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ABSTRACT

A unified approach is applied to the derivation of a number of formulas

for the probability of signal detection and the probability of false alarm.
The context is incoherent integration, with fluctuating signal-to-noise ratios
and/or fluctuating thresholds. The standard results are obtained and extended
to more general fluctuation models. A fundamental duality is established
between fluctuating signals and fluctuating thresholds and used to simplify

the derivations. Also included is an expression of the cumulative

I
I

F-distribution as a finite sum of llarcum Q-functions.
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I, INTRODUCTION

In a wide variety of signal detection and binary decision problems, the
evaluation of performance reduces to the computation of a number, P, defined
as the probability that one random variable, v, exceeds another, called y.

In symbols,

P = Frob {u >y} ,

and u represents a processor output which is being tested for signal preser-e,
while y is a threshold, which way be a constant. In all cases considered
here, u and y are independznt, and u is the result of incoherent summation of
N complex-samples each containing signal and noise components. These
quantities, z s represent 1 and Q output samples of some coherent processor
and they are modelled as sums of signal and noise terms:

zZ =s +w .
n n n

The noise components are Gaussian, independent and with zero-mean, all sharing

the same variance:

2

Elw l2 = 2¢
n

ané all having the circular property

Ew 2 = 0,
n

Various models will be used for the signal components, corresponding to (and

(1)

extending) most of the "fluctuating target” models of the radar literature.

The random varlable u is the normalized sum

2
oz
n=1 n




hence its probability distribution function (pdf), conditioned on the signal

sequence, {sn} , is

N-1
fN(u,a) = e_u_a(u/a) 2 IN_l(ZJzG). (1-2)

In this formula,

a=— Y Is 17, (1-3)

i I I

and In is the Bessel function of imaginary argument. Since the signal
components enter this conditioned pdf only through the sum a, the "random

signal” models will be represented by postulated pdf's for a.

I
Il

In a similar way, “"fluctuating thresholds,” such as those arising in CFAR

problems, are represented by putting y=cx, where ¢ is a scalar multiplier,

and x is a random variable. Various pdf's are postulated for x, including the

pdf fL(x,d), with fixed or fluctuating parameter, d. Ordinary “linear CFAR"

is represented by this model with d=0.

2,3)

When a and y are constant, P is the standard Marcum Q-function, ? which

must be computed from an infinite series, used together with a bound on

truncation error. An efficient algorithm has been described by Shnidmanta)

il |||:“‘4| i

which involves recursive computation of the terms, along with several

F I
oy

refinements which improve computational efficiency. The standard ssries,

(Fehlner's formula, see Section 6) was used by iitchell and Walker(s) as the

basis of a systematic derivation of expressions for some of the cases
presented here. Because they start with an infinite series for the Q-function

and obtain their results by averaging over various random models for a and/or

¥y, all the expressions obtained are in infinite series form. Although all

I

these series solutions lend themselves readily to recursive computation, it
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happens that in most of the cases (except the original one, where both a and y

are constant), finite-sum exnressions exist and many of these can be found in

1)

the literature.

In this study, we start with an integral representation for the

, G-function, instead of an infinite series. Then, in analogy to the method of

Mitchell and Walker, we derive the desired results for random a and/or y by

. averaging this expression under the sign of integration. Then, by simple

changes of the variable of integration, the integral representation is itself

used to obtain the desired finite-sum expressions. In all but two cases, the

terms of these sums are elementary functions, easily computed recursively. In

the two exceptions, the terms of the sums are themselves Q-functions. One of

these, actually representing the cumulative F-distribution, is the source of a

series of generalizations of the standard fluctuation models.

When a=0 in formula (1-2}, the resulting pdf will be called gN(u):

N-1 .
gy(u) = £,(,0) = T‘!—;:W eV (1-4)

This function, the chi-squared o2 with 2N degrees of frzedom, is used to
model signal and threshold fluctuations for the standard formulas derived in
Section 4. Only integral values of N are used, since non-integral values (as

. . 6 . s
in the Weinstock cases( )) do not lead to detection formulas of finite form.

Fluctuating signals are modelled by postulating that the pdf of a is

£,(a) = £ g3 (1-5)

where M and b are fluctuation parameters. In this model, the mean value of a

is

a = Mb, {(1-6)

and according to (1-3),
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Ve denote the average signal-to-noise ratio for a single sample by "SNR,” so

that

SNR

L]
| m

for a fixed signal, and

SNR

It

i |
i}
Z|=
o

(1-8)

for a signal fluctuating according to {1-5). The standard “"Swerling cases”

N

correspond to M-values, as follows:®

Swerling Case ¥ Value
1 1
2 N
3 2
4 28

When {1-4) is used to describe a fluctuating threshold, we write

y = ex,

and use
gL{X)

for the pdf of x. The pdf of y is then

£ =2 gD . (1-9)

]
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This model represents linear CFAR, and the variable x is the result of
incoherent summation of L complex samples corntaining only noise of the same
variance as that of “he signal samples. The terms of this sum are normalized,
just as in {1-1}, by the true noise variance, 02, but these normalizing
factors cancel when the probability that u exceeds y is computed. If the
noise samples are known to have a different variance than the sigral samples,
the variance of the signal szaples is used for normalization and the variance
ratio is absorbed into the constant, c. HNote that x is the sum of the noise

camples, not the average, which affects only the siganificance of c.

The fluctuation models are generalized iu Section 5. First, the pdf,
£(a) =2 £,2, @) (1-10)
¢} b ML ? *

is used to describe signal fluctuations. The expected value of a in this case

is a = (}i+d}b, hence

M
SNR = 3 b(1 +§ ) (1-11)

This case is of rather academic interest, and the dual problem with fixed
signal and threshold y=cx, i5 more interesting. The pdf of x is taken to be

£.(x) = £, (x,d),

which models linear CFAR, with L samples in the threshold, but with signal
components {unwanted in the CFAR application) included in these samples. Only
the sum of these signal powers affects the pdf, and the average

signal-to-noise ratio, per threshold sa=msle, wiil be d/L.

In further generalizations, a is allowed to fluctuate, using the same
models as in Section & and also {separately and together) the new threshoid

signal components ars randomized using the pdf




) 14 -
Io(d) = g g .(h) y (1 12)

[

for the pasrameter d. The aversge SNR, per threshold sapple, in this last case
is Kh/L.

A key feature of ths basic approach is the duality between fluctuating

signals and fluctuating thresholds. 1In Section 3 a useful artifice is

introduced which allows us to obtain the detection probability for a fixed
E signal and threshold fluctuating according to a pdf, fO{y), from the solution

of the dual problem, where y is constant and a2 fluctuates with the same pdf,
= fo(a).

The results are collected without proof in Section 2, and the basic
= method is developed in Section 3. The standard formulas are obtained in

Section 4, and some extensions of these results are given in Section 5.

- Finally, in Section 6, some alternative finite forms are obtained and
for ore compmon case a derivation of the finite fora directliv from the

= equivalent infinite series is given.

II. COLLECTED RESULTS

ST

The results osf this study are collected here without proofs, all of which

‘;% will be found in the next two sections. 1In all cases, the assumptions and %%

E =
conditions are spelled out in detail, but detection and false alamm E

—=3 probabilities are called simply PD and ?FA’ since the number and variety of =
> para=meters become too great to list as arguments in some of the cases. The . S
= following conventions are used for the most comon parameters:

= Parameter Significance ; 3

T N Rumber of "signal-plus-mnoise™ samples 4

LB integrated for detectiomn.

- = L Kumber of "noise-only”™ samples |
= integrated to establish a CFAR threshold. =
- M Signal fluctuation parameter, corresponding =
— to chi-squared distribution with 2M degrees =

5 of freedom. =

- %
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K Fluctuation parameter for signal components
in threshold samples, again chi-sguared, with
2K degrees of freedon.

a Signal parameter for fixed signais

o

Signal parameter for fluctuating signals

CFAR threshold multiplier

]

Parameter for fluctuating sigaal
components in threshold samples

1)

Three functions enter these formulas. These are definec here and

discussed elsewhere.

(1) Py(y;a) = }'f £ (u,a) du (2-1)

where f_ is given by (1.2). P_(y,a) is the probability of detection for
i %
fixed, normalized total signal-to-noise ratio, a. t Is essentizlly the

Marcum O—function for incoherent integration of K samples.

[
B

(2) Sy(y) = Py(y,0) = e

i'!”l"wl ’F
]

S,{y) is the false alarm probability corresponding to ?Q{y,a). It is computed

&

recursively:

Sue1 (V) = Si(yd + T(y)

N3>1
- _y .=
Tﬁ{?’) = i! ?g_l(.?} (‘- }}

A




N-1 o
(3) RN(y,M) = ( )y .

n
n=0

These functions are also computed recursively:

o = a+ELy v g

Rl(ysM) = VO (Y:M) =1

The probability density functions used for the flu :uation wmodels are

-

N-1

X
gN(X) = (N’l)!

