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: Abstract

There is a rapidly growing interest in problem-scale paralletism,
both as a model of animal brains and as a paradigm for VI.SI. Work
al Rochester has concentrated on connectionist models and their
application to vision. This paper lays out a framework for dealing
with such problems. The framework is built around computational
modules, the simplest of which are termed p-units. We develop their
properties and show how they can be applied to a variely of

problems,

To show how the framework can be applied to computational
problems in vision, two specific examples are developed in some
detail. In the first, we describe how spatially distributed data can be
associated with a complex concept. In the second, we discuss the
shape trom shading problem and show -how a global parameter, such
as light source position, interacts with the calculation of a spatially
distributed parameter such as surface orientation, .-~
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1. Introduction

Animal brains do not compute {ike a serial computer. Comparauvely siow (simllisecond) netiral
computing elements with complex, parallel connecuons form a structure which s dramatically
different from a hugh-speed, predominantly senial machine.  Much of current rescarch in the
neurosciences 15 concerned with tracing out these connections and with discovening how they
uansfer wmformauon. One purpose of this paper is 1o suggest how connecuonist theones of the bramn
can be used to produce testable, detailed models of interesung behaviors.

Artificial intelligence and articulating cognitive sciences have made great progress by employing
models based on convenuonal digital computers as theories of intelligent behavior. But a number of
crucial phenomena such as associalive memory, priming, perceptual rivalry, and the remarkable
recovery ability of animals have not yelded 1o this treatment. The other major goal of this paper 1s
to lay a foundation for the systematic use of massively parallel connectonist models n the cognitive
sciences, even where these are not yet reducible to physiology.

The connecuonist view of brain and behavior is that all encodings of importance in the brain
are in terms of the relatve strengths of synapuc connecuons.  The fundamental premuse of
connectionism is that individual ncurons do not transmit large amounts of symbolic information.
Instead they compute by being appropriately connected 10 large numbers of similar units. This 18 in
sharp contrast to the conventional computer model of intelligence prevalent in computer science and
cognitive psychology. While the connecuonist view has a much stronger physiological foundaton,
expliat models of behavior have been almost exclusively cast in the framework of computer-hike
information processing models. Connectionism has been associated with a pre-computational view
that knowing the connecuon structure of a system is all that s required for its ynderstanding.
Recent advances in digttal hardware, vision tesearch, and the theory of compulation have caused
renewed tnterest tn lughly parallel computauonal models more 1n keeping with the connecuonist
paradigm. [t now appears 10 be feasible o construct models which are sunultancously structurally
and funcuonally sound.

The fundamental distinction between the conventional and connectionist computing models can
be grasped in the following example. When we see an apple and say the phrase “wormy apple,”
some informauon must be transferred, however indirectly, from the visual system o the speech
system. Tither a sequence of special symbols that denote a wormy apple 1s transmutted to the speech
system, or there are special connections 1o the speech command area for the words. Iigure 11s a
graphic presentation of the two alternauves. The path on the nght descnibed by double-lined arrows
deptcts the situauon (as in a computer) where the informauon that a wormy apple has been seen s
encoded by the visual system and sent as an abstract message (perhaps frequency-coded) o a
general recewver 1n the speech system which decodes the message and initates the appropriate
speech act, We have not encountered anyone who will defend this model as bologically plausible.

I'igure 1: Connectionism vs, Symbolic [incoding,

The only alternauve that we have been able to uncover is described by the path with single-
width arrows. This suggests that there are (indirect) links from the umits (cells, columns, centers, or
what-have-you) that recognize an apple o some units responsible for speaking the word. The
connectontst model requires only very simple messages {(e.g. sumulus strength) 1o cross a channe!
but puts strong demands on the avalability of the night connectons.

Over the past lew years, we have been exploring the efficacy of formulating detailed models of
intelligent behavior direcdy in connectionist terms. This kind of effort s 1in the tradition of
McCullogh-Piis machines and Perceptrons and has long been viewed as a good way of auacking
problems 1n low-level vision, Unul recently, work 1n this mode has been mainly just suggesuve:
examinng properues of networks, altermpung 0 match wave-forms, ete, There was ltde of the
detwled  specificauon  of non-uivial behavioral models which  characterizes Al and cognitve
psychoiogy. Currendy, a great deal of successful vision work n thus laboratory and clsewhere has its
basis 6 hughly parallel models [Hanson and Riseman, 1978). One parucularly fruitful msight for us
has been the correspondence between the so-called  Hough tweehniques [Hallard, 1981a) and
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connecuomst models.  We are conunwng 1o work on detailed paralle! models of visual funcuons
iBallard, 1981b; Sabbah, 1981; Ballard and Sabbah, 1981] and some examples will be used as
illustrauons in this paper.

But the connecuonist dogma suggests that all mental funcuons, not just low-level vision, can be
well deseribed in terms of nchly connected networks Uansmutung very sumple signals. We have done
some prelimnary work [eldian, 1980; 1981] on laying out the advantages and ditficulues in such
an approach. The purpose of this paper 1s 10 prepare a solid loundauon for the construcuon of
detatled connecuonist models. This nvolves definimg a set of primiuve units, considening some of
thewr propertes, and using these 0 solve some problems that seem 0 be prerequisite to any
widespread use of connecuonist models.

The body of tus paper has four sections. Section Two contains the basic defimuons for a
ractable and biologically plausible neuron-level compuung unit.  Although there 1s a nich traditon
of neural modeling research, much of which will be useful o us, our defimtons depart from
standard ones. A prnmuitive unit can have both symbolic and numerical state, can treat 1S nputs
non-untformly, and need not compute a linear funcuon. A parucularly important construct 18 the
use of groups or "conjuncuons” of input connections. Some important spectal cases and some
stmple examples, based on lateral inhibiuon, are presented. Encapsulation techmqies are suggested
as a basis for simphiying larger problems.

Secuon Three s concerned with the general computing abiliues of networks of our units. The
cructal pornt s achieving a single coherent action in a diffuse set of units, Winner-take-all (WTA)
networks are itroduced as our solution to this problem for single layers, More generally, we define
and study the idea of a stable coalition of units whose mutual rernforcement has the effect of a
single acuon, percepuon, ele.

Sccton Pour concentrates on some specific computauons and how they can be effecuvely
performed withun the model. We begin with computing simple functions hike muluplicauon and
show how general parameters can be treated. Modifiers and mappings are used o show how
connectons can effecuvely be treated as dynamic, An extension of tus dea allows us o treat ume-
varytng data hke speech.

In Secuon Five we tackle some additonal classic problems for connecuomsm and apply our
tdeas to some more problems 1n visual perception. A representation for conjuncuve concepts such as
“big blue cube” 1s lad oul and applied o the descripuon of complex objects. Fiually, as another
indication of the way we intend w proceed, a farly detaded connecuomst model of shape-from-
shading  computatons s presented.
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2. Neuron-Like Computing Units
Definitions

As part ol our effort o develop a generally useful framework for connecuonist theories, we
have developed a standard model of the individual unit. 1L will tarn out that a "unit” may be used
to model anything from a small part of a neuron 0 the external functonality of a major subsystem.
But the basic nouon of unit is meant to loosely correspond to an information processing model of
our current understanding of neurons, The parucular defintions here were chosen to make it easy
w speaty detwled examples of relatively complex behaviors, There is no attempt to be minimal or
mathematically elegant. The various numerical values appearing in the definitons are arbitrary, but
fixed finite bounds play a crucial role in the development. The presentation of the definitions will
be in stages, accompanied by examples. A compact technical specification for reference purposes is
included as Appendix A,

Each unit is a computational enuly comprising
{qt -- a set of discrete states, < 10
p -- a contnuous value in {-11), called potential (accuracy of 10 digils)
v --oan oulput value, integers 0 < v < 9
i - a vector of unputs ..

and functons f{rom old to new values of these

p <~ Ripy
g <- glipy)
v <- h(i,p.g)

which we assume, for now, 1o compute continuously. The form of the f, g, and h functons will
vary, but will generally be restricted to conditionals and functons found on hand calculators., There
are both biological and computauonal reasons for allowing units o respond (for example)
logarithmically to their nputs.  The "<-" notation 1§ borrowed from the assignment statement of
programming languages. This notaton covers both continuous and discrete tme formulatons and
allows us 1o tlk about some issues without any explicit mention of ume. Of course, certain other
quesuons will inherently involve time and computer simulation of any network of units will raise
delicate questions of  discreuzing  ume.

I"-Units
I'or some applicatons, we will be able o use a parucularly simple kind of umt whose output v
18 proportonal to 18 potenual p (rounded) and which has only one state. In other words
p<-p+ f2i F1.¢p )
v=ap-1{ |v 0...9}
where ff, a, § are constants

A

The p-umt s somewhat like classical linear threshold elements (Perceptrons [Minsky and
Papert, 1972]), but there are several differences. The powenual, p, 18 a crude form of memory and s
an abstracuon of the instantaneous membrane potenual that characterizes neurons.

The restricuon that output take on small integer values s central to our enterprise. The firing
frequencies of newrons range from a few to a few hundred impulses per second. In the 1/10 second
needed for basic mental events, there can only be a limited amount of informauon encoded in
frequencies. The ten output values are an awempt o caplure this dea. A more accurate rendering
of neural events would be to allow 100 discrete values with noise on transnussion {cf. [Sejnowsk!,
19771).  If it turns out that local “graded” potenuals cannot be effecuvely quanuzed, the delinitions
will have to be extended to allow local exchange of continuous information, Transnussion lime 1§
assuined o be neghgible; delay unis can be added when transit ume needs 10 be taken o
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account,
Example 1

One problem with the definiton above of a punit s that «s potenual does not decay in the
absence of input. This decay 1s both a physical property of neurons and an impottant computauonal
feature for our hughly parallel models. One computauonal tick w solve this s 10 have an inhibitory
connection from the umt back o iself,

Figure 2: Self-Inhubition and Decay.

We will follow the usual notauon that a connection with a circular tip 18 mhibitory. More
complex networks will someumes be specified by a connecunn table instead of a diagram,
Informally, we 1denufy the negatve seif feedback with an exponenual decay 10 potennal which s
mathemaucally equivalent, We will specify thus more carcfully below and add the nouon of weights
on inputs.

