AD=-A102 218 GENERAL RESEARCH CORP SANTA BARBARA CA E/6 972
FAVS ENHANCEMENTS, (U)
MAY 81 R A MELTON F30602-79-C-0156
UNCLASSIFIED RADC=TR=81-94

1ol
04
e

E N D
DaTE
FILNED
-8l
oTIC

ADA102218

RADC-TR-81-94 v
Final Technical Report
May 1981

FAVS ENHANCEMENTS

General Research Corporation

R.A. Melton

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DTIC

ELECTE
JUL 20 1981 ; &
ROME AIR DEVELOPMENT CENTER

Air Force Systems Command D
Griffiss Air Force Base, New York 1344l

. 81 7 30 goo

BN, T
!M

ke s

- — ——

This report has been reviewed by the RADC Public Affairs Office (PA) and
is releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC~TR-81-94 has been reviewed and is approved for publication.

APPRovgn: /M /J %}”M

FRANK S. LAMONICA
Project Engineer

APPROVED: ﬂ‘@/\, ﬂ:@z: e

ALAN R. BARNUM, Assistant Chief
Information Sciences Division

FOR THE COMMANDER: ;(yéb P Alay-

‘7 JOHN P. MUSS .
Acting Chief, Plans Office

2] M,_W%‘g_ﬁ,w~‘f‘/«- S

1f your address has changed or if you wish to be removed from the RADC
mailing list, or if the addressee is no longer employed by your organizatiom,
please notify RADC. (ISIE) Griffiss AFB NY 13441. This will assist us in
asintaining a current mailing list.

Do not return this copy. Retain or destroy.

e AW s e e S e o s e s <

UNCLASSIFIED

-

g' SECU“IT}’NSSIF|CAT:ON AF THIS PAGE (When Du.‘Enund)‘

r “/ } REPORT DOCUMENTATION PAGE BEF et o e PoRM

¥ {.f" " RE 1.3 R 2. GOV,T ACCESSION NQ.| 3. ?CIPlENT‘S CATALOG NUMBER.

b ! g ! _

i "y MDL}TR 81-94 | «/\LJ 76‘ _
T e - TITLE (and Subtitie) ~ 4 wwmnn-v?wyﬁum

, N Coe e «\ ‘4 |Final Fechnical Kepdwt.
! ! _
| (. ["AVS ENHANCEMENTS | May 79 - June 80

3 e - 7 ['s. PERFORMING 07G. SEPORT NUMBER
| S st N/A 3

. : S RTTROATS 3 conrnwvo‘muv Tuuitnm

1] .
?1 (/Q) R.A. Melton \\"; F3;16;32 79-c-p156

Sk i

3 PERFO;MING oRGAm;ATION NAME AN‘D ADDRESS N 10. ::giR&AzoE Kz Sn‘T ":AODJZECST TASK L

; General Research Corporation P 6470lB ' 7(1>]
N PO Box 6770 u / 1’3ﬂ5})307 \, j YA
- | Santa Barbara CA_ 93111 é -

“ t1. CONTROLLING OFFICE NAME ANO ADORESS) 12. nerog:rlo E H
: Rome Air Development Center (ISIE) , l l):lf‘ymr;“ ofr v

- Griffiss AFB NY 13441 79 '
e T8 MONTTORING AGENCY NAME & ADDRESS(If diffetent from Controiling Office) | 15. SECURITY CLASS. (of thia report)

O o 3 e #2
~* + f. ¢ UNCLASSIFIED

| Same “l . é '_: 15a. DECL ASSIFICATION/ DOWNGRADING 1

SCHEDULE

: - N
1 6. OISTRIBUTION STATEMENT (of this Report) !
)
1

Approved for public release; distribution unlimited

’ , 17. DISTRIBUTION STATEMENT (of the abatrsct sntered in Block 20, il different from Report)

‘ Same

! 18. SUPPLEMENTARY NOTES

RADC Project Engineer: Frank S. LaMonica (ISIE)

19. KEY WORDS (Continus on reverae side if necessary and tdentify by block number)
Computer Software Testing

Computer Software Verification

Software Developmernt Tool

%\ |FORTRAN
MT ABSTRACT /Continue on raverse side if necessaty and identily by block number)]

This report documents the results of an effort to upgrade the FORTRAN
Automated Verification System (FAVS) installations at the Defense Mapping 3
Agency (DMA) Aerospace Center (DMAAC) and Hydrographic/Topographic Center
(DMAHTC). The upgrade, which was accomplished by a series of four software
releases, included efficiency enhancements, user interface improvements,
and the capability to process the ASCII FORTRAN programming language.

A A

A\

1 DD , 35", 1473 coiTion oF 1 NOV 6515 0BSOLETE UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When n.[. Entered)

Hox s 4

i

, S T et BIAREA A 40 S o e NSRS Py Y
. . R TR O W L5 . YN

B B T i e ol R L e A TR A

F:
[CONTENTS
) SECTION PAGE
"1 ACKNOWLEDGEMENTS iv
1 INTRODUCTION 1-1
2 EFFICIENCY ENHANCEMENTS 2-

1
2.1 Token Processing 2-4
2.2 Cross-Reference Processing 2-5
2.3 Symbol Table Processing 2-6
2.4 Source Text Analysis 2-6
2.5 Data Base System Tuning 2-7

3 RESTART FILE ENHANCEMENTS 3-1
4 UNIVAC ASCII FORTRAN ENHANCEMENTS 4~1
5 USER INTERFACE ENHANCEMENTS 5-1
5.1 Commands 5-1

5.2 Modified Reports 5~4

6 FAVS ERROR CORRECTION 6-1
6.1 FORTRAN V Procs 6-1

6.2 FORTRAN V Compiler Statement’ 6~1

6.3 FORTRAN V Internal Subroutines 6-1

6.4 "EOF" Variable 6~2

6.5 Assign -GO-TO Statements 6-2

6.6 Long Data Statements 6-2

APPENDIX

A Updates to the DMATRAN User's Guide A-1

LAccession For

NTIS GRA%Y ,ﬂ
DTIC TAB O
Unannounced | :
Justificetion 3

By

"pispribution/_ll__"

L_ﬂyailabiltty Codes
Avail and/or

Dist Special

v im

- BN B

D

2.1
2,2
3.1
3.2
5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5-13
5.14
5.15
5.16
5.17
5.18
5.19

FIGURES

PAGE
Relative Improvement in FAVS I/0 Processing Time 2-2
Relative Improvement in FAVS CPU Processing Time 2-2
Relative Improvement in FAVS Restart Processing 3-3
Relative Improvement in Restart File Size 3-4
FAVS.0 Statement Listing 5-6
FAVS.4 Statement Listing 5-7
FAVS.0 Library Dependence Matrix 5-9
FAVS.4 Invocation Summary 5-10
FAVS.0 Common Matrix 5-12
FAVS.4 Common Summary 5-13
FAVS.0 Matrix (Enhanced) 5~15
FAVS.4 Common Matrices 5~16
FAVS.0 Static Analysis Report 5-18
FAVS.4 Static Analysis Report (with LIST option) 5-19
FAVS.4 Symbols Report 5-20
FAVS.4 Static. Analysis Report (without LIST option) 5-21
FAVS.0 Cross Reference Report 5-23
FAVS.4 Cross Reference (Individual Module) 5-24
FAVS.4 Cross Reference (Common Variables) 5-25
FAVS.4 Cross Reference (Externals) 5-26
Restructure Report 5-28
FAVS.4 Picture of Module Structure 5-30
FAVS.4 Interface Changes Report 5-31

4
T

i a 1 e
Y g

TABLES

A

oA oS A - ST B4 s

PAGE

FAVS Updates

Characteristics of Source Programs and CDC 6400

Processing Times (in Seconds)

iii

1-2
2=3

T T
&

—

ACKNOWLEDGEMENTS

Many individuals contributed to the design and implementation of
FAVS. E. F. Miller, Jr., originated the work at General Research
Corporation which resulted in the methodology for FAVS, He, together
with Michael Paige, Jeoff Benson, Randy Urban, Rich Melton, Carolyn
Gannon, Dick Wisehart, and others, initially built RXVP, an automated
verification system for FORTRAN, a product of the Program Validation

Project sponsored by General Research Corporation.

JAVS (JOVIAL Automated Verification System) was the immediate
successor to RXVP. In its development, the RXVP software testing
methods were examined, the algorithms were extended to JOVIAL con-
structs, and the JAVS software itself was written in the JOVIAL lan-
guage. JAVS was installed at RADC, and user training was conducted.
The major contributors to the JAVS project were Jeoff Benson, Nancy
Brooks, Carolyn Gannon, E. F. Miller, Jr., Ray Stone, Randy Urban, and
Dick Wisehart, all employees (at that time) of General Research Corpor-—
ation. The RADC Project Engineer for JAVS was Dick Robinson.

STRUCTRAN-1 and STRUCTRAN-2 were developed concurrently with the
JAVS project. STRUCTRAN-1 translates DMATRAN (a structured extension of
FORTRAN) to FORTRAN, and STRUCTRAN-2 translates FORTRAN to DMATRAN. The
STRUCTRAN software was installéd at DMAAC in St. Louis, Missouri. The
ma jor contributors to STRUCTRAN were Dorothy Andrews, Rich Melton, and
Randy Urban. The RADC Project Engineer for STRUCTRAN was Don Mark.

The development of FAVS integrated concepts from RXVP with
STRUCTRAN-2, 1incorporated certain capabilities of JAVS, extended the
STRUCTRAN-2 capabilities, and improved STRUCTRAN~l. The FAVS software
is written in DMATRAN. FAVS has been installed at DMAAC, DMAHTC, and

RADC, and user training and maintenance training have been conducted.

b

P

The major contributors to FAVS were Dorothy Andrews, Carolyn Gannon,

Rich Melton, and Randy Urban. The RADC Project Engineer was Frank

LaMonica.

I T

The FAVS enhancements described in this report reduced the
computer resources required during FAVS processing by a factor of three
or more, improved the FAVS user interface and reports, and added
processing of the UNIVAC ASCII FORTRAN dialect. The enhanced FAVS has
been installed at DMAAC and DMAHTC. The wmajor contributors to FAVS
enhancements were Dorothy Andrews and Rich Melton. The RADC Project !

e G oo
e Al

o —

-
¥

Engineer was Frank LaMonica. ;
1

g A e e L% Sy o Ve Bl v T um'

T
- AL

S

~
»
€

P

EVALUATION

The purpose of this contractual effort was to upgrade the FORTRAN
Automated Verification System (FAVS) installations at the Defnese Mapping
Agency (DMA) Aerospace Center (DMAAC) and Hydrographic/Topographic Center
(DMAHTC). The goals of the effort were to provide efficiency enhancements
to reduce FAVS processing time by at least a factor of three, improve the
FAVS user interface, extend FAVS processing to UNIVAC ASCII FORTRAN, reduce
FAVS data base library storage requirements, and to correct residual errors.
The upgrade, which was accomplished by a series of four software releases,
was successfully performed and, in some cases, the goals were exceeded, The
effort resulted in a software testing tool which is closely tuned to the DMA
processing environment. This effort was responsive to the objective of the

RADC Technology Plan, TPO 4G3, "Software Engineering (Software Tools)."

