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I. \APPROXIMATIC!: TECH!NIQUES IN STCCHASTIC CCHTROL PROBLZI!MS

\%

In this research we continue our investigations of apprexi-
mation techniques for a wide class cof disc:ete and contirnucus
time stochastic ccatrol problems. Emphasis is placed on the
development ané ctheoretical justificetion 32 techniques which
yield computatiorally tractable alcorithme that answer the
following:

(1) approximaticns to the optimal co:t and the cost of

using a particular control.

(2) approximations to the optimal coi.trol.

(3) evaluation of the relative perfo:mance of two controls.

(4) estimates for the cdeterioration :.n system performancza

due to the failure to observe sy:stem components.

Small Noise Prchlems in Continuous Time 64R

In many control problems the noise en‘.ering the sys-em ls
of low intensity reflecting its role as a wisance parameter.
Recognizing the extreme complexity of solv:ng stcchastic control
problems, one approach has been to solve "approximately" the
stochastic control rroblem in terms of quantities computable frox
the optimal solution to the corresponding deterministic control
problem which results when the noise is absent,.

The general procedure in this approximation technique is to
first establish expansions of the optimal cost and control in
powers of the noise coefficient. The expansions then suggest
appropriate forms for nearly optimal controls and numerical
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The theoretical portion of this research was first treated
successfully by Fleming {4). The numerical algorithms suggested
by the thcecorems werce chclop:d and cmployéc on some two dimen-
sional examples by this author in Holland 9].

A partial solution to the open loop control problem was
cdeveloped by tﬁis author in Hollarnd [9], [.2]. 1In those papers

we were able to theoreticelly establish an expanrnsion of the

optimal cost in powers of tre ncise coefficient. However, we
b were able only to derive anc theoretically justify an approxi-
ration technique for the optimal control in the restricted case

in which each open loop control generates .. nondegenerate Gaussian

process.

Motivated by -an attemp:t to remove £he restriction in these
previous results, we recently considered in (17] more general
open lpop control problems in which each open loop control does
not necessarily geﬁerate a nondegenerate Gaussian process. An
approximation technique was developed that has the advantage that
one finds approximately optimal controls simultaneously for all
sufficiently small noise coefficients. This scheme produces a
control which performs better than the use of the optimal de-
terministic control problem in the stochas:ic control problen.
Moreover as we shcw in [17], this scheme is superior to and does
not agree with the standard secondary accessorYy control problem.

In this research we intend to continu2 our investigations
into the numerical methods suggested by th= above schemes. The
numerical method requires the calculation of a generalized linear
regulator problem which can be solved numerically. Attempts will

be made at order reduction of thw« associat:d problem.




In addition, we intend to look at extensions of the above
techniques to sampled-data problems.

Finally, we are inéerested in a class of completely
observable stationary control problems. Expansions in powers
of the noise coefficient for using a fixed control have been

édeveloped by this auttor in {11}, [14].

Qualitative depencence of stochestic control problems on noise

An area of interest has been the study of the qualitative
behavior of the optimal control and cost of stochastic control
problems. One is not sure the manner in which the introduction
of stochastic effects affects the behavior of the optimal
stochastic control and cost. We have done some numerical work
in [9] for the completely qbservable problem on the perturbation
of.switching surfaces but generalizations are unable to be made.

We récently discovered that a certain class of stationary
control problems have the alternative interp;etation of finding
the principal eigenvalue of second order elliptic, not necessarily
self-adjoint, partial differential equations. From the knowledage
of the principal eigenvalue and eigenfunction one can then deduée
the behavior of the optimal stochastic control and cost. This
then gives a class of stochastic control problems for which one
has an alternative way of studying the qualitative effects of
noise. We intend to continue this investigation further.

Fleming [6] (and with Tsai [3)) have been using stochastic

control methods which are similar to ours to answer interesting

v
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probabilistic questions on the physically significant exit
problem. This gives a second class of prooslems to study noise
effects. '

Lastly, Benes [l] has been examining classes of problems
for which one can compute explicitly the optimal stochastic

control.




—-—-—

-7-
IT. PROBLEMS IN OPTIMAL NONLINEAR FILTERING AND CONTROL

Stationary discrete time control problems

Discrete time stochastic control problems have been tho-
roughly considered. However, most prior work considers the case
in which the controllar remembers all previously obtained in-
formation. This has been called the classical information pattern
by Witsenhausen [24]. We intend tc investigate the stationary
control case where the controller has only partial observaticns
of the system state and no memory. This erphasis is motivated
by systems in which itistoo difZicult or expensive to observe all
system components, and systems in which it is difficult to
impleﬁent controls using past information.