The first siep s to claborate the mput vector 1 in terms of received values, weights, and
maodiliers;

Vi, 1J =71 W m ;] = l..n

SIS R

where 118 the walue teceived from a predecessor [t = 0..nf; Wy s 2 changeable weght, unsigned [0

< W <1 (accuracy of 10 digits); and m; is a synaplo-synapuc modifier which 15 ¢rther 0 or 1.
‘The weights are the only thing in the system which can change with expenence. They are i
unsigned because we do not want a connecuon o change sign. The modifier or gate greatly 4

stmplifies many of our detatled models in Secuon 4. One could, of course, use extra unils nsiead,
but the biologieal evidence for blocking inhibition 15 solid.

Lateral Inhibition, Several Cases

Mutual lateral inhibiuon s widespread 1in nature and has been one of the basic computauonal
schemes used (n modeling. We witl present two examples of how 1t works o help wd in intwsuon as
well as to 1llustrate the notauon. The basic sitwauon 1s symmetnic conligurauons ol p-units which
mutually inhibit one another. Time 1s broken o discrete intervals for these examples. The
examples are oo simple 0 be realisuc, but do contamn ideas which we will employ repeatedly.

Fxample 2: Two [P-Units Symmetrically Connected

Suppose v = 10p, wi = .1, wy = 05(-). It is casier (0 use P = 10p internally and round
output:
P(t+1) = P(1) + 1y - (S o= received
v = round (P) [0..9]
Referring to Frgure 3, suppose the iutial input to the unit Al s 6, then 2 per ume step, and the
mual mput o B.1 s 5, then 2 per ume step.
Figure 3: Two P-Unis Symmetrnically Connected, with Table.

This system will stabilize to the side of the larger of two inslantancous inpuls.

It is interesung to also look at a contnuous vession of this example.  The conunuous
approximation to the delimng equatons for Example 2 can be wrhilten:

p = 2 - 5’)2
2 - .51’1

._.
=
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7
where Py is ten umes the potenual of A and Py of B and where P*y is the denvauve of Py with
respect (0 ume, This system of lincar differental equatons can be solved by standard techniques for
the iniual condiions Py = 6, Py = 5. The soluuons are

Py = 4 + 12212 - 37712
P2 = 4 - 12172 - 3,7V
First note that the last term in each equauon is a negative exponential and can be neglected.
The resulting relavon indicates clearly the rapid decay of Py and nse of Py Lincar systems theory
is only an approximation 0 our models which in general are nonlincar. For example, the above
equauons do not take into account the fact that the polenuals saturate. Nonetheless, the theory can
be an mmportant aid in understanding some properties of our networks,
.: Example 3: Two Symmetric Coalitions of 2-Units
F: v = 10p
‘7 . Wl = .1
W2 = 05
W3 = 05(‘)
P(l+1) = PQ) + o+ .5y - 5ny
v = round(P)
AC start at 6; BD a §;
E AB,C.H) have no external input for Ol
Figure 4: Two Symmetric Coalitions of 2-Unus, with Table.
Thus system converges faster than the previous example. The idea here is that units A and C
- form a "coalition” with mutually remnforcing connectons. The competing umis ar¢ A vs. B and C
vs. D. Example 3 s the smallest network depicting what we believe to be the basic mode of
- operauon in connectionist systems. One can imagine, e.g., that C and D) are competng phonemes
and that A and B are words which incorporate C and D, respectively.
- We have already described the graphical notation which will often be used in examples. The
alternauve method s to describe, for cach unit, the outgoing connections to other units (n tabular
. form. LEach oulgoing Yj (only one for basic units) will have a set of entries of the form
I-- (<recetving umit>.<index> (x> {lyped)
3 where any of the last three constructs can be omitted and given its default value. The <> field
> specifies whether the link is excitatory (+) or inhibitory (-) and defaults to +. The <index> is the
input index j in 1, at the receiving end. This index can be used for specifying different weights as
in the examples aﬂ)ove. Indexed inputs also allow for funcuonally different use of various inputs and
.’ many of our examples will exploit this feature. The {typed> is cither normal, modifier (m), or
learming  (x), the default being normal '|
?“' FFor example, the diagram of Example 2 could be replaced by the table:
N
P, A. Bz, -
a Z1
- B: A2, -
! Z2
’ Yi: Al
) Y2: B2
L
T

e
!
g




#
&

v
"

7

.
3 taa

4,./!

where unis labeled Y, Z, et., designate unnamed sources and sinks,

Compeung coalitions of units will be the organizing pnnciple behind most of our models,
Consider the two alternative readings of the Necker cube shown in ligure 5. At each level of
visual processing, there are mutually contradictory units represenung alternauve possibiliies.  The
dashed lines denote the boundanes of coalitons which embody the alternauve nterpretauons f the
image. A number of interesting phenomena (e.g. primung, perceptual nvalry, subjective contour)
find natural expression 1 this formahism.  We are engaged in an ongoing effort |Sabbah, 1981,
Ballard, 1981b] w model as much of visual processing as possible within the conneclionist
framework. ‘This paper is largely an exercise in developing standard mechamsms for thus and other
specific modeling  projects.

Figure 5: Necker Cube.
Q-Units and Compound Units
Another useful special case anses when one suppresses the numerical potenual, p, and relies
upon the finite-state set {4} for modeling, If we also identify each input of i with a separate named
input signal, we can get classical fimte automata. A simple example would be a unit that could be

started or stopped from finng.

One could describe the behavior of this unit by a lable, with rows corresponding o states in
{q} and columns w possible inputs, e.g.,

iy (start) iy (stop)
Firing Iiring Null
Null Iiring Null

The table above is a wbular presentaton of our stmplified generie funclion, g = g(i,g) which
describes state changes. In a similar manner, the computavon v <- h(i,p,q) could be simplified 0 v
<- hlg), e,

v <- if q = linng then 6 else 0.
This could also be added 0 the lable above.

We have already employed a varety of graphical and textual descripuons of units and
collecuons of them. The paper will continue o use different representauons, but these are all
instances of the general definiuon. One of the most powerful techniques employed will be
encapsulaton and abstracuon of a subnetwork by an individual unit.  For example, assume that
some system had scparate motor abiliues for wirning left and turning right (e.g. fins). We could use
two start-stop units to model a turn-unit,

Figure 6: A Turn Unit,
There are (wo important points. The compound unit here has two disinct outputs, where basic
units have only one (which can branch, of course). In general, compound unis will differ from

basic ones only n that they can have several disunct oulpuls.

‘The main point of this example is that the turn-unit can be described abstractly, independent of
the details of how 1t 1s built. l'or example, using the tabular convenuons described above,

3 — =T N » 5 YW ron, MBIy Wt i S =
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Left Right Values Output
a gauche a gauche  a droit Vi=1 V=0
a droit a gauche  a droit V=0, V,=8

where the right-going output being larger than the left could mean that we have a right-finned
robot. There 1s a great deal more that must be sad about the use of states and symbolic input
names, about muluple sumultineous inputs, etc., but the idea of describing the external behavior of
a system only in enough detail for the task at hand is at the core of our enterpnise. This is one of
the few ways known of coping with the complexity of the magnitude needed for senous modeling
of biological functions. [t s not strictly necessary that the same formalism be used at cach level of
funcuonal abstracton and, in tie long run, we may need to employ a wide range of models. [For
example, for certain purposes une mught hike to expand our units in terms of compartmental models
of neurons like those of [Perkel, 1979]. The advantage of keeping within the same formalism s that
we preserve intuwtuon, mathemaucs, and the abdity 0 use exisung simulation programs.

The idea of encapsulatton used in compound units 1s vital, but one should not think that only a
small number of units are involved in output; rather, only a small fraction of the unus in the
subsystem are output units. Some simple biological systems {such as n leech |Stent et al,, 1978] or
lobster {Warshaw and Harthne, 1976§) mught be able (o be compietely modeled on the above scale.
But we are more concerned here with complex systems like human vision, ete. For this purpose we
will need yet more abstracuon techmiques (see below). In human vision even loose coupling wll
mvolve a large number of connecuons between subsystems, e.g.  vesubular and vision.

Units Employing p and g

It will already have occurred o the reader that a numerical value, like our p, would be useful
for modeling the wmount of wramy to the left or nght in the last example. It appears 10 be
generally true that a single numencal value and a small set of discrete states combine o provide a
powerful yet tractable modehing umt. This is one reason hat the current defimuons were chosen,
Another reason is that the muxed umit seems (0 be a paructlarly convenient way of modeling the
informauon processing behavior of neurons, as generally desenibed. The discrete states enable one o
model the effects 1 neurons of abnormal chemucal environments, fatgue, e, One example of a
untt employing both p and ¢ non-uivially 18 the Tollowmng crude neuron model. This model s
concerned with saturation and assumes that the output strength, v, 1s something Like average finng
{requency. It s not a model of individual acuon potenuals and refractory periods.

We suppose the disunct states of the unit ¢ € {normal, recover}. In normal state the unit
behaves ke a p-um, but while 1t1s recovering 1L sgnores inputs. The following table captures almost
all of ths behavior,

- 1<p<9 p>.9 Output Value
normal p<- p+St p<- ~p/ v<-ap-gq
{incomplete) recover
recover normal <impossible> v <- 0

Here we have the change [tom one state w0 e other depending on the vaiue of the potenual,
p. rather than on speafic mputs. The recovenng state 15 also charactertzed by the potenual being set
negauve, The unspecified issue s what determines the durauon af the tecoverning state--there are
several possibiliues. One 1s an explicit dishabitwaton signal like those in Kandel's expeniments
[Kandel, 1976]. Another would be (o have the unit sum inputs in the recovening state as well. The
reader mught want w consider how o add tus to the Lible,

A third possibility, which we will use frequendy, 15 10 assume that the potenual, p, decays
toward zero (from both dirccuons) unless exphady changed. Example 1 showed how this imphon

decay p < pou'kl can be modeled by self inhibiuon, In tus case, the decay constant, k, would
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determine the length of the recovery period.
Disjunctive Firing Conditions

It is both computauonally efficient and biologically realisuc to allow a unit w respond 10 ong of
a number of alternauve condiuons. One way 1o view this 18 10 imagine the unit having “dendntes”
cach of which depicts an alternative enabling condiuon,

Figure 7. A Unit with Disjuncuve Inputs.

In terms of our formalism, this could be described in a vanety of ways. One of the simplest is
to define the powenual in werms of the maximum of the three separate computations, e.g.,

p <-p + Mz\x(i1+12, 13+i4, i5+i6-i7)

It does not seem unreasonable (given current data) o model the firing rate of a umt as the
maximum of the rates at s active sites.  Units whose potenual 15 changed according o the
maximum of a set of algebraic sums will occur frequently n our specific models.

