SIO REFERENCE SERIES

ADS REPORT NUMBER 4

Issued by NORPAX DATA MANAGEMENT
S. Pazan, NORPAX Data Manager

April 1981

SIO Reference 81-9
University of California Scripps Institution of Oceanography
Since 1976, three reports on oceanographic and meteorological conditions in the North Pacific have been produced by the NORPAX Data Program covering the period from June, 1976 through November, 1977. This is the fourth in the series, and covers the period from December, 1977 through May, 1978. This issue contains: contour maps of monthly meaned Fleet Numerical Oceanographic Central (FNOC) air temperature, sea temperature, wind speed, wind direction, surface vapor pressure, and 700 mb height; NORPAX...
CURL OF WIND STRESS CORRIGENDUM TO ADS REPORT NUMBER 4

Curl of wind stress maps in the ADS 4 report are incorrect. These are the corrected maps. The discussion in the Appendix to ADS Report number 4 is correct and pertains to this corrigendum.

Corrected maps inserted in report. 6 Aug 81
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
<td>3</td>
</tr>
<tr>
<td>CONTOUR MAPS</td>
<td>3</td>
</tr>
<tr>
<td>FREE DRIFTER BUOY DISPLACEMENT VECTORS</td>
<td>3</td>
</tr>
<tr>
<td>FIGURES</td>
<td>5</td>
</tr>
<tr>
<td>Appendix</td>
<td>55</td>
</tr>
</tbody>
</table>
INTRODUCTION

Since 1976, three reports on oceanographic and meteorological conditions in the North Pacific have been produced by the NORPAX Data Program covering the period from June, 1976 through November, 1977. This is the fourth in the series, and covers the period from December, 1977 through May, 1978. This issue contains: contour maps of monthly meaned Fleet Numerical Oceanographic Central (FNOC) air temperature, sea temperature, wind speed, wind direction, surface vapor pressure, and 700 mb height; NORPAX Data Management calculated wind stress, wind stress curl, wind shear velocity cubed, sensible heat flux, latent heat flux; objectively analyzed TRANSPAC temperatures at discrete depths from White and Bernstein (SIO); monthly ADS buoy drifter displacement vectors from McNally (SIO).

CONTOUR MAPS

Contour maps of FNOC (Fleet Numerical Oceanographic Central) fields and calculated flux fields are in Figures 2.1-2.11, 3.1-3.11, 4.1-4.11, 5.1-5.11, 6.1-6.11, and 7.1-7.11. TRANSPAC contour maps are in Figures 2.12, 3.12, 4.12, 5.12, 6.12, and 7.12.

The analysis of FNOC fields and NORPAX calculated flux fields are explained in the Appendix to this issue.

XBT's have been regularly dropped from ships of opportunity in the Pacific since 1974. Recovered temperature profile data have been analyzed at Scripps by Bernstein and White and temperature residuals from their anomalies were contoured for 0, 60, 120, 200, 300 and 400 meter depths, by month.

FREE DRIFTER BUOY DISPLACEMENT VECTORS

Buoy displacement vectors were plotted in Figures 2.13, 3.13, 4.13, 5.13, 6.13, and 7.13. The buoys were drogued at 30 meters.
ACKNOWLEDGEMENTS

First, to Anna Moore for her work organizing the figures, xeroxing them using the painstaking Standard Xerox process, we wish to give thanks. Also, to Ted Walker for producing the plots of subsurface temperature fields.
FIGURE 1. 33 x 63 field geographic coverage. The area of the ADS contour maps is as indicated. This map is a polar projection of the northern hemisphere.
FIGURE 2.1 Absolute values of monthly mean vector wind velocities at 19.5 meters. Contour intervals are 1 m/sec.

FIGURE 2.2 Direction arrows representing directions of monthly mean wind vectors at 19.5 meters. Length of arrow shaft indicates wind speed in m/sec. (See scale above figure.)
WIND STRESS (DYNES/CM \cdot 2) DEC 77

FIGURE 2.3 Monthly mean wind stress is the mean of 6-hourly wind stress at 10 meters calculated from FNWC wind data. Contour intervals are 0.2 dynes/cm².