£k, @) = e %)

A, Non-Fluctuating Signal

In these formulas the signal components of the random veriable being
tested for signal presence are constants. The average SNR per sample in all
these cases is

SNR = a/N.

{1) Fixed Threshold, ¥




Py = PN(y,a)
(2-7)

Popy = Sy
Fluctuating threshold, y=cx, pdf of x is

fo(x) = gL(x)

Ppt - c§+L-1 L—Zl <N"§3221> s 2 (2-8)
(1+c) 2=0 ’ LH M 14e
N-1
L_
Pea = %H—L—l ) (mzl) * (2-9)
(1+c) 2=0

Fluctuating Threshold, y=cx; pdf of x is

fo(x) = fL(x,d)

N N~1 . 241
Pp = CN-H -1 g L <N§Cgl><%> 9,+1(1_c+'g_ ’ Ti’é' )

(L+c) i 2=0

-1

N+L"'1 2 a Cd
+ 220 Cypg ) e 1= Poyy G I;E)]} (2-10)
N N-1 e+l
N+L~1 1
PFA = < NL-1 z ( L+ ) (—C_) s£+l('(li_(:'_€) (2—11)
(1+c) 2=0

(4) Fluctuating Threshold, y=cx, conditional pdf of x is




fo(xld) = fL(x,d) ; pdf of d is

1 d
fo(d) = gK('ﬁ)'

Condition: K>L

. L Ny WK KoL KLy b K )
| D rosemy ™ gl 2 )\ Tic+en
e (2-12)
= L-1+%
= N+L-142 n a
= x nZO Cyn eteh)” S ()

S € L) S S NS WS

FA (Lroreny Lyl T2 MTeekeh

Nl NeL-1+2 n (213
x 1 (R (eren)

n=0

Pl !m,’ly llxl“ ) "‘l I

B. Fluctuating Signal, pdf of a is
1 &
fo(a) - -B-gM(g) *
Mb

Average SNR per sample: ©SNR = ¥

(1) Fixed Threshold, Y- PFA given by (2-7)

|
i il

10

£




P - ———L—-

D (1+b)M.N

N-M

+ ]

L=1

Special cases:

M=N:

(L)

Py = Sy G

D N

M=2N:

PD -

(1+b)"
Mul (N>2):
Pp = Sy (y) + (
Mm2 (N>3):

Pp = Sy_o(y) + (

M-N

=0

M
(-1/b)" <h;3)“‘“{ )
=1

(N-l-l
M-1

N

1
b

b

14p N2

M-N
( L

)
)BT Se, G

N-1-2 L
(N-y-1) (D) sz(pr)

b 2
) (35) S,y

Ny . 2
Lo WP Sy R

-
1+b

b
(1 -5y, Gl

N-1

e 1t {(1- -

11

(2-14)

(2-15)

(2-16)

(2-17)

(2-18)

b
Sy-2(Tap))



y - b
o1 (1 Sy (17%”}

(2) Fluctuating threshold, y=cx, pdf of x is
fo(x) = gL(x).
PFA given by (2-9).
Any M:
-N-L+ -
P =1 - Mppeyt NI LT MLl 2P b
3
D (Lrbre) oo W2 g+ L+b¥e
MBN:
.. (14p) L HEN PN oS b
3
D (Lbic)E oo 2 2 ‘Tbre
Special cases:
U=N:
L
_ s 1+b c
Py = Towe) Xltowe 0 W

H=2N:

N
L-N Ny .2
p_ = (1tb) Lo b Ry,

L)
D (14btc)l 0

(e
£ 1+bte ?

If i
L

M) (2-20)

(2-21)

(2-22)

(2-23)



M=l

L™t 1 R s ST N S Ly Y PRPS
— 0 — L ~ s > T+
D Nl qapee)” ST R = B S

‘% N+L-1
1B P, = Ng”b) - 31 - (¥-2) 1T+° + (WHL-1) 1—_°H;§
= £ b (1+b+c)
= N-1 24+2-N
= 1 ML-1 2 1+c b
= + —= 1 ( ) ¢ gl- [1+(g+2-N)—] G % (2-25)
E i ()L gz ® b Itbtc
(3) Fluctuating threshold, y=cx, pdf of x is
fo(x) = fL(x,d).
PFA given by (2-11)
= 15N
o . MLy LA d-zN gt be
D (1+b+c)N+L—l =0 L 1+b+c
-3 N+2-1 n
= N+L+2-1, 1+b
P e
= n=0

Wil g il

T
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L

Mgy

A

Special cases:

M=N:
- N—
i e~ W NFC e TP (2-27)
- - t o+ ‘
D (1+b+c)N+L 1 2=0 L+n c n+l 1+b+c
M=2N:
p Mt I% My (be e
D™ oML Ly ¥ T
N+g-1 n
N+L+2-1.  1+b cd .
* nZ.O Cim ) S 'weid (2-28)
i=1:
cd -
o o )t TheWd |, _c'* ‘Zl Ly
P ¥ apey )L g2 I
-4 g
1,2 cdy _ I4+etd 1+4b+c bed e
x 1@ S — e ) S lmoame 1| 072

(4) Fluctuating threshold, y=cx, conditional pdf of x is
fo(x!d) = £, (x.d) , pdf of d is

1 d
Fo(d) =5 &R

Any M, K3L:

14

%&%

X
[

o L\w i
!

:




N+L-K

(1+h) (1+c+ch)

M-N-L+1

L)

(1+o+c+cn)

K-L L+e-1
K- L h 2 N+L42-1
x5 O raren) L O X etch)” R +l(1+B+c+ch ’
2=0 n=0
e PFA given by (2-13)
E Any K, M>N:
= — - -N-L+
3 - ML My R )
£ D (1-t-b+c+<:‘n)K
x MEN( ey NﬂzH Qi) ’ﬂ R, (e, K)
Tivre’ 5y Y R Tiprcten
. N1y KNIl N L (L (b o
= prd 3
FA (Lrcremk Lo Cn ) N Ten Tackeh
= Special Cases:
7 K=L, any M:
s i b o1 - Ny ety
= D (1+b+etch)
= z -1
- \:+L -1 b
x § Copn eteh)” Ry (g » 10

n=0

M)

(2-306)

(2-31)

(2-32)

(2-33)




1 © ML-1 n iy
Pea = ——qwiy L (4 )eted) (2-34)
(1tc+en) 1=0
; it=N, any K:
o - ML) (L) NI ‘\"zl L1y et ch -
| D~ NG L Lin c ‘n+l ‘' 1+b+c+ch °
3 (1+b+ctch) n=0 (2-35)
=4 PFA given by (2-32)
= C. Fluctuating signal, pdf of a is
— =1l 2
o) = F BG o O -
= Average SNR per sample: SNR =-% (1+d)
(1) Fixed threshold, vy. PFA given by (2-7)
R H
M-N
1 M-N, 2 y_ _bd -
Pp == D 2 )P Py e ) (2-36)

AV =0

It is often required to evaluate detection performance when the faise

alarm probability is fixed, which involves the inversion of the formula for

{ i I
C e

PFA in order to determine the threshold. The Newton-Raphson iterative =
method(8) is useful for this purpose, and we discuss its application to the
two most common false alarm formulas, (2-7) and (2-9). The other cases listed

above involve CFAR problems with signal components in the thresho 3 samplaze,

but these components are usually not anticipated, and the threshoi. will have

iiny PR

i |
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been found from (2~9). Formulas like {2-11) and (2-13) then show the effect

of the signal components on PFA after the threshold has been fixed.

Beginning with (2-7), we want to solve the equatien,

#(y) = 509 - B, = 0,

for y, where PFA is the assigned probability of false alarm. The

Newton-Raphson iteration is

2 Ya#l T G(yn)’
] where
= IR - 6))

il

and Yo is a suitable initial value. A gend plan is to start the iteration

at a point where the derivative, ¢'(y), is large, to avoid wild oscillation of

the seguence, Yy This can be assured by choosing Y, to be the solution of

e s e

] é“(yo) =0,

which will be unique in the applications made here.

From (2-2) we have

N-1 m H-2 m
W =S = T LaeY ) L
: m=0 n=0

m!




N-1
(N-1)!

= - -e-y

In (2-3) we nave writtesn, in effect,

N-J
Sy = 1 T,
n=0
- 3 where
A v ¥
= TG =e” 7
ié— heuce

S&,(y) = —TN_I(}‘)-

As S, (y) is computed recursively, from (2-3), for use in the iteration, the

&

final term, TN_l(y), can be recovered for the evaluation of $'{y). Then

Sy(y) - P

N F4A
= G(y) =y + T D) ’
;_i;_ N.—sl £
= and iteration is continued until the correction term, G(y)-y, reaches some '

preassigned small valus. We also find

. ~
I e P (L DLl N

M0



LAl

T
@
]
7
[P

is the desired starting value.

A very similar procedure can be used for (2-9) wirth

N-1
- 1 N+L-1 2
oy) = —=—— 1 ( Yy -P_..
UYL Es B A FA

{we have retained the symbol v, instead ¢f the ¢ of (2-9)).

