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ABSTRACT

Numerous computational methods for generating and
simulating binary and grey-level natural digital-image
textures are rroposed using a variety of stochastic
nodels. Pictorial results of each method are given and
various aspects of each approach are discussed. The
quality of the natural texture simulations depends on the
computation time for data collection, computation time for
jeneration, and storage wused in each process. In iost
cases, as computation time and data storage increase, the
visual match between the texture simulation and the parent
texture improves. Many textures are adequately sinulated
using simple models thus providing a potentially yreat

information compression for many applications.

In most of the texture synthesis methods presented in
this thesis, pixel wvalues are generated one-at-a-time
according to both the given model and the values of pixels
previously generated 1in the synthesis wuntil the image
space 1is completely filled. Nth-order Jjoint density
functions estimated from a natural texture sample were

used for this purpose in one method. The results are
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excellent but the storage required, even for Dbinary
textures, is large. Therefore, a much simpler first-order
linear, autoregressive model was applied to the texture
synthesis problem. Using this model on both binary and
continuous-tone textures, each pixel 1is generated as a
linear combination of previously generated pixels plus
stationary noise. The results indicate that many textures

are satisfactorily simulated using this approach.

By adding cross-product terms, the first-order linear
model 1is extended to a second-order linear model. The
simulation results improve slightly but the number of
computations required for the statistics collection
process increases drastically. Non-stationary noise was
then used in the synthesis process and further
improvements in the quality of the siwnulations are

achieved at the cost of increased storage.

Methods of texture simulation wusing more than one
model are studied in this thesis. These multiple-model
are useful for many textures, especially those with
macro-structure, They also improve the fit of the model
when applied to the parent texture data and therefore may

produce improved simulations.

A final model, called the best-fit model, generates

texture simulations directly from the parent texture

Xiv




itsel Each pixel in the synthesis image 1is generated
based on the similarity of 1its previously-generated,
neighboring pixel values to pixel values in all
similarly-shaped neighborhoods in the parent texture. The
measures of similarity at all points in the parent
texture, along with a random variable, are used to
generate the next pixel value in the synthesized image.
The synthesis results using model are excellent but the

synthesis process is very computationally demanding.

Although the success of texture synthesis 1is highly
dependent on the texture itself and the modeling method
chosen, general conclusions regarding the performance of
various techniques are given. Methods of texture
segmentation and identification based on texture synthesis

results are also presented.




CHAPTER 1

INTRODUCTION

1.1 Introduction

Texture is important characteristic for the analysis
of many types of images. It is an important feature for
discrimination and identification of regions in images and
as a result the wvast majority of work on texture has
concentrated on these applications. Al though many
different texture discrimination techniques have been

developed, most are ad hoc.

The problem inverse to texture analysis 1is texture
synthesis, or the generation of 1image fields having
analytical and visual characteristics similar to natural
textures. Texture synthesis has been over-shadowed by the
emphasis placed on the discrimination problem and its
applications. Little work has been done on synthesis even
though numerous applications exist. For example,
intelligent image sensors could transmit boundaries of
textured image reqgions. Based on statistics gathered by
the sensor, this region could be reconstructed using

simulation techniques with little or no loss of




information. The result is excellent data compression,

Texture synthesis can also be used as a texture
analysis tool 1leading to a better understanding of
textures and their perception by humans as well as
improved methods of discrimination. By carefully
controlling the statistics of a texture 1in a synthesis
process visual changes 1in texture are observed. Thus,

texture synthesis methods allow researchers to identify

and measure the information content of individual
statistical measurements. By assembling these
measurements and incorporating them 1into a texture

simulation process, statistics may be measured from a
parent texture and used to produce a texture siwmulation.
The degree to which the parent and simulation are visually
similar indicates the value of the statistical
measurements and the model used in the simulation process.
Given a group of statistical measurements which are
proposed to be useful texture measures, possibly the best
may be chosen based on the guality of the corresponding
texture simulations. 1In this way, researchers are able to

develop better discrimination as well as better synthesis

methods.
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1.2 Concepts of Texture Synthesis

Despite 1its importance, a precise definition of
texture does not exist, Texture is often considered to be
composeé of a set of primitives and their spatial
organization. More 1important, texture usually possesses
an invariance property. We will wuse this invariance
property as one definition of texture in this thesis. An
observer should detect no visual difference between one
windowed portion of a textured region and another. Thus
texture 1is also a function of window size. If a
difference over a region 1is detected then either the
texture is not homogeneous (see section 2.1) or a larger
or smaller window should be wused. Windowing is very
important when gathering statistics to be used for texture

discrimination or texture synthesis.

The approach to texture synthesis used in this thesis
is outlined in Fig. 1.1. As a first step in the synthesis
process, statistics are calculated from measurements taken
on a parent sample texture. The statistics are then used
to estimate model parameters. In the £final step, these
model parameter estimates are used to generate a texture

synthesis.

All of the digital impges in this thesis are 512 by




STS9Y3UAg 2an3ixa] 03 yoevoaddy T°1 2anbig

aanixay
p221sayjuig

I03BI3U39H
sanixal

sS2]ewTlsy

T2POK

l¢—— 1231°urIR] G—

103037109
SOTISTIELIS

2an3ixay
Juaxeg




512 pixXels. They have either 256 gray levels (continuous

tone) or 2 gray levels (binary). The original parent
texture images in this thesis have been chosen from an
album by Brodatz [l]. High quality prints obtained from
the photographer were scanned and digitized at the USC

Image Processing Institute.

The performance measure for any texture synthesis
method is purely visual. Thus the rating of any synthesis
system must be made by an observer and is subject to human
variability. These facts must be remembered when
consid;ring the results of synthesis techniques discussed
in this thesis and in other works. For this reason, the
visual analysis of results in this thesis is left
primarily to the reader. Nevertheless, general guidelines
and trade-offs involved in texture synthesis have been

developed in the course of this work.

The success of any texture synthesis as weli as any
image processing technique (enhancement, restoration,
etc.) also depends on the display medium used for final
results, It 1is wunfortunate that the product of so much

work is subjected to the imperfections of recording and

printing processes. We have attempted to minimize these .

degradations as much as possible.




1.3 The Stochastic Model

The approach used to synthesize textures in this
thesis is probabilistic (statistical) rather than
structural because the structural approach would probably
require a different processing method for each texture.
Textures which are irreqular and highly random are often
difficult to analyze using a structural approach as they
do not have "structure” as such, On the other hand, such
textures are easily analyzed wusing a probabilistic
approach. Textures which are not composed of well-defined
non-varying primitives usually do not lend themselves to a
structural approach. Highly regular textures which are
usually best explained using a structural approach may
also be studied using a statistical approach. In this
case, the statistical model must be constructed to explain
regular and periodic events with less importance placed on
random elements of the model. Naturally, the structural

and probabilistic approaches overlap considerably.

In our statistical approach to texture analysis and
synthesis we will use various stochastic models. Textures
are analyzed as series of pixels to which a model is fit.
The time or space series of successive pixels which forms

our sample parent texture 1is regarded as a sample

realization from an infinite population of such textures.




A model is derived which attempts to explain the numnerical
sequence of pixels in the observed parent texture. This
stochastic model may then be used to simulate a similar

sequence which becomes our texture synthesis.

The power of the stochastic models presented in this
thesis is that it is easy to use the model in a mode which
synthesizes textures given the necessary model parameters.
In this sense, the stochastic approach is sufficient to
capture everything about a texture. The quality of the
synthesis is also a measure of the amount of information

contained in the model.
1.4 Organization and Contributions of the Thesis

In the next chapter, a one-dimensional texture
synthesis model is mathematically developed. It is
analyzed as a Markov model where the state of the system
is considered to be defined by the sequence of previous
pixel values. Similar texture synthesis has also been
done by Julesz [8], Purks and Richards [3], Conners [7],
Abend [6), and Gagalowicz [4,5]. With the simple model
presented in Chapter 2, textures with controlled
statistical properties are generated and used to study

human perception of texture.

In Chapter 3, the one-dimensional model is extended




to tw. .imensions and is used to synthesize natural binary
textures. This work was presented earlier by Garber (9]
and similar work was done by Lu and Fu [10]. This
two-dimensional probabilistic model which generates
textures based on higher-order probability densities is
then reduced carefully to a linear autoregressive model.
Results of both methods applied to a wide variety of

textures are shown.

In Chapter 4, a method to reconstruct higher-order
densities for texture synthesis from second-order
measurements is presented. The results confirm the value

of second-order statistics in texture analysis.

In Chapter 5, the autoregressive model is applied to
continuous-tone texture synthesis., Much simpler synthesis
models were used by McCormick and Jayaramamurthy (2] and
Tou, Kao and Cheng {11]. The success of their method was
not established due to the 1limited number of textures
involved in their studies, however their results suygested
that time series models could be used to generate soime
natural textures. The 1large, two-dimensional, linear
model presented 1in Chapter 5 is then extended to a
quadratic autoregressive form and synthesis results with

both stationary and non-stationary noise are presented.

The generated textures show that these models define




valuable synthesis methods.

In Chapter 5, texXture synthesis methods which
incorporate more than one autoregressive model are
presented. The multiple-model methods methods could be
valuable in synthesizing textures which have very coarse

structure and textures which are composed of subtextures.

In Chapter 7, a texture synthesis method which
simulates complete probability density information for use
in the synthesis process is éeveloped. This method is
computationally burdensome but also yields the best
synthesis results. A inethod similar to this will be

valuable as processor speed increases in the future.

In Chapter 8, methods for adding and removing
non-homogeneities in texture mean and variance are

presented.

In Chapter 9, the measures used to estimate

parameters in the autoregressive mocdel are applied to the

problem of texture discrimination. The methods differ
from those presented earlier by Deguchi and
Morishita (121, Kaiser [13], Pratt, Faugeras and

Gagalowicz [14], and Haralick t al. [15]. The chapter

illustrates two approaches to use statistics from a

synthesis model to discriminate textures.

N .,




The experimental results of this thesis are larqgely
visual therefore particular attention should be devoted to
the figures. A casual reader could read section 2.1,
Chapter 3, Chapter 5, and Chapter 7 and still understand
much of the basic concepts of the work as well as major
results., Chapter 10 contains a final summary and

comparison of the models and their corresponding results.

As a whole, this thesis presents results in texture
simulation wusing methods developed herein or only briefly
mentioned in other previous studies. The texture
syntheses are exceptional 1in some <cases and certainly

notable in others. This work should encourage additional

research in the field of texture synthesis.

1.5 Notation

Any variables which have different meanings within

this thesis are clearly defined in the places where they

are used. The term "complex" means complicated rather

than a variable with real and imaginary parts. The terms

"normal distribution"” and "normally distributed" are to be

taken in a statistical probability density function

(ie.Gaussian distribution) sense.




CHAPTER 2

ONE-DIMENSIONAL BINARY TEXTURE MODEL

2.1 Introduction

Texture is a complex image attribute that has been
the subject of much research and is difficult to define
precisely. The relationship between discrimination of
textures by human observers and the mathematical
attributes of textures has also been extensively
researched. Models for computer discrimination have been
proposed based on statistical parameters considered in

some aspects to be primary texture measures.

The terminologies in a portion of previous texture
work have often been vague at best. As a result, the
terms second-order and third-order have been seriously
twisted and misinterpreted from study to study. In this
and following chapters, we will attempt to suppress this

confusion by carefully defining the various terms.

The stochastic approach toward texture analysis
considers texture fields as samples of two-dimensional

stochastic fields. Assuming that we are dealing with

11




e

sampled and quantized imagery, let I(nil’niz) denote the

random field. Here ni and n,, are integers representing

12
coordinates of points in the image plane. Let Ki be the
vector having coordinates n;; and nj, (i.e.ﬁi=(nil,ni2)).

Second-order statistics are given by the set of

second-order joint density functions

Pﬁi,ﬁ.(vi’vj) (2.1)

for all possible vectors Hi and Ej, where Vi and Vj are
the values of the random variables I(ﬁi) and I(Ej),
respectively. 1In most texture work and in all of the work
in this thesis (except for the work in Chapter 7 and
Chapter 8) the random field is assumed to be homogeneous,

that is, all orders of probability densities are invariant

through translations. Thus,

Pr AL T PRLag,A.4E (2.2)
i3 i j

where ¢ is an arbitrary vector constant. As an example,
P(Vl,Vz) S P(V3,V4) (2.3)

where V5, V,, V3 and V4 are as shown in Figure 2.1, In
most of our work, dummy values of random variables
(denoted for example by V;) will be used to label pixels

=
at vector location nj.

12



Given the assumptions that a texture field is
homogeneous, the joint density functions P? for all vector
separations ¥ = ﬁi—ﬁj represent the most complete set of
second-order statistics possible. The statistical
expectation of any functions of these joint density
functions are called second-order statistics. If a pixel
is connected to any of its neighbors on the same row, that
is, 1f we consider neighbors immediately to the left or
right (such as Vg and Ve in Figure 2.,1), then their joint
density 1is called a second-order nearest-neighbor joint
density and any statistical expectations of the joint
density are second-order nearest-neighbor statistics.
Nearest-neighbor densities and nearest-neighbor statistics

are very important in this chapter as the textures to be

generated are primarily one-dimensional.

Similarly, third-order statistics are given by the

set of third-order density functions

P+ > > (vi,vj,v ) (2.4)

n.,n.,n

17797k k

Assuming homogeneity of the texture, then

P~ > + = P~ > > > > -
. .+ .+ +c (2.5)
i j k n1 c,nJ c,nk

for all if; and an arbitrary vector constant &. As an

example,
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P(Vl,Vz,V3) = P(V4,VS,V6) (2.6)

in Figure 2.2. The statistical expectatidns of any
function of these third-order densities are called
third-order statistics. All second-order statistics may
be derived from third-order Jjoint densities. In this
chapter, third-order statistics involving adjacent pixels
along an image row, such as the pixels, V7, V8, V9, in
Figure 2,2, will be called third-order nearest-neighbor

statistics.

Julesz [8] created computer generated patterns with
controlled high-order statistical properties. A
conclusion, often referred to as the Julesz conjecture,

drawn from his work is that texture fields differing only

in third- and higher-order statistics cannot be
discriminated by a human viewer. Pollack [16] showed
later that textures whose first- and second-order
nearest-neighbor probabilities are equal may be

discriminated by varying the third-order nearest-neighbor
probabilities. Purks and Richards (3] extended this
concept to create texture patterns that differ only in
their statistics for four adjacent points. This study
indicates that such textures can also be easily
discriminated. However, as was pointed out by Pratt [14],

the second-order probability densities of the two fields

14




are not constrained to be equal for arbitrary pixel pairs
along an image line., Thus there is still some question as
to the relationships between measured mathematical
parameters and human discriminability. Later work by
Gagalowicz [5] seems to indicate that carefully generated
binary patterns whose second-order probability pairs are
equal for arbitrary distances can be visually
discriminated by human observers and therefore presents a
valid contradiction to the Julesz conjecture. Controlling
different statistics of a texture is often a painfully
difficult process and as a result, most of these textures
are generated using approaches unlike the Markov approach
of this chapter. Often blocks of pixels are generated
with certain properties or patterns with special
orientation and separation are used to study the effect of
statistical changes on the human visual system. The
mathematical relationships between the Jjoint density

functions of any texture are indeed complex.

For these reasons, we begin with one rather simple
method of generating Markov one-dimensional binary
textures. In later chapters, these ideas will be modified
and extended to generate and simulate two-dimensional

textures.

We have studied in detail the mathematical




relationships of parameters involved in binary
computer-generated one-dimensional texture patterns.
Texture patterns in this paper have been generated using
the mathematical relationships derived herein. Methods
have been developed to control texture statistics for both
nearest-neighbor and non-nearest-neighbor cases. Examples
of both types of textures are presented. Using these
methods, numerous counter examples to Julesz's conjecture

may be generated and are illustrated in this Chapter.

Throughout this chapter, the P(Vl'VZ""'VN) will
denote the nearest-neighbor, Nth-order joint densities of
our one-dimensional texture and the pixels VieVoreoesVy
will be adjacent to one another in the sequence as shown

in Fig. 2.3 unless otherwise stated.
2.2 Generation Procedure

One-dimensional binary textures represent the
simplest form of texture possible. It is believed that
such binary patterns force hnuman observers to utilize
primitive wvisual mechanisms in discrimination. They are
not designed to replace or imitate natural textures but
are experimentally valuable in deriving concepts

concerning texture attributes due to their mathematical

simplicity.
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In this experiment, binary one-dimensional sequences
with carefully-controlled transition probabilities,
dependent on the previous four points, were generated.
Each sequence was then broken up into shorter 512-pixel
strings which were stacked to form the two-dimensional
512x512 array which served as the texture pattern as is
illustrated in Figure 2.4. Thus, the derived statistics
are only controlled in one dimension but the final texture

is two—-dimensional.

we define the & priori probability of a binary
sequence of 1length N by P(Vl’VZ""’VN) where each Vi'
i=1,...,N is either 0 or 1. In our experiment this
binary sequence is deternined by generation parameters.,
This set of parameters, GO(Vl,Vz,...,VN), each of which
represents the probability of generating a 0 after the
contiguous binary sequence Vl’vz"'°’VN' cdefines tie
Markov process used to generate the texture pattern. [t

follows that the probability of generating a 1 after the

sequence Vl'vz""'VN is l—GO(Vl,Vz,...,VN). That is,

= 1- (2.7)
GO(Vl’V ..,VN) 1 Gl(vl'v2""’VN)

2"
Illustration of this commonly-used texture gJgeneration
method 1is given by Purks and Richards [3]. However, it
should be pointed out that their generation parameters

were in many cases constrained to provide equal N-gram
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statistics, P(Vl,Vé,...,%q). The term "N-gram" refers to

the Nth-order joint density function of a texture and was
used by Purks and Richards in their study of texture. The
term "“N-gram"is frequently wused 1in this thesis as a
substitution for the longer terminology "Nth-order Jjoint
density function." A texture procedure, more general than

that proposed by Purks and Richards, is detailed here.

These generation parameters are actually a special
set of conditional probabilities. Only this specific
group of conditional probabilities is used to generate the

texture.
2.3 Analytical Analysis of the Markov Texture Process

By examining the mathematics of the Markov process we
hope to generate patterns according to a set of given
probabilities P(Vl,vz,...,VN) which may be named the
N-gram statistics of a specific pattern. We must
therefore deal with the relationships that exist between
these N-gram statistics and théir generation parameters
denoted by G(Vl,Vz,...,VN). Examining these relationships
and also those between N-gram statistics of different
lengths (that is the relationships between

P(Vl,Vz,...,V and P(Vl'V2'°"'VN2) for all N1 and N2)

)
N1
leads us to an understanding of the probabilistic system

involved and thereby a method of generating desired

20




texture patterns.

In generating random texture sequences, it is wuseful
to first 1loock at a simple analogy to the process from
which basic concepts and conclusions c¢an be drawn. We
might regard this generation to be equivalent to the
experiment consisting of tossing a "smart" coin that has a
finite memory. In this case, GO(Vl,VZ,...,VN) might
represent the probability of tossing a "heads" given the
previous sequence of N tosses was Vl,Vz,...,VN. The
resulting string of "1"'s and "0"'s (0 1is the random
variable denoting heads, 1 denotes tails) recorded from
this experiment is our "texture." We realize immediately
that the texture is "determined"” by this set of generation
parameters GO(VI’VZ"°"VN)' Using the concept of
conditional probability where P(A/B) is the probability of

A given B we notice that

= 2.8
Gy (VyrVyrenesVy) P(O/V ,VyreeesVy) - ( )

Perhaps the most important concept derived from these
generation parameters is that of the finite memory of the
system. As is indicated by the notation GoVy1eVoreee Vi),
the probability of generating a zero depends on the string
of binary values vl,vz,...,VN and not those "“preceding"”

Vl‘ It is thereby suggested that our system has an N-gram

memory and we will define such a system as




N-gram—-dimensional. For example, returning to our coin

tossing experiment, if we are in a four-gram-dimensional
system, the probability of tossing a head depends on the
four previous tosses only and all these conditional
probabilities are determined by the sixteen parameters

GO(vl'VZ'VB'V4)'

With these concepts in mind we <can find these
generation parameters GO(Vl’VZ"“’VN) given the desired
probabilities P(Vl,Vz,...,VN) and vice versa. The
approach taken by Purks and Richards [3] in finding these
N-gram statistics 1is based on sampling the generated
textures. This may be seen by examining the entries in

)
Table I of Ref. [3]. The entries correspond to the number
of each N-gram counted in the texture generated and the
accuracy of such probabilities depends on the law of large

numbers, So the true probabilities p(vl,v ,...,VN) are

2
only approximated by the output textures and this
approximation is ©poor when the physical size of the
textures is small. These estimates have greater variance
when the true ©probabilities are small. Therefore it is

desirable to compute the exact probabilities given the

generation parameters of the system.

