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ABSTRACT

A unified approach is applied to the derivation of a number of formulas

for the probability of signal detection and the probability of false alarm.

The context is incoherent integration, with fluctuating signal-to-noise ratios

and/or fluctuating thresholds. The standard results are obtained and extended

to more general fluctuation models. A fundamental duality is established

between fluctuating signals and fluctuating thresholds and used to simplify

the derivations. Also included is an expression of the cumulative

F-distribution as a finite sum of Ilarcum Q-functions.
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I. INTRODUCTION I
In a wide variety of signal detection and binary decision problems, the

evaluation of performance reduces to the computation of a number, P, defined

as the probability that one random variable, u, exceeds another, called y.

In symbols,

P =rob {u ) y}

and u represents a processor output which is being tested for signal preser-e,

while y is a threshold, which may be a constant. In all cases considered

here, u and y are independant, and u is the result of incoherent summation of

N complex-samples each containing signal and noise components. These

quantities, z, represent I and Q output samples of some coherent processor

and they are modelled as sums of signal and noise terms:

z =s + w
n n n

U The noise components are Gaussian, independent and with zero-mean, all sharing

the same variance:

2 2
EIwn I 2a ,

n -

and all having the circular property

2
Ew =0.
n

I Various models will be used for the signal components, corresponding to (and

extending) most of the "fluctuating target" models of the radar literature.I The random variable u is the normalized sum

- N 2(1)

1z I

202 n=1 TEN



hence its probability distribution function (pdf), conditioned on the signal

sequence, {s n  is

N-1

(u,a) = e- (u/a) 1 2 au (1-2)

~In this formula, N-

n as 12  
(1-3)

a 2 n

and In is the Bessel function of imaginary argument. Since the signal I
components enter this conditioned pdf only thrcugh the sum a, the "random

signal" models will be represented by postulated pdf's for a.

In a similar way, "fluctuating thresholds," such as those arising in CFAR

problems, are represented by putting y=cx, where c is a scalar multiplier,

and x is a random variable. Various pdf's are postulated for x, including the

pdf f (x,d), with fi:.ed or fluctuating parameter d. Ordinary "linear CFAR"

is represented by this model with d=O.

P isthestanard~1arum%2,3)
When a and y are constant, P is the standardlarcum Q-function 2' which

must be computed from an infinite series, used together with a bound on

(4)truncation error. An efficient algorithm has been described by Shnidman,

which involves recursive computation of the terms, along with several

refinements which improve computational efficiency. The standard series,

(Fehlner's formula, see Section 6) was used by litchell and Walker(5 ) as the

basis of a systematic derivation of expressions for some of the cases

presented here. Because they start with an infinite series for the Q-function

and obtain their results by averaging over various random models for a and/or

y, all the expressions obtained are in infinite series form. Although all

these series solutions lend themselves readily to recursive computation, it
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happens that in most of the cases (except the original one, where both a and y

are constant), finite-sum exnressions exist and many of these can be found in

the literature.i 1

In this study, we start with an integral representation for the

Q -function, instead of an infinite series. Then, in analogy to the method of

Mitchell and Walker, we derive the desired results for random a and/or y by

averaging this expression under the sign of integration. Then, by simple

changes of the variable of integration, the integral representation is itself

used to obtain the desired finite-sum expressions. In all but two cases, the

terms of these sums are elementary functions, easily computed recursively. In

the two exceptions, the terms of the sums are themselves Q-functions. One of

these, actually representing the cumulative F-distribution, is the source of a

series of generalizations of the standard fluctuation models.

When a=O in formula (1-2), the resulting pdf will be called gN(u):

N-1
Sgu)=fu, ) = u -u f4

(NI) e (1-4)

This function, the chi-squared - with 2N degrees of freedom, is used to

model signal and threshold fluctuations for the standard formulas derived in
Section 4. Only integral values of N are used, since non-integral values (as

in the Weinstock cases (6)) do not lead to detection formulas of finite form.

Fluctuating signals are modelled by postulating that the pdf of a is

f (a) = g gM)(1-5)

where M and b are fluctuation parameters. In this model, the mean valte of a

is

a Mb, (1-6)

and according to (1-3),

3_
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Is I
2 1 n

-=We denote the a-erage signal-to-noise ratio for a single sample by "SNR, so

that

a =
for a fixed signal, and

SNR M-b(18N N(1)1

for a signal fluctuating according to (1-5). The standard "Swerling cases"*

correspond to H-values, as follows:'7

Swerling Case M Value

2 N
3 2
4 2N

When (1-4) is used to describe a fluctuating threshold, we write

y =cX,

and use

for the pdf of x. The pdf' of y is then

f (Y)f~ (1-9)

4 4A



This model represents linear CFAR, and the variable x is the result of

incoherent summation of L complex samples containing only noise of the same

variance as that of -he signal samples. The terms of this sum are normalized,
2

just as in (1-1), by the true noise variance, a , but these normalizing

factors cancel when the probability that u exceeds y is computed. If the

noise samples are known to have a different variance than the signal samples,

the variance of the signal samples is used for normalization and the variance

ratio is absorbed into the constant, c. Note that x is the sum of the noise

samples, not the average, which affects only the significance of c.

The fluctuation models are generalized in Section 5. First, the pdf,

f (a) =; t-t d), (1-10)

is used to describe signal fluctuations. The expected value of a in this case

is a = 0Hd)b, hence

i. dSNR = b(1 + (1-11)

This case is of rather academic interest, and the dual problem with fixed I
signal and threshold y=cx, is more interesting. The pdf of x is taken to be

fo(x) = fL(X,d), j
which models linear CFAR, with L samples in the threshold, but with signal

components (unwanted in the CFAR application) included in these samples. Only U
the sum of these signal powers affects the pdf, and the average

signal-to-noise ratio, per threshold sample, will be d"L.

In further generalizations, a is allowed to fluctuate, using the same
models as in Section 4 and also (separately and together) the new threshold I
signal components are randomized using the pdf

5



I d (-2
f (d) = g (1-12)

for the parameter d. The average SNR, per threshold sample, in this last case

is Kh/L.

A key feature of the basic approach is the duality between fluctuating

signals and fluctuating thresholds. In Section 3 a useful artifice is

introduced which allows us to obtain the detection probability for a fixed

signal and threshold fluctuating according to a pdf, f (y), from the solution

of the dual problem, where y is constant and a fluctuates with the same pdf,
f (a).
0

The results are collected without proof in Section 2, and the basic

method is developed in Section 3. The standard formulas are obtained in

Section 4, and some extensions of these results are given in Section 5.

Finally, in Section 6, some alternative finite forms are obtained and
for ore co~on case a derivation of the finite form directly from the

equivalent infinite series is given.

ii. OLLECTED RESULTS

The results of this study are collected here without proofs, all of which

will be found in the next two sections. In all cases, the assumptions and a
conditions are spelled out in detail, but detection and false alarm

probabilities are called simply PD and PFA' since the number and variety of

parameters become too great to list as arguments in some of the cases. The

following conventions are used for the most common parameters:

Parameter Significance

N Number of "signal-plus-noise" samples

integrated for detection.

L Number of "noise-onlyf samples 4
integrated to establish a CFAR threshold.

M Signal fluctuation parameter, corresponding
to chi-squared distribution with 2M degrees

of freedom.

6



K Fluctuation parameter for signal components
in threshold sa'ples, again chi-squared, with
2K degrees of freedom.

a Signal parameter for fixed signals

Signal parameter for fluctuating signals

c CFAR threshold multiplier

d Parameter for fluctuating signal
componens in threshold samples

Three functions enter these formulas. These are defined here and

discussed elsewhere.

(1) PN(Yv a).o  f fN(u,a) du , (2-1)

Y

where f, is given by (1.2). P(Y,a) is the probability of detection rort1

fixed, normalized total signal-to-noise ratio, a. It is essentially the

Marcum 0-function for incoherent integration of N samples.