This time,

_ M-l o ,ML-1
Q) 2=0

) 7t

(N+L-E}‘ 2-1

= + P ) T-9-13108-131 7

l

I ?H-L—}. gt - ’H-L—._ 21,
o IR g My yi)f
+y) =0 =1

Using the reducticn form:la

L1
£

N+L-2
b4

NHL-2

( 1 ’

) = Y+ (

the quantity in curly brackets becomes




IWWWMnm|“

T

N-1 N-1

- %

2 (?\"H..-Z) yi _ E {::+§_.-2) y.';-.t - (R‘i_-z) -1
olo - % ! N-1
Therefore
NL-1 MLl-2 =1
0O = Gy Dy
(1+y)
__ L . 1 ML-1, N-1
T+y ()L Rl y oo
and if we define
N1
1 MHil-1 £
Wely) = s L C g0y
(1+y) 2=0
N-1
E z Qg(}’)s
2=0
then
1 MHl-1 £
Qz(y) T ( g )Y
(1+y)
and
$'(¥) = - == Q. (¥)e
1+y “N-1

Thus the iterative algorithm is based upon

20
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: w.(y) - P
: 6y) =y + 3 =& k2

L 0. .(v) :
»ﬁ_l e

and Qﬁ_liy) is recovered from the iterative computation of wg(y):

%’giy} = ¥§_3{:-'} + Qg_l(y) s

i

i

g = EE -1y,

- 1
W) =Qy) = ——5m—=
1 o {l-i‘y)ﬁq‘ i
Finally, we compute
ez % . 2 L. B3
ifﬁ%i_i {8-1)y “(I4y)-(%+l)y

$"{:€} = Ty 4 ) CPE ]
51 (lﬁ)m i

and therefore

: _E1

Yo T THL

provides a suitzble initial value.

II1. BASIC TORHULATION

The whole analysis here is based on Schizfli*e integral

z £ =z s
re;resegtat3§§€§: for the 3essel fuanctions. ¥e use ii in the form




2
1 t+Y I de
e -

e

- n
In(x) = (E) Ini tn+1

The contour of integration is a small circle, enclosing the origin in a

positive sense. With this representation, the pdf of u (for fixed a),

N-1
fy(wa) = e V2D 2 1 (27w,

can be written

1

fN(u,a) = e ey

It]=e

Replacing t by ut in the inteyral, we obtain

a
4 =
ut T

fN(u,a) =g U8 = { e
[t]=e

This representation is more convenient than the Fouriler transform
expression, which can be obtained from it by the change of variable t=1-il.
We carry out this transformation, since we need the characteristic function of
fN later or.. After substitution, we have
R =y Y
-1y
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il
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B AL YR RTI

% {0

%%
where C 1is a small circle enclosing the point A = —-i. This contour can be %%%
expanded, without changing the integral, until it runs along the real A-axis 0
from +A to -A, and then back along an arc of radius A, in the lower half- =
plane, until it closes at X = +A again. Because of the factor exp(-iuld) in
the integrand, the integral along the arc vanishes in the limit A+w, for any e
N=1,2,..., We then reverse the path along the real axis to obtain L

a =
=3 %é
-a e el 1A da =
fN(u,a) = e | e N 75 °
- 1-ix =
® ( ) e

The inverse transform gives the characteristic function

;
a

e e s e S sy ) (3-4) X
0 e Ntusaidu e (1~ix)N = ¢N ,a .

Recalling the definition of a in equation (1--3), we can write ¢N(A,a) as a =

product:
a
-2
N -a 1-1ix
W= T oje Ty |

n=1

where a = ISnIZ/ZUz, which corresponds to the definition of the random

variable, u, as a sum. Each factovr here is the characteristic function of a - =
non-central chi-squared random variable, with two degrees of freedom, and a is

non-central chi-squared with 2N degrees of freedon. - ==

From our basic integral representation for fN(u,a) we obtain the "no

signal” special case,
bl

=
3

T —




-u 1
fN(u,O) = e m

This set of pdf's will be used to model fluctuating thresholds and signal

parameters later on, and we introduce the notation

gN(u) = fN(u,O) .

Evaluating the contour integral for fN(u,O), we get

g (u) = 1 uN—l U
N (N-1)!

s

which is, of course, the chi-squared pdf, for 2N degrzes of freedom.
Obviously, Eu=N, if gN(u) is the pdf of u.

The "probability of detection” corresponding to the pdf fN(u,a) is
denoted PN(y,a) and it is defined by the equation

PN(y,a) = g fN(u,a)du .

Our notation differs from the standard one{4) in that we retain the same order
of the variables as in the pdf, and the parameter a is the "total SNR," as
defined in Section 1. The advantages of this choice seem worth the cost of

departing from common usage. In terms of PN’ Marcum's: Q-function is

82 az
QN({!:B) = PN( _2_9 5" ) .
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To obtain an integral representation for PN’ we substitute the
representation (3-3) in definition (3-6) and reverze the order of

integration:

Since Re{l-t} > 0 on the t-contour, the u~-integral is uniformly convergent,

thus validating the interchange, and we obtain

a
o yt do—
Py(v,a) =2 A e b4t (3-7)

2n |tl=¢g tN(l-t)

b

This is the fundamental representation for PN’ used throughout this study.

A second representation is obtained by making the change of variable, t+l/t,
in (3-7):

+1 N
eat : tN ldt

~y-a 1
21i l t{=1/€ t-1

PN(y,a) = e

The contour now is a large circle, including the simple pole at t=1, as well

as the essential singularity at the origin. The residue of the integral at

the simple pole is exp(a+y), and hence we can write
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=] - Y@ 1 [ t -
Py(y,a) =1 - e 5o Icf e Tt R (3-8)

where the contour is again a small circle enclosing the origin.

Both representations are useful and we note that the integral in (3-8) {is
just like the one in (3-7), except that the variables y and a are

interchanged, and the factor t appears with a non—negative exponent. In other

words, we have the evaluations

vt + 2 -n Pn(y,a) n>0

1
27ni { € 1-t

“s

e 2

1—P1_n(a,y) ; n<0

It proves to be exceedingly useful to define PN(y,a) for all integral N by

means of representation (3-7), with the understanding that

P y(ysa) =21~ Py, (a,y). (3-9)

This artifice allows us to exploit the duality between threshold and
signal parameter in the following way. Suppose the signal paramete=~ is

randomized, according to some pdf, fo(a). With fired threshold, v, the
probability of detection will be

-

Fy(v) = g Py(y,2)f (a)da,




Now suppose the right side is evaluated for positive and negative N, using

(3-7) as the definition of PN(y,a). Then the dual problem, in which a is
fixed and v is random (with the same pdf) has detection probability

«© L]

éPN(y,a)fo(y)dy = ({ (1 -9, @) () dy

= 1 - Fl—N(a) . (3-11)

This technique saves the needless duplication of calculations, which would
otherwise use (3-7) for one set of problems, and (3-8}, in a parallel way,
with the dual problems.

The source of this duality is, of course, the basic pdf. The fact Ehat

In(x) = I_n(x) can be proved from (3-1) by making the substitution ¢t +‘%E

in the integral and hence from (3-2),

N

2z
Erag (Usa) = e u-a (%) I,(2/au)
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Thus we could define

fl_N(a,u) = fN‘f‘l(u’a)’ (3_12)

A
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and this definition is consistent with (3-6), extended to negative values of

N. TIntegration of both sides of (3-12) over a yields

o0
/ fl_N(a,u)da = Pl—N(b’u) =1 - PN(u,b)
b
= f fN+l(u,a)da,
b
or
©
PN(Yya) =1- ! fN+1(y,a')da', (3-13)
a

an interesting result which also follows directly from (3-3).

The probability of false alarm for fixed threshold will be denoted

5 (¥) = Py(y,0).
From (3-7) we have the inctegral representation

- 1 yt it
S (y) =e ) = { PLAJE. | S (3-14)
N 21 e tN(l-—t)

which will often be used to «valuate contour integrals in this analysis. For

N»1, we have

4

- 1 dt
SN(y) =g 73 { Jt 8E_
m=0 It

tN—m

28
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after expanding (l-t)_l, and then

_, N1 m
() = ]
m=0

2|<

The series terminates, since there is no pole at t=0 when m>N. Of course,

SN(y) = g gN(u)du ]

which again yieids (3~15) after substitution of (3-5) and repeated integration

by parts.

From (3-14) we have

Sn(x) =0 , n<0 . (3-16)
This is completely consistent with (3-3), since
S_N(x) = P_N(x,O) =] -~ PN+1<0’K)’

and
o

PN(O,x) = é fN(u,x)du =1,

by normalization.

We proceed now with the general problem of detection with a fixed
threshold and random signal parameter. As above we let fo(a) be the pdf of
a, and we define the characteristic function



[--)
¢, (N g elkafo(a) da .