CURL OF WIND STRESS (10^{-9} DYNES/CM \cdot 3) DEC 77

FIGURE 2.4 The vertical component of monthly mean wind stress curl is the mean of 6-hourly wind stress curl approximated by finite-differences from 6-hourly wind stresses at 10 meters. Isolines of zero curl are plotted heavily, and contour intervals are 4.0×10^{-9} dynes/cm².
FIGURE 2.5 Monthly mean wind shear stress velocity cubed, U^3 is the mean of 6-hourly wind shear stress velocity cubed calculated from wind speed at 10 meters. Contour intervals are 0.02 (m/sec2).

FIGURE 2.6 Monthly mean sea surface temperature is the mean of 6-hourly FNWC sea surface temperatures. Contour intervals are 1°C.
FIGURE 3.1 Monthly mean air temperature is the mean of 12-hourly FNWC air temperature. Contour intervals are 2°C.

FIGURE 3.8 Monthly mean 700 mb height is the mean of 12-hourly FNWC 700 mb heights. Contour intervals are 25 meters.
FIGURE 2.9 Monthly mean surface vapor pressure is the mean of 12-hourly FNWC vapor pressure at 19.5 meters. Contour intervals are 1 mb.

FIGURE 2.10 Monthly mean sensible heat flux (ocean to atmosphere) is the mean of 12-hourly sensible heat flux calculated from FNWC air and sea temperature and wind using a bulk formula. Isolines of zero heat flux are plotted heavily, and contour intervals are 1.0×10^{-4} cal/cm2 sec.
Monthly mean latent heat flux (ocean to atmosphere) is the mean of 1-hourly latent heat flux calculated from FNWO sea temperature, vapor pressure and wind using a bulk formula. Isoline of zero heat flux are plotted heavily, and contour intervals are 0.5×10^3 cal/cm2 sec.
FIGURE 2.12 Monthly temperature anomalies (°C) contoured at fixed depths. Negative anomaly areas are hatched and isolines at zero anomaly are drawn heavily. The crosses mark the positions of the TRANSPAC net drops. Increments are in .1°C (prepared by W. White, IOC).
FIGURE 2.15 Monthly buoy tracks. Tracks are drawn from starting point at beginning of month to terminal point at end of month. Ratio of latitude to longitude is the same as in other figures.
FIGURE 3:1 Absolute value of monthly mean vector wind velocities at 19.5 meters. Contour intervals are 1 m/sec.

FIGURE 3:2 Direction arrows representing directions of monthly mean wind vectors at 19.5 meters. Length of arrow shaft indicates wind speed in m/sec. (See scale above figure).
FIGURE 3.3 Monthly mean wind stress is the mean of 6-hourly wind stress at 10 meters calculated from FNWC wind data. Contour intervals are 0.2 dynes/cm².

FIGURE 3.4 The vertical component of monthly mean wind stress curl is the mean of 6-hourly wind stress curl approximated by finite-differences from 6-hourly wind stress at 10 meters. Isolines of zero curl are plotted heavily, and contour intervals are 4.0×10^{-9} dynes/cm².
Figure 3.5 Monthly mean wind shear stress velocity cubed, U^3, is the mean of 6-hourly wind shear stress velocity cubed calculated from wind speed at 10 meters. Contour intervals are 0.02 (m/sec)3.

Figure 3.6 Monthly mean sea surface temperature is the mean of 12-hourly FNWC sea surface temperatures. Contour intervals are 1°C.
FIGURE 3.7 Monthly mean air temperature is the mean of 12-hourly FNWC air temperature. Contour intervals are 2°C.

FIGURE 3.8 Monthly mean 700 mb height is the mean of 12-hourly FNWC 700 mb heights. Contour intervals are 25 meters.
Figure 3.9 Monthly mean surface vapor pressure is the mean of 12-hourly FNWC vapor pressure at 19.5 meters. Contour intervals are 1 mb.