One could replace this unit with three simple p-units plus a maximum umt and get a similar
effect. (Note that the potenuals of the p-unis wouldn’t be equal) But it appuars 0 be casier W
understand and analyze systems of unts that describe intuiuvely coherent computauons,  Another
reason for employing disjuncuve units is that they appear 10 be wide-spread in nature. The finng of
a neuron depends, 1 many cases, on local spatio-lemporal summauon imvolving only a small part of
the neuron’s surface, So-called dendriue spikes transmut the activaton 10 the rest of the cell. Tt also
turns out that inhibitory imputs sometmes block such internal signals that are upstream of the point
of inhibition, rather than just sum with them. It s possibie to model a dendniuc tree with inhibiory
blocking inputs ol within our formalism for a single unit, or as o stmple network. One can modei
each secuon of the dendrite tree as a umit whuch sends output o the unit body unless 1t 1s blocked
by a modifier (mj) mput, corresponding L0 blocking mhibiuon in neurons. One advantage of

keeping the processing power of our abstract unu close to that of a neuron 1s that ( helps inform
our counuing arguments,  When we attempt to model a parucular funcuon (e, stereopsts), we
expect o require that the number of umits and connecuons as well as the exccution ume required
by the model are plausible.

Conjunctive Connections

The max-of sum unit 18 the continuous analog of a logical OR-0f-AND) (disjuncuve normal
form) unit and we will someumes use the latter as an approximate version of the tormer. e OR-
of- ANDY unit corresponding w  lagure 7 st

p <-p + a OR (11&12, i3&14, 15&16&(nol 17))

This formulallon stresses the importance that nearby spaual connecuons all be finng before the
potental 1s affected. Hence, tn the above example, 13 and 14 make a conjunctive connection with the

unit.
Change

FFor our purposes, it is useful 1o have all the adaptability of networks be confined to changes in
wetghts. While there 1s known 1o be some growth of new connecuons in adults, it does not appeat
o be fast or extensive enough W play a major role in tearming. Vot technical reasons, we consider
very local growth or decay of connections o be changes 1n exisung connection patterns. Obviously,
models concerned with developing systems would need a nicher notion of change in connectionist
networks (cf. [von der Malsburg and Willshaw, 1977)). Learming and change will nol be treated!
techntcally i this paper, but the definiuons are included for completeness. We provide each unit
with a change funcuon ¢

po<-olipagxg)

10




where pos the intermediate-term memory vector, i, p, and ¢ are as always, and x is an additional
stngle mteger input (0 < x € 9) which captures the nouon of the importance and value of the
cutrent behavior. Instantancous establishment of long-term memory (which does not seem plausible)
would be equivalent 10 having g = w. We are assunung that the consohdation of long-term changes
IS A separate Process.

We assume that important, favorable or unlavorable, behaviors can give nse 1o faster learning,
The rauonale for tus s given in [FFeldman, 1980; 1981, which also lays out nformally our views on
how short- and long-term learming could occur in connecuonist networks,  We are working on a
more technical presentavon of our model of change along the lines of this paper.  Obviously
enough, a plausible model of learning and memory 1s a prerequuisite for any serious sctenufic use of
connecuonsim. But we have found that an exanunaton of networks for carrying out the basic
building blocks 18 already enough for one report,
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3. Networks

Our general dea of temporal behavior in networks is that of refaxativn. The independent
inputs wgether with the vatious inter-unit connections are sufficient to cause the networks 0 behave
in an approprate manner; cach unit should converge 10 a potenual value between -1 and 1. Much
work has been done on relaxavon, from classical Gauss-Sidel iterauons o more modern applicauons
in viston (e.g. [Rosenfeld et al., 1976, Marr and Poggio 1976; Prager 1980; and Lhinton, 1980]). With
a few excepuons, previous work has assumed linear behavior (or linear with a threshold). As one of
the excepuons, Prager used a non-linear model and noted that it enabled him to use more
complicated updaung condiuons than those 1n a hnear system. Our model also breaks with the
Lnear trachtons 1 ats use of comjuncuve connections and state tables, While we sull use linear
approximauons to analyze the stability of the system, the non-hnear umits are closer 10 actual
neurons 1n behavior and allow vast simplifications (n network  design,

Winner-Take-All Networks

A very general problem that anses 1nany distnbuted computing situation 1s how to get the
entre system Lo make a deaston (or perform a coherent acuon, ete.). This s a parucularly important
issue for the current model because of its restricktons on tnformauon Now and because of the almost
lincar nature of the p-umits used n many of our specific examples. One way 0 deal with the issue
of coherent deastons 1 a connecuonist framework 1s (0 tntroduce winner-take-all (W'I'A) networks,
which have the property that only the unit with the highest potenual (among a set of contenders)
will have output above zero after some setthng ume. Biologically necessary examples of this
behavior abound; ranging from  wrmng left or nght, through fight-or-flight responses, (o
interpretatons  of ambiguous words and  images.

There are a number of ways (o construct WT'A networks from the units descnibed above, We
will discuss several of these, both because of the importance of WT'A capahiliues and because 1t 1§
the first non-tnivial problem treated here. The quesuon of 1denucal values (ues) s an important
one, but will be deferred for a few paragraphs. Our first example ol a WTA network will operate
it one ume step for a set of contenders each of whom can read the potenual of all of the others.
(The fan in/Zout of neurons s about 1,000-10,000.) lach unit in the network computes s new
potential according W the rule;

p <-ifp> mux(xj, Jd) then p oelse O

That 15, cach unit sews wself w0 zero if it knows of a higher tnput. This is fast and simple, bt
probably a little too complex to be plausible as the behavior of a single neuron. There 1s a standard
tick (apparently widely used by nature) o convert tus into a more plaustble scheme. We replace
cach umit above with two unns; one computes the maximum of the competitor’s inputs and inhibits
the other.  This 1s shown an [agure 8.

Figure 8: Paired Units for Max WTA,

There are a number of remarks in order. It 1s not biologically unreasonable to view the firing
rate of a neuron  be the maxtmum of the rates of 1t separate sites of spauo-temporal summation.
The arcwiit above can be strengthened by adding a reverse infubitory link, or one could use a
modifier on the osutput, cle. Obviously one could have a WTA fayer that got mputs from some set
of compeutors and settled W a winner when ggered 0 do so by some downstreamy network. ‘This
v an exact anatogy of strobing an output buffer 1n a conventonal computer.  Another set of
standard 1deas (here from theoreucal computer science) enables us to butld WT'A networks among
sets of contenders larger than the allowable fan-in of units. We just arrange the compeutors in a
wurnament tree {Aho, Hoperofl, and Ullman, 1974) and have the winners at cach level play off.
The tme required s the height of the tree which 1s the loganthm (1o the base fan in) of the size of
the set ol contenders and 1s small for all realistc situauons.

The question of ties remains o be considered. Since we are assuming only a hmated range of
output values, quite a few contenders might appear 0 be equal. Depending on how the WTA
network s bemng emiployed, one tight want severai different ways ol treaung thes situauon, A
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common idea 1n computer science 1s 10 order the units tn some way and have the first in order win
in the case of ues. This 1s easy 1o implement by having units wirn off if a predecessor 1s higher or
equal o uself. In some sitwations, a random chowce mught be appropnate. ‘There 1s reason o believe
that essenually random effects break ues tn real neural networks. Randomness can be achieved m
our scheme, eg., by adding a randomly changing hierarchy, but we will not be using random
selecuon 1n this paper.

There are two more basic ways of treating ties that deserve menuon. One could try 1o resolve
Les Ly looking ever more closely at the values of potenual among contenders. This would amount
to having "rounds” of compeuuon, First, all units whose high-order it was sub-maximal would
drop out, Then there would be a play-off based on the second digit, eee. This could be combined
with the tournament tree, but, i the end, one sull might have to contend with ues. There do seem
0 be sttuauons where some fine-wumng 1s called for, but the most common sittaton appears (o b
quute  different.

Recall that the purpose of WTA networks was to 1denufy a clear winner out of a set of
contending acuons, percepuons, ele. Both in nawre and 1n our models, tus rarely oceurs in the
form of pure compeuuon among a single layer of contenders.  Yor example, the chowee of which
word should be assumed to have been heard 1s mfluenced by phonemic, semantic, contextual and
general considerations. We believe that WTA type structures exist, but that they are normally part
of coaliuons spanning many layers. Ties in a single WA layer do not requere specilic resolution
because the coaliuon interacuon normally will produce a unique overall winner. The idea of
coaliuons among members of dilferent compeung layers was discussed briefly in Exampie 3 and will
receive a great deal of auenuon below.

Mulu-layer coaliion networks could employ MAX-based WTA arcuits, but it often seems
more appropriate o algebraically combine the outputs of umts. For this reason, and o le in with
some tmportant related work, we will now consider WA circutts based primartly on p-units (which
algebraically sum  thetr inputs).

I'irst we present an abstract soluuon of the WTA problem which ignores quantzaton and
bounds. Suppose we have a symmeuric network ol n+1 p-umits, cach of which equally inhibits all
the others, 1.,

p <-p - I710n XVJ + 7 (v = 10p)
1#k

If we add one extra unit, AVE, which computes the average of all acuve (non-zero) outputs and
feeds i (with + polarly) o all the unus, we get the desired subnetwork,

p<-p - 1/10n ij + 1/10b EVJ

J#k b

where b is the number of non-zero mputs o AVE,

This network has the requuired behavior because each unit has its pownual increased by the
difference between the average of all outputs and the average of all but its own output. Units whose
output 1§ above average will increase while the others decrease. As units go o sero and drop out,
more units go below average. One instance of this would be when a subnetwork with all P miually

equal got outside signals which favored one unit. Nouce that AVE s not a p-umi, since 1t counts
non-z¢ro  inpuls,

A possible problem arises «f one takes saturaton nto account. Il two umis were both near
saturaton, they might casily both reach saturation before the WTA network settled down, IFor any
network there will be a ditference so small that the intent s that the two values are constdered
wlenucal. FFor differences larger than this, one can destgn the WTA network o converge slowly
enough o prevent muduple unequal amits from reachig saturation. This s accomplhished by giving
less weght o the postuve mput from the AVE unit, sull assaming that the output can have
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conunuous  values.