We evaluate the detection probability by substitutiang the integral

representation, (3-7) into Eq. (3-10):

We want to reverse the order of integration, which will involve the evaluation

For this integral to converge uniformly, it is necessary that Re(i- t) > 0,

which will be satisfied if we can arrange to have |t|[>l. This is accomplished

by expanding the original contour, |t] = €, until it becomes a circle with

radius larger than unity, and compensating for the for the effect of the pole

{at t=1l) now included. In other words we write




a
+ 2
Yt ¥ dt

= 1+ e-y—a N
t (1-t)

e

L
27ni ! t {>1

and then reverse the order of integration. The result is

. 1
{ o -(1- =)a
Eeatd 1
FN(y) =1+e 5%; f eyt f e t fo(a)da ——Tfui——- .
[tl> 0 I £ (1-0)

The integral over a yields ¢o[i(1— %9}, with uniform convergence to justify

the interchange.

Now

N DOV 5 s B s 0

l¢°(x)| <1

whenever Im(A) » 0, and thkis upper half-plane maps into the exterior (and

boundary) of the circle,

in the t-plane. It will be true in the cases considered here that ¢o(k) is
) analytic when Im A > — ¢, for a suitable positive €&, so that ¢°[1(1 - %)]

will remain analytic for a small but finite distance inside the circle

It -~%| = %. This will allow the t-contour to be shrunk just inside the unit

circle. Since ¢0(0) = ], the pole at t=1 1s simple, and nence
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=3
=3
=
E
E
E

=

R =1+e” s 1 ST na-dl 25—
lel> t (1-t)
or
- 1 dt -
R eV s [ ST na-d) . (3-18)
lef=1-¢ £'(1-t)

This is the basic expression which will be used throughout this report.

IV. DERIVATION OF THE STANDARD FORMULAS

We begin by randomizing the signal parameter, using a general even-order

chi-squared pdf for a. 1In particular, we postulate
=1 a he

where gi(x) is the pdf defined by Eq. (3-5). The characteristic function is
then

. ila a
[ &7 g
0

ol

8,0

}' ei‘b)\x g}l (x)dx

[]

a- ibky%i,
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a special case of (3-4), namely ¢ﬁ(bk,0). With this model,

Eu = Ea + N = !b + N;

and if 1 = kN, the result is the same as assigning to each component signal

parameter, an, the pdf

with each component independent of the others. 1In this case, Ean = kb. The
Swerling cases 1, 2, 3 and 4 correspond to the M-values 1, N, 2 and 2
respectively.

We note that

H

. 1 t
5, [1(1- -E)] = [ TlTb)t—-E} s

and abstitute in Eq. (3-18). The resulting expression for the detection
probability is

-y 1 t R
PD =g y'ﬁ;{ f ey n \4_2)
ltl=1-¢ [(1+)e-b] " (1-t)

A basic difference appears now, depending on whether H>¥ or M<N. Ve suppose,
first, that 15N, so the oniy pole in (4~2) is at t=b/(I1+b). We shrink the
contour to a small circle enclosing this pole and then nake the change of

variable




- = S+b -

In the s~plane the pole is at the origin and we also have

1-s
SR T
= so that
= dt ds

y
s y == S
1 I wew, e TTE 2 135 ds
Pt F L G e o e e
{1+b) 2=0 lsi=¢ s (1-s)

(L

and evaluate the concour integral by means of (3-14). The result is

M-N .
= i M-N ¢
=1 B =._1__? TNy 2 sw_é{l—ig) R (4-5)
5 (1#b)" ©  2=0 * e
= 34
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A

the desired expression.

The faise alarm probability is, of course;

= 9 Y
Pea = Sx(¥)

as it must be for anv fixed-threshold model. Note that our pdf, fQ{a},

approaches 8(a), as ©+0, and ¢5(k) + 1. One can also put

b= aoki

and let M+w, In this case {a) approaches G(a-a ), and ¢ (1} » exp{ia
while PD is transformed 1nts z standard, 1nfxnite-aer1es exoression far

P%(y,ao) (this is Fehlner's series, which is discussed in Section 6).

For 1{=N we have the familiar Swerling case 2 result

P, = Sy(To

so favered by radar analysts. When }=2N, we obtain the Swerling case &

expressicn

1 B Y5
—_— { }:3 s {(=—
FA Y
(l-i-b)k 20 2 ) A 1+9

Whea HQ we write {5=2) as

dt
H H¥
e

[{(1+b)s-b (i-t)

e S

TN A IO RN
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and proceed differently.

The integrand now has two poles, and we write

p =~ Fp TP (4~7)

where the integrands of Pl and P2 are the same as PD’ but the contour for P

is a small circle enclosing the pole ar t=b/(l+b), while for P2 it is the
circle |tl=e.

1

The evaluation of Pl is the same as the case just analyzed, which used

transformation (4-3), up to the point where

-3 J_ (3
i T S etp, (ND ds

1
P =g ——. e (..____) ———
1 ZE SLE 1+ F 10y

This time the expansion is an infinite series:

stp, (N2 1+p Y

_ l4b S NAt-14p

L st
2=

which converges since |s|=¢ and e can be chosen smaller ¢han b. When this

series is substituted and the integration performed termwise, only the terms

with 241 contribute, since beyond that there are no poles. Therefore,

N-f M

-1
., N-M=14+8, . 1\ R y -
1= G L O Tham s G (4-8)

where (3-14) has agaia been employed.
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P2 can be handled in a similar way, without changing the variable of

integration from that used in (4~6) but expanding

3 S %
y 1 ThdR o

2=0

ol

-1
[(1+b)t-b] = (-

Again, since |t|=¢ , convergence can be assured and we get

M¥ M-ltg, l4b, % - . dt
PRESTUNENIAIC SIS [ s
. 2=0 [tl=¢ t (1-t)

-
il

i

il

This time the sum stops at 2=N-}~-1l, and the integrals are evaluated using
(3~14). Altogether, after reordering the sums to get an increasing sequence

of S-functions,

=

NS (M
_ M 1+b N~-1-2 L y
Py = By + B, = (-1/b) (= {221 (35— D)7 S (33p)

: N L 2
- . £ L G b Sz(y)} (4-9)

The usual application of these formulas will be to Swerling cases 1 and

3, where l1i=1 and }=2 respectively. For these or any small values of M,

another expression is more convenient. It is obtained from (4-6) by writing
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t-xX
{1+b)t-b = =’

where

b
X =190 <

so that

[)e-b] 7t = (@=x)t (e-x)

et el

T e & &= -

Tuea (4—-6) becomes

&1 M-1
D (M-l; ! dx 27ni ' t ‘ =l-¢

yt

We use the partial frac- ion expansion

1 - L L 1,
(t-x)(1~t) 1-x "1-t x~t

and put

dt

N (ex) (1-t)

(4-10)
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where %

I 2 | yt, 1 1 dt §
Vx) =e” g3 |t|={1-e ¢ G T %= i i=
=
1 t __ dt i
-y y

= e Eyury e -~

2mi It{—s tN_H(l—t)
- =
__¢€ y 1 Syt gt =

L 2nd It{)‘l (10

Note that the originai coatour was just faside the unit circle, but including

the pole at t=x. Finally, again usiag (J-14), we get %
H(x-l)y
\ = L - ¢ Ayy)]
W(x) = Sy 2 T S TRTLC 2% B

Since

(1o (_g—)ti—l 1,
t1-1)! “dx 1-x

ek e g
i
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the complete expression is

i Mol (x-1)y
(1-x) d e _ ;
p® Sy YT & T 1 Sy () (4-11)
(1-x)x
where
xa—b—.
™

The identity

e us ol =y M- s )],

which is easily verified, makes the evaluation of the derivatives in (4-11)
relatively straight-forward.

For Swerling cases 1 and 3 we have:

l -——
Pp=l) =S, (y) + (1"") e It Sy 1+b” , (4-12)

and

1+b Y N-2
PD(H=2) =Sy () + G—g—) e {(1 - —S_) [1 -5,

toyp (- Sy 1+b)]} (4-13)
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By writing
b b - ?ib 1 by L
oy o by v o 3y
Sy-1(17%5) Sh(im) ~ e T J

and substituting into (4-12), it follows that this equation can also be

written
w1 - by
Py = SN(Y) + C—g—) e [1- Sy (E;E)j . (4-12)

In this form, (4-12) is also valid for N=1, in which situation Swerling cases

1 and 2 coincide. By a similar manipulation, (4-13) can be written

-3
N-1 N-2 ~ Tap
- -y y 1+b _ N=2 y
Pp = Sy1 ) *te ' mmmymmeyyr YR e Q-5+t x
- by -
x [1-5,G5] (4-13)

which happens also to be valid for N=2, where Swerling cases 2 and 3 coincide.

