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I. MOTTtS DISTRIBUTION

.

During World War II in England, Mott and Linfootl tried represent-
ing the number of fragments produced by the detonation of a shell
or bomb by the distribution

dN = [N#3v) ] (m/v)-2’3 exp [- (m/v)~/3] dm

1/3~/3] d [(m/~) 1= NT exp [- (m/~) (1)

where dN is the number of fragments in the mass interval from m to
m+dm. Here Nm is ~~~ total number of fragments as can easily be seen
by letting t=tm/P)l’s and integrating Equation (1) from O to ~,
namely,

I
m

dN =
o

The parameter P can
distribution, ;, as

J
a)

‘Toe
‘t dt = NT.

be related to the expected value of the
follows:

(2)

ii= J Jmm (dN/NT) = m ~t3 (e-tdt) = P (3!). (3)
o 0

They used an experimental statistic, namely, the observed average
mass of the fragments collected, as an estimator of the expected
value ; to obtain an estimate of the population parameter, P = m&l

/3!),
where m - MT/NT with

AV -
7

being the total fragment mass collecte .
This gave rough agreemen with experimental data obtained for a 3.7 inch
shell for example, at least for the smaller fragments. For the larger
fragments (which often showed part of the original shell inner and
outer walls as surfaces) they observed that a better description
could be obtained by using 1/2 instead of 1/3 in Equation (l). This
suggested to them a dominance of three-dimensional fracture in the
production of small fragments and a dominance of two-dimensional
fracture for larger fragments, leading to a different estimate for B,
namely, P = m

Al
/ (2:). In applications Mott never actually split a

population i o two groups, using exponents 1/3 and 1/2, but
used one or the other. He remarked that similar distribution laws
had already been applied to the crushing of rock, and cited an

1 N.F. Mott and E. H. Linfoot, “A Theory of Fragmentation,’fA. C.
3348, Jan 1943.
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American reference.

In a later report, Mott3 suggested that for the exponent 1/2 at
least, the paraneter ~ could be estimated from the shell wall
thickness, T, and its inner diameter, D, by the formula

//2 = c T5/6 #3 (1 + T/D) (4)

where the empirical constant C is larger for explosives which impart
a lower launc

!i!/3
elocity to the fragments. He did not give a similar

formula for P the form found for this parameter in Equation (1).
Since real shell; have variable T and D and C along their length, it
is clear that Mott was here considering the idealized case of a
right circular cylinder. Later4 be considered this idealized case
of a cylinder formed from stacked metal rings in more detail. Here
fracture perpendicular to the shell axis is pre-determined, and
only ring fracture need be considered. This is similar to the
natural fragmentation of a real warhead if we look on the shell as
made up of stacked rings of different size and shape.

Shortly after, a co-worker of Mott named Urse115 suggested that the
one-dimensional fracture of a rod ought to be given by a Poisson dis-
tribution, and might be related to warhead fragmentation. Still later
in the Unite~rStates, Thomas6 pointed out formulas of the t e

Texp [-(m/~)ii&]where g = 1, Z or 3 for one-, two- or three- imensional
fracture are merely probability distributions more or less suited to
describing particular fragment populations. It is not very helpful
to require a physical model which envisions simultaneous formation of
fragments by means of planes traversing volumes, lines traversing
planes or points dividing lines. More realistically, all of these

2 Lienau, J. Franklin Inst. p485 (1935).

3 N. F. Mott, Fragmentation of H. E. Shells; a Theoretical Formula
for the Distribution of Weights of Fragments, A.C. 3642, 1943.

4 N. F. Mott, “ Proco Roy. Sot.“Fragmentation of Shell Cases,
(Lend.) 189, 300 (1947).

S H. 1).Ursell, “Fragmentation Data and Theories of Fragmentation,”
A. C. 3817, 1943.

6 L. C. Thomas, “Comments on Mott’s Theory of the Fragmentation of
Shells and Bombs,” BRL R398, Sept1943, (AD #36152)
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.

processes might be going on simultaneously and sequentially, with
smaller fragments being formed later from larger fragments already
formed. In spite of this, Thomas used t = 2 in his own applications
to U. S. munitions, possibly because of the calculational difficulties
involved with the use of non-integer L at the time. Thomas.seems to
have been the first to describe the fragmentation of real warheads
by applying kfott~sformula to individual rings of different wall
thickness and diameter formed by mentally slicing a shell perpendicular
to its axis7. This practice is still in use todaya.

G. I. Taylor also considered the explosive fragmentation of metal
rings with radial cracks starting on the outside of the shell case
and propagating inward under the combined influence of tensile and
compressive forcesgo He also pointed out that cracks should propagate
at about 4S0 to the circumferential and radial directions, further
complicating fragment size and shape distributions. More complete
treatments such as that of Nadai10 indicate that a system of logarithmic
spiral cracks should develop in the wall in the simple case of
infinitely long cylinders of uniform wall thickness uniformly stressed
from the interior. Of course, for real warheads the crack systems will
be much more complicated. A further complicating factor is the
existence of shock waves which reverberate in the shell wall as it
expandsll.

In summary, the physics of real warhead fragmentation is so
complicated that simplified models are not likely to be much help in
predicting fragment size distributions. When confronted with problems
of extreme complexity, physicists generally invoke some form of
probability description as in statistical mechanics. In what follows
we will try to point out that Mott?s general procedure can be given
a rational basis in statistical theory and can be improved somewhat

7

8

9

L. H. Thomas, “Analysis of the Distribution in Mass, in Speed,
and Direction of Motion, of the Fragments of the M71 (90mm) A. A.
Shell, when Filled with TNT and when Filled with Ednatol,ttBRL
R434, Dec 1943.

Glenn Randers-Pehrson, R. R. Karpp, C. E. Anderson, Jr. and H. J.
Blische, *’ShortfragUsers Guide,~~ARBRL-MR-03007, Mar 1980.
G. I. Taylor, “The Fragmentation of Tubular Bombs,” in The
Scientific Pa~ers of Slr Geoffrey InEram Taylor, Ed. by G. K.——~ ——- .

Batchelor (Cambridge: The University Press, 1963) v.3, p387.

10A. Nadai, Theory of Flow and Fracture of Solids, (N.Y.: McGraw-
Hill, 1950) p539.——

——

llF. E. Allison and J. T. Schriempf, “Explosively Loaded Metallic
Cylinders, II,” J. Apple Phys. 31, 846 (1960).
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once it is realized that we are using a general theory of random
breakup rather than particular physical models. We will also point
out the generality of the description by showing that it can be
applied to controlled as well as to natural fragmentation. We will
not attempt to link microscopic fracture theories to continuum fracture
mechanics by constructing distribution functions which represent
particular types of flaw activation rates as others have done12.
Instead, we will postulate an overall defect activation rate and pursue
the statistical consequences of such an assumption. In particular,
we will inquire how general and simple we can keep the form of our
distribution function without losing its ability to represent
experimental data well enough for practical purposes.