Quanuzauon of output values (here 0...9) adds interesung addiuonal issues. For a sufficiently
large network, ten disunct values will not be enough 0 resolve the difference between the two
averages.  Phere are a vanety of computauonal tricks 1o explot the Himited dynamuce range availlable.
Some of these, ke umament trees and successive digit compansons, were menuoned 1n the
discussion ol ties. But the restneuon o simple signals 1s at the heart of our approach and should not

be evaded. We should not buld models 1n which WTA networks mvolve a large number ol

alternauves nor should we expect very delicate decisions 0 be made by a single compeutive
network.

The Question of Delicacy

One problem with previous neural modehing auempts is that the arcuils proposed were
unnaturatly dehicate (unstable).  Small changes in parameter values would cause the networks o
oscllate or converge to mneorrect answers. We will have o be carelul not o fall into tus trap, but
would bke to avord detaled analysis of each parucular model for delicacy. What appears o be
required are some bulding blocks and combinauon rules that preserve the desired properues. For
example, the WA subnetworks of the last example will not oscillate in the absence of oscillating
iputs. This 1s also true ol any symmetric mutually inhibitory subnetwork. This 1s intwnuvely clear
and could be proven ngorously under a vanety of assumpuons (cf. [Grossberg, 1980]).

One useful prunciple i1s the employment of lower-bound and upper-hound cells w keep the total
acuvity of a network within bounds. The 1dea 1s an extension of the AVE cell used in the WTA
example.  Suppose that we add two extra units, LB and UB, 10 a network which has coordinated
output. The LB cell compares the total (sum) acuvity of the units of the network with a lower
bound and sends positive acuvauon uniformly to all members if the sum s o low. The UB cell
inhubits all units equally 1f the sum of acuvity 1s o high.  Nouce that LB and UB can be
parameters set from outside the network. Under a wide range of condions (but not all), the LB-
UR augmented newwork can be designed 0 preserve order relavonships among the outputs Yj of the

onginal network  while keeping the sum between B and UB.

We will often assume that LB-URB pairs are used o keep the sum of outputs from a network
within a grven range. his same mechanism also goes far owards chiminaung the twin penls of
unitform saturatton and uniform silence which can castly anse in mutual inhibition networks. Thus
we will often be able w reason about the computauon of a network assuming that 1t stays acuve
and bounded. We also require that individual units be viewed as part of different subnetworks,
wlich may be simultaneously active, The general ssue of interacuny subnetworks entalls nothing
less than the whole enterprise, but we can tackle the quesuon of bounds. Il we view cach output
value v, in a set of networks comprising n-units as the axis of an n-dimensional space, the UB and

I3 cclé correspond 0 bounding hyper-planes in this space. The simultangous impostton of these
condiuons defines a convex hull, in which the soluton must hie. (Geoff Hinton pointed this out.)
This could turn out to have singulaniies 1f some simultaneous solutions are impossible, but tus
condition can be checked for in advance.

One problem with the AVIS and UB-L.B soluuons 1s that they assume that these units can
compute all ol the activity of a network.  As we have menuoned, the saturaton of potenual and
muted data transfer rate mean that only an approximation s possible for networks of sigmificant
size. Other results mothe Inerature (e.g. [Grossberg, 1980]) have sumilar imitauons, We will have o
place less refiance on precise caleulauons by large networks and more on cooperalive compultation.

Stable  Coalitiony
For a massively parallel system like we are envisioning 10 actually make o decsion (or do
something), there will have to be states 1n which some activity strongly domunates, We have shown

some simple mstances of tus, in Examples 2 and 3 and the WTA network, But the general dea s
st o very arge complex subsystem must stabihize, e, © a lxed nterpretation of visual input,
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The way we believe tus o happen is through mutually remforaing coalitions which instantancously
domiate all nival activity.  The sumplest case of this 1s Example 3, where the (wo umts A and I8
form a coalition which suppresses C and 1), Phenomenologically, the two rendenngs of the Necker
Cube tn Figure 3 can be viewed as alternauve stable coalitions,  Formally, a coalition will be called
stabfe when the output of all of its members is nou-decreasing.

What can we say about the conditions under which coalitons will become and remain stable?
We will begm informally with an almost trivial condition. Consider a set of units {ab....} which we
wish (0 examine as a possible coaliuon, #. Vor now, we assume that the units in = are all p-units
and are in the non-saturated range and have no decay. Thus for each u in =,

plu) <- p(u)y + Iix¢c - Inh,

where Exe is the weighted sum of excitatory inputs and Inh is the weghted sum of inhibuory
inputs. Now suppose that Excle, the excitaton (rom the coalivon o only, were greater than INT,
the largest possible mhibiton recetvable by u, for each umt u 1 #w, e,

(SC) Y u € o ; Lxclm > INH
Then it follows that
Yu€aa,;plu<-pu)+ 8§ where § > 0.

That is, the potenual of every unit in the coalition will increase.  This is not only true
instantaneously, bat remains true as long as nothing external changes (we are ignoring slate change,
saturation, and decay). This 1s because Fxclm conunues o increase (recursively) as the potental of
the members of # increases. Taking saturation inlo account adds no new problems; if all of the
umis in w are saturated, the change, 8, will be zcro, but the coalivon will remain stable.

The condiuon that the excitauon from other coaliion members alone, Ixclar, be greater than
any possible inlubiuon INI for cach unit may appear to be 0o strong to be uscful. Observe first
that INTT s directly computable from the description of the um; 1t s the largest negative werghted
sutn possible, IF mhibition in our networks is mutual, the upper-bound possible after a Nixed ume 7,
INIlr, will depend on the current value of potental i each unit u. The simplest case of ths s
when two units are “deadly nivals”--each gets all s mhibiton from the other. In such cases, 1t
may well be feasible o show that after some ume 7, the stable coalinon condiwon will hold {in the
absence of decay, faugue, and changes external 0 the network).

There are a number of interesung properues of the stable coalivon prinaple. st notice that it
does not prolubit muluple stable coalitons nor single coalitions which contain umts which mutually
inhubit one another (although excessive mutual mlubiuon s preciuded). If the units in the coalivon
had non-zero decay, the coahtion excitauon Excler would have 1o exceed both INIT and decay for
the coaliton o be stable. We suppose that a stable coaliton yields control when 1ts input elements
change (faugue and explicit tesets are also feasible). To model coalivons with changeable inputs, we
could add boundary clements, whose condiuon was

xclwm + Input > INI

and which could disrupt the coalivon if s Input went too low.
An Artificial Example

The coaliwons of units needed to model biologically interesting funcuons wil! be large and
heterogeneous. We do not yet have mathemaucal results that enable us to chatacterize the behavior
ol general coalitions. Whal we can do now is develop an arufical example of a coaliton and
establish the crineal aspects of 1 behavior, This has proven o be useful o us both in aiding
intutbon and m constrmmng the choce of weights for real models. (Pl Shiedds of UL Toledo and
Stanford provided the basic analysis.)

Lhe arulictal coaliion consists of M+ 1 rows, cach of which has N+ 1 umits which compete by

mutual fateral iwtnbioon (Figure 9). We are assunung here that each unit can have potential and
ompul values of unhmated sange and accotacy and the ouput s exactly the powenual, This mikes 1
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possible 1o express the compeduon in a row as a strctly lncar rule:
X - X - X
J#n

+ Coalition Support

mn nn my

Iigure 9: Arufictally Symmetric Coalition Structure

It we further assume that each coaliuon is exactly a column and provides posiuve support
proporuonal 10 the sum of its members, the rule becomes
» - . N - L) .
*) Xon €7 Xmp + 02X, /fZ.XmJ
1#m J#n

Under all these assumpuons (*) defines a linear transformaton, T, on the collecton of values
Xqmn viewed as a "vector” in the sense of linear algebra. This transformauon s sufficiently regular
that we can charactenze all of its eigenvalues and eigen "vectors.” Recall that an eigenvalue, A, and
the associated “vector” X have the property that I'X = AX. Any such coabivon structure, X, will be
stable because repeated applicatons of the relaxauon rule (*) will just muluply every element
repeatedly by the related A, What is interesung hiere s that the configurauons of X, which have
this property are casy to discuss in terms of our model.

Suppose that X, were such that cach column had every one of its elements equal. This might

be a good resting state for the structure because any row would provide the same answer as 10 the
relative strengths of the vanous possibiliues. The rule (*) becomes:
X - X + aM-X - /1’}.)(”]J

mn mn mn
jn

because all M other elements of its column are equal © Xmn- If we further assume that each row
has the sum of all its clements equal o zero, the remaming summation above must be equal w -
Xmp and we get

X G Xpp toeMXp + X

mi mn

of

Xmp ¢ 0+ aM + BX

which says that (I + aM + fi} = X| 1s an eigenvalue for T, working on “vectors” with constant

columns and zero row-sums.  The condiuon of a zero sum for a row caplures the idea of
compeuuon qutte nicely, the fact that this requires negauve values 1o be transmilted 15 not a serious
problem. Ity the assumpuons of unbounded scale and accuracy that limit the apphcavon of these
results even 1o the case of purely row-column coaliion structures.

The fact that constant-column, zero-row-sum configurauons are stable for this structure s
important, but there are several other points to be made, Nouce that several columns could have
the same constant value; the probiem of tes cannot be resolved by such a uniform system. There
are also other vigenvalues and "vectors” which do not correspond o desirable states of the system.
These are:
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Ligenvalue "vector” X

1 + aM - N matnix of all 1

1 -a-~fiN rows equal, column-sum zero
l-a+ f row-sum and column-sums all zero

‘ By compuung the muluplicity of the four eigenvalues, one can show that the lotal multiplicity
is (N-H 1) (M4 1), so that there are no other eigenvalues. The ¢nucal point s that powers of a linear
system like 1 wall converge 1o the direcuon specified by s largest eigenvalue, I we make sure 10
choose a and fso that AL = 1 + aM + f s the largest egenvalue, then repetiions of (*) will
converge to the desired constant-column zero-row-sum state. Vhus requires (for a, f# positive) that

1 + aM + > a + AN -

or
(**y 2 > AN - aM + {a - f).

