Fl
i s

E g NS R
¢ .

e

ik al

&
o
.

)

-}

i

-
oy

N 95

|
O |
N DTIC
oA \ELECTE
N | JUL'3.0 1981 .
) a o ’ SCHERULING WITH SLACK T ’
< ‘ roop s s o bty b e e IR W A TR S
C"“\"},:LNW‘Q gD LIV, JANE j~1.§.]:l'?l'\‘l:, ARTHR L ,t'_lesn-vaj
S v _- T (3
X Department ¢f Compuler Science, University of 1LLGW0LS
Unbana, 18L{noLs. 61801
UsA
E This work wes panddadly suprontod tir the US Ciadee 24 | Maval Reseaxch unden the
1 8 Contract N(u%‘ 444 z4~?9-c35'??5 T NG SAJ,\z;u;r;-r.(-,o’;?,g ;
D e
{;«' . (
= [76.01] Y

- 7 RS A b - e e - o
S RETF AR T AT 0 o I W S PETETER I, ¢ TSN AT WA Y ., -, T

- Best
~ Available
Copy

i
1 Jutroduciion

We study in this paper a problem concerning the scheduling of a set
of jobs on a single processor computer system. In our model, a job
consists of a periodic streamof identical requests. That is, a job
Ji~dcmnnds periodically Ci»units of qomputatiou time in every T: units

of time. We shall use Ji, J2, ..., J;, to denote the jobs, Ti, T2, RN

to denote the request periods, and Cis» Chvuvny Gyoto denote the computation
times. (Twughout our discussion, we shall acsume T%i“f??ii' I@;ﬁiﬁ)
convenionce in notatiens). That 1s, a job J1 is compietely chnrnchrizéd‘”< o)
by an ordered pair of numbers (Ci, Ti)'

By scheduling a sot of jobs we mean to determine, at any time instant, the
particular request to whicii the processor stiould be devoted. In our model,
che criterion of schecduling is to satis{y cach request prior to its
deadline, viiich is the arrival time eof the next request of the same jeb.

A sct of jobs is said to be schedulable by a certain scheduling
algorithm if such a criterion can be met. Througheut our dicussion, we
assume that the preemptive scheduling discipline 1s emploved. That

is, the ecxecution of a lob can bde interrupted by the execution of another
job. . Thus, a request of 7. units of computation time can be satisfied

by one or mcre juanta of time which sun to C,.
-~

A well=xnown scheduling algorithm for our medel Is the earliest
D o —————————————

deadline first scheduiing algorichm [1, 2, 31, In this case, prieritiecs

are assigned o the requests according to their deadlines, with highest

w

priority assigned to the request with the earliest deadline. The

} arrival of a request wizh a bicher priority alwavs preempts the execution
of a request witihr a lower pricrity. The earlicst deadline first scheduling
aigoritiot has Deen suewn to be optimum in thce sense that [a set of

! Jjobs 1s schedulable by any scheduling algorichm then the set is also

schedulabie by the earliest deadline firsc scheduling algovitia,

Anothier scheduling algorithm which was studied in [3] in the

rate ponotonic schedaling algorithm, In this case, bigher priority is

assisned Lo 0 reguaest withe shorier request period. Thus, for example,
the requests of tihe job with the shortest request period will always
proeempt any veguest of another job, This alpovitive is inferior to the
cariiest deadline tirst aizorithm 1o the sense thar there are sots

of jobs which ave scahedulable by the carliest deadline {irst ulgoritim

-
-

- m—

while not schedulable by the rate monotonic algorithm. However, the rate
monotonic algoritlm is simpler to implement.lurthermore, the simplicity of
this algorithm cnables us to estimate the slack time of a request, which
is the subject of this paper. It is often the case that instead of

simply mecting the deadline of each request, we might wish to satisfy

each request ahead of its deadline so that there will be a time

span between the completion of the execution of a request and the

deadline. We cail such a time span the slack time of the request.

we summarize here soime of the rvesults in [3] that will be useful

in our study. We use u;, u:, el 50 denote the ratios C /Ty, Ca/T2,...,

fullw utilice the processor with respect to a particular scheduling

.