II. A GENERAL DISTRIBUTION

A. Derivation of the Distribution.

Consider a solid body of volume y and any shape. Real solids
generally contain many kinds of defects which can act as weak points
when a stress is applied and serve to initiate cracks and fractures.
Let us mentally divide this body into k elementary volumes of
size E = y/k, choosing k large enough so that on average each
elementary volume E contains one defect or incipient break. Let
r be the average volume rate of defect activation under stress so
that rc = ry/k is the probability of finding at least one such
activated defect in E. Then the probability of finding no such
defects in E is l-rE. Since the distribution of defects and their
activation under stress can be considered random events, the
probability of observing exactly s such activations in k trials is
given by the binomial distribution

‘: ● (w (+’)k”s“)B(s/k,ry) = s,[l”s),
● *

for s = 0,1,2...kwith B = O otherwise. If s=k for example, then
all defects would be changed into breaks and the body would be
subdivided as much as it could be by the defect mechanism. Since
the number of defects in real solids of interest is very large, it
should be adequate to consider the limit as k + @ in such a way that the
number of breaks or activated defects, ry, is large but far from
infinite.

12D. R. Curran, L. Seaman and D. A. Shockey, “Dynamic Failure in
Solids,” Physics Today, Jan 1977, p. 46.
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In particular

ry/k << ry << k (6)

is the condition of interest. In this case from Equation (5)

[1(rys [1] ~-ry [1] = p(s/ry)= s:

where p(s/ry) is the Poisson distribution with parameter ry. The
first limit in Equation (7) is seen to be unity if we divide numerator
and denominator by (k-s)!, so

k(k-l)(k-2)...(s+l)l)
1im

(

1= lim (1) 1- ~
km ks kx

*

+...(l-y)= ,.,,,

The third limit in Equation (7) is obviously unity. If we let u = ry
and z = -u/k, then we see that the second limit in Equation (7) is just
the (-u) power of the limit which defines the base of the natural
logarithm, namely

[1~im (l+Z)l’Z ‘u = e-u .
Z+()

●

(9)

Of course the Poisson distribution meets the requirement that

m
m m s

z x s

x -u u -up(:;/u) = e
u -u u

=e =e e = 1.
n z

(lo)

S=o S=o S=o

Let F(u) be the probability that at least one break (activated
defect) will occur under a given stress. Then 1-F(u) is the probability
that no break will occur. From Equation (7), the probability of no
breaks (s=o) is l-F(u) = e-u, or

m m

z z s
F(u) = l-e-u = p(s/u) - e-u =

u -u
e

z
(11)

S=o S=l

13



which exhibits the meaning of F(u) as the probability of observing at
least one (one or more) break. We note in Equation (11) that F(u)
has been written both as a continuous function of the variable u and
as a sum over a discrete frequency distribution in which u plays
the role of a parameter. This is a particular case of a more general
relation as we shall see below. Of course F(u) can also be written
as an integral over a continuous frequency distribution as follows:

J
u

1

u
F(U) et= 1- e-u= - dt = f(t)dt

o 0
(12)

where

dF = e-t dt = f(t)dt. (13)

Here f(t) is a frequency distribution and F(u) is a cumulative
distribution, while 1- F(u) is a complementary cumulative distribution.
Equations (11) and (12) are both particular
relations, namely,

aJ

x

s
F(u,c) = u -u

—e
y(c,u)

= P(2u/2c)= --r~
s!

S=c

cases of more general

f

u 1
et

c-1 -=
r(c) t dt. (14)

o

Equations (11) and (12) are obtained for the case c=l in Equation (14)
since the complete gamma function of unity is unity, ~(l) = O! = 1.
The complementary form of Equation (14) is

c-1

z

s
1-F(u,c) = u -u

e
z ~

= Q(2u/2c) = ‘:7:$) = ‘~ C-l e-tdt (~~)u r(c) t
S=o

and is discussed, for exam le, in the Bureau of Standards Handbook
of Mathematical Functional! where tables of these functions are
also given. Equation (14) relates partial sums over the Poisson
distribution to the chi-square distribution, p(2u/2c) with

2C /
2

(16)

13 Handbook of Mathematical Functions, NBS Applied Mathematics Series,
number 55, Nov. 1964, Ed. by M. Abramowitz and I. A. Stegun, section 26,
especially 26.4.19, 26.4.21 and 26.4.2.

14
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where 2C is called the number of degrees of freedom. As we see,
these sums are also related to the incomplete and complete gamma
functions, Y(C,U) and r(c). The integrand in Equation (14) is the
gamma frequency distribution with scale factor unity and is a
special case of the Pearson type III distribution:

1
et

c-1 -
‘III = ~ t

(17)

where

t= [(Y- Yo)/B] (18)

for y < y < UJand scale factor B [NBS Handbook, p930]. An even

8more eneral form of Equation (18) is

t= [(Y- Yo)/ql’g

where O<&<~. This gives us Weibull~s frequency distribution

dF = W(t) dt = e-t dt = exp

(19)

which contains the exponent l/t as well as the scale factor B and
the cutoff value y for a random variable y over the range y <y<~.
Weibul114 has appl?ed this distribution to a great variety o?
phenomena, social as well as physical, chemical and biological, as
have others after him. Gnedenkols had shown previously that Equation (20)

14 W. Weibull, “A Statistical Distribution Function of Wide
Applicability,‘tJ. Appl. Mech.S Sep 1951, p293.

15 B. V. Gnedenko, “Limit Theorems for the Maximum Term of a
Variational Series,” Doklady Akad. Nank, USSR32, 1941.
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is the third asymptotic distribution of smallest values16.
We note that Mott~s distribution in Equation (1) is a particular case
of Equation (20) for g = 3, y = m, y. = m = o, 6 = P and d(N/TT) =
W(t)dt = dF. Mottls formula with k = 2 i~ another special case
of an integer L value. Since Equation (20) is a particular case
of Equation (14) with c = 1 and t given by Equation (19), so is
Mottts formula. A more general form of Weibullls distribution
which may be used in Equation (14) with any allowable c-value is
the general gamma distribution:

g(t) dt = ~, tc-l e-tdt

1 (Y;yo)? exp [-(y ;yo)”~d
= r(c)

; -1

[( )]

‘1
Y-Yo~

exp -
B

dy(Y-Y.

