D-A102 361

WNCI ASSTFTFD
=4

UNIVERSITY OF SOUTHERN CALIFORNIA MARINA DEL REY INFO~~ETC F/6G 9/2
DESIGN SPECIFICATION VALIDATION. (V)

JUN B1 R M BLAZER F30602-79-C-00'62
ADC=TR=81=1

v
RADC-TR-81-102
Final Technical Report
June 1981

1

<y i
BRY

DESIGN SPECIFICATION VALIDATION

o
¢ University of Southern California
r=i >, Bl
+ Robert M. Blazer 4
(o]
<C

ELECTE
s AUG O 31981 7]

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Griffiss Alr Force Base, New York 1344

\

LOTG FIE Cofy

81 8 0] nkA .

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). ‘At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-102 has been reviewed and is approved for publication.

/
. /
APPROVED: hece 7 -)é(ﬂ""'

ROCCO F. IUORNO
Project Engineer

- 2
APPROVED: (//(/é:ﬂ) /5 D B NL L s~
ALAN R. BARNUM

Assistant Chief
Information Sciences Division

FOR THE COWEWJ'@ %“
JOHN P. HUSS '

Acting Chief, Plans Office

‘If your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organization,
please notify RADC. (ISIP Griffiss AFB NY 13441. This will assist us in

maintaining a current mailing list.

Do not return this copy. Retain or destroy.

e ad i A amannt s a v B
Bt i ‘”“ﬂin:i-mn...“ CIEN

s NI A ad Y
i G = R S

St o i

UNCLASSIFIED |
SECURITY WFIC—Z'HON OF THIS PAGE (When l)-.’tLEn{ofvd)A ‘
J 7 /REPORT DOCUMENTATION PAGE Ly ‘
¢ ’ Q 1. REPO "TMBEB 2. GOVT ACCESSION NO.| 3. RECIPIE'Z CAJALOG NUMBER
/ /] ranc &R—Sl-m /QD-/S’ ZA2L 3 54
—Jas e e e em—————e . ERIOD CBVERED 4
20 Final Technical Repart
(& '] JESION SPECIFICATION VALIDATION . / 125 sep 79— 29 vec 80
A4 —— v e e .

N/

\
8. CONTRACT OR GRANT NUMBER(S)

/Yyﬁ Robert'M. lazer PON | ST
C’ | e /5] Fi0602-79-c-0042 |

9. PERFORMING ORGANIZATICN NAME AND ADDRESS ~e®" 110, PROGRAM ELEMENT, PROJECT TASK
AREA & WORK UNI,'F«U“

University of Southern California 2F /
Information Sciences Institute 1/;ZEHN§§2%1817 L_,/ —J// /
Marina Del Rey CA 90291 L e

11. CONTROLLING OFFJCE NAME AND ADDRESS

Rome Air Development Center (ISIE) ,”)7 Juns &2§1A/
Griffiss AFB NY 13441 IS o

NAME & AOERESS(II dilterent from Controlling Oftice) 15. SECURITY CL ASS. (of this report)

| 12, ..REPORT DATE

T4 MONITORING A

UNCLASSIFIED

15a. DECL ASSIFICATION DOWNGRADING
CHEDULE

N/A

Same

16. DISTRIBUTION STATEMENT (of this Repoet)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

Same

18. SUPPLEMENTARY MOTES

RADC Project Engineer: Rocco F. Iuorno (ISIE)

19. KEY WORQS (Continue on reverse aide if necessary and identify by block number)
Software design, Software specifications, Software requirements,
Symbolic execution, Requirements language, Software design language,
Specification language, Software testing, Validation.

/)

20. ABSTRACT (Continue on reverse side If noco.rary and identity by block number)

--4 This report documents gbe’research.gerformed by the University of
Southern California, Information Sciences'Tnsfituteﬁtoncerning the feas-
ibility of validating formal software specification. The one year
effort attempted to show that with a suitable formal software specifi-
cation language, specifications could be validated in the same manner

as computer designs are currently tested. —

A otk i e,

DD , 52:“3,, 1473 ‘ﬂ; EDITION OF t NOV 65 IS OBSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered) /

‘slcia'ﬁri?Qigijg;zg ??ﬂ;;m

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Deta Entered)

-

by

UNCLASSIFIED

j
!
SECURITY CLASSIFICATION OF Tu'C PAGE/When Data Entered)

Table of Contents

1. SUMMARY
2. GIST SPECIFIER’S MANUAL

2.1 INTRODUCTION
2.2 TYPES
2.3 RELATIONS AND ATTRIBUTES
2.3.1 Attributes
2.3.2 Attributes and Subtypes
2.4 CONSTRAINTS
2.4.1 Use of Constraints
2.5 DERIVATION RULES
2.6 OBJECT EXPRESSIONS
2.6.1 Literals
2.6.2 Variables
2.6.3 Attribute Reference
2.6.4 Descriptive Reference
2.6.5 Arithmetic Expressions
2.7 PREDICATES
2.7.1 Propositions
2.7.2 Quantified Predicates
2.7.3 Predicate Composition
2.8 ACTION DECLARATIONS
2.8.1 Primitive Statements
2.8.1.1 Object Creation
2.8.1.2 Object Destruction
2.8.1.3 Adding Relationships and Classifications
2.8.1.4 Removing Relationships and Classifications
2.8.1.5 Updating Relationships
2.8.2 Action Invocation
2.8.3 Compound Statements
2.8.3.1 Conditional Behavior
2.8.3.2 Sequentia! Behavior
2.8.3.3 Point Invariants
2.8.3.4 Alternative Behavior
2.8.3.5 Preferential Behavior
2.8.3.6 Non-primitive Granularity
2.8.3.7 lterative Behavior
2.9 ADVANCED TOPICS
2.9.1 Sets and Sequences
2.9.2 Multiple Lines of Control
2.9.3 Temporal Reference
2.98.4 Boundaries
2.9.5 Orderings
2.9.6 Meta Concepts

3. GENERAL APPROACH TO WRITING GIST SPECIFICATIONS
3.1 IDENTIFYING TYPES AND SUBTYPES

1-1
2-1

2-1

22

24

25

27

2.7
2-10
2-11
212
2:12
2-12
2-13
2-13
2-14
2-14
2-14
2-16
217
2:17
2-20
2-20
2-21
2-21
222
2.22
2-23
2.23
2.23
2.24
2-24
2.25
2:25
2-26
2.26
2-28
2-28
2-28
2-28
2:28
2:28
229