algoritim i the set of jobs is schweddade by the algoritim whiie increasing -
the cemputaction time of any of the jobs will cause the set to become
unschiedulable. (Mote that thewtion of full utilization is deflined with

respect to a particular scheculing algoritha. For exanmple, the set of

jobs {2y = {1,), J: = (2,3)} fully utilizes the processor with

respcect to the rate mouotenic scheduling alporichm. Howvever, this set
does net fullvy utiilize the processor with respect to the ecarliest
dealine {irs: scheduling algorithm). Proofs of the foliovwing theorems
can he found ia {3

Thecren 1 A set of nojobs with a utilizauvion factor less

Al /0

than n(- 1) is always schedulable by the rate monotonic

~ 3 TR EED M St
SCilcuniliily d.j0rila,

. . ST
Theorim 2 5 A set of n jobs with a utilization factor less than-
T — ————

410 .. ' re s -} © oy
2 - 1) does nut fullv utilize the processor with respect

-
-t
~

to the rate monotoni¢ scheduling algorithm, Morcover, there d

RWAT

exists a set of n jobs with a utiiization factor fqual to
a2 = 1) thar fullw vtilizes the processor. By.

.

Distribution(_
Avai;;k;;;tyvCodos
vail and/op
Dist Special

e e

4 [D

e

PRI o y B ; . son a : W " :

g - g

TR e gt e T e g e £
TR G R o R

IR

mw.q A TR ST S0 o BT AT p S S M R R T2 P S e PR TR YT T e B T Ve B

R .
B N k!
? while not schedulable by the rate monotounic algorithm, However, the rdte
? monotonic algorithm is simpler to implement.lurthermore, the simplicity 6f’ ‘
§ this algorithm cnables us to estimate the slack time of a request, whicﬁ ' ,j
g is the subject of this papcr. It is often the case that instead of ‘

i simply mecting the deadline of cach request, we might wish to satisfy

& each request ahead of its deadline so that there will be a time

§ span between the completion of the execution of a request and the

% deadlinc. We call such a time span the slack time of the request,

3 .
ﬁ We summarize here some of the vesults in [3] that will be useful

: in our study. We use u;, uz, cesu So denote the ratios C /Ty, Ca/T2,404y

% C“/T“. We use u to denote the sum .3 Ci/Ti* u is refewed to as the

£ utilization factor of the sct of jégé Jis Jz,...,Jn. A set of jobs is said to

? fully utilize the processor with respect to a particular scheduling

? algorithm if the set of jobs is schediaile by the algorithm while increasing '
é the cumputation time of any of the jobs will cause the set to become

§' unschedulable. {Note that thewtion of full utilization is defined with

A respect to a particular scheduling algorithm, For example, the set of

§ jobs {Jy = (1, 2), Jy = (2,5)} fully utilizes the processor with

§ respect to the rate monotonic scheduling algorichm, Hovever, this set
%’ does not fully utilize the processor with respect to the earliest g
;J dealine first scheduling algorithm). Proofs of the following theorems
4 can be found in [3] :
gﬁ
% Theorem | ¢ A set of n jobs with a utilization factor less
ﬁ than n(Z'/n— 1) is always schedulable by the rate monotonic

f% scheduling algorithm,

5 Theorem 2 ¢ A set of n jobs with a utilization factor less than

g& n(Z'/“- 1) does not fully utilize the processor with respect {;

g . to the rate monotonic scheduling algoritlm. Moreover, there '@

%\ exists a set of n jobs with a utilization factor gqual to Y,

?: n(Z'/“ - 1) that fully utilizes the processor, By. .

- Distributiony

- Avallability Coges

I : Avail and/or

! Dist Special

NIV * AT L L s v Teey = by o
A K T R R N R R R SRt e o ooy e re s o A Ry

s

3

e

B

3

g{&

pd

il

Ly

x

o -,
o 2. A Fundamental theorem. ;
;f Suppose that Jy, J2, «.u, Jn are to be scheduled by the rate
o monotoiic scheduling algorithm. We shall assume that the first request of .
?t all thesc jobs arrive at t=0, (As a matter of fact, Theorem 3 below

gt . . :

e shows that such an assumption covers the worst possible case). We define
Z& the availability function £(t) to be :

% ¢ if the processor is occupied at t

K £ (o) 3

T, . . .