Tonhk A Ja Moniea_
%

FRANK S, LAMONICA
Project Engineer

1 INTRODUCTION
The FORTRAN Automated Verification System (FAVS) is a series of

tools which provide:

'Y Translation from DMATRAN (a structured extension of FORTRAN)
to FORTRAN and from FORTRAN to DMATRAN

° Static detection of unreachable statements, set/use errors,

mode-conversion errors, and external reference errors

. A means of measuring the effectiveness of software test

cases, both individually and cumulatively

. Assistance in the construction of test data that will

thoroughly exercise the software

° Automated documentation

As part of its program for applying advanced technology to improve
the quality and reliability of software, and to provide testing tools
for the Defense Mapping Agency, Rome Air Development Center contracted
with General Research Corporation to design, install, and document
certain enhancements of FAVS. The enhancements are intended to reduce
the cost of assuring that software systems written in FORTRAN are
comprehensively tested., This report (the final report for the project)
describes the enhancements and quantifies the improvement in performance

where possible.

The work involved the appiication of efficient and automatable
algorithms and techniques to the verification and testing of FORTRAN
software., The specific tasks were to provide efficiency enhancements
that reduce FAVS processing time by at least a factor of three, improve
the FAVS user interface and reports, extend FAVS processing to UNIVAC
ASCII FORTRAN, provide an interface library capability for FAVS, and

correct errors in FAVS.

. 1
'
— e —

A 2t
AL

R T e
PR N ol

y
— oA

o

4. o

b |
|
1
o

The FAVS software was enhanced in a series of four updates (Table

1.1). Each update was installed and tested at DMAAC and DMAHTC by GRC
personnel, after verifying correct operation by testing on the CDC 6400
at GRC in Santa Barbara, California. It was originally planned that all
efficiency enhancements would be completed during Update 1. At that
time the CDC 6400 version of FAVS had met the goal of running in one-
third of the original processing time, mostly because of reductions in
CPU time. When Update 1 was installed on the UNIVAC 1100/80s at the DMA
sites,however, the relative improvement was not as great. The slower
1/0 devices in the UNIVACs caused FAVS to be more I/0 bound. Subsequent
updates, therefore, included further enhancements to improve the I1/0
performance of FAVS. The result was significant further improvement in

performance on the CDC 6400 as well as the UNIVAC 1100/80.

TABLE 1.1
FAVS UPDATES

FAVS Week of Update Type of

Update DMAAC DMAHTC Update

1 7-23-79 7-16-79 Efficiency enhancements,
error corrections

2 10-15-79 11-11-79 Efficiency enhancements,
report enhancements, error
corrections

3 1-21-80 1-28-80 ASCII FORTRAN, error

’ corrections, efficiency

enhancements

4 5-18-80 4-21-80 Interface 1library, user

interface enhancements,
error corrections

The enhanced FAVS has been implemented for the analysis of
computer software written in UNIVAC FORTRAN V, ASCII FORTRAN, or DMATRAN
and is operational on the UNIVAC 1100/80 computers at DMAHTC in

Washington, DC, and DMAAC in St. Louis, Missouri, and on the CDC 6400

computer at General Research Corporation in Santa Barbara, California,

PSS,

where it was developed.

Section 2 of this report summarizes the efficiency enhancements.

Section 3 describes restart file enhancements. Section 4 describes

ha e

extensions for the UNIVAC ASCII FORTRAN dialect. Section 5 describes

the enhanced FAVS user interface and improved FAVS reports. Section 6

Aaa .

describes error and deficiency corrections to FAVS.

In addition to this report, a number of other reports have been

prepared as part of the effort:

° FAVS (FORTRAN Automated Verification System) User's Manual
(CR-1-754/1, December 1977, revised April 1980).

H This report is an introduction to using FAVS in the testing

process. Its purpose is to acquaint the user with the

application of FAVS to program testing, so that an efficient

approach to program verification can be taken. The basic

! commands by which FAVS provides this assistance are dis-

cussed in detail. FAVS processing is described in the order

normally followed by the beginning FAVS user. The Appen-

dixes include a description of FAVS operation at DMAHTC and

DMAAC, with both sample command sets and sample job control

statements.

DMATRAN User's Guide (CR-1-673/1, January 1978)
This report describes the structured constructs and syntax

- of DMATRAN, a structured extension to FORTRAN. It also

details the use of the DMATRAN preprocessor, which trans-
lates DMATRAN into FORTRAN, Procedures for using the UNIVAC
1100/80 or the Honeywell 6180 version of DMATRAN are

! included. Revision pages to update the DMATRAN User's Guide

are included as Appendix A of this Final Report.

FAVS (FORTRAN Automated Verification System) Computer

Program Documentation: Vols. 1, 2, 3 (CR-2-754/1, January

1974; Revised January 1951).

These reports describe the FAVS software design, the
organization and contents of the FAVS data base, and for
each FAVS component its function, each of its invokable
modules, and the global data structures it uses. The report
is intended for use in FAVS software maintenance, together

with the Software Analysis reports described below.

FAVS Computer Program Documentation: Vol. 4, Software
Analysis

This volume is a collection of computer output produced by
FAVS, not reproduced but on file at RADC, DMAAC, and DMAHTC.

The source code for each component of the FAVS software has
been analyzed by FAVS itself to produce ehhanced source code
listings of FAVS with indentation and control structure
identification, inter-module dependence, all module invo~
cations, module control structure, and a cross reference of
symbol usage. This volume is intended to be used with Vols.
1-3 for FAVS software maintenance. It is itself also an
excellent example of the use of FAVS for computer software

documentation.

W T
. v

[aanianty ¥ 200

i o tmeenna e a2l

e e

.

WK

&

2 EFFICIENCY ENHANCEMENTS

Experience at DMA indicated that FAVS required excessive computer
time when analyzing large FORTRAN systems. The time (especially for 1/0
processing) seemed to increase exponentially as more lines of source
code were analyzed. The DMA data processing department was running
large backlogs--FAVS users were faced with overnight (or even weekly)
turnaround-—and DMA management could foresee even larger backlogs if the
use of FAVS became widespread. To remedy this situation, a goal was set
of enhancing FAVS efficiency to reduce its processing time (CPU and 1/0
combined) by a factor of three. This goal was met and exceeded. FAVS
processing time (especially I/0 processing time) is now nearly linear in
source lines analyzed. In processing 3500 to 7000 lines of source code,

processing time has been reduced by a factor of 8 to 10.

Figures 2.1 and 2.2 indicate performance increases in the range
of 150 to 7000 source lines. In these figures FAVS.0 refers to FAVS
before any efficiency enhancements, FAVS.4 refers to FAVS after the
enhancements described in this section. Table 2.1 shows characteristics
of the source programs used, as well as the actual processing seconds
used (on the CDC 6400/GOLETA system). All source programs used were
written in DMATRAN, so that compilation time refers to the sum of
DMATRAN precompilation and CDC SCOPE FIN compilation time. All FAVS
times are for the STATIC option. Similar results were obtained on the

DMA UNIVAC 1100/80.

1/0 Processing Time

As indicated in Fig. 2.1, FAVS 1/0 processing time was improved by

a factor of 3 to 7 when processing 150 source lines, but was improved
dramatically (10 to 30 times) when processing 3500 to 7500 source lines.
Previously, FAVS.0 I/0 processing time increased exponentially with the

number of symbols processed. FAVS.4 1/0 processing is nearly a constant

2-1

S anide

e b e, et .

et e b

P O TP

b aade adaaide

¥
A
.,

ar .

2% —
2
4
4 1o F
1
| ;
¥
i
! i
. i “
! °
'ﬁ
! 0 | [| 1 | 1 il ;
g 0 1K 2K 3K 4K 5K 6K * 7K 8K ;
a SOURCE LINES
'5] Figure 2.1. Relative Improvement in FAVS I/O Processing Time i
\
. 1
b i
‘ FAVS.0 - i
| FAVS.4 g !
i U g
5

L {:”,———"—% ;

CPU 2

UV

0 | L | ! 1 | | 1
[1K 2K 3K 4K 5K 6K 7% 8K
SOURCE LINES §

Figure 2.2. Relative Improvement in FAVS CPU Processing Time

T I 2T K i e RS i T, ——

v vPoe S BT W O

Ale AZ0s 1133 0028 9%9 0817 00%. 69

> (RRA AS 192 9L cH8l S0€ 988 16L€ v
XS '8 A8 0°8¢ 89Y 0°€ET ZLe 9%sT 9
6 > (Y] 0°S!. 01L 1°8%1 LEY 2191 z
i
39 S TA 8¢l 1 0°9T 6€ 881 1
19 %S9z LTl 98 6°8 1°12 %S T 9
IHVLSHY JAVISH] 0/1 0/1 ndo 1d0 SANIT SHAINAAOR
¥ *SAVA 0 *SAVA Y *SAVA 0°SAVd *SAVd 0*SAVd d0 YIGHON d0 ¥ATWAN
(SANODES NI) SAWIL HNISSAD0¥d 00%9 DAD (NV SWVIO0dd A0WNOS A0 SOILSIYILOVIVHO
1°Z A19VL
. — _ e R e e T SRS ™ 14 . -

multiple of source lines processed. FAVS.4 performs extremely well in
terms of I/0 time as more and more symbols are processed, primarily
because of the enhancements in token processing and cross~reference
processing. FAVS.0 exhibited a high I/0-processing overhead when
processing small numbers of source lines and symbols and large numbers
of modules. In FAVS.4, this problem was eliminated by enhancements to

the virtual data space processing.

CPU Processing Time

As indicated in Fig. 2.2, FAVS CPU processing time was improved
by a factor of two to three when processing 150 source lines and by a
factor of as much as four when processing 7500 source lines. FAVS CPU
processing time appears to be a constant multiple of source lines
processed. This combined with recent improvements in the DMA computers
translates into an order of magnitude reduction in CPU processing time
in the DMA data processing environment. At the same time as the FAVS
Enhancement contract, DMA undertook a series of hardware enhancements
which reduce CPU processing time by a factor of 3 to 4. FAVS users at
DMA can now expect significantly improved turnaround, and DMA managers
are not faced with the prospect of significantly increasing backlogs as

FAVS becomes more widely used.

2.1 TOKEN PROCESSING

Meaningful strings of source text characters (keywords, labels,
symbols, constants, etc.)--which may be longer than one computer
word-—are internally represented by FAVS as "token integers”. The way
in which tokens were processed contributed to the nonlinear behavior of
FAVS when processing source elements containing many symbols. Token
integers were implemented as pointers to character strings stored in a
“token table”. When FAVS encountered a character string, it performed
a sequential search of all entries in the token table to see if the
string had been previously encountered; if not, it added the string as

the last entry of the token table,

ke

FR— S

FAVS token processing was modified to recognize short character

strings which fit in one machine word (6 characters or less on the
UNIVAC 1100/80) and treat the string (interpreted as an integer) as its
own token integer, in the following way. FAVS character strings are
left-justified and blank-filled. Short character strings are now
converted into token integers by filling them with a special encoding
character (thus storing the character string as well as its length into
one machine word). There is no need to check the table at all for short
strings, Long character strings, and character strings ending in the
special encoding character (used for filling short character strings),
are treated in the same manner as before. Since most FORTRAN tokens are
short (operators, delimiters, and symbols), this change significantly
reduces the size of the token table as well as the number of times it is
searched. Encoding short character strings into token integers and
decoding token integers into character strings is an efficient process

which is independent of the number of tokens previously processed.