Under certain reasonable.assumptions we have succeeded in
reducirg the optimi.ation rroblem to a problem in nonlinear pro-

: | ‘ gramming [13]. We have also constructed examples to show that
one can do better by using randomized controls than by only using
nonrandomized controls of the current observed data. 1In problems
of this type with complete observations it is known that the
optimization problem can be treated as a problem in linear pro-
gramming [22] and that the controller cannot 4o better by con-

sidering randomized controls [2].

Continuous time filtering problems

In this part of the research we seek 1 computationally
convenient technique for solving the filtering and prediction

"problems for a class of nonlinear stochastic differential equations

subject to partiel observations at discrets time points. The
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applications of the technique described below to trajectery
estimation are apparent.

Let there be given. qg functions fl,fz,... fq which are
known to us. Suppose for some i € {1,2,... g}, unknowr to
us, the state of the process is evolving aczcording to the vector

stochastic differential equations
dx = fi(t,x)dt + g(t,x)dw, x(o0) = x.

At the discrete times tl,... tp’ which are known in advance,
an intermediate observer (usually a machinz) receives noise
corrupted observations of the stochastic process x(t). These

observations y(t) satisfy the stochastic diffurential equations
dy = H(t,x,y)dt + g(t,x,y)dw, y(o) = 0.

Suppose that y(t) € R" for some m. Assume there exists known
pairwise disjoint sets Bi’ i=1,...,m, ( B, = R". Then at each
time tj' j=1,2,... p, we receive from thg interrediate observer
only the information as to which of the events y(tj) € Bi has
occurred.

Our first problem is to determine for each_function fi' the
probability that the function fi is being used given available
information.

Our second prediction problem is the foll}owing: Given our

information at times ¢t = tl'tz""'tp’ and the function fi'

determine the best prediction in mean square of some function

h(x(T)) of the process, T > tp'
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Let us discuss problem 2 which we have recently solved
theoretically. For each possible information set, we must solve
a coupléd set of second order partial differential equations.
Since the boundary conditions are of Cauchy type, they can be
solved numerically. There are mxp information sets, each
requiring the Sol?ing of the coupled set of partial differentiail
agquations. Although these problems appear complex, they have
zhe important practical advantage that they can be completely
precomputed and do not need to be solved in real-time.

In this research ve intend to consider the problems discussed
above looking at both the theoretical solution ané effective
computational methods that can te developed from the theoretical

solutions.

1
|
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I1:. SUMMARY OF RESEARCH ACCOMPLISHMENTS

This section summarizes progress made under AFOSR Grant 77-3286
Problems in Optimal Filtering and Stochastic Control. The research

effort was concentrated in the following areas:

(i) Approximation Procedures for Open Loop Stochastic Control

Problems.
(ii) Stationary Stochastic Control and Eigenvalue Problems.
(iii) Long-Term Effects of Noise on Dynamical Systems.

(iv) Asymptotic propertics of Nonlinear-Diffusion Equatioms.

The first three areas arc relevant to the control of stochastic
systems. The fourth area deals with stability properties and the long
term behavior of systems described by nonlinear partial differential
equations. No progress was made in the area of nonlinear filtering,
although it should be remarked that a transformation in area {ii) above
was developed and utilized independently by W. Fleming, also under
AFOSR support, to study the unnormalized Zakai equation arising in
nonlinear filtering.

Progress in each of the above areas is described in the following

pages.




Approximation Procedures for Open Loop Stochastic Control Problens

An Approximation technique for small noise open loop control

problems, Optimal Control Applications and Methods 2(1981) 89-94.

Nonlinear perturbations of the open loop stochastic linear

regulator problem, working paper.

A major part of our research effort has concentrated on the
development of approximation techniques for open loop stochastic control
problens. The basic theory for the optimal control of Markov diffusion
processes has been the subject of extensive research over the past decade
(see Fleming-Rishel (2)). There remains the problem of developing
numerical procedures for computing the optimal control, or if that is not
possible, approximately optimal controls. If an approximately optimal
control is employed, one wants to know the deterioration in performance

obtained by using this approximately optimal control.

While most deterministic control problems can be solved
numerically, the general problem of computing the optimal stochastic
control is impossible with present-day computers. The major exception is
the stc~hastic linear regulator problem both in the closed loop (completely

observable) and the open loop cases.