N-I m

_V Y
() N(y) =PN(Y,0) 2! e '"(2

m

S() is the false alarm probability corresponding to PN(Y,a). It is comnuted

recursively:

(y) (Y) + T(Y)

T T(y) (.-3)

1 (y) T (y) = e -y

7
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N-i
(3) RNyM (l nl) (2-4)

nw.0
These functions are also computed recursively:

R N+l (YM) RNYM + VN(Y')LJ( Nl

14->1

Vu(Y'M) (1 + -~ yVNlI(YM) (2-5)

R (y,M) =V (y,M) 1I

The probability density functions used for the flu .uation models are

N-I1

a nd x N-iI~

-=M7

N-1 A

A. Non-Fluctuating Signal

In these formulas the signal components of the random vp-iable being

tested for signal presence are constants. The average SNR per sample in all

these cases is]

SNR =a/N.

(1) Fixed Threshold, y

8



p P (y,a)(2)

IFA S S(Y) (2-7)

(2) Fluctuating threshold, y-cx, pdf of x is

f W(x sg W

0 L-

~FA - NL- NL N c 2-9

lc IP =I
D (x) fLNxLd) .~ lS(28

N= tN-l 9++

1__ _ N+L- 1 pkd

L- NLl a c (2-90)

NF -l N+L-1 1 0+ c

(4) Fluctuating Threshold, y-cx,codtna pdf of is

f (x) f (xd) 9

---------------------- L=-



f (xld) fL(x,d) ;pdf of d is

SLf (d) 1 d

Condition: K>L

N N+L-K K-L
c (1+h) NLl 2  (KL)(h)

(l+c+ch)NL =

(2-12)
+L-+ ___

X I "(+ch' S a
x N n JC n+1 1+c+ch

(1+h)LK- K-L ,hj
P

FA (1+c+ch) x

(2-13)

NiN+L-1+X
x I ( ) (c+ch)n

n=0

B. Fluctuating Signal, pdf of a is

f (a) 1 a

Average SNR per samplez SNR N

(1) Fixed Threshold, y. F given by (2-7)1

10



H - - -N )£ + (2-14)
(1+1,) .-CI it+ 1+b

M<N:

P D - (-l/b)~ (1+)NM-P (-b)~

S (Y) (2-15)

Special cases:

H-N:

P- SN (jI+-) (2-16)

M-2N:

N 1 (N bts (JL),D (,bN 1X (2-17)

H-i (N),2):

N-i -
PD s~(Y) + (±) e 1+b [1 - 4N-i ] (2-18)

M-2 (N>'3):

N-2 -L
- SN2 y + (1+b) 1 +b {(1 -2) f, _

D N-(y) b N2(-l~11



+b S1 1  ~X 1  (2-19)

(2) Fluctuating threshold, y-cx, pdf of x is

fo(x) g()

P given by (2-9).

Any Hi:

P c)~N~ - N+L-l )c2t. b H)(2-20)D(i+b+c) 1 it X0 NR1z+1 l+b~

(lbN+L-il 11- C L (-1

14 b)N:

(lb b' RNl c L (2-21)

14-NN

1l+b) RN c)b L) (2-22)

PD (l+b+ +b+c

-- P. _+E1++



M=:(lbN+Ll 1 N- N+L1 j1  (b ) 11NI 2-4

(l+b)~L --

D N-2 L+ 1- (N-2) + (N+-1)
b (1-tb+c) ZOi

+ 1N2 N-i-1 N+- 1ic ,~ N(-5

b(1+c) c

(3) Fluctuating threshold, y-cx, pdf of x is

f( x) fL(x,d).

pF given by (2-11)

11 N:

N-i N+L-Ii 11-N£

(l~-f+iLi £- )yjjc x

N+Z-1n N+L+Xl)(L~~r1 S cd -6
I~ L+n c~ n+l l+b+c

13j



Special cases:

M=N:

P c N-i(l+b L N-i N+T-lLb n S d (227
DN+L-i I_ L+n c(±. S~ (-)~
(l+b+c) __ nil=O (-7

'1=2N.

-~ N-1 lb L-N N b
C(1+bc) N lb~

D()+~ N+L+2- l 9 cd (228)

N+L- - cdN-

N-i Le n+ +L-

cd

b +1 i+c (j;c) I l1=0 2-9

Ic n *~cd

- (4) Fluctuating threshold-, ycx, conditional pdf of x is

o 0 xd) =f L(x.d) ,pdf of dis

f 0(d) =h gKh

-=Any 1., K>'L: 4M

14



_(+)NLK 
- N-c 1+c~cIPn I

(+ +cch)

K-(i+ +-b

K-L
x I )( c~c N+n )(c+ch)' R 1  ++c+ch M ) (-0

P FA given by (2-13)]

Any K, MAN:

N-1 N+L-H K-N-L+1

Lc (1+b) (1-b+c)
D (l+b+c+ch)K

H-N t N+X-1 n c
H- -N) be (N+L+-11( +b )_R___(2-31

CN-1i1c K-N-L+1 N-i N+L-1 1 n ch
(1c)h ~ K) (2-32)

FA (l+c+ch) K=

Special Cases:

V=L, any H:

N N H-N-L+1
c c(1+h) (1+c+zhb)

D ~ (l+b+c+ch) m

L-1 N+L-1 _n _b_2_33

x I (~ ; hc+ch) Rl(+~h I)(33
n=o

15



1N-i +-
PFA = N+L-l Y n+L (~hn(-j (li c+chn)

11=N, any K:

N-1 L K-N-L+l N- n+- ibc
& (1+b) (1+b+c) (N Ln- ) R ( h

D Y +b~~ch) n+l 1+b+c+ch *K

(2-35)

PF given by (2-32) -

= C. Fluctuating signal, pdf of a isI

f (a) 1 ,d)
0 b itb

b
Average SNR per sample: SNR = ~(11+d) -

(1) Fixed threshold, y. P FA given by (2-7)

1 11-N 2
= 1 -N I(2_d)-36)

(l\bY 2. N2 +b '~ (

It is often required to evaluate detection performance when the false

alarm probability is fixed, which involves the inversion of the formula for

PF in order to determine the threshold. The Newton-Raphson iterative

method(8) is useful for this purpose, and we discuss its application to the

two most common false alarm formulas, (2-7) and (2-9). The other cases listed

above involve CFAR problems with signal components in the thresho '1 samples,

but these components are usually not anticipated, and the threshoi. will haveM

161



r7: 

-

I!
been found from (2-9). Formulas like (2-11) and (2-13) then show the effect

of the signal components on PFA after the threshold has been fixed.

FA!
Beginning with (2-7), we want to solve the equation,

_(Y) SN(Y) - PFA 0,

for y, where PFA is the assigned probability of false alarm. The

Newton-Raphson iteration is

Yn" = G(v)

where

(y)
G(y) y - ,(y)

and y is a suitable initial value. A gcd plan is to start the iteration

at a point where the derivative, *'(y), is large, to avoid wild oscillation of

the sequence, Yn" This can be assured by choosing y to be the solution of

"(yo) 0,
0

=which will be unique in the applications made here.

= From (2-2) we have

R
N-I m R- 2 m A

4 '(y) S (y) -e-y V L- + e-Y I L.
M=O M=0

17
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1+ 11
N n

I~ -Y

T n ( ) we nav 'rtei fet

S SN(Y) -N-1 y)

fia wh er ,T -() a ercvrdfrteeauto fTe

a (y)e y a! () PF

fnal itermio isy) cnerveed or the ealuation o *(y) Teahesnom

= preassigned small value. We also findI

( N-i)!-I

181



I1
and so

N-11
YO -

is the desired startin~g value. -

very similar procedure can be used for (2-9) with

_ N-I I+-
()=(l+Y) N+L-1 £t T - FA*

(we have retained the symbol y, instead of the c of (2-9)).

