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I APPROXIMATION TECHNIQUES IN STOCHASTIC C.,IT.OL PROBL-EMS

In this research we continue our inve:;tigations of apprcxi-

mation techniques for a wide class of disc:ete and continuous

time stochastic ccntrol problems. _Z:phasi.3 is place6 on the

development and &heoretical justification )f technicues .:hich

yield computationally tractable algorithms that answer the

following:

(1) approximaticns to the optimal co: t and the cost of

using a particular control.

(2) approximations to the optimal coitrol.

(3) evaluation of the relative performance of two controls.

(4) estimates for the deterioration :.n system performance

due to the failure to observe sy.:tem components.

Small Noise Prcble.s in Continuous Time

In many control problems the noise en.ering the syste-, ;s

of low intensity reflecting its role as a iuisance parameter.

Recognizing the extreme complexity of solving stcchastic control

problems, one approach has been to solve "approximately" the

stochastic control problem in terms of quantities computable fro-

the optimal solution to the corresponding deterministic control

problem which results when the noise is absent.

The general procedure in this approximation technique is zo

first establish expansions of the optimal cost and control in

powers of the noise coefficient. The expansions then suggest
appropriate forms for nearly optimal controls and numerical
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The theoretical portion of this reseaxch was first treated

successfully by Fleming [4]. The numerica2 algorithms suggested

by the theorems were develop2d and employe(: on some two dimen-

sional examples by this author in Holland .9].

A partial solution to the open loop control problem was

developed by this author in Holland [9], [ 12]. In those papers

we were able to theoretically establish an expansion of the

optimal cost in powers of the noise coefficient. However, we

were able only to derive and theoretically justify an approxi-

mation technique for the optimal control in the restricted case

in which each open loop control generates ,i nondegenerate Gaussian

process.

Motivated by-an attempt to remove the restriction in these

previous results, we recently considered in (17] more general

open loop control problems in which each open loop control does

not necessarily generate a nondegenerate Gaussian process. An

approximation technique was developed that has the advantage that

one finds approximately optimal controls simultaneously for all

sufficiently small noise coefficients. This scheme produces a

control which performs better than the use of the optimal de-

terministic control problem in the stochastic control problem.

Moreover as we show in [17], this scheme is superior to and does

not agree with the standard secondary accessorV control problem.

In this research we intend to continue our investigations

into the numerical methods suggested by the above schemes. The

numerical method requires the calculation of a generalized linear

regulator problem which can be solved numerically. Attempts will

be made at order reduction of th associated problem.
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In addition, we intend to look at extensions of the above

techniques to sampled-data problems.

Finally, we are interested in a class of completely

observable stationary control problems. Expansions in powers

of the noise coefficient for using a fixed control have been

developed by this author in (ii], [14].

Qualitative dezendence of stochastic control problems on noise

An area of interest has been the study of the qualitative

behavior of the optimal control and cost of stochastic control

problems. One is not sure the manner in which the introduction

of stochastic effects affects the behavior of the optimal

stochastic control and cost. We have done some numerical work

in [9J for the completely observable problem on the perturbation

of switching surfaces but generalizations are unable to be made.

We recently discovered that a certain class of stationary

control problems have the alternative interpretation of finding

the principal eigenvalue of second order elliptic, not necessarily

self-adjoint, partial differential equations. From the knowledge

of the principal eigenvalue and eigenfunction one can then deduce

the behavior of the optimal stochastic control and cost. This

then gives a class of stochastic control problems for which one

has an alternative way of studying the qualitative effects of

noise. We intend to continue this investigation further.

Fleming [61 (and with Tsai [3]) have been using stochastic

control methods which are similar to ours to answer interesting
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probabilistic questions on the physically significant exi.t

problem. This gives a second class of proalems to study noise

effects.

Lastly, Benes [1] has been examining classes of problems

for which one can compute explicitly the optimal stochastic

control.
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II. PROBLEMS IN OPTIMAL NONLINEAR FILTERING AND CONTROL

Stationary discrete time control problems

Discrete time stochastic control problems have been tho-

roughly considered. However, most prior work considers the case

in which the controller remembers all previously obtained in-

formation. This has been called the classical information pattern

by Witsenhausen [24]. We intend to investigate the stationary

control case where the controller has only partial observations

of the system state and no memory. This erphasis is motivated

by systems in which itistoo difficult or expensive to observe all

system components, and systems in which it is difficult to

implement controls using past information.