- 0 if the processor is not occupied at t

For any 4 dnd T, the integral

: AT rwa |
3 2 gives the total units of time that the processor is not occupied
;; ; between 4 and & + T. A sequence of demands (not necessarily periodic)
! . within the time intervat [0, ckl can be denoted
L i D= (di, [0, D)y (dey Ly waDdy wey (dps [y 0 g0 D)
S
%é to mean that d; units of computation time is demanded within the time

interval [0, &), d: units of computation time is demanded within the

time interval {t;, t:], and so on. We shall use DA to denote the
sequence of demands.
DA = (dl- [A) Lty + Al)’ (dZ) (ci "A. t} *Al). XY
(dk’ [tk-l + A’ tk + Al)
which is D delayed by). Given an availability function7 (t) and a

DB AT R RN IR T MRS WL

sequence of demands D within the time interval {0, tk]. and assumad
that the demands in D have priorities lower than all the requests
of the jobs Ji, Jy, vty Jn’ then the demands in D will take up the
first d; units of time within the time interval [0, t;] ‘inf (L),
and so on. (Assume that flt) can satisf{y the demands in D).
We shall use

f(t) = D(b)
to denote the available time that remains after all the demands in D
are satis{ied. (This is a slight abuse of notation, siuce straightly
speaking a sequence of demands is not a function of time,
Rather, D induces a corresponding D(t) for a given f(L), and will
induce a differcnt 5(t) for a different f(t).) The following lLemmas are

obvious 3

S ——— ——— - b S 1% % s o i e e

LR sl el b
Wi U e ,,»‘*f'wcg*f““.-;{‘;z

i L e] e s e

2. A Fundamental theorem.

Suppose that Ji1, J2, +eey Jn are to be scheduled by the rate. ‘
monototic scheduling algorithm. We shall assume that the first request of ..
all thesc jobs arrive at t=0. (As a matter of fact, Theorem 3 below
shows that such an assumption covers the worst possible case). We define

the availability function f£(t) to be :

¢ | if the processor is occupied at t
[(t)= ;

0 if the processor is not occupied at t

For any 4 and T, the integral

A %7)
J A f(e)de

gives the total units of time that the processor is not occupied
between 4 and & + T. A sequecince of demands (not necessarily periodic)
within the time interval [0, ckl can be denoted

D= (di, [0, &i]), (da, Ly tad)y wony (s (g _ [t])
to mean that d; units of computation time is demanded within the time
interval [0, t;], d: units of computation time is demanded within the
time interval [t;, t:}, and so on. We shall use DA to denote the
sequence of demands.

p® = (div (3, & +al), (da, Lty + 8, t2 +a]), ...,
(dy» [tk-l a4, 8+ Al
which is D delayed by M. Given an availability functionT t) and a
sequence of demands D within the time interval [O, tk], and assumed
that the demands in D have priorities lower thin all the requests
of the jobs Ji, Ji, «usy Jn’ then the demands in D will take up the
first d; units of time within the time interval [0, t;] ‘inf (L),
and so on. (Assume that f{t) can satisf{y the demands in D),
We shall use
f(t) - D(L)

to denote the available time that remains after all the demands in D
are satisf{ied. (This is a slight abuse of notation, since straightly
speaking a sequence of demands is not a function of time,
Rather, D induces a corresponding D(t) for a given f(1), and will
induce a differcat D(t) for a differeut f(t).) The following Lemmas are

obvious :

T C— et 00 bt & mem e pu——

~ o « . - e . i L S, PR B T T -
" ——. B
%

Lemma 1: For auy f (t) and any D within the time interval [0, 1], if .
j Ay + T b2 + 1T
" f(t)de s [8 f(t)de
than Mo+t N a2 + 1 5
L0 = o olde < (1 (e = 0 (o)) ae
Y] . Az .

Lowma 2 ¢ Lot
D = (dl, [O,t’])' (d}, (Ll’ tzl)""’(dk’l tk"‘. tkl)

be a scquence of demands. Let
E = (o’ [0, 6])) (dlg [6| Ly + 6]): (dlt (tl + 6) t: + 6]),

coildps Ly)+ 8, +8 D) .
That is, E is the scquence of demands in D delayed by ¢ wnits of timeo.

