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of the concave dome has a wide peak due to the cavity resonance, resulting

in higher radiation efficiency. The convex dome has lower on-axis pressure
response in the same region due to the dispersicn of energy to the off-
axis direction.

The diffraction of sound from a concrete ring source by the convex and
concave domes is also investigated in order to discuss the interaction
between the loudspeaker units of a complete system. The convex dome has
much larger diffraction effects than the concave dome, especially in the
high-frequency region. It is shown that even the concave dome produces a
discernible amount of amplitude distortion of sound radiated from an
adjacent source.

The radiation and diffraction phenomena are well explained by the use
of a graphical representation of the energy flow and pressure distribution.
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ABSTRACT
The effects of rthe diaphragm shape of 2 loudspeaker on

the radiation and diffraction characteristics are discussed

using convex and ccncave domes in an infinite baffle. The
least square error method, one of the weighted residual
methods, is employed as the mathematical tool for the

solution of the problems.

The results show that these characteristics are highly
dependent on the shape of the diaphragm, even if it vibrates
like a piston. The 1esponse of the concave dome has a wide
peak due to the cavity resonance, resulting in higher
radiation efficiency. The con~ x dome has lower on-axis
pressure response in the same region due to the dispersion
of energy to the off-axis direction.

The diffraction of sound from a concentric ring source
by the convex and concave domes is also investigated in
order to ditcuss the interaction between the loudspeaker
units of a complete system. The convex dome has much larger
diffraction effeccts than the concave dome, especially imn the
high-frequency region. It is shown that even the concave
dome produces a discernible amount of amplitdde distortion
of sound radiated from an ad jacent source.

The radiation and diffraction phenomeha are well

’

explained by the use of a graphical representation of the

energy flow and pressure distribution.
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CHAPTER I

INTRODUCTION

1.1 Background

The cone-type loudspeaker has been used since the birth
of the direct radiator loudspeaker. The reason for this is
the mechanical strength against the force given through the
voice-coil due to its diaphragm shape. A paper cone,
because of 1its satisfactory G[propertics such as relatively
large Young’s modulus~-to-density ratio Uﬂom) and high loss
factor, has been used as the main loudspeaker diaphragm of
the direct radiator loudsp<aker. But as far as paper being

used as a diaphragm material, E/gn» does not have enough

|
margin for us to try a flat or a very shallow diaphragn.

The situation has been changed, however, since
|

composite materials with 1large E/ﬁn? have come into wuse.
|

With these materials, it has beacome possible to try ahy kind

of diaparagm shape, even the flat diaphragm. At this point,

we natuvally come to the question, "What is the best shape
for a radiator?" The diaphrvragm shape has effects on both
the vibration characteristics and the radiation
characteristics. These latter effects, however, have not
had much attention paid to them up until now. This 1s our

motivation to investigate the relation between the convex or

concave diaphragm in an infinite baffle and its radiation

PRV
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characteriatics.

Other inter:sting phenomena are found in the
intaractions between loudapeaker units 1in a loudspeaker
system. The sound emitted from a high-frequency unit is
diffracted by a (normally coacave) low-frequency unit. This
effect causes the modification of the on~- and off-axis
pressure responses of the high-frequency unit. This
diffracticn is also :esponsible for an amplitude-modulated
distortion of the higir-frequency sound when the diaphragm of
the low-frequency unit vibrates with a large excursion.
These static and dynamic interactions between each wunit of
the loudspeaker system are important topics that need
investigation if imhrovements on loudspeaker design are to
hbe made. Another example of this kind of phenomenon is the
diffracition of noise by a convex or a concave object on a
plane. The diffraction of nocise will change the pressure
distribution around the object, and if the noise source is
close to this object, it may also change the total radiated
power frcm the noise scurce. Thus, the diffraction of sound
from a source adjacent to a convex or a concave object in an

infinite baffle are of great interest.

1.2 Previous Studies
The radiation problems from convex and concave
objects are quite different from each other in the way they

are solved. The radiation from a convex object in an
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infinite baffle 4s equivalent to the radiation from a
radiator with a symmetric radietor in the other semi-
infinite space. On the other hand, the radiation problem
from a concave dome in an infinite baffle must be solved in
8 semi-infinite space. The studies on the radiation from a
radiator of finite size in an infinite space are reviewed
first.

The vradiation from a complete sphere or spheroid 1s the
one to which the method of separation of variables 1is
applicable. The solution to this kind of problem is found
in many books such as [1]-[5]. One of the interesting
researches in this field was achieved by 1Ikegaya [6]. As
one of his problems, he investigated the radiation from an
oblate spheroid, assuming that it can be well approximated
by a portion of a sphere in an infinite baffle. The results
show that the on-axis response is highly dependent on the
height-to-radius ratio. These results are compared with our
results later.

Three distinct methods of integral forms havé been
reported to obtain numerical solutions of the problems of
acoustic radiation from an arbitrary body, the simple source
method, the surface Helmholtz integrol equation, and the
internal Helmholtz integral equation. The simple source
method was employed by Chen and Schweikert (7], and
McCormick and Baron [8]. Chen and Schweikert, assuming a
distribution of simple sources over the radiator surface,

gave the formulation of the radiation problem from a shell
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in an infinite medium. McCormick and Baron utilized dynanmic
influence coefficients from the vibration in vacuum of tha
shell and a potertial source theory approach for the fluid
to discuss the radiation from a cylindrical shell of finite
length. Chertock [9)] investigated the sound radiation from
a body of arbitrary shape using the surface .elmholtz
integral equation. The third metﬁod was used by Copley
{10}, who adopted the 1internal Helmholtz integral equation
which results when the fiecld point lies within the surface
of the raliator. As Copley [11] and Schenck [12] pointed
out, however, the first two methods fail to provide unique
solutions when the frequency is approximately equal to any
of the characteristic frequencies,. Schenck, showing that
the third method 1is subject to similar difficulties and has
undesirable computational characteristic, proposed a
modified Helmholtz integral equation formulation in the same
paper.

A quite different approach was applied on the radiation
problem from a finite cylinder by Williams, Parke, .Moran,
and Sherman ([13]. They expressed the pressure field 1in
terms of spherical wave functions with unknown coefficients.
Then, using the least square error method, the unknown
coefficients were determined from the boundary condition.
The same method was used to solve a radiation problem of a
piston set 1n a sphere by Thompson and Skudrzyk [l4].
Fenlon [15] discussed the radiation field at the surface of

a finite cylinder, applying the method of weighted residuals
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5
on the internal Helmholtz integral equation. Hunt, Knittel,
and Barach [16] employed the finite element method for the
vibrationadl characteristics of the elagstic body and the
acoustic pressure field enclosing the radiator. They used
the analytical method to obtain the boundary conditions for
this mathematical model.

To che author’s knowledge, very few gtudies on the
radiation frcn a concave object in an infinite baffle have
been discussed. Ohie, Suzuki, and Shindo [17] discussea the
radiation from a concave sound source in an infinite baftfle,
where the space inside the truncated cone was approximated
by the stairwise combination of thin cylinders, and
cylindrical wave functions were used in each cylinder. The
same kind of problem was investigated by Shindo, Kyono,
Yashima, Yamabuchi, and Kagaw: [18] 1sing the finite alement
method. The same method was used h»y Sakai, Kyono, Morita,
Yamabuchi, and Kagawa [!:} for the 1investigation of
radiation from a horn loudspeaker.

Problems of acoustic diffraction or scatteriné by a
sphere, an infinite <c¢ylinder, or a spheroid are found 1in
many articles such as [20]}-[25], in which the analytical
method 1is applicable. Another technique, the integral
equation approach, has been used by Burke, Miller, Poggie,
Pjerrou, Maxum, and Meecham [26] for the scattering by an
elastic body. Hunt, Knittel, Nichols, and Barach [27] used
the finite eclement approach to acoustic scattering from an

elastic circular plate. Most of these problems, however,
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deal with the diffraction or scattering of a plane wave,
which are different from the problem of interest.

As it was shown above, the finite element method has
been used for both problems of radiation from convex and
concave radiators. The mwmethod similar to the one used in
[13], however, will be employed for the present radiation
and diffraction problems since it 1is quite close to the
analytical method except for the way the unknown

coefficients are determiuad.

1.3 Statemeat of the Problew

The main object 1lies on the general discussion of the
relation between the shape of the diaphragm and its
radiation and diff-action characteristics. For the
genera'ity of the discussion, {1t 1is desirable to represent
the diaphrapgw shape as simply as possible. A portion of a
sphere (which is called . "dome" hereafter) iz suitable for
this purpcse becavse it is simply rervesented .by one
parameter, the height—-to-radius ratio. To simplify the
problem, an infinite baffle are assumed for (he radiation
and diffraction problems. The radiation and diffraction
characteristics such as on-axis pressure response, radiation
impedance, phase vesponse, directivity pattern, and near-
field sound distribution is discussed. It is reasonable to
assume axisymmetry of the sound field for the radiation

problem of a loudspeaker. A point source located close to a
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convex or a concave dome may be a more suitable model for a
three-d.mensional diffraction yroblen. Initially, however,
only an axisymmetric sound field is treated. As a sound
source in the diffraction problem, an axisymmetric circular
line source (which is called a "ring source" hereafter) is
assumed. This wmakes the analysis much simpler and still
gives a fundamental understanding of the problenm.