3-1
31

3.2 IDENTIFYING INDIVIDUALS

3.3 IDENTIFYING RELATIONS

3.4 IDENTIFYING DERIVED CONCEPTS

3.5 IDENTIFYING STATIC CONSTRAINTS
3.6 IDENTIFYING ACT.ONS

3.7 IDENTIFYING DYNAMIC CONSTRAINTS
3.8 IDENTIFYING ACTIVE PARTICIPANTS
3.9 PROGRESSING IN COMPETENCE

4. CONSTRUCTING GIST SPECIFICATIONS

4.1 SOURCE-DATA MAINTENANCE EXAMPLE
4.1.1 Suppressed details
4.1.2 Plan for Constructing Source-Data Maintenance Specification
4.1.2.1 Modeling objects and relationships of domain
4.1.2.1.1 Notation for types and binary relations
4.1.2.1.2 Type and attribute definitions for the domain
4.1.2.2 Static constraints
4.1.2.2.1 A "static” constraint
4.1.2.2.2 The use of derivation
4.1.2.3 Modeling user commands
4.1.2.4 Modeling change
4.1.2.4.1 Object boundaries
4.1.2.4.2 The top-level action to support user-commands
4.1.2.4.3 A simple action
4.1.2.4.4 Adjusting process "granularity”
4.1.2.4.5 Non-determinism and constraints
4.1.2.4.6 Shifting characters on a line
4.1.2.4.7 The use of historical reference
4.1.2.4.8 Historical reference and inserting lines into units
4.1.2.4.9 Historical reference and backup/restore commands
4.1.2.4.10 Historical reference and desired behavior
4.1.2.5 Dynamic constraints
4.1.2.5.1 A "dynamic" constraint
4.1.3 Review of specification
4.1.4 Implications for Gist
4.1.5 Implications for the source-data maintenance task
4.1.6 Ditficulties of constructing the specification
4.1.7 Ditficulties of understanding specification
4.1.8 Use of specification
4.2 HOST-IMP SPECIFICATION
4.2.1 Qverall organization of specification
4.2.2 General message-passing features
4.2.3 Specialization to host-imp world
4.2 .4 Implications for Gist
4.3 TEXT FORMATTER SPECIFICATION
4.3.1 Source of Problem
4.3.2 Formatter activities
4.3.3 Interface
4.3.4 Organization of specification
4.3.5 implications for Gist '

3.2
32
3-2
33
33
3-4
3-4
3-4

4-1

4.1
4.2
4.4
4-4
4.5
4.7
4-8
4.8
4.9

4-10

412

4-12

413

414

4-15

415

4-16

417

418

4-18

419

4.21

4-21

4-21

4.22

4.22

4.22

4.23

4

EB g e

. ey

- 111
j

4.3.5.1 New Gist usage 4.32

4.3.5.2 Exposed weaknesses of Gist and dissatisfaction with specification 4-32
4.3.5.3 Advantages accrued from the use of Gist 4-33

] < 4.3.6 Extensions to formatter 4-33
4.3.6.1 Separating justification and filling 4.34

4.3.6.2 Filtering output pages 4.34

4.3.6.3 Forcing text to appear on a single page 4.34

4.3.6.4 Extra space after sentence 4-34

4.3.6.5 Hyphenation during filling 435

4.3.6.6 Conditionals 4.35

5. GISTINITIAL OPERATING CAPABILITY DESCRIPTION 5-1

5.1 INTRODUCTION 51

5.1.1 Transliteration 5-3

. 5.2 Editor, PrettyPrinter, and File 170 53

i 5.2.1 Commands which Alter Specification Text 5-4

] 5.2.2 Commands which Change the Editor's Focus 55
5.2.3 PrettyPrinting 5-6

5.2.4 Commands for Saving and Restoring Specifications 5-6

5.3 Specification Testing 57

5.3.1 The Gist Declaration Compiler 57

5.3:2 The Gist Evaluator 5.7

5.3.3 Literaf and Created Objects) 5.8

5.3.4 Input/Output Facilities 5.9

5.4 Debugging/Testing Aids 5-10

5.4.1 Moditying a Specification 5.11

5.510C Coverage 5.11

6.10C TRACES 6-1

6.1 I0C TRACE--PSL EXAMPLE 6-1

6.2 I0C TRACE -- CAMELOT EXAMPLE 612

7. DESIGN FOR A GIST SPECIFICATION VALIDATION FACILITY 7-1

7.1 OBJECTIVE 71

7.2 BACKGROUND 71
7.3 APPROACH 7-4
7.4 PLAN 7-5

Appendix). GIST GRAMMAR . 7-7

‘ Appendix . GIST SPECIFICATIONS 14
‘ 1.1 SOURCE DATA MAINTENANCE SPECIFICATION i1
: .1.1 *** Type definitions for objects of domain *** -1
b 11.1.2 *** Static constraints on the world *** "2
, 11.1.3 *** User commands *** .3
: 11.1.4 *** Dynamic constraints on the world *** -5
% 1.1.5 *** Interface with user *** -6

: 11.1.6 *** Actions to perform commands *** n-e]
' 11.1.6.1 *** SOURCE-DATA-MAINTENANCE *** i-6

11.1.6.2 *** UPDATE ***
j 1.1.6.3 °** ADD ***

11.11.6.4 *** PURGE °*°** -7
11.11.6.5*** REPLACE *°** -8
1.1.6.6 *** COPY-UNIT *** -8
1.11.6.7 *** CHANGE °*°* . -8
11.1.6.8 °** INSERT *°** -9
1.1.69°*°* DELETE *** i-10
1.1.6.10 *** SHIFT *** 1-11
1.1.6.91 *** MODIFY *** 11
1.1.6.12 °*°* COPY.LINES *** 11-13
L11.6.13 *** REPLACE-LINE *** 1-13
i1.11.6.14 *** COPY-FILE *** 13
11.1.6.15 *** BACKUP and RESTORE *** 1-13
11.4.7 *** Restoration following temporary changes *** II-15
I1.1.8 *** Maintenance of information about units *** 16
1.2 HOST-IMP SPECIFICATION 17
1.3 FORMATTER SPECIFICATION 11-23
11.3.1 Definitions of top level types I1.24
11.3.2 FORMAT (action) 11-2€
11.3.2.1 CREATE«LINELETS«FROM«MIXLETS (action) "W-27
1.3.2.2 PAGINATION (action) I-28
11.3.2.2.1 PAGE«~PARTITION (relation) -26
11.3.2.2.2 CREATE«PAGE«~IMAGE (action) 1-30
1.3.2.2.2.1 PAGE+«NUMBER (relation) 1-31
11.3.2.2.2.1.1 PRECEDING «PAGE«~NUMBER (relation) #H-31
1.3.2.2.2.2 STRIP«LEADING+ AND«TRAILING«BLANKS (relation) H-32
11.3.2.2.2.3 LINES+FROM«LINELETS (relation) 1-33
i1.3.2.2.2.4 CREATE«TITLE+«LINES {(action) H-34
11.3.2.3 PARAGRAPHING (demon) H-38
11.3.2.3.1 CREATE«JUSITIFIED«INFO«LINES-FOR«PARAGRAPH (action) {i.3e
1.3.2.3.1.1 CREATE«JUSTIFIED«INFO+«LINE+«FOR+«WORDS (action) 1-37
11.3.2.3.1.1.1 CREATE«JUSTIFIED«LINE+~FOR«WORDS (action) 1.38
11.3.2.3.1.1.1.1 ARBITRARILY«PAD«WORDS+WITH+BLANKS -39
11.3.2.3.1.1.1.1.1 PAD«INTERIOR~WITH«BLANKS (action) 1-40
1.3.2.3.1.2 CREATE«UNJUSTIFIED«INFO«LINE « FOR+~WORDS (action) 1|-41
11.3.2.3.1.2.1 ARBITRARILY«PAD«WORDS«WITH+BLANKS (action) -3¢
11.3.2.3.1.2.1.1 PAD~INTERIOR+WITH+BLANKS (action) -40
11.3.2.4 SPLIT«OVERLENGTH«LINES (demon) 1-42
11.3.24.1 CREATE«SPLIT+LINES+«FOR+OVERLENGTH<«LINE (action) 1-43
L 1.3.2.4.1.1 SUBSEQUENTIZE«INFO (action) II-44
11.3.2.5 LEFT«MARGIN«PADDING (demon) 11-45
\ 11.3.2.5.1 EXTEND+«BLANK+~SEQUENCE (action) .46
! 11.3.2.6 CENTERING.(demon) .47
. 11.3.2.7 INTER«LINE~PADDING (demon) 11-48
1.3.2.7.1 EXTEND+~PADDING+LINE+SEQUENCE (action) i-49 |
1.3.2.7.1.1 SUBSEQUENTIZE «INFO (action) H-44 ;]
REFERENCES "

List of Figures

Figure 2-1: Action Declaration in Gist

Figure 4-1: Structure of source-data maintenance domain
Figure 4-2: User commands supported by the system
Figure 4-3: Modeling of objects and relations in Gist
Figure 5-1: Gist IOC configuration

List of Tables

Table 5-1: 10C symbol transliteration

2-18
4.2
4.3
45
52

5-3

t

1-1

1. SUMMARY

This report documents our findings concerning the feasibility of validating formal software
specifications. This one-year effort attempted to show that with a suitable formal software
specification language, specifications could be validated much as implementations are currently
validated, through applic 2tion of testing methodology.