2,2 CROSS-REFERENCE PROCESSING

Several of the FAVS options require a data structure which
identifies the occurrence and use of all symbols in a set of source
elements. This was previously implemented as a Referenced Symbol table
which contained an entry for each symbol, and a Cross Reference table
which contained an entry for each use of each symbol. The Referenced
Symbol entry started a chain of entries in the Cross Reference data
structure for all occurrences of that symbol. The global scope of the
Referenced Symbol table contributed to the nonlinear behavior of FAVS
when processing source elements containing many symbols. Previously for
each use of a symbol in any source element, a linear search of the
Referenced Symbol table was performed to see if a chain of uses for the

symbol already existed. If it did, this use was added to the chain;

otherwise a new chain was begun.

i dabe

LT 4] .
USSR N N

——— e

FAVS was modified to include in each module's symbol table a

pointer to the use chain of each symbol used in the module. This
improves the efficiency of FAVS cross-reference processing by completely
eliminating the need to search the Referenced Symbol table. Because it
also directly relates cross-reference information to symbol information,

better cross-reference and static analysis reports can be produced.

2.3 SYMBOL TABLE PROCESSING

Each symbol, label, or constant which occurs in a source element
was previously described by a 19-word entry in the element's symbol
table. The size of this data structure contributed significantly to the
size of a FAVS restart file, as well as to the processing overhead. The
symbol table was modified to wutilize 7-word entries plus expandable
variable—-length entries. These modifications reduce the size of FAVS

restart files and decrease FAVS processing time.

2.4 SOURCE TEXT ANALYSIS

FAVS previously performed three passes through the original source
text before converting it to an internal form. This required reading
the source three times and writing it twice, with minor alterations each
time it was written. FAVS was modified to perform the same function

while reading the original source only once.

FAVS previously translated source text to an internal form,
reconstructed the source text from that internal form, and then stored
the reconstructed text for use in printing and punching. FAVS was
modified to store source text eXactly as it is read in and to tie its
internal statement representations to the original source text. This
eliminates a time-consuming character processing task (source text

reconstruction) as well as improving the usability of FAVS reports.

ilaiautehbittion ik dnamdtiie. i

2.5 DATA BASE SYSTEM TUNING

The above enhancements concentrated on the problem of analyzing
FORTRAN source code more efficiently. FAVS uses a general purpose data
base storage and retrieval system. After the above enhancements were
completed, it was determined that the data base system accounted for 95%
of FAVS 1/0 time. By tuning the data base system, FAVS 1/0 was reduced

by a factor of four (in addition to the reductions described earlier).

The data base system uses a paging technique in which the least
frequently used "page” is written out of core when a page not in core is
called for. A page fault occurs when the desired page is not core
resident. A data structure may occupy more than one page; page
switching occurs when access to the same data structure crosses a page
boundary. Tuning of the data base system consisted of the following

changes.

1. Previously the initial reference to a page was treated as a
page fault (a page of zeroes was written onto mass storage
and then read into core). This artifically increased the
page fault rate. Now an appropriate in—-core page is

initialized to zeroes.

2. Previously a page could only contain information about one
module. This led to high fragmentation and a higher page
fault rate. Now a page can contain information about more

than one module.

3. Previously the "activity status” algorithm that kept track
of the frequency of use of in-core pages made note of each
page fault or page switch, It ignored accesses to data
structures completely contained in one page. A higher page
fault rate resulted, since frequently referenced pages were
likely to have been "paged out". Now an equivalent but
computationally simpler activity status algorithm keeps
track of each access to a page, substantially reducing the

page fault rate.

hoahia)

T

5.

Previously 20 in-core pages of 500 words provided optimum

performance for a wide range of test points. Now 30 in-core

pages of 300 words significantly reduces the page fault rate
for the same range of test points.

The minimum number of in-core pages required for internal

data base pointers (as opposed to source text data struc-—

tures) was reduced from 4 to 2, Previously 20% of the
in-core area was used up by data base pointers; now it is

only 3.4%. This also helps to reduce the page fault rate.

) Rk 1ART FILE ENHANCEMENTS

FavS i1s designed to be especially useful for analyzing large
FURIRAL systems consisting of many compilation wunits. Section 2
described the enhancements used to reduce FAVS processing time for large
FURTRAN svstems. This section describes changes to the FAVS restart
file (perwmanent data base) which have produced an additional order of
magnitude reduction in the cost of consistently using FAVS during the
coding, test and acceptance, and maintenance of software. This reduction

is achieved by:

i. Reducing the size (and storage costs) of FAVS restart files

by an order of magnitude or more.

2. Producing updated versions of FAVS global reports by

reanalyzing changed modules only.

In addit: | limitation of 100 compilation units per restart file was

completeiy rewoved.

Resturt processing time using FAVS.0 was a function of the number
of source lines previously analyzed as well as the number of new or
modified svurce lines to be analyzed. The size of the restart file--10
to 20 times the size of the source text—-effectively limited the use of
restart files to small systems. Besides, it was observed that repro-
cessing & complete system was not much more expensive than reanalyzing
onily changed modules using a restart file. As a result, FAVS.0 was used
almost «..v(re1y in its stand-alone mode. With FAVS.4, however, the
enhancements in efficiency and in the restart file make it economically

feasible to use the FAVS restart mode throughout the coding, test and

daCieptan, o . «ud maintenance of large FORTRAN software systems. This
makes 1t possible to constantly verify that interfaces between modules
are corre-r and consistent, and to produce updated system level documen-—

tation uas required.

s RN P S YT R IR o T S IS, e

wﬁ»’,.‘h‘(ﬁ» -

EEIRS Tyt

N
|
|
H

Fig. 3.1 and Fig. 3.2 indicate that FAVS processing time using a
restart file has been dramatically improved, especially for large

systems with many source lines.

Restart File Size

As indicated in Fig. 3.2, the size of the FAVS restart file was
reduced by a factor of five to fifteen times. This reduction was
accomplished by a major change in the information stored on the restart
file. Previously, the file contained detailed descriptions of source
text, which could be reanalyzed (but not modified) without having to
read source text from an external file, and used to produce global

information and reports.

The new FAVS restart file saves the information necessary to
produce reports about more than one module and perform static analysis
on new or modified source text, but it does not save source text or a
detailed description of it. To reanalyze given source text, the text
must be read from an external file. This change is consistent with the
improved processing efficiency of FAVS.4, which makes it cheaper to

reprocess source text than to store detailed source text descriptions

for possible later use.

Ao fialae

PR

A\ 55389

T o Al

20 —

6 1 | 1 |
0 1K 2K 3K 4K
SOURCE LINES

c Ay

e T e e
o
T

Figure 3.1, Relative Improvement in FAVS Restart Processing

20 T
. FAVS.0 §
? z
N
b
L
. N
i »
’ s
z
S
i .
}
“ o 1 | I ! | 1 l |
{ [1K 2K 3K 4K 5K 6K 7K 8K
& SOURCE LINES :
g Figure 3.2. Relative Improvement in Restart File Size
I
% 3-3

3 VL

4 UNIVAC ASCII FORTRAN ENHANCEMENTS

In order to enhance FAVS and DMATRAN as operational tools for
ASCII FORTRAN (UNIVAC's version of FORTRAN 77), GRC modified FAVS to
recognize and process ASCII FORTRAN and modified DMATRAN to include the
ASCII FORTRAN structured IF statements. Modifying DMATRAN provided an
automatic indentation capability for ASCII FORTRAN as well as DMATRAN

programs.

ASCII FORTRAN (FORTRAN 77) adds 12 new statements to FORTRAN V,
modifies six existing statements in FORTRAN V, and adds a character
string data type and three operators related to that data type. GRC
modified FAVS to recognize and correctly process the following new

statement types:

(a) Structured IF statements

IF (e) THEN
ELSE IF (e) THEN
ELSE

END IF

(b) Character statements

CHARACTER [*1lenl[, Iname{,name]...]

V = ¢ (character .assignment)

(¢) 1/0 statements

CLOSE (cllist)
INQUIRE (iflist)
INQUIRE (iulist)
OPEN (olist)

A e dcmia, aut il

(d) Declaration statements

INTRINSIC fun [,funl...
SAVE [a, [, al...]

as well as the modified statement types:
(a) DO statement
pos {,] i= ey ez[a e3]
(b) 1I/0 statements

BACKSPACE (alist)
ENDFILE (alist)

READ (cilist) [iolist]
REWIND (ailist)

WRITE (cilist) [iolist]

Also all syntactically correct statements containing the new character

operators .EQV., .NEQV.,, and // will be processed by FAVS.

The DMATRAN syntax for structured IF statements was modified to
include the ASCII ELSE IF...THEN statement (the IF..,THEN, ELSE, and
ENDIF statements in DMATRAN are syntactically identical to those in
ASCII FORTRAN). The DMATRAN precompiler was modified to automatically
indent the new ELSE IF...THEN statement as well as to pass ASCII FORTRAN
structured IF statements directly to the compiler without translating

them into logically equivalent ANSI FORTRAN as is currently done.

———p

5 USER INTERFACE ENHANCEMENTS

User interface enhancements to FAVS include simplifying FAVS

commands, improving FAVS reports, and tailoring FAVS to the DMA UNIVAC
1100/80. Although no attempt has been made to quantify the benefits of
these enhancements, it is evident that a more easily usable tool with
readily understandable output will require less programmer time to

perform the same analysis.

5.1 COMMANDS

Use of FAVS has been simplified by allowing most FAVS processing
to be specified with UNIVAC @XQT parameters (“options” in UNIVAC
terminology), and providing macro commands to generate individual
reports. The FAVS options can still be specified on the command file by
using the OPTIONS command described in Sec. 3.3 of the FAVS User's
Manual. At DMA installations, the options can also be_specified in the
job control language by means of parameters following the UNIVAC G@XQT
command. One or more parameters can be specified at one run. Note that
no commas are allowed between parameters. For example, if you want the
STATIC analysis (S), the DOCUMENT reports (D), and INSTRUMENTation of

the modules (I), the execute statement would be
@XQT, SDI R.FAVS
The FAVS option parameters are:

SUMMARY

DOCUMENT

EXPAND

INSTRUMENT

LIST

RESTART

STATIC
INPUT/OUTPUT
{described below>
RESTRUCTURE

B
D
E
I
L
R
)
T
X
Z

i M * . A . .
e e o AA e o

L RS
S

.

..

{
i
|

When these parameters are used, FAVS will not read the command
file unless X is one of the parameters. The X tells FAVS that there
will be other commands on the command file (refer to FAVS User's Manual

for a discussion of commands).

New commands REPORT and FIRSTLINE were added to FAVS, and the
LANGUAGE command was deleted.

The REPORT command selects specific reports to be produced during
a FAVS run, when it is not desired to produce all the reports normally

produced by the FAVS options. It has the same format as the OPTION

command, i.e.:
REPORT = report list

Specified report names must be separated by commas. Blanks within the
list are ignored. This command may appear within the command stream in
any location that is valid for the OPTION command. The REPORT command
cannot exceed 80U characters; continuation onto another card is not
recognized. Instead a separate REPORT command should be given, or its

parameters can be abbreviated.

The report names within the REPORT command are as follows:

REPORT MINIMUM REPORT
NAME ABBREVIATION GENERATED
COMMONS co Commons summary
PROFILE PR Statement profile
INVOCATIONS L] Entries and invocations
summary
COMMONS /ENHANCED CO/E Common matrices
BANDS /n B or B/n Invocation bands (n®= number
of levels)
SPACE SP Invocation space
SYMBOLS SY Symbol report
READS R I1/0 statements
CROSS CR Symbol cross reference

PICTURE P1 Picture of module structure

2

PO VIR G I S P S P 1 -3

T
e

o

DURURUSY SUaY

[S

The COMMONS and PROFILE reports are produced by the SUMMARY option; the
INVOCATION report is included in both the SUMMARY and the DOCUMENT
options. All the remaining reports, except PICTURE, are produced as
part of the DOCUMENT option. The PICTURE report can only be obtained by
using the REPORT command. It is not included in any of the options
because the PICTURE report has limited use for DMATRAN source programs.
Its primary function is to delineate the control flow of FORTRAN

programs.