Under certain reasonable assumptions we have succeeded in

reducing the optimization problem to a problem in nonlinear pro-

gramming [13]. We have also constructed examples to show that

one can do better by ising randomized controls than by only using

nonrandomized controls of the current observed data. In problems

of this type with complete observations it is known that the

optimization problem can be treated as a problem in linear pro-

gramming [22] and that the controller cannot do better by con-

sidering randomized controls [2].

Continuous time filtering problems

In this part of the research we seek a computationally

convenient technique for solving the filtering and prediction

problems for a class of nonlinear stochastic differential equations

subject to partial observations at discrete time points. The
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applications of the technique described beLow to trajectory

estimation are apparent.

Let there be given q functions f . f which are
l' 2... q

known to us. Suppose for some i E {1,2 .... q), unknown to

us, the state of the process is evolving according to the vector

stochastic differential equations

dx = fi(t,x)dt + g(t,x)dw, x(o) = x.

At the discrete times tI .... tp, which are known in advance,

an intermediate observer (usually a machine) receives noise

corrupted observations of the stochastic process x(t) . These

observations y(t) satisfy the stochastic differential equations

dy = H(t,x,y)dt + g(t,x,y)dw, y(o) 0.

Suppose that y(t) E e for some rn. Assume there exists known

pairwise disjoint sets Bi, i = 1...,m, B Rm. Then at each

time t., j = 1,2,... p, we receive from the intermediate observer

only the information as to which of the events y(tj) E B. has

occurred.

Our first problem is to determine for each function fi' the

probability that the function f. is being used given available

information.

Our second prediction problem is the following: Given our

information at times t = tilt 2 ,...,tp, and the function fi'

determine the best prediction in mean square of some function

h(x(T)) of the process, T > tp.
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Let us discuss problem 2 which we have recently solved

theoretically. For each possible information set, .e must solve

a coupled set of second order partial differential equations.

Since the boundary conditions are of Cauchy type, they can be

solved numerically. There are mxp information sets, each

requiring the solving of the coupled set of partial differential

equations. Although these problems appear complex, they have

-he important practical advantage that they can be completely

precomputed and do not need to be solved in real-time.

In this research qe intend to consider the problems discussed

above looking at both the theoretical solution and effective

computational methods that can be developed from the theoretical

solutions.



...l0-

IREFERENCES

1. V. Benes, Some explicitly solvable stochastic control problems,
preprint.

2. C. Derman and R. Strauch, A note on mer.oryless rules for
controlling secuanz ial control processes, Ann. Math. GSt a tisti cs ,
37(1966), 276-78.

3. W. Fleming and C-P Tsai, exit n~caiiisand
differential a=:nes in Proc. 3rd 'inuston .- , Differert~a.
Games and Control Th,-eory, IIhrcel-Dekker 197/9.

4. 1.'. Fleming, Stcchaastic ccn-trol for small noise inztensities,
SI;V4 J. Control, 9 (1971) , 4 73-517.

-5. W. Fleming, Optimal control of. diffusion processes in
Stochastic Di::erenitial c--uations, J. B3. rseller Editor,
Anterican Mathenatical Society, New York, 1973.

6. W. Fleming, Inclusion probaoility and optimal stochastic
conro, preprint.

7. W. Fleming, Stochastically p)erturbed dynamical systems,
Rocky Mountain J. of- 11ath. , 4 (19*74) , 407-433.

8. W. Fleming, R. RlJshel, Deterministic and Stochasric QOtinal-_=
Control, Springer-Verlag, 1375.

9. C. holland, It nuner2.cal technique for small noise stochastic
control problems, J. Op;:tinization Theory A-ppi. , 13 (1974),
74-93.

10. C. Holland, Small noise ope-i loop control, SIAM. J. Control,
12(1974). A

11. C. Holland, iErgodic exparnions in small noise problems,
J. Differential 1Lcuations, 16(1974), 281-288.

12. C. Holland, Gaussian open loop control probleis, SIAM J.
Control, 13(1975).

13. C. Holland, Expec-ed avera~j-2 cost using current ob~servations,
unpublished notes.

14. C. Holland, Stochastically perturbed li,,,it cycles, J. Aupl.
Prob., 15(1978), 311-320.

15. C. Holland, A Minimaum principle for the smallest eigenvalue
for second orcer linear elliptic ec~uations with natural
boundary conditio.-s, Comma. Pure Appi. Ilath. , 31 (1978) , 509-519.