This approach necessitated an "executable” formal specification language so that test cases couid

‘be "run” on the specification itself. Such a language was already under development within

USC/Information Sciences Institute. Our first task was to document this language (see Chapter 2)
and our approach to using it to write formal specifications (see Chapter 3). We then applied it to three
real, moderate-sized systems (see Chapter 4) to ensure that it was suitable for military applications.
These experiments were highly successful in that we were able to formally specify the functional

behavior of these three systems.

The next major task of this effort was to demonstrate that specifications in this formal fanguage
could be validated by running them on test data. Towards this end, we built a prototype interactive
testing facility calied the Initial Operating Capability (I0C). It consists of an evaluator capable of
executing specifications expressed in a subset of the formal specification language, and an executive
for entering, editing, and displaying specifications, for initializing the state within which one is
evaluated. for displaying states, and for tracing and breakpointing the evaluation interactively in a
DDT.like manner. The 10C is described in Chapter 5 and examples of its use are given in Chapter €.

The final task in this effort was to design a capability for testing a specification on a whole class of
cases simultaneously, rather than one at a time, through symbolic execution. This design is
documented in Chapter 7 of this report. It is based on extending the evaluator to handle symbolic data
as well as concrete data. so that as evaluation proceeds, predicates describing incompletely defined
data (i.e., the symbolic data) are automatically constructed dynamically, and wherever
incompleteness of the data prevents determination of which control path to follow, all possible controf
paths are explored, each conditioned by the predicate necessary to select it.

Thus, there is tradeoff between breadth of test cases covered and complexity of the symbolic
evaluation. For this reason. the design allows the person validating the specification to interactively
determine which data should be concrete versus symbolic, and hence, dynamically define the class of

test cases being explored.

1-2 SUMMARY

E The following observations and conclusions emerged from this study:

! 1. While functionally complete, the formal specifications omitted some aspects of the actual
1, systems.
|

These omissions were intentional. We have tried to prevent implementation details from
intruding into the formal specification. For that reason data representations are not part
of our specification language. This prevents us from describing some {possibly required)
aspects of the specified system, inost noticeably their 170 interfaces. We believe these
(required) representatives should be documented .as part of the chosen (required)
implementation of the system, rather than as part of its specification.

2. Existing specifications incorporate implementation details.

In order to get a good system description for which we could build a formal specification,
we had to de-compile the existing description so that it only described the functionality
desired, rather than an implementation of it. As current or former programmers, we are all
overly sensitized to efficiency issues and tend to describe a system in terms of a feasible
(or possibly preferred) implementation. Representation issues are one example;
algorithm choices are another.

3. Formal specifications are unreadable.

This is unfortunately true for our language as well as all others. The reason is that the
mechanisms used in informal communications to aid understanding--such as overview,
summaries, examples, elborations, alternative viewpoints, role descriptions (why
something is important)--are totally missing. Basically, no roadmap is provided to help
someone read the specification. Until these issues are addressed, farmal specifications
will only be understandable when accompanied by an informal natural language
description.

4. The formal specitication language is not interpretable.

The reason is that the formal specification language is highly context dependent and this
context is affected by many remote statements such as type declarations, constraints,
demons, inference rules, action definitions, and individual uses of historical reference.
All these statements must be located, collected, and "translated” before interpretation
' can begin. Thus, the evaluator consists of a compiler which performs these tasks and an
interpreter which uses these compiled forms.

5. The evaluator must be interactive.

The formal specitication language is highly non-.deterministic and the non-determinism
interacts with the specified constraints so that only those choices which don't violate
constraints either now or in the future are selected. Operationally, the evaluator can only
discover the appropriate choices by trying them and rejecting those that violate
constraints anywhere during the evaluation. This leads to a classical backtracking
search. To control the size and depth of this search space during evaluation, the person
using the 10C can supply an appropriate choice rather than have the evaluator search for
one.

-
g P . - S s g

2-1
2 GIST SPECIFIER’S MANUAL

2.1 INTRODUCTION

A Gist specification is a formal description of valid behaviors of a system. This description is
composed of three parts:
* A specification of object types and relations between these types. This determines a set
of possible states. A possible state consists of a collection of objects, each of which is

classified as an instance of one or more of the specified types. The objects in a possible
state may be related by the specitied relations.

» A specification of actions and demons, which define transitions between possible states.

« A specification of consiraints on states and state transitions. The valid behaviors of a
system are those defined transition sequences that do not violate any constraints.

This document provides a tutorial introduction to Gist. The concepts and syntax of Gist are
presented in the context of describing the behavior of an imaginary system of ships moving cargos

among various ports.

A second goal of this introduction is to provide some insight into our conception of “good taste” in
writing Gist specifications. In Gist. as in programming languages, there are often several ways to
specify the same behavior (functionality). In programming languages, one must make traceoffs
among understandability of code, modifiability, and efficiency. In Gist, etficiency is not an issue; there

is no sense in which two specifications of the same behavior differ in efficiency. The main goa! of the

specifier is to maximize his confidence that he has specified the intended behavior. But important
secondary goals are to make a specification understandable to pecple other than its creztor, and to
make it maintainable. The rules of thumb and good practices described are aimed at these latter

goals.

As with any language. the use of common conventions can itself improve communication between
people. But the specifier should always remember that his overriding concern is to be confident that

he is specifying the behavior intended.

While a primary purpose of writing a specification is to use it in the process of implementing
computer software. there are no software concepts within Gist. In particular, all behavior is specified
without the use of the concepts of input/output or the information representations available on any

particular machine or in any particular programming language(s).

2-2 GIST SPECIFIER'S MANUAL

2.2 TYPES

The first task of a specifier is to decide on a collection of object types that will capture the important
objects, or values, that the process manipulates. Since there is usually some verbal description of the
process avaiiable, a good rule of thumb is to consider common nouns (particularly concrete nouns)
as the names for object types.

Following this rule, even the cursory description of our example domain given earlier suggests the
use of ship, cargo, and port as object types.

The names to be used for object types in Gist must appear in type declarations. The simplest form
of a type declaration gives nothing but the name:
type ship;

type port;
type cargo;

Gist has only a tew predefined types. Among these are number,1 integer, natnum (natural
numbers), and character. These types may be used in a specification without declaration.
Sometimes one of these types is appropriate, but the specification would be more natural if a different
name were used. This can be done by defining a new type name in terms of an existing one:

type tonnage definition natnum
The previous line defines the type name "tonnage” as isomorphic to the type "natnum®.