T

= fl(Y)dY (21)

Here y is a general random variable, but in fragmentation applications
we take it to be a volume, y = m/P, where p is the density of the
shell case and m is mass. With the scale factor 6 = u/p, c = 1 and
% = 2 or 3, Equation (21) gives Mottts formulas. Since c = 1 in
Mottts formulas, we see that he is calculating the probability of at
least one break occurring. We have also seen that it is a special
form of general probability distributions and can be applied to many
things besides fragmentation. As we mentioned above, Thomas pointed
out that Mottls formulas are not necessarily connected to any
simple model of the fragmentation process. More generally, we now
see that they are not necessarily limited to fragmentation at all.

Let us return to Equation (14) and display some particular
examples by way of illustration. I~lthe parameter u = 1, the
Poisson frequency function is p = e /(s~), which is plotted in
Figure 1. In this case the chance of obtaining one break (s = 1) is

16 E. J. GUmbel, “Statistical Theory of Extreme Values (Main Results),”
c.6 in. in Contributions to Order Statistics, Ed. by A. E. Sarken
and B. G. Greenberg (N.Y.): John Wiley and Sons, Inc, 1962.

16
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the same as the chance of obtaining no breaks (s=0), an instance of the
double mode or maximum of the Poisson formula. As is well known, the
expected value of s is equal to the parameter u (as is the variance)
for the Poisson distribution. That is, in Figure 1, s = u ~ll.
Since the chance of obtaining no breaks is large, namely, e = 0.368,
the chance of obtaining at least one break ( one or more breaks) is
only 0.632. The chances of obtaining s = 2,3,4.... breaks become
smaller as s increases and the chance of obtaining 5 or more breaks
is quite small. From Equation (14) it is

m 4

z
F(1,5) =

ze-l/(s!) = 1-

[ 1

e-l/(s!) . l-e-l 1 + 1 +~+~+&

S=5 S=o

t J11 4-tdt= .08772
=y (5,1)/r(5) =

Oz!te 24
= .00366 . (22)

~
I t~e parameter u is larger, say u = 5, the Poisson frequencY

is e- 5 /(s!) which is plotted in Figure 2. Now t~~ chance of
obtaining no breaks at all is quite small, namel_ye = 0.0067, but
is not zero. The expected number of breaks is s = u = 5 while the
probability of obtaining at least one break is now much larger,
namely, from Equation (14)

m

\

5

E
F(5,1) =

5s -
es et

-5
7

= Y(1,5) = - dt = l-e = 0.9933 (23)

S=l 40

while the probability of obtaining at least the expected number
of breaks is

cm

F(5,5) =
z

5s -
es

. yj5>5) L

\

5 t4 e-t dt
= 0.5595 . (24)

z r(5) = 4!
S=5 Jo

In short, an increase in the parameter u reduces the chance of no
breaks at all and shifts the distribution to the right, since the
expected number of breaks is always s = u. A decrease in u has the
opposite effect. If u<l, = is fractional, and the probability of
obtaining no breaks at all is the mode or most likely event.
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In the limit as u + o, the Poisson distribution for s = o is a
spike function equal toounity at s = o and zero for all other s.
Of course, F(O,l) = l-e = O, that is, the chance of at least one
break vanishes. In other words for a perfect crystal for which
u= ry = O because the rate of occurrence of defects r = O, we are
sure that no break will occur by a defectumechanism. In the limit
as u +~ , the poisson function (us/sJ)/e is indeterminate.
However, using L~ Hospitalts rule, s differentiations of the
numerator reduces it to (s!)/(s!) or unity, while the denominator
remains the same, so that each term vanishes. Actually, u is not
allowed to increase without limit as was pointed out in Equation (6)
where u = ry < < k. Even though k is allowed to increase without
limit, u must remain finite. “fhisrequirement agrees with our
interpretation of the dimensionless number u as the finite number
of defects expected to be activated under a given stress. It also
agrees with an interpretation of u as the ratio of the stress
energy applied per unit volume to the work per unit volume required
to fracture the body, namely,

applied energy/volume
u= at: (2s)

where a and c are the stress and strain at fracture characteristic
of the material. In the case of projectiles striking a target at
ordnance speeds, u will not be much greater than unity and the
projectile will fracture into several pieces17. In this case
discrete Poisson statistics are appropriate. For hypervelocity
impacts, a projectile will shatter into many fragments, as also
happens when explosive warhead cases are shattered at detonation.
In such cases a continuous frequency distribution is more convenient
for describing the resulting fragment population. Equation (14)
shows how these distributions are connected. When u = 1 in Equation
(25), the applied force is matched by the strength of the body and
on average we expect only one break to occur, although it is equally
likely that the body remain intact. When u is much less than unity
we are in a regime of slow crack development and failure which may
take months or years of stressing. For explosive ordnance we expect
u much greater than one with fragmentation times in the millisecond
range. But in all cases u will be finite and the upper limit of
the integral in Equation (14) will not be infinite, although in some
cases of interest it may be effectively infinite to a sufficient
approximation.

17 J. L)ehn,“The Particle Dynamics of Target Penetration,’!
ARBRL-TR-02188, Sept 1979.

20



and

so

If we use y = m/P and S = P/P in Equation (19) we obtain

()
l/Jt

m-m
o

t=—
P

() I/k
m -m

u =t=~
max P

J?J
m <m<m =m +Pu0 u 0

● (26)

(27)

(28)

where m is the upper mass limit of a finite body. For u greater
than te~, we see that the probability of at least one break
occurring, F(u) = l-e” is very close to unity. Since the number
of fragments expected is one larger than the number of breaks, they
are approximately equal for a large number of breaks.

For u = 1 in Equation (27), P = (mu - mo) for any ~. In general,

for u~ 1, P ~ (mu - mo) for any L (O<t<OO). Here v is relatable<
to an expected average mass and smaller P 1s associated with larger u,
that is with greater applied stress, a weaker body and more breaks
or fragments expected. The terms for small s in Equation (14)will
be very small for large u, that is, the occurrence of only a few
breaks is very unlikely. Most of the contribution to either the
summation or integration in Equation (14) will come from the
midrange near s = u or m near p. For example in Equation (14) we can
take c = O or 1 and obtain the expected number of breaks

S=o S=l j=o

since the te m for s =
I O makes no contribution. Similarly, using

m=m + P t from Equation (26) we can find the expected values of
the m%s (letting c = 1)

21



‘i=+d”(mo+p’’)e-’“=‘0y‘“u)+“y“+”u) (30)

If u is effectively infinite, then the incomplete gamma function, Y,
is approximately equal to the complete gamma function, l’,and Equation
(30) becomes

(31)

If, in addition, the lower mass limit, mo, is effectively zero and ~
is an integer, Equation (31) becomes

iii= p (i!) (32)

since r (l+Jt)= L! for integer i. Mott’s formulas consider only
the values 1 = 2 or 3. In general, B need not be integer, m. need
not be zero and m (and so u) is less than infinite.

u

In [;igure3 we plot the incomplete gamma function Y(l+L,u) versus
u for L=0,1,2,3 and 4. For non-integer L, the curves lie between
those shown. It is clear that for smaller L values the approximation
y(l+t,u) = ~(1+1) is quite good for smaller u than for larger 1 values.
For 0<R<3, it is very good for UZ1O. l%is-~as mentioned above in
another way when we observed that F(u)=l-e ~ 1 for tiO.

