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Introduction.

The present work develops an analysis for a particular kind of data

called the Q-sort. Most commonly occurring in connection with personality

assessment, this data is typically generated as follows: A rater is pre-

Aented with a deck of cards - called the Q-deck or Q-set - on which are

written different descriptive statements. The rater is told to order the

cards according to some criterion. As a very common example, the cards

of the Q-deck might have different descriptions of personality and the

rater would be asked to order them according to their similarity to the

personality of a designated individual - the subject. Although occasion-

ally the rater's task is to completely order the cards - called Q-items or

simply items - this procedure becomes far too demanding as the number of

items increases. In the latter instance, the rater is asked to classify

each item according to its degree of concordance with the subject, ties

permitted, thereby making the rater's task tractable. However, in order

to enforce the similarity of this simplified task to the more

difficult task of completely ordering the items, the so-called forced

distribution is imposed. Under this restriction, the number of items

that the rater may assign to any rank is fixed.

For example, the number of Q-items in the deck is often 100. Nine

categories of similarity might be used, ranging from I - "most uncharac-

teristic," through 5 - "neither characteristic nor uncharacteristic", up

to 9 - "most characteristic". The number permitted in each of the nine

categories might then be 5, 8, 12, 16, 18, 16, 12, 8, 5, respectively. Thus,

exactly five items would be forced to be rated "most uncharacteristic",
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eight other items forced to be rated at the next most uncharacteristic

level, and so on. The rankings of the deck as a whole is called a Q-

sort.

The rationale for such a forced distribution is that, like the

complete ordering of the items, the moments of the distribution of scores

of the items of any Q-sort are fixed. Noting that, in particular, with-

in each subject the mean and variance of the items' scores are fixed, Q-

sort data is sometimes described as being "standardized within subjects"

as opposed to being "standardized within variables", the consequence of

imposing the more usual location and scale invariance on a set of multi-

variate data.

The feature of Q that the psychometric community considers distin-

guishing is usually described in terms of the matrix of data, X, whose

rows represent the different subjects and whose columns represent the

different scores of the items. Thus, X is the score given to the

i-th item in the forced distribution describing the j-th subject. The

common and familiar practice is to standardize the matrix X by arguing

that one's inferences ought not depend on the overall level of the item

(or variable) i; that is, one ought be invariant to X i" Similarly, the

second central moment of the i-th item is usually considered an invariant.

If one denotes the standardized version of X by Z, note that the correlation

matrix of the items corresponding to X is simply R =-! Z'Z. One might then
J

decompose this matrix R into factors that, appropriately rotated, would

reveal groups of similar items.

In contrast, with Q-sort data the quantities X are all constant
J.

and equal to the mean of the forced distribution, as are the analogous
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second moments. With this observation, one might as well standardize X
such that X 0 and E Xi - 1. Calling this transformed matrix

J. i ji

Y, by analogy to the correlation matrix of the items, one considers the

matrix Q= YY1, the "correlation matrix of subjects." The matrix Q

may then be decomposed by factor analytic techniques to obtain factors or

"clusters" of similar subjects. For this reason, Q methodology is some-

times considered as a competitor to cluster analyses, or, rather as a

, forerunner of historical interest. Q does not explicitly formulate this

problem as a clustering problem; as such, this methodology is rarely used

(Overall and Klett [1972]).

However, the factor analysis of subject-standardized Q data was not

the only, nor even the primary, proposal made by the innovator of Q,

William Stephenson. His more fundamental contribution was the methodology

whereby the Q-deck was itself constructed. These Q-decks are called

structured, and are, historically, the first kind of Q-sets employed.

The starting point of the structured Q-set is the psychological theory

whose validity is being investigated. In the area of personality theory,

the type psychologies furnish the simplest examples. In such schemes,

Q-items are chosen to represent different types postulated by a particular

theory. By such a deliberate procedure, a design matrix Q can be designated as

corresponding to the structure of the Q-deck. Stephenson himself typically

created multiway cross-factorial designs, taking pains to "balance" the

structure by ensuring each cell in such a design had an equal number of

representative items. The reader is referred to Kerlinger (1972), for a

detailed description of Stephenson's structured Q-sort methodology.

At the same time as Stephenson was developing various aspects of his Q-

technique, an alternative paradigm for questionnaire construction was becoming

3
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widely accepted. This paradigm was based on the dual concepts of validity

and reliability, each of which was in turn refined into secondary levels -

construct validity, concurrent validity, interrater reliability, intrarater

reliability and so on. These concepts as a whole were integrated by

Cronbach e .(1973) into a theory of generalizability.

Stephenson's structured Q-set (Stephenson [1953]) failed to success-

fully compete with the requirements of generalizablity theory. The methodolo-

gical problems regarding its validity and reliability (e.g. Sundland [1962])

were sufficient to greatly restrict its use. In fact, Block (1961) was

able to substantially alter the scope of Q-studies by responding to these

issues of validity and reliability; the result was his unstructured

California Q-set. Only after Block's work did Q become identified exclu-

sively as the kind of factor/cluster analysis described above; other inno-

Vations of Stephenson, especially his structuring of Q-sets, received less

attention.

Although the present work ultimately develops recommendations for

unstructured Q-sort data, its fundamental import is a parametric model

for structured Q-sorts. Key to the development of this analysis is the

derivation of a sampling (or probability) function. The sampling function

that is derived describes the probability that a given individual will

give any particular response (i.e. any particular ordering of Q-items).

This object ties the Q-sort to other preference ordering and selection

models. Because an analogous preference ordering problem was posed and

then solved by Luce (1959), a brief description of some of Luce's results

are presented prior to the main body of chapter I. Against this background
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an axiom similar to Luce's choice axiom is postulated; from this axiom the

functional form of the sampling function is derived.

In chapter II the sampling function is reparametrized to make the

statistical model parsimonious. The essential problem posed by the

structured Q-set - the relation of the item design matrix to the subject

design matrix - is implicit in this reparametrization. In addition,

various modifications to the sampling function are proposed to facilitate

its computation. Each of these modifications transforms the sampling

function into a kind of conditional sampling function.

On the basis of chapter II, conditional likelihood functions can be

formed. In chapter III, these conditional likelihoods become the objective

functions which, when maximized, furnish estimates of the parameters. The

consistency and asymptotic normality of these estimates are immediate con-

sequences of Andersen (1970).

Chapter IV illustrates the manner in which the results of the previous

chapters help to solve the inferential problems of the structured Q-studies.

Interestingly, while the evaluation of the significance of "nuisance" effects

conforms to the framework of the generalized likelihood ratio tests, the

central hypothesis of structured Q-studies, the retrospective validity of

the Q-set, does not. A modification is proposed that enables the evaluation

of this hypothesis.

Chapter V develops a latent factor model appropriate for the analysis

of unstructured Q-sorts. This model compares to that for the structured

Q-sort as the usual multivariate factor model (Anderson 11958], chapter 11)

compares to the multivariate general linear model (Anderson (1958], chapter

8). Chapter VI presents an example that illustrates the kind of analysis

5

* - --i- --g -



this work makes possible. In the conclusion, we return to assess the

consequences of the results of the present work.

6



I. Derivation of the sampling function.

The present chapter develops a model that idealizes the process

by which a single individual sorts the Q-set. This model describes

the stochastic process of the sorting - but only in a sense. For

unlike a modeling of the sorting process per se, this idealization does

not depend on any initial conditions, e.g. the initial ordering of the

Q-items; therefore it is considerably simpler.

I.A. Luce's theory of choice behavior.

The model of the sorting process, with Its derivation, is in many

ways parallel to that of Luce (1959), who idealized the process of

choosing the single most preferred object from among N such objects.

Indeed, by developing a model of the Q-sorting process a new perspective

is gained on Luce's model; a perspective not found in the literature of

mathematical psychology, including the latter-day review of Luce (1977).

To facilitate a comparison, Luce's work is briefly reviewed in this

section.

I.A.l. Notation for Luce's model.

Let T - {x,y,z, .... ,t} be the (finite)set of objects under

consideration. T is referred to as the universe.

Suppose A c S -T. Let P s(A) denote the probability that the

object chosen as most preferred is an element of A when the selection

offered was all elements in S.

I.A.2. Luce's choice axiom and its consequences.

Luce's axiom consists of the following assertion:

7



PT(A) Ps(A) PT(S) for all ACS T , I.A.2(l)

a statement very similar to that of conditional probability, were

Ps(A) = P(AIS). (Unlike the rules of conditional probability, the

axiom I.A.2(l) applies only to nested sets, ACS C-T.)

A derived but equivalent form of the axiom is

Pr{x} P{x}
= ps for all S such that {x,y}cS, I.A.2(2)

subject to regularity conditions that prevent division by zero. As

a direct consequence of I.A.2(2), one may conclude there exists a

function v: T + (0,c%), unique up to changes in scale, such that

P{x} P{x} I.A.2(3)
= PS T= v(y)

whence

P { v(x)S E v(u)
uES

I.A.3. Interpretation of Luce's axiom.