16. C. Holland, A new energy characterizazion of thie smnallest
eiyenvalue of the Scnruaiier equation, Cor.i. Pure A,.pl.
Math, 30(1977), 755-765.

17. C. Holland, An approximation technique for small noise
open loop control problems, preprint.

18. C. Hiollanld, The Principal eigenvalue for linear second
order elliptic ecuatio-s with natural boundary conditions
in Stochastic Analrs~s, Acadeiric Press, 1978.

19. If. Kushner, Stochastic Sta )ility and Control, Acadeiiiic Press,
New York, 1967.

20.. H. Kushner, Prolbaliistic 'lethccls f4cr Ai.;:roxi:;,atiJons in
Stochastic Curntrol and for Ellipzi-c E :uaticns, k.ca--erunc
Press , 1977.

21. 11. Kushner, The Cauchy poemfor a class of degenerate
parabolic eqluations and asymrfptotic prcperties of the related
diffusion processes, J. Differential Equations, 6(1969),
209-231.

22. A. Manne, Linear prograirni g and sequential decisions,
Management Science, 6(1960) , 259-267.

23. R. Rishel, Dynamic program:i.ng and minirium principles for
systems with jump Markov disturbances, SIAM J. Control
13(1975), 338-371.

24. If. Witsenhausen, A counterexamp;le in stochastic ontimun
control, SIAM J. Control, G(1968), 131-147.

25. W. Wonhad, A Lyapunov'method fur the estimation of statisti-cal
averages, J.. Differential Equations, 2(1966), 365-377.

26. 14. Wonham and W. Cashmn , A com-uutational approach in optinal
control of stochastic saturating systems, Int. J. Control,
10(1969), 77-98.

27. M-. Zakai, A Lyapunov criterion for the existence of stationary
probability distributions for system's pertlurbed by noise,
SlitM J. Control, 7(1969), 390-397.



-12-

Ill. SUMMARY OF RESEARCH ACCOMPLISHMENTS

This section summarizes progress made under AFOSR Grant 77-3286

Problems in Optimal Filtering and Stochastic Control. The research

effort was concentrated in the following areas:

(i) Approximation Procedures for Open Loop Stochastic Control

Problems.

(ii) Stationary Stochastic Control and Eigenvalue Problems.

(iii) Long-Term Effects of Noise on Dynamical Systems.

(iv) Asymptotic properties of Nonlinear-Diffusion Equations.

The first three areas are relevant to the control of stochastic

systems. The fourth area deals with stability properties and the long

term behavior of systems described by nonlinear partial differential

equations. No progress was made in the area of nonlinear filtering,

although it should be remarked that a transformation in area (ii) above

was developed and utilized independently by W. Fleming, also under

AFOSR support, to study the unnormalized Zakai equation arising in

nonlinear filtering.

Progress in each of the above areas is described in the following

pages.
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Approximation Procedures for Open Loop Stochastic Control Problens

An Approximation technique for small noise open loop control

problems, Optimal Control Applications and Methods 2(1981) 89-94.

Nonlinear perturbations of the open loop stochastic linear

regulator problem, working paper.

A major part of our research effort has concentrated on the

development of approximation techniques for open loop stochastic control

problems. The basic theory for the optimal control of Markov diffusion

processes has been the subject of extensive research over the past decade

(see Fleming-Rishel (2)). There remains the problem of developing

numerical procedures for computing the optimal control, or if that is not

possible, approximately optimal controls. If an approximately optimal

control is employed, one wants to know the deterioration in performance

obtained by using this approximately optimal control.

While most deterministic control problems can be solved

numerically, the general problem of computing the optimal stochastic

control is impossible with present-day computers. The major exception is

the ste-hastic linear regulator problem both in the cltsed loop (completely

observable) and the open loop cases.

One is thus forced to develop procedures for computing

approximately optimal controls for most stochastic control problems. The

basic idea has been to solve stochastic control problems which are in some
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sense a small perturbation of a control problem for which the optimal

control can be computed explicitly. As was mentioned earlier, two such

classes of problems exist:

a. deterministic control problems.

b. stochastic linear regulator problems.