B. Description of Fragment Populations

It is worthwhile noting the effects that various groupings can
have on a given collection of fragments and how this can influence our
mathematical representation. In Table I we present a sample Population

Table I. SAMPLE FRAGMENT POPULATION (Masses in Grams)

1 .106 8 .264 15 1.250 22 3.950
2 .110 9 .268 16 1.411 23 4.922
3 .115 10 .311 17 1.706 24 5.700
4 .123 11 .450 18 1.972 25 5.850
5 .1s1 12 .525 19 2.002 26 7.106
6 .172 13 .713 20 2.150 27 9.760
7 .195 14 e809 21 3.670 28 10.500
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which has been constructed to simulate much larger populations
typical of real warhead natural fragmentation~ The advantage of
using such a small population is that it is easy to follow in detail
various possible procedures. Here we have 28 fragments with total
mass F$ = 66.261g and average mass m ~ 66.261/28=2.366g. We can
represent this collection graphical 9 by drawing 28 vertical lines of
height unity along a horizontal mass axis. These lines will be more
closely spaced for smaller m values and become farther apart as m
increases. Alternatively we can group the fragments into intervals
centered on various mass values and count the number in each group.
If we choose equal size intervals each one mass

P
it wide, we obtain

Table II. As we see, the number of fragments, N , in each group,

Table II. GROUPING INTO EQUAL SIZE MASS INTERVALS

Interval(g) O-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11

NE 1442212 ~1~1 1

NE(>) 14 10 8 6 5 3 3 2 2 1 0

J+<) 14 18 20 22 23 25 25 26 26 2’? 28

fluctuates erratically for the heavier groups which contain only a
few fragments. This is typical of real fragment distributions also.
The number of fra~ents with mass greater than that associated with
a given group is N ( ), while its co

T
lement, the numb r with ass

E P
less than that of higher groups, is N (<). Of courseNE(>) + N (<) = ‘T>
the total number of fragments. Both the cumulative, N (~), and E
complementary cumulative numbers appear somewhat smoother than N , so
we might expect better agreement if we fit a smooth mathemati alE
function to cumulative numbers rather than to the frequency N .
We can smooth out the erratic behavior of N by choosing unequal size
intervals. For example, the choice in Table III gives much smoother
behavior. Of course other choices could introduce erratic behavior

Table III. GROUPING INTO UNEQUAL SIZE INTERVALS

Interval(g) 0-.2S .25-.75 .7S-2 2-4 4-6 6-10 10-66.261

Nk
.

7 6 5 432 1

NE(>) 21 15 10 631 0

NE(<) 7 13 18 22 25 27 28
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again. For example, choosing 1.9S instead of 2.0 would put 4 fragments
in the third group and 5 in the fourth group. This frequently occurs
in practice where the choice of mass intervals is made before an
experiment is carried out, perhaps for the sake of uniform reporting
procedures. Generally speaking, in the literature the mass of each
fragment is not reported and only information about pre-chosen groups
is given. Consequently, there is no way to choose new groupings which
might be more closely represented by certain mathematical functions.

Now let us apply the frequency distribution dF=d(N/N ) of Equation
(20) with y=m/P and 13=p/Pwhere P is the densityof the ~etal case.
If we multiply it by the total number of fragments, NT, and divide by
(l-e-u) where u is given by Equation (27), we obtain

dN = ‘T $(m~O)+-lexp~-~)+]dm =~(m) dm (33)
(l-e-u)

for the number of fragments in the infini~esimal interval from m
to m+dm. Note that Equation (33) becomes Equation (1) above for
u*, mo=O and 1=3. The factor (l-e-u) insures that

r lr 1

[ IIu= NT/(l-e-u) e-t dt =NT.

o

The aumula$ive number of fragments is

(34)

1
(35)

while the complementary cumulative number or number greater than m
is the integral from m to mU(orttou).

N(>) =/:dN=NT[e_t - e-u], [,-e-.] (36)
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so N(<) + N(>) = N . We can calculate either cumulative number,
however, N(>) is th$ number used to evaluate the lethality of a
warhead or the vulnerability of a target. We can determine N(>)
experimentally with greater accuracy also, since the number and size
of small fragments is difficult to measure, The use of a cutoff mass,
m , of sufficient size avoids this difficulty, and is also useful
b~cause very small fragments are usually not lethal anyway.

In practice, we do not deal with infinitesimals such as dN and dm.
Inste

tt
we use fragment groupings such that N. fragments are found in

the i mass group of width dm. centered on mkss m.. Generally
speaking also in fragmentationlwork the expected nhmber of fragments
is large and approximately equal to the expected number of breaks, u.
If u > 10, then l-e-u s 1 and may be neglected in Equations (33)
through (36). This may not be true for t very close to O or u in
Equations (35) and (36), but the use of finite groupings prevents
this from happening. This is why u can be taken to be effectively
infinite, at least in cases of natural fragmentation. For a narrow
group of controlled fragments clustered about P this may not be true

for small L, since u = [(m-m)/P]*/Lwithm , m and u all of about the
size. For finite size int&v~ls Equation (~3) ~ecomes

[)A mi
Ni =NTWi=NT —

~ (1-~)
e-ti/ (l-e-u)

p~ i 1
where

t. = Nm.-mo)d’g1 1

(37)

(38)

for the ith mass group. We can use Equation (38) for t. instead of
t in Equations (35) and (36) to take account of finite ~ather than
infinitesimal size mass intervals.

In Equation (37), Wi = Ni/NT is the calculated probability of
.thfinding Ni fragments in the 1 group. The probability observed

experimentally is W.
E = N.E / N , where N.E is the number found

experimentally. TWelare i~teres ed in obtkining functional represen-
tations of experimental data, using the probability formulas we have
derived. As we have seen, there is no reason to require that k be
integer, so we will treat it as an adjustable parameter. In addition,
the observed average mass gives us only a rough estimate of ~ (and
so P through Equations (30) to (32)). We will use this as an initial
guess for P and then adjust P also to represent the data better. The
cutoff mass, m , will determine the total number of fragments, N .
For example, i~Table I we are assuming that fragments less thanTm =
0.1 g are of no interest in a particular application because they 0
are too small to be lethal. If m were 0.2 g instead, then NT would
be 21 instead of 28. If m were ~maller than 0.1 g then N would
be larger than 28. JHoweve?, the smaller we make mo, the m re uncer~ain

26



we are about the value of N above m because of the difficulty of
xobserving very small fragme ts. l%e”minimum value ofm is well

above molecular mass values, since we are considering a“defect
method of fragment production. Still the actual number of dust-like
fragments emitted after a detonation is U.ndotitedlyvery large
and experimentally unknowable. Since this number is also of no
practical interest for lethality or vulnerability, we will adopt the
point of view that N is fixed by a choice of finite m >0. The
upper mass, mu, 8can e taken to be the total mass,

7
,“which is

usually close to the unfragmented case mass. For na Ural fragmentation
this will make u effectively infinite. For controlled fragment groups
where m , P and m may be close to each other, the choice may be more
i~po~ta~t as we shall mention later.