The study addresses the following: (1) for the
radiation problem, the effect of the height-to-radius ratio
of the convex or the concave dome in an infinite baffle on
its radiation characteristics; and (2) for the diffraction
problem, the effect of the height-to-radius ratio of the
convex or the concave dome in the 1infinite baffle on the

radiation characteristics of the axisymmetric ring source.
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CHAPTER 1II

RADIATION FROM CONVEX AND CONCAVE DOMES

2.1 Geometrical Model

2.1.1 Convex Dome

The first problem 1is to investigate the radiation
phenomenon from a convex dome in an infinite baffle in the
semi-infinite fluid medium with deunsity p and velocity c.
The existence of the infinite baffle is expressed
mnathematically as the boundary condition that the normal
velocity on the baffle surface is equal to zero. The same
boundary condition is achieved by assuming another symmetric
dome on the other side and removing the infinite baffle.
For the convenience of mathematical treatment, this radiator
compused of these two domes in an infinite space will be
used as the radiator model.

The cro:s section of this model 1is shown 1in Figure
2.1. The center of the radiator 1is the origin of the
rectangular coordinate system (x,y,z). The radiator is
symmetric about xy-plane and axisymmetric about the z-axis.
Both dcmes are described as a portion of a sphere with
radius R. The sphere of the right side dome has the origin
0y The polar coordinate systeus (r',9',$') with the origin O

and (r,8,9) or (r1,91,¢1) with the origin O are wused. The
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Geometry of the convex dome radiator,

Figure 2,1




10
area of the right side dome (r=R, 0<6<0_, 0<¢<2m) {s denoted by
S(x), and the 1maginary surface (r-R,eoﬁan 0<¢<2m) is
denoted by 8(2). The radius and the height of the dome are
A and H, respectively. The domes are assumed to vibrate
sinusoidally with angular frequency w in the z direction and
with the amplitude U, and 180 degrees out-of-phase with each
other. The assumption ¢f the piston-like motion may not be
suitable for an actual loudspeaker in the high-frequency
region because of the higher order modes develcping on the

diaphragm, but it will be beneficial for basic discussicons

of sound radiation.

2.1.2 Concave Dome

Figure 2.2 shows the geometry of the concave dome
radiator. The xy-plane coincides with the baffle surface,
and the =z-axis is the axis of revolution. The dome is
described as a portion of a sphere of radius R and origin
0,. The dome has the radius A and height H. The polar
cocrdinate system (r,3,¢) will be used for the semi-infinite
space including the <cavity in the baffle. The surface of
the dome(r-R,eog&gm 0<¢<2n) 1is denoted by S(l). The pcints

on the surface of the opening 5(2) will be described by

(r1’61’¢1) .
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Figure 2.2

Geometry of the concave dome radiator.
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2.2 Mathematical Discussions

2.2.]1 Basic Equations for Kadiation Problen

The sound in a fluid medium is a dynamic disturbance
of the fluid which <c¢an be described by a time dependent
scalar quantity like pressure or velocity potential. In
linear acoustics, the wave equation of the harmonic wave
propagation in the fluid 18 expressed by the Helmholtz

equation:
W2+ wE = o, (2.1)

where ¢(£) is the velocity potential, k is the wavenumber,

v2 is the Laplacian operator, { 1is the field point in the
acoustic mediunm, and the time-dependent term e+jwt is
suppressed. The pressure p(E) and the particle velocity
T(E) are related to the velocity potential by the following

equations:

p(E) = jwp V(&) (2.2)

and

TE) = - Ve , (2.3)

there V 1s the gradient operator.

The radiation problem 1{s to find a solution to
Eq. (2.1) to satisfy the appropriate boundary condition.
The boundary condition on the radiator surface is expressed

by
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L@y = £(), (2.4)

where £ 1is a point on the radiator surface. The Dirichlet

and Neumann boundary conditions are given by

L = jwp ; £(3) = P(g) (2.5)
and

2
an

L = -

s £(@) = u() , (2.6)

respectively, where P(Z) and U(Z) are the pressure and the

normal velocity istributions prescribed on the surface of

the radiator, aund 1 is the wunit outward normal to the

surface. It should be noted that Eq. (2.4) can also express

the mixed boundary condicion if one assumes Dirichlet and

Neumann boundary conditions on the different areas of the

radiator curface.

The solution of Eq. (2.1) also has to satisfy the

radiation condition [28]:

;:': { 1—39; p(E) + sk p(e) |2 ds = 0, (2.7)
F) A
S? r=r

where r 1is the distance from the origin of <coordinates to

the field poiant, and S? is the surface of a sphere of radius

T centered at the origin, surrounding the field point { and

the radiator.
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2.2.2 Least Square Error Method L

As {t was mentioned before, one cannot apply the method
of separation of variables, because there exists no
appropriate coordinate system that matches the boundary of

the radiator except in the case of H/A = 1,0, which

corresponds to the radiation from a complete sphere. Here,
the method called "least square error method”" will be used
extensively 1in the present radiation and diffraction

i
problems [29].

The velocity potential will be expanded in the

following form:

we) =1 a v @, (2.8)
n=0 '

n

where a, is the unknown coefficient, and the set of infinite

[P WSS S

trial functions wn(E) is considered to be capable of
describing the wunknown function Y(§) which satisfies the
wave equation Eq. (2.1) and the radiation condition

Eq. (2.7). When the maximum of the order n is truncated by

i 6t et oSl e

N, the "best" approximation of the boundary condition

Eq. (2.4) on the ©boundary § is defined as a solution with

O

the set of unknown coefficients a,, n = 0, 1, . . ., N that

makes the following functional stationary:

A ki s e e a2

N 2

) Lt ® - E@] ds (2.9)
n=

J = J G (%)
S

where
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¥ (&) = Ltlfn(c) , (2.10) j

ard q(Z) 1is a non-negative weighting function necessary at
least for the consistency of dimensions of the integrands of :
Eq. (2.9) 1in the case of mixed boundary condition problems.

The a_, is given by the condition that J is stationary, i.e.,

n

inscnsitive to arbitrary variations in the parameter a.
23 =0, n=0,1 N (2.11)
3a = . s s ¢« o+ +49 N .

Substituting Eq. (9) into ©Eq. (11), (N+1) simultaneous

equations are obtained [see Appendix A]:

g * & .
J q<a;)[§l=0 an\vn(mm(c)]ds - js QDY (D)E(R)as
S

m = 0,1, .. ., N, (2.12)

where * denotes the complex conjugate.
Thus, 1f the proper trial functions and expressions ;
for the boundary condition are found, the solution of best

approximation can be obtained by solving Eq. (2.12).

a o adiitn VTR Tt

2.2.3 Radiation from a2 Convex Dcme

The general discussion of the mathematical tool used
for the radiation problem has been completed in the previous
two sections. In order to solve the probiem efficiently, it
is important to use physical and mathematical intuition for

the selection of appropriate trial functions and the
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coordinate system. This means that the proper choice of
trial functions and coordinate system enables one to
approximate the boundary condition accurately emnough with
the smallest order of truncation N.

The direct and simple application of the previous
mathematical discussion for the radiation problem by the
convex dome shown in Figure 2.1 is to expand the velocity
potential in terms of spherical harmonic functions with the
origin at the center of the radiator. However, two basic
problems are inherent with this procedure. [These are
discussed in detail in Appendix B.]

Now, on the basis of this knowledge, it seems
reasonable to choose the center of one of the spheres as the
origin of the coordinate system. The velocity potential is

expanded in terms of the infinite series such as [30]:

[~

Y(x) = %FO a hn(kr) Pn(cose) .

(2.13)

where hn(kr) is the spherical Hankel function of the'second
kind and order n with the suppression of the superscripot
(2), and PHUmse) is the Legendre function of the first
kind and order n. [The validity of the -expression in the
form of Eq. (2.13) for Dirichlet and Neumann boundary
conditions is shown in Appendix C.]

Then, the boundary condition on the radiator surface
S(l) is given by

A S R (2.14)

B

.

el L,
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and

Here, the superscript (1) or (2) indicates the functions
with regard to the surface S(l) or 5(2)’ respectively.
Also, Wél)(e) and f(l)(e) are used instead of Wél)(c) and
fu)(;) since they are functions of 9O only.

