File Copy

ADy /02350
\@
TECHNICAL REPORT ARBRL-TR-02332
LITY FORMULAS FOR DESCRIBING
FRAGMENT SIZE DISTRIBUTIONS

James Dehn

June 1981

5T s ARMY ARMAMENT RESEARCH AND DEVELOPMENT COMMAND

ah g8 -
s
NEZoy

oo

r ¥ F Y _NW V_N A ‘oY o)

BALLISTIC RESEARCH LABORATORY
ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.



Dostroy this report when it is no longer needed.
Do not return it to the originator.

Secondary distribution of this report by originating
or sponsoring activity is prohibited.

Additional copies of this report may be obtained

Lomoem oha Madlaoamal Pasbkhale,t Pafocmas
IV LIV NAaLAVIIEL 19GIRAGaL luxur-

d awm -...
pas)
ie

[ 9
[ t of Commavrce Snri F

ica
[ IV1iie,
ld Virginia

The findings in this report are not to be construed as
an official Department of the Army position, unless
so designated by other authorized documents.

The use vf trade names or manufaotureve’' names in Lhis report
does wot comstitute indoreement of any commercial product.



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE

READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NOJ

TECHNICAL REPORT ARBRL-TR-02332

RECIPIENT’S CATALOG NUMBER

4. TITLE (and Subtitle)

TYPE OF REPORT & PERIOD COVERED

PROBABILITY FORMULAS FOR DESCRIBING FRAGMENT SIZE
DISTRIBUTIONS

7. AUTHORC(s) CONTRACT OR GRANT NUMBER(se)

S, PERFQRMING DRGANIZATION NAME ANQ ADDRESS 10, PROGRAM ELEMENT, PROJECT, TASK
U.S. Army Ballistic Research Laboratory AREA & WORK UNIT NUMBERS
ATTN: DRDAR-BLT
Aberdeen Proving Ground, MD 21005 1L162618AHR0
. CCONTROLLING OFFICE NAuE AND ADDRESS 12, REPORT DATE
1T € Acacaasr Ao o | IR . P | | SYTRITT W SRS
U.S. Army Armament Research and Development Commang JUNE 1981
U.S. Army Ballistic Research Laboratory T ,
ATTN. D DAR BL . NUMBER OF PAGES
Ahardann DaAsrd s FURPR | un 21 nnrc [~9 4
nucviuclcon riuvvaing \.uuuuu I\ 19) LiVYUVUO b
ME & AD

14. MONITORING AGENCY N DRESS(if different from Controlling Office) 15. SECURITY CL ASS. (of this report)

Unclassified
15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

-

7.

18. SUPPLEMENTARY NOTES

19. KE? wokbs (Continue on reverse side if necesaary and identify by block number)

Terminal Ballistics
Vulnerability Lethality
Fragmentation
Probability Distributions

wn «
[N
.
g
l-

__________ use

for far dlfferent app11cat10ns. Still it can be g 1onal ba51s by
means of a derivation which employs appropriate ideas about randomly distributed

defects in solids. Methods of grouping fragment populatlons are discussed
and applications of a general probability distribution are made to a number of
DD , 35", 1473  Eoimion OF 1 NOV 68 1S OBSOLETE

UNCLASSIFIED
SECURITY CL ASSIFICATION OF THIS PAGE (When Data Entered)




UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

cases of natural fragmentation
nca £ smmmadia -

~ ~ PRy 11 mm e m 1 1 o
LadT VI parctigily Conceroilie

of this approach.

PPN

ion, illustrating the versatility

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)




TABLE OF CONTENTS
Page
I. MOTT'S DISTRIBUTION. . . . . . . . « « « « « o + o o o « . 9

II. A GENERAL DISTRIBUTION . . . . . . . . . . « .« « « « o« « . 12

Description of Fragment Populations. . . . . . . . . . 22

Applications . . . . . . . . . . . o . o o . ... 30
III. SUMMARY. . . . . ¢ . ¢ v« v v v v vt e e e e e e e ... 40
1v. APPENDIX . . . . . . . . . v i i e e e e e e e e e e e .4l

DISTRIBUTION LIST. . . . . . . « « « +v ¢« « v v « « « « . . 49



LIST OF FIGURES

Poisson Frequency Distribution with Parameter p = 1. .
Poisson Frequency Distribution wit Parameter u = 5. .
o rrequency ovistrisuliicn wiillh rarametier | Qe o

Incomplete Gamma Function. . « « o o o o o o ¢ o o o o

Number of Fragments with Mass Greater than a Given Mass
(105) mm Shell . . . . . . . . . ..

w

Page

p—
oo

—
o)

w
o)



Tabie

I.

1I1.

III.

-t
<
.

-
-

VI,

VIiI.

VIII.

LIST OF TABLES

Sample Fragment Population (masses in Grams). . . .

Grouping
Grouping

Fragment

Fragment

into Equal Size Mass Intervals . . « + .« &

into Unequal

Distribution £

Distribution

a 105mm Shell ., . .

Fragment

a Cyl inder e ® © e @ e @ e o @ o ° @ o ° o o o s o o o

Partially Controlled Fragmentation of a Cylinder. . . .

Distribution

Size Intervals. « ¢« « o o o &

Sample in Table II. . . .
Sample in Table III . . .

the Natural Fragmentation

the Natural Fragmentation

34

37

38



I. MOTT'S DISTRIBUTION

During World War II in England, Mott and Linfoot! tried represent-
ing the number of fragments produced by the detonation of a shell
or bomb by the distribution

dN = {NT/su)] (m/u)-z/3 exp [- (m/u)l/z] dm
= N, exp [- (/w31 d (/w3 %)

where dN is the number of fragments in the mass interval from m to
m+dm, Here N is the total number of fragments as can easily be seen
by letting t={m/u)*’~ and integrating Equation (1) from 0 to =,
namely,

~ o £

dN = N / w.'t dt = N,
Jo 9N NeJo e dt Nope (2)

The parameter u can be related to the expected value of the
distribution, m, as follows:

[ (-
- P T NN o 3 . =t roran Ve &
m=jJ m(dN/Np) =f ut” (e dt) = (3). (3)
o o
They used an experimental statistic, namely, the observed average
mass gf the fragments collected, as an estimator of the expected

value m to obtain an estimate of the population parameter, u = m,,/3!),
where m,,, = M_/N.. with M_ being the total fragment mass collecte

This gaee rouéh égreemenf with experimental data obtained for a 3.7 inch
shell for example, at least for the smaller fragments. For the larger
fragments (which often showed part of the orlglnal sh 11 1nner and

d
could be obtained by usin ad

nnnnnn +ad + +h
suggestea to tnem a d

prndnrr'l on of smal

fracture for larger frag ents, leadlnp to a dlfferent estimate for u,
namely, u =m,,,/ (2!). In applications Mott never actually split a
population ifito two groups, using exponents 1/3 and 1/2, but

used one or the other. He remarked that similar distribution laws
had already been applied to the crushing of rock, and cited an

1 N.F. Mott and E. H. Linfoot, "A Theory of Fragmentation,'" A. C.
3348, Jan 1943,
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American reference?.

In a later report, Mott3 suggested that for the exponent 1/2 at
least, the parameter # could be estimated from the shell wall

+hiclkn 2 omm e A2 o a n 1 L‘ .

thickness, T, and its inner dic ameter, U, by the formuia

W72 2 ¢ 376 /3 (1 4 qyp) (4)

where the empirical constant C is larger for explosives which impart
a lower 1aunc? geloc1ty to the fragments. He did not give a similar
formuia for u / , the form found for this parameter in Equation (1).

Since real shells have variable T and D and C along their length, it
is clear that Mott was here consi +ing tha idaa

was here w..51de“..t, the idealized case of a
right circular cylinder. Later" be considered this idealized case
of a cylinder formed from stacked metal rings in more detail. Here

fracture perpendicular to the shell axis is pre-determined, and
only ring fracture need be considered. This is similar to the
natural fragmentation of a real warhead if we look on the shell as
made up of stacked rings of different size and shape.

Shortly after, a co-worker of Mott named Ursell® suggested that the
one-dimensional fracture of a rod ought to be given by a Poisson dis-
tribution, and might be related to warhead fragmentation. Still later
in the United States, Thomas® pointed out formulas of the type
exp [- (m/u)*+/*] where & = 1, 2 or 3 tor one-, two- or three-dimensional
fracture are merely probability distributions more or less suited to
describing particular fragment populations. It is not very helpful
to require a phy31ca1 model which env1510n> simultaneous formation o
fragments by means , lines traversing
planes or points div'd'no lines. More realistically, all of these

Fag
1

2 L1enau, J. Franklin Inst. p485 (1935).

3 N. F. Mott, Fragmentation of H. E. Shells; a Theoretical Formula
for the Distribution of Weights of Fragments, A.C. 3642, 1943,

4 N. F. Mott, '"'"Fragmentation of Shell Cases," Proc. Roy. Soc

(Lond.) 189, 300 (1947).