If our only interest were to use Equation (36) with u effectively
infinite, then we could adopt in Ni (>) as our model function,

considering it to be a linear function of the variable (mi-mo)
lj~ in

M Ni(>) = h NT - (P‘~lk) (mi - mo)l’k . (39)

For fixed k we could adjust P and so the slope. For fixed v, an
adjustment of g becomes much harder since we are changing the
independent variable as well as the slope. Likewise, simultaneous
adjustment of 1 and u is too laborious to consider. The logarithm of
Equation (37) is

in Ni = l/E
ln [(N@mi)/(gP )] + (1-L) in (m.-m)l/R- (P-l/k) (mi-mo)l/g(40)

10

which is not a linear model function, except for fi=l. In addition,
if u is not effectively infinite, there is no way to make either P or
R appear in a linear fashion in a model function related to
Equation (36) or Equation (37).

Here we will use the least squares method to adjust the two
parameters p =Landp= P which appear in the non-linear model
functions, E&ation (367 and Equation (37). The function to be
minimized is the sum of the squared differences between the
experimental and calculated values which we will call Sqd (N = number
of groups): g

N. .

Sqd =
2

2
[NT (Wih - ‘i)]

i=l

.
(41)

27



We can use our data to obtain initial guesses for the parameters,
namely, p ~

i
=Eandpo=P. If these guesses are reasonable, we

can negle t all”but li~ear correction terms in an expansion of W.
about the point (p10’ P20)S so

Wi = Wio + c1
d Wi

)(

d Wi

dP~o ‘CZ dp2,J

1

(42)

where subscript zero means evaluation at the current mess Doint.
OUT co~rected-parameter set (pko+Ck for k=l,2) become; the \ew
guess point in an iterative-calculation,approaching a best fit as
closely as we please. We now put Equation (42) into Equation (41),
set the derivatives of Sqd with respect to 8 and P equal

3 tli
zero,

divide by (-2NT ) and obtain the normal equations. The k equation
is

(43)

where k=l,2... N with N equal to the number of adjustable parameters
(only two here).p A rear~angement of Equation (43) gives

c1 $(2)O(4J+C2[2(4.(?!!
i=l

or, in matrix notation

where

QC =K

(44)

(45)
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(46)

are the elements of the symmetric matrix Q of dimension N x N and
PP

N
13

x( WE )( ]
d Wi

‘k =
- Wio —

i dP~J
i=l

(47)

-1
are the elements of the vector K with the correction vector C = Q K.
of course in our case with N = 2, the solution for C is especially
simple since Equation (43) c~nsists of only two linear simultaneous
equations for the unknowns C and C .

1
More elaborate forms of the

least squares method could a so be &ed, but this is sufficient for
our purpose here.

To carryout thisprocedurewe needderiv~tivesof our model
functionswhich ontainfactorsof the formA whereA =

f
(m.-m)/v

and f = I/k or (–-l).
%

We recallthat the derivative with ~es~ect
to k can be foun by letting

Y= in (Af) =flnA (48)

so

and

dff

()

df
=(A) ‘A1nAm

(49)

(50)

then

d Wi

( )[
—= Wilkd%

-l-(l-ti)in ti + ue-u in u / (l-e-u)
1

[s1)

Wi / (pk)
1

.

-1 + ti + Ue-u / (l-e-u)
9

(52)
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where Wi is given in Equation (37) and ti is given in Equation (38).

If we wish to optimize a fit of Ni(>) to experimental data, the
function to be minimized is

N

Sqd =~r NiE(>)

1
- ‘i(>) 2

i=l L
(53)

and a new set of normal equations can be found in a similar way. The
required derivatives are

d Ni(>)
(

T )[, c(-)u~ulnu]/~.cu)(541
=N/Lte-tilnt\T

d Ni(>)
=

d~ N./(pR)][tiiti-(-)u&u]/(l-:u)*(,,1

A computer program implementing this procedure is given in the
Appendix. For cases in which u is effectively infinite, all terms
involving u in Equations (S1), (S2), (54) and (S5) vanish as can
easily be verified by the use of L? Hospital’s rule. Provisions
are also made in the appendix for adjusting either L or P alone,
as well as for calculating with fixed ~ and p, using either finite
W. and mu or with m. = O, mu = ~ as in Mott’s case.

c. Applications

Let us apply our procedure to the sample data of Table I as
grouped in Tables II and III. For example, Table IV A compares
the number in each group calcu ated by various procedures with the

knumber found experimentally, N . In this Table and Table V m. was
taken to be zero. If we took m = 0.1 g in Table IV we could
obtain slightly better agreemen? as indicated by a lowering of Sqd
from 6.86 to 6.56, accompanied by somewhat changed L and P. However,
this is good enough for our purpose, which is to show that the
fitted Sqd is much lower than that for integer L values, namely,
33.53, 24.38 or 61.92. f9m e fit, m was taken to be 66.261 g
so that u = (66.261/.95) = 21.2 w%ich is effectively infinite,
giving N approximately equal to zero for the last group. In the
MOtt-type calculations m = u = m,

u
so N and N(>) are both exactly
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zero. This is truebecausethe exponentialfactorsvanishand
dominateotherfactorswhichincreasewithoutlimit. Table IV B
comparescalculatedvalueswith experimentalvaluesof N(>). A gain
froma comparisonof Sqd valueswe see the valueof adjusting~ and P.
The adjusted1 = 2.03 is almostinteger,so the improvementover
L =2,p= 1.183g is not as greatas in PartA.

TableV makes the same comparisonsas Table IV but for the
sampledata as groupedin Table III.

Table IV. FRAGMENTDISTRIBUTIONFOR SAMPLEIN TABLE II

(Columnsmarked=1, 2 or 3 use the Mott version.)