On the imaginary surface S(z), one can use the
condition of symmetry of the sound field. The velocity
potential at point P is equal to the one at point Pl’ giving

the relation:

N
N

z a hn(kr) Pn(cose) = Z a_ hn(krl) Pn(cosel) , (2.17)

n=0 =0
where R, 6, 1, and 61 are related to each other by the
following equations:

T, cosG1 = R (2cosGo ~ cosB) (2.18)
and

r, sinel = R sinf , (2.19)
and R is given by

R = (2 +a%)/2m . (2.20)
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Rewriting Eq. (2.17), one obtains
3 )
g-o an[hn(kR) Pn(cose) - hn(krl) Pn(cosel)] = 0. (2.21)

The condition of symmetry of the sound field does not

glive an explicit form to the operator L. But, comparing

Eq. (2.21) with Eq. (2.4), one comes to the interpretation
that the operator L, when applied on the velocity potential
at a point, gives the difference of velocity potentials at
that point and its symmetric point.

Thus, Wiz)(e) and f(Z)(e) can be defined such as:

qéz)(e) - hn(kr) Pn(cose) - hn(krl) Pn(cosel) (2.22)

and

£2e) = 0. (2.23)

Applying Eqs. (2.16), (2.17), and Egqs. (2.22), (2.23) 1into

(2.12), the set of (N+1) simultaneous equations are

Eq.
obtained:
3 w(2)* ., (2)
Zl=o g m n s@ " a
=J v @) e D@y as, m=0,1, ..., N, (2.26)
gD
where

(2.25)

[}

q(2) 1.0
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is assumed in Eq. (2.12). i
4
2.2.4 Radiation from a Concave Dome
In the case of radiation from a concave dome, it 1s
impossible to get rid of the infinite baffle wirhout

changing the boundary condition. Thus, the sound field must

[Py

l; be dealt with in a semi-infinite space. Instead, one can
use *he knowledge that the sound field is wuniquely
determined by the use of the Rayleigh integral if the normal

velocity distribution on the baffle surface is given.

’
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The velocity potential inside the sphere with the I

v origin 0, is expanded in terms of infinite series such as

[30]: ;

ﬁ-'.. .

N i
Px) = E-O a_j (kr) P (cosd) , (2.26) ;

where jn(kr) is the spherical Bessel function of the first

:
-

kind and order n-
The boundary condition on the radiator surface S(l)

is given by the same forms as Eqs. {2.14) and (2.15):

L _%PR (2.27)

i

and g
f(l)(e) =, cosf . (2.28) ,

Thus, Q
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v (e) = -k 31R) P (cos0) (2.29)

Once the expression for the velocity potential (with
unknown coefficients) inside the sphere s given, one can

obtain Ehe normal velocity distribution on the opening S(z)

o of the cavity:

o )
F‘ ug(r),8)) = - gz ¥ =Ty
. 8=, |
. L i
5y 3r . 3y 26 |
o \%5;»,%5-2—]:-1;1 . (2.30) |
6=6, |

The derivatives are given from the geometry by |

or Z
il cos® (2.31) |
o
i
and i
.
% _ _sind (2.32) |
9z r

Substituting Eqs. (2.31) aad (2.32) into Eq. (2.30), one

obtains

uB(rl,Bl) = - g.o an[kcosel j;(krl) Pn(cosel) |

. 2 '
4 sin 61 jn(krl) Pn(cosﬂl)/rll . (2.33)

Now, the velocity potential wuhne) due to uB(rPel) outside

the cavity can be obtained using the Rayleigh iategral:
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1 e—jkd
wu(r,e) = i’,ﬁfj [u_(tl,el) -a ds , (2.34)
S(Z)- n
where
2 2
d [(rsin® - rlsinelcos¢l) + (rlsinelsin¢l)
2 1/2
+ (rcosf - rlcosel) ] (2.33)

{s the distance ©between the point of interest (r,0,0) and
the point of surface element dS (r1,61,¢1) . The two
velocity potentials given by Eqs. (2.26) and (2.34) must be
equal to each other (potential matchirg) everywhere inside
the sphere and outside the cavity.

It seems reasonable to 1impose the <condition of the
potential matching on the imaginary surface of the sphere.
But the expansion of the form of Eq. (2.26) causes a
nonuniqueness problem when the boundary cendition 1s given
on the surface of the sphere at or near its characteristic
frequencies [see Appendix C]. For this reason, the opening
of the cavity S(z) is chosen as the area on which the

condition of potential matching is 1imposed. Then, one

obtains
§ N
kr) P = - '
Lo an[jn( r) n(cos(':))] ggo a [js(z){kcoselj n(krl)
2 ' e-jkd
x Pn(cosal) + sin"0, jn(krl) Pn(cosel)/rl} (—553—) as}) ,
(2.36)

- Iy
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with the relationship between r and 8 such as:
r = - zolcose . (2.37)
where z, 1s the distance between O and 0. Rewrite this
equation, \&”‘—\\\\‘

{kcos® (ktl) Pn(cosel)

N
) a (3 (kr) P_(cos®) +

j'
1=0 l(z) 1'n

-1kd
2 e .
+ sin®s) 3_(kr)) Pl(cos®))/r;} (Symg) dsi= 0. (2.38)

,(2) ) .
Thus, Vn (8) and f (9) can be defined such as:

Wéz)(e) - [jn(kr) Pn(cose) + J (2){kcoselj;(krl) Pn(cosel)

S
2 e—jkd
+ sin Gljn(krl) P;(cosel)/rl} G—EETJ ds] (2.39)
and

Now, by the same method used in Section 2.2.3, one obtains

the (N+1) simultaneous equations [again Eq. (2.25) was

assumed]:

N
I oatf v@vP@ e[ v®*eu® o) as)

n=0 " Js(l) g

- J W;I)*(O)f(l)(e) d4S, m=0.1, . . ., N. (2.41)
1)
S

e d
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2.2.5 Geometrical Approximation Method

It is well known that sound will be radiated normal to
the surface of the radiator when the wavelength is much
smaller than the radiator size. For higher frequencies, the
geometrical approximation begins to have practical meaning.
The geometrical approximation here assumes that an infinite
number of point sources are distributed in such a way that
they form the shape of the radiator with equal surface
density in an infinite space. The on-axis sound pressure of
the convex dome, which is normalized by the sound pressure
due to a single point source with the same total volume

velocity at the origin O, is then given by

° 2TRsinfcosbe o

0

8 ikR(cos6-cosd ) 2 9
P = [J Rde]/'!TR sin eo

ikR(1l-cosf ) 2 2
= 2[e © 4kR - 1) + (1 - cosB_ - 1kR)/sin Bo(ikR) .

(2.42)

The expression for the concave dome 1is the same except that
the phase response has the opposite sign. The results
obtained with this methed will be compared with exact

solutions.

i it e a2 o
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2.3 Results and Discussions

The calculations were made for three different
height/radius ratios such that H/A = 0.5, 0.75, and 1.0.
The frequency range was from kA = 0.1 to 10.0. The accuracy
of the results was confirmed by verifying the degree of
matching of velocity and velocity potential. Except in the
vicinity of the rim of the dome, the differences were less
than a few percent. The weighting function q(z) in
Eq. (2.12) was kept equal to unity all through the
calculations, because varying it did not give any
significant improvement in accuracy. The maximum order of N

was 40 for kA = 10.0.

2.3.1 On-axis Pressure Response

The far—-field on-axis pressure response of a convex
dome normalized ¢to the pressure response of a flat piston
with same volume velocity are shown in Figure 2.3, for H/A
= 0.5, 0.75, and 1.0, When H/A 1is equal to 0.5, the
response shows a meaningful decrease from about kA = 0.5,
and reaches to the -3.5dB line around kA = 2.0. For H/A =
0.75 and 1.0, minimum levels in the middle frequency region
(say, kA = 0.5 - 5.,0) are -6.5dB and -9dB, respectively.
This effect of the diaphragm shape on the pressure response
is essential when a dome-type loudspeaker 1is designed. For
a dome-type loudspeaker with a lcm radius, the range from ka
= 0.5 to 5.0 corresponds to the frequency range from 2.7kHz

to 27kHz. This range includes the reproduction range of a
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dome-type loudspeaker, which may have the H/A ratio of about
0.75. This means that the achieved pressure reaponse is
much lower than the one estiwated from the assumption of a
flat piston. This kind of discrepancy is usually
encountered when a dome-tyve loudspeaker is designed.

It is meaningful to compare the pressure response with
results obtained by the geometrical spproximation method,
which are shown in Figure 2.4. All three responses begin to

roll off from about kA = 3,0 at the rate of -6dB/oct., but

with different wundulations. As the H/A ratio becomes
smaller, the fluctuation becomes larger. In Figures
2.5-2.7, two responses obtained by the least square error

method (LSM) and the geometrical approximation method (GAM)
are compared for each H/A ratio. Figures show that the
geometrical approximation gives a fairly good estimation of
the true response in the high-frequency region. Especially

for H/A = 1.0, the difference is less than 1dB above kA =

4.0.