Before proceeding further it is useful to prove the

identity
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P(VysVyree e Vo ) = (2.9)
P(Vl'v2’°"’VN~1’O)+P(vl'v2""'VN—l'l)
Proof:
p(vl,v2,...,vN_l,l) =
P(Vllvzl-oOIVN_l)*Gl(Vllvzl'"IVN_l) (2.10)

P(Vy,Vyrene Vg 1:0) =
PV s Vyrene Vg 1) #G (Vi Voreee, Vg 1) =
P(Vl,Vz,...,VN_l)*(l-Gl(Vl,V2,...,VN_l))
therefore

P(Vl,VZ,...,VN_1,0)+P(V1,V2,...,VN_l,l)

2""’VN—1)
As a result we have the following three sets of

P(Vl,V

equalities
P(Vl'vz""'VN—l’O)

P(Vl’vz”"’VN—l)*GO(Vl’VZ"‘"VN—l) (2.11)

P(Vl'VZ' 1) =

" rVN-17
P(V)Vyreee Vg 1) % (1=Go (V) ,Vyyee V1))

- (2.12)
P(VyiVyrenesVy )

PV Vyree sV 10V +P(V ,Voyen, Yy 101)

- (2.13)
Gy (VyrVyrenesVy_g) = PV Voree Ve 140)/

2!
(P(Vl,Vz,...,VN_1,0)+P(V1,V2,...,VN_l,l)).
Equation (2.13) results from Egs. (2.1ll) and (2.12) and is




essentlally a statement of Bayes theorem for our problem.
2.4 Texture Statistics From Generation Parameters

Let us then consider the problem of obtaining the
generation parameters (G's) from the N-grams (P's).
Immediétely we come to the conclusion that this 1is a
trivial problem. One might merely use Eq. (2.13) to
deduce the generation parameters. However, the equations
derived so far do not indicate the extensive relationships

which exist between the N-grams.

Equation (2.13) is not invertible so it is not useful
in obtaining the N-gram statistics, P(Vl,...,VN) of a
sequence given the generation parameters. As was stated
above, once the generation parameters are defined, a
texture may be generated using those parameters and the
N-gram statistics are determined, We also know that once
a complete set of N-gram statistics P(Vl,...,vN ) are

1
, the N-gram statistics P(Vl,...,VN )

2
may be resolved using Eq. (2.12) for all N2<Nl. Given the

defined for some N1

generation parameters of a system, GO(vl'VZ""’vN)’ we
can analytically determine the N-gram statistics,

P(Vl,vz,...,VN) of the resulting texture.

The solution to this problem of finding N—gfam

statistics given generation parameters may be found by
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considering the generation procedure as a discrete state

Markov process. This approach 1is readily seen when
considering the generation parameters GO(Vl’V2""’VN) as
transition probabilities. 1f we consider a
two-dimensional system with P(0,0),P(0,1),P(1,0) and

P(1,1) and generation parameters G(0,0), G(0,1), G(1,0)
and G(1,1) we may define our system as composed of four
possible states (0,0), (0,1), (1,0) and (1,1). 1If the
system is in state i at the Kth observation and in state j

at the (K+1)th observation then we say that the system has

made a transition from state i to state j at the Kth stage
of the generation process, In our example an observation
is taken at each generation of a single new binary wvalue
and the state is determined by the values of the last two
binary numbers generated. As an example, consider the
sequence 0,1,1,0,0. We might consider the system to be in
the (0,1) state at the start which may represent the Kth
stage of our generation process then a transition is made
to the (1,1) state at the (K+l) stage. These transition
probabilities are determined by the generation parameters
of the system. We also note that our N-dimensional system
has 2N possible states, As the transitions from each of
these 2N possible states to each of the 2N possible states

is fixed by our generation parameters we may form a

transition matrix T whose elements t(i,j) represent the

25
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probability of a transition from the ith state to the jth
state. If T is the transition matrix of a regular Markov
chain, then there is a unique probability vector ; which

has positive coordinates and satisfies

T~ >

This same vector B may be computed by taking any row of

the matrix
4 (2.15)

as q approaches infinity [17]. The vector B represents
the vector of steady state probabilities. In our case it

contains the desired probabilities p(vl’VZ""'vN)'

It is important to realize that this theorem holds
for regular Markov processes., If there is an integer g
such that every element of the matrix in Eq. (2.15) is
stricly positive then the pr&cess is regular. Some
processes are not regular such as absorbing Markov chains
[171]. When any element of the transition matrix is equal
to one along the diagonal, the process is said to be
absorbing given that the system may begin in any state.
This could happen if GO(O,O) = 1 for example (a series of
0's would be generated in this case). For the purposes of

our discussion we will assume that
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0 < GO(vl'VZ'”"VN) <1 ) (2.16)

for all vj. This is a sufficient but not necessary

condition for the process to be regular.

Applying these concepts to a two-dimensional system

we obtain the transition matrix

Final State

] 00 01 10 11
00  G,(0,0) 1-G,(0,0) 0 0
Initial
State |01 0 0 Gy(0,1)  1-G,(0,1)](2.17)
10 G,(1,0) 1-G,(1,0) 0 0
11 0 0 Gy(l,1)  1-G,(1,1).

The first row contains the transition probabilities
from state (0,0) to states (0,0), (0,1), (1,0) and (1,1)
in that order. The following set of equations results

when Eq. (2.14) and Eq. (2.17) are combined:

[ 1T 1 .7
G,(0,00-1 0 Gy (1,0) 0 p(0,0)] |o
1-G,(0,0) -1 1-G,(1,0) 0 p(o,1)| (o
0 0 x -| l2.18)
0 G, (0,1) -1 Gy (1, 1| [P, 00 |o
| o 1-G,(0,1) 0 -6, (1,1 [P1,1)] [o]

As the above system is singular, we may form an




equivalent non-singular set by replacing any equation with
P(0,0)+P(0,1)+P(1,0)+P(1,1) = 1 (2.19)

by using the fact that 5 is a probability vector. Solving
this system gives the desired two-gram statistics

P(Vy,Vy).

Examining these generation parameters further we find
that the same N-gram statistics may be generated by
generation parameters of a different dimension. For

example, consider the generation parameters in Table 2.1.

TABLE 2.1. EQUIVALENT GENERATION PARAMETERS

Set 1 Set 3
GO(O,O) = 0.05 GO(O,O,O) = 0.05 Go(l,0,0) = 0.05
GO(O,l) = 0.07 GO(O,O,l) = 0.07 Go(l,O,l) = 0.07
Go(l,O) = 0.92 GO(O,l,O) = 0.92 Go(l,l,O) = 0.92
Go(l,l) = 0.75 Go(O,l,l) = 0.75 Go(l,l,l) = 0.75

Notice that the ©probability of generating a zero
following a V1+V5,V3 does not depend on V;. The values,
Go(vl,v2,v3) of the second set indicate that the system is

memoryless beyond two previous generation steps. We may

write
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GO(vl'V2'v3) = P(O/Vl'VZ'V3) = (2.20)
P(O/V21V3) = GO (V21V3)

for all V2 and V3.

It follows that, according to Eq. (2.11), the
P(Vl,vz,...,vN) are also determined in our example for N>2

given P(Vl'vz) and GO(vl'VZ)' Thus we have

PV ,V,y,V3) = P(Vl'VZ)*GV3(V1'V2) (2.21)

P(Vl,Vz,V3,V4) = P(Vl,Vz,V3)*GV4(V1,V2,V3)

PV rVprVa) ey (VoiVy) (2.22)

4
We conclude that given any set of generation parameters
Go(VisVoseee,Vy) we may form a set of generation
parameters Go(Vl,Vz,...,VN), M greater than or equal to N,
according to the rule

sese sV

Gy (Vy .,V M-N’ VN4 V) (2.23)

-2
Go Vynez e+ 1 Va)
that generate an equivalent set of N-gram statistics and

therefore equivalent textures.

When desiring to generate textures according to a
given set of N-gram statistics, P(Vl,Vz,...,VN) we must
realize the set of constraints imposed on the set. For

example,
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for all N. Returning to the set of equations used to
determine the 2-gram statistics in matrix form we realize
that, by adding the first two rows and last two rows of
Eq. (2.18), P(0,1) = P(1,0). 1In fact, by considering the
set of equations arising from the set of equations derives

from the generation systems of higher dimensions we £ind

P(V,,V VoreeesVyiVy)

2'V2’ (2.25)
P(V3IV2IV2'V2I"‘IV2’V1) :

This implies that many constraints are present on the
N-gram statistics. For example, in the 3-gram-dimensional
system containing P (V

l'V21v3)

P(0,0,1) = P(1,0,0)

(2.26)
P(0,1,1) = P(1,1,0)

but also by Eq. (2.12) and the fact that P(0,1) = P(1,0),

I

P(0,1,0)+P(0,1,1) = P(1,0,0)+P(1,0,1) (2.27)

and
p(0,0,1)+P(1,0,1) = P(0,1,0)+P(1,1,0)

By definition we also know that




P(O,Vl,V VN_l)*GO(O,V V2,...,V

27 1 N-1)
+P(llvllvzl' o . IVN_l)*Go(llvllvzl L] IVN_l) (2.28)

= P(Vy,VyrenasVy 100

and
P(O,V1’v2, LI ’VN—l)*[l_GO(O'Vl'VZ' o 0 ,VN—]_)]
+P(1,V1,V2,. e s 7 N"l)*[l_GO(l'Vl’vzl e s o 'VN-l)]
= (2.29)
P(V sVoreee V1o ) o
Combining Egs. (2.28) and (2.29) with Eg. (2.12)
P(O,Vl,Vz,...,VN_1)+P(1,V1,V2,...,VN_l) =
(2.30)
P(VyreeesVgoy) .

Equation (2.30) holds for all N>2.

Four constraining equations exist when Eqs. (2.24),
(2.25) and (2.30) are reduced to orthogonal form for this
3-gram-dimensional system. This implies that we have four
degrees of freedom when choosing the eight wvalues
P(Vl,VZ,V3) along with the obvious constraint that
P(vl,vz,v3)>0. This is precisely the number of degrees of
freedom in the set of GO(Vl'VZ) which have only the range
constraint of Eq. (2.16). For higher N-gram-dimensional
systems, P(Vl,...,VN) always has 2N_l constraints on it

from Egs. (2.12), (2.24), (2.25) and (2.30). Thus we see




—

v TR T e e R e

that Eq. (2.13) holds in a degrees of freedom sense.

In conclusion, a method of determining N-gram
statistics from generation parameters using the concept of
a Markov chain was developed and a set of linear equations
describing the constraints on the N-grams was presented.
Using this approach to generating texture patterns a large
variety of textures may be easily generated and examined

using a minimum amount of effort.
2.5 Texture Moments

The above equalities and inequalities provide a full
understanding of the texture generation system in
probabilistic terms., Still further conclusions can be
derived from them. From the above we see more clearly
that the generation parameters G(Vi,Vys.ee.,Vy) determine
the texture completely and thus define the N-gram
statistics P(V;,...,Vy) for all M. Also for a given set
of P(Vl,...,VM) there can exist an infinite number of
jJeneration parameters, G(Vl,V2,...,VN), which would
generate many textures with such statistics if N>M-1.
Provided the constraints on the statistics P(Vl,...,VM)
are met just one texture could be generated if N = M-1 or
perhaps none at all if N<M-1l. Thus textures with equal
first, second, third and fourth nearest-neighbor

probabilities can be generated.
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Parameters thought to be useful in texture
discrimination may also be easily developed. For example,
joint moments about the mean defined as

r r r r

1 2 3 k
E[(xl-ul) (x2—u2) (x3-u3) ...(xk-uk)

] (2.31)

where 2; ri is the order of moment [18]. The rth moment

of Xy is defined as

r __2 : 2 : r

E(xi) = E .o Xif(xl""’xk) (2.32)
1 X2 Xx

where f is the joint probability distribution of the X .

From our binary textures we could define the following

parameters:

E{xo} =inf(xi) = in P(xi) =

u —4

0.P(0)+1+P(1) = P(1) |
o® = E{(xy~u) 2} =Z(x—u)2f(x) = f

(0-P (1)) 2P (0)+(1-P (1)) 2P (1)
= P(1)-P(1)2

E {(xo-u)3} =:£:(x—u)3f(§) = (2.33)
(0-P (1)) 3P (0)+(1-P (1)) 3P (1)
=2p(1)3-3p (1) 24P (1)

_ E{ (xy=u) (xy-u)} _ P(1,1)-P(1)>
o = 2 = 2
o P(1)-P(1)
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B (xg=u) (xq-1) (xy=1)) P(1,1,1)-3P(1,1) -P(1)+4P (1)

o3 (P(1)-p(1)2)3/2

where P(1), P(1,1), P(i,1l,1) represent nearest—-neighbor
(N-gram) statistics although this can be changed to
include non-nearest-neighbor statistics tﬁus creating new
texture parameters. The above parameters are useful in
discrimination therefore only when tektures differ in

their (3-gram) or shorter statistics.

2.6 Constraining Second-Order Statistics

We describe now a method which allows
non-nearest-neighbor statistics to be controlled using the
relationships developed in the Sections 2.3 and 2.4.
Because second-order probabiligies are of interest we
investigate the conditions required to assure equality of
second-order statistics for non-nearest-neighbor
statistics. If we denote GO(Vl’VZ""'VM) as our
generation parameters and P(Vl'VZ""’VN) to be their
associated N-gram statistics then for the second-order ?

statistics of one texture to be egual to another for the

(N-1)st neighbor distance,

T T =

34




z z P_(V eV Vg e V)
V)

Vg1 (2.34)
2 : E :p (V oV Vg ree e V)
Vo o VN-1

for Vi,VNs{O,l} where P, ,Py represents the N-gram
statistics for the first and second texture respectively.

It can also be shown that

:z: 2{: PV Ve VyreensVy) =
}E: :E: PV, Vyrenn V) - (2.35)

N Yk
o e T Gy Vieomy e Vi1
where
1
0

Vj Vj=
Recall that the N-gram statistics, P, are a function

of the generating parameters G. If the second-order
statistics are to be equal for two textures regardless of
neighbor distance then Eq. (2.35) must hold for all N. It
was previously believed that combining Egq. (2.34) and
Eq. (2.35) vyielded a non-redundant non-linear set of
equations that would imply that two textures having equal
second-order statistics must have the same generation
parameters [19]. Julesz (8] also stated that Markov

binary textures having equal second-order probability




distributions cannot exist. He then proceeded to work

with textures of four grey levels.

In the next section, we will show that binary
textures with equal second~order statistics for all
distances can be generated using a carefully-chosen set of
generation parameters and that these texture contadict the

Julesz conjecture.
2.7 Experimental Results

We may define second-order statistics for

non-nearest-neighbors as

(2.36)

P(Vl,Vj) = E .o E E ...E P(Vl,Vz,...,Vj,.“,VN) .
\Y \Y

2 Vi-1 Y541 YN

Purks and Richards (3] attempted to demonstrate that
textures equal in second-order distribution could be
generated with visually detectable differences. However,
they merely held second- or third-order statistics equal
between the two textures for small j, while wvarying
second- and third-order statistics for longer j, that is,
they allowed the second-order statistics for
non-nearest-nelghbors to be wunequal over some distance.

Examples of this type of manipulation are shown in
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Figs., 2.5-2.10. The corresponding N-grams are shown in
fable 2.2 and Table 2.3. The first column of each
subtable contains the analytic N-grams for texture (a),
top, and texture (b), bottom, which are found by solving
Eq. (2.&4) and Eq. (2.24) given the generation parameters
in the third column. The wmiddle column contains the
actual N-gram statistics as measured from the generated
textures themselves. The input, analytically-solved
parameters will not be equal to the output statistics as
the generation process is random. In other words, the
output statistics are based on measurements taken on a
sample from a population of textures having the

characteristics defined by the input parameters.

Figures 2.5 and 2.6 show pairs of statistics having
equal first- and second-order nearést—neighbor statistics.
That is, Pa(Vl,VZ) = Pb(vl’v2)' There is also an internal
equality for these textures which may be expressed as
Pa(Vl,Vz) = Pb(vl'v2) = 1/4 for all vy and Vo that are
nearest-neighbors, Visual differences are apparent
between the pairs. Figures 2.7 and 2.8 have texture pairs
which have equal third-order, nearest-neighbor statistics
both within and between the pairs, that is,
Pa(vl,vz,v3) = Pb(vl'v2'v3) = 0.125. The bottom texture
in Fig, 2.7 is a coin flip, purely random texture with the

probability of both black and white equal. It is
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Figure 2.7
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Figure 2.6
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Table 2.2 N-GRAMS AND GENERATION PARAMETERS
FOR FIGURES 2.5 - 2.8
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Table 2.3 N-GRAMS AND GENERATION PARAMETERS
FOR FIGURES 2.9 - 2.12
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interesting to note that this texture 1is wvisually quite
similar to the bottom texture of Fig. 2.6, vyet the
generation parameters and N-grams differ significantly.
Thus two textures with differing N-gram statistics may be
generated which are visually similar., Figure 2.9 shows a
pair of textures which . have equal fourth-~order,
nearest-neighbor statistics both within and between the

pairs. That is,

p = = . 2.37
a(Vl,V ,V4) Pb(Vl,Vz,V3,V4) 0.0625 ( )

2'V3
The two are easily discriminated. Figure 2.10 shows two
textures with between-equal, fourth-order nearest-neighbor

statistics. The N-grams are not equal within however.

Figures 2.11 and 2.12 have texture pairs which are
similar in many ways to the pair in Fig., 2.6. Both are
counter examples to Julesz's conjecture that the eye |is
sensitive to only first-order and second-order probability
distributions. Each has a texture pair where second-order
statistics are equal for all distances between the texture
pair. Precisely stated, Pa(Vl,Vj) = pb(vl,vj) for all j.
These textures are generated using a set of restrictions

discussed in Appendix A.

The textures in these figures are pseudo-randomly

generated, Each texture was tested using a
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goodness-of-fit procedure to insure that textures with the
desired N-grams were generated. This was done for l-grams
to 10-grams. The procedure 1is outlined in Appendix B.
The goodness-of-fit depends on the pseudo-random number
generator used, as a poor generator can be guaranteed to
yield poor results in this type of experiment. The
pseudo-random number generator used is detailed in

Appendix C.
2.8 Conclusions

The one-dimensional binary patterns generated give
rise to some basic concepts concerning textures and their
discrimination. First of all they 1indicate the use of
moments and similar statistics is not optimal at least in
the nearest-neighbor sense as many textures have equal
moments but are wvisually quite different. However, it
should be pointed our that this may only be characteristic
of some artificial textures and that moments could serve
as good discrimination parameters in many real-world
applications. Secondly, the results indicate a close
relationship between second-order non-nearest-neighbor
statistics and human discrimination. The counter-examples
to the Julesz conjecture indicate that N-grams and
higher-order statistics may be valuable in identifying and

discriminating some textures. Use of these texture




measures depends on factors such as discrimination
accuracy desired, cost factors for statistics measure and

the nature of the textures involved.

In later chapters, investigation of two-dimensional
textures will be pursued as these correspond more closely
to natural scene textures. The texture gJgeneration task
will be approached from a simulation rather than a pure
synthesis point of view. The complexity of <controlling
two-dimensional statistics in a synthesis process and
attempts to study their effects on human discrimination
and interpretation of textures is a problem which requires

careful analysis and is beyond the scope of this work. It

is very possible that no applicable, clear-cut results -

couid be obtained from such a study. However, by
simulating textures, models and processes for generating
similar-looking textures are derived which may be useful
in other applications and some simple statements

concerning 'human discrimination of textures can also be

made.
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CHAPTER 3

TWO-DIMENSIONAL BINARY TEXTURE MOCDELS

3.1 1Introduction

In this chapter, the concepts used to generate
one-dimensional binary textures are extended to the
two-dimensional case. This model is then used to simulate
natural binary textures. A method for choosing the pixels
in a non-contiguous generation kernel based on a linear
model is described. This is an important concept in much
of the work presented in this thesis. The method for
collecting MN-gram statistics 1is discussed and practical
problems arising in this process are investigated.
Results of natural texture simulation using this method
are presented. Finally, the linear model which was used
to determine the kernel pixels of greatest value in the
N-gram generation process 1is wused to generate Dbinary
simulations. This will lead us to the application of the

linear model to continuous-tone textures in Chapter 5.

3.2 The 2-D Binary Markov Model

In the investigation of natural phenomenon once a

researcher collects enough data he tries to imagine a




process . .ich accounts for the results. The construction
and development of a mathematical model is often the best
way to do this. done. In some cases, the model may be
extraordinarily complex, 1in others, exceedingly simple.
In most cases model acceptance cannot be based on "truth"
as the true generating phenomenon is too complex or simply
unknown and so it is based upon model usefulness and "how
well it works". Such "working” models for texture are
presented in this chapter because they have the ability to

simulate some natural textures.

If one can synthesize and simulate natural textures
adequately by using some proposed model the criterion of
usefulness and workability for that model is nmet,. A
researcher may then also apply the model to problems of
texture identification and discrimination with
justification. With any set of texture measures required
for simulation, the informatioii content of the measures is
viaually indicated by the quality of the simulation and
not merely by the percent of correct versus incorrect
classifications when those textures are applied to the
discrimination problem. By adding features important to
texture simulation better methods of texture

discrimination and identification can possibly be found.

Many early texture studies involved the use of binary
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textures generated by one-dimensional Markov processes.
Such work was presented in Chapter 2. In these
one-dimensional models a large vector of pixels was
generated line by 1line wusing a set of generation

parameters

G (Vs Vaseoe, V)
vN+l 172 N

where

GVN+1(V1'V2""’VN) = PV, 1/VyiVyreeasVy) (3.1)

and P(A/B) represents the probability of A given B. In
the above notation each Vi represents a generated pixel
which has value 0 (black) or 1 (white). Each pixel value,
then, depends on the N pixels previous to it. A
two-dimensional texture image is then formed by breaking
up the large vector of pixels into shorter strings and
stacking them one on top of the other (see~ Fig. 2.4).
This procedure for large images nearly insured image row
independence (unless N was large) thereby creating only
horizontally oriented textures totally unsuitable for

simulating natural two-dimensional textures.