A. N in each group B. N(>) for each group

Interval(g)NE N ~ = 1 L = 2 L = 3 N(>)EN(>) L =lL=2~=3

o-1

1-2

2-3

3-4

4-5

5-6

6-7

7-8

8-9

9-10

10+

14 13.51 9.58 9.50

4 4,65 6.28 3.41

2 2.18 4.11 1.90

2 1.14 2.70 1.23

1 .64 1.77 .86

2 .38 1.16 .64

0 .23 .76 ,48

1 .14 a50 .38

0 *09 .33 ● 30

1 .06 .21 .25

1 .00 0 0

- 1.39 1 2

6.84

2.04

1.09

● 70

a49

● 37

.29

.23

● 19

.16

0

3

B(g) .95 2.3661.1830.394

Sqd - 6.86 33.5324.3861.92

14

10

8

6

5

3

3

2

2

1

0

14.96 22.6714.62 9.48

9.54 14.85 9.08 5.88

7.01 9.73 6.54 4.40

5.46 6.38 5.01 3.53

4.41 4.18 3.98 2.95

3.64 2.74 3.24 2,52

3.05 1.79 2.69 2.20

2.60 1.18 2.26 1.94

2.23 .77 1.92 1.73

1.94 .51 1.65 1.56

● 14 0 0 0

2.03 1 2 3

1.29 2.3661.183 0.394

4.46 106.43 6.00 62.00

.
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TableV. FRAGMENTDISTRIBUTIONFOR SAMPLEIN TABLE III

(ColumnsmarkedL = 1, 2 or 3 used the Mott version.)

A. N in each group B. N(>) for each group

Interval(g)NE N !L= 1 L = 2 1+= 3 N(>)EN(>) k =lE= 2&=3

0-.2s

.25-.75

.75-2

2-4

4-6

6-10

1(J+

!?/

l’m)
Sqd

7

6

5

4

3

2

1

6.24 2.81 6.S8 6.44

5.15 4.79 4.75 3.42

5.44 8.27 4.67 2.82

3.56 6.66 3.02 1.71

1.68 2.86 1.47 .85

1.44 1.61 1.35 .83

.18 0 0 0

1.72 1 2 3

1.41 2.366 1.183 0.394

4040 38.01 6.55 23.94

21 21.1126.56

15 15,2622.67

10 9.6S?15.66

6 5.47 7.88

3 3.22 3.38

1 1.69 .95

0 ●03 o

1.81 1

1.23 2.366

.98 12s.38

20.23 14.16

14.62 9.48

9.53 6.14

5.70 3.92

3.58 2.72

2.08 1.83

0 0

2 3

1.183 0.394

2.56 97.25

AS we see the fit givesbetteragreementthan the use of integeri and
appropriate~. If we ignore1=1 (whichis neverused),only one case
(forQ=3)givesa worse fit than is foundin Table IV. We expect
this sincethe data in Table III was made to appearsmoothly
decreasingby a choiceof mass intervals. For 1=1 this choice
makesthe calculationsappearvery erraticsincea maximum
of 8.27is reachedfor the thirdmass group. The probabilityper
unit mass,w(m) in Equation(33),decreasessteadilyas m increases
for any Q1. However,W. = w. Am. in Equation(37)is the product
of w. with Am. so thata~ inc~eas$in Am. as in the firstintervals
of T~bleV ca~ more than offseta decrea~ein w., resultingin a net
increase. This oftenhappensto experimentald~ta too,when we use
variablesize groupings. If all mass intervalsare equal,then the
calculatednumberswill alwaysdecreaseas m increases. However,
experimentally,erraticbehaviorcan occureven for equalsize
intervalsbecauseof poor statistics. In TableV A with L=l,
N. = (28/2.366)Am. exp (-m./2.366).This givesN1 = 2.81for Am =
.$S,m =

i
.12S,et~. as sho~n. For largerivalues thisdifficult+

tends o disappear.
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Now let us examinesome experimentaldata obtainedfrom a real
munition. In the NetherlandsLindeijerand Liemans18publisheddata
in the open literaturefor a 105mm shellwhich is presentedhere as
the experimentalvaluesin TableVI. An unusualfeatureof their
experimentwas the largenumberof tinyfragmentsthey collectedin
the sub-gramcategorycomparedto the 816 individuallyweighedand
counted(andrecordedin TableVI). Theyw.reableto collect2,195
tiny fragmentsweighing215 gramsaltogether,comparedto the
816 recordedhere which totalled457 grams. The totalnumberof
fragmentsin TableVI is NT = 2,228weighinga totalof

?
= 8,561g,

givingmA = 3.84 g.
i

Thispopulationis typicalof that eported
by other roupsin similarexperiments.Sincethe originalcase
mass weighedabout9,000grams,about2.5 per centwas lost~
presumablyas a very largenumberof very smallfragmentslost
despitethe extraordinaryeffortsof theseauthors. Sincethe actual
numberof smallfragmentsemitted(orcreatedby secondarybreakup
duringrecovery)cannotbe determined(althoughit must be extremely
large),we see the need for invokinga fixedvalueof NT, determined
by a non-zerovalueof mo.

In TableVI we have dividedthe Sqd valuesby the totalnumberof
fragmentsto keep thesevaluesreasonablysmall. From a comparisonof
thesevaluesit is clearthatusing “best”~ and P can give a better
overallrepresentationof experimentthan the use of integerL and
prescribedu = m /(~!). To avoidcrowdingin TableVI we have
omittedcolumns$& valuesfoundusing ~ =1 (worsean~ay) and have
roundedcalculatedfragmentnumbersto integervalues,at least
when they exceedunity. The Sqd valuescouldhave been improveda
few more percentin the “best’tcalculationsby usingmo>O,but this is
not shownhere for the sakeof uniformityin comparisons.The low
valuesfoundfor the heavestgroupsreflectthe infinite(oreffectively
infinite)uppermass limitsused. Althoughthis is requiredin the
Mott-Typecalculation,improvementsin the “best”calculationcan
alsobe made by using the mass of the heaviestfragmentfoundinstead
of the case mass. Note that the ~tbest”E valuesare nof very different
fromm /(2!)=

+x
1.92g, althoughthe “besttt~ valuesare notably

lower an ~=2, givingbetteragreementfor the more populatedgroups
and worse for thosewith only a few fragments. Whenwe estimate
effectivenessfor caseswhere fra~ents less than ten gramsare
important,it is presumablymore importantto have a betterrepresenta-
tionof the morepopulatedgroups,sincethereare so few heavy
fragments. If theselighterfragmentsare not importantfor a particular
application,we can alwaysincreasem , reduceNT, adjustk and M
and againobtain“best”valuesfor th~ remainingpopulation. Similar
calculationshave been carriedout for otherrealmunitions(both
largerand smallercaliber)and similarresultshave been obtained.