5 H. D. Ursell, "Fragmentation Data and Theories of Fragmentation,'
A, C. 3817, 1943,

6 L. C. Thomas, '""Comments on Mott's Theory of the Fragmentation of
Shells and Bombs," BRL R398, Sept1943., (AD #36152)
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processes might be going on simultaneously and sequentially, with
smaller fragments being formed later from larger fragments already
formed. In spite of this, Thomas used & = 2 in his own applications

to U, S. munitions, possibly because of the calculational difficulties
involved with the use of non-integer % at the time. Thomas seems to
have been the first to describe the fragmentation of real warheads

by applying Mott's formula to individual rings of different wall
thickness and diameter formed by mentally slicing a shell perpendicular
to its axis’. This practice is still in use today®.

G. I. Taylor also considered the explosive fragmentation of metal
rings with radial cracks starting on the outside of the shell case
and propagating inward under the combined influence of tensile and
compressive forces?. He also pointed out that cracks should propagate
at about 45° to the circumferential and radial directions, further
complicating fragment size and shape distributions. More complete
treatments such as that of Nadail® indicate that a system of logarithmic
spiral cracks should develop in the wall in the simple case of
infinitely long cylinders of uniform wall thickness uniformly stressed
from the interior. Of course, for real warheads the crack systems will
be much more complicated. A further complicating factor is the
existence of shock waves which reverberate in the shell wall as it
expands !l

In summary, the physics of real warhead fragmentation is so
complicated that simplified models are not likely to be much help in
predicting fragment size distributions. When confronted with problems
of extreme complexity, physicists generally invoke some form of
probability description as in statistical mechanics. In what follows
we will try to point out that Mott's general procedure can be given
a rational basis in statistical theory and can be improved somewhat

7 L. H. Thomas, "Analysis of the Distribution in Mass, in Speed,
and Direction of Motion, of the Fragments of the M71 (90mm) A. A.
Shell, when Filled with TNT and when Filled with Ednatol,'" BRL
R434, Dec 1943,

8 Glenn Randers-Pehrson, R. R. Karpp, C. E. Anderson, Jr. and H. J.
Blische, "Shortfrag Users Guide,' ARBRL-MR-03007, Mar 1980.

9 G. I, Taylor, "The Fragmentation of Tubular Bombs,'" in The
Scientific Papers of Sir Geoffrey Ingram Taylor, Ed. by G. K.

Batchelor (Cambridge: The University Press, 1963) v.3, p387.

10A. Nadai, Theory of Flow and Fracture of Solids, (N.Y.: McGraw-
Hill, 1950) p539.

11F. E. Allison and J. T. Schriempf, '"Explosively Loaded Metallic
Cylinders, II," J. Appl. Phys. 31, 846 (1960).
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once it is realized that we are using a general theory of random

breakup rather than particular physical models. We will also point
out the generality of the description by showing that it can be

applied to controlled as well as to natural fragmentat1on. We will

not attempt to link microscopic fracture theories to continuum fracture
mechanics by constructing distribution functions which represent
particular types of flaw activation rates as others have donel?,
1nsteaa, we will postulate an overall defect activation rate and pursue

the statistical consequences of such an assumption. In particular,

we will inquire how general and simple we can keep the form of our
distribution function without losine its ability to renresent

=2l aUwealll alaiiv vaVar Wa iy VoA 4SS Q(Uaadav)y L RN :

experimental data well enough for practical purposes.

&

II. A GENERAL DISTRIBUTION
A. Derivation of the Distribution.

Consider a solid body of volume y and any shape. Real solids
generally contain many kinds of defects which can act as weak points
when a stress is applied and serve to initiate cracks and fractures.
Let us mentally divide this body into k elementary volumes of
size € = y/k, choosing k large enough so that on average each
elementary volume € contains one defect or incipient break. Let

w ha +ha asramwaca wrals AF AnALan+t nA+ivrnes mwAdam ctmace o

s UeC LIIT GVCLG&C VULWIIC LGLU U.L UCTLCL L d\-L.LV'dLJ.GII. uuuc:. DLLCDD oV
that re = ry/k is the probability of finding at least one such
activated defect in €. Then the probability of finding no such
defects in € is l-re., Since the distribution of defects and their
activation under stress can be considered random events, the
probability of observing exactly s such activations in k trials is
given by the binomial distribution

k! AN A N
Rfc/ rv) = — e 1- =L 8
\EeEenss s!(k-s)! \k / \‘ k / b
Lo = — N 1 o) 1, 2 al. N . N sl _ E TL . _1 Lne ~mnpmann Y ~ el
IOT S = U,l,<2...K W1ltn b = U Otnerwise. 1T 5=K IO0r €eXampie, tnei
all defects would be changed into breaks and the body would be
subdivided as much as it could be by the defect mechanism, Since

the number of defects in real solids of interest is very large, it
should be adequate to consider the limit as k - « in such a way that the
number of breaks or activated defects, ry, is large but far from
infinite.

12D. R. Curran, L. Seaman and D. A. Shockey, '"Dynamic Failure in
Solids,'" Physics Today, Jan 1977, p. 46.
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In particular
ry/k << 1y << k (6)

is the condition of interest. In this case from Equation (5)

. .S - ’ vk ; -S
i BT Ty -—5————-‘| L (1-{1" L (1- {l) ',
R o [ om
Ko X J K= 7 J LK B
S
-y [e] 0 - pessry) (7)

where p(s/ry) is the Poisson distribution with parameter ry. The
first i1imit in Equation (7) is seen to be unity if we divide numerator
and denominator by (k-s)!, so '

k(k—l) (k—2)...(k-5+1) = / 1\/ 2\ / (5-1)\
1 i - 2)1- ). a- -
kﬂ S lim (1)1 k)l k) -1 ) 1. (8)
ko
The third limit in Equation (7) is obviously unity. If we let u = ry
and z = -u/k, then we see that the second limit in Equation (7) is just

the (-u) power of the limit which defines the base of the natural
logarithm, namely

Lim [(1+z)1/%J-u G )
270 -

Of course the Poisson distribution meets the reau1rem9nf that

~
=
N/
fl
¢
1
e
|C
w
|
|
e
IE
n
|
|
e
=1
[L}
p—
~
-
(=]
Nt

e = e =e e
d , s! L S!

Let F(u) be the probab111ty that at least one break (activated

defect) will occur under a glven stress. Then 1-F(u) is the probability
that no break will occur. From Equation (7), the probability of no
breaks (s=o0) is 1-F(u) = e~4, or
-u U u Y W -
F(u) = 1-e = Z p(s/u) - e = Z ST € (11)
S=0 s=1



which exhibits the meaning of F(u) as the probability of observing at
least one (one or more) break. We note in Equation (11) that F(u)
has been written both as a continuous function of the variable u and
as a sum over a discrete frequency distribution in which u plays

the role of a parameter. This is a particular case of a more general
relation as we shall see below. Of course F(u) can also be written
as an integral over a continuous frequency distribution as follows:

rl . AU
F(u) = 1- e %) et dt = £(t)dt 12)
( J J, (
where
dF = e"% dt = £(t)dt. (13)

Hava £7+) 1c a Ffranmiancy Aictwihiitinnm and Ol 3e o Arsmislasira

lviv L\ vy LD LLV\{UV!I\'J Vio Ll lAUVUuLLVIL aliv 1 LUJ 490 a LvuiiuiaiLlive
distribution, while 1- F(u) is a complementary cumulative distribution.
Equations (11) and (12) are both particular cases of more general

relations, namely,

> S
F(u,c) =§ ' o e = p(2u/20)= Ygi_c‘)‘_) =J/;“ T—%E) ¢ et g, 14y
S=C

Equations (11) and (12) are obtained for the case c=1 in Equation (14)
since the complete gamma function of unity is unity, I'(1) = 0! = 1.
The complementary form of Equation (14) is

c-1 -
s %
IFu,e) 3 Y eV s qrawze) = Bl [T L el oty
Y AVRErY < ric) J. T L)
$=0 .

and is discussed, for example, in the Bureau of Standards Handbook
of Mathematical Functions!3 where tables of these functions are
also given. Equation (14) relates partial sums over the Poisson
distribution to the chi-square distribution, p(2u/2c) with

-2C—IV _\/\

: 2
1\ /

13 Handbook of Mathematical Functions, NBS Applied Mathematics Series,
number 55, Nov., 1964, Ed. by M. Abramowitz and I. A, Stegun, section 26,

14



where 2c is called the number of degrees of freedom. As we see,
these sums are also related to the incomplete and complete gamma
functions, y(c, u) and r(c) The integrand in Equation (14) is the

gamma frequency distribution with scale factor unity and is a
crmnntnl Aana AL 4lha Danamana 4irmma TTT A3 sttt hitdtsAane
DPULLQ.I. CaddDC ULl LIIT rcalrovil L]PU 111 ULOoOULIALUULLVIL,.
1 c-1 -t
P .. ==t e (17)
II1 Br{c) S
where
P v Y /27 r1o1
L - LL - y )/ DJ LLO}

for y <y < = and scale factor B [NBS Handbook, p930]. An even
more general form of Equation (18) is

1/%

t= [ -vy,)/8] (19)

where 0<f<w~, This gives us Weibull's frequency distribution

t Vi 0\1 f/Y-yc\ﬂ
e = e | {527 | 4l 7]

dF = W(t) dt

= = W(y) dy (20)

p—
AN
~
]
<
(@]
N
| -
1
ot
—
—
<
i
<
o

=

which contains the exponent 1/2 as well as the scale factor B and
the cutoff value y_ for a random variable y over the range y <y<»
Weibulll* has applied this distribution to a great variety o?