By allowing N to increase exceeding the short string
line 1length, two-dimensional (vertical and horizontal)
dependence may be induced into the generating process. A

pixel value then depends not only on the pixels previous




to it on the same line but also on the pixels above it
(see Fig. 3.1(b)). Thus, textures could be generated as a
time sequence in television raster scan fashion. In
theory, texture dependence could be extended ad infinitum,
however practical considerations concerning the actual
generation process show us that ZN generation parameters
must be accounted for. As a possible solution to the
storage problem we can choose to ignore all but N of the
previous pixels in our generation process and we can allow
the pattern of the Vi's to become flexible. This idea

will be discussed in later sections of this chapter.

Throughout the remainder of this thesis, the set of

pixels, Vi's, on which the next pixel, V depends will

N+1'

be referred to as the "kernel" of the synthesis process.

The pixel VN+l will be referred to as the "eye" of the

kernel.

In order to estimate P(vl'vz""VN) for a fixed

pattern Vl,Vz,...,VN, all M substrings (samples) of length

N are taken from a parent substring of 1length M+N-1 and
the number of occurrences of the specific pattern
v,,V

1’72
equivalent to estimating the probability density function

,...,VN are counted, then divided by M. This is

of a random variable by the histogram of a set of samples.

Ignoring boundary conditions, 1linear unbiased estimates
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(@'s) of the P's may be defined as

M
~ l N .
P(Vlrvzl---,VN) - M kzlé(l(k+3)_vk) (3.2)
j=1
where
0 if Vj # Vk
a(vj,vk) =
1 if Vj = Vk

and I(i) represents the ith element of the one-dimensional
texture string from which the parameters are to be
estimated. Equation (3.2) assumes that the vV, are

i
contiguously located in order along a line.

This idea of estimating N-grams, p(vl,v ,...,VN) from

2
a sample parent texture may be extended to the
two-dimensional case. A histogram of occurrences of each
pattern of (Vl,Vz,...,VN) is made by passing the
two-dimensional kernel in Fig. 3.1(b) over the
two-dimensional sample parent image., The tally is then
divided by the total number of sample patterns observed to
obtain P(Vl,...,VN). As was stated earlier,
two-dimensional synthesis is merely an extension of the

one-dimensional case ignoring boundary conditions of the

two-dimensional image.

Although it was not explicitly stated 1in Chapter 2,

the generation parameters of a texture may be estimated
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for any given set of N Vi's from a parent texture. These

statistics have the property

E[GV (Vl,Vz,...,VN)] = G (v ,Vz,...,VN)

N+1 Un+r 1

where

Gy, (VyrVyreeasV) = PV, Vo, Via Vi 1)/
N+1
(3.3)

(P(Vl,V ..,VN,0)+P(V1,V teeesV )) .

2" 2 N,1

3.3 Seeding the Generation Process

In the one-dimensional texture pattern generation of
Chapter 2, a 1long binary vector of pixels is broken up
into short strings which are stacked on top of each other
(see Fig, 2.4). When synthesizing this one-dimensional
string, a seed of four binary values is actually required
to begin the process for a 4-gram-dimensional system.
When the Markov process is regular and non-absorbing with
none of the generation parameters equal to one or zero the
process rapidly reaches a steady state independent of the

seed,

A similar thing happens in the two-dimensional case
but here the seed is larger and forms a two-dimensional
frame around the synthesized image texture as shown in
Fig. 3.2. With a two-dimensional texture generation

kernel such as that shown in Fig. 3.1(b), the synthesized




(a) One~dimensional (b) Two-dimensional

Figure 3.1 Texture Synthesis Kernel

l k

Synthesized
Image
Texture

Figure 3.2 Synthesized Image Texture and
Seed Region
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image texture may be generated without using the bottom of
the frame so the next pixel at each generation step

depends only on pixels above it,

The seeding process may be handled in a variety of
ways. The simplest approach would be to randomly generate
the seed once for the whole image. In this case the pixel
values in the seed frame of Fig. 2.2 remain the same
throughout the generation process. A second approach
would require the random generation of each pixel, Vi, in
the generation kernel that fell outside the synthesized
image texture region at each step during the generation
process. Using this method, the pixel values in the seed
frame change at each pixel generation. A third method
would involve wrapping the image around such that the left
edge of the synthesized image texture joins with the right
side as in Fig. 3.3. In this case a random seed Iis
required only to begin the process of the top of an inage.
A final method involves the wuse of another texture,
usually a previously generated texture or the parent
texture, as part of the seed, rather than noise. This
method reduces the noise which otherwise occurs around the

edges of the synthesized image texture.

Regardless of the seeding process, all texture

synthesis methods developed in this thesis normally
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converge to a steady state within 5 to 20 pixels of the
border of the image. This was confirmed by repeated
studies of convergence effects on texture simulations. 1n
most cases, this narrow region is not noticeable and is
included as a part of the result. In some critical

applications these edges could be thrown away.
3.4 Kernel Selection Using The Linear Model

We will refer to the Vi's on which the next pixel,

v depends as the kernel of the generation process.

N+1’
Geometrically speaking, the Vi's form a kernel "shape" or
"pattern" which may or may not be spatially contiguous.
For example, in Fig. 3.4 a generating kernel shape |is
shown where the V5 pixel directly depends on only some of
the pixels in its surrounding neighborhood. 1In this case,
\' may be generated based on the values of pixels

5

A V2, V3 and V, but is directly dependent on no other

l'
pixels in the neighborhood. This does not imply that Vg
is not related or correlated with its other neighbors. 1In

fact, the relationships between Vl’ V2, V3, V4, and V5

will determine other interrelationships.

A non-contiguous neighborhood of Vi's is used as it
allows a more parsimonious model for texture generation to
be chosen. An analogy is in simple linear regression (as

defined by Draper[20]) where independent variables which
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Figure 3.3 Wrap-around Texture
Generation and Seed

Figure 3.4 Two-dimensional Non-contiguous
Texture Generation Kernel
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do not contribute to the prediction or estimation of the
dependent variable are dropped. In texture generation
this allows the model to be estimated by fewer parameters
and makes the generation-synthesis process more efficient
by reducing the number of computations required. When
generating textures based on N-grams, reducing N reduces
the amount of storage required for ZN generation
parameters. By allowing the kernel of V;'s on which V4
depends to be non-contiguous, the range of dependence in a
distance sense 1is increased over that which would be
allowed with a contiguous kernel containing the same
number of Vi's. This is very important to obtain the
larger structure apparent in many textures. Reducing the
number of pixels in the model also relieves us from the
complex numerical problems of inverting matrices of
unwieldy size, a necessary step in linear model parameter
estimation discussed later in this chapter. We would, for
example, not expect our Vy.y pixel to depend on a pixel Vi
where the spatial separation between Vy,; and V; is large.
If that distance 1is small, however, we would expect a

large dependenée.

The method for choosing the proper independent
variables (V;'s) to be included in the generation process
requires special attention. We wish to choose the best

subset of N variables from a larger finite neighborhood of
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T variables, where N<KT. Evaluating such subsets and their
corresponding models requires a criterion. Texture
results for each possible model could be visually examined
and compared and the Vi's of the model corresponding to
the wvisually most pleasing result could be chosen.
However, (g) model evaluations must be done using this
approach. For a simple search through T = 40 points with
N =12, 5.5 billion models would have -to be evaluated!
This approach 1is therefore impractical and so a
sub-optimal approach which yields ‘a good but not
necessarily the best set of Vi's for our model must be

used.

If we view this problem as one of predicting a

deggndent variable, VN+1

variables, Vi's, then the standard linear model approaches

from a large set of independent

may be applied. In a statistical sense, independent
variables are values that can‘ be observed but not
controlled and dependent variables are affected by changes
in the independent variables., Thus the value of dependent
variables is said to depend on values or changes in
independent variables. The 1linear model is just one
approach to explaining the relationship between

independent and dependent variables.

In most linear model applications, the criterion used

.
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to evaluate the fit of the model to data is mean-square
error. It is desirable in most cases to <choose a model
which minimizes the mean-square error. The problem in our
case is to choose a subset of Vi's of size N from a set of

N

Vi's of size T such that the linear model employing those
Yi's produces the minimum mean-square error when compared
to all other possible models containing N Vi's. This
cannot be done without examining all (g) models again -~
however, suboptimal approaches producing a very good, but
not necessarily the best fit are available. One method

employing a forward selection procedure is described in

the following sections.

As a final note it should be observed that we are
choosing the kernel for a non-linear N-gram-based on the
fit of a linear model to sample data. This approach is
admittedly ad hoc and is chosen for simplicity and
computational ease. Regardless, it is believed that the
kernel chosen by this approach is very good if not the
best. If the value of a particular Vi is important to the
prediction of YN+l it will have a high partial correlation
coefficient when it is examined for entry into the model
during the forward selection proceedure. This is true in
all cases when the pixels are binary-valued and is usually
true when the pixels are continuously valued. Still, as

we are not considering all (g) possible sets of pixels in
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the neighborhood, the best model will not always be found

(20].

The linear model which we use to determine the Vi's

in the kernel may be expressed in linear regression form

as
_ 3T =
Y, = X B+ €1 k=1,2,...,M

where
"1
t Vi.k
= X, =|v.,,k

Y = VN+l,k x = Var (3.4)

L
YN,k

E is an (N+1)xl vector of unobservable parameters and Ek
0.

is an unobservable random variable such that E[ek] =

The sample number is denoted by k and there are a total of

M samples. We can also define matrices X and Y as

7| ]
-5
X1 Y
2T
X2 Yz
X = : Y = . (3.5)
-»T )
] . > T, ~1,T
The most common estimator of B is (X°X) XY, the

least-squares estimator. so given a parent texture wnich
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we desire to simulate, an estimation of the texture model

~

parameter E, § , Mmay be obtained yielding the generation

model

Y = xB (3.6)

It is very important to note that the estimation of the
amount of noise present in a texture is usually obtained
by measuring the amount of variation in the parent texture
which 1is wunexplained by our wodel. This is expressed
numerically in the mean-square error. Therefore, as in
any modelling process, any shortcomings or inaccuracies of
the model will appear to be "noise" (unexplained variance)

and hence the amount of noise will increase.
3.5 Correlation and Partial Correlation

We may define the mean and variance of a variable as

= o7
uvl E[V,] (3.7)

and i

2 _ _ 2 .
oy, = By ) (3.8)

Similarly we may define the covariance of two variables Vi

and V_ as
2

= BV -uy ) (Vpmuy )]

v
ViVva 2

(3.9)

E((V,V,) = Uy My, ]
172 v, 'V,
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And their correlation coefficient as

Y .
P = _Xlzg’ (3.10)
v,V Jy, O ¢
12 Vl V2

Using the above definitions we may then define the partial
correlation coefficient of variables Vi and vV, after both

have been adjusted for V3 as

p -(p ) (p )
ViV, TV VLt VoV,

0

V.V eV (3.11)

1°2 ‘3 ‘/1'0le32 {1-0\2,2\,3
Each of the above parameters has a corresponding statistic
(estimate of a parameter of a population given an
observable sample of that population) which is chosen to
meet some desirable set of a criteria such as sufficiency,
consistency and unbias of estimate under certain
conditions. Given that the Vi,k's are samples from an ith
order multivariate normal distribution the max imum

likelihood estimates for the above parameters are

v, T 1 (3.12)

(3.13)

o .2
;(Vl,k-vl)
M
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Z Vi, k1) (Vy Vo)

K .
. - _ — (3.14)
R D e AR DI i
X X
r -(r ) (x )
N _ ViVa ViV oYy (3.15)
v, V.-V ‘
1727V3 ‘/ 2 ‘[ 2
1-r l-r
ViVs VoV,

Second-order partial autocorrelation may be found 1in a

similar manner using

r -r r
_ V1V2°V3 V1V4-V3 V2V4-V3
r = (3.16)
v,V,-V.,V
17277374 \/1—r2 \/1-r2
ViVyeVy VoV,tVy
Higher-order partial correlations may be found by

extension of the above [21].
3.6 The Forward Selection Procedure

One approach to finding a good subset of independent
variables is known as the forward selection procedure.
This method inserts N variables into the model
one-at-a-time. The order of insertion is detérmined by

using the partial-correlation coefficient as a measure of

the importance of variables not yet in the equation. The




.

basic p adure is as follows. First we select the vy
most correlated with V, denoted as V. , and we find the
N+1 1l
first-order linear regression equation YN+l = alvil+a2.
We next find the partial correlation coefficient of Vj

(for all j # i) and Vel (after allowance for Vil).
Mathematically this is equivalent to finding the

correlation between the residuals from the regression

A

VN+l = alvil +a, and the residuals from another regression
Vj = blvi +b2 (which we have not actually performed).

1
The Vj with the highest partial correlation coefficient

with Vv (V. , is now selected and a second equation
N+1 12
- R + . + 3 3 . »
VN+1 clvll czv12 C3 is fitted to the data This
process continues. After Vi ,Vi ,...,Vi are 1in the

1 2 q
regression the partial correlation coefficients are the

correlations between the residuals from the regression

VN+l = f(Vil,Viz,...,Viq) and the residuals from a

regression Vi. = fj(vi ,Vi ,...,Vi ) (329). The Vi‘ with
J 1 =2 q J

the highest partial correlation coefficient 1is now

selected for entry into the linear model. The process is

continued until N Vi's are entered into the model.

The final N variables chosen by a forward selection
procedure are not nuaranteed to be the optimal set but
given the logistics of the selection procedure, the

solution obtained is usually close to optimal.

62




One of the most common procedures for implementing
the forward selection process numerically wutilizes
Doolittle decomposition [22]. The Doolittle decomposition
may be used to find the inverse of the correlation matrix,
Rp, and the estimates of linear model coefficients as each
variable is entered in the model. The correlation matrix
merely consists of the set of correlation coefficients
ry.v. as defined by Eg. (3.14). It is then factored into

13
the product of two triangular matrices

R =LU .17

p PP (3.17)
where Lp is lower triangular and Up is wupper triangular
with ones on the diagonal. Partial autocorrelation

coefficients may be obtained easily from elements of this
matrix during its decomposition at each step. For further
details and examples on the forward selection procedure of
the decomposition process see Beyer [18] and Draper and

Smith ([20].

3.7 Statistics Collection

In practice, N, the number of pixels in the
generation kernel, is often chosen by computational limits
imposed by finite processing capability or finite computer
memory. The idea of parsimony would also wurge the

selection of the smallest N possible. 1In the most general
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(stochastic) model which wutilizes

texture synthesis
N-grams we find that as many as gN storage locations are
required in order to collect the data needed to synthesize
a texture from a parent where g is the number of grey
levels in the texture. This approach calls for N to be
less than 17 for g = 2 (a binary image) if we have only
217 = 131,072 storage locations in memory. Approaches to
"stretch" this limitation have been investigated and will
be discussed in a latter section. If we have 8 grey
levels then N must be 1less than or- equal to 5 as
85 = 32,768, Thus, in synthesizing textures wusing an

N-gram approach, processor storage capability is the major

limiting factor.

Determining which pixels will be included 1in the
generation kernel requires an estimate of the linear model
defined in Eg. (3.4). To do this the X and Y matrices of
Eq. (3.5) may be used or the éorrelation matrix of the

kernel points must be estimated using a parent texture.

The elements of the ik vector of Egq. (3.4) are
obtained by passing the kernel window over the sample
parent texture and recording the pixel value corresponding
to the position of each Vi in the window. The kernel is

assumed to be completely within the boundary of the parent

texture. A sample may be taken at all possible positions
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in the parent texture or a random sample of points may be
chosen 1if the parent texture is very large to reduce the
number of computations required. 1In actual practice, no X
matrix 1is ever formed. To obtain the correlation matrix
of the sample set, R, (and from that é) we need only the
sum of squares cross products, Vi and Vj' over the sample

set according to Eq. (3.14).

The elements of the «correlation matrix for many
kernel patterns often contain redundancies. For example
the spatial relationship between the pair Vi and V, and
the pair V3 and Vg in Fig. 3.4 is the same. Estimating
the correlation for these two pairs of points from a
sample will vyield nearly equal values if the sample size
is large and the overlap of samples used to estimate the

correlation values is large. 1In short,

v.v. = Ty.v (3.18)

In more mathematical terms, let I(nl,nz) denote the

random texture field where ny and n, are integers
representing the coordinates of points in our sampled and
quantized image. Let n be the wvector of coordinates
(nl,nz). From Section 2.1, second-order or 2-gram

statistics are given by the set of joint density functions

P, ,(V{Vy) (3.19)
n,m
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for all possible vectors n and E, where V1 and V2 are the
pixel values of the random wvariables I(n) and I(m,
respectively. If the random field 1is homogeneous, that

is, invariant through translations then
p =P (3.20)
from Eq. (2.2).

If we assume that our two-dimensional texture |is
homogeneous and stationary we might propose that
Eq. (3.20) is true by definition. A word of caution |is
necessary at this point. Estimating the elements of the
covariance or correlation matrix using the assumption of
stationarity and homogeneity can vyield <correlation
matrices having negative determinants, in violation of the
fact that non-singular covariance matrices must be
symmetric positive definite. The violation occurs because
the sample 1is not homogeneous and stationary. Therefore
the type of assumption expressed in Eg. (3.20) should only
be wused for estimation when sample sizes are very large

and are known to be homogeneous and stationary.

The assumption of Eq. (3.20) can be very powerful in
a computational sense for large samples as the calculation
4

of covariance (or correlation) matrices can be time

consuming, The complete covariance matrix for a




contiguous 10 x 10 (100 element) kernel contains 10,000

entries. Of these, 4050 are redundant by simple symmetry
as }E:V,V_ = § :v_v, which implies r r .

1) J 1 ViVj Vjvi
Computing all <cross products and sums to estimate this
matrix from a 512 x 512 image requires over 1.025 billion
imultiplications and 1.05 billion additions. Utilizing the
concept of homogeneity, this may be reduced to 0.05
1 billion multiplications and 0.075 billion additions which

is significantly lower.

Once the covariance matrix of a kernel is determineq,
the linear model containing the Vi's of the kernel may be
obtained. It is advisable to make the kernel large as
more texture information is contained over large
distances. In many cases, there are relationships between
pixels separated by great distances especially if the
texture is <coarse or highly regular (periodic). in
practice, however, larye matrices may be numerically
ill-conditioned during a deconposition or inversion
process and so they mnmust bhe avoided. Also computer
storage limitations must be coansidered. In this study, no
matrix larger than 100x100 was decomposed or inverted for
these reasons. This constraint required a multiple-pass

approach.

First, 100 Vi's (usually closest to the kernel eye,




VN+1) were chosen for examination. They were entered into
the linear model in a forward selection .aanner until it
was determined that entry of additional Vi's would he
insignificant. Insigynificance is indicated both
statistically by considering the reduction in the sua of
squares due to the entry of a variable into the model [20]

~

and also by the value of Si which approaches zero so the
variable Vi becomes insiynificant. On the s2cond pass,
variables not tried in the first pass are examined and
tested for possible entry into the model. Ajain, those
which are significant are kept and the others are
discarded. On the next pass, any variables not exanined
in the first two passes may be examined. The process

continues until all Vi's have been tested for possible

entry into the linear model at least once.

This nmultiple-pass process, as the forward selection
procedure which it employs, 15 not guarantecd t> produce
the best model but will provide an excellent model
nevertheless. The final model will also be parsimonious.
This will reduce the number of parameters in our model and

aid in the efficiency of the generation process.
3.8 Results

Once the points for the kernel are chosen based on

the linear model derived using the methods described in
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the previous sections, estimates of the senerdtion
paramecters for the texture are obtained using concepts
discussed in section 3.2, Practical considerations
require us to limit N, the number of pixels in the kernel,
to 12 to 138 depending on the processor storage available
as 2N values must De stored. Tnhese 5'5 are then used to
generate each pixel alony a row, row by row until e
complete two-dimensional texture 1is obtained. For each
pixel the appropriate generation paramster estimate 1is
found and a uniformly-distributed pseudo-random variable
is generated. Based on these two values, a Dblack pixel

(0) or white pixel (1) is generated.

In practice, not all of the generation parameters may
be estimated when N is large because all possible patterns
of vl'v2”"’VN'VN+l may not be present in the sample
image or there may be few of them. Smaller samples can
cause inaccurate estimation of the G's as the variance of
our estimate is larger and therefore the expected error of
our estimate is larger than would be expected with a
larger sample size. 1In these cases it is important to sum

over the least significant kernel elements and estimate

~

Gv (Vl’vz""’VN) by GV (Vi’vi+l""'vN)' - In our
N+1 N+1

study, this was done if the sample size to compute

8 V., V.,eee,V was less than 10. The variable i is
VN+1( ll 2' ’ N)

increased until this condition is met.
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t...cure simulations using this method are shown in
Figs. 3.5(b)-3.14(b). Visually, the results are very
good. As the estimated texture generation parameters are
approximated wusing statistics gathered from the full
parent texture, non-homogeneity in the parent texture will
cause an "average" texture to be synthesized. The
simulation of straw (Fig. 3.7) 1is poor because of its
non-homogeneous nature (specifically the directionality of
the stalks in different parts of the image) and exhibition
of detail (specifically individual non-conforming single
stalks). A similar observation may be made with respect
to the parent textures of grass and water but in these
textures the non-homogeneity is not so pronounced. As we
are attempting to synthesize textures and not merely
"image code" the parent textures, details and

non-homogeneities will be lost in the synthesis process.