If the entire set of reports produced by an option is not desired,
do not use the OPTION command; instead specify the appropriate report
names in the REPORT command. If the same report is requested in both

the OPTION and the REPORT command, the report will not be duplicated.

The FIRSTLINE command was added to FAVS in order to make FAVS
easier to usze on a UNIVAC 1100/80. When either the INSTRUMENT or
RESTRUCTURE option is selected, the instrumented or restructured source

program is written on UNIT 9. The user may use the command
FIRSTLINE = (<run stream command>)

to specify a UNIVAC run stream command that will be added as the first

line of every element of the source program.

For example, when a FORTRAN source program is to be instrumented,

then compiled and executed, the user could use the command,
FIRSTLINE = (@FOR,1 TPFS.+).

FAVS will insert the UNIVAC command, @FOR,I TPF$.<element name> as the
first line of each element (with the appropriate element name following

TPFS$S.) 1If the UNIVAC FIN compiler is being used, the command could be
FIRSTLINE = (@FTN,I TPFS.+).

If the source code is written in DMATRAN a "C" should be sub-

stituted for the "@", because the DMATRAN precompiler must be used to

5-3

T
.

translate the DMATRAN code into FORTRAN before compilation by the
FORTRAN compiler.1 During the translation, the DMATRAN precompiler will
automatically change the "C" to "@" and the element will be compiled by

the compiler that is specified. The appropriate cowmands would be,
FIRSTLINE = (CFOR,I TPF$.+).

for the UNIVAC FOR compiler and,
FIRSTLINE = (CFTN,I TPF$.+).

for the UNIVAC FTIN compiler.

Previously FAVS users were required to indicate explicitly (by the
LANGUAGE command) when the DMATRAN structured dialect was being process-
ed. Now FAVS accepts, as standard input, source written in UNIVAC
FORTRAN V, UNIVAC ASCI1I FORTRAN, or the DMATRAN structured dialect.

Explicit indication of the language dialect is no longer required.

5.2 MODIFIED REPORTS

Major changes were made to most FAVS reports during the FAVS
Enhancement contract. All FAVS reports containing source text lines now
display the original source text rather than harder to use reconstructed
source text. The previous common matrix reports and library dependence
matrix report proved to be hard to read (especially for large systems).
They have been replaced by tabular reports and a common matrix for each
common block rather than one matrix for all common blocks. The read
statements report has been expanded into an I/0 statements report. The
monolithic cross-reference report was divided into common variable,
external, and module cross-references. Splitting the static report into
separate static and symbol reports improves the usefulness of FAVS
static analysis. Restructuring now utilizes the graph checking option
of STATIC to indicate unreachable statements (which will not be included

in the restructured program).

1See DMATRAN User's Guide, General Research Corporation CR-1-673/1.

Statement Listing

Most source text editors are line-number-oriented or tag each
source line with a wunique name. It is essential that FAVS source
reports contain the line numbers or names needed to edit the source
text. FAVS users previously had to compare FAVS statement listing
reports (Fig. 5.1) to source listings which did contain appropriate
editing information. This can be an awkward and time-consuming task.
Now, FAVS source statement listings (Fig. 5.2) contain appropriate

editing information.

5-5

STATEMENT LISTING SUBRUUTINE EXAMPL (LNu. LENGTH)

NO. LEVEL LABEL STATEMENT TEXT. DULPATHS

1 SUBROUTINE EXAMPL (INFO. LENGTH) «(n

Z C

3 C ILLUSTRATION OF DMATRAN SYNTAX

4 C

5 IF (INFO .LE. lu JAKD. LENGTH .GT. U) THEMN (2- 3)

6 (1) . CALL CALLER (INKU)

] ELSE

5 (1) . LENGTH = 50

Yy ENDLF

v CASEUF (INFU + 6 3 (4~ 6)

11 CASE (14)

12 (1) . LENGTH = LENCTH - INFU

i3 CASE (17)

16 (1) . DOWhILE (INFu JLT. 2u) (7- &)

15 (2) .« DUUNTIL (LENGTH .LE. INFO)

1o () .« . INVOKE (COMPUTE LENGTH)]
1o s) « « . LF (LEWTH .GE. 3U) THEN (v- V)

is (4) e« « « INVOKE (PRINT-RESULIS)]
1y (5) .« . ENDIF

v 2) . . ENDUNTLIL (11-12)

2l 2) . < INFO = INFU + |
22 (1) . ENLWHILE

23 CASEELSE !
24 (1) . LDOWHILE (LENGTH .GT. U) (13- 14) i
25 (2) « « LNVOKE (CUuMPUTE LENGTH) "]
200 (1) . ENUWHLLE :
21 ENDCASE
8 BLOCK (PRINT-KESULTS) (15)
29 (1) . WRITE (6. 1) INFO. LENGTH P!
30 (1) 1 . FORMAT (10X.15.20X.15) P
31 ENDBLOCK
32 BLOCK (COMPUTE LENGTH)
35 (1) « LENGTH = LENGTH - 10
364 ENDBLOCK
35 RETURN
36 END

This report, output for each module submitted to FAVS, contains
the enhanced module listing with statement numbers, nesting levels, and
DD-path numbers (at procedure entry and at each conditional statement).

Figure 5.1. FAVS.0 Statement Listing

STATEMENT LISTING SUBROUTINE EXAMPL (INFO.LENGTH)

i STHY NEST (INE SOURCE... .. .SOURCE TAB
: 1 1 SUBROUTINE EXAMPL (INFD,LENGTH)
3 2 c EXAMPL2
. 3 cC JLLUSTRATION OF DMATRAN SYNTAX EXAMPL3
& 4 C EXAMPLA
2 s IF C(INFO.LE.10 .AND. LENGTH.GT.O)THEN EXAMPLS .
i 3 1 & . CALL CALLER (INFD) EXANPLS !
4 7 ELSE EXAMPL?]
s 1 8 . LENGTH=30 EXAMPLS 1
6 9 END IF EXAMPLY
7 10 CASE OF (INFO+6) EXAMPL10
8 11 CASE (14) EXAMPL11
9 1 12 . LENGTH=L ENGTH-INFO EXAMPL12 .
10 13 CASE (17) EXAMPL13 1
11 1 14 DO WHILE C(INFO.LT.20) EXAMPL14
12 2 15 . DD UNTIL (LENGTH.LE.INFO) EXAMPL1S ;
13 3 16 . . INVOKE (COMPUTE LENGTH) EXAMPL16
14 3 17 . . . IF (LENGTH.GE.30) THEN EXAMPL17 ?
15 4 18 .« « . INVOKE (PRINT-RESULTS) EXAMPL1S
16 3 19 . . . ENDIF EXAMPL1Y
17 2 20 . . [END UNTIL EXAMPL20
18 2 P31 .. INFO=INFO+1 EXAMPL21 i
19 1 2 . END WHILE EXAMPL22 3
20 23 CASE ELSE EXAMPL23
21 1 24 . DO WHILE (LENGTH.GT.O) EXAMPL24
2 2 2% .. INVOKE (COMPUTE LENGTH) EXAMPL2S
23 1 26 . END WHILE EXAMPL26
24 27 END CASE EXANPL27
25 2a BLOCK (PRINT-RESULTS) EXAMPL28
26 1 29 . WRITE (6,1)INFO.LENGTH EXAMPL29
27 1 30 1 . FORMAT (10X,I5,20X,IS) EXAMPL30
20 31 END BLDCK EXAMPL31
29 32 BLOCK (COMPUTE LENGTH) EXAMPL32
30 1 3 . LENGTH = LENGTH -10 EXAMPL33
31 34 END BLOCK EXAMPL34
32 35 RETURN EXAMPLIS
3 36 END EXAMPL3S
-
This report contains the indented module listing with statement 1
numbers, source line numbers, and nesting levels.)

Figure 5.2, FAVS.4 Statement Listing

Invocation Summary

P The library dependence matrix (Fig. 5.3) was replaced with the
invocation summary report (Fig. 5.4), which corrects several deficencies

in the library dependence matrix and can be easily understood even when

a large number of modules are involved. The library dependence matrix

' 1 report was limited to 100 modules and it did not appear advisable to L

,1 increase this limit and retain the matrix format, since the number of 1
| pages required to print the matrix would go up as the square of the 4

number of modules. The resultant complexity of the library dependence

- g

matrix reflects the matrix format rather than the software system being
4 analyzed. With the new invocation summary report, the complexity
increases in direct proportion to the complexity of the software being

analyzed. The invocation summary also includes entry points within

FORTRAN modules, which were omitted in the earlier report.

|

5-8

el AP

7w

% ek

g

catw

I ——

PO

T -~y
f v

p——re
Al
—_ -

3 A

ARRKRAKRKAKRKRRKAKKAARRRKRAAAKR AR KA KA A AARARAAAR A Ak kA kkhdkk

*% INVOKEE * *
* x *CCEFKMMPS*AAABEEGGGGGGLI1111IKKMNNNNPSV*
% *00 XUEAUUT*CCSGNREEEEEOF FGNNNWCLCADEEUPE*
LI *NNALMIVTR*TTSSDRNNNNTTCSRDDI LOAVMSWWTRR*
* % *TTMCPNEFO*12 | CEOAGLVSOAOOELTTMSEOCLP 1Y B*
* * *R POT WIC* GARRSCAAT S UNEAHPSWBAAAFWA*
* * AL LNY DNT* NN S BRM E PTVLN 1U NBG CT*
* * * * *
* * * * *
* INVOKER * * * *
Kk kg gk ok ok ok ok ok vk sk ok K ok g%k & K ok vk sk ok ok ok ok ik sk ok 7 ok ok e ok ok ok ok ok ok ok o ok ok ok ke ok
* CONTRL ** X*XX XX X X X XX *
* CONT * % X * *
* EXAMPL * * * *
* FULCON * X * X X * *
* KEMPTY * % X *
* MAIN *X * % *
* MOVEWD * X * * *
* PUTFTN * X* * X X X *
* STRUCT * X X X** X XXXXX XXXX X X X X XX *

KAIRRKRAKARKARRKKRKRRKRRRRARK ARk kdkkhhhkhhhrkhkddkkk
THE FOLLOWING MODULES ARE NOT INVOKED BY ANY MODLE ON THE LIBRARY

MAIN

THE FOLLOWING MODULES DO NOT INVOKE ANY MODULE ON THE LI1BRARY

EXAMPL KEMPTY

The interaction of all modules on the data base library is shown
in the first matrix. If the library contains all modules in the user's
program, this report provides a concise, complete picture of the total
internal module dependencies. If the library contains a subset of the
total program, this report aids in determining what modules do not
interact with the component and might be better suited for another
component. The modules are listed in alphabetical order.

The modules in the second matrix are not resident on the library.
If the 1library allegedly contains all modules in the program, the
external modules should consist only of system routines. If the library
contains a component of the total program, this report shows the module
invocation interfaces to other externals.

Considering the modules on the library as a pyramid representing
the invocation hierarchy of the modules, this report also identifies the
"top” and “bottom” modules in the system.