Figure 3.10 Monthly mean sensible heat flux (mean to atmosphere) is the mean of 12-hourly sensible heat flux calculated from FNWC air and sea temperature and wind using a bulk formula. Isolines of zero heat flux are plotted heavily, and contour intervals are 1.0×10^{-4} cal/cm2 sec.
FIGURE 3.11 Monthly mean latent heat flux (aerosol to atmosphere) is the mean of 12-hourly latent heat flux calculated from FNDC sea temperature, vapor pressure, and wind using a bulk formula. "Isolines of aerosol heat flux are plotted heavily, and contour intervals are 0.5×10^{-3} cal/cm² sec."
FIGURE 3.12 Monthly temperature anomalies (°C) contoured at fixed depths. Negative anomaly areas are hatched and isolines of zero anomaly are drawn heavily. The crosses mark the positions of the TRANS-PAC XBT drop. Increments are in 0.1°C (prepared by W. Wilheit, NMC).
FIGURE 5.13 Monthly buoy tracks. Tracks are drawn from starting point at beginning of month to terminal point at end of month. Ratio of latitude to longitude is the same as in other figures.
Figure 4.1 Absolute value of monthly mean vector wind velocities at 19.5 meters. Contour intervals are 1 m/sec.

Figure 4.2 Direction arrows representing directions of monthly mean wind vectors at 19.5 meters. Length of arrow shaft indicates wind speed in m/sec. (See scale above figure.)
FIGURE 3: Monthly mean wind stress is the mean of 6-hourly wind stress at 10 meters calculated from FNWC wind data. Contour intervals are 0.2 dynes/cm².

FIGURE 4: The vertical component of monthly mean wind stress curl is the mean of 6-hourly wind stress curl approximated by finite-differences from 6-hourly wind stresses at 10 meters. Isolines of zero curl are plotted heavily, and contour intervals are 4.0×10^{-3} dynes/cm².
Monthly mean wind shear stress velocity cubed, U^3, is the mean of 6-hourly wind shear stress velocity cubed, calculated from wind speed at 10 meters. Contour intervals are 0.02 (m/sec)3.

Monthly mean sea surface temperature is the mean of 12-hourly FNWC sea surface temperatures. Contour intervals are 1°C.
FIGURE 4.7 Monthly mean air temperature is the mean of 12-hourly FNWC air temperature. Contour intervals are 2°C.

FIGURE 4.8 Monthly mean 700 mb height is the mean of 12-hourly FNWC 700 mb heights. Contour intervals are 25 meters.
FIGURE 9 Monthly mean surface vapor pressure is the mean of 12-hourly FNWC vapor pressure at 19.5 meters. Contour intervals are 1 mb.

SENSIBLE HEAT FLUX (10^-4 CAL/CM^-2 SEC) FEB 78

FIGURE 10 Monthly mean sensible heat flux (ocean to atmosphere) is the mean of 12-hourly sensible heat flux calculated from FNWC air and sea temperature and wind using a bulk formula. Isolines of zero heat flux are plotted heavily, and contour intervals are 1.0 x 10^-4 cal/cm^2 sec.
FIGURE 11 Monthly mean latent heat flux (ocean to atmosphere) is the mean of 12-hourly latent heat flux calculated from FNWC sea temperature, vapor pressure and wind using a bulk formula. Isohene of zero heat flux are plotted heavily, and contour intervals are 0.5×10^{-6} cal/cm2 sec.
FIGURE 4.12 Monthly temperature anomalies (°C) contoured at fixed depths. Negative anomaly areas are hatchured and isoline of zero anomaly are drawn heavily. The crosses mark the positions of the TRANS PAC XBT drops. Increments are in .1°C (prepared by W. White, SIO).
BUOY PLOT FOR FEB 78

MONTHLY buoy tracks. Tracks are drawn from starting point at beginning of month to terminal point at end of month. Ratio of latitude to longitude is the same as in other figures.
FIGURE 5.1 Absolute value of monthly mean vector wind velocities at 19.5 meters. Contour intervals are 1 m/sec.

FIGURE 5.2 Direction arrows representing directions of monthly mean wind vectors at 19.5 meters. Length of arrow shaft indicates wind speed in m/sec. (See scale above figure.)
WIND STRESS (DYNES/CM**2) MAR 78

FIGURE 5.3 Monthly mean wind stress is the mean of 6-hourly wind stress at 10 meters calculated from FNWC wind data. Contour intervals are 0.2 dynes/cm².