We can ignore a - f# which is a small fracuon. Recall that B 1s the weight given 1o the compeutors
and a the weight given 0 collaborators. Conditon (**) states that «f the coaliuons are given
adequate werght, the system will settle inwo a state with untform columns (coaliuons). The obvious
chowce of # = /N and a = /M comforlably micels condiuon (**). The problem that oceurs if /1
is o smail is that mutual mhibtuon will have no effect and the system will converge to the stale
where all columns have thetr imual average value.  The relave ymportance of competibon and
collaboration will be a cructal part of the detatled specification of any model. There appears o be
no reason that discrete values, bounded ranges and overlapping coalitons should change the basic
character of this result, but the detaled analysis of a realisuc coaliton structure for 1ls convergence
properues appears W be very difficult. More generally, there will need 10 be ways of assessing the
mpact of fintte bounds and discrete ranges on systems whose conUnuous approximauon 1§
understood, a classic problem in numerical analysis.

17




Ll CRY

v

v

] .’é 3 Tame

a

4. Distributed (Massively Connected) Computing

The matn restricion imposed by the connectionist paradigm is that no symbolic informauon s
passed from umt o unit. This restnctuon makes it difficult w0 employ standard computauonal
devices like parametenized funcuons. In this secuon, we present connceuonist solutions 1o a variety
ol cony.wtauonal problems.

Using a Unit to Represent a Value

A cornerstone of our approach is the dedicauon of a separate unit to cach value of each
parameter of interest, which we term the umit/value prnciple. We will show how 1o compute using
unit/value networks and present arguments that the number of unus required 1s not unreasonable.
In thiy representation the output may be thought of as a confidence measure. If a umit represenung
depth = 2 saturates then the network 1s expressing confidence that the distance ol some object frum
the reuna 1y wtwo depth unis. There 18 much neurophysiological evidence Lo suggest umt/value
organizauons 1n less abstract cortical organizauons, Examples are edge sensiuve units [Hubel and
Wiesel, 1979 and petcepual color unuts [Zeks, 1980), which are relauvely msensiuve o illumination
spectra. Bxpeniments with cortucal motor conuol 1n the monkey and cat [Wurtz and Albano, 1980]
indrrectly hint at a umt/value organizauon, Qur hypothesis 1s that the unt/value organization 1s
widespread, and s a fundamental design principle.

Although many physical neurons do seem w follow the unit/value rule and respond according
o the reltability of a parucular configuration, there are also other neurons whose output represents
the range of sume parameter, and apparently some units whose finng frequency reflecs both range
and strength mformauon. Both of the latter types can be accommodated withun our definivon of a
unit, but we will employ only unw/value cells i the remainder of this paper.

In the umt/value representanon, much ¢computauon s done by table look-up. Previous ideas
such as WTA nctworks, scaling networks, and deadly nivals sull apply; they describe the dynamic
behavior of the table. Here we discuss e imphicauons of the tables themselves, which are at the
core of what we mean by compuung with connecuons.

As a sunple example, let us consider the muluplicatuon of two variables, i, z = xy. In the
unit/value formabism there will be units for every value of x and y that s important. Appropriate
pairs of tese will make a connecion with another unit cell represenung a speaific value for tie
product. Frgure 10 shows this for a small set of umts represenuny values for x and y. Nouce that
the confidence (expressed as outpul value) that a particular product 1s an answer 1s a linear funcuon
of the maximun of the sums of the confidences of 1ts two mputs. Note that the number of xy units
need not be as latge as the product of the aumber of x and y mpuls for the able w0 be useful.
Furthertnore, the x and y inputs make conjuncuve connecuons with ther z-unil,

Figure 10: Compuung with Table Look-Up Units.
Muadifiers and Mappings

Che 1dea of Tunctuon tables can be extended through the use of variuble muppings. In our
defimtion of the computuonal unit, we included a binary modifier, m, as an opuon on every
connection. Ay the defimuon specifies, if the modifier associated with a connection 1s zero, the value
v sent along that connecuon 1s gnored. There 1s considerable evidence in nature for synapses on
synapses and the modtliers add gready w0 the compuatational simplicity of our networks. Let us start
with an imual infurmal example of the use of modifiers and mappings. Suppose you wanted o
ignore the wlephone in your office, but answer it at home, One intuiuve way to do this is shown by
'rigure 11,

Figure 11: Modifier (mJ) on a Connecuon.,
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The cireular connection between links denotes a binary modifier.  You probably don’t want o
mhibit your own imtiauon of phone calls from the office, just the link between the ring and your
acuon.  Of course, there are ways of encoding this without using modifiers, but it ts casy 1o see how
modtfiers permut whole behavior patterns 0 depend on a state change.  Hy convenuon, we will
assume that a maodifier blucks the connection when its source unit s active. Technically, m <- 1l v
= 0 then 1 else 0, where v is the output value of the unit which 1s the source of m,

A slighty more complex use of mappings is for disjunctions. Suppose that one has a model of
grass as green except in Califorma where it is brown (golden).

Iigure 12. Grasy is Green Connection Modified by Californsa.

Here we can see that grass and green are potential members of a coalition {can reinforce one
another) except when the link s blocked. This use 1s sumilar 1o the cancelladon link of {fFahlman,
1979] and gives a crude idea of how context can effect percepuon in our models.  Note that in
Figures 11 and 12 we are using a shorthand notauon. A modifier touching a double-ended arrow
actually blocks two connecuons. (Sometimes we also omut the arrowheads when connection 1§
double-ended.)

Mappings can also be used to select among a number of possible values. Consider the example
of the relaton between depth, physical size, and reunal size of a circle. (For now, assume that the
circle 15 centered on and orthogonal o the line of sight, that the {ocus 1s fixed, ewe.) Then there s a
fixed retauon between the size of retnal image and the size of the physical arcle for any given
depth.  That 15, each depth specifies a mapping from reunal o physical size, Le.,

FFigure 13: Depth Network.

Here we suppose the scales for depth and the two sizes are chosen so that unit depth means the
same numerical size, 1 we knew the depth of the object (by ouch, context, or magic) we would
know 1ts physical size, The network above allows reunal size 2 w0 reinforce physical size 2 when
depth = 1 but imhabus this connection for all other depths. Simularly, at depth 3, we should
imterpret reunal size 2 as physical size 8, and inhubit other iaterpretauons. Several remarks are in
order. [1rst, nouce that this network implemenss a function phys = f{ret,dep) that maps from
reunal size and depth o physical size, providing an example of how 10 replace Tunctions with
parameters by mappings. FFor the simple case of looking at one object perpendicular 10 the line of
sight, there will be one consistent coaliton of umis which will be stable. The network does
somedung more, and this 1s crucial W our enterprise; the network can represent the consistency
relavon R among the three quanudes: depth, reunal size, and physical size. It emibodies not only
the funcuon £, but ts two verse funcuons as well (dep = [){ret,phys), and ret = [(phys.dep)).

(The network as shown does not tnclude the links for fl and {5, but these are similar 1o those for [)

Most of Scction 5 s devoted to laying out networks thal embody theories of partcular visual
consistency relauons.

The 1dea of modifiers 13, 1n a sense, complementary to that of conjunctive connections.  [<or
example, the network of Figure 13 could be transformed into the following network (Figure 14),

Frgure 14: An Alternate Depth Neltwork,

In dus network the variables for physical size, depth, and reunal size are all given equal weight. For
example, physical sive = 4 and depth = 1 make a conjunctive connection with retnal size = 4.
Lach of the vanables may also form a separate WTA ncetwork; hence nivalry for different depth
valies can be settled via inhibilory connecuons in the depth network.

To see how the conjuncuve connectton strategy works in general, suppose a constraint relation
o be sausficd mvolves a vanable x, eg.. Ixy,2w) = 0. For a partcular value of x, there will be
tnples of values of y, z, and w that sausfy the relauon £ Fach of these tnples should make a
conjunctive connection with the unit representtng the x-value. There could also be 3-mput
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conjuncuons at each value of yz,w. Liach of these four different kinds of conjuncive connections
corresponds W an interpretation ol the relation f{x,y,zw) = 0 as a function, 1e., X = (j(y.w), y =
fyx.zw), ¢ = f3(xy.w), or w = [4(x,y,e). Of course, these funcuons need not be single-valued. This
network connecuon pattern could be extended 0 more than four vanables, but high numbers of
vanables would tend o increase s sensivity o noisy inputs. Hhinton has suggested a special
notatton for the siwation where a network exactly captures a consisiency relauon. The mutually
consistent values are all shown to be centrally linked (see Figure 15).

Figure 15: Hinton’s Notation.

When should a relation be implemented with modifiers and when should it be implemented
with conjuncuve connections? A simple, non-rigorous answer 10 this question can be obtamed by
examuning the size of two sets of units: (1) the number of units that would have to be inhibited by
modiliers; and (2) the number of units that would have (o be remnforced with conjuncuve
connectons, If (1) s larger than (2), then one should choose modifiers; otherwise choose
conjuncive connecuons.  Someumes the choice is obvious: w0 tmplement the brown Californian
grass example of Figure 12 with conjuncuve connections, one would have o renforce all unis
represenung places that had green grass!  Clearly o this case 111s easier 0 handle the excepuon
with modtfiers. On the other hand, the depth relaton R(phy,dep.ret) 1s more cheaply implemented
with conjunctive counnections.

In physical neurons, there is a feature that makes modifiers more powerful than our examples
suggest. Inhibitory connections can block inputs from enlre dendritic subtrees, and this could
simplify certaun networks,

Time and Seyuence

Connecuonist models do not imally appear 10 be well-sulled to representing changes with
ume. The network for compuung some function can be made quite fust, but o will he fixed 1n
funcuonality. Yhere are two quite different aspects of ume vanabibity of connecuonst structures (o
discuss: long-term modilicauon of the networks (through changing weights) and short-term changes
in the behavior of a fixed network with time.  There are a number of tiologically suggested
micchansms {or changing the weight (wj) of synapuc connectons, but none of them are nearly rapid
cnough 1o account for vur ability o hear, read, or sprak. The ability to perceive a time-varying
signal like speech or o integrate the images from successtve fixations must be achicved (according
W our dogma) Ly some dynamic (electrical) acuvity tn the nelworks,

As usual, we will present computauonal solutons o these problems that appear 10 be consistent
with known suuctural and performance constraints. These are, agan, oo crude o be taken literally
but do suggest that connectionist models can desenbe the phenomena. As a first example, consider
the problem of controling a simple physical mouon, such as hrowing a ball. 1t s not hard w©
imagine that for a skilled motor performance we have a fixed sequence of umt-groups that fire cach
other in succession, leading 1o the motor sequence. The computational problem s that there s a
umque set of effector unis (say at the sprnal level) that must recerve input from cach group at the
rght ume.