We turn now to the dual problem of fluctuating threshold, as in linear

CFAR detection. The signal parameter, a, is fixed, and the threshold is
written

th
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where the pdf of x is taken to be g, (x). Thus x corresponds to the sum of L
L

random variables, each with the exponential pdf
gl(x) =e

In other words, x is the result of incoherent summation of L complex samples
of noise alone, the noise samples having the same variance as the noise
compoaents of the samples, 20 which contribute to u. We can call these

noise samples %x_,, and then

4

The average of the x_, is the noise level estimate in CFAR problems, and the

£
corresponding threshold multiplier is cL., With this model, the pdf of the

thresheld variable, y, is

£ =2 g, (4-14)

and the reguired detection probability is

PD = f PN(y,a)fo(y) dy. (4-15)
0

According to Eq. (3-11), this is obtainable from the solution of the dual

problem:




[-~]

P y(a,y) £_(9)dy

L)
D Sy

e ¥y dy
=1-] Pl-N(a’y) gL(c) c °
0

This, of course, is the problem we have just solved and we have only to

make the changes of variable

N+1-N
1+L
y*a

b+c

in, for example, Eq. (4-2). We note immediately that the case previously
called "M<N" cannot occur, since the old exponent M-N becomes N+L-1 in the

dual problem. Thus (4-4) provides the desired solution:

2y
S£+1—N I’ -

Since Sm(x) vanishes unless m>0, only the terms in this sum having 25X

survive, and our result can be written in the form

L

N -1
P =1 - c (L1

L a
- yets 2o . (4-16)
(1+c) g=0  N+% 1 1+e
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It may be verified that this result is also obtained by a direct
calculation, starting frem (4-15) and using representation (3-8) for PNa This

calculation closely parailels the derivations of Eqs (3-18) and (4-2).

The false alarm probablity is obtained by putting 2=9 ian (4-16) and

noting that Sm(0)=1:

and (4-16) can also be written in the form

N -1
- c NML-1, 2 _ a _
Py = Pm * .. WNHL-1 !« N+ 7T [1 Sz+1(1+c)} ° (4-18)
(i4c) 2=0

The probability cf detection when both threshoid and signal parameter are
random variables can, of course, be approached from two directions: we can
start with random a and fixed y, then averaging over the assumed pdf of y, or
proceed in the reverse order. It turns out that both methods yield useful
formulas, zot easily transférmed into one other. We start with {4-16),

averaging over the assumed pdf of a:

.y = 1 a
£,a) =5 & - (4-19)

To carry this out we need the integral
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m =
= f e Xx xm %g(x) dx
0

)
120
l:v

1
m! Q-1)!
m=0

(142 H-1+m
[ e *ox dx
0

2 o
1 {-1+m,, A
- 5 LG (4-20)

This expressiocn recurs in several of our formulas, and it should be notaed that

index % occurs only as the upper limit to the sum. This fact will facilitate

the recursive calculations of double sums, like (4-21) below.

When (4-16) is averaged over (4-19), we make the variable change,
a=bx, to obtain

P21 - N Lt L1y 2 f°° s
P ()M gm0 N 0

(95_

#1030 &0 dax,

and now (4-2CG) provides the desired zresult

N M -1 £

c 1+c N+L~1, 2 H—-1+m b

P =1- — ) D¢ et ¢ Yomr)  (4-21)
(1+c)N+L 1 1+b+c 2=0 R+ =0 m 1+b+e

m
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Equation (4-21) is valid for all values of M, and it is particularly

convenient for Swerling cases 1 and 3, where M=1 and 2, respectively. The

falsz zlarm probability is still given by (4-17).

|
i

For !1=1, the m-sumr s simply

=3 2 f+1
: Tt )"‘ Ltbte §, b,
= “ “1+btc 1+c = 1+btc ?
: m=0
and (4~Z1) becomes
b o1 N L~1 ,N+L-1) g %1 iy b )2,4.—1(
3 —}. - s » 1 oie’
] 1N
= B T T LR %
- L ) 4 ¢
()T ) bre

0
il

i

The Z-sum 13 now rewritten as the difference between a full sum (2 rumnirg

.\ll

1}

from zero t> N+L-1) and a partizl sum, where £ runs from zero toc K-1. The

final resul: is (1=1):

N~ ~]—2
P = ,1+b\N 1 1+b }L + 1 Zl (ﬁﬁ,-l) [ §1 (1+‘a+-; 1 ~€
L8 7 K —
D b 1Fbtc PR S R N ) b \

I
A e
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This form:la is convenient beczuse it has N terms, rather than L, and N is
usuallv the smalier number. It can also be obtained from (4-12) by averaging

over y. When YN=1, {4-22) becomes simply

L

b = G - (4-23)

In Swerling case 3 (1{=2), the m—sum in (4-21) is

)

(m1yu® = (1-u>‘2a{z - (=#2)u ™ & ()2}

m=0 f

where

b

j!

[
1)

A calculation which paralizls the derivation of (4-22) yields the result
M=2):

I+1 ;
14b, 1+b e
PD 5 =) {33-3 3 {1 {N )——+ (HL-1) — i_*_e ;

B-1 .
B .
* ‘—lm-_'f::{ I« L]J 31 - [1+(242-N) i+cki+b+c) $ '
(1+e) 2=0

(4-25)

When N=2, this formula reduces to

I

o

j
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L+i

= (1Fe { ’ < 4—
?D = (E‘Ti'g:i't—) {1 + {L+1) 1+b} . {4-25)

Yhen 138, another formula is more convenicnt than (4-21). It is obtained
by starting with (4-4) and randomizing y, thus reversing the order of

randomization that led to (4-21). The pdf of y will be

- _1 Y.
so(y) =2 8. (37>

and we get

i ! ,;i"ig i f }? y' y
P, = ——— } t,J)b"j § (=) g, (=) 4(=) .
i _H ,,.g : L -
D (1 })i ”U #He "14b L'e [ o

We change variables (y=cx) and use (4-20) tc find

L H-N -1 m
hE ) 1 H-N 4 I-14m [+
P.o=( ) — 1 v 1 < )( ) (4-26)
D 14bt+e {.‘ri'-b)'i ] 220 4 =0 fri} 1+b+c

The false alarm probability is still given by (4-17), and the fact that

(4-26) reduces to (4-17) when b=0 rests upon the useful binomial identify

n n

(L——l-%-m) m

L
('Hi
m

y B
a B(T_—y) s (4-27)

v o= a-n?
m=0

n=0
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which is proved in Appendix 1.

When H=N (Swerling 2), (4-26) becomes

L N1 . . o
- l'!'b I~itm C £~28"
By = (3pec) 2o QDS o) . (4-28)

For N=1, Swerling cases 1 and 2 coincide, and (4-28) becomes (4-23) in this
case. Likewise, when H=2, cases 2 and 3 ccincide, and {4-28) then reduces

{4-25), as it should.

For Swerling case &, }=2N, (4-26) becomes

L N . Mgl =
1+ 1 K, ,2 L-14m, c .
P = (o) = Y vt Y« Yoo - (4-29)
i+bic (1+b}i' £=0 £ =0 o 1+bic

V. GEKRERALIZATION OF THE FLUCTUATION HODELS

B

In Section 4, when a parameter, say y, was randomized, a pdf of the type

g (%)

0|

was used, Introducing ome new paramater. In this Section we generazlize by

using, instead, z “signal-plus—mnoise” type of pdf, such as

This generalizes the chi-squared pdf to a non—central chi-sguaved, and adds

45




The model is equivalent to the postulate y = c¢x, where x

another parameter.
has the pdf fL(x,d) as defined by Eq. 3-2.

We begin by randomizing the signal parameter, a.

We put a=bx, where x

has pdf fM(x,d). In other words

Ll 2

and the characteristic function is

¢°(X) =Ee

according to (3-4). To apply (3-18), we require

. 1 -
¢°[1(1 "E} = e exp [zE;BSE:E—]

[(14b)t-b](i-t)

14l

i
AP

(5-1)

. (5-2)




We confine ourselves to the case M»N and, following the previous analysis,

make the change of variable (4-3). The uew feature is the exponential factor,

which becomes

1 [ = exp(d D) o) expd B4
€XP 1T+ p)t-b XPS 19 PiTH/ ¥P\T 1w/ ¢

With the definitions

T=0d . ¥
d=1% " Y ° 1
we have
- ys + d M-N
P = e-—y-—d 1 J- ey s (i-t_b_) ds
D 271 1+b Sl(1-8)

|sl=€

M
As before, we expand the factor (s-*-b)‘i N, and, this time, evaluate the

integrals using (3~7). The resalt is

M-=-N
1 M-N 3 y bd
P, = I Cobv e (%, =), (5-3)
D (l+b)M N =0 % N2 1+b 1+b

a direct generalization of (4-4), to which it reduces when d+0. When b=0,
only the term 2=0 remains, and the false alarm probability reduces to the

expected value
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S AR

Qi

= -4
Pea = Sy (5-4)

The analog of Swerling's case 2 (M=N) is the simple expression

- p (Y bd_ -
Pp = Pyt 0 T390 (5-5)

A result of this kind is to be expected (when M=N), since each complex sample,

zZ is now being modeled in the form

where

s = /b (s' +w') .
n n n

The new "signal components,” s;, satisfy

while

Elw'l? = Elw |? = 262 .
n n

b

i

o

R

i

farY

i

T A



As a consequence,

z = Y1+b (sn + v )

%jri . Equation (5-5) then follows, since the new effective threshold is y/(1+b).