= This time,

-- N+L-l r N+L-l

+ I(IN+L-I)! -

N+L-I 1 N (N+L-I) ~£- N. (+2)L

Using the reduction forwIla

_%+- +- IN-aL-2

the quantity in curly brackets becomes



N1 N-1
Z1,, -1 N-1 aZ- - y ( f )J0

Therefore

=- N-i-L-1 N+L-2 I

=-L I N+L-1 IN-i

_ _ _ _ _ I
and if we define

WN(y) (1+Y),N+L1 p 0 U1

then ETA

(Y)= N+L-1£

tandI
-L

i+y 9NI()

Thus the iterative algorithm is based upon

20
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14 y+ - eFA

I and (Y) is recovered from the iterative computation of ;N(y):

I(Y) = I y(v) + QZ1 (Y)

QYy) = ( - !)y QIl(y)

W-0?

i= ¢'(Y) = -MY)

1 0 (1+Y)s4LI I Finally, we compute

N-Ul-2 14y ( -

and therefore

N-yo =L L

provides a suitable initial value.

TIi. BASIC FOr ZATION

-h-, ole analysis here is based on SCifE i'S integral

representation 9) for the Bessel functions. -ie use it in the form

* 21°



2

tn() Ol (3-1)

The contour of integration is a small circle, enclosing the origin in a

positive sense. With this representation, the pdf of u (for fixed a),

N-1

-u-au. 2

ca 1N1ua:e eua) IN-1(2Vau), (3-2)

t+au
-u a N-i 1 td

f u~) e u T2Tei

= Replacing t by ut in the integral, we obtain

ut+a

f (ua) eua e (3-3)d

N' -tN(3)-

This :Tepresentation is more convenient than the Fourier transform

expression,, which can be obtained from it by the ohange of variable t-l-iX.

We carry out this transformation, since we need the characteristic functian of -

flater or.. After substitution, we have

-aa
fe((l..ieXfNN IT

_ 
221



where C is a small circle enclosing the point A = -i. This contour can be I
expanded, without changing the integral, until it runs along the real X-axis

from +A to -A, and then back along an arc of radius A, in the lower half-

plane, until it closes at X +A again. Because of the factor exp(-iuX) in

the integrand, the integral along the arc vanishes in the limit A+-, for any

N=1,2,.... We then reverse the path along the real axis to obtain

a Je~ 7 eiUA 1-iA d

-- i- e d
fN(u,a) N .
N- (l-i) N

The inverse transform gives the characteristic function

- 1 -i _ _

f eixu fN(u,a)du = e-a e- 4N(X,a) • (3-4)N)N0 (l-iX

Recalling the definition of a in equation (1-3), we can write *N(A,a) as a

product:

an
N -a l-iX

n e

n=l

2 2
where a Is 1 /20 which corresponds to the definition of the random

n nvariable, u, as a sum. Each factor here is the characteristic function of a

non-central chi-squared random variable, with two degrees of freedom, and -, is

non-central chi-squared with 2N degrees of freedom.

From our basic integral representation for f N(u,a) we obtain the "no

signal" special case,

23
_ _ - -= --
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-u 1 ut d

fN(u, 0 ) e- 2-i f eUt dt t c tN-

This set of pdf's will be used to model fluctuating thresholds and signal I
parameters later on, and we introduce the notation

g(u) f f(U,O).

Evaluating the contour integral for fN(u,O), we get

1 N-1 -u I
N (N-g)! u e , (3-5)

which is, of course, the chi-squared pdf, for 2N degrees of freedom.

Obviously, Eu-N, if gN(u) is the pdf of u.

The "probability of detection" corresponding to the pdf fN(ua) is

denoted PN(y,a) and it is defined by the equation

PN(y,a) f (ua)du (3-6)

y

Our notation differs from the standard one(4) in that we retain the same order

of the variables as in the pdf, and the parameter a is the "total SNR," as

defined in Section 1. The advantages of this choice seem worth the cost 6f

departing from common usage. In terms of PN' Marcum's: Q-function is

2 2
0 a

QN( ) 0PN( -, -

24
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To obtain an integral representation for PN' we substitute the

representation (3-3) in definition (3-6) and reverze the order of

integration: =

a

CO=

-a i e-(l-t)u du -PN(ya) e t Itie e d N

Since Re{l-t} > 0 on the t-contour, the u-integral is uniformly convergent,

thus validating the interchange, and we obtain

yt a
t dt 431

P N(ya) eYa 1 t e(3-7)

This is the fundamental representation for PN' used throughout this study.

A second representation is obtained by making the change of variable, t+l/t,

in (3-7):

at + N-l
i 1 I e t tdt

The contour now is a large circle, including the simple pole at t=l, as well

as the essential singularity at the origin. The residue of the integral at

the simple pole is exp(a+y), and hence we can write

25



at +_ N-

PN(y,a) -e y -a 1 t tN- dt
2N- It!=e l-t (3-8)

where the contour is again a small circle enclosing the origin.

Both representations are useful and we note that the integral in (3-8) is

just like the one in (3-7), except that the variables y and a are

interchanged, and the factor t appears with a non-negative exponent. In other

words, we have the evaluations

II
at +(n P n(y,a) ;n00-y-a 1 yt t t-dt PnYa ;n0

TITI 1-t
l-P ~(a,y) ;nQ0

It proves to be exceedingly useful to define PN(y,a) for all integral N by

means of representation (3-7), with the understanding that

PN(y,a) 1 - eN+l(a,y). (3-9)

This artifice allows us to exploit the duality between threshold and

signal parameter in the following way. Suppose the signal parameter is

randomized, according to some pdf, f (a). With fined threshold, y, the

probability of detection will be

FN(y) f PN(y,a)f(a)da, (3-10)

26
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Now suppose the right side is evaluated for positive and negative N, using

(3-7) as the definition of PN(y,a). Then the dual problem, in which a is

fixed and y is random (with the same pdf) has detection probability

fP (y'a)f (y)dy f [1 P (a,y)] f (y) dyI

I F Fi (a) .(3-l1)

This technique saves the needless duplication of calctilations, which would

otherwise use (3-7) for one set of problems, and (3-8), in a parallel way,

with the dual problems.

The source of this duality is, of course, the basic pdf. The fact Phat
X

I (x) = I (x) can be proved from (3-1) by making the substitution -n 
-'.

in the integral and hence from (3-2),

N

f (u~a)-) I (2/a-i) T
fN1 ul a e au N

N W
-a-u a 2e ( ,(21au) .-

Thus we could define

f ~(a,u) f f~(u,a), (3-12)
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and this definition is consistent with (3-6), extended to negative values of

N. integration of both sides of (3-12) over a yields

I If~(a,u)da P1 (b,u) 1 P P(U -Al

f IfN+, (u,a)da,

I or
PN(y,a) 1 -f f 1 (y,a')da', (3-13)

aIV
an interesting result which also follows directly from (3-3).

The probability of false alarm for fixed threshold will be denoted I
From (3-7) we have the integral representation

S~ e - 1 yt dt

N>4, we have

- -y dt
-y e 2m i It[=, et N-m
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after expanding (1-t) , and then

N-1 m

SN( =-Ym0 N- Y . (3-15) 

===

The series terminates, since there is no pole at t=O when m)N. Of course,

S.(y) f gN(u)du

y

which again yieids (3-15) after substitution of (3-5) and repeated integration

by parts.

From (3-14) we have

S (x) 0 n0 • (3-16)
n

This is completely consistent with (3-9), since

SN(X) = PN(xO) 1 - (x)

and

PN(O,x) f N(u,x)du = 1,
0

by normalization.

We proceed now with the general problem of detection with a fixed

threshold and random signal parameter. As above we let f (a) be the pdf of0

a, and we define the characteristic function
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o() f eaf (a)da . (3-17)
0 o

We evaluate the detection probability by substituting the integral

representation, (3-7) into Eq. (3-10):

a LSYt + - U4 e- -

-y-a t dt
F(Y) ff (a) e - e ft
N 0 0 2ri t e t(l-t) I

We want to reverse the order of integration, which will involve the evaluation

of

1
cc - -l )a

f e fo(a) da .
0

For this integral to converge uniformly, it is necessary that Re(i- t) > 0,

which will be satisfied if we can arrange to have itl>l. This is accomplished

by expanding the original contour, Itl = e, until it becomes a circle with

radius larger than unity, and compensating for the for the effect of the pole

(at t=l) now included. In other words we write

-y-a 1 yt + t dt

30It= t (J-t)

30
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yt + a

+ l eya 1 e t dt

and then reverse the order of integration. The result is

] -(i- )a d

F(Y) + e - eYt e f d aN Ifi 0 tNFI

i1

The integral over a yields 4oUi(l- 1)], with uniform convergence to justify
the interchange.