The only reason to use the predefined types, however, is to use some capability that is already
defined for them. The numerical types, for example, provide access to arithmetic operations,

comparisons, and the ability to include numerical constants in the specification.

it is a bad practice to specify types to be synonyms for numbers because one anticipates the use of

numbers as a representation in some implementation.

An enormous gain in expressiveness is obtained by specitying supertype relationships among
types. if all objects of one class also belong to a second class, the larger class should be declared to

be a supertype of the smaller class:

1Number corresponds to the REALs. it should not be thought of as specifying "floating point™ representation on a
computer.

N o

TYPES 2-3

fype cargo unique supertype of
< grain;
fuel
>

This declaration states that every instance of cargo is an instance of either grain or fuel, but not both.

tn other situations. the named subtypes may not e..>aust the supertype:

type ship QOptional supertype of
< oiltanker;
cruiseship
>
The word gptional indicates that a ship may be either an oiltanker or a cruiseship (although not both),

but may be neither.2

Although the verbal names used for types often give no clue to supertype connections, as with the
names “ship" and "oiltanker™, certain patterns should be considered. Noun pairs, such as “cruise
ship", are frequently used to name subtypes of the second noun, as are compound nouns. Adjectives

frequently are used with nouns in the same way, as in "military vessel".

in order to fully describe a process, it is sometimes necessary to refer to individual objects (values)
as well as to entire classes. The names of individuals may be freely chosen by the specifier. but the
type to which each belongs must be declared. This can be done as part of the type declaration:

tvpe port includes {SentaBarbara, Seaitie};

tvpe grain definition {Corn, Wheat);
type fuel definition {Oil, NaturalGas}

The declaration can either enumerate some of the instances of the types (includes] or may
enumerate them all (definition).

Linguistic clues that indicate the need for declaring individual instances of types include the use of
proper nouns, mass nouns, and collections of adjectives (like color names) used to modify the same

type names.

The primary motive for declaring various types of objects in a specification is that the instances of a
type are perceived to share characteristics not common 1o instances of other types. These include:

2G:st also permits declarations of "overlapping” subtypes, and types with multiple supertypes.

2-4 GIST SPECIFIER'S MANUAL

* relationships that hold between the objects
* actions that may be performed on the objects
* constraints on the objects

The remainder of the declaration portion of Gist is concerned with specifying these regularities.

2.3 RELATIONS AND ATTRIBUTES

In describing a process in English, we use specific words and syntax to describe the ways objects
are related to one another. In “"ship bound for SantaBarbara" the phrase "bound for" indicates a
particular relation that can hold between ships and ports--namely, a ship can be scheduled to go to a
particular port. “A ship based in SantaBarbara" uses a different phrase, "based in" to talk about a
different relation between the same two types. "A ship containing 50 tons of wheat" indicates yet

another relation in this domain--ships may contain specific quantities of specific cargos.

“In Gist, these various kinds of associations that may relate the individua! instances of the types are
called relations. Arelation is declared by giving it a hame and by naming the object types it relates:
relation CONTAINS (SHIP, CARGO, TONNAGE) (2.1)
This does not specify which instances of ship, cargo, and volume are related or when such
relationships arise. But it does say that the relation name CONTAINS will not be used to relate
objects of any types other than the three named.

If in a given state the ship USS-Prairie contained 50 tons of Wheat, we would say in Gist
terminology, that there was a relationship in CONTAINS having USS-Prairie filling the sHIP role,
Wheat filling the CARGO role, and 50 filling the TONNAGE role.

Technically, each role of a relation has both a name and a type. In many cases, the specifier will
feel comfortable using the same name for the role as was used for its type. This is done by using only
the type name in the declaration, as in (2.1) above. In other cases, there is mnemonic value in
choosing a name for the role that is more expressive than the type name. Finally. there are constructs
in Gist that use the role name explicitly. For relations that have more than one role of the same type,
these constructs are useable only if those roles have been given distinct names. Since it is a bad idea
to try to anticipate which roles one may need to reference by name in a specification, one should
always choose distinct names for two roles of the same type in the same relation.

There are two ways to indicate a name for a role of a relation when it is to differ from the type name.

RELATIONS AND ATTRIBUTES 2.5

One is to choose as the role ‘name a composite name of the form “typename.distinguisher”--e.g.,
“COUNTRY.FROM". In this case, the composite name is the role name while its prefix (in this case,
"country”") is the role type. Alternatively, one can choose an arbitrary name for the role and specify
its type explicitly, separating the two names by a "|" in the declaration. Suppose we wanted to have a
relation that indicated what goods were being traded among nations. We couid do this with a relation
declared by:
relation TRADE {(COUNTRY.FROM, GOODS | cargo, COUNTRY.TO)

making TRADE a ternary relation having roles named COUNTRY.FROM, GOODS, and COUNTRY.TO,

whose types are country, cargo, and country, respectively.'

In general, one can imagine countless relationships in any moderately rich process domain. it is
not possible 10 determine in advance precisely which ones will be sufficient, or convenient, to use for
the entire specification. A good rule of thumb, however, is to start with those mentioned in the verbal

process description. Linguistic clues to relationships include:

 the use of "situational” verbs like "contain” or "own",
« the use of passive forms like "be connected to” or “be bound for”,

* noun phrases modified by prepositional phrases, like "the berth of a ship” or “the salary
of an officer”,

* possessive forms, like "the ship’'s country of registry”, or "the officer's salary”.

2.3.1 Attributes

It is usually the case that a large percentage of the useful relations in a specification will be binary
relations. These can be declared and used like ordinary N-ary relations, but may also be dectared and
used in a speciat attribute notation in Gist. The use of attribute notation makes the declaration of the
relationship. its use, and the specification of constraints on it more concise and, arguably, easier to

understand.

Attributes are declared as part of type declarations. For example. to declare the binary relationship
between ships and their country of registry, the attribute is named in the declaration of one of the
types.

type ship (REGISTRY | country);
This declaration indicates that ships and countries are related by an attribute named REGISTRY.
Elsewhere in Gist. ": REGISTRY" is used to designate the mapping for ships to countries, and
"I REGISTRY" to designate the inverse mapping frem countries to ships.

2:6 GIST SPECIFIER'S MANUAL

Many attributes may be declared in a single type declaration. The declaration:
tvpe ship (REGISTRY | country, CAPACITY | tonnage, DEADWEIGHT | tonnage) (2.2)
specifies the existence of three mappings, whose names are intended t0 convey the meaning of the
mappings.

The declaration of relationships, including attributes, should be mude for the most general
applicable types. It is then "inherited" by the subtypes of those types. For example, having declared
the attribute "REGISTRY" between ships and countries, theré is no need to duplicate the declaration
for subtypes of ship, such as oiltanker, or for subtypes of country.

Having decided to use an attribute declaration as opposed to a binary relation, a specifier still must

decide in which of the two relevant type declarations to include the declaration of the attribute.3 4 1t

is impossible to do more than give guidelines on this matter, since there is no formal distinction in the
declaration content. As is frequently the case with guidelines they may suggest conflicting

organizations.

* Linguistic guideline. Choose an attribute name that makes the phrase:
<attribute name> of/in/for/ <type>1 must be <type>2 .

sound like a sensible description of the relationship. Declare the attribute within the
declaration of type,. Each attribute in (2.2) above would be suggested by this rule, since:

registry of ship must be country
capacity of ship must be tonnage
deadweight of ship must be tonnage

sound right.