The results of the concave dome are shown in Figures
2.8-2.10. Contrary to the results of the convex dom;, the
pressure response of the <concave dome has a wide peak

around kA = 1.0 -~ 1.5 for H/A = 1.0 - 0.5. This region is
included in the reproduction range of an actual cone-type
loudspeaker. For H/A = 0.5, the ©peak level is about 4dB.
This kind of resonance effect is not clearly observed in the
pressure responses of an actual loudspeaker. Two reasons

for this can be considered. The first one is that the
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actual cone diaphragm may break up around this frequency
region. The second one is that the inductance of the voice-
coil reduces the driving force in the same region. For the
concave dome, the geometrical approximation gives a rough
estimation of the true response.

The above discussion shows that the total range may be
divided 1into three regions. The region 1n which the
response is almost equal to that of a flat piston is the
low-frequency region (approximately kA < 0.5). 1In the high-
frequency region (approximately kA = 5.0), the response can
be estimated by the geometrical approximation method. In
the range between these two regions, the response must be
obtained by an exact method.

The fact that responses of the convex and concave
domes are intrinsically different may mean that the sound

quality of them may also have basic differences.

2.3.2 Radiation Impedance

The norwmalized radiation impedance is defined by the

foilowing equation:

z = {l;' p@u (0)asH{E pema?u?} . (2.43)
2 LNeR, 2 [

The numerator of this equation is the total power (complex),
and the denominator is the effective radiated power from a
radiator with velocity U0 and constant radiation impedance

2

pCTA” ., The real part (Re) of z_ is the normalized

e il
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radiation resistance, and the imaginary part (Im) is the

normalized radiation reactance.

The radiation impedance characteristics of the convex
dome are shown in Figures 2.11 and 2.12. The radiation !
*1 resistance of the convex dome is smaller than that of the i

flat piston with the same radius, and decreases as the

J height of the dome increases. The radiation resistance of a j
E: flat piston fluctuates above kA = 2.0, while its pressure _
ii response stays constant. On the other hand, for the same 5

frequency region, the radiation resistance of the convex g
:

dome 1is constant even 1if {its on—-axis pressure response

varies.

In order to Jiscuss the frequency response of the

radiated power, the radiation impedances were plotted on a

e A e e 4

logarithmic scale in Figures 2.13 and 2.14. When the
diaphragm is driven with constant acceleration with respect
to frequency, the velocity decreases by 6dB/oct. If the
responsé of lOlog(zr) increases by 6dB/oct., the radiated k

power remains constant. As Figure 2.13 shows, the flat '

piston has the closest radiation resistance to the line with
a 6dB/oct. slope. As the H/A ratio increases, the convex
dome r=duces its range uf the constant power response. For
H/A = 0.5, the radiated power at kA = 2.0 is about 5dB lower

than the level 1in the low-frequency range. The radiation

T

reactance of the convex dome has a slope of +3dB/oct. and
-3dB/oct. in the low- and high-frequency region,

respectively, and always positive (mass-like).




36

‘ A N<.=UQ

£q pezjyewiou) uolsjd 3IB[J B PUB IJWOP X3AUOD

e Jo 8>F3sjaajloeieyd 2oue3sjs8ai1 uolleipey I1°C 21n814
YY) SNIQYHXUIBNANIAVM
ool D"l _.Q.U
11440 1 1 1 | I T T O T | | .
=]
(=]
(o]
BRI
w
[ =]
L
B
>
=
2 o
..l/_..J
5)
=]
m
. >
T_Uﬂ
o
NS
W




37

v

°( NSSQ Aq pazitemwiaou) uolsjd 3Jeyy B pue 2wop
X3AUOD B JO SDJISTA3IOEIEBYD 2D2UEBIDEII UOJIBIPEY

CVYX) SNIGVEXYIGNNNIAVAM

Z1°¢ @2an3d14

g ot ‘ g-t 1 °0 o
. | i { i | 1 1l T
[}

=T~ ]

7vv

w o

]

D =

v m

B o

>

=

S o

‘J)

—

=

T3

mw N

N
1]




' . : »
_Jj
: ©

2] z
P .A~<uua
Aq p3zZjiewmacu) uo3sjd 23el3 B PpUE 2WOP ADAUOD
e Jo gd2y318Ti9310€BIBYD 2oue3sye3a1 uolleipeEY €1°¢ 2a1n813
Lyi maa(m.axmm:zzm?.;
g gl gt 1 .n...z
15 WA WO WS U B { ST I O U S { =
o |
f =4
i
N>
e
>
a °
-t
=
“o
I m
5 S
.
5 A
ra
2
m
o &
- \ g
=
[
3
a.
o

oo "ol

e mer e w
RPRRIFEE it GF 4K PRSP B+ PRI +44




°( NSBQ £q pozyiewaou) uoisyd 3BTJ B pPuUER 2UWOP
X9AUOD B JO 8D73ISFI230BIRYD 22UBIOEBI1 UOTIBIPEY H1° 2an8tJ

CYA) SNIOYURYIGNNNIAYM
oot o-l 1 °0
I O A I I | | I O I | ]

oo ‘ot-

00 "0¢-
avy

oo "ol -
CIVIAI> 3IINVUIdNI

go°'o

g4p ur

I S A s i MLt o o o L S

oo "ot




40

The radiation impedances of the concave dome are shown
in Figures 2.15-2.17. Radiation resistance of the concave
dome is much larger than that of the flat piston and the
convex dome in the region kA < 3.0. This can be explained
as a resonance effect of the cavity. The frequency of the
maximum resistance is slightly higher than that of the
maximum pressi.re response. The radiation reactance is zero
at these frequencies, and mostly negative (spring-like)
above those frequencies.

The plot of the radiation resistance on a logarithmic
scale is shown in Figure 2.18. The 6db/oct. line stays
between the curves of the flat piston and concave dome with
H/A = 0.5, Thus, 1f the acceleration of a diaphragm is
constant with respect to frequency and 1if the diaphragm
stays like a piston, the widest range of constant radiated
power is achieved by a concave dome with H/A ratio somewhere
between 0.0 and O0.5. The radiation mass loaded on the
concave radiator is almost equal to the sum of the mass of
the fluid inside the cavity and the radiation mass of a flat

3
piston with the same radius (= 0.85 pmA7).

2.3.3 Phase Response

The far~-field on-axis phase responses of the convex
and concave domes, which are normalized to the phase
response of an on-axis point source on the baffle, are shown
in Figures 2.19-2.20, respectively. The phase responses of

the convex and concave domes increase or decrease
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respectively as the frequency increases. It is interesting
to separate the total phase response into two parts, i.e.,
the minimum phase response obtained from the amplitude
response through a Hilbert transform and the remaining phase

respounse. The transfer function of the loudspeaker can

therefore be represented by the follpwing form:

i¢ . (w) 19 (w)
Hw) = Alwe min e allpass . (2.44)
The non-minimum phase response ¢a11pass(w) is

important because, even if the pressure response is ideally

equalized by a minimum phase network, it still remains as

the factor which causes a time delay.

The response ¢mh5w) is obtained from the Hilbert
transform [31],

o0

Opin @) = J nA(w")dw'/ (W' - w)T . (2.45)

00

For the exact solution of Eq. (2.45), one must know the

pressure response A(W) over the entire region of w. But the

range actually known is from kA = 0.1 to 10.0. For kA =

10.0 to 819.1, the pressure responses were calculated by the

geometrical approximation method. This frequency region
was sufficient to obtain the required precision of ¢minmn
in the frequency range from kA = 0.1 to 10.0. Then,
¢allpass(w) is obtained by

¢)axllpass(u") = ¢total(w) - ¢m1n(w) : (2.46)

e e eatiian B
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By dividing Eq. (2.46) by k, one obtains the corresponding
distance due to the phase delay, which will be referred to
here as the "acoustic center", The characteristics of the
acoustic center for various values of H/A are shown 1in
Figures 2.,21-2.22. The results in the low-frequency region
are not quite correct because of us;ng the discrete Fouriler
transform with the frequency interval of 0.1 to calculate
Eq. (2.45). Also, a small error in the phase response can
cause relatively 1large fluctuations 1in this region. The
result for the concave dome with H/A = 1.0 is not shown
because of the difficulty of taking into account the sharp
dip of the pressure response around kA = 4,15,

It is 1interesting to note that the position of the
acoustic center of a convex dome 1is constant and equal to H
over the entire frequency range from kA = 0.1 to 10.0. The
same result is obtained from the purely geometrical
approximation. The reason for the existence of the acoustic
center at the front of the source 1is shown in Appendix D
for the case of a line source as an example. -

The position of the acoustic center of the concave
dome is also constant except 1n the very high-frequency
region, and is 1located between the baffle surface and the
top of the dome. The results of Figures 2.21-2,22 are very
important because they show the locatlion of the source after
the equalization of the pressure response. The equalized
responses of the convex and concave domes are nondispersive

in the range used for an actual loudspeaker.
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2.3.4 Directivity Pattern

The directivity pattern 1s one of the most important
characteristics of a transducer. If one knows both the on-
axls pressure level and the directivity pattern at a
specific frequency, total radiated power and the radiation
impedance at that frequency can be calculated.