Now

_ It° (m) < !

I 1-- ilIt -gl = -,

in the t-plane. It will be true in the cases considered here that ,(X) is
01

analytic when Im X > - c, for a suitable positive C, so that 4o i(l -
t

will remain analytic for a small but finite distance inside the circle

It - 2I . This will allow the t-contour to be shrunk just inside the unit

circle. Since ,(0) 1, the pole at t=l is simple, and hence
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F()1 + e-t -1 fi~ eN

or

- tI dt (-8
(y e [i(l )] 3-8

FN~ 2uri Itl 0 t N

This is the basic expression which will be used throughout this report.

IV. DERIVATION OF TIHE STANDARD FORM4ULAS

We begin by randomizing the signal parameter, using a general even-order

chi-squared pdf for a. In particular, we postulate

0 b lib

where g (x) is the pdf defined by Eq. (3-5). The characteristic function is

- then

* () =J eAa a
o -P b

00

(1 ibA)

32
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a special case of (3-4), namely 4(b.,O). With this model,

Eu Ea + N =Ib + N;

and if II t kN, the result is the same as assigning to each component signal

parameter, a the pdf

1 a a
f(a 1 f n,r = f~~an ) = gk'._b;, _

with each component independent of the others. In this case, Ea = kb. The
n

Swerling cases 1, 2, 3 and 4 correspond to the H-values 1, N, 2 and 2N,

respectively.

We note that

.0 t (l+b)t-b ,

and abstitute in Eq. (3-18). The resulting expression for the detection

probability is

P = e- y  1 J eYt t dt 4-2)
" It=-$ [(l+b)t-b] (l-t)

A basic difference appears now, depending on whether HIxz or !N. Ue suppose,

first, that I , so the only pole in (4-2) is at t=bi(l+b). We shrink the

contour to a small circle enclosing this pole and then make the change of

variable
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tt =

s+b (4-3)
t+i-b

In the s-plane the pole is at the origin and we also have

1-s,

1 - t = l--

I-I

so that

dt = ds
l-t 1-s

This substitution yields

y " s H-N
l+b 1 el+b s+b". ds

2- si = e l b s(l-s)

Next, we expand the factor (s+b in a binomial series:

1-N +b -1 s

1 bc e es fe
(1+bY- £= £ s (l-s)

and evaluate the concour integral by means of (3-14). The result is

I =- 1 -N Ik sb S (4-4)
(l+b)U -  £--0
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the desired expression.

The false alarm probability is, of course,

PFA SN(Y) (45)

as it must be for any fixed-threshold model. Note that our pdf, fo(a),

approaches 6(a), as b.O, and Ao(X) + 1. One can also put

b =a 

and let I1+a. In this case f0(a) approaches 6(a-a), and oo(X) + exp(iaoX). 3
while PD is transformed into a standard, infinite-series expression for

PN(Y!ao ) (this is Fehlner's series, which is discussed in Section 6).

For !=N we have the familiar Swerling case 2 result

P =.5 (Y~~ fl1=N)
D Nl'-b ' '

so favored by radar analysts. Whenali=21, we obtain the Swerling case 4

expression

D 1P i t N V ( ) b t () 0) ( M = 2 N )

4 ) £ l0

Whea i'WN we write a- as

PD = e -y ey t  dt

L l-c [(I+b)t-bV t - 0 ,'(l-).I

-- - _ _ _ - _- - -
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I

and proceed differently. The integrand now has two poles, and we write

PD 1= 2 +P2 (4-7)

where the integrands of P and P are the same as P., but the contour for Pl
is a small circle enclosing the pole at t=b/(l+b), while for P it is the

2
circle It=e .

The evaluation of P is the same as the case just analyzed, which used

transformation (4-3), up to the point where

- Y b -(N-) d

l+b 1 l+b s+b_ dsV
If l"s (l-s)

This time the expansion is an infinite series:

s+b -(N- I) l+b N N-H-l+.l~b =(-b- ( )(-slb) =

l+b b £

which converges since IsI=r and e can be chosen smaller -han b. When this

series is substituted and the integration performed termwise, only the terms

with £'fl contribute, since beyond that there are no poles. Theiefore,

IFb - 1

N- 0 f -lS ( (4-8)

where (3-14) has again been employed.
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P2 can be handled in a similar way, without changing the variable of

integration from that used in (4-6) but expanding

i i tl 0-1+g (lb t))
[(i+b)t-b] = (- £ t)

I= 0

Again, since Itl=i , convergence can be assured and we get

11-l+£ l+b dtt'--/b-- e-y  i d
2 Y ( - 27ri It£=0 Ite tNI- £(l-t)

This time the sum stops at £=N-4i-l, and the integrals are evaluated using

(3-14). Altogether, after reordering the sums to get an increasing sequence

of S-functions,

PD P P1 + P 2 = (-i/b) ("N-il-£'(-b) X~

N-li

X=11

• ~+ L M - 1 (P Y ) ( -)

The usual application of these formulas will be to Swerling cases 1 and

3, where 1=l and 11=2 respectively. For these or any small values of Ii,

another expression is more convenient. It is obtained from (4-6) by writing
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t--J

(1+b)t-b =
1-x-

where

1+b <1

so that

(1-x) d 1M_

- ~ 7ta (4-6) becomes

=(1-x) d ey 1 dt______ (4-10)
(14-1) dx 271. 1t = - e t t I(1 t

We use the partial fraL. ion expansion i
(x)1-t 1- 1t 1-

and put
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D(1-x) ~ x A22

where I
-- y 1 1 dt i

-x e 2 1i f eyt( 1Lt - N-if

1 et

NH 2ri tfE N-41( -

xN-M ~ ~ x- )ff t y N1,t

(x- y

- Since

= (l-X) d 1 = 1
(11-1)! dx -x
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the complete expression isr

P - + (l-x) d 111 e (4-11

where -4 SN_,lxy) ((4-1)1)) NI~(Y]

x =1+b

= The identity

xy [i-S (xy)I y ex[l Sm~ (xy)]

which is easily verified, makes the evaluation of the derivatives in (4-11)

relatively straight-forward.A _2

For Swerling cases 1 and 3 we have:

P 1 1 S (Y) + lb Nle [1 S _) 1b (4-12)

D ~ .. () N-1N- -- '+ - N-i)O(-3

and

-4bl+b {(l-N2)[

+ 1b - 3 1+b
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By writing

by

N-1SN-1 l+b N(1+b (N 1 -I

and substituting into (4-12), it follows that this equation can also be

written

y
e[1 (4b12y l+b.N-i - l+b 1+b (1

In this form, (4-12) is also valid for N-1, in which situation Swerl... cascs

1 and 2 coincide. By a similar manipulation, (4-13) can be written

-t N
N-I l+b.N-2 l+b - 2

N-i (l+b) (N-2). b e

byx [1- SN_~; (4-:13)1

which happens also to be valid for N=2, where Swerling cases 2 and 3 coincide. I N

We turn now to the dual problem of fluctuating threshold, as in linear

CFAR detection. The signal parameter, a, is fixed, and the threshold is

written

: y =CX,

~41
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where the pdf of x is taken to be gL(x). Thus x corresponds to the sum of L

random variables, each with the exponential pdf

-x
g1(x) e

In other words, x is the result of incoherent summation of L complex samples

of noise alone, the noise samples having the same variance as the noise

compoaents of the samples, z which contribute to u. We can call these

noise samples x. and then

y L Xl+...+xLC cL

The average of the x£ is the noise level estimate in CFAR problems, and the

corresponding threshold multiplier is cL. With this model, the pdf of the

threshold variable, y, is

fo l 1 ( (

(Y)=- g (4-14)
0 c L'c

and the required detection probability is

PD f PN(ya)f(Y) dy. (4-15)

0

According to Eq. (3-11), this is obtainable from the solution of the dual

problem:

42-
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PD 1 l(a~y) f (y)dyA

0

This, of course, is the problem we have just solved and we have only to _

make the changes of variable

y+a

b+c

in, for example, Eq. (4-2). We note immediately that the case previously

called '110N" cannot occur, since the old exponent 14-N becomes N+L-l in the

= dual problem. Thus (4-4) provides the desired solution:

~, ~l- _______ N+-L-l N-L1
D N+L-l )c S (a

(l+ L- 10 £ +l-N lic'

Since S (x) vanishes unless m>0, only the terms in this sum having 9>14m
- survive, and our resul.t can be written In the form

N 1
P c~L - (+1 C cit S (a) (4-16)

c) X+ll0
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It may be verified that this result is also obtained by a direct

calculation, starting frcm (4-15) and using representation (3-8) for P ThisFNcalculation closely parallels the derivations of Eqs (3-18) and (4-2).