Luce's axiom, in the form of I.A.2(2), is sometimes described

as expressing a notion of "independence of irrelevant alternatives,"

with the following meaning: Suppose in the course of selecting the most

preferred object from the set S, the choice narrows to one between

elements x and y. Then the final decision is made by considering

8



only the merits of objects x and y; the properties of all other

elements in S are "irrelevant".

Analogies to Luce's choice axiom and its consequences will be

made in the following.
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I.B. The exchange axioms.

Like Luce's axiomatization, the following focuses on the behavior

of a single individual. The behavior, however, will consist of the

sorting of the items of the Q-set. For the moment, and for present

convenience only, the task will be to completely order the Q-items.

I.B.I. Notation.

Let I be the number of items and let the items be indexed

1,2,...,I. Let 1r, a permutation, represent an ordering of these

items. The k-th component of iT, denoted w(k), is considered the

index of the item ranked I-k+l. Thus,

(l) - index of the item ranked lowest

7T(2) - index of the item ranked second lowest ,

iT(I) - index of the item ranked highest

p(n) is the probability that r will occur; p(7) is called the sampling

function.

Let p be the space of all permutations, 7. Let Z and m be

ranks such that k > m. Define the operator T(.;,m): p -p P as the

one-to-one onto map such that

T(r;£,m) (k) - iT(k) for all k £ and k # m

T(1T;i,m) (9) - w(m), and

T(T;.,m) (M) - (.)

10

_ 7 : - - -F - - =., -.={ ~1 - -- : ' ; -- -_ .: - - ,. . - - -



Thus, T(;L,m) represents an ordering identical to that of 7t

save that the indices iT(m) and 7() have been exchanged. This corres-

ponds to the interchange of the two items, those ranked in the t-th and

m-th positions, in the ordering of the Q-set which t denotes.

I.B.2. The first exchange axiom and its consequences.

The first exchange axiom asserts

p(TO for all Z > m, I.B.2(l)
p((L;,,m)) for all ,

with the following interpretation: The two permutations, n and

T(iT;Z,m), differ only in their placement of the items 7r(9,) and n(m).

Thus, in choosing between these two permutations, the decision intuitively

ought not be based upon the properties of the other items. The ranks

of all these other 1-2 items are the same for the two permutations

being compared; for this reason they are "irrelevant." Parallel to

Luce's choice axiom, the notion of "independence of irrelevant alterna-

tives" is the critical justification here.

A consequence of I.B.2(l) is that there exist positive parameters

{p(i)} and a function S: {1,...,I} + (- ,x) such that

p~rt - ~lTt))S(t)S(m)POO) [ 0Or () I 1M m I.B .2(2)

p(r(IT;,m)) p (t(m))

(The essential point in the derivation is the observation that the ratio

11



p 0 ) p(Or1)

p(71 ) P(r2 )

does not depend on ir ) This statement similar in form to that of

I.A.2(3), where the fp(i)} correspond to the {v(x)) of Luce's model.

These parameters fp(i)} will be referred to as "propensities", p(i) the

propensity of item i to being ranked highly. The function S(') acts

as a scaling function that defines the "distance" between the various

ranks. Considerable discussion will be devoted to this scaling function

in the remainder of this chapter.

The following axiom gives some insight into the role of S(.):

Define T(*;Z): p-p by

T(?T;Z) (k) = w(k) , for k 0 9, k J Z+l

"r(1;i) (i) = T(,l

t(ir;2) (2A+l) = r(R,).

Thus T(;R) represents the exchange of two adjacent Q-items, i.e. the

Z-th and Z+l-st items.

The second exchange axiom, which is a specialization of the first,

asserts that

"'~~ (7) =hr(,(,l) I.B2(3)
: ~~p (Tr (Tnr; J)

*'. which, like the first exchange axiom, asserts a notion of independence

of irrelevant alternatives. But the consequences of I.B.2(3) are more

severe; I.B.2(3) postulates there exist fp(i)} such that

*n) = p(ir(Rl)) , I.B.2(4)

12



a statement that is remarkably similar to I.A.2(3) and that constitutes

a simplification of I.B.2(2). I.B.2(4) has S(1+1) - S(Z) - c1 and

hence S(.) - cl(t-c 2), Cic 2 arbitrary constants. The role of S(') then

is that of a scaling function, as was mentioned above, measuring a sort

of interval of discrimination between the ranks ranging from 1 to I.

The strength, or severity, depending on one's point of view, of the

second exchange axiom is its assertion that all the intervals of discri-

mination between the ranks are of equal importance. This assumption is

generally not appropriate and will be modified below.

a.

13
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I.C. Secondary axioms and properties of the model.

A consequence of the first exchange axiom is that the functional

form of p(,) is determined up to the parameters {p(i and the

scaling function S(.). Thus,

S(k)J1P(7-(k)

p k=l I.C.(l)
, II P(w(k'))S(k ' )

k'=l

where E , denotes summation over all permutations 7r'. The denominator

simply ensures that the probabilities sum to unity.

I.C.l. The monotone axiom.

Note that changes in scale in the {P(i)} are equivalent

to changes in location for S(.) while changes in power in the

P{(i)} are equivalent to changes in scale for S(.). In this

sense, then, S(.) is determined up to affine transformations.

A natural regularity condition to postulate of p(r) is for

S..the ratio

p( ) S (+9.1)-S (,)
="~ p(T (r;) P( Or,)

Uto be increasing in p(ir(+l)). The rationale is the following:

If p(i) (i-T (i+i)) measures some propensity of the i-th

14
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item to be ranked highly, then any increase in this propensity

should be reflected in an increase in the likelihood of item i

being ranked over any other item, in particular, over item W().

If the ratio I.C.l(1) is to be increasing in p(w(t+l)),

then S(L+l) - S(L) must be positive; hence, S(') must be monotone

increasing. For this reason, I.C.l(l) is called the monotone axiom.

The monotone axiom enforces a property that parallels one in

Luce's model, one directly deducible from Luce's choice axiom. This

property, strong stochastic transitivity, is expressed in terms of the

pairwise preference probabilities

P(x,y) - PA{x} where A - {x,y}

recalling the notation of section I.A. The property of strong stochastic

transitivity says that

1
if P(x,y) > (y is not preferred to x)

1
and P(y,z) > (z is not preferred to y)

then P(x,z) > max IP(x,y), P(y,z)}.

Objects such as these pairvise preferences, Simplt though they

be, are not natural in the present context of the Q-sort problem.

15



However, the analogy is interesting. Note that the monotonicity

of the ratio in I.C.l(l) is the same kind of property as that of

strong stochastic transitivity in Luce's model - for essentially the

same reason. For Luce's model, stochastic transitivity follows from

the linear ordering of the objects that is induced by v(.). Similarly,

for the Q-sorting model, a linear ordering is implicit in the scalar

quantities {P(i)}. The monotone axiom ensures the linearity of this ordering.

I.C.2. The palindrome axiom.

Let us denote the ranking that is the reverse of that connoted

by 7T as 7. Thus

7r(k) = 7r(I-k+l), k =

The following axiom is sometimes reasonable:

p () (7) for all r , r' . I.C.2(2)
p('n') p

This axiom asserts the following kind of invariance: If the

magnitude of the effects is reversed, and if the rankings that

empirically measure these magnitudes is also reversed, no distor-

tion in the structure of the probabilities would occur.

The condition that I.C.2(2) imposes upon the scaling function

is that

S(k) = - S(I-k+l) , k = l,...,I

16



Such a property is commonly called "rank reversibility," although

palindrome invariance has recently been suggested (McCullagh [1978]).

For this reason, I.C.2(2) is called the palindrome axiom.

Luce's choice axiom has been shown inconsistent with this

concept of palindrome invariance (Luce [1959] , Marley [1968]). Thus,

the axiom I.C.2(2) represents a qualitative distinction between the

Q-sorting model and Luce's model.

I.C.3. Axioms that determine the scaling function.

Until now, the sorting task has been assumed to be that of

completely ordering the Q-items, a task very unrepresentative of stan-

dard Q-practice. This restriction was made for convenience only and

this section will be devoted to relieving this restriction. Key to

this discussion will be the choice of the scaling function.

The scaling function S(-) allows for adaptation of the model

involving a complete ranking of the Q-items to the more common case

involving sorting in accordance with a forced distribution. While the

category sizes of the forced distribution can in principle be accounted

for by a summation over all compatible rankings, such a summation is

numerically complicated to implement. In addition, such a procedure

fails to represent in the model the fact that the forced distribution

is an a priori, designed feature of the sorting task.

As a simple alternative, one can represent the forced distribution

by equating the values of the scaling function for ranks residing in the

same category, thereby equating the ranks themselves. Were the sizes

the categories 5,8,12,16,18, 16,12,8, and 5, then S(1) through S(5) would

have a common value, as would S(6) through S(13), S(14) through S(25),

17



and so on. While this procedure does not completely determine the form

of S(.), it does greatly reduce its complexity.

By requiring the scaling function to be constant for ranks that share

the same category in the forced distribution, another form of the exchange

axiom is motivated, one as restrictive as the second exchange axiom but

one that exploits the presence of the forced distribution. We make use

of the following notation:

Let {C } be mutually exclusive and exhaustive sets that partition
k

the ranks 1 to I. Let the k-th of these sets, Ck, correspond to the

k-th category of the forced distribution. For example, for the forced

distribution with category sizes 5, 8, 12, 16, 18, 16, 12, 8, and 5, C1

would be the set {I,2,...,5}, C2  the set (6,7,...,13), C3  the set

{14,15,. ..,25), and so on.