Figure 5.3. FAVS.0 Library Dependence Matrix

5~9

e e e e

- - -
- l- _ +

ity W
e - —A——

INUQCATION SUMMARY

ENTRY

FUTL ST

FUTWRIS

LML

LISTS OF CALLS

WHICH IS DEFINED IN GETHLKN
I8 CALLEL RY - ~NONE-

AND ColLS ~ GETFRG MAKFRG
WHICH IS DEFINED IN GETERLK
IS CALLED BY -~ PUTREF PUTROT
AND CALLS - GETFRG MAKFRG
WHICH IS UNDEFINED

I8 CALLED BY - GETELK NEXT

THE FOLLOWING ENTRIES ARE NOT CALLED

entry point.

and entries on the restart file.

GETBLKR GETLST

XMIT

XMIT

FREV

GETUWRD

FUTAT FUTREF

ISRTAR NEXT

FUTROT

FREV

FUTAT

This report shows the dependencies of the modules in the library
by listing all modules which call an entry point and all calls from that

If an entry is defined as an entry point within a module,
the name of that module is indicated.

This report includes all modules

An updated version of the report may

be obtained by reanalyzing all changed modules and using the EXPAND

option.

occur can be found in the externals cross reference report.

Figure 5.4. FAVS.4 Invocation Summary

The actual statements where invocations to a given entry point

o S

M e ot

f -

-
RESRC o AN -

i

L

t

P S— ——e e e

~

Common Summary

The common matrix report (Fig. 5.5) was replaced by the common

summary report (Fig. 5.6). The rationale for this change was similar to

that discussed above. The number of pages necessary to produce this
report reflects the matrix format rather than the complexity of the

system analyzed. The tabular format of this report allows the 100

module limit to be eliminated.

5-11

e

-

- ——— Bt 4

—fsa.

S S

]
. .

&

——

C ** * . *
O * * MODULE * CCE F K.MMP S *
M*x % *OOXUEAOQUT®*
M * * * NNALMIVTR®*
0 * * *TTMCP.NEFU®*
N * * *R POUT. WTC*
* * *L LNY. DNTH®
N * x % . *
O * COMMON * * . *
* Kk . *
1 * ACCTNG * X . *
2 * CARDS * X X. *
3 * CONSTN *XX X. XX *
4 * FORTRN * X X . X X *
5 * INTERN * X X . XX *
6 * INVOKE * X . X *
7 * RECN1Z * X . *
8 * SESE * X . * 3
9 * STACK * X . X *
10 * STATE * X X . XX *
11 * STYPE * X . X *
12 * TRACE * X . X *
13 * USEOPT * X X X. XX *
14 * WARNIN * X . *

This report listed all modules and all common blocks encountered.
An "X" indicates the presence of that common in a module.

Figure 5.5. FAVS.0 Commons Matrix

t
L
) ‘l
. !
, i P
- CONMON SUMMARY ;
;
| COMMON MODULES WHICA INCLUDE THE CCMMON
; AISTO MAKTAB 3
1
AL PHA CMA TRX
1
ANSI CMATRX REFVAR 1
K
3
BLKSTO DEPVOK 3
E
08GCOM MAKTAB
OE PCOM DEPBND DEPVOK 1
(11 DEPGRP OEPVOK REFVAF 3
FILES CMATRX DEPBND DEPGRF OFPVOK XREFER ‘
3
GL OBAL DEPBND
HALPHA XREFER }
HCHARS DEPGRP XREFER
MOIGIT CMA TRK
ICMMOS STEP1S5
KOELMS OEPVOK
MA CHNE DEPVOK ¥
Mp8 DEPVOK REFVAR
] MMRY15 STEP1S
4
: MTHSTO DEPGRP NEPYOK
F MTHSTL DEPVOK XREFER

This report lists all modules and all common blocks encountered.

1 Figure 5.6. FAVS.4 Common Summary

5-13

» i3 X v h v x . " gy
. . :)
e B/ = N
LA & N & Y S

¢4
e Sl a

a4
R B e

I b

Common Matrix (Enhanced)

The earlier FAVS common matrix (enhanced) (Fig. 5.7) suffered from
the same artificial complexity problems as the other matrix reports. In
addition, the use of a common number to identify the common block a
variable was defined in led to considerable confusion. A report with
more detail than the common summary, but less detail than the common
cross reference, was desired. The solution to these concerns was a
separate matrix for each common block. This matrix displays the use of
common variables within a set of related modules (which all use some

variable in the common). An example of the new common matrix report is

shown in Fig. 5.8.

. N

ol

s

i ke

LIBRARY COMMON BLUCK MATRIX L1BRARY COMMON SYMBUL MATRI1X

C *k *x . * C *x * . *
O * * MODULE * C C E F K. M P S * U % * MUDULE * C CE F K.MM P S *
M* % * 0 OXUEACDT* N * 00 X0EACUT®*
M*x *NNALMIVTR®* Mx * NNALMIVTR?®
0 * * * TTMCPNEFU® U * * *XTTMCP.NEFU®*
N * * *R POT. NTCE®* N * * *Rg PUT. WTCH*
* * %L LNY, CNTH® * * *L LNY. CNTH®*
N % * * . * N * %* * . *
O * COMMON * * . * U * SYMBOL * * . *
* Rk . * * Xk . *
1 * ACCTNG * 0 . * 2 * LECF * 0 0. *
2 * CARDS * X 0. * 13 * INDON * 0 0. 00 *
3 * CONSTN *0 X X. X X * Y * INSTAK * 0 . X *
4 * FORTRN * 0 X . X0 * lu * ITYPE * 0 0o . ou *
5 * INTERN * X o . X0 * A4 * KABEL * C X . Uo*
6 * INVOKE * 0 . X * 4 * KENGTH * 0 S . X0 *
7 * RECNIZ * 0 . * A4 * KFTN *x QU . Uu *
8 * SESL * . * ls * KOMFIN * 0 0 0. o *
9 * STACK L . X * 5 * KSTMT * 0 o . 00 *
10 * STATE * X X . 0 X * AlU * LABEL * 0 X . U *
11 * STYPE * 0 . 0 * 5 * LBK * 0y U. LUk
12 * TRACE * X . X * U * LENGTH * S v . 00 *
13 * USEOPT * X v O. X X * lu * LINBEG * U o . 0o *
14 * WARNIN * ¢ . * 10 * LINEND * 0 o . 00 *
----------------------------------- AlU * LIST * 0 o . 0Oy *
10 * LPUINT * 0 u . UL *

LEGEND AY * LSTACK * 0 . X *]
T T T T 10 * LTYPE * X v . O U *
13 * LUNFOR * 0 U 0. 0Q *
COMMONS VS, MODULES s * LUNGUT * 0 0 o, 00U
- Tt . lu * MENGTH * 0 0 . oU*
D = > N0 SYHMOL. EVER REPERENCED Pl T
Ab * NAMEIL * 0 . U *
. s Ue . 5 * NFATER * U [V 00U *
SYMBOLS VS. MODULES 13 * NINDWT % 0 O o X0 *
5 * NLINES * § o . 0 *
X = > SYMBOL SET AND USED 6 * NOBE) . X *
0 = > SYMBOL NEVER SET OR USED A6 * NOBLOK * O) S %
S = > SYMBOL SET ONLY A6 * NOINV * 0 : X *
U = > SYMBOL USED ONLY lU * NSTATE * X o . 00 *
E = > SYMBOL EQUIVALENCED (OVERLAID) ONLY o e e

A = D> SYMBOL IS AN AKRAY

Two matrices are produced by this report. The first one lists all
common blocks encountered in any one of the modules in the set which was
analyzed. If at least one symbol was used, it is indicated with an "X",
If no symbol was ever referenced in the module, this is indicated by a
"0". Routines from which a common block may safely be removed are
easily found.

The second matrix lists only the symbols which are used by some
module; the number of the common block in which it is found is printed
to the left and corresponds to the number given to the common block in
the first matrix. This report is an excellent aid when changes are
being made to a software system.

Figure 5.7. FAVS.0 Common Matrix (Enhanced)
5-15

o™ iR Jut Yasl . Lol St £ & dn s SEIREHAY

COMMON MATRICES

LEGEND (O

ST USED IN A CALLVE -EQUTVALENCED , 8-8ET o U=USET X=GET AND USELY)

i
1
i
i
&
i
i
1
i
i
i
1
1
4
i
i

*k

X . hd L& % ¥

£ ¥ MODULE x NP PP P.GT X X X MODUILE x B F b 5 %

X X ¥ ERUUILE S X L S 3 x!t-A T I »

* b d X XETTT.T R % * ¥ IS R B X

* X XTVALRBETX X X ¥ 5 T 5 A X

¥ X % TE 0. A X% % * x Jt W T 8 X

¥ X X FT.KE R x * * * Rtk A%

£ b N § ¥ * LI X

COMMON & SYMEOL. * % * COMMUN A SYRRE R K *
* xk x ® L2 *

ALETO X FLLXXY. ¥ O U ULy U X Ik L * o X U4 K
K FNUXA UV uUuUuUyux A ¥ U X X

X FRGYXX X U U U uu U ox * X S X

X FSZXXX X UL * X 6 6 X %

£ TCHXXX X S 8§ 8.9 X X 1 L I A N

X LXXHXX X X X X X XX X % LI 4 50X X %

* LNGXXY * U UBULUuYx * * E X %

* MAXXXX X RA A X A GX ¥

U x

i
!
i
i

The common matrices report lists symbols which are used by at
least one of the modules on the restart file. The symbol usage 1is
explained in the legend at the top of the report; a blank space indi-
cates that the symbol is not used in any way in that particular module.
The symbols within each common are listed alphabetically in this report.
Only modules which use at least one variable of a common block will
occur in the matrix for that common. This report includes all commons
and modules on the restart file. An updated version of this report may
be produced by reanalyzing all changed modules and using the EXPAND
option. When all modules in a software system have been entered onto a
RESTART file, this report can be used to check for global set/use
inconsistencies. A row of one or more U's indjicates that a common
variable is used but not set. A row of one or more S's indicates a
common variable which is set but not used. A common variable which is
not included in the matrix is never referenced in an executable state-
ment. The statement number where common variables are referenced can be
found in the common variable cross reference report.

Figure 5.8. FAVS.4 Common Matrices

Static Report

= Svude o aia

The use of static analysis as a consistency checking tool was
emphasized by splitting the former static analysis report (Fig. 5.9) !
1 into a static analysis report (Fig. 5.10) which contains all consistency
diagnostics after an appropriate source line, and a separate symbols
report (Fig. 5.11) for symbol table information. The new static

analysis report contains actual source text lines as read in, summarizes

unknown externals at the end, and provides a complete cross-reference

for variables which may have set/use inconsistencies. The symbol report

is now alphabetically ordered. It omits the first statement, last
statement, and total uses information, which is better described in the
module cross-reference report (Fig. 5.14). In addition, an abbreviated
form of the static analysis report is available (Fig. 53.12) which lists

only the source lines related to inconsistencies.