Directivity patterns of the convex dome are shown in
Figures 2.23-2.28, along with those of a flat piston. The
on-axls pressures are lower than the 90-degree off-axis
pressures for the convex domes with H/A = 1.0 or 0.75, and
at kA = 1,0 and 2.0. From this frequency region, the convex
dome has a wider directivity pattern than the flat piston.
The convex dome has the narrowest directivity pattern
around kA = 5.0 (Figure 2.26). Again, at higher
frequencies, lower on-axis pressure responses than the off-
axis pressure responses are observed (Figures 2.27 and
2.28).

Figures 2.29-2.35 show the directivity patterns of a
concave dome. The concave dome has almost the same
directivity patterns as the flat piston wuntil about kA =
3.0. Figure 2.32 shows the directivity pattern at kA =
4.15, which is the frequency at which the on—axis pressure
response has a sharp dip (Figure 2.10). The on-axis
pressure is much lower than the 66-degree off-axis pressure.
This results suggests that the normal velocity distribution
on the opening of the cavity is not in a uaniform phase. In

the higher frequency region, the directivity pattern of a
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concave dome has similar properties to those of the convex
dome. Neither dome shows zero pressure at any angle. As a
practical point of view, 1t should bc mentioned that the
convex dome has wider directivity than the concave dome or
the flat piston in the frequency range normally used for the

loudspcaker.

2.3.5 Energy Flow and Pressure Distribution

Besides the sound pressure, the important and
interesting quantity used to describe the sound field is the
energy flow. Therefore, the sound intensity was calculated
and the results are presented for some A values.

The x and 2z components of intensity in the rfield are

defined as

Ix’z = Re{p u:,z] / 2 . (2.47)

Then, the direction of the particle motion and the intensity

I, in that direction are given, respectively, by

-1
@ = tan (Ix/Iz) (2.48)
and
1/2
2 2
Io = (Ix + Iz) . (2.49)

These two values are simply described by an arrow with its
direction and length.
The graphs of energy flow and pressure distributiou of

the convex dome for several H/A values are shown in Figures

e A s it
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2.36~2.44, The arrow shows the relative amplitude
propertional to (I':’)l/2 and the direction of I  at the point
of the tail of the arrow. The size of the circle 1is
proportional to the absolute value of the pressure at its
center. For the convex dome with H/A = 1.0 at kA = 1.0

(Figure 2.42), the energy tends to flow <from the high-

pressure reglion (near axis) to the low-pressure region
(off-axis) on the surface of the radiator. As a
consequence, at distances greater than approximately 3

radiator radii, the on—-axis sound pressure is smaller than
the 90-degree off-axis sound pressure. As the frequency
increases, the energy starts to be radiated normal to the
surface, and the bundle of energy is confined near the axis.

The pressure distribution and the energy flow of the
concave dome are shown in Figures 2.45-2.54, The energy
radiated from the concave dome with H/A = 1.0 at frequency
kA = 1.0 (Figure 2.51) flows along the axis inside the
cavity. The pressure 1s constant along the opening of the
cavity, but decreases along the axis even Iinside the cavity.
This shows that the effect of the cavity cannot be
represented by a simple lumped compliance in the analog
circuit. At KA = 3.0 (Figure 2.52), the pressure along the
opening is not constant, and the energy flow is not parallel
to the axis anymore. The graph at kA = 4.15 (Figuire 2.53)
shuows some interesting vesults. The energy radiated from
some area of the radiator surface goes arouund about 360

degrees inside the cavity, and goes out fto semi-infinite
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86
space from near the rim of the dome. The results of the
so'ind pressure response and directivity pettern at this
frequency are explained clearly by the energy flow and
\ pressure distritution. At kA = 10.0 (Figure 2.54), the
energy radiated normal ¢to the radiator surface converges
around the center of the sphere and then spreads out to

¥ semi-infinite space.

L‘ As was shown above, the graphical representation of
- the energy flow as well as the pressure distribution is a

very useful tool for understanding the radiation problem.

2.3.6 Comparison of Results with other Methods

The results of the radiation and diffraction probiems

are compared with those obtained by different methods. As

was mentioned earlier, Ilkegaya [6] calculated the on-axis
pressure respounses of a convex dome, approximating it by an
oblat: spheroid for the cases of H/A = 0.2, 0.37, 0.5, and
1.0. The last case corresponds exactly to the radiatiun

from the nonvex dome with H/A = 1.0. His results for H/A =

0.5, and 1.0 ure plotted in Figure 2.55 along with the
results obtained by the vreseut method. Both responses for ;
H/A = 1.0 are in good agreement with each other except the ‘
small discrepancy in the low-frequency regicn. The present
method lacks some accuracy in this region, but is accurate
anough in mid~ to high-freguency regions. Frr H/A = 0.5,
both results are significantly difterent from cach other in

the high-frequency region. “his difference 1is considered
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reasonable because the oblate spheroid has a flatter region
around the z-axis than does the convex dome with the same
H/A. It seems that the oblate spheroid suffers larger
energy flow to the off-axis direction in the middle-
frequency region since it has smaller normal velocity
distribution around its rim compared with the dome.

Figure 2.56 compares the on-aiis pressure responses of

the concave dome obtained by our method (LSM) and by the

finite element method (FEM). The programming and the ]
calculation by the FEM were carried out by the staff of the
Loudspeaker Section of Consumer Products Research
Laboratory, Mitsubishi Electric Corporation in Japan, at the
author’s request. The number of axisymmetric triangular
elements were 240, 360, and 450 for H/A = 0.5, 0.75, and

1.0, respectively. The boundary coundition on the opening of

the cavity was given 1in the form of self and mutual
impedances of each mode. Inside the element, the pressure
was expressed as a combination of pressures at six nodes
using a shape function of quadratic form. The results of
the FEM show higher resonance frequencies. But the

differences of two curves for H/A = 0.5, 0.75, and 1.0 are

AP

mostly less than 1dB, respectively. The agreement of these

two methods indicate that the present method is good enough !
for the discussion of the radiation characteristics of the

concave dome radiator.
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CHAPTER III

DIFFRACTION BY CONVEX AND CONCAVE DOMES

3.1 Geometrical Model

This chapter deals with the Aifftaction of sound by
the convex and concave domes that were used as radiators in
Chapter I1.

Figures 3.1 and 3.2 show ring sources with a

concentric convex or a concentric concave dcme in an

infinite baffle, respectively. The ring source has radius
A, and source strength ZﬂAlQ . The convex and concave dowmes
are represented as a portion of a sphere of radius R, and

have height H and radius A.

The rectangular coordinate system (x,y,z) 18 used with
the origin 0. The polar coordinate system (r,0,9) is used
with the origin 0, at the ceanter of the sphere. The
surface of the convex or the concave dome, which is denoted
by S(l), is represented by (r = R.0_<_8£8°, 0<¢<2w) or
(r = R,B <écr, 0<¢<2m), respectively. In Figure 3.2, the
open:.ng of the cavity ( x2+y2 < Az,z-O) is deuoted by 5(2)-

For the same reason as in Chapter II, the model shown
in Figure 2.1 will be used for the diffraction problem by
the convex dome; however, it does not show the ring wource.
The imaginary surface of the sphere with the origin ol is

denoted by S(Z).




Figure 3.1
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3.2 Mathematical Discussions
3.2.1 Diffraction by a Convex Dome
The present diffraction problem is actually a

radiation problem from a ring source with a concentric
convex or concave dome as a diffracting object. Hence, the
mathematical methods described in Séctions 2.,2.1 and 2.2.2
are also applicable to the present problem.

In the diffraction problem of the model shown 1in
Figure 2.1 (with the ring source missing), the center of the
sphere is chosen as the origin of the coordinate system, and
the boundary conditions are given on the surface of tle
sphere s(1)  an4 s(2), The total velocity potential wt(E)

outside the sphere can be expressed by

V. (B) = v (&) + v (), (3.1)

where 1 () 1is the potential due to the ring source, and
s

¥ (&) is the secondarily radiated (reflected) potential by

the convex dome. On the radiator surface S(l), d&(g) must

satisfy the Neumann boundary condition,

d . 3 3 .
(-5 v G = ~[ 5 ¥, @) + 574, 0.(3.2)

r=K
Rewriting Eq. (3.2), one obtains

J . _ J _
(- 5;’wd(h)]r=R = r ll"s((’)]r=R : (3.3)
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Thus, on the surface S(l), L{1) ang f“)(C) are given by

L 8 (3.4)
“ ar
|
‘ and

V) = 2@, (3.5)

respectively.
The velocity potential ¢s(r,e) at the point (r,6,0) 1is T

given by

QA (2m  -ikd,
\‘ls(r,e) = —i';f— JO (e /dl) d¢l » (3.6)

where d, is the distance between the point of interest

(r,6,0), and the point of line element A1d¢1 of the ring

:

source at (Rlﬁhf¢1)’ which is expressed by j

: !

2 ) , 172

d; = [(rsind - Ajcosd )" + (A sing )" + (rcosd - z )] %

(3.7)
The normal velocity distribution on the surface S(l) of the ‘
dome is therefore given by

o

J QA]_ .