The notion of fixing the scaling function to a common value for the

ranks in the same category of the forced distribution may be represented

formally by the axiom

P 1 for all Z, mE Ck' for all k,P~z) = 1I.e.3(1)

p(T(7T;Z,m)) and for all Tr

The consequences of I.C.3(l) is that for all k

, S(M) - S(m) whenever Z, me Ck 

We shall refer to the axiom I.C.3(l) as the first scaling axiom.

I.C.3(l) is the first axiom to be postulated that exploits the

use of the forced distribution. All previous axioms, in particular

18



the first and second exchange axioms, were cast in the context of

completely ordering the Q-set. Most notably, the second exchange

axiom was able to largely determine the scaling function. The

following assertion resembles the second exchange axiom but exploits

the structure of the forced distribution:

Let mE Ck and t k C The second scaling axiom asserts that

for all r ,

p(ITn) = h(rr(2),7r(m)) I.C.3(2)p (r (OTr; i,,m) )

(The distinction between I.C.3(2) and the second exchange axiom is that

for I.C.3(2) Z and m are restricted to adjacent categories, while for

the second exchange axiom, t and m were adjacent ranks.) From

I.C.3(2) it follows that if there is a k such that mcCk and cC k+l,

then S() - Sm) is a constant. As a consequence of I.C.3(2), the

scaling function is essentially determined, that is, determined up to

changes in location and scale.

A reasonable alternative to completely specifying the scale function

is to estimate it statistically. This notion will be developed in the

next chapter.

I.C.4. Context as defined by the Q-set.

One attraction of Q is the capacity to build and enforce

a vocabulary; the introspection of the sorting process can be

required to be done with reference to standard items. Stephenson

'U.
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(1953) used this idea to build Q-sets specific to particular psycholo-

gical theories, while Block (1961) used this idea in order to transcend

the vocabularies of particular theories of personality - and especially

to transcend idiosyncratic adaptations of these vocabularies. At the

heart of this vocabulary-enforcing capacity is the idea of a "set", the

global framework that personality and behavior inventories imply by

asking the questions they do. Curiously, the formal model expressed

by the sampling function in I.C(l) has an interesting property with

regard to this concept of "set".

Nowhere in the derivation of the functional form of p(') are

the {p(i)} defined except in the context of all I items simultaneously.

Thus, were one to add a single item to the original Q-set or to delete

one from the existing Q-set, nothing in the formal theory of the axioms

presented above would allow one to infer that the properties of the

original Q-set would be at all similar to the properties of the newly

constituted Q-set. This formal non-correspondance of almost identical

Q-sets sharply distinguishes the present model from that of Luce. In

Luce's model, the choice axiom explicitly restricts the manner

* in which behavior, that is, the choice probabilities, can change in

response to the context, i.e. the selection of choices available. Thus,

Luce's model is a direct result of assuming stability as the context

changes; the Q-sorting model, by contrast, makes no such assumption.

With this point in mind, the occasional practice of subsampling

from a larger Q-set to ease the task of the rater (e.g. Jackson and

Id Bidwell (1959]) requires - in the frame of this axiomatic development -

an additional axiom to justify it. This axiom, which would assert

20
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that p(i) is the same for any Q-set in which i appears, could be

appropriately called "context irrelevance." Further, if the items

are chosen by explicitly sampling from a larger "population" of items, a

similar axiom is required if generalizations to the item "population"

as a whole are to be made.

The assumption of context irrelevance has practical consequences. One

can easily imagine that some questionnaires achieve a certain "set" in

their responders by asking certain questions in a certain order, a

"set" that in turn can be reflected in their responses. Quite concei-

vably, to ask more or fewer questions, different questions in a different

order, would achieve a different "set" and would result in different

responses. Thus, although the issue is difficult to address experimentally,

by no means is it insignificant.
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II. The statistical model.

This chapter leaves behind the axiomatic development of the

sampling function; the focus is exclusively upon the form of various

,* (conditional) likelihood functions of the structured Q-sort. This

focus is no doubt curious to some, for the likelihood functions

furnish directly neither estimates nor inferential procedures. Only

in chapter III will this deficiency be remedied; there estimates and

inferences will be derived using the theory of maximum likelihood.

II.A. Model parametrization.

In this section the unconditional likelihood of the structured

Q-sort will be derived.

II.A.l. Log-linear parameters and duality.

In chapter I the sampling function p(-) was developed for

a single individual; it was parametrized by 1'(i)). To extend this

sampling model to individuals j = 1,...,J, the relevant parameters

are {p(ij)}. This is a very large number of parameters; the present

task is to reduce the dimensionality of the parameters from the

excessive number IJ to something smaller.

For the structured Q-sort, items are constructed to represent

levels of various attributes. This structure is represented by an I x D

design matrix, Q, whose rows, Qi, are the indicators and level

variables of the corresponding i-th Q-item. Q is called the item design

matrix.
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Let p(i,j) - exp{Qi8Y } where Oj is a 1 x D vector consis-

ting of the parameters of the J-th subject and act as the coefficients

of the D variables that compose Q.

Finally, let $' = 8W', where w is a I x K vector consisting

of the covariates of the J-th subject, 8 the D x K matrix of unknown

parameters. W, the J x K matrix whose rows are the wj, is called the

subject design matrix.

The interpretation of 8 is intriguing. As developed, the coor-

dinates 8' = 8w' locate the J-th individual in the (dual ol the)

design space of the Q-set spanned by the rows of the matrix Q. On the

other hand, yi = Qi8 represents the i-th Q-item in the (dual of the)

coordinate space spanned by the rows of the matrix W. Thus, a repre-

sents each of these two linear spaces, the item design space and the

subject design space, to one another by its respective rows and columns.

This duality is reminiscent of the reciprocity principle upon which

focused much debate about Q- versus R- factor analysis. (See Burt [1972]

and Burt and Stephenson [1939].)

In this reparametrization, the sampling function of the j-th subject,

p . becomes
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I ,S (k)
TI exp{Q7 (k) Bw}

= k=l 1'
Pj T II.A. l()

1 1 exp{% (k,) w! S ~ '

TI k'=l

exp{q(r) w! }

, exp{q(Tr')$w'

I

where q(T) = L S(k)QT (k), a 1 x D vector.
k=l

II.A.2. Refinements in the parametrization.

This section will develop two refinements of the log-linear

parametrization that are directed at specialized concerns. Both are

parsimonious and convenient to implement. In addition, each provides

some insight into the workings of Q, and therefore provides useful

criticism of the potential strengths and weaknesses of Q.

a. Parametrizing the scaling function.

In section I.C.1 the scaling function was observed to be

determined up to affine transformations; in section I.C.2 it was

postulated to be skew-symmetric. Because the scaling function

can be interpreted as measuring the "subjective distances" between

the sort's categories, some empirical validation of the scaling

values used might be of interest. In particular, one might wish to

determine if the discrimination between the extreme categories is

greater or less than those between the neutral categories. Such an
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issue can be formally considered by the following association: If

the discrimination between the extreme categories is greater than

that between the central categories, consider this well-expressed

by postulating the scaling function to be convex above its median.

If, conversely, the discrimination between the central categories

are greater than those between the extreme categories, consider this

well-expressed by postulating the scaling function to be concave

above its median. The following parametrization is then motivated:

S (k) IS(k) I O  sgn(S(k)) , k-1,2,...,1

where S(k) is any a priori skew-symmetric scaling function with zero

median. Employing power transformations to skew-symmetric functions

as surrogates to the wider class of functions that are monotone, skew-

symmetric, and convex(concave)-above-the-median, this parametrization is

especially parsimonious. As a side benefit, the monotone axiom can be

evaluated. An estimate of a less than zero would indicate monotonicity

was being strongly violated.

b. Modeling variations in raters.

In this section a particular kind of variation between raters is

considered. This variation is due to the differing levels of effort

that different raters are likely to make in producing their sorts.

For each rater r let c(r) be the "acuity" or effort parameter

of that rater. Let p(i,j,r) denote the propensity of item i

being ranked highly when rater r rates subject J, while p(i,j)

becomes some "underlying" propensity of item i being ranked highly

for subject J.
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The modeling relation of the acuity of rater r is

p(i,j,r) = P(i,J)a(r) i-l,...,I

For the familiar general linear model the analogue to this parametriza-

tion is that the residual variation is inhomogeneous and that this

inhomogeneity can be attributed to the raters. More importantly, as the

result of this analogy to residual variation, estimates of the a(r) can

be used as indices of relative reliability that enable comparisons to a

"standard" rater.

II.A.3. The unconditional or full likelihood.

Let the unconditional likelihood function be denoted by

e Then,

J J exp~q(7T.Tmw'}
e I pj (7) = . j II.A.3 (1)

j=1 j=l E , exp(q(Tr')Sw)}

where w now denotes the permutation observed as the response of the

j-th subject. (Note that j, which connotes a full ranking of the

I items of the Q-set, breaks ties arbitrarily. However, q(Tr) is

invariant to the manner in which the ties are broken.)