18 E. W. Lindeijerand J. S. Leemans,Explosivstoffe16 (7),145
(1968).
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Insteadof using any type of analyticalformula,one can
of courseuse the experimentaldata,especiallyin thisage of the
digitalcomputer. However,for somepurposes,analyticalformulas
are desirable. In addition,the smoothingwhichresultsfrom
the use of a fittedanalyticalform@a shouldbetterrepresentthe
averagevaluesand averageeffectivenessof a largenumberof munitions,
the casewe are tryingto calculate. Use of experimentaldatawith
poor statisticsgivingerraticbehaviorin heaviermass groups(and
certainangularzones]couldgivepoorereffectivenessestimatesthan
use of smoothfunctions. Presumablythe datawouldbecomesmooth -
if only we couldaffordto do enoughexperiments.Sometimesa few
largerfragmentsmight be neglectedanywaybecausetheyare too slow
to be of importance.

Figure4 comparesthe curvesfor N(>) fromTableVI. The ~’best~’
fit curveis virtuallyindistinguishablefrom the experimentalcurve
on the scaleof this graph.

TableVI. FRAGMENTDISTRIBUTIONFOR THE NATURALFRAGMENTATION
OF A 105 MM SHELL

A. N in each group B. N(>) for eachgroup

Interval(g)NE N ~ = 2 R = 3 N(>)E N(>) 8 =2 R.=3

o-1

1-2

2-3

3-5

5-1o

10-15

15-20

20-25

25-30

30-35

35-40

40-45

45-50

50+

!?#

P

Sqd/NT

816

464

234

270

233

97

49

28

13

5

1

4

4

10

804

414

257

282

220

53

15

5

2

.51

.18

● 07

e03

.00

1.27

2.18

3.33

683

271

162

190

203

89

47

28

17

12

8

6

4

0

2

1.92

30.38

544

175

97

109

118

55

32

21

15

11

8

6

5

0

3

.64

97.67

1412

948

714

444

211

114

65

37

24

19

18

14

10

0

1421

938

689

471

233

104

53

29

17

10

6

4

3

e00

1.68

1.91

1337

921

712

526

309

174

109

73

51

36

27

20

15

0

2

1.922

895

598

469

360

235

155

113

87

70

57

48

40

35

0

3

.64

1.25 13.69 210.60
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Finally,let us consideran applicationto controlled
fragmentation.It is obviousthat for particulartargetsor target
classestherewill be an optimumfragmentsize (alsodependent
somewhaton engagementconditions).Smallerfragmentsare wasted
sincethey cannotsufficientlydamagethe target,while fragments
which are too largewill kill the targetbut inefficientlysince
theywill of necessitybe fewerin number,so less likelyto hit
withoutspecialaimingdevices. The ultimatein controlis the
pre-formedfragmentwhich is oftenused when launchstressesare
relativelylow as for missilewarheads. However,gun-launched
warheadsrequirestrongcasingswhich do not permitweakeningthe
shellby grooving. For such shellsother techniqueshave been
devisedwhichpermitundiminishedcase integritycoutpledwith some
degreeof fragmentsize control. Examplesare the use of electron
beam scoring,selectivecarbtmizationof the steeland groovingof
the explosiveat the shellwall (withor withouta liner). At BRL
Meissnerand Kinekelghave comparedvarioustechniqueswith each
otherand with naturalfragmentation.For example,theyused a
cylindricalsteelcase 10.16cm longwith outerdiameter7.6 cm and
wall thickness0.24 cm, filledwith CompositionB explosiveto make
such comparisons.TableVII comparesthe naturalfragmentationthey
observedwith valuescalculatedby variousmethods. Clearlya better
representationcan be obtainedby usingbest valuesof ~ and PO
Sincethe mass of the largestfragmentwas recordedand is knownto
be less than 14 g, thisvaluewas used for mu.

In otherexperimentsMeissnerand Kinekehave groovedthe caseor
the explosivein an effortto controlfragmentsize. In particular
theyused 22 longitudinalgroovesevenlyspacedtogetherwith 2
circumferentialgrooves,eachone 1.27 cm from eitherend. For the
sake of illustrationwe will discussthe resultsthey obtainedusing
a groovedexplosive. As we see from Figure5 and TableVIII,they
succeededin producing41 fragmentswith mass greaterthan 13 g,
comparedto only one such fragmentwhen no effortwas made to control
fragmentsize (TableVII). Theserod-likefragmentscenteredabout
a mass near 17 g. In addition,theyproducedabout21 end fragments
in a groupwhichcenterednear 6 or 7 g. The rest of the casemass
see~ to be in a naturallyfragmentedg oup with most of the mass

Ebelow5 g. Columnone of TableVIII (N ) givesthe numberobservedin w
eachmass interval. This columnhas been dividedinto the thr e groups1?in the next threeCOIUmnS,usingFigure5

E fi
s a gui e. Here N

A
is the

naturalpart of the fragmentationwhileN2 and N3 are the p rtially

19 R. Meissnerand J. Kineke,reportto be published.
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TableVII. FRA@lENTDISTRIBUTIONFOR THE NATURALFRAGMENTATION
OF A CYLINDER

A. N in each group B. N(>) for each group

Interval(g)NE N L = 2 i = 3 N(>)E N(>) L = 2 k = 3

0-1

1-2

2-3

3-4

4-5

5=6

6-7

7=8

8-9

9-1o

10-11

11-12

12-13

216

65

47

44

20

17

21

5

8

3

0

3

1

1

205 156 110 235

170

123

79

59

42

21

16

8

5

5

2

1

0

252

154

107

78

58

44

34

25

19

14

10

6

3

1

226

136

96

73

57

46

37

31

26

22

19

16

14

0

146

8981

42

24

14

9

6

4

3

2

1

.83

,59

.42

1.35

54 32

6630 17

11

8

52

43

19

13

37

32

10

7

6

4

3

3

6 28

254

224 2

203

2

2

1.7 18

172 1.5

013-mu o 0

2 3

1.05 .35

8.17 45.06

2 1.83

1.46

2.91

!?

IJ

Sqd/NT

3

1.24 1.05 .35

2.61 10.97 33.21

Note: mu = 14g for best calculationsmu = infinityfor 2 = 2 or 3.

controlledparts. Sincethe controlledparts exhibitmaxima,we
must use 2<1 in Equation(37)to representthem. This may be seen
by ex@ning the mass-dependentpart of Equation(37),

.=-#-(!!+5)+-lexP[-~ ;my] (56)
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1where— has been includedto make it equalto w in Equation(33)0
For k>~~w decreasessmoothlyfrom infinityat m = m to zeroas m
becomeslarge,as we have seen in our representation~of natural
fragmentation.For L=l we have a simpleexponential,finiteat
m=m. For 0<~<1,w vanishesfor m = m. or infinity,but has a
maxi& in between.