- — ! ,e - — "Jkd 3

ar Ys (T )]r-R T [+ 1kdl)e 1 {(Rsinb - Alcos¢1) |
0

N\ 8in® + (Rcost - zo)cosﬂ}/di]d¢1 . (3.8) .

Expressing t%e unknown function 4(7) in terms of an -

infinite number of trial functions,
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pa€) = E-O a hn(kr)Pn(cose) . (3.9)

the function defined by Eq. (2.10) is obtained from

Eqs. (3.4) and (3.9) as

w;”(e) = - Xh!(kR)P_(cos6), 0 <6< @ . (3.10)

The symmetry of the sound field about the xy-plane
requires the symmetry of the velocity potential wd(E) itself
about the xy-plane; i.e., the velocity potentials at point P
(r,8,0) and Pl (r2,92,0) are equal to each other (potential
matching). From Eq. (3.9), one obtains

oo

Z.o a {h (kR)P_(cos®) - h_ (kr,)P (cos8,)} = 0. (3.11)

In the case of potential matching, the operator L 1s not
expressed explicitcly. By comparing Eqs. (2.4) and (3.11),
one comes to the interpretation that the operator L gives
the difference between two velocity potentials at a point
and its related point (in this case, symmetric point). One

can define W(Z)(c) and f(z)(g) as
12 (0) = (b (RIP_(cos8) - h_(kr,)T (cosd,)] (3.12)
and

(2)

f ) = 0. (3.13)

Now, applying Eqs. (3.5), (3.8), (3.10), (3.12), and (3.13)
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to Eq. (2.12), one obtains

N

A (1) @)%, o (2)
a [J yD* 03y 0145 + I v @* (19 @) (gyas)
o ) ™ "’n @) " n

S
@M @as , n=0,1, .. ¥, (B

¢

where ds = mm?sn@da, and Eq. (2.12) was assumed.

3.2.2 Diffraction by a Concave Dome

Thz diffraction problem by a concave dome is also

treated here as a radiation problem from a ring source in an ]
infinite baffle with a concentric concave dome (Figure 3.2),

S The velocity potential inside a sphere of radius R with the

! origin at 0, is expressed by

Y E) = Y (E) + ) . (3.15)

The potential ws(E) {s the one radiatad by the ring source

existing only in the semi-infinite space on the right side

of the xy-plane. The total potential wt(E) inside the

sphere can be represented as

v (8) = g-o a i (k)P (cosd) . (3.16)

On the surface of the concave dome S(l), this must satisfy

the following condition:

L ) s
-am 0 (B = gy = 0 (3.17) ‘
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This defines L(l), f(l)(e). and wil)(e> such as

(1) 2
L = - ar 9 (3.18)
f(l)(e) = 0 , (3.19)
and
1.r(ll)(e) - - kjn(kR)Pn(ccse) . (3.20)

In the region inside the sphere and outside the
cavity, the total potential is divided into two compunents:
the direct velocity potential ws(E), and the diffracted
velocity potential wd(E) due to the concave dome. The
potential ¢S(E) is given by the same equation as Eq. (3.6).
The potential Wd(i) is obtained by the Rayleigh integral of
the normal velocity distribution uB(Qpez) on the opening

5(2), which is given by

)
ug(rp,8) = = [ 2 b (01 =1,
6 = 62
) ar 3 a0 - ;
= -[-D_r(wt)s—z-".-gé(wt) e Ir T, - (3.21)
0 = 62
The derivaicives dr/dz and 090/3z are given from the geometry

by
dr/dz = cosb (3.22)
and

30/3z

[}

- stud/r . (3.23)
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From Eqs. (3.16), (3.22), and (3.23), one obtains
[- -]
uB(rz,ez) - - g-o an[kcosezj;(krz)Pn(cosez)

+ sinzezjn(krz)P;‘(cosez)/r2] . (3.24)

Then, Wd(r,e) is given by

—1kd2

b (r,8) = I J ug(ry,0,) (e ld,)ds1/2m (3.25)
S(Z)

where the coordinate of the sgsurface element is (rzdb,¢2)

and

2 2
d2 = {(rsind - rzsinezcos¢2) + (rzsin62s1n¢2)

2 1/2
+ (rcos® - rzcosez) ] . (3.26)

From Eqs. (3.16), (3.24), and (3.25), following equation can

be obtained:

N 2T -ikdl )
Z:o anjn(kr)Pn(cose) = [Jo{e /dl}d¢1]/2n

- gso a [J ( {kcosSZjA(krz)Pn(COSSZ)

~1kd
in? - 2 .27
+ sin ezjn(krz)Pn(cosaz)/rz} (e /dz)dS]/2n. (3 )

The condition expressed by Eq. (3.27) must be satisfied
everywhere in the region 1inside the sphere except at the
cavity. But, if the imaginary surface of the Sphere 1is

chosen as the woune where the condition of Eq. (3.27) is
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imposed, the nonuniqueness problem occurs [see Appendix C].
With this in wind, 1t is8 chosen that the condition of
Eq. (3.27) is required on the opening of the cavity s(2),

Rewrite Eq. (3.27) such as

7 oav@Pae = D@, (3.28)
co nD
. where
#kﬁ wiZ)(r,e) - jn(kr)Pn(cose) +[J(2){kcosezj;(krz)Pn(cosez)
S
2 —ikd2
+ sin 62jn(kr2)P;(cosez)/r2} (e /dz)dS]IZn (3.29)
and
=
. 27 -ikd
¥ £ r,0) = o, [J (e l/apds)/om (3.30)
> 0

with the relationship between r and 6 such as Eq. (2.37).
Now, the unknown coefficients a,, n = 0, 1, . . «y N are

obtained from the set of (N+1) simultaneous equaciohs with

the same form as Eq. (3.14):

8

=N

a IJ vD%oye (1) 0yas + f v % ,0)v (P (r,0) a8
=0 n m n (2) m n ‘
S(l) S |
J )\yn(‘z)*(r,O)f(z)(r’e)dS' m = 0’ 1’ e e ey N . (3.31)
(")
S

|
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3.3 Results and Discussions

Corresponding to the radiation problem from a convex
or a concave dome, the height/radius ratio of the dome was
chosen such that H/A = 0.5, 0.75, and 1.0. in most of the
cases, the radius of the ring source Al was equal to 1.5A.
The weighting factor q(f) 1in Eq. (2.12) was kept egual o
1.0 as in Chapter II. The accuracy of the ults was
confirmed by checking the error factor of Eq. (2.9) at each

frequeacy. The maximum value of index N was 60 for kA = 40.

3.3.1 On-axis Pressure Response

The ‘ar-field on-axis pressure responses of the ring
source with the convex dome are shown in Figure 3.3-3.5,
where the strength of the 1ring source is 1inversely
proportional to w . The effect of the dome appears from
approximately kA = 1.0, giving gradual rise to the raspouse
as the frequency 1increases. The height of the plateau is
about 2.5dB and does not depend strongly on the H/A ratio.
The differences of the levels of the peaks and dips>in the
high-frequency region are more than 10dB for H/A = 0.5 and
0.75. As the H/A ratio increases, the differences decrease,
and the peaks and dips are shifted to higher frequencies.
The results indicate that the radiat on efficiency is highly
frequency dependent.

Figures 3.6-3.8 and Figures 3.9-3.11 show the on-axis
pressure responses of the ring source with a concave done

for AI/A = 1.5 and 2.0, respectively. The concave dome
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begins to have some effect on the response from about the

same frequency (kA = 1.0) as the convex dome for A;/A = 1.5.

The first effect, however, appears as a large dip on the

frequency response, contrary to the results shown in Figures

3.3-3.5. The fluctuations of the response are much smaller
compared with those of the convex dome. As the H/A ratio

'? increases, the frequencies of thé peaks and dips' are ;
Es lowered. When the A;/A ratio 1s 1increased (Figures

3.9-3.11), the effect of the <cavity on the response
decreases, and the lowest frequency at which the effect is
evident also decreases.

These results show that the object (convex or concave)

in the infinite baffle has a large effect on the radiation

from an adjacent source. One effect of practical importance

is demonstrated by Figure 3.12, which shows the difference
in the response when height H is changed Ly +#0.02A from H =

0.5A. For example, when A = 15cm, the change in the height

e O I

is +43om. Figure 3.12 indicates that the change of the
height of the dome will produce amplitude—modulatibns of

about -30 to -40dB at some frequencies.

3.2.2 Directivity Pattern

Directivity patterns of the ring sources are also
affected by the convex or the concave object in the infinite |
baffle as shown in Figures 3.13-3.15 and Figures 3.16-3.18
for the case of H/A = 1.0, respectively. Figures also

include some of the directivity patterns of the ring source
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only. Again, the convex and concave domes work in opposite
ways. The convex dome widens the directivity pattern at kA

= 1.5 as well as increases the on-axis responses, resulting
in a larger efficiency (Figure 3.13). The directivity
pattern of the ring source with the concave dome at kA = 1.2
is much narrower than the one without the dome (Figure
3.16). In the high-frequency regiﬁn, the effects of the

domes are too complicated to be described simply.