The bark texture 1is among the most difficult to
simulate due to its very unusual macro-structure. §Still,
the N-gram simulation looks remarkably similar to the
original when windowed regions 20 to 40 pixels square are

observed.
-

The kernels used to generate these N-gram simulations
are shown in Table 3.1. A clear-cut relationship between

the textures and the kernels found using the linear model
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(a) Original Texture (b) N-gram Simulation

(c) Linear Model Simulation

Figure 3.5 Grass
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Figure 3.6 Bark
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(a) Original Texture (b) N-gram Simulation

(c) Linear Model Simulation

Figure 3.7 Straw
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Figure 3.8 Wool




1y A e

(a) Original Texture (b) N-gram Simulation

B O
e Y 3 vlv x
4 \. 3

v
'{J ]
AN
o ‘. ?Q, "\x X
ya 0l A e N e A
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Figure 3.9 Leather
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(c) Linear Model Simulation

Figure 3.10 Water
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Figure 3.11 Sand
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Model Simulation

3.12 Wood

Figure
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Figure 3.13 Pigskin
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Table 3.1 TWO-DIMENSIONAL N-GRAM TEXTURE
SIMULATION KERNELS
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approach is not always evident. Some kernels, such as
those for wool and water, seem to have a vertical or
horizontal structure possibly resulting from the structure
of their corresponding textures while others, such as the
kernels for wood and raffia, do not. Still, the

non-contigquous kernels produce excellent results.

(V9]
9]

.Y Extension of N-Gram Model

The N-gram model wmay be extended beyond the fixed
set by limited processor storage. The reguirement that &
nmust be estimated based on no fewer than g (which was set
to 10 in our study) samples already reduces the storajge to
& amaximum of M/¢ non-redundant parameters where M 13 the

total number of samples in the parent texture limaje. For

5
512x512 1imajze, M is approximately 2.5x10 . Given

[}

q = 10, this implies that a maximum of 25,000 generation
parameters estimates must be stored,. 3y increasingy g,
further reduction 1is possible. Meanwhile i is permitted
to increase without bound to sample size limitetions. For
frequently occurring patterns, larger N's allow increasing
dependency over larger distances. This is most desirable

in reqgular and coarse-structured textures.

Searching for the proper yeneration parameter at each
step in this type of process is complex. In the earlier

N-gram storage, each pattern of 0's and 1's actually forms
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a binary address to the location in memory of the desired
G. In the extended case a sort, search, or a series of
comparisons along with some intelligent preprocessing is

required. Efficiency is reduced.

To illustrate the effect of model extension the
texture raffia was used. Figure 3.14(a) shows the
original and Fig. 3,14(b) is the synthesis obtained wusing
a kernel containing N = 14 pixels. Figure 3.14(c) is the
linear model synthesis. Figures 3.15(a), (b), (c) were
obtained using three different texture kernels with N = 22
points. Far more structure in these extended model
versions 1is apparent. This 1is expected as at each
generation step, the next pixel is allowed to depend on
pixels further from it. As the ©pixels in the kernel
become more widely spaced the synthesis becomes more
structured but small, 1local regions often become more
distorted and less raffia-looking because the information

used in the synthesis process is more global than local.
3.10 Linear Model Generation of Binary Textures

The process of choosing the Vi's to be present in the
texture generation kernel described in earlier sections of
this chapter actually yields a simple linear model which
can also be used to generate binary textures. The model

which results from the determination of the generation
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kernel may be expressed in equation form as

VN+1,k = Blvl,k+ 82V2,k+"'+BNVN,k+ 30+ €x (3.21)
or more simply as
VN+l = BlVl+ 62V2+...+ BNVN+ 80+ € . 3. 22)

Once the estimates of the Bi's are known, a pixel Vy,; way
be <calculated from a set of given values V; plus an error
€. In one-dimensional analysis this is sometimes known as
the autoregressive time series model [24]. For binary V;
a value of Vy;q will be produced which is non-binary. To
generate binary data wusing this model will therefore

require quantization.

In the N-gram approach to texture simulation, the
randomness of the texture is induced by the generation of
a uniformly-distributed pseudo-random variable during the
generation process. The comparison of this value with the
estimate of the generation parameter, é, yields the next
binary pixel. A similar type of randomness must occur in
the generation of binary textures using the linear model

of Eq. (3.22). This randomness is expressed in the model

in the error term €.

We can obtain an estimate of the distribution of € in

the same manner as we estimate the B's of the model. This

125
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may be done by applying the model to the sample data from
which it was derived and observing the errors. That is,
the linear model kernel is passed over the parent texture

image and at each point a GN+1 is calculated based on

~

-V
N+1 N+1
calculated where V is the actual value of V in the

N+1 N+1

Eq. (3.22) without the error term., Then V is
parent texture. The histogram of the values can be used
to estimate the distribution of €. As one step further we
could assume that has some known distribution such as
Gaussian or normal, and merely estimate the parameters
necessary to define this distribution. In the normal
distribution case, only the standard deviation (or
variance) of needs to be estimated. The mean of € |is

zero in the linear model, least-squares distribution.

Our generation process then consists of the
calculation of ZBiVi+ BO to which we add a random,
nérmally—distributed error term ¢ and this value 1is then
quantized to 0 or 1 based on comparison with 0.5. Results
using this generation method are shown 1in Figs. 3.5(c)
through 3.14(c). In these figures, N was allowed to be as
large as 70 as only N coefficients (not 2N) need to Dbe
stored along with 8@’ the estimate of the error standard

deviation.

The kernels used in the linear model sinmulations are
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shown in Table 3.2. The linear inodel simulations are
slightly inferior to the N-gram simulations but the
degradation 1is far less than we would expect from such a
massive compression of information (which is approximately
2 to 70). The results were good enough to encourage the
application of the 1linear model to continuous-tone

textures.
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Table 3.2 TWO-DIMENSIONAL BINARY LINEAR MODEL
TEXTURE GENERATION KERNELS
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CHAPTER 4

ALGEBRAIC RECONSTRUCTION TECHNIQUE MODEL

4.1 1Introduction

Julesz's conjecture [8] that second-order statistics
are sufficient for human visual texture discrimination
provides a useful estimate of the amount of information
necessary to reconstruct a texture field. Although
counterexamples to that conjecture have recently been
found [4,25], and are shown in Chapter 2, it is a good
first-order approximation. Examples of the wuse of that
upper bound for texture analysis can be found in [14,26].
Therefore it is very tempting to use it for synthesizing
natural texture fields. That 1is, we may attempt to
simulate textures based on generation parameters estimated
from 2-gram statistics over wvarious distances. This
approach requires fewer statistics to be collected from a
parent texture as only 2-grams versus N-grams are

collected.

This chapter illustrates that we must "invent"
higher-order statistics to wuse the Markov generation
coefficient approach for texture synthesis if we limit our

knowledge of the original random field to second-order
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statis ..s. We will demonstrate how this can be done

using Algebraic Reconstruction Techniques (ART).
4.2 Problem Definition

The stochastic approach toward texture analysis
considers texture fields as samples of 2-D stochastic
fields. Second-order statistics are given by the set of
second-order Jjoint density functions (2-grams), P(Vi'vj)‘
As in Chapter 3, we also assume for simplicity that the
random field 1is homogeneous, that is, invariant through
translations. Given the set of joint density functions,
(P(Vi,vj), for all spatial relationships between V; and
V., our problem is to synthesize a texture field with the

]
same second-order statistics.

There are many ways of carrying out such a synthesis.
We use a television raster type of scanning (left to
right, top to bottom) and the generation Kkernel of
Fig. 3.1(b). Even if we assume finite memory, namely that
intensity at point Vy,, depends only on intensities at
points located in some finite neighborhood, we see that
second-order statistics are not sufficient to generate the
process, Indeed, assuming a memory of order N, the
intensity at V is computed using the conditiopal

N+1
probability or generation coefficient

Gy

u+1w1'v2"“'v“) = p“’uu/vl'vz"“'vn) (4.1)




which involves (N+1l)th-order Joint density functions.
Therefore if N 1is 1larger than 1 and we are given only

second-order statistics, P(Vi,vj), we have to “invent"

2""'VN+1

the problem can then be stated as follows: given N random

higher-order densities p(vl,v ). Mathematically,

variables vl,...,vN such that for every pair (vl,vN),

1<i,j<N and i # j, we know the Joint density function

P(Vi,vj), find a function P(Vl,...,VN) which satisfies

.. 4.2
P(Vy/VyrenesVy) 20 for all Vy,...,Vy ( )
E e E E . e E E ...E P(Vl,...,Vi,...,Vj,...,VN)=
Vi Vior Visr V-1 Va1 Y (4.3)

P(Vi,Vj)
Here the P(Vi,Vj)'s are sometimes called the marginals of
P(Vl,...,VN). Assuming quantization with g levels, the gN
unknowns P(vl,...,vN) can be stacked as a vector ﬁ and
conditions (4.2) and (4.3) correspond to a linear

programming problem:

s

Ap (4.4)

]
=R

v
o

B (4.5)
where vector M is obtained from the functions P(Vi’vj) and

matrix A of size ((g)gz)ng contains only ones and zeroes.

For any reasonable values of N and g, this 1is a set of

linear equations and inequalities of fairly 1large

91




dimension and the usual solution techniques such as the

simplex method [4] become very limited.

4,3 Solution Through Algebraic Reconstruction

Techniques (ART)

The ART algorithm was introduced by Gordon, Bender

and Herman [27] for solving the problem of
three-dimensional reconstruction from .projections in
electron microscopy and radiology. This is a
deconvolution problem in which a . function - in a
higher-dimensional space is estimated from its

experimentally measured projections in a lower-dimensional
space. For an excellent review of those techniques see

Gordon {28].

The problem stated in Egs. (4.2) and (4.3) or (4.4)
and (4.5) is precisely of this form, where the projections
are the second-order Jjoint denéity functions., ART is
therefore directly applicable. The simple intuitive
interpretation is that each projected density 1is thrown
back across the higher-dimensional region from whence it
came, with repeated corrections to bring each projection
of the estimate into agreement with the corresponding

ineasured projection.

Formally, we use an iterative scheme defined by
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Bl v, vy = B v e D vy

(4.6)
For all values of Vl”"’VN’ for g = 0,1,...
where the correction term c(q)(vl,...,VN) is given by
(a) -
c (Vl,...,VN)
(4.7)

N-1 N

1 2 : E :“ v

N-2 N. (P(Vi'vj)_P(vi'Vj))
o9 Q) =i

and P(Vi,Vj) is the actual marginal measured, for example,

n(q)
from an original texture field. Here P (V.,V,) is the
i 7]
marginal corresponding to the reconstructed density at

iteration (.

We may express this in words as follows. The
iterative process may be started with all reconstruction
elements set to a constant (g(o)(vl,...,VN) =l/gN for all
(Vl,...,VN). In each iteration the sum of the differences
between the actual and the reconstructed marginals is
computed and evenly divided amongst the gN—2
rgconstruction elements., If the correction is negative,
it may happen that the calculated density becomes negative

at some points. This problem can be alleviated by using a

modified iteration scheme defined by

n, + N

p(d l)(vl,...,vN) = MAX{O,P(q)(Vl,...,VN)+tc(q)(Vl,...,VN)}
. n (q+1) A (4.8)

therefore guaranteeing P > 0 (constrained ART [28]).

It is of course necessary to determine when an iterative
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algorithm has converged to a solution which 1is optimal
according to some criterion. This is in turn related to
the problem of finding the optimal value tq of t. Various
criteria for <convergence have been devised [28]. For
simplicity, we chose the mean-square error

{

Coa@ 12 _ 2 Ra) 2
eq = &5 = [m-m 9] )5 (4.9)

between the measured and calculated marginals where | I2

is the usual euclidean no:m and m is defined in Egq. (4.4).

To derive the optimal step size, t, for each

iteration we rewrite Eq. (4.6) in vector form as

z >
platl) _ Bl ala@) (4.10)

Multiplying both sides of Eqgs. (4.10) with matrix A

(Eq. (4.4) we obtain

Nigl) _ R(a), (3@ (4.11)

where

atd) - p @ (4.12)

-5
. . v
and subtracting the actual marginal vector m from both

sides of Eq. (4.11) yields

> +1 2 -+ 2
[ 12 = el gty 2
N > (4.13)
= 213 2263 @Dy ety 2
Theretore the eorror = at iteration g+l is mininized for
g+l
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2 . .
q Ha’(‘l)”z

where * denotes the inner product.

A dual approach also explored is based upon the
analysis of Eq. (4.3) in the Fourier domain. It car
easily be shown that the 1initial problem stated Dy
Egs. (4.2) and (4.3) 1is -egquivalent to an interpolation
problem in the Fourier domain. The major drawback of this
approach is the difficulty to ensure the positivity of the
inverse Fourier transform o6f the interpolated function.
Therefore this method was not pursued even though it may
be the case that "good" interpolating functions will

alleviate that problem.

The basic philosophy of the two approaches just
discussed 1is that Nth-order joint density functions are
“invented" to satisfy exactly the constraints stated in
Eq. (4.3). Their obvious disadvantage is the high
dimensionality (gN for an Nth-order joint density
function) of the data that is to be stored compared with
the usually lower dimensionality ((l:)g2 for the

second-order Jjoint density functions) of the data that is

effectively used.




4.4 Results and Conclusions

The iterative process defined in Eq. (4.6) may be

halted at any number of iterations, g, and a texture may
>

be generated using the value of 3 at that point. However,
it should be kept in mind that the success of a texture
synthesis depends on making the error c(q) as small as
possible and that the texture generation process is
sensitive to this error. It has also been found by
experimentation that the p contains many values which are
set to zero by implementation of constrained ART. This
tends to causé the Markov texture generating process to
become absorbing, which causes patches of white and black
or streaks and lines to be generated. This is eliminated

by setting those values which are zero to a small non-zero

value, § , in the generation process.

Using the above concepts, texture simulations of the
binary textures water (Fig. 4.1(a)) and raffia
(Fig. 4.2 (a)) were generated (Figs. 4.1(b),4.2(b)).
Textures similar to those in Chapter 3 employing actual
Nth-order statistics (N=14) were also generated
(Figs. 4.1(c),4.2(c)) and are included here for reference.
The V, in the generation kernels for the ART model and the
N-gram model were chosen using the ideas described earlier

in Chapter 3.
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At the onset of investigation of the Algebraic

Reconstruction Model it was hoped that this approach would

be useful for generating continuous-tone textures.
HHowever, wusing it to generate binary textures revealed
that the convergence for the iterative process was very
slow even with the optimal step size t. Each iteration
required much computation and the storage required for the
N-grams was large. More than eight hours of CPU time on a
DEC KL-10 were required to execute the large number of

iterations required for a visually pleasing solution.

Generating textures based on estimated N-grams which is
! detailed in Chapter 3 is probably more efficient and less
complex computationally. This work did lead to other

texture simulation models (see Faugeras [29]).

The results using algebraic reconstruction are nearly
equivalent to the results wusing complete N-grams as !
second-order statistics collected from binary textures
contain a great deal of information. Close examination of
the textures generated using algebraic reconstruction on a
high-resolution display device reveals a high random noise
level. The computational requirements and the final noise
level indicate that the N-gram method of generating
textures is much less complex and vyields better visual

results than the method employing algebraic

reconstruction.




CHAPTER 5
CONTINUOUS-TONE LINEAR TEXTURE MODEL
5.1 1Introduction

In this chapter, the concept of using a linear model
for generating binary textures that was briefly discussed
in Chapter 3 is extended to multi-grey-level (256-level)
or continuous-tone textures., Pictorial results of the
application of this model to simulation of a variety of

textures are presented.

The application of the linear or autoregressive model
to time series processeé has been extensive. These
applications, which range from weather forecasting to
stock market predictions, primarily utilize the models and
concepts introduced by Box and Jenkins [24]. Many authors
have expanded and elaborated on their approaches
[30-38,62]. ©Some researchers have applied these ideas to
texture simulation, in fact, the Box-Jenkins
autoregressive model is one of the very few approaches to

texture synthesis presented thus far.

McCormick and Jayaramamurthy [2] were perhaps the

first to make a notable attempt to simulate natural
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textures using this approach. Their work consisted of a
discussion of the Box and Jenkins autoregressive (AR),
moving average (MA) and autoregressive integrated moving
average (ARIMA) models including estimation of model
parameters and adequacy of model fit. (These terms are
later defined 1in this chapter.) A very simple model was
then used to simulate two very similar textures which
closely resemble the wood texture of this study by filling
in the holes of a parent texture using the derived model.
Only two textures, both exhibiting a wood-grain-like
structure, were used. Similar work was done later by Tou,
Kao and <Chang [11l]. Unfortunately, the results of their
simulation of these textures were displayed wusing a
printout of Chinese characters and so the degree of
success of their method is wunclear. The appearance of
texture synthesis results on a computer printout will
confuse most observers unaccustomed to such c¢rude image
displays. The models were again very simple and contained
no more than three terms in the 1linear model summation.
Deguchi and Morishita [12] attempted to use the linear
model to segment and partition textures. Their approach

was only partially successful.

In the above simulation attempts, the models used
were simple. The process of collecting statistics and

estimating parameters is complex. In some cases, previous
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authors attempted to use the complex Box and Jenkins ARIMA
model which leads to difficult model parameter estimation
if the number of model elements is greater than two or

three.

In our study, the simpler autoregressive model |is
used and is allowed to <contain a 1large number of
parameters. This is possible wusing the assumption of

homogeneity (stationarity) combined with the forward

selection process of <choosing non-contiguous generation
kernels as described 1in Chapter 3. .These models are
extended further by allowing second-order autoregressive
models and non-stationary noise. Results of texture
simulations using these models are included 1in this

chapter.
5.2 The Linear Autoregressive Model

In Chapter 3 the linear autoregressive model, used to
determine the elements of the generating kernel, was

expressed as

_ 3T
Y, = ka + ¢

" k=1,...,M (5.1)

k

where

k = VN+1,k




B b e I A A A ey

and

fahd
!

e N
~

LV -

>
Here B is an (N+1)xl vector of unobservable parameters and

€1 is an unobservable random variable such that E[ek]

The sample number (index) is denoted by k and M 1is the

= 0.

total number of observations. We <can also define the

>
vectors Y and ¢ and the matrix X by

- =T -
X1 ] Y] e |
3T
%2 Y2 €2
> > _
X = . Y = . € = - (5‘2)
2T
"XM‘ -YMJ -€M-
and our model may be expressed as
Y =xB+¢ . (5.3)

In equation form, dropping the k subscript, the model

becomes
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Vel = BVt 32V2+...+ ByVnt 30+ € . (5.4)

Sums and sums of squares leading to the calculation of the
correlation or covariance matrix of the parent texture are
obtained by passing any chosen generation Kkernel pattern

over the texture. From this matrix, the least-squares

parameter estimate of 8 is obtained. The multiple-pass

forward selection process described in Chapter 3 leads to
a final linear autoregressive model which is then used to

Jdenerate textures,

5.3 Autoregressive and Moving Average Models

In this section, we will introduce the general linear
model as defined by Box and Jenkins [24] and Grabill ({39]
and discuss the relationships that exist between it and
the autoregressive and moving average models. When the
autoregressive model is extended without bound it |is
essentially equivalent to the general linear model and the
moving average model is a subset of general linear models.
Allowing for a large model reduces the complexity of
parameter estimation and allows easy selection of a

generating kernel and model.

Many of the equations in this section also assume
that the texture is one-dimensional and that the

Jenerating kernel is contiguous. That |is, VN+l follows




VN. This is consistent with notation presented earlier if
images are expressed in lexicographic [(40,41]) notation as
one-dimensional vectors. The non-contiguous kernel may be

expressed as contiguous if the B; are zero in the model.

The output of a linear filter whose 1input 1is white
noise €x may be described using the general linear time

series model

<7
|

N+l - En+1 T Vobnt Vifn-1t Vofn-2te-

s (5.5)
= en+1t }E:wjeN—j
j=1

where 3N+l=vN+l-1Jand u is the wmean of the process, -
Y . .
assumed to be stationary here. Thus vN+l is a weighted
sum of present and past values of the white noise process
€p +  Ex usually has zero mean and constant variance og.

The auto-covariance is also defined as
o
Ye = Blepepyge] = { . (5.6)

Notice that Eq. (5.5) may be written in a different

form
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N+1 0°'N 1'N-1 2 N-2 N+1
- (5.7)
= Z“j%—j* EN+1
=0
Equation (5.7) may be derived from Eq. (5.5) as
fNe1 = Vnel” Z“’jEN-j (5.8)
J=0
En = ?N- }E:ijN—j . (5.9)
j=1
Therefore
Vsl = ene1tVo| Yy Vien-g| T Z‘”jEN-j
j=1 j=1
- (5.10)
= +y Vot (1= )Z
= en+1tVoVnt Yo Vien-5
j=1 .
Similarly
= - . 5.
fN-1 vN—l ijEN—j (5.11)
j=2

=41 = €N+1+“’0Q’N+‘1"”o)“’15N-1+‘1‘”’0)Z‘Pjen—j (5.12)
j=2
= a1 toUnt (1m0gd vy Vg :E:ijN—j *‘1'Wo):E:“ﬁ€N-j
j=2 j=2
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= a1t VoVt (1m0 ¥ Vg1 + (1mug) (1-4,) :E:wjeN-j
j=2
and so, by continuing this process Eq. (5.7) is found.