* Functionality guideline. If the mapping is many-to-one--each object of type, maps to
exactly one object of type,, but an object of type, may map to zero, one, or more objects
of type,--then declare the attribute with the declaration of type,. All three attributes in
(2.2) suggest this.®

« Structural guideline. Some relationships have a "part-whole" feeling to the specifier.
Sometimes this has a strong physical basis in the real world, as with the slips of a pier.
Other times the feeling is more one of a logical dependency specific to the process under
consideration, as with the dependents of an employee. Try to declare such attributes as
part of the declaration of the "whole" type.

alt could be redundantly stated in both places, but this would not be a good idea in general, since any change to the
declaration would require two changes in the specification to maintain consistency.

40! course, ¥ the two types gre the same, there is no probiem.

sumin default constraints on the mappings. described later, are designed 1o mesh well with this guideline.

e

et et = e

e e\ e

RELATIONS AND ATTRIBUTES 27

It is possible, by means described in Section 2.4, to specify constraints on attribute mappings along
with the attribute declaration itsell. .Sometimes the restriction of the mapping that involves a named

subtype of one of the two types is more highly constrained than the mapping as a whole. For

instance, crewmember's salaries may range from $10,000 to $40,000, but officer's salaries may have
k 10 be above $25,000. When this situation arises, more effective use can be made of Gist's constructs
if the attribute is declared with the type whose subtype is further constrained--crewmember, in this

example.

"2.3.2 Attributes and Subtypes

Whenever a proposed attribute relationship involves a type whose instances are totally enumerated

by literals in the specification, the specifier should consider the possibility that a more natural and
L useful specification could be obtained by using the supertype concept. In other words, the attribute
relationship between type, and enumerated typeg can be replaced by having a named subtype of
type, for each instance of typeg, and eliminating typeg entirely. A particularly common situation to be
aware of is the use of "flag" types whose instances are "yes" and "no”, or "true” and “faise”, or 0
and 1. It is aimost always preferabie to provide a name for each case and make the encompassing

type a "ynique supertype of" these named types, or 10 name one of the cases (typically, the
"positive” one} and make the encompassing type an “gptional supertype of" that named type.

For example. it would be preferable to specify the fact that some ships are government-owr 2d as:

type ship(...) optional supertype of
{governmentship (...)>;

rather than:

type ship(....GOVERNMENTOWNED | {Yes No})

2.4 CONSTRAINTS

The declaration of types and relationships lays out a wide variety of possible process states--that is,
states containing collections of instances of those types and relationships between objects of
appropriate types. However, it is nearly always obvious that many of these states may never really

arise. Sometimes this is because of physical constraints in the process domain.-e.g., a ship cannot

simultaneously occupy muitiple slips, nor can multiple ships simultaneously occupy one slip. In other
cases, it is not physical reality, but the desired process which restricts the potential states. For
example, there may be a "rule” which states that no ship should simultaneously carry fuel and grain.
In either case, Gist provides declarations for specifying such constraints on possibie states.

2-8 GIST SPECIFIER'S MANUAL

The most general construct permits the specifier to state that a given condition must either:

* hold in every process State (a requirement)

* hold in no process state (a prohibition).

The constraining condition is specified by a Gist predicate. Predicates are discussed in more detail in
Section 2.7, but basically foliow conventional predicate calcuius notation. For example,

always prohibited 3 ship fuel,grain || CONTAINS(ship, fuel, $) A
CONTAINS(ship, grain, 8)

would state that no ship may ever be used to simulftaneously transport fuel ang grain.

always required V oiltanker || 3 officer || officer : ASSIGNMENT = oiltanker A
officer : SENIORITY > 10

would require that officer assignments ensure that every oiltanker have at least one officer with over

10 years experience.

Although it is possible to describe all Gist's constraints in this way, experience shows that many
constraints can be naturally expressed as constraints “on" particufar relations or types. For such
constraints Gist provides a means of expressing the constraint as part of the type or relation

declaration.

With respect to a given relation, there are two classes of constraints which may be specified. The
first concerns constraints on individual relationships in the relation. For instance, to prohibit trade of
any product between two countries which are both producers of that product, one could place a
constraint on the TRADE relation in terms of a PRODUCES relation:

relation PRODUCES (COUNTRY, GOODS | cargo);
relation TRADE (COUNTRY.FROM, GOODS | cargo, COUNTRY.TO)
where always prohidit PRODUCES (country.from, goods) A
PRODUCES((country.to. goods)

end

The second form of relation-specific constraint restricts the collection of relationships which may
co-exist in a given relation. For any partitioning of the roles of a relation into two non-empty
partitions, one may view the relation as a mapping from one partition to the other. it is possible to
constrain the "multiplicity” of such a mapping. For example, the relation CONTAINS implicitly
provides a mapping from ship-cargo pairs to tonnages. For a given ship-cargo pair, there can be at
most one tonnage (the amount of that cargo or that ship). But for a given tonnage, there is no
restriction on the number of ship-cargo pairs which CONTAINS relates to it. This can be expressed
by augmenting the declaration of CONTAINS:

CONSTRAINTS 2-9

retation CONTAINS (SHIP, CARGO, TONNAGE)
any (SHIP, CARGO) gptional

The pair (SHIP,CARGO) defines the role partitioning. The other partition is implicitly (TONNAGE). The
word gny preceding the explicit partition indicates no constraint on the mapping from (TONNAGE) to
(sHi1P,cARGO). The word gptional indicates that a given (SHIP,CARGO) pair may map to zero or one
(TONNAGE). This constraint could also have been written
optional (TONNAGE) any
The ways to specity the multiplicity of a mapping include:
indicator muitipticity

any no restriction
optional Oor1

unigue exactly 1
multiple 1 or more

anyinteger N exactly N

When attributes are used to specify binary relationships, it is still possible to state both torms of
constraint within the type declaration which introduces the attribute. The "mapping multiplicity "™
constraints are indicated by placing multiplicity indicators before and after the attribute specification.
For example:

tvpe ship (gnigue REGISTRY | country any, ...) (2.3)
constrains the relationship between ships and their country of registry so that each ship must have
exactly one country of registry, but a given country may have zero or more ships registered in it.

If no multiplicity indicator is given in a declaration the default is "ynigue" for the mapping from
declaration type to attribute type._ and "any" for attribute type to declaration type. Thus example (2.3)
could be written simply as‘:

type ship (REGISTRY | country, ...)
defaulting both multiplicity constraints.

Constraints on individual relationships in an attribute relation can also be declared within the type
declaration in which the attribute is declared. In fact, it is possible to constrain combinations of
different attributes of a given type, as illustrated in the following examples:

type draft definition natnum

type port (MAXDRAFT | draft, COUNTRY multiple)

tvpe ship (..., DRAFT.SHIP, any PORTOFCALL | port, PORT.HOME)
where always prohibit oraft.ship > portofcall : MAXDRAFT (2.4)
end

would prohibit a ship from having a port of call for which the ship was too large.

210 GIST SPECIFIER’'S MANUAL

In addition, one could require that a ship be capable of entering its home port by including in the
ship declaration
always require draft.ship < port.home : MAXDRAFT
A type constraint of the form "always prohibit condition” declares that the condition may never hold
for any instance of the type in whose declaration the constraint appears. The condition refers to the
object being constrained by using the type name as a variable. It may also refer to the objects in
attribute relationships with that object by the atiribute names used in the declaration. The condition
holds, and thus violates the constraint, if any combination of attribute values satisfy it. Thus
constraint ((2.4)) prohibits a ship from having any port of call which is inappropriate regardiess of how
many acceptable ports of call it may have at the same time.