The rightmost expression in II.A.3(l) is uncomputable for even

moderate I as it requires summations over all possible permutations

of I objects. To avoid this problem, the remainder of this chapter

considers various conditional likelihoods, each of which is potentially

computable.
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II.B. Model simplification.

Recall that the full likelihood was computationally intractable be-

cause the denominator of each pj(T) contained a very large number - I! -

of terms. A natural simplification is to limit the number of terms in these

denominators. The issue is then to determine the criterion by which these

terms are chosen. Note that if one of these terms in the denominator of

p (T) is the numerator itself, two benefits accrue. First, pj (j) is

bounded above by unity, thereby remaining a proper probability measure.

Second, pj (Tr) can then be interpreted as a conditional probability.

The motivation here to employ conditional likelihoods is atypical.

More commonly, conditional likelihoods are employed to eliminate so-called

incidental parameters (Neyman and Scott [1948]) whose estimation would

otherwise consume too many degrees of freedom. Alternatively, conditional

likelihoods are sometimes explicitly induced by conditioning on those

statistics that have no apparent relevance. (See, for example, Godambe

[1980].) Although computational simplicity is sometimes listed as one of

the virtues of conditional inference, it is usually subordinate to another

criterion. Here, however, it must be pre-eminent.

In conceding this pre-eminence, the choice of the form of the condi-

tional likelihood is largely undetermined. This section presents two kinds

of conditional likelihoods. The first exploits the special structure that

Stephenson built into his Q-sorts - a completely balanced, cross-factorial

design. The second applies to more general Q-designs.
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II.B.1. The balanced, cross-factorial designs.

Stephenson's Q-sets all had the following design: First,

he would characterize a theory (of personality, of aesthetics, etc.)

by F factors, the f-th of which would have Lf levels. Then,

with an L x L x ... x LF design in mind, he would develop a

certain number of Q-items to be representative of the traits that

characterize, according to the theory, each cell in this cross-factorial

design. When each cell is represented by an equal number of Q-items

the item design matrix is said to be balanced. Kerlinger (1972) gives

a succinct but complete description of the ways in which Stephenson

used these balanced, cross-factorial designs.

For clarity of presentation, let us consider 2 x ... x 2 = 2
F

designs first. The convenience of doing this derives from the fact that

in this case D = F. For F = 3, the Q matrix would have the typical rows

1 1 -i

1 -i 1

1 -i -i

-i 1 -i

-l -l 1

" -1 -I1 -

Thus each row represents a vertex of a cube whose center of mass is

at the origin (0,0,0). Let the conditional likelihood for the

. BC(
balanced Q-sort, e B then be

e(BC(3 ) J Jexp{ q (Tr,) w' }
je-l s expiq(7T )SR
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I

where E denotes summation over all diagonal matrices S of order

F with +1 and -1 being the only diagonal entries available. Recall

that q(7j ) are the marginal Q-scores of the D dimensions of the item

design matrix. Thus,

I

q(7i S(k) Qn (k)

The above form corresponds to conditioning on

Iq(7j)I i (Iq 1( r )1,  Iq2( r )I , . F(7j)1)

Geometrically, this corresponds to conditioning on the event that

q( j) is one of the vertices of the right rectangular prism whose

center of mass is at the origin and whose vertices are

(+ jql(nj)I, + jq2(-)Rj ,..., + IqF( j)J). The rationale for condi-

tioning as above is the following: (1) The vertices {q(Trr)S} that

compose the orbit of the conditioning have centroid at the origin and

in that sense do not "bias" the likelihood in any particular direction.

* (2) The vertices {q( j)S} span the design space whenever qf(rj) # 0

for all f = 1,...,F; that is, these vertices span the design space

* whenever it is intuitively reasonable that it should, and otherwise they span

the linear subspace of the design space that holds the information that

q(Tn) indicates is available.

*4 Let us now consider the case where the Q-design is of the

L 1  L2 x ... x LF type. Denote by qf(nT) the vector

'(qf1 Or), q f2 (T )  q.. qfLf (Tr)

29

I---------



qf£(1J) being the marginal Q-score of the j-th subject for the

f-th factor at the Z-th level. If we adopt the restriction that

holds the scaling function to be skew symmetric about (1+1)/2 (the

palindrome axiom), then, for each f,

Lf

I qfk(7T) 0 II.B.I(2)Z=i

This redundancy requires that D = E f (Lf-l), if Q is to be of full

rank D. This is not convenient, however, so we shall use the redundant

item design matrix Q with D = E fLf, but of rank Ef(Lf-l).

We generalize the conditional likelihood of the 2F  balanced

factorial design by considering all permutations of the elements in

qf (). Thus,

CBC~a expfq(Tr i)BW)
el 11 II.B.l(3)

J=l fT1 Ze exp{qf (Tr)Pfgfw!

where B - ( 1  ..... f .... SF )  and q(iq) O qlCOr) ....

.... qF(), EP denotes summation over all permutation matrices
f

of order Lf. Because of the restriction II.B.1(2), the constraints

Lf

" [ fk = 0 ,

where fX are the columns of Bf, are necessary for $ to be

identified. The utility of II.B.l(3) is that the denominator is computable.

As for the 2F design, a geometric interpretation of the

orbit of conditioning is possible here. For example, when F - 2,

L 1  2 and L2 - 3, the vertices that compose the orbit of the
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conditioning correspond to the corners of a right six-sided prism

whose two hexagonal faces are generated by the permutations of the

three levels within the second factor, each of the two faces corres-

ponding to a level of the first factor. As for the 2F design, the

vertices

{q((7T)P P a permutation of levels within factors)

compose an orbit whose centroid is the origin. Alsc, if the elements

qf(7T) are not identical for f = I,...,F, these vertices form a basis

which spans the whole design space.

The information that is suppressed by conditioning as above

deserves discussion. Key is the observation that the design space is

spanned only when the elements within each qf(7T) are not identi-

cal. Suppose that for all subjects that the elements qfo(7j) are

identical (zero). While one might wish the corresponding matrix 0f

to be estimated by a null array, in fact B is not identifiable in

S(BC()

e If, now, only the jo-th subject has non-identical qfo (TT),

one would anticipate that the preponderance of null qfo (rj.)'s would

push any reasonable estimate of B toward the null array. In fact,fo0
in minimizing CBC(B) with respect to Sfo , only subject Jo's

scores would contribute; adding additional subjects with qfo('t) 0

would not dilute the effect that subject Jo's scores would have on

the estimate of B f while deleting subject J0 would make Of uniden-

tLfiable. For this reason, one might characterize the information upon

,.-rB (B)
BCM

which e is conditional as the "magnitudes of the effects," that
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the information that remains is in the "directions of the effects."

Of course, this description lacks precision; nevertheless, the manner

in which a subject possessing especially large Q-scores on a particular

factor can sway the conditional maximum likelihood estimates provides

one motivation for considering other kinds of conditional likelihoods.

II.B.2. The unbalanced Q-set.

The conditional likelihood in II.B.I(2) can be unsatisfactory

for two reasons. First, the likelihood e is only possible in

principle when the Q-set is structured as a completely balanced, cross-

factorial design. Not only are certain Q-sets not completely of this

type, lacking balance for instance, but often even for such carefully

designed Q-sets one desires to append to the item design matrix

certain nuisance covariates, e.g. measures of the items' social desira-

bility, concept complexity, vocabulary level, etc. (Sundland [19621)

or to consider interactions among the main factors. Thus, a conditional

likelihood applicable to an arbitrary item desig,L matrix is desirable.

Second, as noted in the previous section, for some data sets with

certain Q-matrices, e can behave unsatisfactorially, by over

emphasizing the contributions of certain subjects. In these same

instances, numerical problems in the maximization process may result.

In this section we shall develop a conditional likelihood that makes

use of a representation that is dual to that of a permutation.

Definition. Let a, a ranking, represent the ordering of a Q-deck

such that
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o(i) - rank of the i-th item in the Q-sort.

Note that for a given Q-sort represented by a and n, a(r(k)) k and

n(y(i)) = i. So a and 7T are inverses of one another. We shall

denote the range of a by N(I), and refer to it as the rankings space.

Definition. A shuffle, w:N(I) + N(I), is a one-to-one onto map on

the ranking space N(1) that can be represented by a function

o: (1,2, .... I} {1,2,...,I} that is one-to-one and onto such that

w(C , (i) - W (a(i))

We refer to w as the shuffler.

A shuffle operates to rearrange the ordering of a Q-set in a parti-

cular, systematic way. One can visualize a shuffle as an automatic card

shuffling machine. Its argument is the input Q-sort; its result is a

reshuffled deck. More importantly, a shuffle ignores the indices {i}

of the cards and operates only on their ranks.

Definition. The composition (o) of two shuffles, w1 and w2, with corres-

ponding shufflers W and oj29 is such that

wI 1 w2 (o)(i) = I(02((i))) = wl(w 2 (0))(i)

By this definition, the sorted deck w1 o w2(a) results from shuffling

o by w2 and then shuffling that result by wI.