L e i A e mam e et < o

It may also be shown that Eg. (5.5) can be rewritten

as

Y
= (5.13)
Vel T V(BlEgy 7
where B is the backward shift operator
— (5.14)
Bep = k-1
P (5.15)
B Ek Ek—j
and
= Z J 5.16
Vv (B) wj_la ( )
j=0
where ¥ = 1. VY (B) is often called the transfer function

1
of the linear filter.

As certain constants or parameters must be estimated

from the sample data available it is sometimes important

— .

to minimize the number of parameters required to
accurately represent a process. This simplifies analysis

of a model and reduces the number of required

computations. The general linear model containing an
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inrin: number of terms is of little practical wvalue.
Therefore, if 1is often expedient to allow the general
linear time series process to be reduced to a model in
which the current state of the process may be expressed as
a finite aggregate of previous values of the process and a
driving error value €N+1' This autoregressive (AR) model

may be written as

| _ 8 (5.17)
{ RyN+1 ¢0%N+ 01Vgo1* OVt o Vn-pten-1 -

We may define the autoregressive operator ¢ (B) as
¢(B) = (1-¢,B- ¢ B>- - ¢ _8BP)
1 2 cce p (5.18)
and thus Eq. (5.17) may be rewritten as

ay _ 5.19
®(B) Vi1 = Fysl - ( )

The moving average (MA) model may be written as a
special case of Egq. (5.5) where only the first g+l of the
¥ weights are non-zero. This process is

ny
Vel T En+l T O0fNT O1fn-17 ccr T BpEN-p
1 g (5.20)

= EN+1T ®36N-3 .
3=0

As in the case of the autoregressive model, we may write




- e

the moving average operator as

B-g.B2- -

6(B) = (1-8,B-6; cee T Bgy

Bq_quq+l) (5.21)

and thus Eq. (5.20) may be rewritten as

n
v = 8(B)ey, (5.22)

N+1 1

A model incorporating the finite-term concept of both

the autoregressive and moving average model may be written

as
N
VN+1 T ¢OVN+¢lvN-1+"'+ ¢va-p+€N-l
. 6 (5.23)
- 99¢N 188-1" °°° equ_q
or
¢ (B)V = (5.24)
(B)Vyyp = 8(Blegyy . ’

This mixed autoregressive-moving average (ARMA) processing
can be thought of as the output Vﬁ+l from a linear filter
whose transfer function is the ratio of two polynomials

6(B) and ¢(B) when the input is white noise € *

An Example

-

To show the relationship between an autoregressive
process and a moving process we will consider the simple

example




-

6 _
N+1 €

N+1 205N

which is a simple wmoving average process.

equation indicates that

VN = aN—BOE

This implies that

¥ +6

N N "0°N-1

1

£

{5.25)

The above

{(5.20)

(5.27)

Substituting Eg. (5.27) into Eg. (5.25) yields

and by a similar substitution of

fa-1 = Vn-1%0%N-2

into Ey. (5.28) we see that

2

_ _ a3
Ve = “P0Vn 90 N-1"00  N-2" E N
Continuing this process yields
= - 57 :
Ve :E:QOV(N+1)—j+EN+1
j=1

Thus, a finite moving average process may be

infinite autoreyressive process.

(5.28)

(5.29)

(5.30)

(5.31)

written as an
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5.4 Parsimony Between Models

The above equations show how the general linear time
series model is related to the autoregressive, moving
average and autoregressive-moving average models. The
concept of parsimony suggests that is is usually desirable
to express a model with as few terms as possible.
However, it has been shown that 1if we are willing to
sacrifice the concept of parsimony and deal with infinite
(or large) general linear models we can use the infinite
autoregressive model (Eq. (5.7)), also known as the

general linear model, to describe any general linear time

series process.

In theory, it is possible to approximate as closely
as desired any general linear tiﬁé series process with a
finite autoregressive process of order p by allowing p to
increase until the desired closeness is obtained. 1In
application, however, the estimation of model parameters
L of Eq. (5.7) may be less accurate than desired due to
the noise €x in the system. That 1is, the noise of a
system will cause error in the estimation of the m, to the
extent that some ni's are believed to be 2zero or are
estimated so poorly that an inaccurate model is developed.

It is not clear to what extent the accuracy of a model |is

improved in such a case by using an autoregressive moving
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average model. It is clear, however, that going to such a

model causes increased complexity in the parameter
estimation process and induces difficulty into the
hypothesis testing process which 1is simple 1in an

autoregressive model case. Parameter estimation for the
ARMA inodel requires a wmultiple-pass, extensive and
computationally-complex iterative process which is
complicated by the required extension of our model in a
two-dimensional image to many points and very large sample
size. For this reason, the ARMA model was not used for

texture simulation in this thesis.
5.5 Results

The linear (autorejressive) model of Eg. (5.4) was
used to simulate 3 variety of mnatural textures.
Stationary, independent Gaussian noise was used to drive
the synthesis process. The wvariance of tile noise was
estimnated by applying the model to the sample data and
observing the prediction errors. Images resulting from
the fitting of estimated wmodels to sample data are shown
later in this chapter. These errors, which are often
called residuals, are pixels formed by tiie difference

Y - waere
N+1 VN+1 waer VN+l

the sample parent imaye and

is the actual observed pixel value of

A

VN+1

obtained by use of the linear wmodel. The

is the corresponding

fitted value




standard deviation of these errors can be measured and
used as the standard deviation of pseudo-random
normally-distributed noise 1in the generation process.
Actually, this information can also be obtained during the

decomposition of the covariance matrix.

The number of pixels in each generation kernel, N,
varied from 30 to 60. The generation kernels used for
each simulation are shown in Table 5.1. The simulation

results are shown in Fig. 5.1(b) through Fig. 5.11(b).

These simulations indicate that the 1linear model
using stationary gaussian noise produces acceptable
simulations of a variety of textures including grass,
wool, leather, sand and water. As with the binary model;
the simulation of bark (Fig. 5.2) shows absence of macro
texture. The non-homogeneities present in the straw
texture (Fig. 5.3) <cause an "average" straw to be
generated» which is wvery similar to the binary texture
simulation. The cloth texture (Fig. 5.4) is composed of
two subtextures and therefore simulations made using
statistics measured over the whole image will be a mixture
of the two subtextures. The simulation of raffia
(Fig. 5.11) has good structure as the linear model Kernel
is large but sharp edges present in the original texture

are absent in the simulation. The same 1is true of the
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simulation of sand when the texture is examined in detail

on a high-~resolution display device.
5.6 Rotation and Magnification

The effects of image texture rotation and scale
changes on the covariance function of a texture can be
determined by expressing each as a 1linear transformation
of the 1linear model. Using the notation of the linear

model as expressed by Eq. (5.1) we may define

M

- 1 2

=M Xy, . (5.32)
k=1

¥l

4

Using this notétion, the maximum likelihood estimators for
the mean and covariance matrix of N-variate normal
distribution, N(%:1,T)

-1
r

NG = 2m) V20 260 -1/2-0) T x-T)1 (5.33)

are

=¥ >
]
>

X (5.34)

and

3 T

>
s

I
e Ly
(-

1

~
[l

Relating this to the facts discussed in sections 3.4, 3.5
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and . , we see that the linear model parameter estimates
are obtained from the maximum likelihood estimators for

the mean and covariance matrix.

If we then define a linear transformation H such that

> _ >
W = ka (5.36)
Then
. M
1 2 : ~
w k=1 X
and M
2 1 > > 3. T
r, =M :E:(ka - ka)(ka HX)
w k=1
M —
_ 1 :z :-» _ %y (T, T _ 3T, T
=5 H (xk xk)(ka X"H™)
k=1
M (5.38)
_ 1 2 : S R 1% &
= H M (xk xk)(Xk X)"H
k=1
- HI HT .

Thus if our model is transformed linearly, the estimates
required for 1linear model parameter estimation can be
obtained from original model estimates and the

transformation its=elf,

Rotation may be thought of as a linear transformation

of coordinate systems. wWhere our discrete image |is
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A

considered to be rotated about an axis by angle 6 and the
standard row, column notation is used (I(nl,nz) represents

the pixel value for image I at row ny and column ny)

Irotated(nl’HZ)

{(5.39)

cosh,n,sin6+n_ cosb) .

(n251ne+n 1 2

Ioriginal 1

Usually the row, column addresses in the original image
are fractional. Therefore, these pixel values nmust be
specially defined. A widely accepted practice is to
estimate each value as a function of pixels surrounding
it. The most likely candidates are nearest-neighbor and
bilinear iInterpolation(42]. It will be shown that in
either case, the new value may be expressed as a linear

combination of values in the original image.

A very similar result may be derived in scale changes

of a texture. Here

Tscaled (P1772) Ioriginal(nl'a'nz'a) . (5.40)
The origin of the coordinate system defines the center of
the image magnification or reduction. In rotation, the
origin of the coordinate system defines the axis of
rotation. In both image magnification and rotation, the
row and column addresses of the pixel in the rotated image
may be fractional. Again, the value may be expressed as a

linear combination of values in the original image.

128




Consider the example shown in Fig. 5.12.

of

bilinear interpolation (between rows the columns)

=
il

=
il

=
il

=
I

=
I

This implies that

The accuracy of
interpolating function to accurately
off-grid samples in a
function

Caution should be exercised when using a

rotation

With angle
8, origin V5 and maqgnification of 4/3, using

we have

[0.65 V1+0.35 V4]-0.375+[O.65 V2

+0.35 VS]-0.625

[0.375 V2+0.625 VS]'0.35+[0.375 V,+0.625 V6]-0.65

3
Vs
(5.41)
[0.625 V,+0.375 V_1+0.65+[0.625 V,+0.375 Vg]+0.35
[0.35 Vg+0.65 Vgl +0.625+[0.35 V,+0.65 Vo}+0.375 .

(5.42)
ro.zu'ls» 0.40625 0.0 0.13125 0.2187% 0.0 0.0 v.0 0.0
0.0 0.13125 0.2437% 0.0 U.21B75 0.40625 0.0 0.0 0.0
H = 6.0 0.0 0.0 0.0 1.0 0.0 0.0 0.6 u.u
6.0 0.0 0.0 0.40625 0,21875 0.0 0.24375 0.13125 0.0
0.0 0.4 6.0 6.0 0.21875 0.1312% 0.0 0.40625 0.24375
L J

the estimate depends on the ability »f the

estimate the value of

discrete image. The covariance

itself 1is being 1interpolated in this method.

nearvst-nelghovor

approach as the transforination of a non-sinjuler
covariance matrix can be singular if the rows of H are¢ not
independent vectors.

By rotating covariance wmatrices, we are able (o




4

produce models which can generate textures at any angle
and magnification from one matrix. This could also be
useful when trying to 1identify textures of different

orientation and scale based on covariance statistics.
5.7 Second-Order Linear Model

When we say that a model is a linear or nonlinear, we
are referring to linearity or nonlinearity in the
parameters. The wvalue of the highest power of an
independent variable in the model is called the order of

the model. For example,

Y = BVt BllBi+ Bot € (5.43)

is a second-order linear model. A general second-order
linear model with two independent variables may be written

as

— .44
Y —Blvl+e +611 1+322 2+312v1V2+3o £ . (5 )

A full second-order model with N independent wvariables
will employ (N243N)/2 terms in addition to the BO
(constant) and € (error) terms. This general second-order

linear model may be written as

2

N N N
YA Zs v 8 c (5. 45)
11 1
i=1 i=1 j=i
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Second-order models have been particularly wuseful in
studies where surfaces must be approximated by polynomials
of low order. 1In all cases, a second-order model will
"fit" given data as well as or better than a first-order
model that is a subset of second-order models. This does
not imply that the second-order model will be more correct
however, as the process which we are attempting to model

may be in fact a linear first-order process or some other

type.

The use of a second-order model to approximate the
sur face of the general stochastic model could have many
advantages over a first-order model. An example of
fitting such a model in one dimension to a given set of

data is shown in Fig. 5.13.

Still the linear first-order model may provide a jood
fit to the data and the magnitude of the unexplained
variance in the data may be 1largye enough that the
improvement due to the addition of second-order terms to
the model may be barely noticeable. In two dimensions,
the fitting problem is one utilizing a quadric surface
such as a elliptic paraboloid or hyperbolic paraboloid

versus a plane to fit a given set of data. Again, the fit
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Figure 5.12 Image Rotation and Magnification

Figure 5.13 Second~order Linear Model




may or may not be markedly better. Adding second-order
terms to a model will always produce a fit as good as or
better better than a first-order model but the number of
computations required to compute the coefficients and fit

the model are much greater.

It is also important to note that the covariances of
the V; are required in order to obtain least-square
estimates of the parameters Bi in the first-order model
[20]. Covariance is essentially a second-order statistic.
Therefore, estimating the parameters of a second-order
model will require the wuse of fourth-order statistics.
Specifically the correlation of terms Vi Vi and Vi Vi is
needed. This may cause serious problemslaszmany cages4the
variables 1in a second-order model will be highly
intercorrelated. For example, the terms Vl' Vi and V Vi
(if vy is highly related to Vi) may be strongly
correlated. This situation, often referred to as
multi-collinearity, may cause problems dur ing the
inversion or decomposition of the estimated correlation
matrix, a necessary step in model parameter estimation.

For this reason, <care should be exercised during the

analysis of second-order models.

Inside a circular radius of 14 pixels from VN+1 there

are 307 pixels. To search all possible cross products in




this region to find the most significant would require
over 47,000 cross products to be examined. Computation of
a covariance matrix containing all of these terms Iis
impossible (in practice). In our study we were limited to
investigate only 820 possible cross products for entry
into the generation model. As most of the variance was
explained by the linear terms of the model, most of the
cross products were insignificant from a statistical point
of view. This selection procedure is detailed in [20] and
in Chapter 3. Those that were significant were entered
into the model and a new texture was generated using
Eg. (5.45) with stationary Gaussian noise and having zero

mean and fixed variance [56].

The results of texture simulations using the
second-order 1linear model are shown in Figs., 5.1(c) to
5.11(c). On some of these textures only a slight
improvement from the addition of second-order terms may be
seen. In most cases, no change can be observed even when
the results are displayed on a high-resolution display
device. The lack of improvement could be due to the small
number of cross-terms examined; however we feel that this
number is sufficiently 1large to show any considerable
improvement due to the addition of second-order terms to

the linear model.
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5.8 Textures with Non-Stationary Noise

Applying a texture generation model to the original

parent texture image data used to estimate its parameters

gives a residual error image. When applying the 1linear

T e TR TR T e AT

model to a two-dimensional texture, a two-dimensional

image containing the pixel differences or residuals

~

\Y is found. Here VN+ is the prediction of the

Vv -
N+1 "N+l 1
next pixel in the sequence as a 1linear function of the

pixel around it according to the model without any noise

added. Naturally, we would expect these errors to be
small as merely subtracting one pixel from its

nearest-neighbor would yield a small value in most

natural, low-noise images. Such an image of residuals was
generated for the sand and linearly rescaled to show the
detail present in the 1image (Fig. 5.14). Definite
patterns are seen to exist in this 1image and thus a
violation of the independent assumption is indicated.

Ideally, this residual image would be uncorrelated noise.

A histogram showing the number of V occurring at

N+1

cach pixel value is shown in Fig. 5.15. A plot indicating

the mean nf the residuals V \' versus V is shown

N+1 'N+1 N+1

in Fij. 5.16. As would be expected, residuals where the

VN+l is less than 0 will have a wmean less than zero and

those residuals where the Vy+1 18 greater than 255 will be
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Figure 5.14 Residual Sand (VN+1'VN+1)

oaiadlin iin\a!.l.!ll.lli
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likewise positive, Figure 5.17 shows a similar plot of
the standard deviation of the residuals versus 0ﬁ+l'
These three figures seem to indicate that the distribution
of the error in the model is related to the value QN+1'
Therefore the assumption of constant error variance is
questionable. It may be reasonable to drive the
generation process with noise which does not have

stationary mean or variance. The effect of such a change

in the generation process was studied. Figure 5.18 shows

the distribution of error VN+1—VN+1 (a histogram of the

residual image) which appears to be aproximately normal.

The distribution of this error and the relationships
between the predicted and actual pixel values was utilized
to generate textures using non-stationary noise. The

procedure begins by generating a pixel Q +1 according to

N
Eq. (5.45) excluding the error term. With this predicted

value a random error value € 1is chosen to be added to

~

VN+1' This error value € is chosen from the distribution

~

of error as a function of VN+1 and can have any arbitrary
distribution. The next pixel will than be computed in a
similar manner. Results of texture synthesis formed using

~

this model are shown in Fig. 5.1(d) through Fig. 5.11(d).

The arbitrary distribution of error as a function of

0N+l is calculated by applying the calculated linear model
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to the original parent texture and computing a histogram

of errors as a function of VN+1'

In most cases, considerable improvement is seen when
these .simulations are critically observed on a
high-resolution display device and compared with the
stationary model results, Of <course, the information
required to generate them is considerably greater also.
The distribution of errors as a function of §N+1 must be
condensed and coded to some degree to minimize storage
requirements. For a 256-grey-level image QN+1 usually
ranges from -50 to 305 and the errors, QN+1_VN+1’ from
-255 to +255, These ranges were determined
experimentally. This would yield quite a large amount of
data if fully stored. By storipg a small number (under
100), typical errors for each range (and not each single

~

value) of VN+l the number of data values we are required
to store can possibly be reduced to under 1000. Therefore
it is believed that this approach of using non-stationary,

non-Gaussian noise to generate textures may be quite

acceptable even with severe storage limitations.

5.9 Conclusion

The results 1in this chapter indicate that many
natural textures are well simulated using a large

autoregressive model., Adding second-order terms to the

c et v e




model improves the results slightly but the resulting
increase in computational complexity makes this
second-order simulation method difficult to implement.
Using non-stationary noise 1in the generation process
improves the simulations considerably when the textures
are viewed critically. The subsequent increase in storage
and computation required by this addition is small and
therefore this model modification should be considered in

most applications.
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CHAPTER 6

MULTIPLE MODEL TEXTURE GENERATION

6.1 Introduction

In this chapter, we will present three methods of
generating textures wusing multiple texture models. The
first method introduces a set of generation kernels that
is wused to synthesize texture pixels in a multiple-pass
manner. Associated with each of these kernels is a unique
model. This method could be useful in generating textures
which have very coarse structure. The second method uses
a plecewise-linear method of fitting the model to parent
texture data. The model <chosen during the generation

process is allowed to depend on the pixel values in the

kernel. Although the fit of the model 1is better, the

synthesis results show 1little 1improvement over the
single-model approach with a 1linear iodel. The third
method of texture generation presented in this chapter
uses a additional image to determine the model number to
be used during the generation process. This composite
generation method could be wuseful when a texture |is

actually composed of a set of subtextures as it allows a




unique model for each of these subtextures to be used in

the generation precess.
6.2 Skip-Generate Method

Simulating textures which have a fine structure is
usually a much easier process than simulating textures
with coarse structure. This occurs because the linear
model <contains fewer terms if the texture pixels become
uncorrelated over a small distance. For the same texture
at a greater magnification, the pixels become highly
correlated and the linear model will be forced to contain
more terms. As the texture becomes more coarse, more
time-consuming statistical measurements must be taken on
the ©parent texture over larger windows. Motivated by
these problems, the texture generation algorithms in this

section have been developed.

In the texture work so far, pixel V as dgenerated

W
N+1

based on pixels above or to the left of it (see
Fig. 3.1(b)). As discussed in Chapter 3, the kernel does
not have to be contiquous. This kernel shape is chosen to
insure that the image space of our synthesized texture was
filled during the generation process. However, generating

pixels along a row, row by row is not the only way of

filling an image space.
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E Consider the non-contiguous kernel mask in PFig. 6.1.
If the spacing between the pixels in this mask is 8, using
the linear model in Eg. (5.4) to generate the right-most
pixel in the bottom row, we can ygenerate every 8th pixel
along every 8th row. At each step the next pixel |is
generated based on the previously-generated pixels around
it (ignoring boundary conditions). After generating an

image with this type of spacing, the pixels inidway between

the previously-generated pixels on each row may be
generated wusing the mask in Fig. 6.2. 1In this mask, the
pixel with the "x" in it denotes the next pixel, VN+1' to :
be generated according to Eg. (5.4). Naturally, the
linear model used 1in this step will have different
coefficients than the previous one. It 1is also
interesting to note that new pixels depend not only on
previously generated pixels above them (as with the mask
in Fig. 3.1(b)) but depend alsoc on the pixels below them.

Still, 1ignoring boundary conditions, each pixel depends

only on previously generated pixels. At the next step a

mask similar to that in Fig. 6.3 can be used to fill in
the pixels midway between the previously-generated pixels
in each column. Again pixels are allowed to depend on

pixels around them.

By repeatedly wusing the masks in Fig. 6.2 and

Fig. 6.3 with successively <closer and closer pixel
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Figure 6.1 First-pass Generation Kernel
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Figure 6.2 Second-pass Generation Kernel




spacing, the texture simulation imagye space is filled. An
example showing the pixels generated at each successive
pass is shown in Fig. 6.4. #More importantly, to determine
the linear model for each mask, only one covariance matrix
is required and can contain as many or as few terms as
desired. The process of collecting statistics for one
metrix is not beyond the complexity that we would want to
undertake for the small number of times required by this
process. Naturally, any other stochastic process may be
substituted for the linear model. As before, only the
measurements required to estimate the parameters
corresponding to each mask need to be taken. This number
depends on the spacing of the pixels in the first nask,
which should be a power of two. Other odd-shaped kernels
and kernels whose spacing is not a power of two <could be
designed to form space-filling sets. Most would require
more models to be estimated and would provide 1little

additional information.