phenomena, social as well as physical, chemical and biological, as
have others after him. GnedenkolS had shown previously that Equation (20)

14 W, Weibull, "A Statistical Distribution Function of Wide
App 11cab111ty,' J. Appl. Mech., Sep 1951, p293.

15 B, V. Gnedenko, "Limit Theorems for the Maximum Term of a

A e ve u 1€ LiAlllA v AIAUT A TS Vidw  1aCesnadniad

Variational Se rles," Doklady Akad. Nank, USSR32, 1941.
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is the third asymptotic distribution of smallest valuesl!®,
We note that Mott's distribution in Equation (1) is a particular case
of Eauation (20) for 2 =3, y =m, vy m =o0, 8 =uand d(N/T.) =

W(t)dt = dF. Mott's formula w1th 21 2 i% another special caseT
of an integer % value. Since Equation (20) is a particular case
of Equation (14) with ¢ = 1 and t given by Equation (19), so is
Mott's formula. A more general form of Weibull's distribution

WﬂlLﬂ may be used in nquatlon L14) with any allowable c-value 1s
the general gamma distribution:

g(t) dt = 21— 1 e tqe -
| H
c-1 1/% 1/2,]
A~ (r - )L \
ra\ ) [\
one oy o\
= 1 ()’ yo\ﬂ, exp | - 4 YO . dy
Ber(e) \ 8/ l_ \ 8/ J"
= g(y) dy (21)
Here v is a general random variable, but in fragmentation applications

il TS A v/

shell case and m is mass. With the scale factor 8 = u/p, ¢ = 1 and
£ = 2 or 3, Equation (21) gives Mott's formulas, Since ¢ =1 in
Mott's formulas, we see that he is calculating the probability of at
least one break occurring. We have also seen that it is a special
form of general probability distributions and can be applied to many
things besides fragmentation. As we mentioned above, Thomas pointed

S
it to be a volume, y = m/p, where p is the density of the
S

Nt that Mnff'c Fﬁ-nmn'loc ara nnt+t narnccarilyvy ~rAannartad +A anv

v Lviia o "IV e o o AVviiliuiao ailrv 1MV L Itve.vooal .LL] wUllIIVC LU G [PV ail
simple model of the fragmentation process. More generally, we now
see that they are not necessarily limited to fragmentation at all.

Let us return to Equation (14) and display some particular
examples by way of illustration. Iflthe parameter u = 1, the
Poisson frequency function is p = e /(s ), which is pl tted in

Te

T e o raco a rhamas AL al 1Y S ¢
rJ.guJ.C 1. In this case the chance of UULdJ.uJ.ug one break S = 1) 1S

16 E. J., Gumbel, '"Statistical Theory of Extreme Values (Main Results),"
c.6 in. in Contributions to Order Statistics, Ed. by A. E. Sarken
and B. G. Greenberg (N.Y.): John Wiley and Sons, Inc, 1962,

[
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the same as the chance of obtaining no breaks (s=0), an instance of the
double mode or maximum of the Poisson formula. As is well known, the
expected value of s is equal to the parameter u (as is the variance)

£aoe +L N S otmshicd I aan Thas+s 2o B Dagiima 1 = 1

101 LIIC {"U.LDDUII QiSTtriouction. lilal 15, in FLEULT 4, S u :l.l.-

Since the chance of obtaining no breaks is large, namely, e =~ = 0,368
the chance of obtaining at least one break ( one or more breaks) is
only 0.632, The chances of obtaining s = 2,3,4.... breaks become

smaller as s increases and the chance of obtaining 5 or more breaks
is quite small. From Equation (14) it is

© 4 _ _
F(1,5) =Y e l/(s!) = 1-2 e l/(st) = 1-e7} [1 $lazr s ;—]
s=5 s=0 L J
1y 4 ¢ 08772
' =Y (5,1)/1‘(5) = [ o t e dt = T = ,00366 . (22)

Jo

the parameter u is larger, say u = 5, the Poisson frequency
is e ° 57 /(s') which is plotted in Flgure 2. Now thg chance of

obtaining no breaks at all is quite small, namely e ~ = 0.0067, but
is not zero. The expected number of breaks is s = u = 5 while the

probability of obtaining at least one break is now much larger,
namely, from Equation (14)

b}
F(5,1) 5 ) -gf = v (1,5) = I. et dt = 1-e7 = 0.9933 (23)

;...

S= (o]

while the probability of obtaining at least the expected number
of breaks is

[e2]
— S S

F(5,5) = 2 ST' e > - 1S ; - %T‘/ t* o7t dt = 0.5595 . (24)

r

=T -
§=5 Y

In short, an increase in the parameter u reduces the chance of no
breaks at all and shifts the distribution to the right, since the
expected number of breaks is always s = u. A decrease in u has the
opposite effect. If u<l, s is fractional, and the probability of
obtaining no breaks at all is mode OT mOS

1 al o~ 1Tty -
tne moae Or mosStT J..Ll\t:.l)’ CVCILL,.

w
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in the 1limit as u -+ o, the Poisson distribution for s = o is a
crnalla LiimAatannm aAanteal &A ..“-'4-n neée o~ nsen Locn A1V maln
Dl) C i1uliviaioll cqua; LUOUJ 1ALy at > = (9] auu Z€T0 10T a1l Otner s.
0f course, F(0,1) = l-e 0, that is, the chance of at least one

break vanishes. In other words for a perfect crystal for which

u = ry = 0 because the rate of occurrence of defects r = 0, we are
sure that no break will occur by a_defect mechanism. In the limit
as u » ©» , the poisson function (u®/s!)/e  is indeterminate.
However, using L' Hospital's rule, s differentiations of the
numerator reduces it to (s!)/(s!) or unity, while the denominator

remains the same, so that each term vanishes. Actualiy, u is not
allowed to increase without limit as was pointed out in Equation (6)
where u = ry < < k. Even though k is allowed to increase without

limit, u must remain finite. This requirement agrees with our
interpretation of the dimensionless number u as the finite number
of defects expected to be activated under a given stress. It also
agrees with an interpretation of u as the ratio of the stress
energy applied per unit volume to the work per unit volume required
to fracture the body, namely,

_ applied energy/volume
gt

(25)

where o and ¢ are the stress and strain at fracture characteristic
of the material. In the case of projectiles striking a target at

ordnance speeds, u will not be much greater than unity and the
projectile will fracture into several piecesl!’. In this case
discrete Poisson statistics are appropriate. For hypervelocity
impacts, a projectile will shatter into many fragments, as also

happens when explosive warhead cases are shattered at detonation.

In such cases a continuous frequency distribution is more convenient
for describing the resulting fragment population. Equation (14)
shows how these distributions are connected, When u = 1 in Equation

(80 1% +bhn armmliand €Aasnan 3o +hn ctvmanagth AL +LA LAdyy and
(&9 )y LIIC aljl)LlCU LOILC 1> llldLLllCU U)’ LllC bLLCllngl o1 Tne boudy allu
on average we expect only one break to occur, although it is equally
likely that the body remain intact. When u is much less than unity

we are in a regime of slow crack development and failure which may
take months or years of stressing. For explosive ordnance we expect
u much greater than one with fragmentation times in the millisecond
range. But in all cases u will be finite and the upper limit of
1 2 - < -
1

A = = nvann ] a2 em Dmesom ded e 1 AN .2 11 A L. 2 L0 e ~1 al —1 2 - =
the integral in Equation (14) will not be infinite, although in some
cases of interest it may be effectively infinite to a sufficient
approximation.

17 J. Dehn, "The Particle Dynamics of Target Penetration,'"
ARBRL-TR-02188, Sept 1979,
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If we use y = m/p and B = u/p in Equation (19) we obtain

i/
m-m ‘
t ={ ——— o (26)
H .
and
2
/mu N \1/ p
= = — — L27)
u = thax \ U /
so
' 2
m <m<m =m_+uu (28)

N I,

where m_ is the upper mass limit of a finite body. For u greater
than tell, we see that the probability of at least one break

nnnurvﬁna F(u) = 1-a 1ig verv cloge to unitv, Since the number

A airgy 1\ P S v 42O VUL LAUVIT LV kaiavg s L4106 T LI 1AUeL

of fragments expected is one larger than the number of breaks, they
are approximately equal for a large number of breaks.