The false alarm probablity is obtained by putting a=O in (4-16) and

noting that Sm(O)=l:

mI

N-1N

N- FAN+L- ) c (4-17)-FA ( !j"4'I-i
1+=0

and (4-16) can also be written in the form

NL I £ I--
* ~D ~FA + c y N+L-l- *-( P + N+L '1 [1 + (4-18)

The probability of detection when both threshoid and signal parameter are

random variables can, of course, be approached from two directions: we can

start with random a and fixed y, then averaging over the assumed pdf of y, or

proceed in the reverse order. It turns out that both methods yiel4 useful

formulas, not easily transformed into one other. We start with (4-16),

a-veraging over the assumed pdf of a:

f (a) 1 a0oa  b m gMb ) " (4-19)

To carry this out we need the integral
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f S .px) it (x) dx

0

- £ n -x mn

m0 f e x &,(x) dx

0

Xm£ 1 e(+X)x dxl~

I (U1+m m(4-20)
m mI

This expression recurs in several of our formulas, and it should be noted that

index I occurs only as the upper limit to the sum. This fact will facilitate

the recursive calculations of double sums, like (4-21) below.

When (4-16) is averaged over (4-19), we make the variable change,

abx, to obtain

N L-1-
Sc NL.) X f bx

PD N-1-- N'+4 P SC( - g(x) dx,
__(1+c) 1=0 0

and now (4-20) provides the desired result

cN 11 L-1 N-M- £ (I1 i)bi

D N+L-l 1+b-lc m + n 1bc (-1(1+C) X=0 m 0
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Equation (4-21) is valid for all values of I, and it is particularly

convenient for Swerling cases I and 3, where 1-=1 and 2, respectively. The

falsa alarm probability is still given by (4-17).

For ll=1, the m-sum is simply

X +!

b m l+b+c

and (4-21) becomes

N LIPD=1- c L- I N+,L) £ .1 - b "(ic N+ - -10(

N+L -I N+Z-

1 +1 Ll (N+L-1 b-
(1+c)

The £-sum is now rewritten as the difference between a full sum (Z runni-

from zero t) N+L-l) and a partial sum, where £ runs from zero to N-l. The

final resul: is (1=1):

1+b, N-1 1+b L 1 N-1Nl-( _
PD %-b'-" 4 c + N+L- I ( )c b

(l+c) £b0 ;

(4-22)
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V This formutla is convenient because it has N terms, rather than L, and N is

U usually the smalier number. It can also be obtained from (4-12) by averaging

over y. When N~l, (4-22) becomes simply

L (4-23)
PD

In Swerling case 3 (11=2), the rn-sum in (4-21) is

m +

j m0U- (.t+2)ul+ (l~

where

U b

A calculation which paral'els the derivation of (4-22) yields the result

(M=2):

1 +b N-2 1+b L+c
D (-) b C-

++1,-I c (N2)+(h+LI)

£0(4-24) 1M

__When N=2, this formula reduces to __f
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Li) [1+(L+) ] . (4-25) 7
=When ', another f ormul a is more conveni -nt than (4-21). It is obtained

by starting with (4-4) and randomizing y, thus reversing the order of

= randomization that led to (4-21). Tlhe pdf of v will be

~0 C c A

and we getA

11-N

0

We change variables (vycx) and use (4-20) tc findI

1+b L 1 -M1 4mcN "i+1_

(lb1  C- ~~ by'~ (L1) () (4-26)

The false alarm probability Is still given by (4-17), and the fact thatI

(4-26) reduces to (4-17) when b0O rests upon the useful binomial Identify

I
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which is proved in Appendix 1.

When I=N (Swerling 2), (4-26) becomes

S b L L-1-t c (4-28)
PD 1+b+c ~ M (L )(&)m014

For N., Swerling cases I and 2 coincide, and (4-28) becomes (4-23) in this

case. Likewise, when N=2, cases 2 and 3 coincide, and (4-28) then reduces

(4-25), as it should.

For Swerling case 4, !1=2N, (4-26) becomes

)L 1- N b (Ll2) . (4-29) 1
(1+b) £=O m-=O

V. GENERALIZATION OF THE FLUCTUATION MODELS

In Section 4, when a parameter, say y, was randomized, a pdf of the type

gT (y)

was used, introducing one new para-meter. In this Section we generalize by

using, instead, a -signal-plus-noise" type of pdf, such as

1 _ v-
-1 f-d;
c L c

This generalizes the chi-sqt-iared pdf to a non-central ch-squared, and adds

49



another parameter. Tne model is equivalent to the postulate y cx, where x

- has the pdf fL(x,d) as defined by Eq. 3-2.

We begin by randomizing the signal parameter, a. We put a=bx, where x

has pdf f 1(x,d). In other words

1 aa (5-1)
0 b M b

and the cijaiaiteititcdlunction is

l-ibXI
=iXbx -d e

0M)E e =e M

- according to (3-4). To apply (3-18) * we rpruire

[0i(l e6 +btb exp [I I-

and then

p -y-d 1 ; x t d CM- dt
D1r (1+b )tb M
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We confine ourselves to the case H>N and, following the previous analysis,

make the change of variable (4-3). The new feature is the exponential factor,

which becomes

td dsbd 1bd
(1+b)t-b s l +b sH-b

With tep deiionsj*)ex(~

we haveI

D y- 1 s- h)b (sb bd(-3
D 2b9i f 1+b 1 CIA

II-N
onl hetroOre mainsxp and the fal se aarm prbaisty edaucet the

exptedalueig(-) h euti

PI-IH-N X y U
P b P (551
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PFA SNy) (5-4)

The analog of Swerling's case 2 (M=N) is the simple expression

PD PNlblb Y (5-5)

A result of this kind is to be expected (whenTI1=N), since each complex sample,

=z is now being modeled in the form

=n n n

where I
s b (s+ wl)n n n

The new "signal components," s', satisfy

-n

2a 2=

while

n n
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As a consequence,

z = vl+b (s" +w)

where

2 2

and IId

2 2 l1+b

Equation (5-5) then follows, since the new effective threshold is y/(1+b).

= In the dual problem, the signal parameter, a, is fixed, while the

threshold is randomized by the statement: y cx, when the Pdf of x is

f L(x~).Then

yf (Y d) (5-6)
0 c L'c M

and the detection probability is obtained from (3-1l) and (5-3) by making the

chan,,es of variable

N-*l-N

b+c

y+a.
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I
Parameter d is unchanged, since it plays the same role in both problems. We

obtain

1 N+L- (N+L cd (PD = i IcNL_ I - £ )c X P+_N- , ), (5-7) [

k£=0 I -=

which is a direct generalization of (4-16). Expression (5-7) reduces to i

(4-16) when d=0, since the terms £=0 through Z=N-l will vanish in that limit.