CURL OF WIND STRESS (10**9 DYNES/CM**3) MAR 78

FIGURE 5.4 The vertical component of monthly mean wind stress curl is the mean of 6-hourly wind stress curl approximated by finite-differences from 6-hourly wind stresses at 10 meters. Isolines of zero curl are plotted heavily, and contour intervals are 4.0 x 10**9 dynes/cm³.
FIGURE 5.5 Monthly mean wind shear stress velocity cubed. U^3 is the mean of 6-hourly wind shear stress velocity cubed; calculated from wind speed at 10 meters. Contour intervals are 0.02 (m/sec)3.

FIGURE 5.6 Monthly mean sea surface temperature is the mean of 12-hourly FNWC sea surface temperatures. Contour intervals are 1°C.
AIR TEMPERATURE (DEG. C) MAR 78

Figure 7. Monthly mean air temperature is the mean of 12-hourly FNWC air temperature. Contour intervals are 2°C.

700 MB HEIGHT (M) MAR 78

Figure 8. Monthly mean 700 mb height is the mean of 12-hourly FNWC 700 mb heights. Contour intervals are 25 meters.
FIGURE 5.9 Monthly mean surface vapor pressure is the mean of 12-hourly FNWC vapor pressure at 10.5 meters. Contour intervals are 1 mb.

FIGURE 5.10 Monthly mean sensible heat flux (ocean to atmosphere) is the mean of 12-hourly sensible heat flux calculated from FNWC air and sea temperature and wind using a bulk formula. Isolines of zero heat flux are plotted heavily, and contour intervals are 1.5 x 10^3 cal/cm^2 sec.
FIGURE 11 Monthly mean latent heat flux (ocean to atmosphere) is the mean of 12-hourly latent heat flux calculated from FNWC sea temperature, vapor pressure and wind using a bulk formula. Isolines of latent heat flux are plotted heavily, and contour intervals are 0.5×10^{-3} cal/cm2 sec.
FIGURE 5.12 Monthly temperature anomalies (°C) contoured at fixed depths. Negative anomaly areas are hatched and isolines of zero anomaly are drawn heavily. The crosses mark the positions of the TRANS PAC XBT drops. Increments are in 0.5°C (prepared by W. White, CIO).
FIGURE 5.13 Monthly buoy tracks. Tracks are drawn from starting point at beginning of month to terminal point at end of month. Ratio of latitude to longitude is the same as in other figures.
Figure 6.1 Absolute value of monthly mean vector wind velocities at 19.5 meters. Contour intervals are 1 m/sec.

Figure 6.2 Direction arrows representing directions of monthly mean wind vectors at 19.5 meters. Length of arrow shaft indicates wind speed in m/sec. (See scale above figure.)
FIGURE 6.3 Monthly mean wind stress is the mean of 6-hourly wind stress at 10 meters calculated from FNWC wind data. Contour intervals are 0.2 dynes/cm².

FIGURE 6.4 The vertical component of monthly mean wind stress curl is the mean of 6-hourly wind stress curl approximated by finite-differences from 6-hourly wind stresses at 10 meters. Isolines of zero curl are plotted heavily, and contour intervals are 4.0×10^{-9} dynes/cm³.
FIGURE 6.5 Monthly mean wind shear stress velocity cubed. U^3_* is the mean of 6-hourly wind shear stress velocity cubed calculated from wind speed at 10 meters. Contour intervals are 0.02 (m/sec)3.

FIGURE 6.6 Monthly mean sea surface temperature is the mean of 12-hourly FNWC sea surface temperatures. Contour intervals are 1°C.
Figure 4.8 Monthly mean 700 mb height is the mean of 12-hourly FNWC 700 mb heights. Contour intervals are 25 meters.
FIGURE 10 Monthly mean surface vapor pressure is the mean of 12-hourly FNWC vapor pressure at 19.5 meters. Contour intervals are 1 mb.

FIGURE 10 Monthly mean sensible heat flux (ocean to atmosphere) is the mean of 12-hourly sensible heat flux calculated from FNWC air and sea temperature and wind using a bulk formula. Isolines of zero heat flux are plotted heavily, and contour intervals are 1.0 x 10^-4 cal/cm^2 sec.
Latent Heat Flux (10^{-3} cal/cm^2 sec) APR 73

FIGURE 6.11 Monthly mean latent heat flux (ocean to atmosphere) is the mean of 12-hourly latent heat flux calculated from FNWC sea temperature, vapor pressure and wind using a bulk formula. Isoines of latent heat flux are plotted heavily, and contour intervals are 0.5 \times 10^{-2} cal/cm^2 sec.
BUOY PLOT FOR APR78