For u = 1 in Equation (27), u = (mu - mo) for any 2. In general,

for u ;—-1, u-; (mu - mo) for any % (0<f<x), Here p is relatable

to an expected average mass and smaller p 1s associated with larger u,
that is with greater applied stress, a weaker body and more breaks
or fragments expected. The terms for small s in Equation (14)will
be very small for large u,

breaks is very unlikely. Most of the contribution to either the
summation or integration in Equation (14) will come from the
midrange near s = u or m near u. For example in Equation (14) we can
take ¢ = 0 or 1 and obtain the expected number of breaks
(e} V4 LN [+ S oo
s S
™ /-uu\“ /-uu\ -u uJ;_-u U _  rhan
- = s e - S\e —TI ue - = u¢€ = u (L)
s )’ . \ s! Z y) s! Lt
<= 4 \ J — \ 7/
s=0 s=1 j=o
since the tefm for s = 0 makes no contribution. Similarly, using
m=m + ut from Equation {26) we can find the expected values of
the m3ss (letting ¢ = 1)

[3S]
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If u is effectively infinite, then the incompiete gamma function, Y,
is approximately equal to the complete gamma function, !', and Equation
(30) becomes

m=m T(1) +url (1+2) =m_+ u T (1+2) . (31)
If, in addition, the lower mass limit, m» is effectively zero and 2%
Ae AN AmnFaocamw Emia+inan Z1)Y hanAmac
2O aill J.IILUL’,UL, u\iuauxuu LJ-I.} UL uUINC O

m=pu (%) (32)

since T (1+&) = 2! for integer &. Mott's formulas consider only
the values & = 2 or 3. In general, % need not be integer, m, need
not be zero and m, (and so u) is less than infinite.

In Figure 3 we plot the incomplete gamma function Y(1+%,u) versus
u for 2=0,1,2,3 and 4. For non-integer %, the curves lie between
those shown. It is clear that for smaller % values the approximation
y(1+&;,u) =~ 1 (1+%) is quite good for smaller u than for larger % values.
For 0<#<3, it is very good for u>10. This was mentioned above in

another wéy when we observed that F(u)=1-e"u ~ 1 for uxlO0.

B. Description of Fragment Populations

P R

It is worthwhile noting the effects that various groupings can
have on a given collection of fragments and how this can influence our
mathematical representation. In Table I we present a sample population

Table I. SAMPLE FRAGMENT POPULATION (Masses in Grams)

1 .106 8 . 264 15 1,250 22 3,950
2 .110 9 .268 16 1.411 23 4,922
3 .115 10 311 17 1.706 24 5.700
4 .123 11 «450 18 1,972 25 5.850
5 .151 12 0525 19 2.002 26 7.106
6 172 13 .713 20 2,150 27 9.760
7 .195 14 . 809 21 3.670 28 10.500
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Figure 3. Incomplete Gamma Function.




which has been constructed to simulate much larger populations
typical of real warhead natural fragmentatlon. The advantage of
using such a small population is that it is easy to follow in detail
varlous p0551b1e procedures. Here we have 28 fragments with total

mass = 66.261lg and average mass m Vo 66.261/28=2.366g., We can

represent this collection graphically by drawing 28 vertical lines of

height unity along a horizontal mass axis. These lines will be more
closely spaced for smaller m values and become farther apart as m

increases. Alternatively we can group the fragments into intervals
centered on various mass values and count the number in each group.
If we choose equal size intervals each one mass it wide, we obtain
Table 1I. As we see, the number of fragments, N’, in each group,

Table II. GROUPING INTO EQUAL SIZE MASS INTERVALS

Interval(g) 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-10 10-11

E
NE 14 4 2 2 1 2 0o 1 o0 1 1
NE(>) 14 10 8 6 5 3 3 2 2 1 0
NE (<) 14 18 20 22 25 25 25 26 26 27 28

fluctuates erratically for the heavier groups which contain only a
few fragments. This is typical of real fragment distributions also.
The number of fragments w1th mass greater than that associated with
a given group is Nh( ), while its complement the numbEr with @ass
less than that of higher groups, is N (<). Of courseN (>) + N'(<) =

2
the total number of fragments. Both the cumulative, N7(-), and T
complementary cumulative numbers appear somewnat smoother than N s SO
we might expect tte T i a smooth ma;hematlﬁal
to the Frnnnpncv N

-l o
[P ¢]
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“
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We can smooth out the erratic behav1or of N by ch0051ng unequal size
intervals. For example, the choice in Table III gives much smoother

behavior. Of course other choices could introduce erratic behavior

Table III. GROUPING INTO UNEQUAL SIZE INTERVALS

Interval(g) 0-.25 .25-.75 .75-2 2-4 4-6 6-10 10-66.261
E
N 7 6 5 4 3 2 1
N"(>) 21 15 10 6 3 1 0
,,E_ - - = - oan ~ -~ - 0
N7 (<) 7 13 18 22 25 a7 28
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ins would put
in the third group and 5 in the fourth group. Thls frequently occurs
in practice where the choice of mass intervals is made before an
experiment is carried out, perhaps for the sake of uniform reporting
procedures. Generally speaking, in the literature the mass of each
fragment is not reported and only information about pre-chosen groups
is given. Consequently, there is no way to choose new groupings which
might be more closely represented by certain mathematical functions.
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Now let us apply the frequency distribution dF=d(N/N_) of Equation
(20) with y=m/p and B=p/p where p is the density of the hetal case.
If we multiply it by the total number of fragments, N_, and divide by
(1-e™") where u is given by Equation (27), we obtain T

y ] AN 1

Ny Y Vi

dN = —_—u— —E exp
(1-e” H H

for the number of fragments in the infinitesimal interval from m

to m+dm. Note that Equation (33) becomes Equation (1) above for
u-®, mo=0 and 2=3. The factor (l—e'u) insures that

. L]

_ 1]
m-m E
( - °) dm = W(m) dm (33)

f"_——'l

mu P - rm I / ll Il ll

u m-m - m-m =
/ dN = INT/(I-e “)|/ exp -( °)Z|d ( °)’L
m, m L 1L |

e dt = N_ . (34)

"
=
—
~
~
Pt
]
(o]
1
[
—

b I o4 |
-t| 1 eul

N(<) =f dN=N -e (35)
I
n, TL Silins

while the complementary cumulative number or number greater than m
is the integral fromm tom_ (or t to u).
u

(36)

M .
N(G>) = | dN = N |e™" - e
J L



so N(<) + N(>) = N_. We can calculate either cumulative number,
however, N(>) is thz number used to evaluate the lethality of a
warhead or the vulnerability of a target. We can determine N(>)
experimentally with greater accuracy also, since the number and size
of small fragments is difficult to measure, The use of a cutott mass,

1s OO

m , of sutt1c1ent size avoids this aixxlculty
+ 1
L 4

Antio A rateir owmna Lomn srmant A 1ol

In practice, we do not deal with infinitesimals such as dN and dm.
Instead we use fragment groupings such that N. fragments are found in
the i " mass group of width dm, centered on miss m,. Generally
speaking also in fragmentation work the expected number of fragments
is large and approx1ﬂate1y equal to the expected number of breaks, u.

iIf u > 10, then 1-e =~ = 1 and may be negleCtea in Equations (33)
through (36). This may not be true for t very close to 0 or u in
Equations (35) and (36), but the use of finite groupings prevents

this from happening. This is why u can be taken to be effectively
infinite, at least in cases of natural fragmentation. For a narrow
group of controlled fragments clustered about u this may not be true

for small %, since u = [(m -m \hﬂl/l withm , m_and u all of about the
size. For f1n1 te size 1nt3rv315 bquatlon (35) Becomes

r/A m \ 1 0N -t. | 7N
1 1-X 1 U S/
N, =N W, =N, || t.0 7 e Y (1-e )| R
1 i i L\ HX 7 1 g
where
1 In £ 70N
i/% (38)
t. = [(m,-m_)/u]
v
s &L~ -th e c e ywesTITN Wa ~an 11en Bamiatian (ZR)Y Ffar inctaad of
100 e 1 nasSs giroup. n€ Cail UST Lijuactilil (VO 1U1 o inSeCal vi
t in Equations (35) and (36) to take account of finite father than
infinitesimal size mass intervals.

is the calculated probability of

finding N. fragments in the i h group. The probability observed

e aal s 4, E « E . E .
experimentaliy is W. = N. / N where N.~ is the number found
/ »

experimentally. Welare ifiteresfed in obtﬁlnlng functional represen-
tations of experimental data, using the probability formulas we have
derived. As we have seen, there is no reason to require that % be
integer, so we will treat it as an adjustable parameter. In addition,

the observed average mass gives us only a rough estimate of m (and

SO hrough hquatlons (30) to (32)). We will use this as an initial
gueSS for u and then adjust u also to represent the data better. The
cutoff mass, m_, will determine the total number of fragments, NT’
For example, i Table I we are assuming that fragments less than m =
0.1 g are of no interest in a particular application because they

are too small to be lethal. If m_were 0.2 g instead, then N_ would
be 21 instead of 28. If m_were Znaller than 0.1 g then NT would
be larger than 28. Howeve¥ the smaller we make L the mére uncertain
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we are about the value of N,_ above m because of the difficulty of
observing very small fragments. The minimum value of m is well
above molecular mass values, since we are considering a defect

at
fragmer 1;5 emitted f er a de

pract1ca1 interest for lethality or vulnerability, we will adopt the
point of view that N is fixed by a choice of finite m0>0 The

usually c10$e ‘to the unfragmented case mass. For natural fragmentation
this will make u effectively infinite. For controlled fragment groups
where m , y and m_may be close to each other, the choice may be more
importaflt as we sHall mention later

Ll s

If our only interest were to use Equation (36) with u effectively
infinite, then we could adopt 1ln N (>) as our model function,

1/2

considering it to be a linear functlon of the variable (ml—m ) in

) . (39)

iyl
(1

O "
.:" (@]

imultaneous

adjustment of 2 and u is too laborious to consider. The logarithm of
Equation (37) is

In N, = In [(N.Am, )/ (% )] + (1-2) In (m,-m - (m, -m (4
i LINpAm )/ (k") ] (1=%) um, =m.J H (m; -m, L

which is not a linear model function, except for 2=1. 1In addition,

if u is not effectively infinite, there is no way to make either u or

% appear in a linear fashion in a model function related to

Equation (36) or Equation (37).