Then, for any 1

b+ T A+ g
) ")
A [f() =D ()lde s | [f(t) - E°(e)]de
We prove now a fundamental theorem whick will be needed in our later
discussion :
Theorem 3 : For any set of n jobs Jiv Jy, ...Jn "scheduled by the »
rate monctonic scheduling alzorithm, we have *
t
T A+ 1
0 f(t)dr < J‘ f(t)de
for any A and T . -
Proof : The theorem is proved by induction on n. As the basis of
induction, we note that for n = |, f (L) is a periodic function of period
T, so that f(t) = 0 for the first C, units of time and /(t) =1 for the
next T = € uuits of time in cach period. Clearly,
(T A+ T
J f(e)de < f(L)de
0 A .
To carry out the induction step, we assume that the theorem is true v

when (L) is the availability function after n-l jobs have been schieduled.

Let f (L) denote the availability function after n jobs have been scheduled.

S AT, ™ W R AP o g TR .
| N S T T U S o AR

Consider first the simple case thatd is a nultiple of T,. Let

D= (C, [0, T), (€, T, 2T 1), oovy (Co [(k=DIT 5 ¥T 1)

such that an 2 T, According to the induction_hypothesis

T A+ T
j Tf(t)de s J f(e)de
0 A

According to Lewma !

A+ T

T
J (f(e) = v(eYlde s f [f(e)y - DA(t).ldt;
0

)

which is

U o« A+ T .
] f(t)dr s [/(t)de :
a

Now consider the case that 4 i: not a multiple of Tn as

illustrated in Tig 1.

ffe

| { $5 t ; A ¢
§ a
Fig. 1.

Let T bc the largest t such that § < A and § is a multiple of T,
§ =T .
n

We examine two cases

Case | : f(t) =0 for §s ts a4, In this case
Id + T [A + T
S f(eyde < A f(Lde)

Assording to the induction hypothesis
[T §+ 1
j f(e)yde < [f(t)de

0

3

e N YIRS AR
BT L

According to Lemma |

T §+ 5
]0 [Ke) - D(o)lde < Js [f () - 0%(t)}ae

That is,

T § + 1 a
J f (tyde s I f (v)de (2)
0 é
Combining (1) and (2), we obtain : .
T H+ T o
J f(vyae s J f(v)de) o
0 A .
Case 2 :)

f(t) #0 ford s _s A, That f(t) ¥ 0 implies the demand within
the time interval [rTn. (r+l)T“] is satisfied at arprior to t = 4,
Thus, within the time intorval {4, (r + l)Tn]. f(e) = f(u).
Let A denote (r+\)Tn-A. Let

NN

E= (0, [0, A, (C.iT*2, 219, ..., -
(€, [kT“* X.(k+l)Tn*X h
That is, F is D declayed by A. Thus, we can write
4 +1T . 4+ T A
I f(t)de = I [f () -~ E “(e)fde
s A 3)
[]
sccording to Lemma 2)
A+ T A+ T A
j [f(v)- p*(0))de J F(O=-E"(]de (4)
A A
However, according to Lemma ! and the induction hypothesis
{‘t - A+ A
f(t)dt < f {7 (0)-p" (t)}de (5)
Je A
Combining (3), (4), and (5), we obtain
fT - A+ T A A+ T
, f(tyar = j [f(t) - E5(t)ldt = [f (t)de
10 A A
| 4

—

I e L e A

i v

P

‘%M*‘MW -

3. Estimation of slack Time. S
We show in this section lower bounds on the slack time of a ‘
request, Theorem 4 and 5 in the followings will be proved by induction S |

on the number of jobs. We show first a lemma which be used as the basis
of induction, in the proofs of Theorems 4 and 5,

monotonic scheduling algorithm, with u< 2(2'/2-1). For an arbitrary request of ~
J:, let q denote the size of the last quantum of time allocated to the i

) Lema 3 : Let Jg and Ja be two jobs scheduled according to the rate

request and s denote the length of the slack time. Then s 2 0, 207q -

Proof : Wo examine two cascs ¢
Casc | : The exccution of the last quantum of the request begins at no more
than T; units of time after the arrival of the request, as illustrated

in Fig. 2(a).

A h ﬁ ’ .

5
n — ot n A Y]
¢ ¢ $ @ $ s
asT a>7 ‘
@) by |
Fig. 2.