In the dual problem, the signal parameter, a, is fixed, while the
threshold is randomized by the statement: y = cx, when the pdf of x is
fL(x,d). Then

=1: -
£ =26E, (5-6)

"
|">| Qi

and the detection probability is obtained from (3-11) and (5-3) by making the

chanzes of variable

: N+1-N
e - ML

: brc
y+a .

n




Parameter d is unchanged, since it plays the same role in both problems. We

obtain

b a1 - Nﬂz"l (LA
D PRy S A

)c2 a cd

Por1-8Te * T8 (3-1)

which is a direct generalization of (4-16). Expression (5~7) reduces to

(4-16) when d=0, since the terms £=0 through £=N-1 will vanish in that limit.

Although (5-3) contained only P-functions with positive subscripts, (5-7)
involves negative subscripts as well. The latter are evaluated by means of
(3-9), but first it is useful to apply (3-9) to all the terms of (5~7), to

obtain the formula

j 1 N+L-1
: = k¢

N+L-1 L cd a
(1+c) 2=0

2 N-2' T ? T+ (5-8)

Formula (5-8) is the basis of later generalizations, since it is more compact

than (5-7) and also contains the parameters a and d, in a "natural order.”

For computation, we split the terms with positive and non-positive

subscripts, using (3-9) on the latter:

ML-1
N+L-1 2 a cd
+ R.ZN e i Pg+1—N(1_+c’1_+€)]) -9
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Finally, the first sum in (5-9) is reversed, and the index redefined in the

second sum to obtain the result

P = cN z (N+L 1 )£+l P ( cd a_,
- 2
D (1 +C)N+L 1 L'HI, 1 14e 7 ltc
L-1
N+L-1, 2 - a_ cd _
* zzo Chneg 7 ¢ B PG l+c)]} (5-10)

To obtain the false alarm probability, we put a=0 in (5-10) and note that

cd
* 1+c

(0 ) =1, and

P£+1

cd . cd |
PonGaer O = S350

therefore

(1+c) 2=0 ¢ ¢

) . (5"11)

which reduces to (4-17) when d=0.




As mentioned in Section 1, the present model describes the performance of
a lincar CFAR system with a non-fluctuating signal and with other signal
components in the terms used to form the detection threshold. These signal
components are usually unwanted, and they can strongly modif; che performance
of a detection system. One obvious effect of these signal contributions is to
reduce the false alarm probability (by increasing the threshold), which can be
gy [c4/(140)]
is a decreasing function of d, since Sn(y) is the false alarm probability of a

seen from (5-11). All the terms in that sum are pcsitive, and S

system with n samples and threshold y, which decreases with increasing y. The
linear "CFAR" loses its CFAR property with this change in the statistical
properties of the noise. It is evident from (5-10) that PD is reduced by

these signal components also.

Since PD is the probability that u»cx, we have

b = u
1 PD = Prob [x <ec] .

Thus I-PD is the cumulative probability distribution of the "non-central F”
random variasble, p = u/x. Both numerator and denominator of this ratio are
non-central chi-squared variables, and (5-10) provides a basis for computation
which is more convenient than the standard series, as given by Springer.(lo)
When d=0, the variable x becomes simply chi-squared, and the resulting
camulative probability distribution is a finite sum of elementary functions,
given by (4-16). It should be noted that all the chi-squared variables
discussed here are of even order, and this accounts for the relative

simplicity of the formulas.

We now extend our results by randomizing a and then d, finally treating
the case where both a and d are random variables. We begin with a, and

postulate for this parameter the pdf




1 a
fo(a) % gu('t?) ’

as before.

a is carried out after the change of variable:

) ML-1
Py = wr L Oy
(1+c) 2=0

ML-1 Z

) cd

O~ 8

I!W!” |!||' ""l“” !

o,

gg_ ) are of the same type. We carry out this procedure only for the case M=l
= (Swerling case 1), before making the assumption that M>N.
=£
o When =1, we write (5-12) in the form
%
— ~ 1 M1 mL-1,
E BT mm L () e KW
1+ 2=0
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Both sides of (5-8) are multiplied by fo(a), and integration over
a=(1l+c) x.

e (T W e 0 B

The integral is the probability of detection for a fixed threshold and
fluctuating signal parameter, and hence it is expressible by means of the

results of Secticn 4 with the following identification of variables:

However, the sum in (5-12) may have to be separated into two parts, where

N-2Rf in one part, and N-241 in the other, unless 13N, ia which case all terms

We get

1+c 1+e

(5-12)



[

NHL-1
+ 9 (N‘”{l) * Y(z)} , (5-14)
2=N

and use (4~12) to evaluate ¥X(2), and (4-4) for Y(&). First, we recall that
(4-12) itself can be written

Ly
TS S by

By = S§(Y) + Q—g-) e f1- SN(1+b)]’ (4-12)

which is valid for all N3»l. When the variable substitutions (5-13) are made,

we find from this version of (4-12) that

N-g-1 - —<9
fos _ o cd 1+btc l+btc b cd
X0y =8 ) + =) ¢ S NS e e
In the corresponding sum over &, we write
N-1 N-1 C .
JNHL- . ¢ WL-1, N-1- .
I M htx = 7 h T xee-n
2=0 . -0 %

to obtain an increasing sequence of S—funcrions. Then,
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N-1 N-1

c NML-1 1.2 cd

P, = E ( (=) { S () +
-

D (1 )N+L 1 =0 +2 [o] i 241 M 14c

s

cd

I+bte 2 | Ihbtc o _ o b cd
tEFT) e [1 -8G5 E+b+c)]}
HL-1
f— GRS WL (SO (5-15)
(1+c) g=N

To obtain Y(2), we use (4-4) with the substitutions (5-13) and {=1:

- -N+
14c 1-N+g 1 £ m

oy - 2., b cd
YD = (pre) 200 VR Sy

In (5-14), Y(2) enters only in terms where 23N, and also, the S-function is

zero unless m>2-N. This occurs in only one term of the m—sum (the upper
limit) hence

1-N+¢

_ b cd
Y(2) = () ST -
Of course, S.(x) = e—x, and we obtain

1
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AT S oY S I
. N+L~-1 L+g "¢ 41 *14c

ed_ oy g
1+b+c ML-1, Ltbte - b cd
* Zo Clrg )G -5 i)
cd
S Lo
Tk ML-1,, bc
Toe 220 Creg ) Tore) }' (5-16)

i

The terms not involving S—-functions in (5-16) can be combined, as follows

N1 M- 1)(1+b+c) A Z (N+L 1y be )£+l
2=0 L+2 I4+b+c
= ) N*%“l Ll dbre FE IR el be (BT
Ry PERA™S AR - >
g - (e \L a+ 1+b+c)§“"L
1+b+c ’ 2]l
| (1) (140) 1T

= = A hd
= (bc)‘J 1(1+-b+c)L
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Therefore finally,

(1+c) 2=0
__¢d P }

I+bte 14bic b cd c 17
e G Sen‘me ':GBT\:')} (5=17)

The corresponding false alarm probability is still given by (5-11), and it can

be shown directly that (5-17) converges to (5-11) as ©+0, and to (4-22) as

d+0.

He forego a similar analysis of the Swerliug case 3 problem and return to

{5-12) with the assumption that ¥»8. Then (4-4) can be used for all the

terms, and we obtain

P - l ?\‘*‘L‘l (N'{"L”}L) . 2
D (1+C)N+L-1 2=0 2
M-NbL H-N
(—y‘c—)\i i HEH diey b T Sy (5-18)
Tbte Lt m TR e vk
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It is useful ro rearrange the sums in (5-18) in order to get an increasing

sequence of S~functions (to permit their recursive computation), hence we

write N+m—2 = ntl, and eliminate m. The lower limit on the new index, n, is

set by the S—functions themselves at n=0, and the upper limit is seen to ve

= M-1. In reordering these sums, we note that the criginal sums over = and £

. . . - ; n, . .
are automatically limited by their bironial coefficients, since (k) is zero if

"

either k or n—x is negarive. Thus, PD can be written

— M-1
= N+L-1,, M-N+g £ b \n cd .
F = oy i -193
: Pp= % ng_ {% Oy e }(1-!1:) Swr (Tr? 0 (19
= where
i, e = (1+C)H—h-L
= = = Mo b4
3 o bh 1(1+b+c)d N
§§
= =
and 7
=
- __bc B
E * = Tibke =
The lower limit of the 2-sum in (5-192) depends upon n.
— Next, we use the identity
‘=3 A\, B2, & _ C-B A-C B,, A+Z % %
= = 2 =
- L (PEE) x7 =x" (1) I (DGpoe) x5 (5~20) B
7 1 2 %
3
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which is proved in Appendix 1. The sums on both sides of {5-20) are
understood to be limited autematically by the corresponding binomial

coefficients. To apply {(5-20), we note that

(HoNEL NN
ntl+2-H H-n-17 *

and then we have

§ (Ll MNEE 2
L £ " “H-n-1
£
$-n- N+L-H4n M-N, NHL-14g, 2
- x-ﬁniﬁﬁ) L. §(§£ }{‘e;!-Ll 2y (%,
L
2
He find that
N4
§-1 NI er 1)t
FC X (}.'3‘3} = Nei-1 3
(I4bic) ™7

and that

n

™ b 1+ "
e e

When these evaliations are substituted into {5-19), the order of summation

be reversed, with the result

<

=
GEi

-
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T TS b Ny be )z )
D T Tapse) L o ¢ TAbEe
N-1+2 n
N+L-14+2,,1+b cd
x 0 L O D) Snm) (5-21)

In Swerling case 2 (M-d), the 2-sum in (5-21) reduces a single term; and

Maapyt N ML-1y 14b " o cd

N+L-1 z ( Lin c ) n+l(l+b+c

P ———
(1+4b+c) n=0

(5~
D ) . {2 22)

The false alarm probability for any M is still given by (5-11), to which
(5-21) reduces when b=0.