3.3.3 Energy Flow and Pressure Distribution

The pressure distribution and energy flow around the
source at several frequencies for H/A = 1,0 are shown in
Figures 3.19-3.24., The circles 1indicate the relative
magnitude of the pressure, and the arrows show both the
direction of the energy flow and the square root of
intensity. The figures show that the boundary condition of
Zero velocity distribution normal to the baffle and the
surface of the dome is satisfied. The results in Figures
3.22-3.24 were calculated wusing the left-hand side of
Eq. (3.27) inside the cavity, and the right-hand side of the
same equation outside of it with the maximum order of n
truncated at N.

The convex dome has the property that it diffracts the
sound more 1n the high-frequency region. On the other hand,
the concave dome does not have much effect in the high-
frequency region. At kA = 10, the energy flows along the

opening of the cavity as if there were no cavity (Figure
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Figure 3.22

source with a concentric concave dome for H/A =

1.0 and A1/A = 1.5 at kA = 1.2,
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3.24). An interesting phenomenon is observed in Figure 3.23
which shows a couple of vortexes around the cavity at kA =
4.6. A similar phenomenon was observed by Schultz et al. in
the measurement of intensity flow in a reverberant room, and
he suggested as its reason a coupling between different
modes [32].

Consider a sound field inside a room consisting of

two tangential modes which is represented by

P(x,y) = cos(BWx/lx)cos(nylly) + icos(ﬁx/lx)cos(Zﬂy/ly) .
(3.32)
These two modes have the same wavenumber (SSKDI/%VIX,
when ly/1x = (3/8)1/2. The pressure and the particle

velocity of this potential are obtained by Eqs. (2.2) and
(2.3), respectively. Then, the intensity 1is given by
Eq. (2.46).

The results calculated by Eqs. (3.32) and (2.46) are
shown in Figure 3.25, which shows the circulation of energy
very clearly. In the case of a single mode, theré is no
(time average) energy flow because the pressure and the
particle velocity are 90 degrees out-of-phase with each
other. If the field is of multiple modes, however, energy
flows from one mode o another, causing the circulation of
energy. If a semi-infinite space contains any part which is
resonant, a similar phenomenon occurs. In the present case,
the <cavity behaves as a resonant subspace, producing a

couple of vortexes of energy flow at specific frequencies.

e e tur b o mmdh
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Figure 3.25 Energy flow and pressure distribution of the
sound field in a rectangular room consisting of
(3,1,0) and (1,2,0) modes.
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CHAPTER 1V

§ CONCLUSIONS

4.1 Remarks on the Mathematical Method

The least square error method is found to be quite

successful for solving the radiation and diffraction

Bl problems. The flexibility of this method allows it to
handle the complex shape of a diaphragm or a diffracting
objects. This was shown in the radiation and the diffraction
problems by a concave dome, where the boundary condition was
given on the dome surface and on the opening of the cavity.
Following are the interesting techniques employed in the

application of this method to the preceding problems, which

worked quite well in improving the accuracy of the results:
1. The most appropriate point was chosen as the origin of

the coordinates.

2. The boundary conditions were given on the imaginary
surface as well as on the radiator surface.

3. New types of boundary conditions were used, which were
systematically treated in the same way as the Dirichlet :

and Neumann boundary conditions. i

. . Lo N MRV
MR T SRR s oL R '_Lc-"‘:fg“'.r
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The counterpart of this method is the finite element

method. The sdvantages and disadvantages of the two

methods are:

1.

In this method, the sound field is expressed as a finite

number of terms, each of which satisfies the wave
equation. Then, the error 18 concentrated on the
boundary surface. This may simplfy the evaluation of

errors. In the finite element method, sources of error
exist both on the boundary surface and in the field.
In this method, one must be aware of the nonuniqueness
problem when he deals with a sound field including the
origin. This must be avoided by a proper choice of the
boundary surface. Normally, the finite element method
does not have this kind of problem for radiation and
wilffraction problems.
This method is closer to the analytical method, giving
better understanding of the phenomenon.
The largest deficiency of this method lies in the nature
of the spherical Bessel and Neumann functions. One must
w1l very large and very small numbers at the same
time for small argument of these functions. The finite
element method wusually does not have this kind of

problem.
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4.2 Summary of Results

The main purpose cof this study was to investigate the

differeuce of radiation and diffraction phenomena due to the

difference of the diaphragm shape. Using the least square

error method, several important results were obtained, which

may be summarized as follows:

1.

The convex and concave domes have contrasting radiation
and diffraction phenomena.

The convex dome becomes more inefficient as a radiator
as H/A increases. The concave dome is more efficient for
higher H/A in the range normally used for a loudspeaker.
The geometrical approximation method gives a good
estimation of the response of the convex dome 1in the
high-frequency region. It is a rough estimation for the
concave dome in the same region.

The radiation resistance of the convex dome 18 quite
smooth. The radiation resistance of the concave dome
has a large peak at its first cavity resonance.

The radiation mass of the concave dome is equal.to the
sum of the mass of the fluid inside the <cavity and the
radiation mass of the flat piston with the same radius.
The radiation resistance curve «closest to the +6dB/oct.
line is obtained by a concave dome with H/A 1less than
0.5.

The location of the sound after the equalization of the
pressure response exists at the top of the convex dome

and slightly behind the opening of the cavity of the




10.

1.

12.

13.
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concave dome.
The convex dome has a wider directivity pattern than the
flat piston or the concave dome. Neither of them has
any zero pressure angle, and they have similar
directivity patterns in the high~frequency region.
The representation of sound field by the energy flow was
found to be very powerful in understanding the radiation
and diffraction phenomena.
The convex dome diffracts the sound of the concentric
ring source much more than the concave done does.
The results indicate that a cone-type woofer may
diffract the sound emitted from a tweeter sufficiently
to produce a discernible amplitude-modulated distortion.
In the 1low- to mid-frequency region, the convex dome
widens the directivity pattern of the ring source,
whereas the concave dome works in the opposite way.
The existence of vortexes of the energy flow in the
resonant subspace was observed, anc it was explained as

the result of interaction between different modes.

K = SNYS.
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? 4.3 Future Work

; The results obtained so far are rather basic knowledge
about the radiation and diffraction phenomena. For further
information for the improvements of a loudspeaker, more
practical aspects of the loudspeaker should be taken into

account in the calculation. The following is recommended as

future work.

4.3.1 Modal Vibration of the Diaphragm

The high end of the reproducing range of an actual
loudspeaker is limited, mainly by the modal vibration of the
diaphragm rather than the acoustical reason. The assumption

of plston-like motion of the diaphragm is then not so

a4, .

preferable to discuss the responses in the high-frequency

) Ij".,r;" LA

region of the loudspeaker. The velocity distribution of the

diaphragm at its modal vibration can be obtained either by a
measurement or by a theoretical calculation. Applying this
velocity distribution into Eq. (2.6), the modal vibration is

easily taken into account in the present method.

4.3.2 Diaphragm Shape other than a Dome

A cone-type loudspeaker usually has a straight cone

with a dome~-type dust cap at its center. In this case, the

concave dcme is not really a good approximation of the cone-
type loudspeaker diaphragm. In order to 1investigate the
radiation or the diffraction by the cone diaphragm, an exact

shape must be considered, especially in the high-frequency

X
:,

RN
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region.
does not necessarily depend on
present method is applied to
the convex or the concave dome,
the center of a sphere as
where the portion of the sphere
diaphragm most effectively.

Calculations of

diaphragm shapes will

relation between the diaphragm siuape and

responses such as the
impedance, and directivity pattern.
this relation will yield information
which

of the 1loudspeaker diaphragm,

different purposes. It is needless
process of the evaluation of the

psychological aspects of them must be

4,3.3 Three--Dimensional Problem

The vibration of a diaphragm
considered 1less
characteristics. Hence,

of the sound field seems reasonable.

the dome shape.

the origin of the

the characteristics of some

give the general knowledge

on—axlis pressure response,

effective on most of the

132

As was mentioned in Section 4.1, the present method

When the

the diaphragm shape other than

it is recommended to choosa

coordinate,

represents the shape of the

kinds of
abouf the
several important
vradiation
The interpretation of
about the "best" shape
may be different for
to say that, in the

characteristics, the

taken into account.

with radial modes 1is

radiation

the assumption of the axisymmetry

When one discusses the

diffraction problem, however, he should be able to deal with

the problem as a three~dimensional

extend the present two-dimensional

dimensional program is rather

case. The

process to

program to a three-

a straightforward task. The
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problems one may encounter are related to the limitation of
the memory size of the central processing unit of a computer
and the computation time. These limitations may be overcome
by a large computer system and improved algorithms that are
now available. The results will bring some more important

knowledge about the diffraction phenomenon.
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APPENDIX A
DERIVATION OF EQUATION (2.12) FROM EQUATION (2.11)

The condition that the variation of the functional

defined by Eq. (2.9) is zeroc for all a n=0, 1, . .. .+, N

n)

is the necessary and sufficient condition for the validity

of Eq. (2.12). This is proved as follows:

PR (S @) - £ )}{lf W @y - €5 @das . (A1)
I8 ann c = C i ai i(: - C . .