55 + + + + + + + + + + +

50 + + + + + + + + + + +

45 + + + + + + + + + + +

40 + + + + + + + + + + +

35 + + + + + + + + + + +

30 + + + + + + + + + + +

25 + + + + + + + + + + +

190 195 200 205 210 215 220 225 230

LONGITUDE (EAST)

LATITUDE (NORTH)

FIGURE 6.18 Monthly buoy tracks. Tracks are drawn from starting point at beginning of month to terminal point at end of month. Ratio of latitude to longitude is the same as in other figures.
FIGURE 7.1 Absolute value of monthly mean vector wind velocities at 19.5 meters. Contour intervals are 1 m/sec.

FIGURE 7.2 Direction arrows representing directions of monthly mean wind vectors at 19.5 meters. Length of arrow shaft indicates wind speed in m/sec. (See scale above figure).
FIGURE 7.3 Monthly mean wind stress is the mean of 6-hourly wind stress at 10 meters calculated from FNWC wind data. Contour intervals are 0.2 dynes/cm².

FIGURE 7.4 The vertical component of monthly mean wind stress curl is the mean of 6-hourly wind stress curl approximated by finite-differences from 6-hourly wind stresses at 10 meters. Isolines of zero curl are plotted heavily, and contour intervals are 4.0 x 10⁻⁹ dynes/cm².
U STAR CUBED ((M/SEC) • • 3) MAY 78

FIGURE 7.5 Monthly mean wind shear stress velocity cubed. U^3 is the mean of 6-hourly wind shear stress velocity cubed calculated from wind speed at 10 meters. Contour intervals are 0.02 (m/sec)3.

SEA SURFACE TEMPERATURE (DEG.C) MAY 78

FIGURE 7.6 Monthly mean sea surface temperature is the mean of 12-hourly FNWC sea surface temperatures. Contour intervals are 1°C.
AIR TEMPERATURE (DEG. C) MAY 78

FIGURE 7.7 Monthly mean air temperature is the mean of 12-hourly FNWC air temperature.
Contour intervals are 2°C.

700 MB HEIGHT (M) MAY 78

FIGURE 7.8 Monthly mean 700 mb height is the mean of 12-hourly FNWC 700 mb heights.
Contour intervals are 25 meters.
VAPOR PRESSURE (MB) MAY 78

FIGURE 7.9 Monthly mean surface vapor pressure is the mean of 12-hourly FNWC vapor pressure at 19.5 meters. Contour intervals are 1 mb.

SENSIBLE HEAT FLUX (10^{-4} CAL/CM^2 SEC) MAY 78

FIGURE 7.10 Monthly mean sensible heat flux (ocean to atmosphere) is the mean of 12-hourly sensible heat flux calculated from FNWC air and sea temperature and wind using a bulk formula. Isolines of zero heat flux are plotted heavily, and contour intervals are 1.0 x 10^{-4} cal/cm^2 sec.
FIGURE 7.11 Monthly mean latent heat flux (ocean to atmosphere) is the mean of 12-hourly latent heat flux calculated from FRWC sea temperature, vapor pressure and wind using a bulk formula. Isolines of agro heat flux are plotted heavily, and contour intervals are 0.5×10^{-3} cal/cm2 sec.
FIGURE 7.12 Monthly temperature anomalies (°C) contoured at fixed depths. Negative anomaly areas are hatched and isoline of zero anomaly are drawn heavily. The crosses mark the positions of the TPANSPAC XBT drops. Increments are in .1°C (prepared by W. White, SIO).
FIGURE 7.3 Monthly buoy tracks. Tracks are drawn from starting point at beginning of month to terminal point at end of month. Ratio of latitude to longitude is the same as in other figures.
APPENDIX. Analysis Procedure

Since some revisions have been made in the calculation of curl of wind stress, and since it has been some time since the publication of ADS Report Number 1, which contained a complete outline of the analysis procedure, this appendix is included in this report.