STATIC ANALYSIS SUBROUTINE CIRCLE (AREA)
SEQ NEST SOURCE UNKNOWN EXTERNALS
1 SUBROUTINE CIRCLE (AREA)
2 COMMON / VALUES / DIAMTR
3 INTEGER AREA
4 RADIUS = DIAMTR / 2
5 AREA = PI = RADIUS °° 2

- MODE WARNING -
- LEFT HAND SIDE HAS MODE INTEGER RIGHT HAND SIDE HAS MODE REAL

6 IF (AREA .GT. 50) THEN

7(C0D . CALL PRNT (AREA)
- CALL ERROR -
- PRNT CALLED WITH | ACTUALLY HAS 2 ARGUMENTS -
- CALL ERROR -

-PARAMETER 1 OF PRNT .ACTUAL PARAMETER HAS MODE INTEGER -
- . FORMAL PARAMETER HAS MODE REAL -

8 END IF
9 RETURN
10 CALL STACK (RADIUS, AREA)
- GRAPH WARNING -
- STATEMENT 10 IS UNREACHABLE OR IS IN AN INFINITE LOOP -
STACK
11 END
STATEMENT ANALYSIS SUMMARY ERRORS WARNINGS
GRAPH CHECKING 0 1
CALL CHECKING 2 0
MODE CHECKING o} 1
18T TOTAL LAST IN/OUT ACTUAL PHYSICAL
NAME SCOPE MODE STMT USES STMT USE USE UNITS
AREA PARAMETER INTEGER 1 6 10 BOTH
DIAMTR VALUES REAL 2 2 4 INPUT
RADIUS LOCAL REAL 4 3 10
P1 LOCAL REAL 5 1 5

- SET/USE WARNING -
- VARIABLE PI MAY BE USED BEFORE BEING ASSIGNED A VALUE -

SYMBOL ANALYSIS SUMMARY ERRORS WARNINGS

SET/USE CHECKING 0 1

The Statement Analysis Summary contained the warning and error
messages interspersed appropriately in the code. Unknown externals,
routines called which were not in the set submitted to FAVS, were listed
on the right side of the printout. A tabulation of the errors and
warnings was listed at the bottom.

The Symbol Analysis Summary showed the name, scope, and mode of
each symbol in any executable statement in the module. The actual use
of global variables was defined as INPUT, OUTPUT, or BOTH. For any
variable that was used before being assigned a value or set and not
used, a warning indicated the condition which could lead to errors.

Figure 5.9. FAVS.0 Static Analysis Report

5-18

PSR PP

T

STATIC ANALYSIS SUBROUTINE CIRCLE (AREA)
STMT NEST LINE SOURCE... .. .SOURCE TAB
1 1 SUBROUTINE CIRCLE (AREA)
2 2 INTEGER AREA
3 3 DATA PI / 3.1416 /
A 5 INPUT (/R/ RADIUS)
S é RADIUS = DIAMTR / 2
SET/USE ERROR -
~ VARIABLE DIAMTR USED BUT NEVER SET REFER TO STATEMENT(S)-
- S
6 7 AREA = Pl 8 RADIUS¥®2

MODE WARNING
~ LEFT HAND SIDE HAS MODE INTEGER RIGHT HAND SIDE HAS MODE REAL

7 8 IF ¢ AREA .GT. 50) THEN

] 1 ? . CALL PRINT ¢ AREA)
- HODE UARNING -
-PARAMETER 1 OF FRINT ACTUAL PARAMETER HAS MODE INTEGER -
- FORMAL PARAMETER HAS MODE REAL -
- CALL ERROR -
- PRINT CALLED WITH 1 ACTUALLY HAS 2 ARGUMENTS -

9 10 END IF

10 11 OUTPUT (/R/ AREA)

11 13 RETURN

12 14 CALL STACK (RADIUS, AREA) -
- UARNING -
- STATEMENT 12 IS UNREACHABLE OR IS IN AN INFINITE LOOP -

13 135 END

STATIC ANALYSIS SUMNARY ERRORS WARNINGS

GRAPH CHECKING

CALL CHECKING

MODE CHECKING

SET/USE CHECKING
CALL CHECKING WAS NOT PERFORMED FOR THE FOLLOWING UNKNOWN EXTERNALS ...
STACK

-1 -
ONO~

The Static Analysis Summary contains the warning and error
messages interspersed appropriately in the code. Unknown externals
(routines called which are not in the set submitted to FAVS) are listed
at the bottom of the report. A tabulation of the errors and warnings is
listed at the bottom.

Figure 5.10. FAVS.4 Static Analysis Report (with LIST option)

"

Y

SYMEROLS SUBROUTINE SUBASA (MOIRILE. ISTMT, IRFTRN)
NAME SCUFE. FYFE MOLE USE OTHER INFORMATION. ..
NXFAR NDELMS Vak [ABLE INTEGEK LSED
KXFARM RFTCOM VARTABLE INTEGER USED
AXTFLS RFTCOM VAR LARLE INTEGER USED
LIST MTHSTO ARRAY 3 SET/USED
MARGE MDE VARTAKL & SET
MELONS MLE VARTARLE EQUIV
MERCHN MTHTYF VARTABLE USED
MCALL MTHTYF VARIARL E USET
MCIO0 MTHIYF VARTARLE USET
MOMMNS MDR VARIAERLE | SET/USED
MOUM26 (LOCAL) VARIAKLE INTEGER EIV
MENTR MTHTYF VARIABLE INTEGER USED
MENTRS MDE VARIARLE INTEGER SET/USED
MENTR2 MTHTYF VARTABLE INTEGER USELD
HLQLs LOCALD VARTARLE INTEGER SET/USED
MEQUVS MOE VARTARL.E INTEGER SET/USED
MEXEC MTHTYF VARTAKLE INTEGER USELD
MEXIT MTHTYF VARLABLE INTEGER USED
MGOTO MTHYYF VARIAKLE INTEGER LISED
MIF MTHTYF VARIABLE INTEGER USED
MUUNCT MTHTYF VAR AR E INTEGER USET
MMODE MDE VARIARLE INTEGER SET/USEDR
MNAME MDE VARTARLYE INTEGER EQUIV
MNONX MTHTYF VARIARLE INTEGER USED
MODDLLE FARAMETER VARIAKLE INTEGER
MFPRSET MTHTYF VARTARLE INTEGER USED
MREAL MTHTYF VARIAKLE INTEGER USED
MREADS MDE VARTABLE INTEGER SET/USED
MTYFE MUE VARTAELF INTEGER SET
MWRITS MOE VARIARLE INTEGER SET/USED
NONEXS aacaL) ARRAY INTEGER SET/USED
NUMEXS (LOCAL) VARIAKLE INTEGER SET/USED
NUMNON (LOCAL.) VARTABLE [NTEGER SET/USED

THE FOLLOWING LOCAL VARIAKLES WERE UEFINED BUT NOT USED, ..
TOKADD

THE FOLLOWING NONLOCALL VAKLARLES ARE SET. .
IRETRN MTYFE MMODE MOCMMNG MENTRS MARGS MEQUVS MREADNS MWRTTS ISTYPE ISCODE
ISINFOQ L 1IST

This report is generated for each module analyzed during a FAVS
run. The symbols are ordered alphabetically, and symbols which are only
defined and never referenced are not included. Symbols which have the
scope (LOCAL) are known only within the module being reported on.
Symbols with the scope parameter are formal parameters for the module.
All other scope classifications indicate the name of the common block
the common variables are defined in. Each symbol is either of type
variable or array, and of wmode integer, real, logical, character,
complex, or double precision. The use column provides a summary of how
the symbol is used in the module. Local symbols which were defined but
not referenced and all non-local variables (parameters and common
variables) which are set within the module are noted at the end of the
report.,

Figure 5.11. FAVS.4 Symbols Report

A aah

STATIC ANALYSIS SUBROUTINE CIRCLE (AREA)
STMT NEST LINE SOURCE. ..

S é RADIUS = DIAMTR / 2

SET/USE ERROR -
VSNHAKE DIAMTR USED BUT NEVER SET REFER TO STATEMENT(S)-~

AREA = PI & RADIUSX¥2

MODE. UARNING
LEFT HAND SIDE HAS MODE INTEGER KIGHT HAND SIDE HAS MODE REAL

CALL PRINT (AREA)

- MODE UARNING
-FARAMETER 1 OF PRINT ACTUAL PARAMETER HAS MODE INTEGER
- FORMAL PARAMETER HAS MODE REAL

CALL ERROR
PRINT CALLED WITH 1 ACTUALLY HAS 2 ARGUMENTS

CALL. STACK (RADIUS. AREA)

GRAPH WARNING
STATEMENT 12 IS UNREACHABLE OR IS IN AN INFINITE LOOP

STATIC ANALYSIS SUMMARY ERRORS UARNINGS
GRAPH CHECKING 1
CALL CHECKING 0o
MODE CHECKING 2
SET/USE CHECKING [
CALL CHECKING WAS NOT PERFORMED FOR THE FOLLOWING UNKNOWN EXTERNALS ...
STACK

This report is an abbreviated version of the Static Analysis
report generated when the STATIC and LIST options are both used (Fig.
5.10). Only the statements that cause errors or warnings are listed in
the Static Analysis report when the STATIC option is specified without
the LIST option.

Figure 5.12. FAVS.4 Static Analysis Report (without LIST option)

Cross Reference

The single FAVS.0 cross reference report (Fig. 5.13) has been
divided into a cross reference for each module (Fig. 5.14), a common
variable cross reference (Fig. 5.15), and an external cross reference
(Fig. 5.16). The earlier cross reference did not indicate whether a
symbol was an external, a common variable, or a variable local to a
particular module. Now this information is clearly shown in the three

new cross references.

{ CROSS REFERENCE

GENERAL CROSS REFERENCE LISTING

- MODULES INCLUDED ~--
H CONTRL
] CONT o
1 EXAMPL '
L FULCON
3 4 KEMPTY 1
3 MAIN C
i MOVEWD ;
1 PUTFTN
; STRUCT
p 3
‘fj SYMBOL MODULE USED/SET/DEFINITION (* INDICATES SET, D INDICATES DEFINITION)
ACT1 CONTRL 172
{ ACT2 CONTRL 174
- ASSIGN STRUCT 180
3‘ BGSCAN CONTRL 168
S CONTRL CONTRL 1]
: MAIN 2
3 CONT CONT 1
N FULCON 14 1
~4 STRUCT 86 103 124 153 165 202 236 258 ~ 262 292 303 306 345 .
ENDER CONTRL 183 !
2 EKROR STRUCT 53 107 11l 113 128 13U 169 171 213 217 219 240 244
4 EXAMPL EXAMPL 1
, i MOVEWD 33
- FULCON FULCON 1
4 STRUCT 84 101 122 137 160 199 234 255 215 298
: GENASS STRUCT 341 E
‘ GENGO ~TRUCT 369
N GENLAB STRUCT 73 81 85 98 102 123 139 141 149 152 161 164 195
; 281 283 291 299 302 305 339 340 357 360 371
A GENVAR STRUCT 179 208
i CETSTM CONTRL 164
GOTO STRUCT 82 99 150 162 196 232 278 300 343 358
IARRY! MOVEWD 1 23D 29*
- IARRY MOVEWD 1 22D 29
ICONT CONT 264D 25D 25D 25D 25D 25D 25D 25D 25D 28
, 1EOF CONTRL 29D 165 180
. KEMPTY 5D
AN 1ERROR STRUCT 92% y3 94% 95 110 120% 121 127 1S8* 159 168 190* 191

243 253*% 254 265 296% 297 309

s ¥

T]

This report provided a symbol cross reference 1listing for all
modules on the library. The symbol types where variables, file names, i
block names, and subprogram names. Adjacent to the statement number of
the symbols appearance was a flag "*", (or D) which indicated setting or

definition.