Texture simulations using this method are shown in
Figs. 5.5-6.12. Only a slight improvewent is seen in some
of the texture simulations over the synthesis done by the
earlier single 1linear .nodel. Most of these textures are
apparently well simulated by a carefully chosen model and
the results are not critically dependent on the coarseness

of the textures.




Third-pass Generation Kernel

Figure 6.3
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A word of caution should be added concerning the
éomputations involved in the 1linear model coefficient
calculation of this method. During the later stages of
the skip-generate wmethod, the pixels in the generation
kernel‘become highly correlated as the distance between
them decreases with each pass. This may cause the
correlation or covariance matrix of the model to be
ill-conditioned. To avoid numerical problems, the number
of variables entered into the process, and therefore the
number of steps involved 1in the matrix decomposition
process, should be kept to a minimum in some cases. The
use of ridge regression techniques (43,44,45] might also

be considered.
6.3 Piecewise-Linear Models

When generating textures wusing the general linear
model described by Eq. (5.4) and the generating kernel in
Fig. 3.1(b) the same model is used regardless of the
values of the pixels Vl,...,VN. By developing more than
one linear model and allowing the choice of the model at
each pixel generation step in the synthesis process to be
dependent on some functional value of Vl,...,VN,

F(Vl,...,VN) a new synthesis model is formed.

To illustrate this concept consider the data in

Fig. 6.13(a). If we were to fit one linear model to the
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data in order to predict V2 €rom Vl it would look like the
single 1line running through the data in Fig. 6.13{a).
This linear model could then be used to predict V2 based
on the value of Vl. But if we allow the choice of our

linear model to be dependent on the value of V then for

1’
an incoming wvalue of Vl we choose a model whose domain
includes V1 to predict V2. For 5 1linear imodels, the
straight lines are shown in Fig. 6.13(b). The fit to the
data using multiple linear models will always be as yood
as or better than that of the single linear model. That

is, the mean square error will generally be reduced using

nmultiple models.

Using multiple linear models for texture synthesis we

would generate pixels V based on pixels V_,...V _in the
N+1 1 N

following way. First, we compute a function, F, of the

Vl,...,VN pixels which allows wus to choose the proper

linear model. Then wusing this model with the wvalues

Vl""’VN we predict VN+1 and add noise. This process is

diagramed in Fig. 6.14.

Ideally, the function F should be chosen to minimize
the total mean square error resulting from fitting the
limited number of models to the sample data. This is very
difficult to do in practice however as for N laryer than 3

we are fitting multiple hyperplanes to data in an N+l
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dimensional space.

One texture synthesis of sand was done using the
multiple linear model (see Fig. 6.17). In this case eight i

models were used and the model number was chosen by

examining the pixel immediately to the left of the pixel .
being generated. The range of this pixel, 0 to 255, was

: divided into 8 equal subranges and the model was chosen
according to the subrange into which the value fell. Only
a slight improvement over the =single 1linear model
synthesis (see Chapter 5) is seen even though the same
kernel shape was used. No other simulations have been run
using this model as it is felt that 1little improvement
will result. Also the linear model containing -
cross-product terms in Chapter 5 probably provides a very
good fit in most cases and in more dimensions. In one

3 dimension the model of Chapter 5 would fit the data in

Fig. 6.13 with a quadratic curve.

6.4 Field-Definition Stochastic Model

Another method of using multiple stochastic models is
to generate an image of fields defining the model number
to be used in a second pass. Such an approach would be
useful in simulating textures which have multiple
sub-textures within them. A simple analytical example is

shown in Fig. 6.15. Real world examples might include
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such things as a brick wall where the texture of the
bricks 1is different than the texture of the concrete
separating them. It was felt that this type of approach
might be use ful in the simulation of bark (see
Fig. 3.6(a)) which has a strong macro structure. A method
to separate this texture into two fields, which would
later define the model to be wused, was designed. This
result (Fig. 6.18) was obtained by successively passing
smart median filters of varying sizes over a binary image
(which was obtained by thresholding an original continuous

grey-level image) (see Fig. 5.2(a)).

The smart median filters replace the center pixel of
a window with the median only if certain conditions are
met. The window is passed over the entire image pixel by
nixel along a row, row by row 1in a two-dimensional
convolution manner as in Fig. ©.16. Let II(nl,n ) be the
input image and IO(n ,N ) be the output. Let the pixel
values be 0 (black) and 1 (white). Let NB denote the
number of black pixels in the window being processed with
center II(nl,nz) and let Nw be the number of white pixels

in the window. For the binary case, the smart median

filter is defined as
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Figure 6.14 Diagram of Multiple Linear Model Method
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Figure 6.15 Analytic Figure 6.16 Two-dimensional
Sub-textures Convolution

153




. B
0, if >  Thresh
‘ N N
N
Iy(nyony) 1, if W >  Thresh (6.1)
' NN, 2

II(nl,nz), otherwise

Equation (6.1) indicates that the center pixel of the
window 1is replaced by the median if the percentage of
black or white pixels is above a specified threshold. The
term “"replaced" is wused 1loosely in this context to
indicate the visual appearance of replacement when the
input and output images are superimposed. In the binary
case, the median of the pixels in a window is equal to the
value of the most frequently occurrinyg pixel in the
window. The threshold and window size wvaried in the
successive passes over the imagye. The window sizes and
thresholds for each of the passes used to obtain Fig. 6.18
were 3-0.50, 3-0.50, 5-0.50, 7-0.75, 11-0.78, 7-0.50.
This multiple-pass procedure helped to retain <detail and

eliminate fields too small for useful measurements.

The field-definition stochastic nodel was also
applied to the non-stationary cloth texture (see
Fiy. 5.14(a)). This texture is clearly composed of two
alternating subtextures. In this case, the texture fields

can be extracted by hand (sce Fig. 6,21).,
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Once the two-field images for bark and cloth were
obtained they were processed again to define a total of
four fields, the two original fields and two border or
transition fields. The transition fields are required as
the kernel of points over which relational measurements
(usually second-order statistics) are taken may not fall ’
wholly within one of the two fields. Such border
measurements will surely 1increase the inaccuracy of the
models for the original fields. So these border regions
are considered to be wunique texture fields. They are
mathematically defined by passing the original 1linear
model texture generation kernel obtained in Chapter 5 over
the texture and defining the relative importance of each
pixel to be equal to the absolute value of its associated
Bi coefficient of the 1linear model (Eg. (5.4)). These
coefficients are usually 1largest near the eye of the
kernel., The "importance" of the eye itself 'was set to
1.5 max(Bi). If a large’percentage (90% for bark, 95% for
cloth) of the total "importance"” fell within one of the
two original fields, the point would be considered as a
member of that field. 1If not, the point would become a
member of the transition field based on its position with
respect to the two fields, A and B. I1f, at the point
being processed, A is to the left of B then the point is

in one transition field, if B is to the left of A then the




point is in the other transitional field. The right-left
orientation is used as the texture generation process 1is
usually done in a left-to-right manner along each image

Yow,

The results from processing the original field data
for the textures bark and cloth are shown in Fig. 6.19 and
Fig. 6.22. The four fields are represented using four
grey-levels,. The black regions on ghe border may be
considered to be undefined as the kernel points do not lie

with the image reqgion in these areas.

These field definitions were wused both in the
statistics gJgathering process as well as the texture
synthesis process using the four calculated models. The
models were linear (see Eg. (5.4)) and the methods used in
their estimation were discussed earlier in Chapter 5. ‘The
synthesis results are shown in Fig. 6.20 and Fig. 6.23.
Unfortunately, the field structure |is not strongly
apparent. The primary reason is that each model requires
a number of pixel generations before it reaches a steady
state and in most cases this is much greater than the size
of most of the fields in the bark texture. By observing
the border regions of many synthesis runs, it seems that a
steady state is reached after 10-20 pixels have been

previously generated. In the cloth texture synthesis of
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Fig. 6.23, the randomness of the noise seems to destroy
the structure of the texture quite frequently. This is
illustrated in Fig. 6.24 where only one of the four models
was wused to generate the entire texture. Each of the
models contained the same set of kernel points used in the
original 1linear model of Chapter 5. It is possible that
improvement could be made by choosing a different set of

points for each field-model.

In an actual simulation, once a field image is
obtained a method must be developed to simulate this field
texture and this field texture will then in turn be used
to choose the model numbers in the generation of final
synthesis. Generating textures with only a few grey
levels can be done wusing more complete stochastic
statistics, perhaps N-grams, but the large size of the
fields may require that a method such as the skip-generate
method (discussed in section 6.2) be used.. For many

textures, such as cloth, the field generation process

would be simple.

More work should be done in the multiple model area
as the storage requirements for such models is very small
but can potentially produce improved results. A great
number of combinations and approaches are possible in this

area and, in many cases, may be chosen by the application

or the particular textures being simulated.
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Figure 6.21 Cloth Fields Figure 6.22 Field-defini-
tion Image for
Cloth Simulation
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CHAPTER 7

BEST-FIT TEXTURE MODEL

7.1 Introduction

A method of generating texture siaulations according
to their Nth order densities was investigated for binary
textures in Chapter 3. The simulations resulting from
this Markov ©process resembled their parental textures
gquite closely in most cases. When applying a&a similar
concept to wmulti-grey level imagery, the limits of
computer storage are soon reached. To circumvent this
constraint, a new method of texture synthesis was
developed and applied to a number of textures. Simulation

results using this method are given in this chapter.
7.2 WN-grams in Continuous Imagery

In binary texture generation based on N-grawms a

single functional wvalue P(VN+1/V1,...,VN) was stored for

each possible pattern (Vl,V ) where the Vi's can be

greeerVy

Zzero or one. This wvalue, also called a 4yeneration

parameter, represented the <conditional probability that

the next pixel, VN+1'

in the generation process would be &




zero-valued, black pixel. The Vi's were chosen by a best
linear model (it detailed in Chapter 3 and therefore the
l,...,VN) is not necessarily

contiguous (see Figure 7.1). Details concerning the

kernel of previous pixels (V

estimation of P(VN+1/V1,...,VN) from a parent texture are
given 1in Chapter 3. For binary textures, this single
value is sufficient to define the distribution of VN+1

given V_ ,...,V._. The number of different functions which

1 N
must be stored is 2 . In the generation process each
pixel VN+l is generated based on the values of the pixels
Vl,...,VN surrounding it and on a computer-generated
uniformly-distributed random variable. The texture

simulations are generated pixel by pixel along a row until
each row is complete. Pixel generation along the edges of
an image can be handled in a wvariety of ways but 1in
Chapter 3 pixels in these border regions were assumed to
be any random value, 0 or 1, if +they were outside the

image boundaries.

A similar approach could be used to generate

multi-grey-level textures. For a texture containing g

N+1 . .
grey levels, g different functions, P(VN+1/vl"“'VN)'

muit be stored. (Actually only (g-1) gN are reqguired as
g-
E P(X/Vl,...,VN)=l for all Vi)‘ Gtorage limitations
K=

are soon reached. Also estimation of P(VN+ /Vl,...,VN) is

1

difficult as multiple occurrences of the pixel pattern

lel




V o yeee,V nmay not exist in the parent texture. Therefore
N
even without storage limitations the problems of

estimating P /N ,...,VN) from a given parent texture,

vV
N+1" 1

which represents the distribution of V 1 given the values
N+

of V ,...,V 1is complex.
1 N

This estimation problem no doubt has a number of ad
hoc solutions. The problem is basically that for large N
and/or large g, there may not be a suitable number of
occurrences of the pattern vl""'VN to adequately
estimate the distribution P(V /N ,...,V ) given a finite

N+l 1 N
sample size. Even though a certain pattern never occurs
or rarely occurs in our sample parent texture it is not
implied that such a pattern is impossible and will never ’
occur in our simulation synthesis. We might often find
numerous occurrences of this pattern if our sample size or
the size of our parent texture was increased, especially
in noisy and fine-structured textures. But as this very
large sample may not be present, we must estimate
P(V /N ;yee.,V ) for all V ,...,V based on available
1 N 1 N

N+1
samples.

One approach would be to use sample patterns which

closely resemble but which may not be exactly the same as

each pattern (Vl,...,VN). That is in a pictorial sense,

we use patterns of (Vl,...,VN) which look "close to" the




Y

pattern for which we are attempting to estimate

P(V V.,ee.,V_ ). Therefore samples in our sample parent
ATSTASTARRRANY P ple P

texture may be used to estimate numerous P(V /Vl,...,VN) !

N+1
and not Jjust those they fit exactly. The concept of a |
distance function must be wused to numerically define )

|
"close to". Given two patterns, one from our sample :
f texture and the other from the conditional probability of 1
f the kernel we are attempting to estimate, the distance
measure can be used to determine the value of that sample
in estimating P (V /V ,eee,V ). 1If the fit between the

N+1 1 N

kernel pattern and the pattern in the sample texture |is

good the associated value of VN+l in the parent texture

ill be valuable in estimating P{(V V. ,eee,V ).
w v g ( N+l/ lr ’ N)

Normally, when N and g are small or when we have many

samples for any given V,,...,V we can use the histogram

1’ N’
of the associated Vn+1 to estimate P(VN+1/V1,...,VN).

Here the relative number of times a particular value of M

VN+l occurs given a pattern indicates the conditional

probability we are attempting to estimate. This was

discussed in section 3.2. Wwnere @& distance measure |is
used instead, a good fit could be considered to be
synonymous with high frequency of occurrence of that

pattern and a poor fit with low frequency of occurrence.

If such a iwnethod of estimating these conditional




P

probabilities is used we are still faced with a huge
storage problem. For this method to be practical, the
storage requirement nast be reduced. From an information
standpoint, it is interesting to note that & method of
estimating N-grams or conditional probabilities
P(Vy41/Vire--rVy) from a sample parent texture image
produces gN+l data values from M pixel samples where M is
the size of the square parent texture image in pixels.

F For large g and N this is a drastic increase in data. But

the actual information content can really never be greater

than that <content of the sample parent texture image.

Therefore, this M value represents an upper bound on the

amount of data we should wuse to generate a texture
simulation. Any amount of data exceeding this will

contain redundant data.
7.3 The Synthesis Method

Combining this concept of upper bound with the idea
of forming a distance measure to compare two texture
kernel patterns leads to a new texture synthesis method.
In this method, we generate the next pixel based on the
pixels in the kernel surrounding it (see Figure 7.1) and
their comparison to similar kernels in the parent texture.
This comparison is made by passing the kernel currently

present in the simulation process over the parent texture
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and computing the distance function at all possible points
(see Fiqure 7.2). Denoting the ©pixels 1in the parent

texture by X, ., i,3=0,...,/M-1 and the pixels in the

i,j
kernel V,,...,V by Y. ., we can compute a comparison
1 N 1,3
image
Ca,b = COMPARISON(Xi+a,j+b’Yi,j) (7.1)

for all a,b such that the kernel is within the boundaries

of the texture.

One possible comparison function would be
correlation. Assuming, without loss of generality, that
our kernel is contigquous as in Figure 7.3 and the elements

are denoted as Yi 5 this function would be defined as

(E :E:Xa+i,b+jX§:zYi,j)
- - i3 L 3
ra,b sza+i,b+j Yi,j N
L 1 3
— d2x. .F
Z 2 ( i J a+l,b+:] 2 5
Z: Rati, bts N (7.2)
i 3
L (E EY. .)2 -1/2
— 1,]
2 \T 3
2.2, N
|t

The problem with this particular distance measure is quite

serious. Correlation does not take into account
differences in over-all mean. For example, the kernels in

Figure 7.3 are perfectly correlated but their means differ
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significantly. Differences in first-order statistics
between these kernel patterns will not be detected by a
correlation measure and so another comparison function to

supplement a correlation value would be required.

A better comparison function would be the mean square

difference (MSD). This is defined as
MSD =E E (X -y, )2
a,b i+a,j+b "i,j (7.3)
ij

where i,j must be within the coordinate range of ‘the
kernel as in Eyg. (7.1). This comparison function will
detect differences in first-order statistics between two
pixel patterns (such as those in Figure 7.3) as the MsD
function is a sum of squares of differences. Whereas the
correlation coefficient of Eq. (7.2) varies between -1.0
and 1.0 and is largest when the fit 1is good, the MSD
measure is small when the fit is good and it is always

positive.

The MSD function weights the comparison of all
elements in a kernel equally. Having studied many texture
generation models we immediately recognize that this fit
is not properly weighted. The few pixels which are
closest to YNEXT in proximity are far more important when

predicting YNEXT than those which are far away. So
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Egq. (7.2) must be modified to give the weighted

mean-square difference (WMSD)

- _ 2
WMSD, p = 2:2:"‘1+a,j+b Y50 0 Wi,
ij

A possible choice for W is

(7.4)

Wi,j - l2 - 25 (7.9)
(i=igpxr! * (3~ Iygxr) R
where R is the euclidean distance between pixel Yi,j and
the kernel eye YNEXT and the coordinates of the eye are
given by (1ypverIngxr *
As the first step in comparing a 3yiven kernel Yi,j to

all kernels in the parent texture, for each point (a,b) in
the parent texture, ignoring edges, the WM3D 1is computed
resulting in an 1image of WMSD's. Where the fit between

the generated kernel Yi and the image Xi is good, we

’

'3
would expect WMSDa,b to be small. The smallest wmsD
represents the "best" fit according to our nori. Wwe could
choose the YNEXT associated with this best fit at point
(a,b) to be our next pixel in the generation process,
however this can cause problems. First of all, the
generation process would "lock in" on the parent texture

and the generated texture could very well become just an

exact copy of the input parent texture. Second, we know
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ideally that Y has a distribution, not just a mean.
NEXT

in the autoregressive model of Chapter 5 we gave YNEXT a
distribution by adding random noise to it. Although this
could be done here, such an approach would fail to use
additiénal information contained in the WMSD image. There

may be a set of points (a,b), all exhibiting a good fit to

the kernel pattern Yi .. In fact, the best fit may have a

/]
nois Y and the other ood fits could rovide
Y UNEXT J P
information to improve the prediction of the YNEXT in the
generation process. Using a set of best fits is

equivalent to increasing our sample size. We look at a

set of similar patterns to pick our Y .
NEXT

At this point there are numerous ways to proceed.
Logically those patterns with the "best" fit should
provide better estimators for YngxT SO some kind of
weighting decision is needed to <choose the relative
importance of the WMSD's found. If we search through the
WMSD image and find the minimum value, WMSDmin, and scale
all the WMSD's by that we form a new image MAX1

WMSD

MAX1 = ____min (7.6)
a,b WMSDa,b

This image has the value 1.0 at the best fit point and

values 0 < MAX1 < 1.0 elsewhere,.
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Here we can look at the MAXl (a,b) image and study its
range. IfE 0.16 < MAX1 < 1.0 it is implied that the worst
fit yields a 0.16 value. Somehow that worst fit should be
translated to imply that the probability of choosing the
YNEXT associated with that point (a,b)WORST is nearly 0.0.
The simplestv way of doing that is to take powers of the
image MAX1l(a,b). The maximum remains 1.0 while smaller
numbers approach 0.0. For example (1.0)10=l.0 but
(0.16}0 =lx10-8. We do this to obtain an ad hoc estimate

of P ( After experimentally studying the

YnexT/Yi,5)
values of MAX1l (a,b) and its powers, the value of 16 was

chosen and a new image PDFUNS

16

PDFUNSa = (MAXla, )

' b b (7.7)

was used to estimate the probability density function

P (Y /Y

NEXT i,j)' The wvalues in the PDFUNS 1image are
generally very small with less than 1% of the image points
having value greater than 0.1. As a rule of thumb, it can
be argued that 1% to 0.05% of the 128x128 PDFUNS values
should be greater than 0.1l. A larger percentage would
increase undesired randomness and noise in the synthesized
image and a smaller number could cause "lock in" on the
parent texture,. The wvalue 16 was also chosen for

convenience and computational efficiency as it can be

computed with only 4 multiplications and minimal data
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storage. More study could be made concerning the effect
of the value of this variable on the simulation results
and other approaches to creating a PDFUNS image from the
MAX1l values could be tried. Studying a histogram of MAX1

values might also be very informative.

PDFUNS is then scaled so that E :E :PDFUNS(a,b)=l.

a b
In this way a pseudo-density function is formed. Finally
] a uniformly distributed random wvariable, r, [0,1] is

generated and a point (c,d) is found such that

c-1 d-1
E E PDFUNSa'b+ _ PDFUNSC’b <r
a=l b b=1
d d (7.8)
PDFUNS + PDFUNS >r |
E :§ : a,b Z c,b
a=l b b=1 :
The YNEXT associated with the kernel shape at (c,d) is

b

then used as the next pixel in the generated image. The
process is continued wuntil a full texture image |is
generated with the kernel window moving one pixel at each

step, row by row.

In an indirect way, this is equivalent to generating
a random variable having any distribution wusing the
desired cumulative distribution combined with a uniformly

distributed random variable (which is easy to generate).

In other words, uniformly-distributed deviates are




transformed to deviates having the desired distribution
using the inverse cumulative density function [45,48,58].

This is frequently done in simulations.