Analogously, an "always require condition"” constraint on a type requires the condition to hold for
every instance of the type, for all combinations of attribute values. In all cases, “always reguire
condition” and “always prohibit Jcondition” are equivalent. As with other predicates, it is generally
easier to read a constraint in a form which reduces the use of the logical operator 1.

2.4.1 Use of Constraints

There are two primary purposes for constraints in Gist specifications. The first is as an aid to
someone trying to understand or implement a (bortion of) a specification. Understanding and
implementation both involve a great deal of mental simulation of behavior. This in turn requires
consideration of how behavior will proceed under various conditions. Constraints are a powerful
means of limiting the range of conditions which must be considered.

The second use of constraints is to aid the specification writer. Consider two ways people use what
we might term "constraints” in English--e.g, "Don’t let your bank balance be negative.”

* This might be treated as a rule to do something (although what to do is not stated)
whenever the balance drops below 0 to rectify the situation. In programming terms, use
of a constraint does not say that the condition always holds, but that when it doesn't hold,
some form of “"interrupt” process is used to re-establish it. Gist's semantics does not
treat constraints in this way.

* Another use people make of constraints is to /imit choices. The bank balance constraint
will limit a person's selection when buying a stereo, for example. This is Gist's semantics
for constraints--that choices are always to be made so that no constraint will ever be
violated. This implies that choices are limited not only by their immediate affects, but by
their "downstream™ consequences as well. This is analogous to a person realizing that
he can’t buy a stereo, not because his bank batance would go negative when he brought
it, but because it would go negative when he paid the rent two days later (a behavior for
which he has no alternative).

L8
i .4

.

CONSTRAINTS 2.1

itis often easier to specify behavior by allowing the procedural part of the specification to contain too
many behaviors and letting constraiats prune the alternatives.

in choosing what constraints are worth stating explicitly, a verbal process description is of limited
use. Some constraints may be expressed verbally, but many are such "common knowledge" that
they are left unstatad--"two ships can’t be in the same slip”, "a ship may not be loaded above its
capacity”. A specifier can state any obvious constraints which come to mind before working on the
procedural portion of his specification. But he should be on the lookout for situations where he is
writing procedural specification for the purpose of "avoiding” a problem. An example of the way
constraints can collaborate to simplify the procedural part of a specification is presented in section
28.

2.5 DERIVATION RULES

Derivation rules are provided in Gist to permit the specifier to expand his vocabulary to include
concepts which can be defined in terms of other concepts, without having to treat the concepts as
though they were independent and maintain their equivalence procedurally. We might say "a ship is
docked at a pier if and only if it is berthed in some slip of that pier” to define the concept of "docked
at” in terms of "berthed in" and the relationship between slips and piers.

Gist permits derivation rules for types and relations (including attribute relations). To define a new
derived relation. the Gist specification should include a normal declaration of the relation, together
with a predicate stating the conditions under which the relation holids:

relation TRADE-PARTNERS (COUNTRY.1, COUNTRY.2)
gefinition TRADE {country.1, 8. country.2) A
TRADE (country.2, 8. country. 1)

would define a binary relation TRADE-PARTNERS which would hold between two countries if and
only if countries had mutual TRADE relationships (regardless of the goods involved).

Derived concepts in Gist may be used in all ways like non-derived concepts (including their use in
the deriveration of other concepts) save one: the derived relation may not be used as a primitive state
change statement (see section 2.8.1).

A derived attribute is specified by including a normal declaration for it and a derivation for it as well.

tvpe ship (..., optional BERTH | slip optional,
optional bock | pier derivation ship : berth : ATPIER

This defines the “"DOCK" attribute to relate a ship to a pier if and only if the ship is in a slip at that pier.

..

2-12 GIST SPECIFIER'S MANUAL

Finally, one can give a definition for a type name, where the definition is a predicate, written in
terms of the type name, which, if satisfied by some object, qualifies that object as an instance of the
type.

fype port (. .) optional supertype of
<oilport definition 3 pier || pier : PORT = oilport A
pier : HANDLES = Qi/
>

Under this declaration, a port is an oilport if and only if it has a pier which handles 0il.8

2.6 OBJECT EXPRESSIONS

The object expression is Gist's means of referring to particular objects, or values, within predicates
and statements. The referent(s) of an object expression is determined by the process state in which
the expression is evaluated and the referents of any variables used freely within the expression. An
object expression may refer to a single object, in which case it is said to make a deterministic
reference. It may refer to multiple objects, in which case it is said 10 make an ambiguous reference. It
is also possi.ble for an object expression to have no referent at all, in which case it is said 10 make an

anomalous reference.

2.6.1 Literals

The simplest object expression in Gist is a l/iteral. Distinct literals refer to distinct objects, and all
occurrences of a given literal refer to the same object. Both numeric literals (5000) and non-numeric
literals (Corn) are aliowed. Non-numeric literals must consist of single identifiers, and those
identifiers should not be uséd as the names of relations, actions, types, or variables elsewhere in a

specification.

2.6.2 Variables

Variable names in Gist are arbitrary identifiers. Each variable name has a type which restricts the
potential referents of the variable. The type may be implicit in the variable's name, or may be declared
explicitly. To have an implicitly typed variable, it is only necessary to choose its name in the same way
as names are chosen for implicitly typed attributes--e.g., "port.o/d" could be used as the name for a

variable with implicit type “port". Variables obtain their referents in two ways:

eA type which is declared 10 be a unique supertype of some coliection of types may not aiso have a deiinition; the ynigue
supertype of in fact constitutes a definition of the supertype.

3
§
4
!
2
!

OBJECT EXPRESSIONS 2.13

* A variable can be used-as a formal parameter of an action. It then obtains a referent
object from an actual parameter in an invocation of the action, and can be used 10 refer
to that object within the action’s defining statement.

* Quantified variables can be used in predicates as they are in predicate calculus. These
variables obtain as referents objects which satisty the predicate. In many uses of
predicates, these variable names can then be used later to refer to those objects.

2.6.3 Attribute Reference

Through the use of attribute names it is possible to refer to the objects related to a given object in
an attribute relationship. Such an expression may be an anomalous, deterministic, or non-
deterministic reference.

ship.1: CAPACITY
would refer to the tonnage which is the capacity of the ship referred to by the variable "shic.1".
": attribute” maps objects of the type in which the attribute was declared (in this case, "ship") to
objects of the type specified for the attribute (in this case, “tonnage").

USA :: REGISTRY
would refer to any ship whose country of registry was the USA. ": attribute” performs the inverse
mapping from *: attribute”.

2.6.4 Descriptive Reference

A descriptive reference is a reference to an object obtained by specifying its type and, optionally, a
predicate which must be true of it. Any object of the indicated type for which the predicate holds is
then a referent of the expression. The expression

ac|country || TREDE(c,0il,USA)
wouid have as its referent any country which traded oil to the USA. In this expression, ¢ | country
indicates that the type of object being referred to is "country”, while “c" is an identifier used to refer
to the desired object in the predicate which follows the symbol "||". This expression could also be
written as:

a country || TRADE(country,Oil,USA)
An expression which refers to any instance of a type is written by omitting the predicate:

acouniry

2-14 GIST SPECIFIER'S MANUAL

2.6.5 Arithmetic Expressions

Expressions whose referents are arithmetic values may be combined using the arithmetic operators
+, -, *, and \ to compute other arithmetic values, as is done in algebraic programming languages.
Furthermore, the monadic operator “goynt” may be appliéd to any expression to obtain the number
of reterents which that expression has. For instance,

gount(Seat..s :: PORT.HOME)
is an arithmetic expression whose value is the number of ships having Seattle as their home pont. If
the operand of "gount" is anomalous, then the value of the "gount” expression is zero.”