In TableVIII the columnsmarkedN~, N2 and N3 give the fragment

TABLEVIII. PARTIALLYCONTROLLEDFRAGMENTATIONOF A CYLINDER

[blanksmean zero]

Interval NE NIE N2E N E N
3 ‘1 ‘2 ‘3

N(>)E N(>)

o-1(g)

1-2

2-3

3-4

4-5

5-6

6-7

7-8

8-9

9-1o

10-11

11-12

12-13

13-14

14-15

15-16

16-17

17-18

18-19

19-20

20-21

21-22

22-23

23-24

24-2S

25-26

63

15

13

3

6

5

8

3

1

6

4

10

3

5

4

5

1

0

1

0

1

63

15

13

3

15

5

8

3

1

6

4

10

3

5

4

5

1

0

1

0

1

61.2261.22

18.3318.33

5.78

1.87

4.32

7.00

5.86

3.20

1.24

.36

1.97

4.61

6.09

6.48

6.03

5.06

3.89

2.77

1.83

1.14

● 66

.36

Q19

38

5.78

1.87

.61 3.71

7.00

5.86

3.20

1.24

.36

1.97

4.61

6.09

6.48

6.03

5.06

3.89

2.77

1.83

1.14

.66

.36

.19

94

79

66

63

57

52

44

41

41

41

41

41

41

40

34

30

20

17

12

8

3

2

2

1

1

0

89.04

70.71

64.93

63.06

58.74

51.79

45.88

42.68

41.44

41.08

41.08

41.08

41.08

39.11

34.50

28.41

21.93

15.90

10.84

6.95

4.18

2.35

1.21

.55

.19

0
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numberscalculatedusing adjustedi and P values~ For N1 the total
numberof fragmentswas takento be 95 (as in N ) whilem =0, giving
L=~,04P=.82 gand Sqd/NJ1;.77.For N2thetot~l numberN~2=21 (asin
N2)* In addition,the ues m =4 g and m =10 g were use , giving
E=.53,P=2.47g and Sqd/TTz=.S6.0Here the ~um of m. and p givesan
indicationof the peak position. UsingmO>O seemsto give a better
representationthanm =()here. ForN,N =41 and m =13 g, giving
k=.54,u=5.18and Sqd7N =.89. The c~lcu~$tedvalue~for these
groupsare shownby theT~olidlinesin Figure5. The agreement
appearsto be reasonable. The last two columnsin TableVIII are the
complementarycumulativedistributionsobta”nedby subtraction,

istartingwith the totalnumberobserved,N =157,or with the total
numbercalculatedNT=150.26. TAgain the ag cementis reasonablygood.

Strictlyspeaking,we shouldcarryout a simultaneousfit of
threetheoreticalcurvesto the data,usingm and NT as well as E
and P for each curveas adjustableparameters: Thismore complicated
procedure(orone similarto it) is actuallyused in certaintypes
of spectroscopywhere the statisticsare extremelygood in orderto
extractinformationaboutpartiallyresolvedlines. However,in the
presentcasewhere the statisticsare so poor, the procedureused
seemsadequate.

III. SUMMARY

We have seen thatMotttsdistributionis a specialcaseof more
generalprobabilitydistributionswhichare widelyused to describe
phenomenain variousfields. In spiteof this it can be givena
rationalbasisin termssuitedto fragmentation,namely,the
randomdistributionof defectsin solids. Methodsof grouping
fragmentpopulationshave been discussed,and a generalprobability
distributionhas been appliedto severalcollectionsof experimental
data. In particular,it has been shownthat thisapproachcan be
used not only for naturalfragmentation,but also for controlled
fragmentation.
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APPENDIX

This computercodefor the Hewlett-Packard9845Boffersa number
of optionsin fittingEquations(36)and (37)of the text to
experimentalfragmentsizedata. Theseshouldbe self-evidentfrom
the variousquestionsaskedby the interactivedisplaystatements
whichoccurthroughoutthe program. Sincethe firstpart of the
programaims to optimizea fit to the numberin eachgroup,the
outputsubroutine(lines1470 to 1730)alwaysprintsN valuesbut
pemits N(>)valuesto be printedif desired,even thoughthesehave
not beenoptimized. Similarly,in the outputsubroutinefor part
two (lines2970to 3220),N(>) is alwaysprinted,but N is an option.
This is particularlyusefulwhen the programis usedwithoutadjusting
the parameters.Thisoccursin two sections,one startingon line
1030in whichthe valuesof m and m specifiedat inputare used,
the otherstartingon line 2480in w~ichmo=O and mu=~.
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ICI t?EH FF’HI:; . FIT TNCI-FRf?fItqETER FUNCT ION’$ TO IIRTR. FIRST FFiRT FIT:3Nl~?iEEP‘I”:,
MR’;:3l:l?l:~up. ::EC1311DFIFIRT FITS’ L(ltlFLEMENTHR’f CUMIJLfi TIVE NUMdER.

2U REM It4FlJT: MMIN=rlUTUFF MfiS!3, t4TOT=T!3THL NUMBER OF FRRGMENT!3, NG= NUME E 1? OF tl R ‘~1-,
I; FI:ILIF’”:, PIIJF( I ‘:I=l_lpF’E~ LIMIT’ ljF ITH IZR131JPJN( I “j= NIJMBEt? IN GRUIJF I .

::U REM F’l=L HNII F2=MIJ RRE Fill.JlJ5Tii ELE F’FIRFIMETERS.
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ljEVIt7-rIUN”

147EI Ou?putl: Sqd=@
lq:~g PRINT
149U F’RItlT “ ++NUMBER IN ITH GROUP** “
15Q0 PRINT “ I M(I) EXPER CRLC
lql~ FUR 1=1 TO Ng
1~~~ TL,j=tltot.+b4(I)
1~”~~ Td=Nt.clt.*Ii(I)
1540 Tdel~=Ntot*Ile(~( 1)
155Q Sqd=Sqd+Tdev*”2’
156G PRINT U:31NG 9@; I,M(I},Td,Tw,Tdev
1570 NEXT I
15SQ PRINT “SQI)=’’;Sqd
159Q IIISP “PRINT NUMBER blITH MHSS LRERTER THRN M ? (O, l:I”;

lE.EIEl INF’IJT Ind
Ialg IF Irld=Ei THEN Gr3TCI 172@ .
l~~gj sqd=kzl
1530 PRINT
164r3 PRINT “ ++NUMBER blITH MRSS GRERTER THFtN M**”
165B PRINT “ I M<I> EXPER CFILC DEVIRTION”
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l~q~ PRINT
l~:jq PRINT “FIT EXPRESSION FOR NUMBER WITH MFiSS \;REHTER THHN M(I3 Ti2 llHTt7 ‘“
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