Although (5-3) contained only P-functions with positive subscripts, (5-7)

involves negative subscripts as well. The latter are evaluated by means of

(3-9), but first it is useful to apply (3-9) to all the terms of (5-7), to I
obtain the formula

N+L-I 1

1 N+L-I cd a (8P D I i Z c P ) N-Z£q Y ' W) (5-8)

E1

Formula (5-8) is the basis of later generalizations, since it is more compact i

than (5-7) and also contains the parameters a and d, in a "natural order."

For computation, we split the terms with positive and non-positive F

subscripts, using (3-9) on the latter:

PD 1 i N I N+L-I X2.)P D c ) N cd a
(l+c) 1- .0  PN-2 (-y, j)

+ L (N+L) J[- (--- , -) (5-9)
X .+l-N H-c l+c
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Finally, the first sum in (5-9) is reversed, and the index redefined in the

second sum to obtain the result A

N (N-1 * c

c L+3 CT- T

DL-l~c +- = +

+ N+Ll- . a cci
+ 0 N+ [' P 1 £~jT i (5-10)

= To obtain the false alarm probability, we put a=0 in (5-10) and note thatA

P (0,- =1, and
X+1 l+c

c .d ) S cd

therefore

cN - N+L-1 1 (Ad
~F (+) +2. C 41S + (5-11)

which reduces to (4-17) when d=0.
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As mentioned in Section 1, the present model describes the performance of

a linear CFAR system with a non-fluctuating signal and with other signal

- components in the terms used to form the detection threshold. These signal

components are usually unwanted, and they can strongly modif; the performance

of a detection system. One obvious effect of these sIgnal contributions is to

reduce the false alarm probability (by increasing the threshold), which can be I
seen from (5-11). All the terms in that sum are positive, and S + [cd/(l+c)] -

is a decreasing function of d, since S (y) is the false alarm probability of a

system with n samples and threshold y, which decreases with increasing y. The

linear "CFAR" loses its CFAR property with this change in the statistical

properties of the noise. It is evident from (5-10) that P is reduced by I
D

these signal components also.

Since PD is the probability that u~cx, we have I
D

I-PD  Prob [ c].

D x

Thus 1-P is the cumulative probability distribution of the "non-central F"
D

random variable, p u/x. Both numerator and denominator of this ratio are

non-central chi-squared variables, and (5-10) provides a basis for computation

which is more convenient than the standard series, as given by Springer.(10)

When d=O, the variable x becomes simply chi-squared, and the resulting

c mulative probability distribution is a finite sum of elementary functLns,

given by (4-16). It should be noted that all the chi-squared variables

discussed here are of even order, and this accounts for the relative

simplicity of the formulas.

We now extend our results by randomizing a and then d, finally treating

the case where both a and d are random variables. We begin with a, and W

postulate for this parameter the pdf
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fo(a) = (A g 1(') ,

as before. Both sides of (5-8) are multiplied by f (a), and integration over
0

a is carried out after the change of variable: a=(+c) x. We get

= 1 N N+L-l1 f (cd , x x)c l dx
D N+L-l k I '-X 'Ic b ~ ~ b(1-+c) X=0 0

(5-12)

The integral is the probability of detection for a fixed threshold and

fluctuating signal parameter, and hence it is expressible by means of the U
results of Section 4 with the following identification of variables:

N +N-z

cd 0-13)
y +

b

However, the sum in (5-12) may have to be separated into two parts, where

N-)tl in one part, and N-kC4 in the other, unless tl)N, ia which case all terms

are of the same type. We carry out this procedure only for the case 11=1

(Swerling case 1), before making the assumption that IIN.

When 4=1, we write (5-12) in the form

P I+- N+L- CI X(M)D N+L-I
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N+L-l

+NL C£ ( t (5-14)

and use (4-12) to evaluate X(X), and (4-4) for Y(X). First, we recall that

(4-12) itself can be written

N-i
P S 1() +b 1+b by)]
D .(Y + e [l S ~ (4-12)

which is valid for all N1l. When the variable substitutions (5-13) are made,I

we find from this version of (4-12) that

cd 1b~cN-1-1 cd
______cd 1+~ 1+b+c [I Scd

+ b e 1~ N-(X l+ +b+c

In the corresponding sum over X, we write

N-1 -L- N-1 IL1 --

~ c XWz) ( L+x N- 1 - )

to obtain an increasing sequence of S-functions. Then,

58



_ N-1 N-i1 +- ~ ~ 1 d~-

D N+L-1 L+i~ (1 1 £+l' 1+
(1-Ic)0

cd
+ 1+b+c) 2. +b+c b dI

e ~ [1 . 1 l+c ,.+b+C

N+L-1 _

+ N+- NL)c 2 Y(.) .(5-15) -

(1-0I-c)

To obtain Y(2., we use (4-4) with the substitutions (5-13) and M1=1:1

1+ -N+2. 1-N1+2. M.b i cdv

mCO m!i Si~ ~ 2

In (5-14), Y(2.) enters only in terms where 9>11, and also, the S-function is

zero unless m>2.-N. This occurs in only one term of the in-sum (the upper

limit) hence

Y") rIb+c) 1l+b-tc

-x
Of course, S ~' e ,and we obtain

59____1



N-C- N+L-1 1( Sk -

p c -- IX S S )F
D ( )N+Ll L+. c X+ 1Ic

+ e1+ c k£0 (~)i 1-S

N-1-

- +~ e Ll( N+L( lb~ bcc

+)
+ I- +Xbc (5-16)c Ib~

Y=O

IH
N+ +- 1+b+c N+L- bc (-6

N+Y 1+b~c

N-1 Ljl -L L-1L-

= ( N+L-1 1+b+c ) + N+L-1 )(bc

bc 1+b+c N+L-1

--
(be) N1(1+b+c)L
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Therefore finally,

1IbN-1 L - cw p ()1 +b 1+b c
D +b~c e j+~

+ N-1 IN-i NL)( d-
lc) N+L-l ejd) S

cd + b c £ b cdZl

bc 1+1 l+c l+b+c

The corresponding false alarm probability is still given by (5-11), and it can

be shown directly that (5-17) converges to (5-11) as b+O, and to (4-22) as

d +0.

Wie forego a similar analysis of the Swerlizzg case 3 problem and return to

(5-12) with the assumption that )N. Then (4-Is) can be used for all the

terms, and we obtain

1 N+L-1 +-
1D N+L-l £

(l+c) k__

1-+1+1 t-~ m1 ~)
x0 m '-e ~ - +~ (5-18)
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It is useful to rearrange the sums in (5-18) in order to get an increasing I

sequence of S-functions (to permit their recursive computation), hence we

write N+m-1 = n+l, and eliminate m. The lower limit on the new index, n, is

set by the S-functions themselves at n=0, and the upper limit is seen to be

M-1. In reordering these sums, we note that the original sums over M and

are automatically limited by their binonial coefficients, since ()is zero if

either k or n-k is negative. Tu, P can be written

D _

D lN+L-l n-N+Z)d}_b9n cA
D= XY n +l+Zi\ (p) 5n+l l+b+c~

where

o N-i -N

b "-(l+b+cYM-

and

bc
= l1+b+c-

The lower limit of the i-sum in (5-19) depends upon n.

Next, we use the identity

A - I C-B(1 A-C B) A+X( ) ) )x =x +)AC~ (B ( x, (5-20)
Z C 2 B-
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_ _ -- -- - - -

UL
which is proved in Appendix 1. The sims on both sides of (5-20) are

understood to be limited automatically by the corresponding binomial I

coefficients. To apply (5-20), we note that _

n+l+:Z-N" -n-l I

and then we have

. t£ )C-n-il x

We find that MM

----_ -H & (1-

F -x (l-x) 
-  = l+)LL 1)

and that

+x n  b n 1+* n&r)- (TI) a( (- -

When these evaliations are substituted into (5-19), the order of summation can

be reversed, w~th the result
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N-i N+L-M M-Nk
____1__)_______ be

D 1b~ NL-l+ 9=0 1+b c

x (N+ )(-)S1+b C (5-21)L+n c n 1 I+b+c~

In Swerling case 2 (h-A), the 2-sum in (5-21) reduces a single term; and

L -1

N- L1 N-i N+L-l 1+b cd 52

(5-21) reduces when b=Q.

that (5-21) can be obtained somewhat more directly by averaging (4-4) over the

pdf,

f (Y)=If (Y d) ,(5-23)

0 C

f or the threshold y. The required ..Lgrals,

f Sl(Xx)fL(x,d) dx,
0

are evaluated by writing

64

al



!7 1

~d
f (xd) - PL(xd),
L dx L

then integrating by parts, and using (4-16).