Parentheses may be used to enclose subexpressions both for readability and to override the detault
groupings imposed by Gist's syntax.

2.7 PREDICATES
A predicate is the means by which conditionality is introduced into a specification. There are a
number of basic pieces of information in a process state which can be used as the basis of tests:

* the existence of objects
* the classification of objects by type

* the relationships between objects

Like predicate calculus, Gist permits the expression of complex predicates through the use of
quantified variables and logical combinations of predicates involving those variables and literals.

Semantically, a predicate may be said to be either TRUE or FALSE relative to a particular process
state and particular assignment of referents to its variables. In the following descriptions, where no

confusion will arise, we will simply refer to predicates as TRUE or FALSE.

2.7.1 Propositions

All predicates are built up from propositions. One form of proposition is a test for the existence of
an object. Since objects may be created and later destroyed (see section 2.8.1) it is possible to have
an expression (e.g., a variable) whose referent is an object which has been destroyed. The monadic

predicate "extant"” is used to test for the existence of the referent of an expression.

7Although using "gount” to test whether the number of referents of an expression is zero does in effect test whether it is
anomalous. the predicate "gxtant” (see seciion 2.7) is the stylistically preferred way of doing this.

PREDICATES 2-18

extant ship.1
is a proposition which is TRUE if and only if the referent of the variable "ship. 1" exists in the state in
which the proposition is evaluated. Since a proposition using "extant” is FALSE if the operand of

"extant” is anomalous, it is also useful for testing whether an expression has any referents.

Anolher basic proposition is a test for referential identity of two expressions. Any two object
expressions may be compared with the logical operator "= ". The proposition is TRUE if and only it
the two expressions have at least one referent in common. If either or both expressions is anomalous.
or they have disjoint sets of referents, the proposition is FALSE.

ship.1: PORTOFCALL = Ship.2 : PORT.HOME
would be TRUE if the referent of “ship.7" had the home port of the referent of “ship.2" as one of its
ports of call.

It 1s also possible to test for non-identity of two expressions. using the logical operator "#". The
proposition is TRUE if the two object expressions have non-empty sets of referents which are not
identical. If either or both expressions is anomalous, the proposition is FALSE.

s$hip.1: PORTOFCALL # ship.2 : PORT.HOME
would be true if the referent of “ship. 1" had any port of call oiher than the home port of the referent of
“ship.2."

Another form of proposition is a test for the classification of an object.
Seattle :: PORT HOME isa oiltanker

would be true if any ship having Seattle as home port was classified as an oiltanker.

Arithmetic expressions may be compared using the comparison operators <. <, >, >, and, of

course, the identity comparison =.

The final form of proposition introduced in this section is a test for the existence of a named
relationship between objects. The relaiién must be specified by name, and the objects being tested
are specified by object expressions. A relationship is TRUE if any combination of referents of the
object expressions fill the corresponding roles of any relationship in the named relation. If the named
relation is n-ary. exactly n object expressions must appear in the relationship test. The
correspondence between the object expressions in the proposition and the roles of the relation is
positional.

CONTAINS(Seatt/e :: PORT.HOME, a grain, a fonnage || tonnage > 5000) (2.5)
is a proposition which is true if there is any relationship in CONTAINS involving a ship whose home

2-16 GIST SPECIFIER'S MANUAL

port is Seattle, a cargo which is an instance of "grain", and a tonnage which is greater than 5000.
Note the positional correspondence between the three object expressions in ((2.5)) and the roles in
the declaration of CONTAINS in example ((2.1)).

An abbreviation which is frequently usetul in propositions, and particularly in relationship tests, is
the use of the symbol "$" as an object expression. It may be thought of as having all existing objects
as its referents, and thus serves as a test of whether any existing object satisfies the predicate in
which itis used. For instance,

CONTAINS(Seatt/e :: PORT.HOME, a grain, $)
is a proposition which is TRUE if any ship having Seattle as its home port contains any amount of a
cargo which is an instance of "grain". It should be noted that, for each of the propositiona! forms, the
proposition is TRUE if any referent(s) of the expression(s) used as operands have the property being
tested, or bear the tested relation to one another. In all cases, the propositions have the semantics
normally associated with them in programming languages when all expressions involved are

deterministic.

2.7.2 Quantified Predicates

Predicates may make use of existentially and universally quantified typed variables. These
variables appear freely within the scope of the quantifier. A predicate Q of the form:
v, lt,..v It 1P
is TRUE if and only if there exist objects 01. On, where Oi is an instance of L, such that P is TRUE
when free occurrences of v, in P are taken to refer to O,. Furthermore, Q is said to be TRUE subject to
the assignment of O, to v,. Otherwise, Q is FALSE. For example.
3c|cruiseship || ¢ : REGISTRY = USA (2.6)

would be TRUE if any instances of "cruiseship™” had USA as their country of registry.

Analogously, a predicate Q of the form:

Vvt It IIP
is FALSE if and only if there exist objects 01. On, where Oi is an instance of t. such that P is FALSE
when free occurrences of v in P are taken to refer to O,. Furthermore. Q is said to be FALSE subject
to the assignment of Oi tov, Otherwise, Q is TRUE. For example,

VY o | oiltanker || 0 : PORTOFCALL : COUNTRY = USA
would be TRUE if every instance of "oiltanker"” had some port of call in the USA. (It would aiso be
TRUE, by definition, if there were no instances of the type "oiltanker”.)

PREDICATES 2-17

Quantitied variables may, like role names, be named so that the variables type is implicit in its name.
Example ((2.6)) could be written as:
3 cruiseship || cruiseship : REGISTRY = USA

2.7.3 Predicate Composition

Predicates may be combined with the unary prefix 7 and the boolean infix operators A, V,
® (exclusive or), = (implies), and = (equivalent) to form Jogical compounds. The precedence for
parsing logical compounds is the standard precedence of propositional logic. Parentheses may be
used for legibility and for groupings other than that given by the defaulit precedence. The semantics
of logical compounds is defined by the standard truth tables.

2.8 ACTION DECLARATIONS

Any application domain will have a variety of activities carried out by processes in that domain.
These activities change the state of the process in some way. They may create or destroy domain
objects (launching or decomissioning a ship}. change object relationships (giving a ship an additional
port of call), or classity or declassity objects (making a crewmember an officer). Furthermore, the
execution of an action serves to “mark time” in the prbcess‘ in the sense that Gist's facility for
temporal reference permits reference to past execution states in terms of the start, completion. and
duration of events (action executions). Thus an action which makes no changes to domain objects

may still be a useful modelling concept.

The effect of an action on the process state depends on the state in which it is invoked and on the
peramelers used in the irvocation. These parameters serve two purposes in Gist:
» As in conventional programming languages. the parameterization of a definition permits
users of the definition to specialize it to suit their needs. In the case of an action. the

user. or invoker, of the action can control its effects by specifying particular values
(actual parameters) for the roles (formal parameters) of the action.