7.4 Results

For a kernel containing 55 pixels (see Figure 7.4)

passed over a 128x128 parent texture approximately

7.2x10° operations (additions or subtractions) are needed
to get the WMSD image defined by Eg. (7.4). Another
2.6x105 are required to find the next pixel according to

Eq. (7.8). therefore, to generate a 512x512 texture

requires l.96x1012 (2 trillion) operations.

Results from texture synthesis done by this method
are shown in Figure 7.5 through 7.15. The original
textures are shown in Figs. 5.1(a) through 5.11(a). Each
of these images is 512x512 pixels. A 128x128 section of
each original (parent) texture was used for the
simulation. Bark exhibits very large macro structure and
this is lost in the simulation. A similar thing happens
with raffia as the kernel size is smaller than the cell
size of the original texture but is not as pronounced.
The top part of the bubbles texture was generated using a
128x128 portion different than that of the bottom part.
For this reason the top 20-30% of the texture looks

different from the rest. The large number of operations




Figure 7.1 Two-dimensional Figure 7.2 Passing Kernel

Synthesis Kernel Over Parent
Texture
1 2 3 4 51 52 53 54
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Figure 7.3 Perfectly Correlated Kernels
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Figure 7.5 Best-fit Grass
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Figure 7.11 Best-fit Sand
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makes this process very time consuming even when a

pipelined processor is dedicated to the task. About 5.5

days of dedicated time on an APl120B were required to

generate each texture,.

Although this method is of little practical wuse due
to the computational complexity of the algorithm a few
points should be made. with constantly increasing
computer processing speeds, a simplified version of this
texture simulation method may be implemented in the near
future. It is even possible that such computations could
be performed by an array of microprocessors. 1In any case
such brute-force approaches are simple and could be made

cost-effective in the future.

The results also indicate visually the amount of
texture information present in a 55 pixel window (see
Figure 7.4) because at each pixel generation step, the
next pixel in the Markov process depends on only the

pixels in this neighborhood.

Finally, this approach Iis admittedly ad hoc.
Numerous distance measures could replace the one chosen in
this work and each would give different results that might
appear better or worse. It is always important that the
process be random and not merely copy the texture sample.

If the simulation region is much larger than the parent
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sample, a deterministic process will gquickly generate
patterns that can easily be seen to repeat. In other
words, the histogram represented by P(VN+1/V1,...,VN)
should rarely be a delta function. A reduction in the
number of computations could be made if the kernel was
non-contigquous. Also, better results could probably also
be obtained if the kernel window was larger, The shape,
contiguity and size of the kernel in this study was chosen

primarily for computer programming considerations.
7.5 Conclusions

The results from this best-fit texture synthesis
method are very pleasing but the number of computations
required is large. Other similar algorithms could be
developed which are simpler and could possibly produce
even better results. With the decrease in computation
costs and the 1increase in processor speeds of future
computers, such texture synthesis methods could be

implemented in the future without great cost.
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CHAPTER 8

NON-HOMOGENEQOUS TEXTURES

8.1 .Introduction

In this chapter, methods for removing and introduciny

non-homogeneities in texture images are presented.
Non-homogeneities in neighborhood iean and standard
deviation are often removed previous to statistics

collection over a parent texture image to improve the
accuracy of parameter estimation. Similar
non-homogeneities may be added dur ing the texture
synthesis process by merely reversing the process. In
this way, synthesized textures which are homogeneous may

be processed to be non-homogeneous.
8.2 Removing Non-Homogeneities

Prior to siiulation attempts, the textures in this
study have been preprocessed by statistical differencing
[42]. This preprocessing step is described by

s!

Ag
I(n,,n,) = [F(n,,n )-F(n,,n )][ ]+
17772 1772 17772 ~
Ao(nl,n2)+od (8.1)

[amd+(1-a)F(nl,n2)]




where my and o4 represent desired mean and standard
deviation. F is the input pixel at location (n1!n2)' row
ny and column n, in the discrete digital image matrix, and
I is the output pixel 1in the statistical differenced
image. F(nl,nz) and a(nl,nz) represent the mean and
standard deviation of the input 1image at the point
(nl,nz). The variable A is a gain factor that prevents
overly 1large output values when G is small, and o is a

proportionality constant controlling the extent to which

the mean of the output image is homogeneous.

In our studies, mean and standard deviation factors
were computed in non-overlapping 16x16 pixel blocks values
are used to compute the mean and standard deviation at

each point. In our work @ = 0,8, m 128, o0.= 85 and

a - a
A = 5, These values tend to induce local homogeneity in
mean and standard deviation over an image. Large ainounts

of variation, however, will only be reduced and not

eliminated unless A is very large and o = 1.0,

Assuming that o does not approach zero, then another
form of statistical differencing can be used. This may be

written in equation form as
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60d

G(nl,nz)

I(n ,n,) = [F(nl,n2>-r‘*(nl,n2)1[ + (1-6)

(8.2)
+ [amd+(l—a)§(nl,n2)]

Here, both a and § are proportionality constants ranging
from 0.0 to 1.0. Setting a = 1.0 and § = 1.0 returns an
output image with precise desired mean and standard
deviation. Setting @ = 0.0 and ¢ = 1,0 causes the
standard deviation but not the mean of the input image to
change. Setting o = 1.0 and § =0.0 causes the mean but
not the standard deviation of the 1input image to Dbe
modified. €Cetting o = 0.0 and § = 0.0 produces no change.
Examples of statistical differencing are shown in
Figs. 8.1 through 8.4, The cork texture of Fig. 8.1 is .
non-stationary in mean due to shading differences,
primarily at the right edge. Figure 8.2 shows the image
resulting from processing Fig. 8.1 using the statistical
differencing algorithm. The non-homogeneity of mean is
removed ana the contrast 1is slightly increased. An
original  brick texture image shown in Fig. 8.3 has very
low contrast. After statistical differencing, local
contrast is much improved and the texture is more apparent
(see Fig. 8.4). Thus the statistical differencing
algorithm is quite useful in eliminating

non-homogeneities.




Figure 8.1 Before Statistical Figure 8.2 After Statisti-
Differencing cal Differ-
encing

Figure 8.3 Before Statistical Figure 8.4 After Statisti-
Differencing cal Differ-
encing
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8.3 1Introducing Non-Homogeneities

The inverse operation of statistical differencing can
be called 1local moment modification. Solving for F in
terms of I using Eq. (8.1) we find the formula for 1local

moment modification as

Ao(nl,n2)+od F(nl,nz)Aod

F(nl,nz) = I(nl,n2)+

AC A3(n

/N, )t
d 1’7279 (8.3)

- [umd+(l-a)F(nl,n2)] .

Using Eg. (8.3) we can introduce non-homogeneities into a
simulated texture by generating an image E(nl,nz) and

3 and cd.

a(nl,nz) and defining A, a, m
Again, if we assume that a(nl,nz) does not approach
zero, then Eq. (8.2) can be inverted to form another local
modification formula
(8.4)
o(nl.nz)[I(nl.nz)—amd—(l—u)F(nl,nz)]

a(nl,nz)(1-6)+dod
In the process of local moment modification, it is best to
set md and od to be equal to the mean and standard
deviation of the homogeneous texture I(ny,n3). Then, the

mean and standard deviation of the output image (F(nl,nz)

e e —
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will be defined by the images F(nj,n,) and 04(ny,ny).

These images may be generated randomly.

An image, before and after local moment modification,
is shown in Fig. 8.5. Here F(nl,nz) was assumed to be
ramp-1like and_a(nl,nz) was constant. Many other complex
and random F(nl,nz) and a(nl,nz) images could be used to

create different effects and simulate phenomenon such as

non-homogeneous lighting effects.
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CHAPTER 9

TEXTURE IDENTIFICATION AND SEGMENTATION

3.1 Introduction

In this chapter we examine various approaches to
texture segmentation and identification using the linear
model developed earlier. These methods employ covariance
measures of a texture over windows of the region being
segmented or identified. These same covariance measures
were used to estimate the linear model parameters which
were examined in Chapter 3 and Chapter 5., In Chapter 5,
the information <content of these measures was shown by
performing simulations of various textures and therefore,
based on these results, we might conclude that these
second-order statistics would be useful in the
segmentation and identification of textures. Pictorial

segmentation results are given in this chapter.

It is generally agreed that a great portion of
texture information 1is contained in the second-order
statistics of a texture. There are notable exceptions to
this rule as was shown in Chapter 2, however for most

natural textures, second-order statistics have proved to
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be sufficient to adequately discriminate textures in most

applications {49,51]. 1In a practical sense, we usually

are also prevented from gathering and analyzing
higher-order statistics because of computational
limitations. In fact, we <can easily be overwhelmed by

masses of data arising from second-order statistics.

The most general second-order statistics are the
complete second-order Jjoint densities, or 2-grams, which
were discussed in Chapter 2 for the one-dimensional
texture synthesis case. These measures may be estimated
by 3joint gray scale histograms taken over a parent
texture. For a g grey-level 1image, each histogram
requires gz storage locations. But, as was pointed out in
Chapter 2, there 1is one such histogram for each vector
distance or spacing between a pair of pixels. To compute
these histograms over all spacings, 2,...,nr, in two
dimensions would result in (nr—l)zg2 entries. Even for

reasonable g and n this could easily create a data

r'
expansion containing unnecessary information rather than a
data reduction yielding measurements with discrimination

value.

For these reasons, texture image data 1is often

quantized (to reduce g) and second-order measurements

resulting in joint grey-scale histograms are made over a

R ik




small  number of pixel spacings (to reduce ne . To
decrease the size of the feature space further, various
functions of joint «arey-scale histograms are calculated
and these values are primarily used to identify a texture.
For a sinyle nhistogram, as many as 25 to 30 functions have
been proposed [7]. In spite of the large dimensionality
of the feature space and the problems with quantizing low

contrast textures, this family of texture features is used

frequently to successfully classify textures [7,52].

Many other identification and classification schemes
exist [49] as the discrimination of textures represents

the most important application of texture analysis.

In this chapter, we reduce the information c¢ontained
in the joint grey-scale histogram to one single number,
the correlation coefficient for that particular pixel
spacing. It 1is expected that this large reduction will
cause a decrease in discrimination power as the size and
information content of the feature space has been
significantly reduced. The purpose of this exercise is
not to develop a new, more powerful texture identifier but
merely to access the information content of the
correlation coefficient values when applied to the problem
of texture discrimination. It is already apparent from

the simulation results presented in earlier chapters that
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a greac deal of texture information may be obtained by

proper use of these correlation coefficients.

Correlation measurements have been applied in various
ways to the problem of texture identification previous to
this study [2,11,12,14,49,53]. It has generally been
concluded that they are of lesser value than Haralick's
family of functions on values of the joint grey-scale
histogram ([(51] when applied to the discrimination problem.
In the remaining sections of this chapter we will develop
two new discrimination methods wutilizing correlation

values. One is based on the statistical test for equality

of covariance matrices. The other utilizes multiple
statistical tests for the equality of individual
correlation <coefficients, Both show good discrimination

power but neither exceeds the quality of Haralick's

measures.
9.2 Segmentation Using Correlation Matrices

Texture is a feature which can only be measured and
identified over an area of an image. Therefore most
segmentations of an image according to texture information
will require that measurements be taken over an area and
then part or all of that area will be classiﬁied
accordingly. In our work, measurements were taken over a

square, WBIG pizxels in length, and a center square, WoMALL
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pixels 1in 1length, was classified from these measurements

as in Fig. 9.1.

Second-order statistics must be measured over a
variety of vector distances (pixel-pair spacings) to be
useful in texture discrimination. In our case, these
second-order statistics are correlation values. There is

only one correlation value for a particular spacing.

There are many approaches to estimating a correlation
value over a window for a particular pixel-pair spacing.
One involves passing a kernel of pixels over the window
and taking a sample at all points where the kernel is
completely contained within the window boundaries. Such
measurements would result in a covariance matrix for the
kernel over that window. This matrix can be wused to
identify a texture, as will be shown later in this
section. Another approach to estimating a  correlation
value for a particular pixel-pair spacing would involve
measurements over all possible samples within the window
of that spacing. This is equivalent to passing a kernel
containing two points over the window for each pixel-pair
spacing. The result of this approach is a correlation
value for each spacing which must be examined by itself
and may not be used to form a correlation matrix as was

discussed in section 3.7. A method for identifying
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texture wusing these individual correlation values will be

examined in section 9. 3.

Once we have obtained a covariance matrix by passing
a kernel of points over a window, that matrix may be
compared statistically with covariance matrices from known
textures. Such a statistical test has been derived for
testing the equality of covariance matrices. The maximum
likelihood ratio apprcach used to derive this test makes
the standard assumptions of multi-dimensional normality
and independence of samples. Both were usedA in our
texture simulation work. Details concerning the test and
its derivation are given in [47,54]. The statistical test

for two covariance matrices is given by

= 2 9.1)
Up = 2.3026 dD X X“y (n41) /2 (

e

where

D = (M1+M2—2)10910|C|—(Ml—l)log10|Cl|—(M2-1)10910|C2|.

Cl and C2 are the estimated covariance matrices for each

group,
C = [(Ml-l)Cl+(M2-l)C2]/(M1+M2—2)
and
1 1 1 2
d =1 - [ -+ - -~ ] Pzw —3N—l)/6(N+1)].
(Ml 1) (M2 1) (M1+M2 2)

N is the size of the covariance matrices beiny tested
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which 1is equal to the number of pixels in the kernel. Ml
and M, are the sample sizes used to estimate C; and C2.
|C| denotes the determinant of C. The test statistic, Ul'

has an approximate chi-square distribution with N(N+l1)/2

degrees of freedom and approaches 0 as Cy approaches Cj.

Having derived the test for equality of two
covariance matrices we must determine the contents of
these matrices. As the number of points in the kernel
increases, the size of the covariance matrices increases
leading to more difficult and time~consuming determinant
calculation required in Eq. (9.1). Also, as the spacing
of these pixels increases, the number of samples 1in a
window decreases, Finally, as more and more points are
included in the kernel, the amount of redundant and
overlapping information in the covariance matrix increases
due to redundant pixel-pair spacing. This was discussed

in section 3.7,

To eliminate this redundancy, we will consider the
pfoblem briefly in one-dimension. Perfect, non-redundant
pixel spacing is possible only for patterns with maximum
range of 1, 3 or 6 pixels given by the corresponding
patterns XX, XX-X and XX--X-X as shown in Table 9.1. For
these three particular ranges, the patterns shown are

constructed so that no two pairs of X's are separated by
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the same distance. One and only one pair of X's may be
found in these patterns which 1is separated by each
distance less than or equal to the maximum range. For all
other ranges, redundancies will exist in any pattern
spanning the range. That is, more than one pair of X's
may be found which are separated by the same distance in
patterns not having a maximum range of 1, 3 or 6. A
pattern spans a range if and only if at least two X's may
be found 1in the pattern which are separated by every
distance less than or equal to the waximum range. These
patterns are sometimes referred to as difference sets

[59,61,73].

A set containing a minimal number of X's can be found
to span all ranges. A list containing the minimum nuinber
of X's required to span each range and one non-unique
pattern which spans the range is given in Table 9.1. (To
determine that the distance 52 could not be spanned with
12 points required over 132 billion subtractions plus a

very largye number of logical operations.)

Extending these one-dimensional spacings to two
dimensions merely requires the wvector product of the
transpose of any of the row vector patterns with itself
yielding a two dimensional matrix. Unfortunately, the

corresponding two-dimensional matrix pattern will always
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contain redundancies if all possible distances and
orientations less than or equal to the maximum range are
to be spanned. Patterns obtained using this vector
product approach are heavily weighted in the horozontal

and vertical directions.

A two-dimensional kernel containing 16 pixels which
spans a two-dimensional range of 6 is shown in Fig. 9.2.
Passing this kernel over a window vyields a covariance
matrix of dimension 16, which is not an unreasonable size
for computation purposes. The number of data samples over
a window of size wBIG is (wBIG-6)2. Even for small

windows of size 16, a reasonable sample size of 100 may be

obtained.

Once the kernel and procedure are determined, we
proceed with the process of segmenting the textures to
test the identification procedure. There are many
approaches to this  problem which are usually defined by
the particular case of interest., We may or may not have
prototype and parent texture data. We can segment,
cluster—-analyze or identify. Notice that the generality
of the test leaves a wide variety of options open. We can
compare matrices in one area of an 1image with those in
other areas and our test statistic values will be the

distance measures defining the closeness of the textured
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Figure 9.1 Segmentation Window

Figure 9.2 Two-dimensional Spanning
Kernel
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Table 9.1 MINIMAL SPANNING SETS

XX

XXX

XX-X

XXX-X
XXX--X
XX=-=X-X
XXXX~-=-X
XXX--X-=X
XXX -==X--X

XXXX=-==X==—m=X=r=-X-—-X
XXX=m===—==X——=X——X——X-X

XKAX-= === m e mm o oo Kmmm=XX===X == =X ===X===X—=X
XXXX == mm e mmm o m e ==X ===X ==X ===k == =X ==X ==X
KXKKXKXK == == m e e S K= K=o %
X X
XXXXXXX-=--=== X------- R X——mmm e Xmmmm K= X
X

XXXXXX=====m O Kmmmmmmm X=mmmnee X-=-m- D S X=mmmm X
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regior... We could compare a matrix with a number of known

prototypes and classify the unknown region according to
the test statistic for each comparison. Finally, we may
merely wish to locate a particular texture in an image and

thus we would compare matrices with only one prototype.

This later approach was selected in this chapter as
the wvisual results are simple to display and analyze. We
will compare the matrix measured over a large window with
one obtained over the complete parent texture prototype
and assign the pixels in the small window accordingly (see
Fig. 9.1). Figure 9.3 shows the test compcsite image
used. We will attempt to identify the texture sand in
that region. The texture sand was chosen as the
simulation results of this texture were in some ways very
poor when examined critically on a high resolution device.

Therefore, it represents a worst-case example.

Figure 9.4 shows the segmentation results when

"p16 = “smaLL

mapped test statistic values, which are supposed to be

= 16. The pixel brightness are linearly

chi-square-distributed. Improvement is made when

W = 32 and W = 16 as is seen in Fig. 9.5.
BIG SMALL

Figure 9.6 shows much improved results when wBIG = 48 and

wSMALL = 16. The difference is due to the availability of

more texture information in the larger window in the form
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Figure 9.3 Input Composite Figure 9.4 Segmentation Using
Image Covariance Matrix,
J =
“BIG 16

Figure 9.5 Segmentation Using Figure 9.6 Segmentation Using
Covariance Matrix, Covariance Matrix,

Warg = 32 Wg1g = 48
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of increased sample size (100 to 1764).

As a final note, it should be wunderstood that this
chosen texture Kkernel (see Figure 9.2) totally ignores
information obtained earlier concerning the
interdependence of pixels in the generating kernel as
expressed in the linear model. It is very possible that
better segmentation results could be obtained by using the
kernel shape which best fits each texture as this
particular pattern of points was found to be most
significant. The linear model used for simulation of zach
texture might even be used itself as the distributions of
the parameter estimates are known if certain assumptions

are made [24,39]. But neither of these approcaches have

been tried even though improvements are expected.

9.3 Segmentation Using Individual Correlation

Coefficients

Individual <correlation estimates for particular
pixel-pair spacings may be made by taking measurements
over all possible samples within the window containing
that spacing. This approach utilizes more information
than the fixed kernel method as it includes measurements ﬁ
near all edges of the window (thus, the sample size is
increased). The result is a single coefficient for each

pixel-pair spacing. If the spacing between each pair is !
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unique then the set of coefficients will be non-redundant.
The covariance matrices used to segment textures in the
last section may contain redundant information if the

pixel-pair spacings in the kernel are repeated.

A statistical test for comparison of two correlation
coefficients has been derived for the bivariate normal

distribution and is

2
U2 v X1 (9.2)
where
U, = (2,-Z)2(M,-3)+(2.-Z) % (M. -3)
2 1 1 2 2

and

Zl = arctanh (rl)

22 = arctanh (rz)

Zy = [(Ml—3)Zl+(M2—3)22]/(Ml+M2—6)

rp and r, are the computed correlation coefficients from
the two groups. This test is derived using the fact that
2, 1is approximately distributed N(zZy: arctanh(p;),
(M1—3)_1) where P; is the true correlation coefficient of
the population (see section 3.5). For additional details
see [39]. Again, to derive the tests assumptions of

normality and independent samples are made.

As in the previous section, the test statistics nmay

be used to segment or identify textures. tlowever,
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difficulty arises as our test must be performed for each
measured correlation value. Thus a number of U, values
are obtained if multiple pixel-pair spacings are used. At
this point these values can be combined in numerous ways.
As each U2 value is chi-square distributed we can compute
the probability, pUZ, that a random variable, wnich has
that chi-square distribution, is greater than or equal to
U2 as shown in Fig. 9.7. For U, =0 (rq = ry this
probability is 1.0, A product of the probabilities
associated with each U, was used to indicate the overall

fit of one set of correlation coefficients to another set.