Here we will use the least squares method to adjust the two
parameters p, = 2 and p, = u which appear in the non-linear model
Iunctlons, hquatlon (361 and bquatlon Lé/) The function to be

mlnlmlzea 15 the sum OI the squareu ulIIeI‘cllLCb between LII.U

experimental and calculated values which we will call Sqd (Ng = number

of grouns):
of groups):
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We can use our data to obtain initial guesses for the parameters,
namely, p.. = and = . If these guesses are reasonable, we
. 1% , -

o ion Tms i
[

where subscript zero means ev

Our corrected parameter set (Py, s the new
guess point in an iterative calculation, approaching a best fit as
Closely as we please. We now put Equation (42) into Equation (41),
set the derivat}ves of Sqd with respect to & and u equal tp zero,

@ivide by (—2NT ) and obtain the normal equations. The k- equation

<

£ . d W, d W, d W, . A
}E: {:w. W, -C <. \ - C <_ \ ] /:?__;\ = 0 (43)

— i io 1 dpl/o 2 dpz/o_l \d pk/l)
where k=1,2... N with N_ equal to the number of adjustable parameters
(only two here).p A rear?angemeqt of Equation (43) gives
N N
r g \/ \ ] r Y /dw.\ 74w\ |
c IS (M) (M), L I (L) ()
1|2 \ap /) \Tp ) [" %22, \a5, )\ P/ |
L‘-_ A 170\ l\/J L\d \ /0 \ /OJ
i=1 i=1
N
r 8 / / vl
1> (w7 - wo) ()
= W.” - W (44)
i io d b,
Li=1 \ A\ Tk
or, in matrix notation
QC = K (45)

(3]
(o]



N

~ ;

5. /d W, dw, '
o= L : 46
U Z(d pj)o (d Py )o (e

i=1

are the elements of the symmetric matrix Q@ of dimension Np X Np and

N
C OS2 (uE ) (%) .
k Z 4 i j d

i=1\ i 10} \ pkL

are the elements of the vector K with the correction vector C = Q K.
1

cealntinn far O

€ ~anmaa im Al ~aca i
V4 LUULOT 411 VUL Vaov

with N = 2, the solution for C is especia
simple since Equation (43) cBnsists of only two linear simultaneou
equations for the unknowns C, and C,. More elaborate forms of the
least squares method could also be fised, but this is sufficient for

our purpose here.

v
7
S

To carry out this procedure we need derivgtives of our model

functions which gontain factors of the form A where A = (m.-m }/u
and £ = 1/% or (5 -1). We recall that the derivative with *esPect
to £ can be found by letting
£
Y=1n (A") = f In A (48)
so
9!_ = A-f g_. Af = in A /.d_'f.\ (49)
dv ° d \daz / (49)
and
eg.rAf\ =af 1na (df (50)
de \* \dz / N
then
< = — b |
d W,
Lo (w72 (-i-’l-t yint, +ue " inu/ ’1-e-u‘| {51)
17 (¥1/ )I. (i-t,) i ( )| (51)
an 2 =|l-'v"'1 / (pa) j IL-]. + ti + ue-u / {lae-u)j (52)



where wi is given in Equation (37) and t. is given in Equation (38).

If we wish to optimize a fit of N (>) to experimental data, the
function to be minimized is

Ng r -

Sqd =Y INEG) - N | 2 (53)
Ly i it
1=1 w o

and a new set of normal equations can be found in a similar way.
required derivatives are

d N (}) . . r / —ti\ ! .
T = INT/SL“ tetian e, - [L2 - Yue™ 1n uf/f1-e*)s9)
i i -
\ /l_ \l—e / J \ /
o £ N ~ - -~ / —t,\ - .
d N.{>) -t i
iy /(ua)” te bofle ) e I/ (1-e0) (55)
du |L T _! ||_ i ‘\ l_v—u/l J \ }
A computer program 1mp1ement1ng this procedure is given in the
Appendix. For cases in which u is effectively infinite, all terms
invalvino 11 in Fanatinne (511 TN fCAY and ((EEY syrandich aec r~ran
d-llv\.ll.v.l.ll.s “u 41k h\tuab.l.\lll.) \JJ.}, LJ‘-J kd'?} aliu \JJJ valil ol ao wQali
easily be verified by the use of L! Hospifal'< rule. Provisions
are also made in the appendix for adjusting either £ or u alone

as well as for calculatlng with fixed % and U, using either f1n1te
m and m or withm_ =0, m = = as in Mott's case.

C. Applications

Let us apply our procedure to the sample data of Table I as
grouped in Tables IT and III. For example, Table IV A compares
ures with the

number found experimentally, N°. 1In this Table and able V m_ was
talan +An ha 72awa TF wa +nnl m =N 1 o 3in Tahla TY wa nt\1-1r‘o

VG NnwViL ww ve LTIV . 4 A we [SAV AV N Y - Ued 5 4.11 iauvuivev 4v wo wwvuiu

obtain slightly better agreemeng as indicated by a lowering of Sad
from 6.86 to 6.56, accompanied by somewhat changed & and u. However,

this is good enough for our purpose, which is to show that the

fitted Sqd is much lower than that for integer & values, namely,
33.53, 24.38 or 61.92. f9 gge fit, m was taken to be 66.261 g
so that u = (66.261/. 95)""“' = 21.2 Which is effectively infinite,

giving N a pprox1mate1y equal to zero for tne last group. In the
Mott-type calculations m =u=x soNand (>) are both exactly

(%]
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zero. This is true because the exponential factors vanish and
dominate other factors which increase without limit. Table IV B
compares calculated values with experimental values of N(>). A gain
from a comparison of Sqd values we see the value of adjusting £ and u.
The adjusted £ = 2.03 is almost integer, so the improvement over

2 =2, u=1.,183 g is not as great as in Part A.

Table V makes the same comparisons as Table IV but for the
sample data as grouped in Table III.

Table IV. FRAGMENT DISTRIBUTION FOR SAMPLE IN TABLE II

(Columns marked =1, 2 or 3 use the Mott versidn.)

A. N in each group B. N(>) for each group

Interval(g) NE N 2£=1 2=2 =3 N(>)E N(>) =1 2=2 &=3

0-1 14 13,51 9,58 9,50 6,84 14 14.96 22,67 14.62°  9.48
1-2 4 4,65 6.28 3.41 2.04 10 9.54 14.85 9.08 5.88
2-3 2 2,18 4,11 1,90 1,09 8 7.01 9.73 6.54 4.40
- 2 1.14 2,70 1.23 .70 6 5.46 6.38 5.01 3.53
- 1 .64 1.77 .86 .49 5 4.41 4,18 3.98 2.95
5-6 2 .38 1,16 .64 «37 3 3.64 2.74 3.24 2.52
6-7 0 .23 .76 .48 .29 3 3,05 1.79 2.69 2.20
7-8 1 .14 .50 38 23 2 2,60 1,18 2.26 1.94
8-9 o .09 .33 .30 .19 2 2,23 .77 1,92 1,73
9-10 1 06 .21 . .16 1 1.94 .51 1.65 1.56
10+ 1 .00 0 0 0 .14 0 0 0
L - 1.39 1 2 3 - 2,03 1 2 3
u(g) - .95 2,366 1.183 0.394 - 1,29 2.366 1.183 0.394
Sqd - 6.86 33,53 24,38 61.92 - 4,46 106.43 6.00 62.00
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Table V.

FRAGMENT DISTRIBUTION FOR SAMPLE IN TABLE III

(Columns marked £ = 1, 2 or 3 used the Mott version.)

A. N in each group B. N(>) for each group
Interval(g) N° N 2=1 2£=2 2=3 NOENG) 2=1 2=2 2=3
0-.25 7 6.24 2.81 6.58 6.44 21 21.11 26.56 20,23 14.16
025-.75 6 5.15 4.79 4.75 3.42 15 15.26 22.67 14,62 9.48
075-2 5 5.44 8.27 4.67 2.82 10 9,69 15.66 9.53 6.14
2-4 4 3,56 6.66 3.02 1.71 6 5.47 7.88 5.70 3.92
4-6 3 1.68 2.86 1.47 .85 3 3.22 3,38 3.58 2.72
6-10 2 1.44 1.61 1.35 .83 1 1.69 295 2.08 1.83
10+ 1 .18 0 0 0 0 .03 0 0 0
L - 1.72 1 2 3 - 1.81 1 2 3
u(g) - 1.41 2.366 1.183 0.394 - 1.25 2.366 1.183 0.394
Sqd - 4.40 38.01 6.55 23.94 - .98 125.38 2,56 97.25

As we see the fit gives better agreement than the use of integer % and

appropriate yu.

If we ignore %=1 (which is never used), only one case
{(for 2=3) gives a worse fit than is found in Table IV.

We expect

this since the data in Table III was made to appear smoothly

decreasing by a choice of mass intervals.