FNOC data were taken from 63 x 63 polar gridded fields of 6-hourly wind speed and direction, and 12-hourly 700 mb height, sea surface temperature, air temperature, and vapor pressure. The wind at a ten meter height above sea level was estimated from FNOC 19.5 meter winds by an iterative scheme using the neutral flux-profile relationships obtained by Businger et al. (1971). Wind stress was calculated from FNOC wind speed and direction using a bulk aerodynamic equation:

\[\tau = -\rho \bar{u} \bar{w} = \rho C_d U_{10}^2 \]

(A.1)

where

- \(\tau \) = surface stress (dynes/cm\(^2\))
- \(\bar{u} \bar{w} \) = Reynolds stress. (m\(^2\)/sec\(^-2\))
- \(\rho \) = air density = 1.2923x10\(^{-3}\) g/cm\(^3\)
- \(U_{10} \) = wind speed at 10 m (cm/sec)
- \(C_d \) = 1.3x10\(^{-3}\)

The drag coefficient \(C_d \) was found by Smith and Banke (1975) for \(U_{10} = 10 \) m/sec. Vertical component of wind stress curl was calculated on the FNOC northern hemispheric grid using polar projection mapping and finite difference approximations.

The vertical component of wind stress curl is,

\[\hat{r} \cdot \text{curl} \tau = \frac{1}{R \sin \theta} \left(\frac{\partial (\tau \sin \theta)}{\partial \theta} \right) \hat{r} + \frac{\partial \tau}{\partial \phi} \]

(A.2)

where \(\theta \) and \(\phi \) are co-latitude and east longitude in polar coordinates, respectively, and \(\tau \) is wind stress, \(R \) is the Earth's radius, and \(\hat{r} \) is a unit radius vector.

A finite differencing method will be used to estimate this equation. However, since the data resides on a polar stereographic grid, a finite differencing scheme must be expressed in terms of polar stereographic coordinates, and then related to co-latitude and longitude using
the chain rule. The finite differences are:

\[\frac{\partial \tau_\theta}{\partial \xi} = \tau_{\theta[i+1/2]} \left(\xi_{i+1} - \xi_{i-1} \right) \]
\[= \tau_{\theta[i+1/2]} / 2 \quad i=1,63 \]
\[\frac{\partial \tau_\eta}{\partial \eta} = \tau_{\eta[j+1/2]} \left(\eta_{j+1} - \eta_{j-1} \right) \]
\[= \tau_{\eta[j+1/2]} / 2 \quad j=1,63 \]

\[\frac{\partial \left(\tau_\phi \sin \xi \right)}{\partial \xi} = \tau_\phi \sin \xi \left(\xi_{i+1} - \xi_{i-1} \right) \]
\[= \tau_\phi \sin \xi / 2 \quad i=1,63 \]
\[\frac{\partial \left(\tau_\phi \sin \eta \right)}{\partial \eta} = \tau_\phi \sin \eta \left(\eta_{j+1} - \eta_{j-1} \right) \]
\[= \tau_\phi \sin \eta / 2 \quad j=1,63 \]

where \(\xi(\theta, \phi) \) and \(\eta(\theta, \phi) \) are the abscissa and ordinate grid axes of the 63 \(\times \) 63 polar stereographic grid.

The partial derivatives may be calculated for the polar stereographic mapping equations:

\[\zeta = 32 + 31.205 \left(\frac{1 - \cos \theta}{1 + \cos \theta} \right)^{1/2} \cdot \sin (\phi + 80); \quad i=1,63, \]
\[\eta = 32 - 31.205 \left(\frac{1 - \cos \theta}{1 + \cos \theta} \right)^{1/2} \cdot \cos (\phi + 80); \quad j=1,63, \]

and the partial derivatives of \(\zeta \) and \(\eta \) with respect to \(\theta \) and \(\phi \) are:

\[\frac{\partial \zeta}{\partial \phi} = 31.205 \left(\frac{1 - \cos \theta}{1 + \cos \theta} \right)^{1/2} \cdot \cos (\phi + 80) \]
\[\frac{\partial \eta}{\partial \phi} = 31.205 \left(\frac{1 - \cos \theta}{1 + \cos \theta} \right)^{1/2} \cdot \sin (\phi + 80) \]
\[\frac{\partial \zeta}{\partial \theta} = 31.205 \left(\frac{1 - \cos \theta}{1 + \cos \theta} \right)^{-1/2} \cdot \frac{\sin \theta \sin (\phi + 80)}{(1 + \cos \theta)^2} \]
\[\frac{\partial \eta}{\partial \theta} = -31.205 \left(\frac{1 - \cos \theta}{1 + \cos \theta} \right)^{-1/2} \cdot \frac{\sin \theta \cos (\phi + 80)}{(1 + \cos \theta)^2} \]