Iigure 16: A Simple Sequencer Using Modifiers,

Figure 16 depicts a situation where two effectors, ¢y and ¢y, get activity from four sequenual

groups of three units cach. At odd intervals, the middle layer masks the upper connecuons, and at
even intervals, the lower. We assume that each column gets activated synchronously and in order.
‘The main point s that a succession of oulputs W a single effector set can be madelled as a sequence
of ume-exclustve groups represenung instantaneous coordinated signals. Moving from one ume step
to the next could be controlled by pure umung, or (more realisucally in many cases) by a
propriocepuve feedback signal. There s, of course, an enormous amount more than this 10 motor
control, and reabstic models would have to model furce control, ballistic movements, gravily
compensaton, ele.
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The sequencer model for skilled movements was greatly simplified by the assumption that the
sequence of acuvities was pre-wired.  TTow could we (sull crudely, of course) madel a situauon like
speech percepuon where there 1s a largely unpredictable ume-varytng computauon to be carried out.
The idea here s o combine the sequencer model of Tigure 16 with a simple vision-like scheme,
We assume that specch 1s recogruzed by being sequenced mnto a bulfer of about the length of a
phrase and then s relaxed against context in the way desenibed above for vision. Ior simplicity, we
will assume that there are two identical buffers, cach having a pervasive modifier (m;) innervation
so that either one can be switched inlo or out of 1ts connecuons. We are parucularly concerned with
the process of gomg from a sequence of potenual phonemes o an interpreted phrase. Figure 17
gives an idea of how this nught happen.

Figure 17: A Pheneme Sequence Buffer,

We assume that there is a separate unit for each potenual phoneme for each ume step up o
the fength of the buffer. The network which analyzes sound 1s connected idenucally o cach cotumn,
but conjuncuon allows only the connecuons o the acuve column o transmit values. Under ideal
cireumstances, at cach wme step exactly one phoneme umt would be acuve. A phrase would then be
layed out on the bufler Lke an image on the "mnd’s eye,” and the analogous kind of relaxation
cones involving morphemes, words, ctc., could be brought to hear. The more realistic  case where
sounds are locally ambiguous presents no additional problems. We assume that, at ecach ume step,
the vanous competng phonemes get varymg activauon. Diphone constraints could be captured by
(+ or -) links to the next column as suggested by Figure 17. We are now left with a muluple
possibility relaxauon problem--again exactly lke that in wvisual perception. The fact that each
potenual phoneme could be assigned 2 row of umits 1s essenual to dus solution; we do not know
how to make an analogous model for a sequence of sounds which cannot be clearly categonzed and
combined.  Recall that the purmpose of this example s o indicate how ume-varying input could be
treated in connectonist models. The problem ol actually laying out detaited models Tor language
skills 15 enormous and our example may or may not be useful i its current form. Some of the
considerations that anse i distnibuted modehng of language skills are presented in [Arbib and
Caplan, 1979].

Conserving  Connections

It 1s currently esumated that there are about 10” neurons and lO15 connections 1 the human

brain and that cach nearon recetves input {rom about 103-10% other neurons. “These numbers are
quite Targe, but not so large as to present no problems for connecuonist theories. Tt s also tmportant
o remember that neurons are not swilching devices; the same signal 1s propagated along all of the
outgotng branches. For example, suppose some model called for a separate, dedicated path between
all possibie pairs of umits m two layers of size N, U is casy o show that dus requires N2
intermediate sites. This means, for example, that there are not enough neurons 1n the brain 10
provide such a cross-bar switch for layers of a million elements each, Similarly, there are not
enough neutons o provide one 0 represent each complex concept at every posiion, orientauon,
and scale of visual space. Although the development of connecuomst models 1s in its perinatal
period, we have been able 10 accumulate a number of ideas on how some of the required
computations can be carnied out without excessive resource requirements. Two of the most
important of these are descnibed below. A third important 1dea 15 that of sequenang, but that will
be deferred (o Secuon 5 in order 0 develop 1t i the context of a detalled example ltom vision.

Fixed Resolution Computation

In the mulupheatuon example of Figure 10 1t might seem that NxNy unis are required o

implement this simple funcuon and that in general the number of units would grow exponentiatly
with the number of arguments. However, there are several refinements which can drastically reduce
the number of requured unus. The prinapal way 1o do dus 1s to fix the number of unns at the
resolution required for the computauon. igure 18 shows the network of Figure 10 modified when
less  computational  accuracy 1 requred.
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Figure 18: Modified Table Using Less Units.

When the number of vanables in the function becomes large, it might seem that the fan-in or
number of input connecuons might become unrealisucally large. For example, with the funcuon z
= f{u,v.w.x.y.2) implemented with 100 values of 2, when cach of 1 arguments can have 100 distnct
values, would 1equire an average number of inputs per unit of 1012/1()2. or 10'91 However, there
are simple ways of trading unus for connectuons. One is 0 replicate the number of units with each
value, This is a good solution when the inputs can be paruuoned 1n some natural way as in the
viston examples in the next section. Another 1s 0 use intermediate umts when the computauon can
be decompaosed n some way. or example, f Ruv,wxy.z) = gluyv)o hiwxy.z), where 018 some
composiuon, then separate @bles fer f{g.h), glu.v), and hiw,x,y.7) can be used. The outputs from
the g and h tables can be comiined tn conjunctive connecuons accordimg 10 the composiuon
operalor o via a third table o produce . In perception the transiton from u,v.w,Xx.y.z to gh o f
cortesponds to changes in level of abstraction.

Low Resolution Grain

Suppose we have a set of unils Lo represent a veclor parameter v composed of components (1,5).
Suppose that the number of unis required o represent the subspace 118 N, and that required o

represent s (s Ns. ‘Then the number of units required o represent v s N Ng. ftas easy 1o construgt

examples 1n vision where the product NN 1s too close to the upper bound of 10" units 10 be

realisuc.  Consider the case of trihedral vertices, an important visual cue. Three angles and two
posiuon coordinates are necessary 10 uniquely define cvery possible trihedral vertex, 1f we use S

degree angle sensitivily and 10° spatial sample points, the number of unis s given by N. = 5x103
plep g r

and Ny = 109 or 5x 108! How can we achieve the required tepresentauon accuracy with less units?

In many instances, we can take advantage of the fact that the actual occurrence of patameters is
low density. What we mean by this in terms of tnhiedral veruces 15 that 1 an image, such vertices
will rarely oveur inught spaual clusters. (IF they do, one cannot resolve them as imdividuals
stmultancously.) However, even though sumultancous proximal values of paramelers are unhikely,
they sull can be represented accurately for other computauons.

I'he soluton 15 to decompose the space (1,8) inlo two subspaces, cach with unilaterally reduced
resolution,

Instead of NyNg unts, we represent v with (wo spaces, one with N+ Ng units
where N <KKNpand another with NN units where N KNG

To dlustrate this technigue with the example of tnhedral veruces we choose Ng» = 0.0INg and

Nr' = O.OINI. Thus the dimensions of the two sets of unils are:
_ 6
Ns'Nr = 5x10
and
_ 6
NbN[. = Sx10°.

The chowes mean that we have one type of unit which accurately represents the angle
measurements and fires for any tnhedral vertex in a given visual region, and another set of units
which fire only (f o vertex 18 present at the precise position. Figure 19 shows the (wo cases.

Iigure 19: TFuzzy Resoluuon Trick.

If the vertex enters into another relation, say R(v,a), where both its angle and position are
required accurately, one simply conjuncuvely connedts paits of appropnate units from each of the
reduced resoluuon spaces o appropriate a-umits. The conjuncuve connection  represents the
intersection of cach ol 1y components’ fields.
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This resolution device 1s a vanant of a general result due W [Hinton, 1980); namely, that
connecttons from overlapping sets of umits can produce fine resolution with less umits. An important
hmuauon of this technique, however, is that the input must be sparse. IF tnputs are oo closely
spaced, "ghost” finngs will occur (Igure 20). Another point is that the resoluton device s
essenually a units/connections tradeolf, but as the brain has many more synapses than neurons, the
tradeoft s attracuve,

Figure 20: "Ghost” Iirings.
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5. Some lmplications for Farly Visual Processing
§ 8

Although carly visual processing appears o be partcularly well-suited for connectionist
treatment, there are a number of senous problems. Some of these anse (rom the immense size of
the crosy product of the spatal dimensions with those of other interestung features such as color,
velocity, and texture. Thus o explain how image-hke input such as color and opucal flow are
related to abstract objects such as “a blue, fast-moving thing,” 1t becomes necessary 10 use all the
techmyues ol the previous secuons, We will work through an example i detal and show a soluuen
which uses realisuc numbers of unis, connecuons, and connections per umt. The man trap to avoid

15 a soluuon that requres X units where X 15 the spaual dimension, {15 the number of
measurement values per modality (color, distance, velocity, e, and & 1s the number of modaliues,

The above example omits the dewals of the transformauon nvolved 1n relaung image-like
features, Lke prnimary color measurements, to a pereept, like "blue.” To remedy tus defficiency, we
will work through a second example, the calculauon of shape ftfom shading, which emphasizes this
kind of transformauon.

Objects

The visual fivld contains objects that are disjoint. This separateness 1s manifest 1n groups of
spaually registered features such as texture and color which disungussh the objects. Thus we regard
the problem of detecuny an object as a matter of determining which of several possible features of
colour, texture, mouon, and shape it has, In fact we can view these features as having ranges of
associated parameter values. For example, an object could be desertbed as having the properues
"fast” and “biue” The quotes signify that the property 1s not a single vaiue but incorporates an
appropriate range of values. The property "blue™ mught be any of a set of pnimary red, green, and
blue values, cach of which sausfies some relatonship R(r.g,b) which defines the percept “blue.”  In
a one-dunensional reuna, we might tmagine arrays ol spabally regstered color sensors, each ‘

appropnately connected 1o a property unig, as shown in rgare 21

Iigure 217 eature Measurement:
A Unit whuch Responds to a Range of Blue.