For 2=1 this choice

makes the calculations appear very erratic since a maximum

of 8,27 is reached for the third mass group.

The probability per

unit mass, w(m) in Equation (33), decreases steadily as m increases

for any f2l.
of w, with Am,

However, W,
so that a

w. Am. in Equation (37) is the product
incteas® in Am., as in the first intervals

of Tible V cah more than offset a decreade in w., resulting in a net

increase.
variable size groupings.

This often happens to experimental dita too, when we use
If all mass intervals are equal, then the
calculated numbers will always decrease as m increases.

However,

experimentally, erratic behavior can occur even for equal size

intervals because of poor statistics.
N, = (28/2.366) Ami exp (-m./2.366). =
For larger % values this difficult}

«25, m
tends

= ,125, etC. as shown.
%o disappear.

In Table V A with %=1,
This gives N, = 2.81 for Am
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munition. In the Netherlands Lindeijer and Liemans"® published data

in the open literature fer a 105 mm shell Whigh is presented here as

experlment was the large number of tlny fragments they collected in
the sub-gram category compared to the 816 individually weighed and
counted (and recorded in Table VI). They wereable to collect 2,195

tiny tragments weighing 215 grams altogether, compared to the

816 recorded here which totalled 457 grams. The total number of
fragments in Table VI is NT = 2,228 weighing a total of AI = 8,561 g,
giving m = 7 84 o Thie ' nanmilatian iec tvnical of that enort
E.I.VLIIB IIIA 7 e IT 5. LILL T tl\.ltlud-ul-.l.\lll - o !—Jy.hv\»-. T e wikie w Lt ol

by other gro"ps in similar experiments. Since the original case

mass weighed about 9,000 grams, about 2.5 per cent was lost,
presumably as a very large number of very small fragments lost
despite the extraordinary efforts of these authors. Since the actual
number of small fragments emitted (or created by secondary breakup

during recovery) cannot be determined (aithoug' it must be extremely
large), we see the need for invoking a fixed value of NT, determined
by a non-zero value of ﬁo.

In Table VI we have divided the Sqd values by the total number of

QULS LA VAT LT values w7 4

fragments to keep these values reasonably small. From a comparison of
these values it is clear that using "best'" £ and u can give a better
overall representation of experiment than the use of integer £ and
prescribed u = m V/(2 ). To avoid crowding in Table VI we have

omitted columns for values found using 2 =1 (worse anyway) and have
rounded calculated fragment numbers to integer values, at least

when they exceed unity. The Sqd values could have been improved a

few more percent in the '"best" calculations by using m >0, but this is
not shown here for the sake of uniformity in comnarlsons. The low

values found for the heavest groups reflect the infinite (or effectively
infinite) upper mass limits used. Although this is required in the
Mott-Type calculation, improvements in the ''best' calculation can

also be made by using the mass of the heaviest fragment found instead
of the case mass. Note that the "best" & values are nof very different
from m, /(2!) = 1.92 g, although the "best'" % values are notably

lower égan 2=2, giving better agreement for the more populated groups
and worse for those with only a few fragments. When we estimate

effectiveness for cases where fragments less than ten grams are
important, it is presumably more important to have a better representa-
tion of the more populated groups, since there are so few heavy
fragments. If these 11ghter fragments are not 1mportant tor a particular

application ;
pp -LLQ nnnnnnn - T

CJ‘C
W o0 v

18 E. W, Lindeijer and J. S. Leemans, Explosivstoffe 16 (7),
(1968} .
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Instead of using any type of analytical formula, one can
of course use the experimental data, especially in this age of the
digital computer. However, for some purposes, analytical formulas
are desirable. In addition, the smoothing which results from
the use of a fitted analytical formula should better represent the
average values and average effectiveness of a large number of munitions,
the case we are trying to calculate. Use of experimental data with
poor statistics giving erratic behavior in heavier mass groups (and
certain angular zones) could give poorer effectiveness estimates than
use of smooth functions. Presumably the data would become smooth
if only we could afford to do enough experiments. Sometimes a few
larger fragments might be neglected anyway because they are too slow
to be of importance.

Figure 4 compares the curves for N(>) from Table VI. The "best"
fit curve is virtually indistinguishable from the experimental curve
on the scale of this graph.

Table VI. FRAGMENT DISTRIBUTION FOR THE NATURAL FRAGMENTATION
OF A 105 MM SHELL

A. N in each group B. N(>) for each group
Interval(g) N° N 4 =2 ¢=3 No)E No) 222 2=3
0-1 816 804 683 544 1412 1421 1337 895
1-2 464 414 271 175 948 938 921 598
2-3 234 257 162 97 714 689 712 469
3-5 270 282 190 109 444 471 526 360
5-10 233 220 203 118 211 233 309 235
10-15 97 53 89 55 114 104 174 155
15-20 49 15 47 32 65 53 109 113
20-25 28 ) 28 21 37 29 73 87
25-30 13 2 17 15 24 17 51 70
30-35 5 051 12 11 19 10 36 57
35-40 1 .18 8 8 18 6 27 48
40-45 4 .07 6 6 14 4 20 40
45-50 4 .03 4 5 10 3 15 35
50+ 10 .00 0 0 0 .00 0
L - 1,27 2 3 - 1,68 2
U - 2.18 1.92 .64 - 1.91 1.922 .64
Sqd/NT - 3.33 30.38 97.67 - 1.25 13.69 210.60
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Finally, let us consider an application to controlled
fragmentation. It is obvious that for particular targets or target
classes there will be an optimum fragment size (also dependent
somewhat on engagement conditions). Smaller fragments are wasted
since they cannot sufficiently damage the target, while fragments

which are too large will kill the target but inefficiently since
they will of necessity be fewer in number, so less likely to hit
without special aiming devices. The ultimate in control is the
pre-formed fragment which is often used when launch stresses are
relatively low as for missile warheads. However, gun- -launched

sranle s 2 e e 41

warheads require trong casings which do not permit weakening the
shell by grooving. For such shells other techniques have been

devised which permit undiminished case integrity coupled with some
degree of fragment size control. Examples are the use of electron

1
beam scoring, selective carburization of the steel and grooving of
the explosive at the shell wall (with or without a liner). At BRL
Meissner and Kinekel!” have compared various techniques with each
other and w1th natural fragmentation. For example, they used a
cylindrical steel case 1U 16 cm long with outer diameter 7.6 cm and
i n 0.24 Ci

g on

re
Since the mass of the largest fragment was recorded and is known to
be less than 14 g, this value was used for m .

In other experiments Meissner and Kineke have grooved tne case or

- ol

] ssS
ex ive. As we see from F gure 5 and Table VI1I, they
succeeded in producing 41 fragments with mass greater than 13 g,
compared to only one such fragment when no effort was made to control
fragment size (Table VII). These rod-1like fragments centered about

a mass near 17 g. In addition, they produced about 21 end fragments

in a group which centered near 6 or 7 g. The rest of the case mass

seems to be in a naturally fragmented 8Eoup with most of the mass

below 5 g. Column one of Table VIII (N~) gives the number observed in -
each mass interval. This column has been divided into the thrge groups

e

in
in the next three columns, using Figure 5 gs a gulg . Here N,B is the
natural part of the fragmentation while N and N are the partially

19 R. Meissner and J. Kineke, report to be published.
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Figure 4. Number of fragments with mass greater than a given mass (105 mm shell).
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where —— has been included to make it equal to w in Equation (33)°

For £>I, w decreases smoothly from infinity at m = m to zero as m
becomes large, as we have seen in our representations of natural
fragmentation. For %=1 we have a simple exponential, finite at
m=m , For 0<¢<1, w vanishes for m = m_ or infinity, but has a
maximdm in between. °

In Table VIII the columns marked N

TABLE VIII. PARTIALLY CONTROLLED FRAGMENTATION OF A CYLINDER
(blanks mean zero)
Interval NE NE NE NE N N N N, N»E N
1 2 3 1 2 3
0-1(g) 63 63 61.22 61.22 94 89.04
1-2 15 15 18.33 18.33 79 70.71
2-3 13 13 5.78 5.78 66 64 .93
3-4 3 3 1.87 1.87 63 63.06
4-5 6 1 5 4.32 .61 3,71 57 58.74
5=6 5 5 7,00 7.00 52 51.79
6-7 8 8 5.86 5.86 44 45.88
7-8 3 3 3.20 3.20 41 42,68
8-9 1.24 1.24 41 41.44
9-10 .36 .36 41 41.08
10-11 41 41.08
11-12 41 41.08
12-13 41 41.08
13-14 1 1,97 1.97 40 39.11
14-15 6 6 4,61 4.61 34 34.50
15-16 4 4 6.09 6.09 30 28.41
16-17 10 10 6.48 6.48 20 21.93
17-18 3 3 6.03 6.03 17 15.90
18-19 5 S 5,06 5.06 12 10.84
19-20 4 4 3.89 3.89 8 6.95
20-21 5 5 2.77 2.77 3 4.18
21-22 1 1 1.83 i.83 2 2.35
22-23 0 0 1.14 1.14 2 1.21
23-24 1 1 .66 .66 1 .55
24-25 0 0 .36 .36 1 .19
25-26 1 1 .19 .1 0 0
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Figure 5. Partially Controlled Fragmentation of a Cylinder.




numbers calculated using adjusted £ and u "al"esE For Nl the total
number of fragments wa taken to be 95 (as in N.7) while'm =0, giving
2=é.04 =,82 g and S =.,77. For N, the tot&l number N°2= 1 (as in
N2 ). In addition, the $&1ues m =4 g and m =10 g were used, giving

22.53, u=2.47 g and Sqd/TT,- 56.° Here the %um of m_ and u g1ves an

indication of the peak position. U51ng mn>0 seems to give a better
representation than m =0 here. For N =41 and m_=13 g, giving

2=,54, u=5.18 and Sqd NT5='89' The cglcufgted value? for these
groups are shown by the 3olid lines in Figure 5. The agreement
appears to be reasonable. The last two columns in Table VIII are the
complementary cumulative distributions obtain by subtraction,
starting with the total number observ N E= 57, or with the total

number calculated N, =150.26., Again the agIeement is reasonably good.
1

Strictly speaking, we should carry out a simultaneous fit of

eoretical curves to the data, using m_ and N.. as well as %

e th

o
u for each curve as adjustable parameters. Thls more compllcated
edure (nr one similar to 11-\

1
Ss i

<
£ spectrosconv where the stat;stie
extract information about partially resolved lines. However, in the
present case where the statistics are so poor, the procedure used

seems adequate.