The vertical component of the wind stress curl can then be estimated, using equations A.2 through A.12, as:

\[\mathbf{\cdot curl}_Z = \frac{15.6025}{R \sin \theta_{ij}} \left(\frac{1 - \cos \theta_{ij}}{1 + \cos \theta_{ij}} \right)^{1/2} \cdot \left[\tau_\phi \sin \xi \left(\xi_{i+1} - \xi_{i-1} \right) / \sin \theta \right]_{ij} \]
\[- \tau_\phi \sin \eta \left(\eta_{j+1} - \eta_{j-1} \right) / \sin \theta \]
\[- \tau_\phi \left(\cos (\phi + 80) \right) / \sin \theta \]
\[- \tau_\phi \left(\sin (\phi + 80) \right) / \sin \theta \]

where \(\tau_\phi \) is the wind stress.
Sensible heat flux \((\text{cal/cm}^2\text{sec}) \) was obtained using an empirical bulk formula (Friehe and Schmitt, 1976):

\[
S.H.F. = \rho C_p [0.24 + C_b U_{10} (T_s - T_a)]
\]

where

\[
\begin{align*}
C_p &= 0.24 \text{ cal/gm}^\circ\text{C} \\
C_b &= 0.91 \times 10^{-3} \\
T_s &= \text{sea surface temperature} \\
T_a &= (10 \text{ meter}) \text{ air temperature}
\end{align*}
\]

The latent heat flux \((\text{cal/cm}^2\text{sec}) \) was also calculated from a bulk formula (Friehe and Schmitt, 1976):

\[
L.H.F. = L \cdot C_r \cdot U_{10} [Q_{oa} - Q]
\]

where

\[
\begin{align*}
L &= 595 \text{ cal/gm} \text{ (heat of evaporation)} \\
C_r &= 1.32 \times 10^{-3} \\
Q &= 0.75 \cdot \{E_{AIR}(\text{gm} \cdot \text{m}^{-3}) \equiv \text{FNOC vapor pressure} \} \\
Q_{oa} &= 1.667 \times 10^{-7} \cdot [e^{17.19 (1773)} / 1773].
\end{align*}
\]

Stress, stress-curl and \(U^{1/2} \) fields were calculated at 00z, 06z, 12z; heat fluxes were calculated for 00z and 12z every day. These calculated fields were then averaged to obtain daily, 5-day, and monthly vector means of wind speed and direction. Monthly means were contoured over the region of the North Pacific from 120E to 230E and 20N to 60N.
MANADATORY DISTRIBUTION LIST

FOR UNCLASSIFIED TECHNICAL REPORTS, REPRINTS & FINAL REPORTS

PUBLISHED BY OCEANOGRAPHIC CONTRACTORS

OF THE OCEAN SCIENCE AND TECHNOLOGY DIVISION

OF THE OFFICE OF NAVAL RESEARCH

(Revised July 1978)

Department of Defense

Office of the Secretary of Defense (3)
Assistant Director of Defense Research & Engineering
Washington, D.C. 20301

Naval Research Laboratory (6)
Library, Code 2620
Washington, D.C. 20375

U.S. Naval Oceanographic Office
Library, Code 8170
NSTL Station
Bay St. Louis, MS 39529

Other Government Agencies

Defense Documentation Center (12)
Cameron Station
Alexandria, VA 22314

National Oceanic & Atmospheric Administration
National Oceanographic Data Center
Washington Navy Yard
Rockville, MD 20852

Navy

Office of Naval Research (3)
Code 460
Arlington, VA 22217

Office of Naval Research
Code 480
Arlington, VA 22217

Office of Naval Research
Code 102 B
Arlington, VA 22217

Office of Naval Research (6)
Code 102 DI
Arlington, VA 22217

Office of Naval Research
Commanding Officer
1030 East Green Street
Pasadena, CA 91101

Naval Ocean Research & Development Activity
NORDA, Code 300
NSTL Station
Bay St. Louis, MS 39529