Note that each shuffler w induces a semi-group on N(I) whose

*: corresponding shuffle is the generator. This brings us to our next

construct.
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Definition. Let P be a set of shufflers whose corresponding set

of shuffles is closed under composition. A random shuffler is the proba-

bility space whose sample space is Q that assigns equal probability to

each element of £.

Intuitively, £ could be seen as an advancement in card shuffling

technology over the simple shufflers, {c}. Such a machine has at its

disposal several shufflers, and for any particular task it chooses one of

these shufflers at random. More importantly, if one recycles the output

through the random shuffling mechanism once again, the probability distri-

bution induced on N(I) remains unchanged.

This set of definitions is now used to simplify the full likelihood.

We propose to condition on a random shuffler. By this scheme, any

p(7r is then of the form

expi[E I S(k)Q 1$ w'}

p =Tk ) w II.B.2(l)
&c £2 expT[lk ,=l S(w(k')) Q j(k,) w.)

The terms fE.k=1 S(w(k))Q.(k): w£2} are then the orbits with respect to

which the conditioning is made. To emphasize the central role Q plays

in the creation of these orbits, and to reinforce the sobriety of our

endeavor, £ , the sample space of the random shuffler shall be termed the

orbit generator in all of the following.

We now turn our attention to specific properties desired of £.

Definition. An orbit generator £ is unbiased with respect to S

if

S S(MO(r)) = 0 for r =
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where #0 denotes the number of elements of S. Thus, I is unbi.sed

if the centroid of the scores S(oi(r)) is the same as the mean of the

scaling function SO).

Definition. An orbit generator SI is said to contain its reversals

if

whenever wEQ then w E,

where w(r) = w(I-r+l). Clearly any orbit that contains its reversals is

unbiased with respect to skew-symmetric scaling functions.

The smallest unbiased orbit generator for skew-symmetric S(-) is

Pe0 = fe,e, where e is the identity shuffler and e is its reverse

(e(r) = r, e(r)= I-r+l). A natural criticism of Q0 is that it is too

sparse: Consider the vectors S , such that S (r) = S(O(r)). Then of

the (I-1)-dimensional space in which resides the £S : all 0} , Q0 spans

only a one-dimensional subspace. With this objection in mind, the following

classes of generators are proposed.

For notational convenience, rather than labeling the ranks by the

numbers i,...,I, we label them by the numbers 0,l,...,I-l. Also we denote

a shuffler explicitly by an l-tuple. Thus, wi (a(0),a(l)...,a(I)), and

w(r) connotes the rank to which the shuffler w moves the item that bore

rank r.

Consider the following table:
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101234567 o o o o
1 0 1 2 3 4 5 6 7

2 0 2 4 6 0 2 4 6

~3 0 3 6 1 4 7 2 5

4 0 4 0 4 0 4 0 4

5 0 5 2 7 4 1 6 3

6 0 6 4 2 0 6 4 2

7 0 7 6 5 4 3 2 1

This table is the multiplication table moduio 8. Note also that rows

1, 3, 5, and 7 are permutations (or shufflers), while rows 0, 2, 4, and

6 repeat digits and so are not shufflers. (Not coincidentally, 0, 2, 4,

and 6 have factors common to 8.) For each shuffler from this multiplica-

tion, that is, for each of

0 1 2 3 4 5 6 7

0 3 6 1 4 7 2 5

0 5 2 7 4 1 6 3

0 7 6 5 4 3 2 1

consider its cyclics. For 0 12 34 5 67 they are

0 1 2 3 4 5 6 7

67 0 1 2 3 4 56

56 7 0 1 2 3 4

4 5 6 7 0 1 2 3

3 4 5 6 7 0 1 2

2 3 4 5 6 7 0 1

1 2 3 4 5 6 7 0

Notationally, the cyclics of a shuffler w are the compositions w, cw,
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2 1-1
ccW = c W,...,c W where c - (1 2 3 ... 1-1 0). Intuitively, the

shuffler c takes the item at the top of the deck and places it on the

bottom.

The shuffles that are the rows embedded in the multiplication table

modulo I are, in general,

Wp= (0, 1-p, 2.p ,.,(-)p
p

where p is relatively prime with respect to I and where the

operation "." is multiplication modulo I. Define Q byp

Q = { : (o = c k p, ;

thus Q is the set of all cyclics of w . Finally, definep p

2' = U' 
p p

where U' denotes union over all indices p relatively prime to I.

p

Proposition. Q' is closed with respect to the composition operation.

Also, '= {S : 2'I spans the (l-1)-dimensional linear subspace that

holds the full lattice {S all w}.

Geometrically, Q' being closed with respect to composition

translates to the elements of E' being vertices of some regular

polyhedron in the (1-1)-dimensional space of all rankings.

That the elements of ' span this space implies that this polyhedron

is "solid" in the (1-1)-dimensonal space. With these two properties,

37

- - ,,, " ,: , ', , , - . ... .. .. .. * x:,_ 2



V intuitively satisfies the requirement that the chosen subset of

S be evenly scattered over the surface of the (1-1)-sphere. We

shall call 0' the cyclic prime orbit generator and call the likeli-

hood ' induces in II.B.2(l) the cyclic prime likelihood, denoted

£cp(8)
e

The above proposition has Lhe fnllowing gen'r;fl.ization. t be

a subset of the relative primes of I such that if p1  and P2 are

elements of R, so also is p1P2  (multiplication modulo I). Unity

is also an element of 7. Define w as bc'orc 6,,,
P

WP = (O,lp,2p,...,(I-l)p) for all p C
p

and define Q pq, where q is any number which shares a factor of

I (q may equal unity), by

Q pq {iw: W= c p, k-- 0,1,2,.,1-1)

Then the following generalization is true.

Proposition. '(,q) = UPC, p is closed with respect to the composition

operation.

This proposition allows us to consider orbits smaller than 
those induced by 2'.

One should note that in simplifying the likelihood to this

conditional form, an element of arbitrariness has been introduced

that was not present previously. Whereas the full likelihood was

invariant to the manner in which ties were broken, as was the

balanced, cross-factorial likelihood, those likelihoods based upon

38

-- i '[-- - ,-



orbit generators are typically not so invariant. Unfortunately, to

enforce this invariance on this class of likelihoods would add

considerable computational effort, running counter to the primary

motivation for considering this class of estimates.

3
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III. Asymptotic properties of likelihood analyses in conditional problems.

III.A. Maximum likelihood estimation and maximum conditional likelihood

estimation.

All results of consistency, uniqueness, and asymptotic normality

follow from specialization of results due Andersen (1970), and are parti-

cularly easy because p.) is an exponential family parametrized by 3.

III.A.l. Consistency and uniqueness.

In chapter II, focus was exclusively upon various likelihood

functions. This focus may seem curious to some, for the likelihood

functions do not furnish us directly with either estimates of S or

with inferential procedures. We now close this gap. Estimates of $

are obtained by using that value of 6 that maximizes whichever likeli-

hood is convenient. The estimation equations are, for the full likeli-

hood, J
7V C(B) = 0 = [ {q(r.)w! - fq3()w

j=l { w.

where e4{q(T)w.$} = pj(7) q(7)w.', the expectation relative

to the distribution induced by p*(r).

The various conditional likelihoods have estimation equations

of a similar form. For example, the cyclic prime likelihood

has the equations

J

V L (P ) =0 (9= i {(.)w! - 1 cp q (1T) W'
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where ,Cp {*} denotes the conditional expectation given the cyclic

prime orbit.

The second derivatives are of the form

J
V8 £(Sv - Cone {q(nr)w', w q'}'

from whieh we may infer that the maximum is achieved and, if well-

identified, unique, due to the positive definiteness of -V8 C(8)V •

(Also, if -VB $(B)V' is only positive semi-definite, then 6 is

not fully identified; constraining 8 in the proper way will identify

it, whence (B) has a unique constrained maximum.)

For reasons related directly to the uniqueness of the solution

to the maximum (conditional) likelihood equations, it follows that as

J becomes large, the solution, 8, converges to the true value 8.

III.A.2. Asymptotic normality.

Let us denote the Fisher information matrix with respect to

the likelihood L(-) by I and define it by

-l~

where , is whichever (conditional) likelihood is being employed and

where Coy [{.,. is the covariance with respect to J,.

Then from Andersen (1970), it follows that J0/ 2 ($-) is distributed

4(0,I ()) as J become large; simple inferences may be made on this

basis.
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III.B. Generalized likelihood ratio hypothesis testing.

While the property of R being asymptotically normal may be

exploited directly to form tests of hypotheses, the generalized likelihood

ratio statistic (glr) is usually more convenient. This is because the

gir is available as a direct consequence of the maximizing algorithm. The

general form of this statistic is as follows.

Consider the hypotheses

H E0 vs HI E:k
0 I1 1

The conditions which we adopt are that (a) 0 is a subset of 1 and

(b) -0 contains no subset that is an open set in #I. Under these con-

ditions, and for our model the statistic

max exp{,CC()}

glr(0l) =
max expi;.( )j

has nice properties. In particular, the asymptotic distribution may be

derived by using the fact referenced in the previous section that 8 is

normally distributed. The asymptotic distribution of glr(Ol) is such that

2
-2 log glr(0l) is approximately X with D -D degrees of freedom,

where Di  is the dimensionality of hypothesis i" We shall use the above

result for the solution of the hypothesis testing problems posed in the

next chapter.
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IV. Problems of applied interest.