So far, we nave been discussing extensions of (5-8) in which the signal

parameter, a, has been randomized. In the dual problem, the parameter d is
Srandomized instead. This represents linear CFAR with a fixed signal pit

parameter, a, but with fluctuating signal components in the randomized

threshold. For d we assume the pdf

f(d) 1 d (5-24)

and average (5-8) with respect to it. The result is

N+L-1
1 N+L-I k.O a l+c l+c
Lc PN-£(Y'I-c) g3(-"m Y) ' dy (5-25)(D + + L- I  00

after the change of variable d+(l+c)y/c. We can use (4-16) to evaluate the

integral, which corresponds to ordinary linear CFAR and fixed signal 10

parameter, with the variable changes:

FM L+K
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aa5 a 4-+

ch

- Therefore

-(+ y) a4- ldc l

0

1C N+K-PZ N+K-X-l --l maI

l+c+ch) mI m i+ 1++lNl+ch)

- We assume that K>L to assure the validity of this formula for all t(in

-- particular, 9=N+L-l). When (4-16) was derived, the parameter there called N

-was non-negative, and we are now applying to a more general case. A review of

= the derivation of (4-16) will show that it is valid as long as N+L-1>0, which

- explains the requiremenr K>'L. This excludes Swerling case 1 type models for

- the fluctuating signal component in the threshold.

Substituting in (5-25) we get

K-L N+L-1 N+- lcc
= =1- (l+C) N+K-L-1 ) 1 +c £h

(l+c+ch)N+ 2.0 -M

K-- (N+K-9-1 ~lch~ sm£+ a
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The sum on m has been allowed to start at m-0O, since the S-function will

vanish in the extra terms. With substitution X+N+L-l-1, this becomes

N+L-l K-L N+L-
P ~ c +c ,N+L-1 ri +c

D -l+C l+-c+ch) R, c L +c+ch'

m ch ( a ) * ( 5 -2 6 )

m=0 mKLZ( SL 1+c+ch

Equation (5-26) can be obtained from (5-38) by reversing the roles of the P

original random variables, complimenting the probability, and making the

parameter substitutions

N+L b+h

L+N d+a (5-27)

11+K C+l/c

A form analogous to :5-21) can be obtained from (5-26), either by a parallel

calculation or by making the variable substitutions (5-29) in (5-21). Either

way, the result is

N lhN+L-K K-L *

D lh N+L-l 9 1l+c+ch~
(1-1-c+ch) Y=

L-1+7
N+L-l+ 9 n a

x 2 )(c4-ch) S ( ) *(5-28)

n=O N+n n+llI+c+ch
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It can be seen that (5-28) reduces to (4-16) when h=0, since then only the

term X=0 survives.

The false alarm probability is obtained from (5-28) by putting a0O, which

has oaly the effect of replacing the S-function by unity. But then,

L1+ich - N ILl9 i+L-l +Z n
I (N+Lln (h (c+ch) n )(c+ch)

n= n=N

_(1+c+ch)~L+ 1 N+L-1+Z (5n9
N N n (-fh

-~ (c+ch) (c+ch) nO

- and

K-L K-L 2.K-L

.0~ )h =(1+h)

- The result is that the first term of (5-29) eventually cancels the unity in

- (5-28) and the false alarm probability simplifies to

(1+h)L KL K-L h
FA (l~)N+L-1 k (l+c+ch) x

N-i N+L-1+£)kh n

-x n (ch( (5-30)
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This expression reduces, of course, to (4-17) when h=O.

The final situation, in which both of the signal parameters, a and d,

are randomized is analyzed first by averaging (5-28) with respect to the usual

pdf for a:

In this way, a formula valid for all Mi is obtained, although the constraint

K)L is still in force. Only the S-function in (5-28) depends on a, arid the

use of (4-20) gives us

I S lglah) () d(Cj)
0

M n m
- 1+c+ch) ~ 11-l+m b

m0 m 1~+b+c+ch (-1I

when (5-31) is used to average (5-28), the result isI

N N+L-K L--~
P 1 C(l+h) (+c+ch)L Ll

1- (1+b+c+ch)M

K-L -L h 9 L-l+X. 12
K-) h (N+L-lk )

x 2 lcch)(c+ch) x
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n m

.M~1-l+m. b .mi

x I ( (5-32)

x tM= m )t+b+c+ch) 53)

and the probability of false alarm is still given by (5-30).

To reverse the constraints, we can obtain a formula valid for all K and

11>N by averaging (5-21) with respect to the pdf of d, namely (5-24). The

resulting detection formula is

N-1(+b) N+L-1 (l+b+c) K-N-L+l

(l+b+c+ch)K

-N11-N bc £ N-I+£ " -l+)(l+b n
= I-N)( ycN-~ (N+L l~ Uk l+b+c) I_ L+n cj£=0 n=0

n m

K-m3 ch
0 m )(l+b+c+ch) (5-33)

m=O

Expression (5-33) reduces to (4-26) when h=0, as does (5-21) in the

corresponding limit, d-0. It is possible to show that (5-32) and (5-33) are

equivalent when both K)L and '>N.

The false alarm probability corresponds to b=O:

A
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N-1 l c K-N-L+1 N-1 + - n
N - ) (N4L-l 1

p A ( tK i ~ L+n~c xFA (l++ch) n=O

__} I
x m )(T+- c) (5-34)
M=O

We did not work out the detection and false alarm probabilities for the
analogous fixed-signal case, with K<L, but (5-34) is identical to the result

of averaging (5-11) over the pdf (5-24) for d.

Formulas (5-32) and (5-33) generalize some results of Rickard and

Dillard, (11) and also Wishner's analysis(1 8 ) of the normalized periodogram

detector.

VI. RELATION TO OTHER FORMS

A striking feature of the finite sum detection formulas is the diversity
of equivalent forms they can assume. Solutions to the same problem, such as
(4-21) and (4-26), deduced from different starting points can be reconciled

only with difficulty. In this section, we relate a few of our results to
quite different formulas which have appeared in the literature.

Consider Eq. (4-16) which describes linear CFAR with a fixed signal

parameter, a. It is

N L-11?c r N+L-l 2 a
D N+L- N+ )c S ( -) , (6-1)

(!+c) +
- £=O

which can be written
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= (11C ) (1 F F(L-1)=L1NLl ) (6-2)

where

1NL N+L c a 63
N'C L NJ 1+IC

- Now FN(L) can be rewritten as a sum of terms, each of which depends only on £,

and not also on L, as do the terms T,(L, 1). To accomplish this we write

NN

TNLL T (L,) L N'' I
(LN + '(- 't) +=F

F (L .L) + (6-4) (-~)I+F(Z~)
NN N

where

L-1
A'S(L) TN(L,L) + [ T~,£)-'(-, (6-5)
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f or L>1. Iterating (6-4) we obtain

I (L) =A (L) + A (L-1)+...+IA (1) + F (0)
-N N NNN

DefiningI

A EO F (0) T N(0,0) ,(6-6)

we can write

TN

F ~ I L

which has the desired characteristic.

As applied to (6-2), we have -

I. N+L I

where

- a_

= -.