In this case, since a €Ty, during this a units of time atmost
Ci units of computation time was devoted to Jy. Thus we have

T; (1= —ptd)
2

s 2Ty ~ (Ci+ C2)

2 Tap 1=, Ci¥ Cr)
(¢ T, Tz)J
= T2 (1= u)
o= 1= u
Cz(-;;—d
- u I~ u, - 0.83, _
zq m) 2 qf — 2 "("‘6‘.'33’) =0,207q

Case 2 @ The execution of the last quantum of the request begin at more

than Ty units of time after the arrival of the request, as illustrated

in Fig. 2(b).

SRR 2 " e T e A UL S PR o i

A
N

Let b denote C =~ q. We have :

G Ca b+q
U e 71-‘;- + Ta - u‘+ a+q+s

or
b+tg=(a+q+s) (u-u)
or
s(u=u;) = q(l=u+u;) + b= au=uy) (6)

Consider a job that has a request period cqual to a and sumputation
time equal to b. Suppuse we want to schedule the two jobs (G, Ti)(b,a)
according to the rate monotonic scheduling algovithm. Kbcbtding to Fig. 2(b),
and Theorem 3, after J; was scheduled the total processor time available for
Ji in the time interval [0, a] is less than or cqual to L. Consequently,
cither the set {(Ci, T1), (b, a)} fully utilizee the processor or the set
is not schedulable at all. In cither case, according to Theorems | and 2,
we have @

wov 22 2
That is

b -a(u-u) >0
Consequently, (6) yields
sfu=u) 2q(l =u +y)
| =u;
s 2q (o) = 0.207g

We now have :

Theorem 4 ¢ Let Jy, J2,..., Jn be n jobs scheduled according to the rate .

monotonic scheduling algorithm. Let q denote the lerath of the last quantum
of time allocated to the first request, If u <n (2‘/n_l) then the slack
time of any request, is larger than or equal to 0.207 q,

Proof : According to Theorem 2, the slack time of the first
request is }ess than or equal to the slack time of any request. Thus,
it is sufficient to prove rhat the slack time of the first request is

larger than or equal to 0.207 q.

The theorem is proved by induction on n. Lemma 3 provides the basis
of induction, As to the induction step, we assume that the theorem is true
for n -1 jobs. Let us use q and s to denote the length of the last
quantum of time alloccted to the first request of Jn and the slack time of

this request. We consider two cases @

A
-

PUREPEPS U

=

. N

. . N st
Case | ¢ lhe execcution of the last quantum ol time allocated to réduerc -
bLiA S : e L

begins at no later tham t = T _ as illustrated in Fig.3(a).

Y W Y W

Je t Zﬁ ﬁ%& 2 ? %Z, *
: :
fl— 2 f w4 177
z % %W sz % w !
N p— ,_._.__.7‘- e L B~ — o Ly
e ¢ 3 e §° ¢
as T, a > Ty
.
@) b,
Fig.3.
Consider the set of n =] jobs (Ci, T1)y (Cay T2)s vees (Cn“z,'l‘n -Q,
<cn-l + Cn, Tn). According to the diagram in Fig.3(a) and Theorem 3,
this set of n = | jobs is schedulable by the rate monotonic scheduling ’
algorithm, Furthermore, the first request of the job (Cn_xt Cyo Tn) will
occupy the processor during the time intervals in which the first
request of Jn—l and the first request of Jn occupy the processor whea
the jobs Ji, Jy, ey Jn were scheduled, Let q' and s' denote the length of
the last quantum of time allocated and the slack time of the first request
of the job (Cn-x +Co T“). Then according to the induction hypothesis ?
s' 2 0,207q’ Y
Howerver, since '
s' =3 and q'2 q)
we have
s 2 0,207 q
Case 2 : The exccution of the last quantum of time allocated to the
request begins at later than t = Tn_l as illustrated in the diagram in
Fig. 3(b). Let b denote Cn- q. We have .
ntl C“ nil + q
v iél U T A T +q+s
which can be written gs g
a~1 = n.. |
s(u -iglui) =q(] ~ u+ ?;lui) + b «au -i§ lui) "

Consider the n jobs (G, T1), (C:, T2), “'(Cn-l’ T), (b,a).

n=-1 i

TR Ayt v e

Lo

e AR LT e e

|

Mmoo
" TN IR I Sy i S pmnyey gmanney

According to the diagram in Fig.3(b), this set of jobs fully utilizes

the processor with respect to the rate monotonic scheduling algorithm.