-

TT c n
Ldle ourMiAni

We have seen that Mott's distribution is a special case of more
general probability distributions which are widely used to describe
phenomena in various fields. In spite of this it can be given a
rational basis in terms suited to fragmentation, namely, the
random distribution of defects in solids. Methods of grouping
fragment populatlons have been discussed, and a genera1 probability
distribution has been dppli d to several collections of experimental
data. In particular, it has been shown that this approach can be
used not only for natural fragmentation, but also for controlled

fragmentation,
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This computer code for the Hewlett-Packard 9845B offers a number
of options in fitting Equations (36) and (37) of the text to
experimental fragment size data. These should be self-evident from
the various questions asked by the interactive display statements

which occur throughout the program. Since the first part of the
nrooram a ontimize a fit to the number in each group, the

rAavpaesan & iLd VIV drlmnu v a - 2 S e LIl

ime tn
output subroutine (lines 1470 to 1730) always prints N values but
permits N(>) values to be printed if de51red even though these have
not been optimized. Similarly, in the output subroutine for part
two (lines 2970 to 3220), N(>) is always printed, but N is an option.
This is particulariy useful when the program is used without adjusting
the parameters. This occurs in two sections, one starting on line
1030 in which the values of m nd specified at innut are used

Vi anc nm SPTLALLATU Qv Lapuse &4 MmO TRey

the other starting on line 2480 in which m =0 and m =,
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18 FEEM FRAG. FIT THO-FARAMETER FUNCTIONS TO DATA. FIRST FART FITS HUNEER

Mo C o TS maarmuiw Ik ok 1

MRzs GREOUR. SECOHD PART FITS COMPLEMENTARY CUMULATIVE
28 REM IHFUT: MMIH=CUTOFF MASS,NTOT=TOTAL MUMEER 0OF FRAGMENTS

GREOUPS, MUPCT v =UPPER LIHIT OF ITH GROUP,NCI =NUMBER IH

'@ REM Fl=L AWD F2=MU ARE RDOJUSTAELE PARAMETERS.
& OFTION EASE 1

8 FEINTER IS @

5] I1=0

T

DIM DwdSan

e N s B R B O ) I O

5 IMAGE 2D,5C2D,200>

815 DISF "MMIN,HTOT,HNG"

16 THFUT HMmir Ht ot , Ng

= FRINT “HHIH‘"'"mln:"NTUT‘"'NtOt;"NC=";Hg
s FRINT " I MUPCT S NCID NGMECTI»"
48 FOF I=1 T0 Hg
156 DISP "MUPCID,HODD®;
168 THFUT ril‘li;l"T ‘HI.'
174 IF IT:x1 THEH 2320
1au I la=Mupdli»-Mnin

134 Mold=CMupdli+Mming <2
26 DO1Y=NOLI Hat
218 Home(lr=Htot -Ho1o

SOTD 27Ve
I ld=Mupili~-MupiI-1>

Melr=CMup i T o+MupcI-100 -2
n-l--N'Lh.qut

s MupcITs HOT o, Hgme o I

LDISF “"FIT FRAGHMEWT HUMEER IH EACH GROUFT (@ IF MO, 1 IF
IHFUT Ind
IF Ind=8 THEH GUGTO 1740
FREINT "FIT EXFRESSION FGOR HMUMEER IM ITH GROUP TO DATA"
FRINT
DI=rFk "Pi=7 F2=7 B,8 MEAHS SEIF THIS FART *;
IMFUT F1,FZ2
IF Pi=8 THEW GOTO V39
FEIHNT "ADJUST F1=";F1;" AHD F2=";P2
O11=012=022=K1=kKz2=5qd=8a
. FOR I=1 TO Hg
SJ5ls A=cMOT D -Muins ~P2
i1l F10
E—x MuptHg =Mmin» P2
U=F~{1-P12>
TI=EHFP =X
Te=EXP(-U>
TZ=U*T2-01-T2>

WeTo=sDmoisXsT1 ePlsP228271 -

Hamc (T a=Ntot #(T1-T22- {1-T27

-4

o

DEMN (% )
-
Z

Tl

~—
(U

-
DA

o bl bl

=T = N
i _J 4

m

L D1=Welh*0-1- LUGf““*kl—ﬁ T3 #LOGOU2 ) P
ag D=l r#0-1+X¥+T3 ¢
14 =(211+D1~2
el 2+D1%D2
] +022

=DCIa-WCID
[llir[letu. I>
DZ2*Dewild

L I ) A ) Ry ) ) S 8

48
5
(%)
(s
rya

PN
N

HUFBER .
. HG=HIIMBER OF

GROUFR I.

‘.I.'E E; gon :

DIM MOS0, WOSaY, DiSaY, Deuwi S8, Mup<Sa>  H(SE, DncSHs, Home (580, Hame ¢ 6, Y



Saa NEXT 1

596 - PRINT #SGD=";8qd

£68  Den=Q11:Q22-012~2

1@ C1=(K1*Q22-K2+Q12>/Den

C2=(K2#Q11-Ki#Q12>/Den
Fm=MAX(ABS(C1-/P1),RBSC(C2-P2>)
IF Rm<=.2 THEN 670
C1=.2/Rm#C1

I'"T‘— DJ‘DI\\¥PJ

VE IF kRBS(Cl)<.BBl) AND ¢(RBS(C2><.,001> THEN 720
aog P1=P1+C1
98 Fe2=Pz2+C2
raa FRINT #Pi= "jPij"P2= ";P2
TIE" l‘l‘lTﬁ '?Qn
vey GJZUB Outputl
VA DISP "Pi=? P2=? ADJUST Pl ONLY. 8,8 TO SKIP";
T4 INFUT P1,M2
Fea IF FP1=8 THEN GOTO 10630
T FREINT
TP FREINT " WITH P2="3Mz;", ONLY RDJUST Pi="F1
vEG n11=K1=5qd=0
TRE FOR I=1 TO Ng

A=CcMCl ) =Mmind M2

A=A~ (17P1D

U= CMupCNg =Mmini«M2>~C1-F13
T2=ExP(~-U>

T3=UsT2-C1-T2)

WeToa=Dme 1D #H%ERP(-Xi (P1#MI*A*C1-T220
Homc ¢ I2=Nt ot # (EXP(-X)-T23-(1-T2)
Di=W{I2%(~1-LOGCHI* 1=K+ T3*L0OGCUOY-P1
rti=0it+D1~2

Dewo Id=DCTa-W{LD
Sqd=5qd+<Devwilr*#Ntot 2
F1=E1+D1#Dew(]l3

HEXT 1

v

WO W D 0
L

M= (MDD -Mmin? ~HM2Y>~C1 /M1
U—"Mupth*—Mmln'xM¢>”£1/M1)

TE=EXPC-U)
METr=DmCIY*RREXPC-RI /(M1 CMCId)-Mmind*C(1-T230

-
AR

iy
ML

TS FRIMT "sQD=";35qd
46 Cl=K1-Q11
A3 Fm=ABS(C1.-P1)
A5G IF Rm<=.2 THEHW 93&@a
37 E Cl=,2°Rm#*C1
SERG IF ABS(C1»<.0081 THEM 1820
EEr Fi1=F1+C1
1aaE  FRIMT "Pl=";P1
1a1le GOTO 73a@
1828 GOSUB Dutputl
18328 DISP "Pi=7? P2=? BOTH KEPT CONSTANT. 6,8 TO SKIP";
1943  IMPUT M1,M2
tas@  IF M1=8 THEN GOTO 1170
1868 Sqd=a
1a7a  PRINT USE CONSTANT P1=";M1;" AND P2=";M2
1 FOR I=1 TO Hg
1
1
1
1

e e TS T
Py o= Gl
T Go I
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1138 Ngmc(li=Ntot*#(EXP(-X)-T2)/(1-T2)
DewdI>=DCId-HCTD

NEXT 1

ln_llD rl_‘%iut! .