This chapter considers two kinds of applied problems that naturally

arise in the context of the structured Q-sort. The first of these, the

testing of nested hypotheses to assess the significance of sets of

a-coefficients, has a particularly simple form. The simplicity of this

theory results not from any special properties of the Q-sort model but

from the well-known theory of (conditional) generalized likelihood-ratio

tests. An example is considered in detail to establish the appropriateness

of this theory.

In the latter part of this chapter, a class of hypotheses is described

that falls outside the natural domain of the generalized likelihood ratio

tests. Precisely because these hypotheses are central to Stpe s'

structured Q-sort methodology, special attention is required to develop

an appropriate test.

IN.A. Testing nested hypotheses.

Before proceeding, the following change in notation is convenient.

In chapter III, -N, 9.= 0,1,..., denoted subspaces of the parameter

space to which belonged 5. We replace this convention with another.

*Hereafter, let {1(,} denote sets of index pairs. Thus, a hypothesis H 9

can be of the form

H£ dk '0 for all dke

Although these classes of hypotheses are less general than those of

chapter III, they are sufficient for most practical problems.
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The general problem upon which we focus is the test of the hypothesis

H0 : dk f 0 for dkEc

versus

H1: d = 0 for dkEAl

where the key regularity condition is that * is a proper subset of go-

If we let g = # - # this condition is sufficient to show that

-2 log X0 1  is asymptotically distributed as a chi-square with g degrees

of freedom, where X01 is defined by

sup{expel (.) : dk=0, dkc'}

cp dsup~exp1I.c( )}: Zdk =0, dkc~j}

One example for which such a hypothesis might be formulated is the

following:

Very often in the development of a Q-set, the matrix Q is chosen and

fixed; only then are the Q-items formulated. The most notable instances

of this procedure are the balanced, cross-factorial designs Stephenson

built into his Q-sets. A primary criticism of this procedure, articulated

by Sundland (1962), is that no guarantee can be made that the items are

*. actually sorted in response to those properties that led to their choice

in the first place. In particular, the rater may be reacting primarily

to the social desirability .)f the items, or their conceptual complexity,

or an interaction between such features. Because of these concerns, it

44

- a - -- -- . -.-



may be desirable to augment the item design matrix with additional columns

that represent such "nuisance" covariates. Once incorporated, the coeffi-

cients of these covariates can then be evaluated to determine if they are

significantly associated with the propensity of any item to being ranked

highly. The form of the null hypothesis is

H0 : 6dk = 0, d = D ... ,D2 and all k

where the rows D1 ,...,D 2 would represent such "nuisance" covariates; the

natural alterantive hypothesis is one where %I is an empty index set.

The above null hypothesis may lack power by being too global. While the

raters may be responding to an unintended concomitant feature of the items,

they may be less likely, if well-trained, to confound the error by reacting

to this feature in different degrees with different subjects. Motivated

by this consideration, a hypothesis intermediate between H0 and the

general alternative of the form

H': Odk m 0, d = DI p....,D 2 and k=i,

(where wjl -, the constant part of the predictor space), could

represent an a priori direction that would successfully concentrate the

power of test of H . In this scheme, the sequence of hypothesis tests

H0 vs. H' and then H' vs. HI provides a stepwise procedure with the

potential of greater acuity than that which would result from simply testing

H0 vs. H globally. (An incidental but convenient property of this form

of the stepwise procedure is that the two tests of which it is composed are

independent.)
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IV.B. Testing validity by using a design that stratifies subjects.

In the previous section, the standard theory of generalized likeli-

hood ratio testing was sketched. Recall, however, that the example

included consisted of the consideration of a relatively peripheral issue -

the significance of nuisance covariates. The choice of this example is

not accidental. The central hypotheses of Q-studies are usually not of

the general form of the previous section; rather the sign of the coeffi-

cients is usually specified in the alternative. This is because the samples of

structured Q-sort studies are often configured by deliberately choosing

certain kinds of subjects. Stephenson proposed selecting indivi-

duals with characteristics that could be theoretically predicted. If

their Q-sorts did not correspond well with the predictions of the theory,

the theory was considered invalidated.

As an example of this, consider a Q-set representing the typology

of Spranger (1928) that partitioned persons into the types: religious

political, theoretical, economic, aesthetic, and social. The idea is

then to test this Q-set upon clerics, whose value systems one would expect

to be religious, politicians, whose value systems one would expect to be

political, academics, bankers, artists and bartenders, each subject to a

natural a priori classification. If the Q-sort shows clerics not being

particularly religious, politicians not particularly political, and so on,

then the most natural conclusion is that the Q-set, the instrument, is no

good, and that by inference, the theory the Q-set represents is invalid.

Formally, this problem may be presented by hypotheses of the form

H Bdk > 0, dkc F vs. HI: 8dk arbitrary, dkc c
0; 1 k

4601I



where -14 is a designated index set. The generalized likelihood ratio

test is not appropriate as it stands because the dimensionality of the

null and alternative hypotheses is the same.

The following modification makes generalized likelihood ratio

hypothesis testing feasible: Under both H' and H restrict
01

adk= e, dk £ and 0 unknown. Then with

H;" adk 0, dk c */, 0 > 0 vs HI . = e, dk c ' 0 < 0

we obtain a structure where an assessment of this one-sided hypothesis is

easily made.

The reparametrizing of H' and H says that the degree to

which a cleric is religious is the same as the degree to which a

politician is political and the degree to which a banker is economic.

This seems not unreasonable. One may wish to test this hypothesis,

however, and the following test is independent of the latter. Let

H" and H" be

0 1

1 O11: dk = 0, dk , < 9 < - vs. H": $dk arbitrary.

In practice one might wish to test H0 and, if accepted, test H'.

Rejection of either case can be construed as evidence against validity.

The interpretation of the rejection differs between the two cases,

6A
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however. H'O postulates the lack of interactions that might otherwise

confound the test of the main effect; its rejection would imply the

presence of such interactions. H;postulates the direction of the

main effect; its rejection invalidates the theory that was the basis

of the construction of the Q-set.
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V. Analysis of the unstructured Q-sort.

In chapters II, III, and IV, the item design matrix Q and the

subject design matrix W were always assumed known. This was the case

of the structured Q-sort. The Q-set had an a priori structure, as did

the subjects; the problem was the manner in which these two structures

related. The estimate of the matrix represented a solution to this

problem. In this chapter at least one of the design matrices, Q or

W, is unknown and some reasonable estimates of them is desired. The

form of a , on the other hand, is no longer of interest; indeed, because

it is unidentifiable, the issue of its form is moot.

V.A. The statement of the problem and its algorithm.

Chapter II reparametrized p(i,j) to be of the form

p(i,j) = exp{Qi w}, i = l....I; j =

where Qi and w. were known row vectors and unknown. In the

present section both Q and w. are unknown. S , no longer

identifiable, is suppressed; as a result P(i,J) can be taken to

be of the form

D

p(i,j) = exp{ I q Wjd} expqi} V.A. (i)
d=l
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where qid and wjd are unknown scalars. This formulation is very

similar to that of the factor analysis problem: the fqid are the

items' factor loadings and the {wd } are the subjects' factor scores.

The absence of the matrix can be attributed, by this analogy, to

the indeterminate linear transformation that may be shunted between the

factor loadings and the factor scores.

The {p(i,j)} in V.A.(1) are not fully identified. If we define

r(i,j) - exp{Q i A w!}

with the restrictions that

EiQid = 0, for all d= 1,...,D

1 and - W'W = I V.A.(2)

and A = diag(Al,...,XD), and require X1 
- X2 > ... > D then

the parameters Qi' A, and w are essentially identified. (The

remaining ambiguity takes place only when some of the X d's are

equal.)

The algorithm seeks to maximize the objective function

cp (Q A W), subject to X1 > X2 > .. > X, and V.A.(2) V.A.(3)

where cp (Q A W) is such that

50



J xp{[J S(k)Q r Qk)]A w'1
e CP(QAW) = I k

The maximization of £cp over such a high dimensional space (the

dimension is D(I+J-l) is impractical for a moderate number of subjects.

When I - 100, a typical number, 0' has four thousand orbits. For

example, if J = 100, in order to evaluate £ even once, four hundredcp

thousand orbits would need be evaluated. This is not generally practical.

One natural modification is to consider the smaller orbits Q(I,q)

that were described in II.B.2. If it is desired that Q(7,q) span

(I-1)-dimensional space of rankings, then #Q(1,q) needs to have at least

I elements. It may be desired that SN(R,q) contain its own reversals;

then Q(N,q) must contain at least 21 elements.
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V.B. Variations to the analysis of the unstructured Q-sort.

Two variations of the above analysis may be posed. (1) Rather

than having both design matrices unknown, only one design matrix may

be unknown; the other is specified. (2) Having estimated one or both

* •of the matrices Q and W, rotations to simple structure are often

desirable in order to ease the interpretation of the factor structure.

V.B.I. The factor analysis given one specified design matrix.