» Reference to events in Gist's temporal reference expressions is done through a
combination of action names and parameter "descriptions”. This permits a much finer
filter on event reference than would reference by name alone.

An action declaratian consists of a name for the action and a list of names (and types) for each
formal parameter, or role, of the action. It also may contain a definition, and pre- and postconditions
for the action. Figure 2.1 illustrates the declaration of actions.

218 GIST SPECIFIER'S MANUAL
action
MOVESHIP[sHiP,PIER]
precondition INPORT (ship,pier : PIERLOC),
definition
it ship : pOCK = pier

! then comment no movement needed end comment
E else update 8ERTH of ship 10 3 slip
4 postcondition ship : DOCK = pier;

action

LOADSHIP[SHIP,CARGO,INCR : tonnage]
precondition ship : DOCK : HANDLES = cargo,
definition
if CONTAINS(ship,cargo.$)

then ypdate TONNAGE of CONTAINS(ship,cargo,$)

{0 tonnage + incr
€lse insert CONTAINS(ship,cargo,incr);

action

ASSIGN-CARGO[CARGO,TONNAGE,PORT.FROM,PORT.TO]

definition

begin
require 3ship || ship : PORTOFCALL = port.to;
MOVESHIP{ship a pier || pier : PIERLOC = port.from];
LOADSHIP[ship,cargo,lonnage]

end

Figure 2-1: Action Declaration in Gist

ACTION DECLARATIONS 2.19

The body of an action definition is constructed trom the primitive statements of Gist and forms for
combining them into complex process descriptions. The first action declaration defines an action
named MOVESHIP. The action has two parameters, of types "ship" and "pier".s This action is
intended to represent the activity of relocating a ship at a given pier in a port. The definition is a
simple conditional. If the ship is already docked at the indicated pier, nothing happens; otherwise, the
berth of the ship is "updated” to be some (unspecified) slip.

Tnis is an inadequate definition of the intended activity, for two reasons. First, it fails to restrict
.which ships can be moved to a given pier. The intentis that MOVESHIP is describing activity within a
port; it is not to be used to relocate a ship across thousands of miles. This deficiency is overcome by
the use of a precondition that states the desired relationship between the ship and pier used as
parameters--namely, that the ship must be in the port in which the pier is located.

The second problem is the non-determinism of the slip chosen as the new berth for the ship.
Centain referents of the expression "a s/ip” wili not achieve the intent of this action, which is to
relocate the ship at the indicated pier. A more restrictive expression could be used (restricting the
referents to slips at the desired pier) or, as in the example, the same goal can be achieved with a
postcondition stating that, when the action is completed, the ship's dock must be the desired pier. in

either case, it is unnecessary to incorporate in this action the restriction that only one ship may be in a
slip at a time. That was stated as a global constraint on the attribute "BERTH", and thus serves to
restrict the non-determinism in this action. Any attempt to invoke this action in a situation in which
there are no empty slips at the desired pier would be anomaious, as would an attempt to use it with a
ship and pier not satisfying the precondition.

The second action, LOADSHIP, is intended to capture the change of process state which occurs
when cargo is added to a ship. In this case, all that is modeled is an update of the tonnage of the
given cargo on the ship, so that the new tonnage in the relation CONTAINS is the sum of the previous
tonnage and the increment loaded (or just the increment loaded if the ship did not contain any of the
giveri cargo). To capture the intended restriction in our domain, a precondition requires that the ship

be docked at a pier which handles the specified cargo.

Firally. the action ASSIGN-CARGO captures the process of getting a specified tonnage of a given
cargo loaded onto a ship bound from one port to another. The body of this action begins with a

81’r'ne rules for naming and giving the type of formal parameters of actions are the same as the rules used everywhere eise in
Gist for variebie and role names. ’

2-20 GIST SPECIFIER'S MANUAL

requirement that there be some ship having the target port as a port of call. it then uses the
previously defined actions to move any such ship to any pier in the source port, and to load the cargo
onto the ship. In this example, both the ship and pier are specified by descriptive references which
are likely to have multiple referents. The giobal constraints together with the preconditions and
postconditions of actions combine to restrict the non-determinism allowed by the definition alone.
Thus:

* the ship selected would have to be located in the source port. (Precondition of
MOVESHIP)

* the pier selected would have to handle the indicated cargo. (Precondition of LOADSHIP)

* the pier selected would have to have at least one unoccupied slip. (Global constraint on
the "BERTH" attribute)

* the ship selected would have to be capable of carrying the indicated cargo (Global
constraint(s), such as the non-mixing of fuel and grain cargos)

-Clearly, the specifier has considerable leeway in Gist in defining the dynamics of a process. It can
be done with the method used in programming languages--making every reference (sufficiently)
deterministic within its local context so that the global behavior proceeds as desired. The specifier
can also use greater non-determinism in his referring expression, but bound his action definitions
with preconditions and postconditions which ensure proper global behavior. Finally, the specifier
may use global constraints to restrict the non-determinism present in his action definitions. The
remainder of this section desctibes the variety of constructs which may be used to compose action
definitions.

2.8.1 Primitive Statements

The primitive statements of Gist permit classification and declassification of objects, addition and
deletion of attribute values, addition and deletion of relationships, and creation and destruction of
objects. In each case, the primitive statement specifies a transition from a state S to a state S’. with
no intervening states. In many cases, the primitive statement may involve some non-determinism,
thereby specifying multiple possible state changes.

2.8.1.1 Object Creation

The create statement specifies the creation of new objects. A single create statement can specify
creating one or more new objects, and establishing relationships among the new obiject(s) and
existing ones. The new objects are created as part of a single state transition. In other words, the

4

ACTION DECLARATIONS 221

create statement specifies a mapping from any state S to state S' that is identical to S except for the
addition of the newly created objects, their classification into the indicated type(s), and the addition of
the new relationships.

For example, the statement

create ship || ship : CAPACITY = 30000,
ship : REGISTRY = USA,
ship : PORT.HOME = Seattle

would specify the creation of a new ship having a capacity of 30000 tons, a USA registry and a home
port of Seattle. The new ship would not be involved in any other relationships initially.

2.8.1.2 Object Destruction

The destruction of an existing object is specified by another primitive statement in Gist. The
“destroy” statement permits the specification, via an object expression, of some object to be
destroyed. If the expression has multiple referents, then one of the referents is destroyed. If it has no
referents, then the destroy statement is itself anomalous. A literal object may never be destroyed.
Destruction of an o'bject means eliminating all classitication of it as an instance of any type, and
removing all relationships involving it. This in turn means that a process has no way of referring to an
object tollowing its destruction except through variablés that already referred to it prior to its
destruction. or by temporal reference (see section 2.8). For instance: '

destroy Seatt/e :: PORT.HOME
would (non-deterministically) eliminate some ship whose home port is Seattle. Following execution of
the "destroy” statement, even the expression "aship” would not have the destroyed ship as a
referent.

2.8.1.3 Adding Relationships and Classifications

Addition of new information about existing objects is accomplished with an “ingert” statement.
The new informaticn may consist of an additional classification for an object or a relationship
between objects. As with the "greate" statement, the relationships are specified by means of
propositions. For example, the statement:

insert CONTAINS(ship,cargo.incr)
would add a relationship between the referents of the variables "ship", "cargo”, and "incr" 10 the
CONTAINS relation. |

An additional classification for an object can also be added by the "ingert" statement:
insert port isa portofentry