DISF "Pt=? P2=? ADJUST P2 ONLY. ©,8 TO SKIP":
INPUT M1,P2

IF Mi=6 THEN 1430

PRIWT " WITH P1=";M1;",0NLY RDJUST P2=";P2
p22=k2=5qd=0
FOR I=1 TO Mg
A= (ML) -Mmin) 7P2>~C1-M1)
U=0{ i Mup(Ngs-Mmin> - P2>~C1-M1)
Z=EXP(-U2
aEUsT2s01=T25
(1 =D I3 #XFEAP (=R (MI¥CMCID-Mmind*(1-T202
Ngm|-I-—H?ot*'E Pk X)—T2)/(1—T2)
DE2=HCIr*C-1+4K+T3>/(M1*P2>
RIE=0ze+D2~2
De“'I'—D(IJ-N(I)
Sqd=Sqd+iDevcIdI*Ntot ) ~2
}’—LJ+DJ*Deu(I)
HE®T 1
FRIHT "s@Db=";%5qd
Cc2=K2-022
Rm= HBE(EQ/PQ)
IF Em<=.2 THEN 1480

C2=.2<Rm#Ce
IF ABScC23<.081 THEH 1440

P P fd P

it LR

Do U MV

w00

AN T O%]

W -
MU I

ot

(S5

B Fo=pI+CE
B PRINT "Pa=";P2

GOTO 1218
GOSUE Outputl
GOTO 1740

DRV VR T I B SR | I SO I (W =

T OOCOROOICHOQOLOHITDOEC T D

REM END OF PART ONE
Outputl: $gd=9

FRINWT
FRINT " **¥NUMEBER IH ITH GROUP%*=# "

FRINT " 1 M(I> EXPER CARLC DEVIARTION"
FOR I=1 TO Hg

Tw=Htot =Wl

Td=Htot*DCIo
Tdev=Ntot#Deu (]I’
Sqd=5qd+Tdeuv~2
PRINT USING 98;I,M{I>,Td, Tw, Tdev
' T T
|1E'-I 4
PRIHT "SQD=";Sqd
DISP "PRINT NUMBER WITH MASS GREATER THAN M 2 (B,13>";
INFUT Ind

IF Ind=8 THEN GOTO 17206

deiﬁ

PRINT

FRINT " #*NUMBER WITH MASS GRERTER THRAH Mxx"

[ I O U (W BT W e (Y e S ) B SR O o

PRINT " 1 MCI> EXPER CRLC DEVIATION"
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1668 FOR I=1 TO Ng

1670 Deu=Ngmc (I)-Ngme<I)

1638 Sqd=Sqd+Dev~2

1693 PRINT USING 90;I,MCI)»,Ngme(I>,Ngmc¢l’,Dew
1788 NEXT 1

1716 FRIHT "S@D=";Sqd

172a  PRINT

1728 RETURHN

1748 PRINT

1758 FPRINMT "FIT EXPRESSION FOR NUMBEF WITH MASS GREATER THAW McIx T DATH
1768 PRINT

{776 .DISP “Pi=? P2=7 (8,08 MEANS SKIP THIS FARRT:";
17E8 IWFUT P1,P2

1730 1IF P1=@ THEW GOTO 2168

1288 PRINT ™ ADJUSTING F1=";P1;" RAHD F2="; ;P2
1313 Q11=012=R22=K1=K2=5qd=0

1228 FAR I=1 TO Ng

1 H=(HCI)eMmin)/P2

1 : r‘1/D‘|"| -

1 H—gnhuptNgl—Nm1N'«F RN B = O

1 T1=EXP(-X)

1: T2=EXPC(-U>

T3=¢1~-T1o-01-T20 .
WoIs=Dmel J*'?"Tll’(Pl""F':’
Hagmc CId=Ntot#(T1-T2)~
Ii=HNto t*k&*Tl*LUbk”‘—Ti*U*T 2LOGCUD D APLos01 -T2
De=Ntot*#(R*T1-TI3*U*T2)-P1-P2/C1-T2)
G11=211+D1~2 :

tHiz=Gi2+D1#D2
Rz2=Q22+0D2~2
DewdI>=NgmetI)-Ngmc oI
Sqd=5qd+Deuwi "2
kK1=K1+D1#Deuv(l’
Eo=K2+D2%Deudi)

HE=T 1

FRINT "S@0D=";:3ad
len=011%022-212~2
C1=vkEl1*%Q22-K2*012)~Den
CE2=(K2*011-Ki*@12)-Den

W]
£

5}

A REM LIMIT SIZE OF CORRECTIOHNS
8 Rwm=MAXCABSC(C1-P13,ABSCC2-F23>
3 IF Em<=.2 THEN 2180

iy
A

Cl=.27Rm#*C1

: Cz=.27Rm#C2

3 IF ¢ABSCC15<.801) AND ¢ABS<C2r<.8@1x THEHW 21354
G FPi1=P1+C1

Fz=P2+C2

FRIMT “Fl= ";P1;"P2= "[P2

GOTOD 1818

GOZUR Output

DISF “Pi=7 P2=7 ADJUST PL OHLY. ©,8 MERHS SKIF'S
IHFUT FP1,M2

IF P1=8 THEH GOTO z4€8
FREINT " ADJUST Pi=%;Pi;" ONLY MWITH P2="iM2

@11=K1=5qd=8
FOR I=1 TO Mg
MDY -Mmind  ME
=R~ (1-F13
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Us O oMup CHg -Mmini M2y~ {1 -P1)
TI=ERP{-X2

TE=EEPC-UD

T3=01-T1HsC1-TZ22

WOl =Dme I *#X*#T1/(P1*M2%¥R%(1-T2)>)
Hamec CId=Mtot#(T1=T23-C1-T2)
Dl=Htot* nsTleL OGO -TI3*U£T2+LOGCU 2 <F1 01 -T2
H11=@11+D1
Dewolo=HgmedITo-Ngmo oI
Sqd=3qd+Dev{lr~2

Fil=K1+D1*Dew(I)

'"=.2 THEN 2418

FRINT "FP1="{F1
COTO z2zaa
GOSUE Qutput2
DIGZF "Pi=7 F2=
IHFUT M1, M

IF M1=8 THEH GOTO Z&e@

Sqd=

FRIWNT UZE COMSTANT P1="iM1;" AHD F2="jM2;"IH
Mila=Mupilseg
Duwilr=Mupcls
FOR I=Z T0O Hg
"fI'w-r1fI'*
‘I'-Dm-IJ

.
DU

m
o

C1-M10

WoTo=DuilrsssTLoO0MIsY a0
Hgmec CTi=Htot*T1
IF 1<Ha THEN 2540

Mamec f Iy =He L=

HEXT 1

GOSUE Outpurs

OISF “Pi=? P2=7 ADJUST P2 OHLY. @,8 MERNS SKIP":
THIEIIT MAo EJ;)

AW 1A g

IF Mi=8 THEN GOTO 2

FEINT “ADJUST P2=";P2;" OHLY, WITH COMSTANT Fl="jM1

Bz2=K2=5qd=8
FOR I=1 TO HNg
=CCMCD =Main /P23~ (1/11)

fup CHg s =Mminy “F23+C(1-M1)

oo I e B
[ N |

vy 4 '~. o\ T4 S hAd e S e S
1 *A*nzf-nx'knk
72 C

Hamc o =Ntot*#(T1-T2>

FORMUULATY



2798 D2=Ntot*(X*T1-T3%xU*xT2> M1/ P2/C1-T2>
25008 Q22=022+D2~2

Dev(l >mNgme<(I>-Ngmc<I)
Sqd=Sqd+Dev(ld>~2
K2=K2+Dev(])#D2

HEXT 1

FRINT "S@D=";5qd
c2=k2-Q22
Rm=ABS(C2/P2)

IF Rm<=,2 THEN 29684
C2=.2/Rm%*C2

P EO DO DD O 0

&4 IF ABS(C25<.681 THEN 2%48
231 P2=P2+C2

29z PRINT "P2=";P2

293 GOTO 2706

294 GOSUE Outputl

ER58 STOP

2958 EMD

Output2: Sqd=8
FRIWT
FRINT “ #*HUMEBER MWITH MASS GREATER THAH Mz«

FRINT " I MDD EXPER CALL LEWIATIOH"
FOR I=1 TO Hg
Dew=Ngmc (I)-HgmecIx
3828 Sgqd=Sqd+Deuv-Z
3348 PRIMT USIHG 99:;I,McI3,Hgms<Is,HgmcdIx, Dew
258 NERT I
IEEE FRINT "S@D=";Sad
IBTH DISP "PRINT HUMEER IHW ITH GROUP? C@,13";
Zese IHPUT Ind
ZE33  IF Ind=9 THEN GOTO 2219
2188 FPRINT
3118 PRINT #**MNUMBER IN ITH GROUF#*
1z PRINT " I MaTln EXFPER CRLC DEVIATION®
F1Ie Sgqd=8
314 FOR I=1 TO Hag
2158 Hoc=HII»*Htot
2183 DewsHo-NHUID
I17@ Sgd=Sqd+Deus2 ,
3188 PRINT USING 96, I,MCI),HCID Mo, Dew
2178 HEXT I .
ZZ2R® FRINT "S@D=";Sqd
2218 FPRINT
ZZZE RETURHW
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