Because the problem of estimating the subject design matrix

when the item design matrix is known is closely parallel to that of

estimating the item design matrix when the subject design matrix is

specified, only the latter will be discussed.

1
Since - W'W need not be the identity matrix consider the trans-

J

formation T so that - (TW)'(TW) = I. Let X TW.
J

The objective function is then

£(Q A X') subject to I I; , Qid = 0, for all d; v.B.I(1)
id

and i >X >">X >0
1- 2- -

and we maximize V.B.I(1) with respect to Q and A and use the

maximizing values as the magnitudes and directions of the factor

structure. 6 = AT'- I may be interpreted as the parameter matrix

relating the factor loadings Q to the "factor scores" W.
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V.B.2. Rotations to simple structure.

The restrictions V.A.(2) are only necessary for technical reasons-

to ensure that Q, A, and W are identifiable. These estimates need not

be easy to interpret, however; one may wish to exploit their lack of defini-

tion by selecting orthogonal rotations of Q and W to make their structure

more comprehensible. In the mid fifties several criteria for simple

structure that furnish precise algorithms were proposed (Ferguson [1954],

Carroll [19531, Neuhaus and Wrigley [1954], Saunders [1953], and Kaiser

[1956]).

Each of these rotations to simple structure operates on the factor

loadings. As a result, the factor loading matrix Q (and its dual,

the factor score matrix W) is in the correct form to be rotated by

VARIMAX, QUARTIMAX, or whatever; that the factor loading matrix is the

result of maximizing a cyclic prime likelihood is not relevant.

However, the matrix A needs to be transformed if either Q or

W are rotated. If Q(R) = QR is the result of the rotation R, and

if W(S) = WS is the result of the rotation S, then A needs to be

replaced by 8 = R' A S; thus

log P(ij) = (Q A W')j Q(R)(R' A S) W(S).

Therefore, the simplicity of any rotations of Q or W needs to be weighed

against the complexity such transformations may induce on the matrix a.

Incorporating such an index of the simplicity of a into the algorithm opti-

mizating the simplicity of Q and W seems appropriate.

53

WIW _--



VI. An example.

The primary consideration in developing a class of likelihood models

conditional on random shufflers is computational feasibility. Even so,

maximizing conditional likelihood functions remains CPU intensive; just

how intensive is best illustrated by a practical example.

VI.A. Description of origin of the data.

The data was provided by Phyllis Sherlock, PhD; the reader is

referred to Sherlock (1980) for the substantive details of the origin

of the data. For the present purpose of providing a practical example

of the analysis, the following summary of Sherlock's design of the

Q-set is provided.

(1) The theoretical background for the structure of the

Q-set is the typology of female psychologies of Toni Wolff,

who developed it in the framework of the analytical psychology

of Carl Jung. Four types of psychologies are postulated:

The Mother, the Amazon, the Hetaira, and the Medium. These

four types are arranged as two bipolar pairs - the "Mother-

Hetaira" and the "Amazon-Medium"; these two bipolarities

compose a coordinate system of two orthogonal axes. See

Figure 1.

Mother

Medium - O-Amazon

Hetaira

Figure 1.
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The point at which these axes intersect is the origin in

this coordinate space, the bipolarities are the coordinate

directions. In this theoretical model, the psychology of

any particular female corresponds to a point in this two-

dimensional space.

(2) Based on Wolff's descriptions of each of these four

typologies, Sherlock developed a set of Q-items, each item

consisting of simple adjectives or short phrases. For each

typology, Sherlock associated twenty-five Q-items; the Q-set

was composed of these four groups of twenty-five items - one

hundred items in all.

The item design matrix, Q, was generated in the following way:

(3) Sherlock had four experts in Wolff's typology each sort

the Q-set four times, one sort for each of the female types.

The experts were told to sort for the ideal Mother, the ideal

Amazon, and so on.

(4) Based on this expert data, the item design matrix was

constructed as follows:

(a) Within each expert, the four scores of each item

were centered to have mean zero across the four conditions

(the conditions of sorting for the ideal Mother, the ideal

Amazon...)

* (b) For each condition, the scores were averaged across

raters, giving a design matrix of rank four.
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(c) Each column of this matrix was then "centered", that

is, made orthogonal to the 1 x 100 vector, each of whose

elements is unity. The resulting design matrix had four

columns but had rank three.

(d) This design matrix was in turn transformed to reflect

the theoretical coordinate structure. By subtracting the

design column corresponding to the Hetaira type from the

column corresponding to the Mother type, a design column

representing the ordinate (Mother-Hetaira) was produced.

By subtracting the column corresponding to the Medium type

from that corresponding to the Amazon type, a design column

representing the abscissa was formed. (The design could have

been saturated by including the column consisting of Mother +

Hetaira - Amazon - Medium, but for simplicty this was

not done.)

The subject design matrix, W, was chosen as follows:

(5) A constant covariate was included to reflect the overall

propensity for the subjects sampled to by any particular type.

(6) Two scores from the Meyers-Briggs inventory were included

to reflect some of Sherlock's hypotheses. The Meyers-Briggs

is a paper and pencil type questionnaire designed to measure

* four traits central to Jung's personality theory. The traits

are: extraversion-introversion (E-I), thinking-feeling (T-F),

sensation-intuition (S-N), and judging-perceiving (J-P). The

scores E-I and J-P, with the intercept, made up the subject

design matrix.
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(7) Sherlock collected Q-sorts from 80 individuals. Of these,

three were rejected from the computer runs because of coding

aberrations. Therefore, the analysis below is based on 77 Q-sorts.

5
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VI.B. Description of the technical characteristics of the algorithm.

The analysis presented below was implemented on the IBM 3033

computer located at Stanford's Center for Information Technology. The

source code was written in FORTRAN and compiled at level G. Several

IMSL routines were employed to perform some of the standard transforma-

tions of matrices required. The algorithm is a "protected" Newton-

Rapheon iterative scheme, modified to ensure that each refinement brings

an increase in the likelihood.

For the data set described in section VI.A, each iteration, consis-

ting of an evaluation of its likelihood, its gradient, and its matrix of

partials takes approximately 0.20 CPU minutes. Eleven iterations were

required to locate the solution reported below. The default allocation

of 256 Kilobytes of core memory was adequate.

The orbit generator employed consisted of the 200 shufflers whose

three generators are the following:

0)3 (0, 13, 26,..., 87)

that is, w 13(rW l3*r (mod 100),

e (99, 98, 97,...,l, 0)

and

* 20
c (20, 21, 22,.. .,99, 0, 1, 2,... ,19)

The group generated by W 1 has twenty elements, that generated bye

two elements, and that generated by c 20five, for a total of

V 20 x2 x5 -200 elements.
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VI.C. Description of the results.

In maximizing the likelihood, its logarithm went from -407.97 at

0 = 0 to -407.56 at its maximum, a change corresponding to a chi-square

with six degrees of freedom of 0.82. From this one may conclude that

the model fitted did not significantly differ from the 0 = 0 model. One

should add, however, that Sherlock had no strong hypotheses about the

relation of Wolff's typology to either of the two scores from the Meyer-

Briggs; the lack of any significant effects has, therefore, no particular

impact on the validity of Wolff's typology.

The format of the answers that this likelihood model produces should

be of interest to any who seek to build predictive models of structured

Q-sort data. Essentially this format has three features:

(l) Coefficients are fit in a manner that allows them to

be interpreted as regression coefficients; they may be

standardized. See Table 1.

(2) The coefficients allow a pair of dual visualizations: The

underlying dimensions of the item design space may be represented

* as coordinates in the subject design space. Similarly the under-

lying dimensions of the subject design space may be represented

as coordinates in the item design space. See Figures 2 and 3.

This is the duality described in section II.A.l.

(3) The variances and correlations of the coefficients are obtained

from the Fisher information matrix. See Table 2.
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mother
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Medium Amazon
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Figure 2. Location of the covariates of the subject design

matrix in the item design space.
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Figure 3. Location of the features of the item design matrix in

the subject design space.
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Table 2. The Fisher Information Matrix of the Coefficients.

(Mother-Hetaira) (Amazon-Medium)

x(Intercept) x(E-I) x(J-P) x(Intercept) x(E-I) x(J-P)

x Intercept .529

x E-I .00454 .0314
M-H

x J-P -.00432 .0196 .0306

x Intercept .448 .00349 -.00303 .528

x E-I .00293 .0312 .0196 .00507 .0314
A-M

x J-P -. 00368 .0195 .0304 -. 00364 .0195 .0304
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VII. Conclusion.

In the previous six chapters various aspects of a statistical

methodology have been described; now, in closing, an overview seems

appropriate. While never made explicit, the models developed here

parallel those of classical multivariate statistical analyE-s. Three

similarities are the following:

(i) The multivariate normal distribution is the central object of

study in, say, Anderson (1958). Similarly, the sampling function p.(.),

derived in chapter I and parametrized in chapter II, occupies a key

position. Naturally, the consequences of assuming the form of pj(.) need

to be critically evaluated, as do the consequences of assuming multi-

variate normality. The axiomatic development of chapter I is presented

to elucidate some of these issues.