Figure 5.13. FAVS.0 Cross Reference Report

5-23

CROSS REFERENCE SUBROUTINE SDEASA ¢ MODULLE, ISTMT, IRFTRN)

Nt SCOFE MODULE USELIZSET/EQUIVALENCED (% INDICATES SET)

ALDEF T EXTERNAL. SDBRASA] 84 290

CALLED (LACAL) SHEASA D4k 274 270%

ERROR EXTERNAL SDEASA 151

1 (LoCAL) SLkASA ALk 49 50 Dik Sl 7% 76 77 78% 78 120% 121

1A% 144 161X 162 171x 172 172 173% 173 179 177 191k
U722 3A0# 343 34X B4a4x 44 3446 353k 3154 IB4 355X

IAGT ANGT SDRAGA 147

IRAFAR EXTERNAL. SDRASA LI 1200 26

ICGT ANSI SHBASA 1472

1COMAS (LOCAL) SIBAGA T1I9% 123% 123 12/

InuM (LOCAL) SHRAGA 37 b4 138y 149

X (LOCAL) SURAGA Ik 33 33 33 34%x 34 34 41 a1 43 49 %6

74 80X 80 €% K g4

LEND ANST SHRASA 207

IENT ANGT SDRASA 246 316

IEXECS (LoCAL) SIEASA 307% 308% 209% 310% 311k 312% 313% 314k 310K 3146% 317% 318%
307% 328% 3729k 330% 331k 332x 333k 334x 335k 334% 3374 354

IF1 ANST SHEASA 113 308

1F2 ANSI SHEASA 128

1F3 ANS T STIRASH 131

IGT ANSI SIEAGA 136 311

1GTTOR EXTERNAL SDRASA 1357

IMDE (LOCAL) SHRAGA 10E

IFAR (LOCAL) SDEASA TI0% 116 117 120 170% 172 175 180% 182 182 184

IREADC FTNEXT STIEASA 235

IRET ANSI SIHEASA 188 310

IRETRN FARAMETE SDIEASA 20% D49%

1ISCLAS EXTERNAL SDiBASA 138

ISCOLE Sk SIIEASA 29k &7k 89X 97% 11D% 114% 118% 140% 155K 159% 167% 176%

ISR (LAcAL) SUBASA 146E

ISEXEC (Lacat) SDEAGA 111 358% 360%

ISINFO SIR SDENSA Sk 129% 132K 139% 169% 199% 204% 210% 212 215 228% 249%

ISLABL SIE SIBAGA 16E

ISLONG SDE SDIBASA 33 36 37 41 59 70 73 115 116 121 139 142
192 206% 206 210 224 227

ISNONX (LOCAL) ShBASA 88 347k 349%

ISPTR SDE SDEBASA 1172% 145K 177% 184x 185 2146% 234 240

I6TMT FARAMETE SDIBRASA 6% 84 103 250

ISTOF ANSI SDBASA 188 190 318

ISTYFE SDER SIBASA 27 27 27 42% 59 64 74x 90 93 ?6 99 100%

166 188 188 190 198 203 208 208 208 208 208 208

2H2 2S5 205 25% 343 354

ITEM (LOCAL.) SDBASA 137% 138
IVMOLE EXTERNAL. SDBASA 54
IURTEC FTNEXT SHBASA 241
IXABNL FINEXT SDBASA 302

IXASS ANST SOEASA 252 317

This report provides a symbol cross reference for each module
analyzed during a FAVS run. All local symbols, external symbols, and
common symbols referenced in the module are included. Symbol names in
the first column are ordered alphabetically. The scope column indicates
symbols known only within this module (LOCAL), external symbols, and
symbols which are defined in common blocks included in the module (all
others). Statements (FAVS statement numbers) which use a symbol are
followed by a blank, statements which set a symbol are followed by a
'*' " and equivalence statements containing the symbol are followed by an
'E'.

Figure 5.14. FAVS.4 Cross Reference (Individual Module)

CROSS REFERENCE

NAME SCOFE MODULE USER/SET/EQUIVALENCED ¢ % LINDICATFS ST)
AIDBG DBGCOM TSRTAR 82
CORE GETBLKN 26E
ISRIAR 20E
NEXT 18
FREV 18E
FUTAT 18F
FUTREF 18t
FUTROT 18E
FLEXXX AISTO GETBLK 146 1920 231 266
ALSTO ISRTAR &7
AISTO NEXT 19
AISTO FREV 19
ALISTO FUTAT 33
AISTO FUTREF 43
AISTO FUTBOT 43
FNUXXX AISTO GETELK 142187 227 2¢61
ALISTO ISKRTAB 62
AISTO MEXT 36
AISTO FREV 36
AISTO FUTAT 30
AISTO FUTREF 40
AISTO FUTEOT 40
FRGDIR FOOLCM GETRILK 1A9% 193% D220%x 268%
FOOLCM ISRTAR 79%
FOO0L.CM NEXT A3%
FOOL.CM FREV 43%
FOOL.CM FUTAT 8%
FOOLCM FUTBEF DO%
FOOLCM FUTKROT 50X
FRGXXX AISTO GETEIL K 148 192 240 248
AISTO ISRTAE 79
AISTO NEXT 43
AISTO FREV 43
AISTO FUTAT 38
AISTO FUTBEF 50
AISTO FUTROT 5
FSZXXX AISTO GETELIK 140 141 185 186 216 219 220 4 2ng
ALISTO ISRTAR b6
ICHXXX AISTO GETELKX 56X B1X 118% 168% D3N
AISTO FUTAT K1
AISTO FUTREF A7%
AISTO FUTROY A7%
TAXXXX AISTO CETRILK 1A7% 147 149 191k 191 193 239% 259 240 267% 267 248
AISTO ISRTAR 78% 78 /79
NISTO NEXT Q2% A2 23
AISTO FREV A% 4D 43

AISTO FUTAT 37k 37 38

This multi-module report shows where variables in common blocks
are used, set or equivalenced. The report is alphabetically ordered by
the name of the common variable. The common block which contains the
variable is indicated in the scope column. Modules which reference the
common variable are alphabetically ordered in the module column.
Statements (FAVS statement numbers) within each module are shown next.
A blank following the statement number indicates the variable is used
there, a '*' indicates the variable is set, and an 'E' indicates the
variable is equivalenced. This report is produced for all modules and
all commons on the restart file. An updated version may be obtained by
reanalyzing all changed modules and using the EXPAND option. A summary
of the information in this report is provided in the common matrices

report.

Figure 5.15. FAVS.4 Cross Reference (Common Variables)

5-25

!
i

i S S

N w .
m—— - s

.z

S

———

CROSS REFERENCE

NAME SCOFE MODULE USED/SET/EQUIVALENCED ¢ % INDICATES SET) !
EROR EXTERNAL ISRTAR 87 4
FREL.NK EXTERNAL FUTREF 31

EXTERNAL. FUTEQT 29 31
GETFRG EXTERNAL GETELK 2462 ;
EXTERNAL. ISRTAE 63 i
EXTERNAL NEXT 37 k
EXTERNAL. FREV 37
EXTERNAL FUTAT 31
EXTERNAL PUTEREF 41
EXTERNAL FUTROT 41
IGTURD EXTERNAL NEXT 31 33
EXTERNAL. FREV 33 33
EXTERNAL. FUTBEF 32
EXTERMNAL FUTROY 35
ITSFRG EXTERNAL ISRTAR 60
EXTERNAL NEXT 35
EXTERNAL FREV 35 1
EXTERNAL FUTAT 29 4
EXTERNAL. FUTEEF 39 |
EXTERNAL. FUTEOT 39
LGTMLT EXTERNAL ISRTAB 92 53
MARKFRG EXTERNAL GETHLK 224
MINO EXTERNAL. ISRTAR 66
FUTWRD EXTERNAL FUTREF 33 35 37
EXTERNAL FUTROT 32 36 38
XMIT EXTERNAL. GETELK 45 9% 234 237
EXTERNAL NEXT 40 46
EXTERNAL. PREV 40 44
EXTERNAL FUTAT 34
EXTERNAL FUTEEF 44
EXTERNAL. FUTEOT 44

each external is referenced.
the name of the external.

This multi-module report shows the FAVS statement number where 3
The report is alphabetically ordered by C

Modules which reference the external are i

alphabetically ordered in the module column. Statements (FAVS statement

numbers) within each module are shown in the next columm. This report
is produced for all modules on the restart file. An updated version may
be obtained by reanalyzing all changed modules and using the EXPAND
option. A summary of information contained in this report is provided
by the Invocation Summary Report. The text of each invocation can be
found by referring the FAVS statement listing or Invocation Report for
each module. Note that these reports are not generated from the
restart file but rather from source analyzed during a FAVS run.

Figure 5.16. FAVS.4 Cross Reference (Externals)

Restructure

The statement 1listing produced during restructuring has been
enhanced to indicate any structurally unreachable statements. These
statements will not be included in the restructured source. An example

of this report is shown in Fig. 5.17.

5-27

STATIC ANALYSIS SUBROUTINE BSORT (N« ARRAY)

STHT NEST LINE SOURCE... .« .SOURCE TAD

1 1 SUBROUTINE BSORT (N« ARRAY)

2 2 DIMENSION ARRAY (100)

3 3 DO 1 I =2, N

4 1 4 . IF (ARRAY(I-1) .LE. ARRAY(I)) GO YO 1

) 1 S . SMALL = ARRAY(I)

7 1 é . ARRAY(I) = ARRAY(I-1)

] 1 7 . ' J=1-2

9? 1 8 2. IFCJ.LT.1)G0TO 4

11 1 9 . IF (SMALL .LT. ARRAY(J)) GO TO 3

13 1 10 4 . ARRAY(J+1) = SMALL

14 1 11 . GD TO 1

15 1 12 3. ARRAY (J+1) = ARRAY(J)

16 1 13 . J=J -1

17 1 14 . GOTO 2

18 15 1 CONTINUE

19 16 RETURN 1

20 17 END
STATIC ANALYSIS SUMMARY ERRORS UWARNINGS 1
GRAPH CHECKING] (]

This report is a source listing of the original FORTRAN module.
It is enhanced by indentation and statement and nesting level numbers.

Figure 5.17. Restructure Report

New Reports
Two new reports were added to FAVS. The picture report (Fig.

5.18} can be used to pictorally display the branching structure of large
FORTRAN programs. It essentially combines a source listing and label

cross reference into a single, easier to use report.

The second new report is the interface changes report. An
INTERFACE CHANGES report is generated for each FAVS run. It lists each
module name and indicates changes in interface properties such as
parameters added or deleted, common blocks added or deleted, and
external references added or deleted. It also lists calls to undefined
entries and to entries or commons which are no longer used. Fig. 5.19
is an example of an INTERFACE CHANGES report. New modules are indicated

by the words "new module” in the fourth column.

PICTURE SUBROUTINE SORT(A,IXsJ0)

UPWARD JUnPS
ABCDEFGHI JKLMNOPORS T

STATEMENT TEXT (B=BEGIN., E~END., S=GELF LODP)

(SHORY) DONMMARD APP'S (LOND)
ARCDEFGHI AIMNOPORSTUIXYZ1 23406 709

SUBROUTINE SGRT(A,II.J))

DIMENSION AC1) IUC16),ILC16)

INTEGER A.T.TT
“= 1
1 =11

J =4
£ S IF(I .GE. JH GO TO 70

E. 10K =1
.. 1J = (J+ D/2
T = ACID
IF({ ACI> LE. T) GOTO 20

A1) = AL
A(I) = T
T = ALID
201 =J
IF(A(J) .GE.T) GO TO 40

AT = ACD)

A(S) = T

T = ALY

IFC ACI) LE. T) GO TO 40

ALY = ALD)
ALY = T

E.. 30 AL) = AIK)
AK) = TT
AL =L -1
IF(A(L) .GT. T) GO TO &0

TT = AL
SOK =K+ 1
IFC Ak LT, T) GO TO SO

w.moEm

IFC K LE, L) 6O TQ 30
IFC L-T1 .LE. +K) GO TO 40

Iy = 1
U =
1=K
LICELIE R
GG TC 80
60 IL(M) = K
) =
J =L
M=M e
. GO TO 80
E.. 720 M= K ~1
IFC M €Q. 0) RETURN

1 s IL)
J = UM
80 IF(J~1 .GE.11) GO YO 1O

IFC I .€EQ. II) GO 70O 35

I =1-1
901 =1+ 1
IFC I .EQ. 4 GO TO 70

T = atl+1)
IFC ACI) .LE. T) GO TO 90

. K =1
€ 100 A(K+1) = A(N)
. =K~ 1
‘. IF(T LT, A(K)) GO TO 100
.B
. A(K+L) = T
B G0 To %0
END

-
-H

sgeh

NI BETLER Ay A T

The PICTURE report can only be

obtained by using the REPORT=

PICTURE command; it is not included in any of the options because the
PICTURE report has limited use for DMATRAN source programs. The primary
function of this report is to delineate the control flow of FORTRAN
programs. The downward flows are shown on the right of the report. The
upward flows are shown on the left.