Finally, it should be noted that tests for equality
of correlation coefficients will not detect differences in
mean and variance over the window. The correlation
coefficient specifically removes these effects. As a
result, it may be advantageous to include tests for
equality of means and variances 1into the comparison

process. For equality of means the test statistic is

~ ~

b = My~ M ¢ (9.3)

l /\2 A2 g M1+M2_2
(Ml—l)ol+(M2—1)c2 ‘/l_ + 1
M M

Ml + M2 - 2 1 2
where ﬁl and ﬁz are the calculated mean and ai and 8;

are the calculated wvariances for the two groups being

compared. This test statistic is a wvalue of a random




variable having the t-distribution with M1+M2-2 degrees of

freedom. For the equality of variances the test statistic

is

rf'

1]
Q> a>»
N NN

v F _ . (9.4)
=My l,M2 1

This test statistic is a value of random variable having
an F-distribution with Ml-l and M2—l degrees of freedomn.
The derivation of both of these tests requires the
assumption of normality for the two Jroups and an
independent sample set. The known distributions of the

test statistics tl and fl was used to obtain the

probabilities, pt and Pe that a random wvariable having
1 1

that distribution would be greater than or equal to the

calculated values of |t and MAX(fl,l/fl) or less than

1!
—|tl( and MIN(fl,l/fl) (see Figs. 9.8 and 9.9). '

Having obtained the set of probabilities, Py v and
2
pt and Pe corresponding to the set of tests for the
1 1
equality of correlation coefficients and the tests for

equality of mean and variance of the window a single test
statistic

E Log (MAX (p,, ,107%) ) +10g p, *+log p, (9.5)
i

2. 1 1
i

1s formed to indicate the combined fit of these tests,

The probabilities are loy-scaled to eliwinate scaling
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Figure 9.8 Student's t~Distribution

HlN(fl.l/fl) HAX(f,,1/£,)

Figure 9.9 The F-Distribution




problems which would occur when taking the product of many
small numbers. The pU2's are bounded below to reduce the
effect of single, noisy éorrelation coefficients. These
output test statistics obtained by comparing a windowed
region of Fig. 9.3 with statistics gathered from the
parent prototype texture sand were linearly scaled to

produce the intensity images shown in Figs. 9.11 to 9.13.

f = = i ig. 9.11.
The results for wBIG wSMALL 16 are shown in Fig. 9.1
Improved results for WBIG = 32 and WSMALL = 16 are shown
i Fig. 9.12. R lts for W = 48 d w = 16 e
in ig. 9 esu o BIG an s L. o ar

shown in Fig. 9.13.
9.4 Conclusions

In implementing the two procedures detailed in this
chapter, 1large wvalues for the test statistics Uy and U,
were obtained even when comparing the matrices or
correlation values measured from an extracted portion of a
parent texture with those obtained from the entire parent
texture. There are two basic reasons for this. First,
the assumptions of normality are probably incorrect.
There is little reason to believe that the distribution of
pixels in an image is truly multi-variate normal.
Secondly, the samples used to estimate the covariance
matrix and the correlation coefficients are not random and

independent. They are strongly related by their spatial
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Figure 9.10 Input Composite
Image

:y gz;')ual" * ;g

Figure 9.11 Segmentation

Using Indivi-
dual Correla-
tion Values,

Wpig = 16

Figure 9.12

Segmentation

Using Indivi-
dual Correla-
tion Values,

Worg = 32

Figure 9.13 Segmentation

Using Indivi-
dual Correla-
tion Vvalues,
Worg = 48
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positions in the image and are often adjacent., The sample
size may be adjusted to reflect this fact but no work in

this area was done.

In most cases, statistical tests may be considered to
be robust - not weakened significantly - when assumptions
used to derive them are violated. This 1is probably not
true of the test for equality of two covariance matrices
which has been called "frail at best" [47]. For these
reasons, the methods presented may be considered

innovative but not necessarily statistically sound.

In spite of this fact, the results show that the
method wusing the test for equality of covariance matrices
was superior to the method 1involving multiple tests of
individual correlation coefficients. This could be due to

the method used to combine the multiple tests.

The pictorial results of this chapter 1indicate the
usefulness of correlation values in texture
identification. The methods are not intended to be
improvements over existing segmentation identification
techniques. An adequate number of discrimination
techniques have been proposed by researchers already. The
discussion is intended to apply a specific texture
synthesis model which was based on second-order statistics

to the texture identification problem and this was done

successfully.
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CHAPTER 10

SUMMARY

10.1 1Introduction

In this chapter, the results of each of the texture
synthesis methods presented in this thesis are discussed
and compared. This summary will clarify the methods and
analyze the favorable and unfavorable characteristics of

each.
10.2 Tabulation and Discussion of All Models

A complete synopsis of the synthesis methods
presented in this thesis 1is effectively contained in
Table 10.1. Listed in this table are the eleven methods
of texture generation and simulation presented in
Chapter 2 through Chapter 7. The first three columns of
the table state the 1location of the text and figures
(output) associated with each and also the key figure or
equation number which identifies the method in a simple,

straightforward manner.

The next three columns are used to evaluate the

complexity of statistics collection, statistics storage
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and the generating process as presented in Fig. 1l.1. The

computational requirements are approximate and are
indicated in CPU time of a DEC KL-10. Naturally, these
numbers are relative to the processor used. The storage
requirements are given in terms of full-word processor
locations needed for statistics storage. In some cases,
this storage could be reduced by packing more than one
number (especially integers) into one 32- or 36-bit word
but that was not done here. For example, four 8-bit

integer values will fit into one 32- or 36-bit word.

The seventh column provides a relative measure of the
quality of the texture simulation on a zero to ten scale.
A value of 5 indicates a good or reasonable simulation.
As synthesis evaluation is a nebulous process so is the
assignment of relative merit. The assessment of results
is internal to this thesis as there is little synthesis

work in the general literature.

The last column of the table contains important

general comments on each method.

The one-dimensional binary generation method of
Chapter 2 permitted study of visual response to changes in
the probability distribution of texture. Although the
method was not useful for natural texture simulation, it

did lead to the models of later chapters.
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The N-gram model of Chapter 3 was an extension of the
éhapter 2 model applied to two-dimensional aatural
textures. The results were very good even with the severe
constraint imposed by the upper limit on the number of
pixels‘allowed in the generation kernel. With an increase
in the complexity of the collection process this model was
extended (see section 3.9) to alluw both a 1larger number
of pixels to be in the kernel and an increase in kernel
range. The extension produced better simulations of
structured textures. Finally, in section 3.10, the binary
linear model, which was used to determine the contents
(shape) of the generation kernel, was used to generate
binary textures. The textures generated using this model
were nearly equal in quality to those of the more complex
and storage-consuming N-gram model. The N-gram model of
Chapter 3 uses a generation kernel whose contents (shape)
depends on the linear model. Therefore, the number of
computations required in the statistics collection portion
of the N-gram model necessarily includes computations of
the 1linear model. However, in some cases, points which
lie far from the kernel eye can be neglected in the N-gram
model as only the best few are wused due to storage
limitations. On the other hand, such points should be

included in the linear model therefore a larger

neighborhood surrounding the kernel eye should be used in
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the estimation of the linear model.

Realizing the power of second-order statistics, a
method of reproducing Nth order statistics using algebraic
reconstruction was presented in Chapter 4. The approach
proved to be academic as the number of iterations leading
to a solution yielding adequate synthesis results was very
large and required much storage and computation. The
simulations were also slightly 1less appealing than the

methods of Chapter 3.

In Chapter 5, the 1linear autoregressive model of
Chapter 3 was applied to 256-gray-level imagery. The
results were good <considering the vast reduction of
information <caused by the statistics collection process.
Slightly better results were obtained by allowing the
model to contain cross terms but the resulting complexity
suggests that the change in texture quality is not worth
the added effort and computational expense. Using
non-gaussian, non-stationary noise in the model (see
section 5.7) produced markedly better results but with a

requirement of slightly increased storage.

The skip-generate method of Chapter 5 may be used to
improve the simulation of textures having a coarse
structurc. The model produces results equal in quality to

the linear autoregressive mwmodel of Chapter 5 while

210




requiring fewer computations in the <collection process.
The piecewise linear autoregressive model presented later
in Chapter 6 promises an analytically superior fit but
produced results which were not appealing enough to

warrant additional effort.

The field-definition model presented at the end of
Chapter 6 is useful when generating textures composed of
subtextures. The idea of defining fields for texture
generation 1is a powerful approach for both statistics
collection and texture synthesis but the slow response of
the autoregressive model to boundaries produced results

less appealing than expected.

The best-fit model of Chapter 7  represents a
brute-force approach to texture synthesis. Though
computationally demanding, the final results show that
excellent texture simulations can be generated using
complete statistics from a relatively small neighborhood.
The problems with a small neighborhood are seen in the
simulation of regular textures such as raffia where the
size of the primitives in the texture is much greater than

the window used in the best-fit calculation.

Combining the method of choosing a kernel shape using
a linear model (discussed in Chapter 3) with the

skip-generate and best-fit models would result in a very
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powerful, but extremely computationally-demanding texture
synthesis method. The effort required to generate
textures by such a complex combination of methods would
not be required in many cases where simpler models will
produce adequate results. The complexity of the model

depends on the texture being simulated.

The ideas presented in Chapter 8 allow the
introduction and removal of texture non-homogeneities. In
Chapter 9, texture identification methods using the
statistics employed 1in model parameter calculation of
earlier chapters were proposed. Although they do not
discriminate textures as well as the methods of other
researchers they do illustrate the application of

synthesis models to texture identification problems.

10.3 Suggestions for Future Study

Many approaches to texture analysis have been carried
out in the frequency domain by wusing transform and
filtering techniques. Texture synthesis could be carried
out in such a domain or on frequency-filtered image. For
example, numerous textures could be generated in
non-overlapping frequency planes and then added together
to obtain a final texture synthesis. However, each of
these planes is probably interdependent and a simple

generation with summation is probably not possible.

212

o e — i P




Another future approach might employ to a greater
extent those statistics useful for texture identification
and discrimination. In most cases, these measurements are
not readily suitable to a synthesis process but with
careful study, many could possibly be wused in such a
manner. still, ﬁhere is 1little evidence thus far to
indicate that statistics useful for texture identification

will be useful for texture synthesis.

An area which deserves immediate attention involves
preprocessing of texture by convolution. Noise filtering
and smoothing could be useful in impreving model parameter
estimates. Also, a deconvolution processing of images
synthesized to resemble convolved textures might produce

excellent simulation results.

Along this line, another synthesis method should be
considered. With any model there is always unexplained
variance which the model fails to account for when it |is
applied to the original parent texture. Ideally, this
unexplained variance would be merely noise but this is
rarely the «case 1in practice. It is possible to develop
additional models which could be wused to explain (or
simulate) this previously-unexplained variance. .Combining
these new models with the original model would result in

an improved synthesis method.
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Fi.ally, texture is often produced by the shading
effect of a 1light source on a three-dimensional object.
Therefore, to generate a texture, a three-dimensional
relief could be formed then shaded using current,
commonly-used graphics techniques. Such an approach could
be worthwhile in some cases but in most, synthesizing
three-dimensional relief (which is the same as generating
height information over a two-dimensional grid) is
equivalent to generating intensity information over a

two-dimensional grid.
10.4 Conclusion

Many natural textures are generated using a variety
of methods presented in this thesis. The quality of the
natural texture simulations depends on the amount of
computation and storage used in each process. Many
textures were adequately simulated wusing simple models
thus providing a potentially great data compression for
many applications. Others required more extensive
computation to synthesize wvisually pleasing results.
Thus, as might be expected, the success of any synthesis
method 1is highly dependent on the texture itself. When
examining the results of any method the characteristics of

both the model and the textures used must be considered.

Ny
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It would be unwise to believe that all textures could

be generated wusing any single approach, especially one

which promises to compress texture information to a
handful of numbers. Yet this is precisely what has been

attempted in the texture synthesis work of this thesis.

It is important to note the power and complexity of
each synthesis method of this thesis. Many textures can
be simulated well wusing simple models such as the
autoregressive model if the model is carefully
constructed. Improvements in texture simulation were made
by modifying these models and allowing them to become more
coimplex and use more information in the generation
process, Other textures require more ccmplex models such
as the best-fit model of Chapter 7. The shortcomings of
each method will constantly indicate where future work can

be done.
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APPENDIX A

GENERATING BINARY TEXTURE PAIRS POSSESSING

EQUAL SECOND-ORDER STATISTICS

Texture pairs may be generated which have equal
second-order statistics but are visually discriminable.
Let Ga(Vl,Vz,V3,V4) represent the probability of

jJenerating a 0 after the pixels V V2,V V, along a line

1’ 3" 74
in a one-dimensional texture (a) and Gb(vl'vz'VB'v4) in
textures (b). (This is a slight change of notation from

Chapter 2 as (a) and (b) will be texture number indices in

this Appendix.) Define

Vi = |1-v, (A.1)

3|
where ViE{O,l}.
The restrictions used to generate textures with equal

second-order statistics, pa(vl,vj) = pb(vl,vj), in Chapter

2 may be stated as

Ga(vllvzlv31v4) = Ga(vllvzlv3vv4) (A.2)
Ga(vl:vzlv3rv4) = l—Ga(vlrv Iv3lv4) (A.3)
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and
Ga(vllvzlv3lv4) = Gb(vllvzlv IV4) . (A-4)
Ejuations (A.2) and (A.3) must also hold for texture

(b). Combining Eq. (2.14) and (2.24) for a 4-gram systen,

it can be shown that

Pa(VllV21V3lV4) = Pa(V11V21V3rV4) (A.5)

Combining the above restrictions yields two further rules,

v v,

- 5 = [V + (=~ 5 - (A.7)
Ve v;

\
- - - 5 » I - (A.B)
[V5+( 1) Ga(vl’VZ'V3'V4)]'

[Vg+(-1) G, (Vy,V5,V5,V,)]

These restrictions yield textures having the equalities
Pa(0)= Pb(O) = Pa(l) = Pb(l)- (A.9)

As no closed-form solutions to Eq. (2.14) and Eq. (2.24)
are easily obtained the proofs verifying Eq. (A.5) and
(A.9) are very complex. However, these properties may be
illustrated by generating numerous examples where

£q. (A.2), Eq. (A.3) and (A.4) hold.
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Assuming the above conditions, a proof then follows
to show that Pa(vl,vj) = Pb(vl,vj) if the above

restrictions hold:

P, V),V = :E: P (V)i Vyyeen Vg 1 uVy)

V.
i

i#i, ]

Vk
Ga Vg Vo3 Vo Vik1)]
-

:E: 3
L 5 )
E Vg (1) "G (Vi o Vy 30V 50V )]

=5

=:£:p (Vy,V,,VI,V,)
p{V1VarV3r V) T
=D R (VU5 (A.10)
=
i

i
k=5

v'
VI, . +(-1) 3K¥*2g

3k-2 v

b V3k-27V3k-1V3k’V3k-1']
V3k+3

+(-1) Gp (Vak-1"V3k’Vak-1"V3k-2!

(Vik-3

Vik+4

+(-1) Gy, (V 1V

(V3k+a 3k’ V3k- 3k—2’v3k+3)]}

r

n [

v:
-1y J+1- -
A +(-1) &, (v, : Vi )]

J+1-12 —9-3"V5-2-2"V5-2-1""V5

where r = MOD(j-1,3). It is very important to note that
the variables in the product expression match
successively. That is, Vi3k-1 and V3k+2 all have the prime

notation in each sub-expression. At this point, there are

three possible cases:

219




i

Case 1, r = 0

In this case, the proof is completed by a series of
change of variables as summing over Vi is the same as

summing over Vi. The remainder of the proof becomes

Yk
=Zpb(vl'V2'v3’V4) *

J
kgllvk+(-l) Gb(vk—4lvk-3’vk‘2'vk-l)]
B (A.11)

Case 2, r = 1

In this case, the remainder of the proof becomes
j-1 v;
Pb(Vl,Vz,V3,V4)k£1[Vk+(-l) Gb(vk—4'vk-3'vk-2'vk-l)l .

-

V.
Vit (-1) -
[V]+( l) Gb(vj_4lV]_3lVJ_2,VJ_l)]

j=-1 Vo (A.12)
Pb(vl,vz.v3,v4)kzl[Vk+(-l) G (Vy g7V 37 Vyopr V)]
\'A

J
Gb(V

. [vj+(~l) j_4lvj_3lvj_2lvj_l)] .
Thus, in this case pa(vl,vj) = Pb(vl,vg). This implies
that Pa (01 IOJ) = Pb (Ol'lj); Pa(Olllj) = Pb(Ol,Oj); pa(ll'oj)
= Pb(ll, lj); Pa(ll, lj) = Pb(ll,Oj). We know Pa(ol,]j) = Pa(]1,0j)

and P, (0,19= Py(L,05) and P(0) = P(1) = 0.5. So P, (Vy,V;)

= Pb(Vl,vj) = 0.25 for all Vv; and Vj.




In this case, as in the case where r = 0, the

remainder of the proof is straightforward, requiring only

a change of variables,.




APPENDIX B

GOODNESS-OF~FIT TEST

FOR N-GRAMS

We may think of the one-dimensional binary texture
generation process as an experiment which should yield
certain N-grams given certain generation parameters.
These N-grams or Nth-order densities may be determined
analytically by combining Eq. (2.14) and Egq. (2.24) of
Chapter 2. However, as with any Monte-Carlo simulation,
the analytic parameters may not agree exactly with the
statistics or estimates of those parameters based on
observations from the simulation or experiment.
Statistical tests may be wused to determine whether the
statistics match the parameters to the extent expected

given a given random sample.

The most common statistical test for this purpose is
the "goodness~of-fit" test 1involving the chi-square
distribution. This test is used when we want to compare
an observed distribution with the corresponding.values of
a theoretical distribution. The test is based on the

statistic
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;X (mep?
X =§,————— ) (B.1)
i=1 %3
The £, and the e. are the observed and expected

1 1

frequencies of a certain N-gram pattern in our experiment.
The sampling distribution of this statistic is
approximately the chi-square distribution with ZN_l
degrees of freedom. (The constraints on the system of
N-grams yield this number of degrees of freedom.,) A

chi-square distribution with n degrees of freedom is given

by

1l
2, Y/2 (n-2)  _ 2

n/2_,n
2 r (5)

(B.2)

The approximation is close provided e >5.

As a first step in the testing process, the complete
set of N-grams, P(Vl,Vé,...,VN) is computed using
Eq. (2.14) and Eq. (2.24). Their corresponding
statistics, S(Vl,vz,...,VN) are computed from the
generated texture by counting the number of occurrences of
each pattern (Vl,...,VN) and dividing by the total sample

size, M. Then, fi = P(Vl,...,VN)-M and

Y

e, = P(Vl,...,VN)-M. For 1large N, the number of degrees

of freedom is greater than 30 and a normal distribution
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approximation is guite accurate. The expression
/g;_ - ¥2N-1 is approximately normally distributed as the
standard normal distribution. The tables listed in {18]
may also be wused for large N. Additional details
concerning the goodness~of-fit test may be found in

{45,63-65].

For each of the textures in Chapter 2, this test was
applied to each texture half and the hypothesis that the
expected and measured N-grams are statistically equal was
accepted at a a= 0.01 confidence level for N =1,...,10.
Actually, these tests are not independent in a statistical
sense as the information content for each N overlaps. But
this poses no violation of assumptions of the statistical
test. However, all possible patterns in the generated
sample may be a violation of the independence of samples

assumption. still, a 1low chi-square value indicates a

good fit of the data to predicted parameter.




APPENDIX C

PSEUDO-RANDOM VARIATE GENERATION

Two algorithms were used in this thesis to generate
uniformly-distributed pseudo-random numbers. Both are
modifications of the multiplicative céngruence method
(48,66]. These uniformly-distributed variates may be
transformed to normally-distributed deviates using the

inverse normal probability distribution function.

The first algorithm is the Lehner Pseudo-Random
Number Generator [67]. The general form of this generator
is -

_ 31
Xn+l = KXn(MOD 277-1) (C.1)

where

k = 1429 (mop 231-1) = 630360016

The resulting number is basically a 31-bit pattern which
is in the form of a floating-point number in the range
(0,1). The algorithm can be written to avoid division by

231-1 (681].

The second aljorithm used to generate wuniformly
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distributed variates is

_ .5 31_
Xn+l =7 Xn(MOD 2 1) . (C.2)

The resulting integer is multiplied by 2"31 to convert it

\

to a floating-point number. This generator is reported in

Refs. [69-71].

These uniform deviates may be transformed to

normally-distributed deviates if desired. this is

accompl ished by computing the inverse of the integral

X 2
f X=—L—fe_t/zdt . (c.3)
vz J

E
E The algorithm for accomplishing this is described in Ref.

{57)] and is briefly outlined here.

The basic interval (0,1) is divided into 4 segments.
In each segment the inverse of the Gaussian integral,
invgauss(X), or an integral of a similar form is
approximated by a minimax rational function (55,72]. The
épproximations for the final 3 segments (comprising the
interval Xe{(0,0.075) (0.925,1)}) are functions of the

transformed variable

W = ¥-10g e (1-x) : (C.4)

This transformation of the variable improves the




efficiency and stability of the approximation {50]. The

rational functions in these intervals are of the forin

ClW+C2W2+C3W3
invgauss (X) v W+W. C0+ 33 . (C.5)

d.+d. . W+d W +W

0 71 2
For the ‘remainder of the (0,1) interval,
xe{(0,075, 0.925) 1}, the function is of the form
invgauss(X) =
(C.6)

(Z+Z-(b0+al-22/(bl+22+a2/(b2+22+a3/(b3+22))))) «SGN (2)

. The constants aj, bj, ¢y

where z = |l—2x i

and dji have
specific wvalues found by.solving the minimax problem and

are given in Ref. [57].
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