(2) The parametrization of p.(') in the initial section of

chapter II is rather analogous in form to the multivariate general linear

hypothesis (Anderson, chapter 8 [1958]) of classical multivariate analysis.

Indeed, the practical import of both models is to pose to the consumer of

statistical analyses a relatively simple problem: the specification of

relevant predictors. A distinction between the two is that the Q-sort

model presented here poses a "double" specification problem. Not only

must relevant predictors (W) be specified, so also must descriptions of

the items (Q) be provided.

(3) Toward this end, the factor models of chapter V are presented.

In the instance when both design matrices are being estimated, the result
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resembles Hotelling's canonical correlation analysis (see Anderson,

chapter 12 [1958]). When, however, one of the two matrices is fixed,

the result is more analogous to principal components (Anderson,

chapter 11 [1958]). In practice, both principal components and canonical

correlations are used to aid in reducing data and specifying models;

hopefully, so shall these factor models.

Aside from paralleling classical multivariate analysis, the present

work, in particular chapter I, contributes in a minor way to the body of

mathematical models that describe preference and selection behavior. The

sampling function derived in chapter I is sufficiently similar to Luce's

model that comparisons are meaningful while sufficiently different that

these comparisons are interesting.

The sampling function of the Q-sorting model compares to that of

Luce on the following points: (1) Both models express a notion of

"independence of irrelevant alternatives", but (2) only for Luce's model

is strong stochastic transitivity an immediate consequence. (3) Both

models conceptualize the preference ordering activity as stochastic but

only the Q-sort model is palindrome invariant. (4) Finally, Luce's

model is a direct consequence of assuming a stability to a changing

1"context", i.e. a changing assortment of "irrelevant" alternatives.

The Q-sorting model makes no such assumption. For these reasons, the

Q-sorting model is a useful theoretical "foil" against which Luce's model

may be better understood. And as with all foils, it would be of consi-

derably less interest were such contrasts not possible.
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To sum up, this work contributes in two ways. First and primarily,

it develops a methodology for analyzing Q-sort data. Second and

secondarily, it adds a new aspect to the theoretical investigation

of preference behavior.

.66

66



References

Andersen, E.B. "Asymptotic properties of conditional maximum-likelihood

estimates." Journal of the Royal Statistical Society, Series B.

1970. 32: 383-301.

Anderson, T.W. An Introduction to Multivariate Statistical Analysis.

New York: Wiley, 1958.

Block, J. The Q-sort method in perdonality assessment and psychiatric

research Springfield, Ill: Thomas, 1961.

Burt, C. "The reciprocity principle ." In Science, Psychology, and Communi-

cation: Essays Honoring William Stephenson. Brown, S.R. and Brenner,

D.J. eds. New York: Teachers College Press, 1972; 39-56.

Burt, C., and Stephenson, W. "Alternative views on correlations between

persons." Psychometrika 1939. 4: 269-281.

Carroll, J.B. "Approximating simple structure in factor analysis."

Psychometrika 1953. 18: 23-38.

Cronbach, L.J., Gleser, G.C., Nanda, H., and Rajaratnam, N. The Dependa-

bility of Behavioral Measurements: theory of generalizability for

scores and profiles. New York: Wiley, 1972.

Ferguson, G.A. "The concept of parsimony in factor analysis." Psychometrika

1954. 19: 281-290.

Godambe, V.P. "Sufficiency and ancillarity with a nuisance parameter."

Biometrika 1980. 67: 155-162.

Jackson, D.M. and Bidwell, C.E. "A modification of Q-technique." Educational

and Psychological Measurement 1959. 19: 221-232.

67



Kaiser, H.F. "The varimax method of factor analysis." Unpublished Ph.D.

dissertation. 1956. University of California, Berkeley, California.

Kerlinger, F.M. "Q methodology in behavioral research." In Science,

Psychology, and Communication: Essays Honoring William Stephenson

Brown, S.R. and Brenner, D.J. eds. New York: Teachers College

Press, 1972, 3-28.

Luce, R.D. Individual choice behavior. New York: Wiley, 1959.

Luce, R.D. "The choice axiom after twenty years." Journal of Mathemati-

cal Psychology 1977. 15: 215-233.

McCullagh, P. "A class of parametric models for the analysis of square

contingency tables with ordered categories." Biometrika 1978.

65: 413-418.

Marley, A.A.J. "Some probabilistic models of simple choice and

ranking." Journal of Mathematical Psychology 1968.

5: 311-332.

Neuhaus, J.O. and Wrigley, C. "The quartimax method: An analytical

approach to orthogonal simple structure." British Journal of

Mathematical and Statistical Psychology 1954. 7: 81-91.

Neyman. J. and Scott, E.L. "Consistent estimates based on partially

consistent observations." Econometrika 1948. 16: 1-32.

Overall, J.E. and Klett, C.J. Applied Multivariate Analysis. San

Fransicso: McGraw-Hill, 1972.

Saunders, D.R. "An analytic method for rotation to orthogonal simple

structure." Research Bulletin 53-10. 1953. Princeton, N.J.:

Educational Testing Service.

68



Sherlock, P.K. "The Relationship to Wolff's Archetypal Feminine Images

to Time Orientation and Related Psychological Variables."

Unpublished Ph.D. dissertation. 1980. Pacific Graduate School

of Psychology, Palo Alto, California.

Spranger, E. Types of Men: The Psychology and Ethics of Personality.

Halle (Saale), Germany. M. Neimeyer, 1928.

Stephenson, W. The Study of Behavior: Q-technique and its Methodology

Chicago: University of Chicago Press, 1953.

Sunland, D.M. "The construction of Q-sorts: A criticism." Psychological

Review 1962. 69: 62-64.

I.

69



UNCLASSIFIED
sECURITY CLASSIFICATION Of THIS PAGE lften Dot. Eat___r__

REPORT DOCUMENTATION PAGE B E CMPLETINGOR
I. REPORT NUMBER 12. GOVT ACCESSION NO. . RECIPIENT'S CATALOG NUMBER

303 14A#, /7 ________

4. TITLE (and Subtiole) S. TYPE Of REPORT & PCP4O0 COVERED

A PARAMETRIC ANALYSIS OF STRUCTURED AND TECHNICAL REPORT

UNSTRUCTURED Q-SORT DATA 0. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(#) S. CONTRACT ON GRANT NUM99R(.)

WILLIAM D. HEAVLIN N00014-76-C-0475

,. PERFORMING ORGANIZATION NAME AND ADDRESS 1 PROGRAM ELEMENT. PROJECT. TASK

Department of Statistics NR-042-267

Stanford University
Stanford, CA 94305

II. CONTROLLING OFFICE NAME AND ADORESS 12. REPORT OATS

Office Of Naval Research June 9, 1981
Statistics & Probability Program Code 436 IS. NUMBER OF PAGES
Arlinaton, VA 22217 69

14. MONITORING AGENCY NAME & AOORESS(I dilerent from Controlling Olfice) IS. SECURITY CLASS. (of this ,oeuw)

UNCLASSIFIED
I1 .CL ASSI FICATIONi OOWNGRADING

SCHEDULE

IS. DISTRIBUTION STATEMENT (of IAi Report)

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.

17. DISTRISUTION STATEMENT (at the abetrac entered in Block 20. It different from Report)

9I, SUPPLEMENTARY NOTES

IS. KEY WORDS (Continue on reverse ol* It n.ce..y end Identify by block num, ber)

Q-sort behavior models; conditional likelihood, exponential families.

20. AIS RACT (Continue on ,ee oid. II ni.ceosevy mad Identify by block number)

PLEASE SEE REVERSE SIDE.

D I wOA 1473 FOITION 0F I OV611 IS OBSOLETE UNCLASSIFIED
S,N 0102. Lc- V*- !601 SECURITY CLASSIFICATION OF THIS PAGI 'lhsn Det Sane



UNCLASSIFIED
SCURIT Y CLASSIICATION OP TiS PAG9 (Win, Vae BnfmreO

TR # 303
A PARAMETRIC ANALYSIS OF STRUCTURED AND

UNSTRUCTURED Q-SORT DATAV
The operation of sorting the items of a Q-set according to their

similarity to a given object is idealized by a system of axioms. As a

consequence of this axiom system, a stochastic model of Q-sorting behavior

is derived. This model, with its associated axioms, resembles in some

respects the preference model of Luce; the two are compared at

length.

Tbs\Q-sort model is easily embedded in an exponential family. The

domain of this family is the discrete space of all permutations of the

items in the Q-set while its natural parameter space consists of the

coefficients of a predictive linear relation. To operationalize the model,

not only must predictor variables be specified, so also must a design

matrix describing the underlying structure of the Q-set be furnished.

Such a constuction occurs naturally for structured Q-sort data, but must

be derived empirically for unstructured Q-sort data. Some empirical

methods for deriving a description of the underlying structure of the

Q-set are developed in the context of a "factor analysis" model.

The normalizing constant of this exponential family is impossible

to compute; the calculation of a useful surrogate for this constant is

the primary technical problem of this work. The solution posed considers

a conditional likelihood whose normalizing constant is calculated over an

intuitively appealing subgroup of permutations. A computer implementation

of an algorithm for maximizing such a conditional likelihood model is

described.
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