The B stands for the start of a

Ak A i

path and the E stands for the end of a path. This report is especially]
helpful in breaking down large FORTRAN programs into smaller parts that
are more manageable for FAVS to restructure. Since the PICTURE report
shows the beginning and ending of paths, it helps the user determine

which are logically cohesive sections of code. These sections of code
can be bounded by the DMATRAN BLOCK - END BLOCK constructs in order to
simplify restructuring and make the programs easier to use.

Figure 5.18. FAVS.4 Picture of Module Structure
5~30

310day sa8ueyn Ioejaelul H'SAVL 61°G 2aIn3Td

[NEADS OHMUW OEAMUW LRI L OMISEL MMIOL DML 8 MW TR HOMA .
i
UV IMEN SATGVA TR AN TR0 TI0 4 L U1 STTV3S i
ALV LONC M LI 4 3G 5 NOWMOD WT 1 R YA ON [EEXE3 3 SN HNOWWLO) 1LV i
TUWOW P AN 1O 10 }
SR EY T DR AR £ s ST MUMKOD NE IV TMVA ON LETEEY HEIWO 140y “ R
00K MM [ECITIE] }
N S G D 1 SR L TR L OM EXXE Y K UL) [RORL] i
XTI (N TY] 1L i
DT R L R LIS e 1 g ST NOWLERED NT RERE AR Y MOV ERUET m
FUNION I AN - {
1
[RINEER TN FERRE) G NOWKNOL N LKHN KA S NOLWY) [RUBUN T2
FAVION MAM [V
A I L0 IR R T L s ST NOWWGE) R4 IV EMYA 0N KRR KRR NORWOD CEGTVL
FUNIOW MAN AV IMG
. Lid 4 ORI IR 42 ST MOWKOD N1 A BIVINYA ON KRKRARAOK NOWWO) S
. tun G ON S1ONOWWO) NE - TIHVINUG O KRR K NOWWOD LT
. AN AN S NOWKD Y N Y IEHYN ON FORNORIORK NOWWO) UANLIY
AMING MAN ANINT IR
AMENA (N AMING 51130
WMINT NN AMLNG IMMLOLS
AMINI M3N AMINA PELIER]
AMLINI M3N AMING NMILA
FUNION N NWL30
CRAONMINEE KT IS0/ 8 18 K 138 S20480 FRIVHD 40 AR L HFINAS TUUIOW

SAMPHD IV N ILNT

6 FAVS ERROR CORRECTION

Two types of errors were corrected during the FAVS software
updates: Errors introduced in earlier updates, and residual errors
present in FAVS after its initial installation at the DMA sites. This

section discusses the residual errors.

6.1 FORTRAN V PROCS

UNIVAC FORTRAN V allows identical sections of source text to be
inserted with the FORTRAN V INCLUDE statement. This statement refers to
the name of a text section (PROC) of one or more lines, named and saved
using the UNIVAC PDP processor. A PROC is preceded by a line which
contains the name of the PROC beginning in the FORTRAN label field, one
or more blanks or asterisks, and then the keyword “PROC" beginning after
column 6. The original version of FAVS incorrectly looked for the
keyword "PROC" followed by the name of the PROC. FAVS was corrected to

look for the correct syntax.

6.2 FORTRAN V COMPILER STATEMENT

UNIVAC FORTRAN V allows compiler directives to be specified with a
FORTRAN V compiler statement, which must precede the compilation unit
to which it pertains. The original FAVS discarded all comments, blank
lines, and compiler statements in front of a compilation unit. As a
result, routines with UNIVAC FORTRAN V dependencies would not compile
after being instrumented or restructured by FAVS. This was corrected by
retaining all comments, blank lines, and compiler statements in front of

FORTRAN V compilation units.

6.3 FORTRAN V INTERNAL SUBROUTINES

UNIVAC FORTRAN V allows subroutines and functions to be defined
within one compilation unit. This is done by inserting each subroutine
or function (minus an "END" statement) immediately in front of the "END"

statement for the compilation unit. Such internal subroutines may be

referenced only within the same compilation unit. Each internal sub-

o el

o AL e e

DD - i

RSl S ol

i b Sk

routine has its own scope for labels; that is, the same label may be
used in the main body of the compilation unit and one or more internal
subroutines, and a label in an internal subroutine cannot be referenced
from the main body of the compilation unit. This feature of the inter-
nal subroutines was not recognized during the initial FAVS installation.
Instrumentation of compilation units with internal subroutines resulted
in references to wundefined 1labels when the instrumented code was
compi: t. This was corrected by creating an internal subroutine at the
end of each instrumented compilation unit rather than referencing a
label defined there. Similarly, when internal subroutines referenced
duplicate labels, the restructured source would be incorrect. FAVS
label processing has been corrected to allow duplicate labels within

internal subroutines.

6.4 "EOF" VARIABLE

An early version of FORTRAN (RUN) on the CDC 6400 included "EOF”
as a keyword in certain statement types. Recognition of this statement
type was removed from FAVS, thus allowing the unrestricted use of “EOF"

as a variable name in UNIVAC FORTRAN V.

6.5 ASSIGN -GO-TO STATEMENTS

UNIVAC FORTRAN V allows ASSIGN -GO-TO statements with an empty
list of possible branch label destinations. This was identified as an
error by FAVS and caused an incomplete graph to be used during instru-
mentation, restructuring, and static analysis. FAVS was modified to
internally construct and use the complete list of possible branch label

destinations for each ASSIGN ~GO-TO statement.

6.6 LONG DATA STATEMENTS

Previously very large data statements caused an abnormal termi-
nation during FAVS processing. FAVS has been corrected to check for
statements with more than 19 continuation lines, or executable state-

ments with more than 250 symbols, keywords, operators, and delimiters.

6-2

——

These are treated as fatal errors which terminate FAVS processing after
all source text has been scanned. An informative diagnostic identifies

each statement which is too long.

OO USRS VI S WA 30- " <

o e hestalamin} s

APPENDIX A 4
UPDATES TO THE DMATRAN USER'S GUIDE év

e

Appendix A consists entirely of updated pages for the January 1979
edition of the DMATRAN User's Guide, available as RADC-TR-78-268, Vol.

I. Replacement by the modified pages in this appendix will update the

_r ,.
> Fod
1

DMATRAN User's Guide to indicate changes made during the FAVS Enhance-

ment effort.

R e

L. .me A

h S

Y

. b

4 DMATRAN CONSTRAINTS
4.1 SYNTAX
] A maximum of 20 card images per statement.
. Statement labels between 10000 and 19999 should not be used

because the DMATRAN preprocessor adds statement labels,
beginning with label 19999 counting backwards, to the
FORTRAN source code (Fig. 3.3).

° Don't transfer to labeled DMATRAN statements with FORTRAN GO
TO's.

] Comments may not be interspersed within DMATRAN statements.

) All two-word DMATRAN directives may be written as two

separate words or merged into one; i.e., DO UNTIL or

DOUNTIL.

4,2 DO UNTIL
Remember, when the DO UNTIL...ENDUNTIL construct is used for
iteration, the statements contained within the construct will be

executed once before the logical expression is evaluated.

4.3 CASE
The value of <integer-expression> in CASE statements must be

positive and must be less than 100.

4,4 BLOCK CONSTRUCT
° Each BLOCK...END BLOCK construct should occur after all
INVOKE statements which refer to the block name, but may be

before or after the RETURN statement.

. Blocks can only be entered through INVOKE statements.
Sequential control transfers around BLOCK...END BLOCK

constructs. Do not use a GO TO enter the middle of a

BLOCK..END BLOCK construct from outside the block.

1
g

.'

I

3 >

b AN ey

The maximum number of INVOKEs and BLOCKs depends on the

lengths of the BLOCK names and number of invocations, see

Sec. 2.5.

N

. RADC HONEYWELL 618U/MULTLCS
SAMPLE DMATRAN JOB STREAM
(USING THE GCOS ENCAPSULATOR)

peany

In order to use the DMATRAN precompiler, using source code written

in DMATRAN generated by a programmer or by FAVS restructurer, the job

PR PR Iees

stream shown in the following example can be used.

snumb (number)

ident

program rlhs

limits (CP time limit),32k,,(print line limit)
prmfl h*,r,r,>udd>3201c0320>rban>dmatran>hstar
select >udd>3201c0320>rban>dmatran>filedefs -ascii
prmfl 0l,r,s,>udd(BCD dmatran source file)

prmfl 03,w,s,>udd>(BCD Translated FORTRAN source file) 1

v
.
WL N NN o v W

end job

i e T SIS R Y T A

iw

L
— AL A

N

-y -

Y AN
L L L S S

DMA UNIVAC 1100/80
SAMPLE DMATRAN JOB STREAM

The job stream in the following example can be used to execute the

DMATRAN precompiler.

@AsG, A YOURSOURCE. «YOUR DMATRAN SOURCE
@QuSE Y., YOURSOURCE. .

@ASG, A DBM*FAVS-DMA. .ASG DMATRAN PRECOMPILER

@USE DMA.,DBM*FAVS-DMA,

@xqQr DMA. TRAN .EXECUTE DMATRAN PRECOMPILER
@ADD Y. ELEMENTS .ADD DMATRAN SOURCE ELEMENTS HERE

The UNIVAC 1100/80 installation of the DMATRAN precompiler
supports an additional command (see Sec. 5.1) to .assist in compiling
translated DMATRAN. This command contains CFOR or CFTN in columns 1
thru 4, followed by any desired information in columns 5 thru 80. The
DMATRAN precompiler changes the C in column 1 of all CFOR and CFIN
commands to an @ character as the command is written to the FORTRAN
output file. When the DMATRAN precompiler automatically adds the
FORTRAN output file to the runstream, the translated CFOR or CFTN
statements request either the FORTRAN V or the ASCII FORTRAN compiler.
Note that to compile a DMATRAN source element, the first line in the
element should be a CFOR or CFTN command. Indented listings without
FORTRAN V or ASCII FORTRAN compilations may be obtained by omitting CFOR

and CFTN commands.

MISSION
of
Rome Air Development Center

RADC plans and executes nesearch, development, test and
delected acquisition programs in Auppomt o4 Command, Control
Communications and Intelligence [C31) activities. Techmcal
and engineering support within areas of technical competence ..L®
48 provided to ESD Program 0fgices {POs) and other ESD
elements. The prineipal technical mission areas are
communications, electromagnetic guidance and contrnol, sur-
veillance 04 ground and aerospace obfects, intelligence data
collection and handling, information system technology,
Lonospherdic propagation, solid state sciences, microwave
physics and electronic reliability, maintainability and

-compatibility.

:
2
3

WWW

e