(The processor was never left idle within the time interval {0, a}.
Because if this was not the case, the first request of I will be completed

earlier). It follows that
n=

\] b
}‘ -~
% Yty .
or
n=y
- -3 u.
b - au i-|u1) >0 .
It follows that (7) can be written as
t\;x u=
- - . - -:]
s(u i“ul) 2 q(l - u +x~;u1)
or
s2q (l " Y) z q(l§5 2 0,207 q
u
“ ’
We now have
Theoren 5 ¢ Let (Cyy Ty)y (Cpy T3)yeou (€, T,) be a sct of n jobs with
u< n(Z'/“-l). let Tna 2Tn-;‘ For any request of Jn’ let q and s denote
the length of the last quantum of time allocated and the length of the
slack time of any request. Then s 2 0,207 q.
ppool ¢ The proof of the Theorem is carried out by induction on n, [
Lemma 3 provides the basis of induction. As to the induction step we
consider two cases :
Casc | : The exccution of the last quantum of time allocated to the
request begins at no more than Tn-; units of time after the arrival of the
request as illustrated in Fig, 4(a).
y) ’ 4
ro%_ W 1 ro¥ Y W
ee f 'é ﬁ" . 2 3
,VI P Y
s 17 Ja-2 i\%
T2 L % g
A A ’ P A
7 L Y % (crea, 7 % Z %1
" i T +Ta
W.____f"v"“ ~ — P P St
a g s @ 128
Fig. 4
(&) o)

P -

HTUPIND A XY O PP i) AR S v e

Tarrn kayy

Let C denote the total computation time allocated to Jn~, within the
time interval {¢T_, rT_+ al. Since: & T__ , we have CS2C _ .
n’ n n=y n-y

Now consider the n=-! jobs (G, Ti), (Ca, T2)y oo (Cu_z,T

n=2
Since
n=t cC+0C n-2 2
. n- 2
! u, + n P! o g, + Cn~| + cu $ vZ . cn“:
n n n n=

these n=! jobs arc schedulable by the rate monotonic scheduling algorithm.
Noteovér, the diagram for the time interval [rTn, (r *|)T“I will be that
shown in Fig. 4(b). For there n-l jobs, since T“ 22Tn~z' by the
induction hypothesis '

s' 20.207 q'
Since

s' =3 q'2 ¢
we have

s 2 0.207q

Case 2 ¢ The exccution of the last quantum of time allocated to the
request begins at later than Tn-; units of time after the arrival of the
rcquest. The derivationof the bound for this case is similar to case 2

in the proof of lhcorem 4, and will not be repeated here.

*

), (C+C, Tn).

EL

Je R

PIATT

A

-

Rt o
i BT SR AR R AT R T T D I AT ST ALY o —
E b T R R BT Wﬁ'ﬁ}?&t{ﬁ@y,#d T

1Y

5. Remarks.
Aside from the tresults in Thecoems 4 and 5 which give a lower

bound of the slack time of a rcquest as a function of q, it seems that
slack time can be estimated in other ways, in particular, as a function
of the utilization factor of a set of jobs., Intuitively, it is clcar that
for a set of jobs with a small utilization factor, the slack time of each
request should become large. Our result only uses the utilization factor

in an implicit way.

We conjecturce that the condition Tnz ZT“_‘ in Theorem 5

1s uwnnccessary.

Ao Mo

S R A A T SRR R R S R T :

T

e s .

. AR e o be, -
e o - by WS e

REFERENCES ‘

Dertouzos M.L., "Control robotics : the procedural control of physical
processes', IFIP Proc., 1974, p. 807-813.

Labectoulle J., "Some thcorems on real time scheduling", Computer
architecctures and networks, E. Gelenbe and R. Mahl eds., North-Holland

Publ. Co., 1974, p. 285-298,
Liu C.L. and J.W. Layland, "Scheduling alporitims for multiprogramming

in havd=-rcal-time environment", JACM, Jan. 1973, p. 46-61.

! (’S"w T RO O A R st