Both of these classes of problems have been exploited for the

completely observable case. First, Fleming (1) developed the mathematical

theory for solving approximately stochastic control problems in case the

intensity of the noise entering the system is small. He suggested a

numerical method for computing the optimal control in terms of quantities

computable with knowledge of the optimal solution of the corresponding

deterministic control problem which is obtained when the small noise term

is absent. Holland developed the numerical procedure in (3). This

numerical procedure has been adapted to a model of a problem of suboptimal

control of statellite momenta in a noisy environment (see (4)).

Second, Tsai (5) developed the theory and approximation procedure

for the approximate solution of stochastic control problems which arise by

perturbing the stochastic linear regulator problem through an additive term

with a small parameter b in the drift coefficient of the unperturbed

dynamical system. His results show that an approximate solution can be

computed in powers b, b2 b3 , ... of the small parameter b. The

coefficients of b, b2, b3 , ... are computable from a knowledge of the

computable solution to the stochastic linear regulator problem. Moreover,

the results there give an estimate of the extra cost obtained by using the

approximate contol.
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In this research we have attempted to duplicate these previous

techniques for the stochastic open loop control problem. Open loop

controls are easier to implement than closed loop controls since they do

not involve real time processing of data. However, this ease of

implementation appears to be partially mitigated by the extra complexity in

computing approximate controls for case b. above.

First, we treated the open loop problems in case the noise entering

the system is small. This problem is the analogue of the completely

observable problem treated by Fleming (1). Although there is some analogy

with the results of the completely observable case, the methods required in

the open loop case are quite different.

Our prior theoretical work in this area had suggested that the

optimal control should be expandable in powers of the noise intensity. An

approximation technique was thus sought that would calculate "best"

controls of a certain form. If an expansion of the optimal control were

valid, the approximate control would match the expansion. We were

successful with the development of an approximation scheme for these

problems. The scheme requires the solution of a generalized linear

regulator problem (of determistic type) which is solved easily numerically.

The numerical method is given and an example illustrat~ng the efficiency of

the method is also presented in the first paper listed in the work for this

section.

Recently, we have attempted to develop an approximation technique

for the approximate solution for the problem of nonlinear perturbations of
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open loop stochastic linear regulator problem (case b above). The problem

is as follows:

For each open loop control u(t), the state x(t) evolves according

to the Ito stochastic differential equation

dx= Ax+Bu+bg(x) dt + m(t)dw(t), x(O)=x0

where A, B can depend upon t, and b is a small parameter reflecting the

intensity of the noise. The cost of using the control u(t) is given by

E 0* T x(t)?1(t)x(t)+ u(t)N(t)u(t) dt.

The problem is to choose the open loop control u which minimizes the cost.

This problem is the direct analogue of the completely observable

problem treated by Tsai (5). His methods do not apply, however, to the

open loop case. It was shown for the completely observable case that the

optimal feedback control yb in the b problem could be expanded as

yb = yO+ bZl+b 2Z2+...+bkZk +o(bk)

for any positive integer k where the coefficients Zi(t,x) could be computed

with a knowledge of the optimal solution of the linear regulator problem.

Noreover, his results give an estimate of the performance obtained by using

as an approximate control

Y0+bZl+...+bkZk

for any positive Integer k.
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We were interested in a duplication of the analogous results for

the open loop control problem. Thus, if ub is the optimal open loop

control, one would want to establish the above expansion with yb, yO

replaced by ub, u0 and the functions Zi replaced by appropriate functions.

We have been unable to develop such an approximation scheme.

However, we have shown the following. Suppose we use any control

of the form uO+bV for some function V. Then the cost of using that control

can be expanded as

C +bE 0T Sx(t, x0 (t))g(x0 (t)) dt = S(O,X0)

where S(s,x) is the cost obtaincA in the open loop linear regulator control

problem (b-O) starting at (s,x) and using the optimal open loop control for

the linear regulator problem corresponding to initial data (O,xo). The

process x0 (t) represents the solution to the above Ito stochastic

differential equation with b=O and use of the optimal linear regulator

control as the control function in the system dynamics.

References:

1. W. Fleming, Stochastic control for small noise intensities, SIMI J.

Control, 9(1971), 473-519.

2. W. Fleming, R. Rishel, Deterministic and Stochastic Optimal Control,

Springer-Verlag, 1975.

3. C. Holland, A numerical technique for small noisestochastic control

problems, JOTA, 13(1974), 74-93.
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4. H. Wong, Suboptimal control of satellite momenta in a noisy
environment, IEEE Transactions on Aerospace and Electronic Systems,
14(1978).