One 1s thus forced to develop procedures for computing
approximately optimal controls for most stochastic control problems. The

basic idea has been to solve stochastic control problems which are in some
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sense a small perturbation of a control problem for which the optimal

control can be conputed explicitly. As was mentioned earlier, two such

classes of problems exist:
a. deterministic control problems.
b. stochastic linear regulator problems.

Both of these classes of problems have been exploited for the
completely observable case. First, Fleming (1) developed the mathematical
theory for solving approximately stochastic control problems in case the
intensity of the noise entering the system is small. He suggested a
nu@erical method for computing the optimal control in terms of quantities
computable with knowledge of the optimal solution of the corresponding
deterministic control problem which is obtained when the small noise term
is absent. Holland developed the numerical procedure in (3). This
nunerical procedure has been adapted to a model of a problem of suboptimal

control of statellite momenta in a noisy environment (see (4)).

Second, Tsai (5) developed the theory and approximation procedure
for the approximate solution of stochastic control problems which arise by
perturbing the stochastic linear regulator problem through an additive term
with a small parameter b in the drift coefficient of the unperturbed
dynamical system. His results show that an approximate solution can be
computed in powers b, b2 b3, «es of the small paramete; b. The
coefficients of b, b2, b3, .s+ are computable from a knowledge of the
computable solution to the stochastic linear regulator problem. Moreover,

the results there give an estimate of the extra cost obtained by using the

approximate contol.

inaamhindas
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In this research we have attempted to duplicate these previous
te;hniques for the stochastic open loop control problem. Open loop
controls are easier to implement than closed loop controls since they do
not involve real time processing of data. However, this ease of

implementation appears to be partially mitigated by the extra complexity in

computing approximate controls for case b. above.

First, we treated the open loop problems in case the noise entering
the system is small. This problem is the analogue of the completely
observable problem treated by Fleming (1). Although there is some analogy
with the results of the completely observable case, the methods required in

the open loop case are quite different.

Our prior theoretical work in this area had suggested that the
optimal control should be expandable in powers of the noise intensity. An
appfoximation technique was thus sought that would calculate "best"
controls of a certain form. If an expansion of the optimal control were
valid, the approximate control would match the expansion. We were
successful with the development of an approximation scheme for these
problems. The scheme requires the solution of a generalized linear
regulator problem (of determistic type) which is solved easily numerically.
The numerical method is given and an example illustrating the efficiency of
the method is élso presented in the first paper listed in the work for this

section.

Recently, we have attempted to develop an approximation technique

for the approximate solution for the problem of nonlinear perturbations of
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open loop stochastic linear regulator problem (case b above). The problem

is as follows:

For each open loop control u(t), the state x(t) evolves according

to the Ito stochastic differential equation
dx= Ax+Butbg(x) dt + m(t)dw(t), x(0)=xp

where A, B can depend upon t, and b is a small parameter reflecting the

intensity of the noise. The cost of using the control u(t) is given by
EV T x(£M(£)x(t)+ u(tIN(t)u(t) dt.
The problem is to choose the open loop control u which minimizes the cost.

This problem is the direct analogue of the completely observable
problen treated by Tsai (5). His methods do not apply, however, to the
open loop case. It was shown for the completely observable case that the

optimal feedback control YD in the b problem could be expanded as
YD = YO0+ bz +b2Zp+.. . +bKZ) +o(bK)

for any positive integer k where the coefficients Zj(t,x) could be computed
with a knowledge of the optimal solution of the linear regulator problem.
Mloreover, his results give an estimate of the performance obtained by using

as an approximate control

Y0+bzl+0o.+bk2k

for any positive Integer k.
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We were interested in a duplication of the analogous results for
the open loop control problem. Thus, if ub is the optimal open loop
control, one would want to establish the above expansion with Yb, Y0
replaced by ub, w0 and the functions Z; replaced by appropriate functions.

We have been unable to develop such an approximation schene.

However, we have shown the following. Suppose we use any control
of the forn u0+bV for some function V. Then the cost of using that control

can be expanded as
B PTsile, 0(e)50O0) ae L= 500,50
0

where S(s,x) is the cost obtaincd in the open loop linear regulator control
problem (b-0) starting at (s,x) and using the optimal open loop control for
the linear regulator problem corresponding to initial data (0,xg). The
process x0(t) represents the solution to the above Ito stochastic
differential equation with b=0 and use of the optimal linear regulator

control as the control function in the system dynaniecs.

References:

l. W. Fleming, Stochastic control for small noise intensities, SIAM J.
Control, 9(1971), 473-519. .