Figure 21 shows two kinds of units: a property unit and spatally-registered sensor units. The sensor
untts represent fve different values of each of three parts of the color spectrum. In our primiuve
design, a property unit has a high potenual value (=1) 1l any of the spaual sensor units for that ;
meastirement value have a high potenual, 1e.,

Blue <- ANIXX) Blu«X)

The non-spatally registered units represent ranges of feawre values, eg. the propeny "blue.,
Objects can be described in terms of combinations of these properties. The property units, 1 turn,
recetve inpuats from groups of spaually registered primary color umt measurements. Here we take
advantage of the disjuncuve nature of different groups of nputs o differenuate between different
parts of space. The number of connections o a property unit can always be reduced by replicaung
the property unit and connecung the replicaled unit’s outputs o a single property unit.

Tuning

In Figure 21 the "blue” unit will respond to any values of primary tnputs in the appropnate
ranges of "biue.” lhis can make it suscepuble 1o naise; for example, consider the case where the
object has some specific value of "blue” in the appropriate range and there are also random simifar
values of "blue” at other image points. One way of ruling out these extraneous vaiues 18 W fune the
"htue” unit w respond W only the appropnate set of primary color measurements. s s done by
using a fine-gramed set of perceptual color units,  Within this set there are many  unics
corresponding o colors 1n the range defined by "blue” (although only one 1s drawn in Figure 22).
Tuning the "blue™ unit 15 accomphshes by conjuncuvely connecting the appropnate color unils 1o
thar corresponding values of primary measurements at the "biue” unt imputs. This iy shown n
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Figure 22, The fine-tuned biue unit receives input from all parts of space and sums its inpul, By
firing only the approprate fine-grain color umt, the "blue” unit 1s made 0 respond o only the
corresponding set of 1ts acuvated inputs. Note that this is an instance of the general tuning method
(discussed 1n Secuon 4).

FFigure 22: Tuning the "Blue” Unit with a Precse Value Unat,

A problem ariseo tn the simple circuit of Figure 21 when the visual input contains more than
one object, that 1s, more than one group of spaually tegistered feawires. The simple network of
Figure 22 cannot detect the spaual disunctness of the two groups. To make this problem more
concrete, let us consider two spatially disunct items, one blue (B) and fast (I') and the other red (R)
and textured (1), In the simple network we must expect all feature unis have a high potental, 1e.,
B, F, R, and 1), and there s no grouping of the two appropriate pairs, BE and R, This 1s an
instance of the general problem of mulu-aitnbute concepls which has been viewed as a mayor
obstacle 10 connecuonist schemes,

One soluuon to dus 15 to claborate all BIF(x) units, but this poses two problems.  First, there
are a large number of unus, ie, (Nm)sz where Ny, is the number of feature groups and N, is
the spaual quanuficaton. For the retina (even the fovea) this number becomes unrealistically large.
A soluuon 1s to allow paurs of coarse-grained property units which still do not use the spaual
registraton explicily. In Figure 23 we show the circutt for a BE cell which assumes a tugh polental
only it its inputs from sensor units are spatially registered. This i$ done by making spatially
registered unis have conjuncuve connecuons. That ts, appropriate values of color at x = 7 and
veloaty at x = 7 would make a conjunctive connection, butl appropriate values that were not
spatally registered would not. Of course, the BF unit mught have to nommalize 18 input in the
manner of Secuon 2, 1f there were many visual features present. Note that the velocitly measurement
poruon of the network 18 not drawn but that it 1s nearly identcal. Velocity sensols are connected to
fine-gramned veloaty unis in the same way as color sensors are connected o fine-gramed color
untls. Maodels for the vanous parts of velocity-sensiuve networks have been explored by {Iforn and
Schunck, 1980; Barnard and Thompson, 1979; and Ballard, 1981c].

Frgure 23: A BF Unit Detects the xistence
of Spaually Registered "Blue” and "Fast” Perceps.

Despite all these ways of ceononuzing, it s sull combinatoncally implausible o have complex
cells such as BIYRM(...). However, there 1s a way around tus problem using muluple connections
from object umits. A blue-textured-fast (B117) obyect unit can be synthesized from B and BE unus,
te BT & BE => BT What the ~> symbol means is that the tumphicaton 1s not guaranteed, but
very likely, given that the BE and BT units are wned. The BE and BT unds detect spaual
registrauon direetly via connecuons ke those in Iligure 23, but the BT unit does not. We are
saymg ussenually that, i general, sunple (here, pairwise) conjuncuons can be kept spaually
registered by conjunctive connccuons, and that more complex property combinauons can be
synthesized tfrom them. Complex combinauons that are impaortant o an individual are presumed ©
have new units recruted |I'eldman, 1980, 1981} to represent them explicitly.

Sequencing

One nught imagine that the network in Figure 23 1s adequate and that given visual input, it
will converge © apprupriate potenual values, However, there is an easy way o sce that, in general,
tus will not happen for all percepus. First consider the fine-gramned set of feature values in Figure
22, Since uniws i Uus neiwork recerve inputs from all pars of space, diffusely valued spatal potnts
can eastly obscure a set of contguous spaual porats with a single value, For example, mouon rom
other parts of space can obscure the mouon of a partcular object (in feature space). Another way o
understand thus 1s 10 suppose a sel a features formed a single, muiu-dimensional space. In chis space

”; objects are clear, but because of the enormous stee of the space, L must be represented with
j-‘_ dufferent projecuons. The projecuons are the fanuliar subspaces o color, veloaty, ete.
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There 1s a way to use the subspaces 10 cause the appropriate pereepls o fire by building
conjuncuons of features tna sequenual manner. This crrcumvents the basie problem described
above. To develop the sequenual soluuon, we introduce spatiel umts, such as those shown m Figure
24 There 1s a spatal umt for cach spatal postton and cach intrnsie parameter (eg. color),

Frgure 24: A Blue-Fast Unit showiny
Spaual Context Unuts.

Spaual units recerve mput from percept umts, feature umts, and sensors. If all three of these
are present, the unit wil adjust the potenuals of all of the sensor unns upwards. We assume that
upper and lower bound umts will adjust the potenuals of the enure sensor network. The net result
will be that spattal sensor units not receving appropriate tnput wil! have no effect on the property
LS.

With respect o Fgure 24, we suggest the following scenanio for a "blue,” “fast-moving,”
"horizontal” surface, where blue stands out 1n the color fealure space, but fast-moving and
horizontal do not i therr respecuve feature spaces. 1st, the blue percept unit causes mput frum
blue valued spatal posivons o be favored. Under this restiicton, one of the other features 15 now
disunct, turther rasing the potenual of acuve sensor cells at those posiuons, The effect 1s as if a
blue filter were placed 1in [tont of the sensory tnput. Now the third feature 1s detected. AL this pornt
the composite network imdicates that there 18 a blue, fast-moving, horizonwal surface in the visual
ficld at the posiwon specified by high-confidence spaual units,

Our soluton o the problem of detecung spaually-registered features 15 not unigue but does

require much less than Xi% units. Table 2 summarizes the connection and unit requirements in
terms of spatal complexity  esumates.

Fable 2
k = number of modahiues
X = nuber of disunct spatial values
I' = number of disunct “fuzzy™  features/modality
U= number of disunct {ine-resoluuon  features/modaliy

No. of Connections/ Connects to
Unit Type Units Unit Units of Type
Sensors (S) kXf F ff, C
Fine-features (() kf X I, C
. . - R ey D .
Fuzzy-featares (119 I= X(f/1°)< C
Spaval () KNI 1 S, 1f

Maotor Control of the Fye

To see how dus nouon of distnibuted objects nught work in motor control, we offer a simplistic
model of vergence eye movements, (The same wdea may be valid for lixauons, but control probably
tkes place at higher levels of abstracton.) In this odel reunotopie {spaual) units are connected
direetly o musdle contol units. Each reunotopie unit can f saturated cause the appropriate
contraction so that the new eye positon s centered on that unit, When several reunotopic units




saturate, cach enables a muscle conurol unit independently and the muscle isedf contracts an average
amount,

Frgure 23 shows the idea for a one-dimensional reuna, For example, with units at positions 2,
4,5, and 6 saturated, the net result s that the muscle 1s centered at 1774 or 4.25. This (dea can be
extended 1 we assume the reunotopre units have overlapping ficlds such as those used by [Thinton,
1980} This kind of organizauon iy consistent with studies of the organizauon of the superior
colhculus 1in the monkey [Wurtz and Albano, 1980].

Figure 25: Distnibuted Control of Eye Fixations,

Nouce that cach reunotopic unit is capable of enabling different muscle control units. The
approprate one s deternuned by the enabled x-ongin umt which inhibits commands W the
imappropriate control units via  modifiers,

One problem with this sumple network arises when disparate groups of retinotopic units are
saturated. The present configurauon can send the eye (0 an average postuon if the features are truly
wenteal.  Also, tie network can be modified with addivonal connecuons so that only a single
connected component of satutated units 15 enabled by ustng additional object primiuves. A version
(1)1' this motor control 1dea has already been used 1 a computer model of the frog tectum JIhdday,

976].

There are sull many details 0 be worked out before this could be considered a realistic model
of vergence control, but 1t does lustrate the basic wdea: local spaually separate sensors have distinet,
active connections which could be averaged at the muscle for fine motor control.

Shape from Shading

In a previous sub-secuon we showed how spatally distnbuted information could be connected
W a global object umil. There the ssue was pnmanly one of feasibiity, With a sumple model, there
were large numbers of global features, yet it was possible o detect them all. Refauonships between
image-ike mputs and features were assumed but not stressed. In dus section we present an example
ol such relatons by showing a network which computes surface onentaton from an intensity array,

The speaific example we will use 1s that of shape-from-shading. It ts well-known that given the
onentatuon of a surface with respect 1 a viewer, s relleclance propertes and the locauon of a
single light source, that the brightness at a point of the viewer's reting can be determined. That s,
the reflectance funcuon R((),(l),()s,(bs), where Qb and Oy(bs are onentations ot the surface and
source respecuvely, allows us to determine {(x,y), the normalized intensity - terms of reunal
coordinates.  Towever, the perceptual problem s the reverse: given I(xy) and R(...), deternune
O(x,y), O(x.y) and 0.,

In general, the problem of denving O(x,y).P{xy) and ()S,tbS 15 underdetermined, However,
Tkeuchi J1980) showed that the surface could be deternuned locally once Os,fb5 was spectfied. Thiy
method fas been extended [Ballard, 1981b) w0 the case where Os»‘t’s s twually unknown.