For Swerling case 4, (5-21) must be used with M=2N. It should be noted
that (5-21) can be obtained somewhat more directly by averaging (4-4) over the
pdf,

1
c

=&, , (5-23)

for the threshold y. The required . .icgrals,

o

é S£+1(Ax)fL(x,d) dx,

i

are evaluated by writing

T



i« oty

d
fL(x,d) = - a‘;(' PL(x,d),

then integrating by parts, and using (4-16).

So far, we aave been discussing extensions of (5-8) in which the signal

parameter, a, has been randomized. In the dual problem, the parameter d is

randomized instead. This represents linear CFAR with a fixed signal

parameter, a, but with fluctuating signal components in the randomized
thresholde For d we assume the pdf

e 1 .4
g
%% and average (5-8) with respect to it. The result is

RN

N+L~1 ®

1 - NHL-1 L a 1+c 1+c
Pyp=——p=—r | ) ¢” [ By (y,7=) g (= y) ==dy (5-25)
D (1 )N+L 1 420 L 0 N-9 1+c K* ¢h ch

after the change of variable d+(1+c)y/c. We can use (4-16) to evaluate the

. integral, which corresponds to ordinary linear CFAR and fixed signal
parameter, with the varisble changes:

NoN-2
L+K

o

i

T

i

i

n%ﬁﬁ

!




i
Ikl

Therefore

- -]

a . (l+c l+c

[Py 10 & V) g &

0

N+K-2-1 N+K-2-1 m
N+K-2-1 h
) T« WES) s
m=N-2%

1+c ( a )
m 1+4c mt+2+1-N 1+c+ch’ *

1- (l+c+ch

We assume that K>L to assure the validity of this formula for all 2(in
particular, f=N+L-1l). When (4-16) was derived, the parameter there called N
was non-negative, and we are now applying to a more general case. A review of
the derivation of (4-16) will show that it is valid as long as N+L-130, which
explains the requirement K>L. This excludes Swerling case 1 type models for

the fluctuating signal component in the threshold.

Substituting in (5-25) we get

~ (1+c)¥7E MHL=1  N4L-1,. 1+c+ch, ™
Pp=1- NHK-1 L Oy Dle =) %
(1+c+ch) 2=0
. N""Ki”'l (WK=2-1y eh " o 2
=0 m I+ch’ “mtg+l-N “lteion :
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The sum oa m has been allowed to start at m=0, since the S—function will

vanish in the extra terms. With substitution 2+HL-1-£, this becomes

b o1 (_E_)N+L 1 ( 1+c )K—L N+§—l (N+L-1) [1 __liﬁ_]z
D T4c I+ct+ch 2=0 2 ¢ ltctch
K-L+2 m
K~L+8, .ch a -
L O R Syneg (Toww) (5-26)

Equation (5--26) can be obtained from (5-]8) by reversing the roles of the

original random variables, complimenting the probability, and making the
parameter substitutions

N+L b+h
L+N d+a (5-27)
2K c+l/e .

A form analogous to _5-21) can be obtained from (5-26), either by a parallel

calculation or by making the variable substitutions (5-29) in (5-21). Either
way, the result is

Pn’l‘g(m‘)N:;i K-EL (K; )(l-i-ct:l-*-ch)z X
(1t+ctch) 2=0
L-1+2
© O ONL-1+8 n a
x nZo g et s o GG—=—=) . (5-28)
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It can be seen that (5-28) reduces to (4-16) when h=0, since then only the

term 2=0 survives.

The false alarm probability is obtained from (5-28) by putting a=0, which
has oaly the effect of replacing the S-function by unity. But then,

L-1+2 NFL-1+4
- - THL-1+
z (N+I]\.‘:J‘;l.l+2)(c+ch)n = (c+ch) N Z (1 L-1 2)(C+Ch)n
n=0 ) n=N
N+L~-1+2 N-1
+et -1+ R
(1+c+ch) . _ 1 - z (N‘H.. 1 2)(C+Ch)n , (5-29)
(c+ch) (ctch) n=0
and
K-L
It @™

2=0

The result is that the first term of (5-29) eventually cancels the unity in
(5-28) and the false alarm probability simplifies to

> )k KEL KLy (_h )” .
FA T reremrl gly | ¢ THckeh
N-1
7y ey (5-30)

&

n=0




= This expression reduces, of course, to (4~17) when h=0.

The final situation, in which both of the signal parameters, a and d,

are randomized is analyzed first by averaging (5-28) with respect to the usual

pdf for a:

1 a
f(2) =5 &) -

In this way, a formula valid for all M is obtained, although the constraint

K>L is still in force. Only the S-function in (5-28) depends on a, and the
use of (4-20) gives us

o

a a a
({ Sot1 (Treren) & 4

M n m
l4c4ch H-1+m b
a1 C o ) prern) (-31)

m=0

When (5-31) is used to average (5-28), the result is

N N+L- M-N-
oo~ @R (eqen)tiIH

D (1+b+etch)?
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n
M~1+m b
)

m

L ( o )(Tgs;E;EF) s (5-32)

and the probability of false alarm is still given by (5-30).

To reverse the constraints, we can obtain a formula valid for all K and
M >N by averaging (5-21) with respect to the pdf of d, namely (5-24). The

resulting detection formula is

Ly M e S )
P (L+beteh)®
. HEN Ny bcf N'IZ“‘ (L-L4gy 14b "
5 ) “Tore Lin c
2=0 n=0
n m
K-I+m, ch

= L Oy g (5-33)

Expression (5-33) reduces to (4-26) when h=0, as does (5-21) in the
corresponding limit, d=0. It is possible to show that (5-32) and (5-33) are
equivalent when both K>L and >N,

The false alarm probability corresponds to b=0:
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N-1,y, (K-N-L#L  N-1 n
4], -
Pra == e K ) (NLinl)(%°
(1+c+ch) n=0
n jul
K-1-+m ch
= Lo NV gmam) (-34)

m=0

We did not work out the detection and false alarm probabilities for the
analogous fixed-signal case, with K<L, but (5-34) is identical to the result
of averaging (5-11) over the pdf (5-24) for d.

Formulas (5-32) and (5-33) generalize some results of Rickard and
Dillard,(ll) and also Wishner's analysis(ls) of the normalized periodogram

detector,

VI. RELATION TO OTHER FORMS

A striking feature of the finite sum detection formulas is the diversity
of equivalent forms they can assume. Solutions to the same problem, such as
(4-21) and (4~26), deduced from different starting points can be reconciled
only with difficulty. In this secticn, we relate a few of our results to

quite different formulas which have appeared in the literature.

Consider Eq. (4-16) which describes linear CFAR with a fixed signal

parameter, a. It is

N L-1
_ - c _ T NML-1, 2 a _
1-% ey T b G )¢ 5o D (6-1)

which can be written
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l+c N L
(=) (1= Py =F(l-l) = oL, 9 (6-2)

where

1 N+L 2 a
—_— (,.I ) ¢ ( ) (6~3)
(l-i-c:‘)L NHR

T,{L,2) = Trc

N SE+1

How FN(L) can be rewritten as a sum of terms, each of which depends only on &,

and not also on L, as do the terms Tq(L, 2). To accomplish this we write

L L-1
F(L) = §  T,(L,2) =T, (L,L) + § T, (L,%)
N 220 N N 9=0 N
-1
= TL.L) 4+ ] (T(L,0) = T(L-1,9)] + F(I-1),
2=0 : '
or
FK(L) = Aﬂ{L) + FN(L-l), (6-4)
vhere
-1
ALY = T(LL) + ] [Ty(L,8) - T (1-1,2)] (6-5)

=0




I

for L>1. Iterating (6-4) we obtain

PN(L) = AR(L) + AN(L-1)+...+AN(1) + FN(O) .