5. C. Tsai, Perturbed stochastic linear regulator problems, SIAM J.
Control 16(1978), 396-410.

Stationary Stochastic Control and Eigenvalue Problems:

The principal eigenvalue for linear second order elliptic equations
with natural boundary conditions in Stochastic Analysis, 139-152.
A. Friedman (Editor), Academic Press (1978).

A minimum principle for the smallest eigenvalue for second order
linear elliptic equations with natural boundary conditions, Comm.
Pure Appl. Math. 31(1978), 509-519.

We have been able to derive a new characterization of the principal

eigenvalue for second order linear elliptic partial differential equations,

not necessarily self-adjoint, wit', both natural and Dirichlet boundary

conditions, and also give a new alternative numerical method for

calculating both the principal eigenvalue and corresponding eigenvector in

the case of natural boundary conditions. The principal eigenvalue, if

appropriate sign changes are made, determines the stability of equilibrium

solutions to certain second order nonlinear partial differential equations.

The corresponding eigenvector enables one to determine the first

approximation of the solution of the nonlinear equation to variations of

the initial condition from the equilibrium solution. These nonlinear

equations are important in the applications. For these reasons it is

important to have these characterizations of the principal eigenvalue and

eigenvector.

Our method converts the determination of the eigenvalue and

eigenvector to determining the solution of a stationary stochastic control
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problem. This latter problem is solved and from it a numerical scheme

arises naturally. This method appears to have applications in solving

other problems.

Secondly, progress has been made on determining the asymptotic

behavior of the principal eigenvalue for some singularly perturbed

eigenvalue problems as a small nuisance parameter tends to zero. The

principal eigenvalue is the optimal value for a singularly perturbed

stationary stochastic control problem. We are thus able to determine the

asymptotic behavior of the optimal value of certain stationary stochastic

control problems.

Long-Term Effects of Noise on Dynamical Systems

Stochastically perturbed limit cycles, J. Applied Probability
15, 311-320 (1978).

An important question in the stability and control of stochastic

systems is the determination of the limiting long-time behavior of the

system using a fixed control. This work answered that question in he case

of a stochastic system perturbed by a small additive noise term where the

control is such that the corresponding deterministic system possesses a

stable limit cycle.

It is shown that in he limit of large time the stochastic system is

near the limit cycle. This is a stability result. Moreover, one can

compute approximately at which portions of the limit cycle one is most

likely to be found. Further various stationary average can be computed.
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These results will be of use in designing approximate controls for

stationary stochastic control systems. For a detailed discussion of these

results, see the completed above paper.

Asymptotic Properties of Nonlinear - Diffusion Equations.

A nonlinear diffusion problem arising in plasma physics, (with J.
Berryman), Phys. Rev. Letters, 40 (1978), 1720-1722.

A nonlinear generalization of the heat equation arising in plasma
physics, (with J. Berryman), in Applied Nonlinear Analysis, 61-66,
V. Lakshmikantham (Editor), Academic Press (1979).

Evolution of a stable profile for a class of nonlinear diffusion
equations with fixed boundaries, (with J. Berryman), J. Math. Phys.
19 (1978), 2476-2480.

Stability of the separable solution for fast diffusion, (with J.
Berryman), Arch. Rat. Mech. Anal., 74(1980), 379-388.

A technique is developed for studying the asymptotic behavior of

certain classes of systems arising in the applications which are governed

by nonlinear parabolic partial differential equations. The techniques

involved the construction of an appropriate Liapunov type function in the

spirit of the Liapunov approach for ordinary differential equations. It is

shown that under certain conditions the solution of the nonlinear parabolic

equation evolves toward an appropriate separable solution of the parabolic

equation. The initial condition only determines the asymptotic amplitude

of the separable solution.

The first paper above is a summary of the application of this

general method to a problem in plasma physics which arises in studying the

diffusion of ionized gas.
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A potential weakness of the approach utilized above has been the

inability to obtain decay rates of the solution to the equilibrium

position and the inability to verify the higher order approximations

which we have been able to construct formally. We have worked, without

success, in this area.

Additionally, we have studied without success the uniqueness

question of the limiting equilibrium position. The limiting position

is described by the equation Au + ue =0, u =0 on D, a > 1.

II •
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