The algondun s outhned as follows. For a single hght source, the miensity at a point on a
reuna can be described tnterms of the onentauon of the normal of the corresponding surface point
and the surface onenwuon, That is, in sphencal coordinates,

(6y) = R(O.D0.D,) (. $.1)

where the angles O and & are funcuons of x and y. The viewer 15 assumed 10 be looking down the
¢ axis (towards ts ongin) under orthonormal viewiny condiuons. O, b, Os' and ® are sphernical

angles measured with respect to thus frame. Now by mimmizng (I-R)2 and appending a
smoathness constraant on O and @ we have [Tkeuch:, 19%0] an expression for the local error (if the
estmate for O and @ s ounreltable) os Dllows:
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Bixy) = (1-R)2 + M(T2012+(V20))
where A s a Lagrange muluplicr, For a muntmum, g and By = 0. Skipping some steps, tus leads
Lo
O(xy) = ()uvc(x,y)+'l‘(x,y)R0 (tx. 5.20)
Bxy) = @ XY +HT(0YIR g, (Ly. 5.20)
where
<D.‘Wc(x,y) 15 a local average
and
T(xy) = (1716A)(1-R)
In solving these equauons, O, and ®, are assumed o be known. Tkeucht used a parallel-iterauve

method where the & and (), are calenlated from a previous iteration.

ave ave

To calculate Qg and @, we assume O and ® are known and use a Hough techmgue. First we
form an array A|O,®| of possible values of Og and ®¢ imuahized 0 zero. Now we can solve the
Lamberuan reflectance equation for ®,. The Tough technique works as follows. FFor each surface
element O,®, and for each Oy we calculate all b, that sausfy [, 5.1 and increment /\[()S.(DSL ie.,
AlOgp] 1= A{O,® |+ 1. After all surface elements have been processed, the maximum value of A
corresponds 10 the location of the point source. In {Ballard, 1981b} it 15 shown that calculauon of

the source locauon can proceed in parallel with that of Of{x,y) and ®(x.y) and that the two
calculauons will converge.

Implementation in Networks

The above descripuon of the shape-from-shading is geared o implementaton on a conventional
computer. We now describe how these computatons can be realized with connections between
networks of basic unis. The general strategy 1s as follows. Vanables in the above cquations are
represented by networks of units where cach unit has a discrete value, The connections between
valte-utits must be made in such a way that the networks converge 10 a set of value-ubits that have
potenual equal w unity. These unis well represent a parucular solution for the mput intensity
distributon,

The shape-from-shading calculatuons can be decomposed o two pnncpal networks, One
represents the sutface onentations at reunal points and e other represents possible dlaminaton
anmgles. Thus there s a {O(xy) ®(x,y)}-network and a ”US"(DSH network, In addiuon, mput values

of I{x,y) are assumed. The O(x,y) sub-network 1s represented by units each represenung a spectfic
value of 0 at a parucular point x,y. This representaton requires N()NXNy umts, Assumung N, =
Ny =27 and Ny = 25, the requirement s for 29 or < 109 unis. The tluminauon angle network E
uses untls to represent pairs of values, one for 05 and one for . The reason for this choice will
be discussed momentarnly.

With these provisos we describe the connectuons between networks that compute shape from
shading 1n two parts. The first part descnibes connections from the {0, network o the network
. that detects dluminaton direction. The second part describes the connections 1n the other direcuon,
. For every postuon x,y and for cach value of O, b, and [ at that postuon, the appropriate values of

E{ O and ®, which sausfy R =1 can be precaiculated.  Thus O, (nples, cach representung a specific
L‘ value, make conjuncuve connecuons with Oy ¢ umits. Figure 26 shows a representauve conneetion,
' Figure 26: A Poruon of the Connections

""z Used to Detect [Huminauon Angle.
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The ()s"ps units are summatton ums. Each ()5,¢l>s unit sums the number of [,0,® input triples

that arc firing and their potenuals are proporuonal tns sum. The proportonality constant may be
known from physical considerauons or may be adyusted by upper and lower bound umits like those
described tn Section 2. The O @ umt with the highest potenual 1s the one that s consistent with

the maxitmum number of {OM} and 1 unus,

Two important consideradons c¢ffect the design of the {(Og® )} network. One 1s the need for
good discrimination tn the values of Oy and & This led w0 the decsion o use (Os"bs) pairs as
units instead of Qg and units. In the latter case. soluuons © the constraint relauon that sausfied
patrs of (()S,lbs) values may be obscured n the individual O and @, networks owing (0 the
reduced dimensionality. The second consideration s the average number of connections per unit.
With 20 values for Oy and b, there must be 212 Lnits in the {(()S(bs)} network. An upper bound
on the number of connections to this network from the {{O®)} network can be determined [rom
straightforward counting arguments. At cach point xy there are NyNg, Ny combinauons, or 215,

With NXNy = 214, this leads to 229 or 102 otal connecuons. Thus the average number of
connections per (O P} unit is 229212 op 217 = 3x10% If tus 1s unreasonahly large, a simple
solution is 10 use auxilliary O¢P, unis, which sum subsets of the mputs 0 a O, unit. The Ogby
umt then sums the outputs of the auxilliary units.

For the second part we consider connections from the {(O,,®,)} network (o the {0} network
needed o realize the constrant of Fquauons 5.2a and b, We will only consider the first equaton
{since the second 1s treated similarly), This represents a constraint g(‘l»,()avc,l,(),()b,d»s) = 0. Given
values for these vanables we can determine R(O,(b,OS.(DS) and Ry 1o see whether or not Equation
$.2a 1s saustied. Thus a suaghtforward applicauon of our technique would use compunctve

connectons th groups of mne, as shown in Figure 27. For a particular O value we examine all the
combinauons of values for the other vanables and connect the subset that sausfies Fxuation 5.2a o

the O-unit,

IFigure 27: Alternate Connecton Schemes
tor Compuung Surface Orientauon,

Here we have used four nearby values of O to compute O, This implementation s unsatisfactory
for two reasons: (1) the large number of inputs in the conjuncuve connecuons would be noise-
sensittve; and (2) there would be an unrealisucally large number of connections on any one unit. 1o
solve both of these problems we use ()ave units for each O(x.y). While this only doubles the
number of units 1n the 10,9} network, 1t drastically reduces the number of connecuons 0 an
individual O-umt. Assuming our earlier figures, this number 1§

30 - ¢
NONOaveNNoNOyNgs or 277 = 107,

This number 1s sull very large, but can be further reduced by further unit/connecuon
tradeotts,

The introducuon of the Oy, unit o reduce connectons represents a different kind of tradeofT

from the simpler tradeoll used o handle high density connections in the aillununauon angle
newwork. A specific value of O, may be produced by scveral different combinations of nearvy

O's. Each of these groups of O’s makes a conjunctive connecton with the O, . unit. However,

since we expect a unique value of O(x,y), the unit behaves differently than that m the dlununauon
angle newwork.  Rather than sum its inputs, each ()avc unit adjusts 1ts potenual based on the

maximum  of 11 conjuncuyve  groups.




Other Networks Determine Boundary Conditions

The umt outline for shape from shading calculauons does not include a discussion of boundary
conditions. These can be caleulated from other networks such as a dispanty network. For example,
the existence o a depth disconunuity d(x,y) 1n the dispanty network could infubit connections
between the ) and @ vither side of the disconunuty. In general, such networks will interact 1
many dilferent ways o determine boundary condiuons |Barrow and lenenbaum, 1978]. Much
addwuwonal work nceds 0 be done 10 spectfy these interacuons more precisely.

Conclusions

We have now completed five years of mtensive effort on the development of connecuonist
modets and their applicauon 1o the deseripuon of complex tasks. While we have only louched the
surface, the results o date are very encouragmg. Somewhat 0 our surprise, we have yet
encounter a challenge 10 the basic formutauon. Our auempts (0 model 1n detad parucular
computauons [Sabbah, 1981, Ballard and Sabbah, 1981] have led 1o a number of new insights (for
us, at least) mwo these speafic tasks. Atempts like tdus one to formulate and solve general
computational problems i realtsuc connecuonist terms have proven o be difficult, but less so than
we would have guessed. There appear 10 be a number of interesting technical problems within the
theory and a wide range of questons about brains and behavior which might benefit from an
approach along the lines suggested in this report.
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Appendix: Summary of Definitions and Notation

A unit s a computauonal enuty comprising:

{at - a set of discrete states, < 10
p - a contnuous value i [FLY, called potential (accuracy of 10 digits)
v -- an oulpul walue, integers 0 < v <9

i - a vecwor of inputs 1,..ig
and functons ftom old w new values of these

p <- flipy)

q <- glipy

v <- h(i,p.a)
which we assume, for now, Lo compute conunuously. The form of the f, g, and h funcuons will
_ vary, but will generally be restricted to conditonals and funcuons found on hand calculators,
P-Unit

I'or some applications, we will use a particularly simple kind of unit whose output v 1s

proporuonal to s potenual p (rounded) and which has only one state. In other words

P<-p+ B Uy ;1 <p <

v=oap-{ v = 0.9

where ff, a, ¢ are constants

Conncection Tables

In addiuon o graphical notation, the outgoing connections (o other units can be described in

tabutar form. Each oulgoing Yi {only one for basic umts) will have a set of entnes of the form

(<recerving  unmit> ndex)> <25 L1yped)

"-,
where any of the last three constructs can be omutted and given us default value, The <> field
: spcuﬁcs whether the link s excitatory (+) or inhubitory (-) and defaults o +. The <ndexo 1 the
S tput index j o1, at the recewving end. Thes index can be used {or specifying different weights,
. Indexed mputs also allow for funcuonally different use of vanous mputs and many of our examples
- explont thiy feature.  The <type> 1s either normal, modifier (m), or learning (x), the default being
° normal.
L 4
* Conjunctive  Connections
, In terms of our formalism, this could he described in a varety of ways. One of the simplest is
Ny o define the potental in terms of the maximum, eg.,
R . o
}, p <- p + Max(ij+1,, 3t+1g. 15+1g=17)
) The max-of-sum unit 1s the conunuous analog of a logical OR-of-AND (disjunctive normal
] form) unit and we will someumes use the latter as an approximate version of the former. The OR-
, Of-FAND unit corresponding o the above is;
. p <-p + a OR (&, 13&iy, is&ig&(not iq))
Winner-take-all (WTA) networks have the property that only the unit with the highest potenual
K (among a sct of contenders) will have output above zero after some scuthng ume.
A coalition will be called stable when the output of all of its members is non-decteasing.
4
..
C

K 4
+
,
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