Defining

Wwe can write

Fy(L) =

2 i¥

L~

which has the desired characteristic.

As applied to (6-2), we have

1 ML, 2
T.(L,2) = (g o3 ¢ S, . (u), (6-8)
N {1+t)L N2 &1
where
- 2
u — l—!—" L

One finds that
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has been used here.

TK(L,i) - TE(L—I,Q)

1 ML NML-1 £
= — Guo) — ()70 7) g, (w)
(1)t { N+L N+E } 241
1 ML-1 ML-1.1 2
= (= —- ) - C( . ) c S N (u) -
(4" { M2-1 S | 2+l

The standard reduction formula

n, o1, ., n-1

(l+c}L ég{L} - (¥+L—l z,

(L e Nl

2=1

When these results are combined, we get

AU



bl I|||||"

L
-u h+L—l (cu)
e Z Gue-1) 11 (6-9)

which holds alsc for L=0. Therefore

L 2 o
- 1 N2 o~
R =et 1= ) G S
2=0 (14c) n=0 )
and L now appears only as the upper limit of the outer sum. £
ine finite msum is a specizl case of the confluent hypergeometric éi
Y =
function; in fact it is a Laguerre psiynomial.(lz’ The basic definition is =
0= LG 7T s (6-1
n=0
=
hence =
5 1 (D)
Fu(l) = e ) —p Ly (mew) , '
) =3 (1+c)
and finally
3 S i S (¥1) ,_ ca
P = - {—— —— * - ) f—11%
By=l- (35D e ¥ L -5 - (6-11)

=0 (14c)*

o
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The Laguerre polynomials can be computed from the second-order recursion

(12)

relation

(k) _ k=1+x, . (k),__\ _ k-1, . (k) ,_ -
L) = 2+ 55 LU () - (1 + 9 L5 () (6-12)
together with
Lék)(-X) =1
(6-13)
L () = e

The particular case, N=1, of formula (6-11) was given by Finn,(IB) whose

L£(x) equals &! Lg?)(—x), in our notation.

it is interesting that the probability of false alarm obtained fronm

(6-11) appears in the form

P,=1-G=) § (

FA H (6_ !5)

which can be transformed into (4-17) by the use of (4-27).

Formula (4-4) can be treated the same way, when !IDH. According to (4-%),

P =F, (1-¥),

b




In this case

T, AR

A (K)

A.(0)

i%

-1
I
= £

£=0

(bu) * (K-1)1
(ete)! (aR-1)!

and a calculation very similar to the one

X-1
K_
1 &ht
2= *

1

k-1

=0

just given yields




hence

N

_bu  -u (K-1)! (N)
(K) = — e S A ) B
& (1+b)¥ (VR-D)T k-1
i
{
Finally,
K
FN(K) = SN(u) + 3 AN(K)
k=1
= S.(u) + b e iz( (k-1)! 1 L ) i
N k=1 (N+k-1)! (l'\"b)k k-1 ! :
and therefore
P =S (=) + b o )N e- I%E M—g-l k! 1 L(N) . EZ_) £
_ D N'1+b 1+b 1+b k=0 (N+k)! (1 +b)k k 1+b
% (6-16)

This time, the false alarm probability (b=0) is simply

the same as (4-5).

We demonstrate another kind of equivalence now, reducing an infinite

series solution for the fixed-signal, linear CFAR problem to our finite sum

et
‘Hll.“,““‘Ill I\,‘ ’x“ il

[
i
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(4-16). The former solution 1s obtained by averaging Fehlners' series:

8

A*
2 s

- i S ()

(6-17)

Py(y,a) =

Y4 o~

=0

over the pdf
=1, X
fo(y) c gL<c)

fcr the threshold. Series (6~17) can be obtained from (3-7) by expanding the
factor exp(a/t) in a power series and integrating term by term. These

integrals are performed by using (3-14).

According to (4-20),

[+ ] [=-]

[ Sy @ gD ¢ = [ Syppglen) 800 dx

B B Y
(14c )L m=-0 m 1+c

_ 1 N+§'l ML+2-1, m

- N+L+2:f ( m ) c hd (6"18)
(1+¢) m=0 ’




The last step in the derivation of (6-18) is an application of (4-27).

Another transformation yields

[--]

Yy 4
| [ Suy ) 8, 4@

R

1 N+L+2-1

PN R ¢
(1+e) m=N+2

[

1 - N+L+2~1 m
)c

m

e

T i

I
PR

ML L'z'l L1
RY 2 R  A

I
|
|

. (6-19)

el

When (6-19) is used to average (6-~17), the result is

1 - g .
D ge0 ¥ (LML Ly N .
N L-1 ®
-a c m N+L+2-1, 1 ca
= e —_— z c z ( ) T —) . (6-20)
(l+c)N+L 1 =0 2=0 N+ 24m ! “l4e
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E’ LAl 1 ca "

2 (2)
1 o
220 N+2-+m 2! Yl

L

(L1 v (NHL-1+£) ! (Nm) ! _ca,

1
Mo ) Lo (LD (varT 3T (T

e . (HL-l : . ca

Rl

1
in terms of the confluent hypergeometric function.(‘s) Applying Kummer's

first transformation,(lé)

[of:]
3 . _ca,  I+c e . . _ca
= 1Py (WLs Nimbl; 3229) = e F (oL NmHl: o)
ca
E - _ T MET et (vt 3 TN
< L Timpidm)T 27 98

pa

The new hypergeometric function is simply a polynomizi, since its first

argument, wtl-L, is a non-positive integer. Altogether,

D R PR £ BT 1 0 Y PR M A 01,



2 —— L~1-m
N+L-1, 1
€8y = T« ) (==2)

o ik
gm0 Mmte’ el Vot

1 2

"z" NALA2-1
2=0

Chrgrm ) 77 e

and hence

Next, we replace = by the new irdex n = m+8 , and fiad

(¥ a)

“n+1'ivc’ ?

which is -18). Similarly by averaging {6-17} cver a, uring the usual pdf
with M>NH, (4-4) can be derived.
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APPENDIX 1

The binomial identity

‘Z‘ M-l

m

) x

m=0

is proved by taking the facter (1-x)" inside the sum and expanding agair, as

foliows:

n n-m
z z (M:n)(n-m)(_l)k xm+k

m=0 k=0 <

M¥n,, n—m £-m L
(G- }x .

In the last step, we have rearranged the sum in increasing powers of x. now

the m-sum is




T

Eg

g

Ml

I
Al

il
!

L
‘h’l M-l+ A
0 7 EHE™E® - " (a-2)
m n—% £
m=0
according to a standard binomial identity,(l7) which completes the proof. The
standard identity used here may be written in the form
Tk, 2-i+m-s s m k-2
— = -— 3 -
IO D (G2 D D B (a-3)

s=0

which is valid when k»%, and is proved by use of the obvious identity

140" 07F = ekt .

Each factor on the left is expanded in a binomial series and the resul
double sum reordered in powers of x. The desired result follows by equating

to the expansion of the right side.

To prove (5-20), we need an intermediate result. Consider the identity
m o X7
[y = 0™ A+ (A=4)

and expand the left side and the right-most factor on the right cide:




n
m 2 £ _ m m, Xy
% (2) x(1+y)” = (14x) g (n)(i¥§)

bl

= I MG aw™" .
n

Explici* summatiorn limits are not used because the sums are limited

automatically by the binomial coefficients, as mentioned in connection with

T A

Eq. (5-19). Now we multiply both sides by (1+y)s and expand some more. The
left side becomes

= aw® 1 Gt am?t
= 2

= T 5 k
3 = 2 (m) Xi 2_1 (i‘h:) y
= A £ k k

[}}
f ol e

{ TEE Rtk
L

o

. and the right side becomes

i

5
=
=
=
%%
I

4)° T O X" y"
n
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E

we introduce the new index, k=n+j, and eliminate n, so that the last double

sum expression becomes

I (200 ¥ Iaam™

w e~

)
]

k o~k S,, @ l-i'xj k
g{x @™ T OOIPED }y .

Equating powers of y, we obtain the desired result:

45, 2

m _ .k -k Sy, m , 1tx J
(P = x (1) PGIPED - (a-5)

T

It is necessary only that m, s and k be non—negative, and the ranges of the
3 3 4 ’

sums over £ 31d j, as limited by the binomial coefficients, will depend on the

relative magnitudes of m, s and k.

Now consider (5-20):

2 _ A-C

A+e 4
) xT . (A~6)

A, BH2 C-8
IO x" = x7 () () Cuapec

o W
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Using (A-5) of the left side we get

. J
A B2y 2 C A-C B,, A 1+
% CPUC) x7 = x (1) § (j)(c_j)(—x Y

A nunlklnmwvl\m'l'r o

i

and applied to the right:

P oty G A <
2

A A B 14+x J
= ( 3 —
X X ‘j)(A-!-B-C—j’ =)

A~C :
A QHx A 8, .14
ED T oG

In the last step we replaced j by A-C+j, and this completes the proof since

and
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