Snno i=0
Then,
N I A ") (A.2)
e, ] @ L@ - E @l '
m n=0
S
and
N *
3J * 3J
3—* = J ‘i‘m(«:) i an\Pn(C) - £f(g)}dS = (g;— « (A.3)
a g n=0 m
Hence,
37 3J * 3J .
81 = =-8a + =3 8a = 2Rel(z) da} . (A.4)
m Bam m

In order for 6J to be zero for arbitrary Gan, Eq. (A.2) and
m o

equivalently Eq. (A.3) must be zero. Rewriting Eq. (A.3),

one obtains Eq. (2.12) [assuming q(Z) = 1.0 for simplicity].

N
ey _ * _
JS §=0 aan(g)Wm(c)dS = J Wm(c)f(g)ds
S

m=20, 1, . ., N . (A.5)

sl s e e
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APPENDIX B

ANOTHER SOLUTION TO RADIATION

PROBLEM FROM A CONVEX DOME

Another solution rather than the one discuésed in
Section 2.2.3 is. possible. The degails of this method and
its deficiencies are discussed here.

The sound field 1is expressed in terms of' the
spherical Hankel functions and Legendre functions with the
origin at O in Figure 2.1:

N
Y(r',8") = y aznhzn(kr')Pzn(cose') s (B.1)
n=J
where only the even orders of terms are used because of the
symmetry of the sound field. The normal velocity
distribution u (6) is obtained by differentiating Eq. (B.1l)

n
in terms of r such as

By or' ., By | 39"

u(@® = - (ar' or 36"  T3r.

n

. (B.2)

The relationship among r’, 9', r, and § are given by

r'2 = r2 + zg - Zrzocose (B.3)

and
(rcosd - zo)tane' = rsin® , (B.4)

where
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z, = Rcose0 . (B.5)
From Eqs. (B.3) and (B.4), one obtains
or' '
A - (x - zocose)/r = cos(0' - 9) (B.6)
and
! 30 '
‘ =— = = sin(6' - 6)/r' . (B.7)
3 ar
-1
‘ Substitution of Eqs. (B.6) and (B.7) into Eq. (B.2) gives i
"u i
e i
N |
u (@ = -7 ay lkh, (kr')P, (cos®')cos(8' - 8) 1
n n=0 !
"ypt ' ' Pl ' i
+ hzn(kr )P2n(cose )sind'sin(0 8)/r'l . (B.8) :
El
Now, an(e) and f(B) are defined such as vl
'.~: _ J ' :
. ¥,,®) = - [kh, (kr')P, (cosd ) o
) il
b
+ h, (kr')P'! (cos6')sinB®'sin(6' - 8)/r'] (B.9) !
2n 2n i
and EE
£(0) = U_cose. (B.10) |
Then, the unknown coefficients a,, n=20,1,, . +» N are
obtained by solving (N+1) simultaneous equations:
6 »
N i
I a, [J ¥y (0)¥, (0)2mR?s1n(8)d6] .
n=0 -° 0 o
d

80 2 ‘
= J ‘l’z (0)U cos(9)2mR“sin(0)do 3
m o

m = 0,1,2, ..., N . (B.11)

- l

o e : G
o e :sw‘;iv.4M$aiLn-~~ i R
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This method looks simple because it does not require

the introduction of the imaginary surface. But it was found
that this method has two basic preblems. Firstly, the
convergence of Eq. (B.8) to Eq. (B.10) 1is very slow. This
is because the origin O is not suitable for the expansion of
sound field in the form of Eq. (B.l1). For the radiation
problem from a portion of a sphere,- it seems reasonable to
choose a coordinate system with its origin at the cgnter of
the sphere. Secondly, the argument kr’ becomes small near
the z-axis for small H/A ratio. The real and imaginary
parts of the spherical Hankel function becone very small
and very large, respectively, for small argument when the
order n become large. This causes the underflow and
overflow problem in the ©process of numerical computation.
This nature of the spherical Hankel function prohibits from
taking higher order of n when one tries to have good

approximation of Eq. (B.8) to Eq. (B.1ll).

e kit St

ctrm = A b e g D O
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APPENDIX C

NONEXISTENCE AND NONUNIQUENESS PROBLEMS

OF A SERIES EXPANSION OF THE SOUND FIELD

i. Radiation From a Sphere

The nonexistence and nonuniqueness properties of the
solution of the sound radiation problems were discussed
theoretically by Copley [11] and Schenck [12]. These
properties are discussed here focussing especially on the
series expansion of the sound field inside and outside the
sphere.

The velocity potential outside the sphere with only an

outgoing axisymmetric wave can be expressed by

N
y(x,8) = §=0 anhn(kr)Pn(cose) .

(c.1)

Generally, the boundary condition is given either by the
pressure distribution or by the normal velocity distribution

such as P(8) or U(B) on the surface of the sphere.

Then,
N
P(B) = 2;:0 p -+ P (cos®) (C.2)
and
N
u(e) = rz,=o uo. Pn(cose) , (C.3)
where
i
P, = (n+1/2 J P(G)Pn(cose) sin(0)do (C.4)

0

[N - T M e -"4‘;:‘!"@_;‘!-’.“ 3,’,3‘.‘\.3 g it

FEVR IR Y 1Y,
¢ A

e e o o M e e i 4 2k

e el e et i e
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and
m
w = (n+1/2) j U(G)Pn(cose) sin(8)do . (C.5)
0
Comparing Eq. (C.1) with Eq. (C.2) or (C.3), one obtains
"a
= ! (C.6)
a_ P_/juwph (kR) |
or
' : .
a —un/khn (kR) . ; (C.7)
Now, h“(x) and h;(x) caun never be zerc for x x 0,
because the real part jn(x) and imaginary part nn(x) of

hn(x), and their derivatives satisfy the following equation

(33]:
3,00 - nle0 - a () - 360 = 1L (c.8)

Thus, a is uniquely determined for any prescribed pressure

distribution or normal velocity distribution.
But, when the velocity potential is expressed such as

{corresponding to the solution by Green’s function [34])

N
¥(r,0) = §=0 28,3 (kR)h_(krjP (cosd) , (C.9)

the unknown coetficiznt a  1s given by

a = pn/ju\Ojn(kR)hn(kR) (Cc.10)
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or

a, = =-u /kj_ (kR)h'(KR) . (c.11)

In this case, the <coefficient defined by Eq. (C.10) or
Eq. (C+.11l) does not exist at the frequencies where jn(kR) -

0.

ii, Sound Field Inside a Sphere

The velocity potential inside a sphere is expressed by

N
Y(r,8) = g=o a j (kr)P (cosf) . (C.12)

Corresponding to Egqs. (C.6) and (C.7), a, 1s given by

a = pn/jijn(kR) | (c.13)

or
a = -u /kj'(kR : c.l4
n n/J.( ) . l ( )

Then, the coefficient ag, obtained from Eq. (C.13) or

Eq. (C.14) is divergent at the characteristic frequencies,

where jn(kR) = 0 or j;(kR) = 0 1if P, Or u, is not equal to
zero, respectively. If P, or u, is equal to zero at the
characteristic frequencies, the nth term mnust be excluded
from the series expansion. If 1t is included even at these

frequencies, the solution is not unique since a, can take
any finite value without affecting the boundary condition.
This kind of nonuniqueness or nonconvergence problem may

happen {if Eq. (C.12) is employed and 1f the boundary

condition is given on the surface of the sphere.
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APPENDIX b

ACOUSTIC CENTER OF A LINE SOURCE

S The acoustic center of a line source which is lying in

the z direction between z = 0 and z = 10 is calculated as

follows.,

PR Ay PR

The far-field on-axis pressure response of the source,

which is normalized to a point source with the same source

ey

..t

o strength at z = 0, is given by

1 ,f

o :

' p = %; [ eikzdZ ;

. o 0 ‘
‘.A’

) = [sinklo + i(1 - cosklo)]/klo f

. = sin(@el¥/q | (D.1) |

where Q k10/2.
The imaginary part of a minimum phase network having
the real part of Eq. (D.1) 1s obtained using the Hilbert

transform such as (using the integral formula in [35])

) Jw sin2Q! aa'

L Prin I TR

-0

(cos2Q - 1)/200 . (D.2)

Then, the total response of the minimum phase network is

given by

~1i0
Puin = sin@e “¥/q. (D.3)
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The phase responst ¢alumss defined by Eq. (2.46) is given

by the difference of phase responses of Eq. (p.1) and

Eq. (D.3) such as

) ¢allpass(m = Q- W = k. (D.4)

{ Dividing Eq. (D.4) by k. one obtains the acoustic center 1,

which is constant with respect to frequency-
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