous at t = 0 as

long as x» # 2u. Hence, a solution to Eq. (58) can be written as

v(t) = e™B2% (Mcos gyt + Nsingyt) +y et (60)
where
r.p
Moo= -y = 00 , (61)
a2 (x+2y) - 4pCa/Po + 4uc2/r02
aro (A+2y) - 2uc
N = Yo , (62)
2¢c Jula+u)
= 2¢c /uhDty)
61 = ’ (63)
Po A2y
82 = ;r—%ﬁgﬁ—y . (64)
o u

In the case of an elastic fluid v = 0 and the displacement potential

and its first two derivatives become

r p -
vo= B2 -et oy (65)
r.p
' 00 -at
Y - o (e - ]) ’ (66)
r.p _
vo= - SRt (67)

If « = 0 (i.e., the cavity pressure remains constant at po) in the case of
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0 2 , (68)

(69) iy

p
o o= .00 : (70)

In the special case of spherical wave propagation we can make the

identification that L = o4 = 9% and Pe = 9¢» in which case the stress and

strain paths can be written parametrically as

L = =(2u/r)[¥" + (3c/r)¥' + (3c?/r2)y] R (71)
| P = =(i/r){a¥" - (2uc/r)y' - (2uc?/r2)y] , (72)

eg = -(U/r)[¥" + (2c/r)¥' + (2c?/r?)¥] , (73)

eg = (c/r2)[¥' + (c/r)¥] . (74)
i Equations (71) to (74) in the case of spherical elastic waves are the

analytical counterparts of Egs. (9) to (12) for numerical solutions.
Comparison of strain and stress paths calculated by the two methods is
shown in Figure 8 for 1/a = 1 msec, R/Ro = 3, K= 95 kbar, ¢ = 3 km/sec,
and P = 2.0 gm/cm3. It can be seen that the numerical solution gives a
good approximation of the strain and stress paths except for the peak
values associated with the main compressive fronts. This is a result of

the viscous stresses that are included in the finite-difference solution to
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damp out numerical oscillations, and has no significance with regard to

the conclusions reached in this report.
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Figure 8. Comparison of strain and stress paths determined
numerically and analytically for spherical wave
propagation in an elastic medium.
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APPENDIX 11
EXPERIMENTAL TECHNIQUE

Specimen Preparation

Specimens were prepared from Kayenta sandstone, Mixed Company Site.
Cylindrical samples 3.81 centimeters long by 1.91 centimeters diameter
were used thus maintaining a length to diameter ratio of 2 to 1. Specimen
ends were ground parallel to within * .001 centimeters. Specimens were
air dried with weight, length and diameters being recorded for each sample
for use in determining sample density and strains. Samples were prepared
for testing by first wrapping them in urethane plastic (.025 cm thick)
with hardened steel endcaps attached at each end using stainless steel lock

wire.

Stress and Strain Determination

Stress and strain transducers were placed within the pressure vessel.
Confining pressure was measured using a calibrated 350-ohm manganin pressure
sensitive coil accurate to + .003 kbars. Jacketed samples were placed
and centered on the load cell when in the pressure vessel. The load cell
was accurate to + .005 kbars. Axial and lateral strain transducers were
of the cantilever type using strain gauges in a wheatstone bridge configuration
to obtain voltage output. The axial cantilevers measured total axial
displacement and were calibrated to be accurate to + .003 percent strain.
Lateral strain cantilevers were positioned at mid-sample and sampied strains
at 90 degree intervals. Diametrically opposed arms were calibrated for lateral

strain. The lateral strains were averages with a resulting accuracy of + .006
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percent. Figure 9 shows a schematic of the transducers when inside the
pressure vessel. Further discussion on transducer design may be obtained

in Terra Tek report TR 75-29.

Testing Procedures

Seven samples were first tested triaxially to failure to generate the
triaxial failure envelope for the material while eight samples were tested
following the three strain paths. Triaxial testing commenced by first
hydrostatically loading the samples to the desired confining pressure with
subsequent axial loading to failure, stresses and strains being recorded
during all phases of loading. A strain rate of about 10'“ sec'l was used
during loading.

Uniaxial-strain loading was used when following a specified strain
path. Axial load and confining pressure were applied such that zero
lateral strain was maintained. When following strain path I, II or III
during uhloading, i.e., constant-axial-strain and uniaxial-strain unloading,
constant axial strain unloading and constant volume strain unloading,
respectively, the confining pressure and axial load were adjusted to

maintain the desired strain state.

Data Acquisition and Analysis

Both x-y recorders and a PDP Lab 11 computer were used for data
acquisition. The x-y recorders were used primarily for instantaneous
feedback during testing while the PDP Lab 11 computer data was used for
analysis of pressure effects, endcap effects and generation of stress and

strain load-unload curves. Tables I, II and III presented in the text

are a result of the computer analysis.
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