2. W. Fleming, R. Rishel, Deterministic and Stochastic Optimal Control,
Springer-Verlag, 1975.

3. C. Holland, A numerical technique for small noisestochastic control
problems, JOTA, 13(1974), 74-93.

-17-
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4. H. Wong, Suboptimal control of satellite momenta in a noisy

environment, IEEE Transactions on Aerospace and Electronic Systems,
14(1978).

5. C. Tsai, Perturbed stochastic linear regulator problems, SIAM J.
Control 16(1978), 396-410.

Stationary Stochastic Control and Eigenvalue Problems:

The principal eigenvalue for linear second order elliptic equations
with natural boundary conditions in Stochastic Analysis, 139-152.
A. Friedman (Editor), Academic Press (1978).

A mininum principle for the smallest eigenvalue for second order
linear elliptic equations with natural boundary conditions, Comm.
Pure Appl. Math. 31(1978), 509-519.

We have been able to derive a new characterization of the principal

eigenvalue for second order linear elliptic partial differential equations,

not necessarjilv self-adjoint, wit® both natural and Dirichlet boundary

conditions, and also give a new alternative numerical method for
calculating both the principal eigenvalue and corresponding eigenvector in
the case of natural boundary conditions. The principal eigenvalue, if
appropriate sign changes are made, determines the stability of equilibrium
solutions to certain second order nonlinear partial differential equations.
The corresponding eigenvector enables one to determine the first
approximation of the solution of the nonlinear equation to variations of
the initial condition from the equilibrium solution. These nonlinear
equations are important in the applications. For these reasons it is
important to have these characterizations of the principal eigenvalue and

eigenvector.

Our method converts the determination of the eigenvalue and

eigenvector to determining the solution of a stationary stochastic control
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problem. This latter problem is solved and from it a numerical schene
arises naturally. This method appears to have applications in solving

other problems. 1

Secondly, progress has been made on determining the asymptotic
behavior of the principal eigenvalue for some singularly perturbed
eigenvalue problens as a small nuisance parameter tends to zero. The
principal eigenvalue is the optimal value for a singularly perturbed
stationary stochastic control problem. We are thus able to determine the

asymptotic behavior of the optimal value of certain stationary stochastic

control problems.

Long-Tern Effects of Noise on Dynamical Systens

Stochastically perturbed limit cycles, J. Applied Probability
15, 311-320 (1978).

An important question in the stability and control of stochastic
systems is the determination of the limiting long-time behavior of the
system using a fixed control. This work answered that question in he case
of a stochastic system perturbed by a small additive noise term where the
control is such that the corresponding deterministic system possesses a
stable limit cycle.

It is shown that in he limit of large time the stochastic system is
near the limit cycle. This is a stability result. Mo;eover, one can
compute approximately at which portions of the limit cycle one is most

likely to be found. Further various stationary average can be computed.




These results will be of use in designing approximate controls for
stationary stochastic control systems. For a detailed discussion of these

results, see the completed above paper.

Asymptotic Properties of Nonlinear — Diffusion Equations.

A nonlinear diffusion problem arising in plasma physics, (with J,
Berryman), Phys. Rev. Letters, 40 (1978), 1720-1722.

A nonlinear generalization of the heat equation arising in plasma
physics, (with J. Berryman), in Applied MNonlinear Analysis, 61-66,
V. Lakshmikanthan (Editor), Acadenmic Press (1979).

Evolution of a stable profile for a class of nonlinear diffusion
equations with fixed boundaries, (with J. Berryman), J. Math. Phys.
19 (1978), 2476-2480.

Stability of the separable solution for fast diffusion, (with J.
Berryman), Arch. Rat. Mech. Anal., 74(1980), 379-388.

A technique is developed for studying the asymptotic behavior of
certain classes of systems arising in the applications which are governed
by nonlinear parabolic partial differential equations. The techniques
involved the construction of an appropriate Liapunov type function in the
spirit of the Liapunov approach for ordinary differential equations. It is
shown that under certain conditions the solution of the nonlinear parabolic
equation evolves toward an appropriate separable solution of the parabolic
equation. The initial condition only determines the %Fymptotic armplitude

of the separable solution.

The first paper above is a summary of the application of this
general method to a problem in plasma physics which arises in studying the

diffusion of ionized gas.
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A potential weakness of the approach utilized above has been the
inability to obtain decay rates of the solution to the equilibrium
position and the inability to verify the higher order approximations
which we have been able to construct formally. We have worked, without
success, in this area.

Additionally, we have studied without success the uniqueness
question of the limiting equilibrium position. The limiting position

is described by the equation Au + u® = 0, u=0 on 232, a>1.
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tions with natural boundary conditions in Stochastic Analy-
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