One finds Ohat
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T (,)S (u) eu

L
TN(L,L) =(j-)~ SL+l(u

and E

T (LI)-T(Ll)
N'

____ L N-L-1~£

(--)L N +1 (l+c)( N+x C SR.+l

L N+1_L- N+-l+

The standard reduction formula3
ET

has been used here. Whien these results are combined, we get

A4, (L) S~± ) UJ Ni)S(u)
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X==1

which holds alsc for L=0. T1herefore4

L -

-u 1N-i--I(Um
F ()e ) Nf--l Sa!

and L noiwpears only as the upper limit of the outer sum.I

itiefinte -sum is a special case of the confluent hypergeometric

(1 .
function; in fact it is a Laguerre polynomial. The basic definition is

L(k) = ~ (-x) (610
L W L k+-a nmm

hence

L
-u 1 (N-I)

i- L+C

and finally_ _

a

e ~ I L(-11 .ca6-l

-+C -- ____-c



The Laguerre polynomials can be computed from the second-order recurson

relation(1)__

L(k)(~) ' (k)+ k )(-2
L -x ( +1-1+) L (-x) -(1 + L(k) )

k z Z-l 1 -

together with

L(k)
L (-x)=

(6-13)

(k)
L (-x) =k+1+Fx
1

The particular case, N=l, of formula (6-11) was given by Finn, (1)whose U

L W~x equals X! (0 (-x'/' in our notation.

it is interesting that the probability of false alarm obtained from

(6 -11) appears in the form

N L-1 -- l U
pF_ =i c~ ) 1 (6-14)

which can be transformed into (4-17) by the use olf (4-27).

Formula (4-4) can be treated the same way, when '1>f. According to (-)

NI
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where

K KFN (K)K b SN (u) (6-15)N (l+b) K  ,V -

and I

y !u - _ZY
l+b °

In this case

TN(K,Z) K b£(l ) b S £tu), . _

and a calculation very similar to the one just given yields

K-i N
e y (K1) b , - KO

1K
(i+b K  Z= . --- )! O

In terms of Laguerre polynomials,

K-i (K-i) (bu) ~  (K-i)! Ni)(bu) t  (K-i)!
£=0 (N+-£)! -(Ni-K-i)! I 4t -= -- ) "- ( °"
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henceV

N
- bu e u (K-i)! (N)

AN (K) e NK-) L l (-bu)

Finally,

K

F N(K) S (u) + I~ AN(K)

S (u + bu N -u (k-i)! 1 L(N) (-u
N*Ue kz-1 (N+k-l)! k Lkl - bu

and therefore

= b~ ~ -2~- M-N-l ___ L (

P (.i.+ ) e 1+b k! I1 (N) b

l~b lb l~bk=O (N+k)! (1+b)k k Ib

This time, the false alarm probability (b=O) is simply

~FA = N(

tne same a& (4-5).

We demonstrate another kind of equivalence now, reducing an infinite

series solution for the fixed-signal, linear CFAR problem to our finite sum
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(4-16). The former solution is obtained by averaging Fehiners' series:

a £~a (6-17)

over the pdf i
f O(Y) -C1 g(L\!

fcr the threshold. Series (6-17) can be obtained from (3-7) by expanding the

f actor exp(a/t) in a power series and integrating term by term. These

integrals are performed by using (3-14).

According to (4-20),

f S2  ( ) d(Z f S~cx g() dxV
0 SW Lc c 0 Nkc)9~

N-- m
1 ( (L1+m c

L - m 1+C
(1+c) m='0

- 1 (N+L+.E1 c m .(6-18)

N+L+.-l M(l+c) M= m
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I -

The last step in the derivation of (6-18) is an application of (4-27).

Another transformation yields

00
fnte S~ (Y) g d(X) VA+2

= 1 - - i_________ N+L+.-I N+L+-1- _ N+ m-l m A4

(1-Ic) M

_ _ _ _ _ I.A
cN+2 L-l N+L+.-l m

=1I - N++m ) c . (6-19)
(l-Ic)N++. m_ 0 +.

When (6-19) is used to average (6-17), the result is

0 k N+t L-1 +1
1 PD e - a  _ _ c ,N+L+X-I. m 32

D=0 X- (l+c)N+L+ -2ml 0 " N+Z+m ---

=-N

N L-1 0.
-a c [ m ' (N+L+2-I) 1 ca= e c .I(l-ca •(6-20) -

(+c) N+L-1 N+ +m-% Y! l+c
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But

S(N+L+.1 1 Sa

N+-1m T£ t;

- NLm ) (N+L-l+k)!(N+m)! 1 ca)N 2=0 (L-1)! (N+mI-£)! X.! +

N+L-l ca)

-~~~ ~ ~ F(N+L; N+m+1;

in terms of the confluent hypergeometrie function.() Applying Kummer's

first transformation, (6

ca

F (+;N+m+1; ca e1CF(l-;N+m+1: -c

- 14-c (L-1-m)! Nh,) c
(L-1--Z)!N~m+)! 2! '1+a'

Z=0

The new hypergeometric function is simply a polynomiai, since its first

argument, m+1-L, is a non-positive integer. Altogether,
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~I

£ a L-l--m £ :
c. N+L+R-I1 1 ca +--- (N+L-I. 1 ca~

i ' N+£+m 2 . 1% = e N+m+) 2. (i+)

i and henceI

+a N L-I +1-1 1 ca
- = e l+ cm L Nm - (-) (6-21)

SN+L- m=O

= Next, we replace ta by the new index n = m+Z , and findI

2sm

! D l~ N L-I NLI n  n I ___

e(l+c )NL- n= (NL nL0 --

aN L-I L-ln a

1C (NLI mn +. - ca

N+n +! (-

(I+C)I

which is -16). Similarly by averaging (6-17) over an uding the usual pdf
a N -

1ih-) 4-4) ca beL- derved

t AM
N L-
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k APPENDIX 1

The binomial identity

M--fr n M+n 
m m 1-x

is proved by taking the factc-r (1-x)~ inside the sum and expanding again, as

follows:

n m n

I (0 rn0

n n-rn
11+n n-i-i k im*k

= ~ ( )()(-l) xI m k0 m k

- O j M+n n-r.n .-rn k 2

m .-rn

In the last step, we have rearranged the sum in increasing powers of x. now
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m )(- ) - I )  . (A-2)
m=0

(17)1

according to a standard binomial identity, (17) which completes the proof. The

standard identity used here may be written in the form

k Z-I~ms s k-Ij-k )m(-s = (-l)m(kZ) (A-3)
s=0

which is valid when k>X, and is proved by use of the obvious identity

(lx k (-) - X = lx k - z

Each factor on the left is expanded in a binomial series and the resul

double sum reordered in powers of x. The desired result follows by equating

to the expansion of the right side.

-To prove (5-20), we need an intermediate result. Consider the identity

m
[ +x(l+y)] m = (1+x)m (i + L) , (A-4)

and expand the left side and the right-most factor on the right -aide:
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I
n

X n 1+

(yn (1+X)m 4M() 
-(m)-n~ IL'AM

n 
IS

-n

Explicil: summatioL, limits are not used because the sums are limited

automatically by the binomial coefficients, as mentioned in connection with

Eq. (5-19). Now we multiply both sides by (1+y)s and expand some more. The

left side becomes

£ k

and the right side becomes

(+y) ) xn(i)-n yn

= [ (in) n (1 )n--n [ ( . y-l+J
n . ,
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we introduce the new index, k~rn+j, and eliminate n, so that the last double

sum expression becomes

k k j 1 ~m

xkk- -k-x k

£+s~~ k (~ - l A5

i

Eluative magiters of , e obaintesrd reslt

S(AB)( )x x C (1-- )A Y ( B)( ) (+ Itk--m 2 A5
X k 6: j k-B- x

til

It~8 1sncsayol htm n ,b nnngtv,-n h agso h

susoe -dJ slmie ytebnma oficetwl eedo h

reatv mantue of__ m, s-and-k.



Using (-A-5) of the left side we get

A ()B+) ki C( A-C (1) B A-~x

I and applied to the right:I IC-B (x)A -C B L~A+-C 

I A+B-Cj'l,-

A i+ A B-C - A l

In the last step we replaced j by A-C+j, and this completes the proof since

= A-r+j ~ = -

and

B B
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