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ABSTRACT

This report summarizes the analyses of deflagration to detonation

transition (DUT) occurring in a packed bed of granular, high energy solid

propellant. A reactive two-phase flow model of this phenomena is solved

by utilizing a Lax-Wendroff finite differencing technique. A brief

overview of the well known shock jump conditions for one-dimensional,

one-phase flow with heat addition is reported, and a similar analysis

for one-dimensional , two-phase reactive flow is discussed. Improvements

made in the gas phase nonideal equation of state, gas permeability, and

numerical integration t chniques allow for the prediction of a transition

to a steady detonation from initiation by deflagration.

Analyses are presented that clearly indicate the effect of the

propellant physical .nd chemical parameters on the predicted run-up [
length to detonation. Predictions of this run-up length to detonation

are presented as a function of propellant chemical energy, burning rate,

bed porosity, and granulation (size). Limited comparison with actual DDi

0.tta in the literature indicates good qualitative agreement with these

predictions.

M4. Mi2cdhaue F. Lwbek ascsz c ted b, muc;, oý te nueiriat otk invofved Ax'k

/cl~• •~poat .... ",• ' ",•*
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C(iAPTER ONE

DEFLAGRATION-'rO-DETONATION TRANSITION

1.1 Introduction

This report summarizes the an'Ulysis associated with the accelerating

deflagration wave in a porous medium of reactive solid propellant. The

phtnomenon of DDT (deflagration-to-detonation transition) in solid pro-

pellants, e-pecially solid propellants burning in rocket motor environ-

ments, is not usually considered a hazard. However, it may be that un-

der certain situations, for example a grain structure failure, the solid

motor may crack and form regions of granular or porous propellant. When

flame from the surface deflagrating propellant r aches this seam uf porous

material it will accelerate into this medium and be supported by cornvective

heat transfer from the burnt gas into the unignited porous region. If in

addition to this the product gases are confined to a finite volume, the

accelerating deflagration could transit into a detonation. Propellants

exhibiting a high chemical energy per unit mass and capable of rapidly

generating gases through their burning rate are more likely to experience

this type of defiagratioa to detoation transition.

Analysis of the fl.ow. in such an unsteady two-phase ,nixture is a com-

plicated exercise. Work has been underway at the University of Illinois

since 1975 to develop a reactive hydrodynamic code in which the combus-

tion of porous propellants can be modeled in such a way as to predict the

behavior of a convectively driven flame in a confined situation. Details

of these modeling exercises are found in Referenucs 1-4. In an evolutionary

manner this work included the formulation of the two-phase flow conserva-

tion equations, first assuming that the mixture was a continuum, and at a
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later date treating eaQh phase az, a separate CoJntiluWi Irre puVtt1Ac u

the mixture properties. The most recent analysis of the unsteady two-phase

flows associated with DDT is documented in the paper by Hoffman and Krier

[3]. This reference, therefore, repre*ents the searting point for the

work that is presented here.

The reader, after reviewing the above noted reference, w11 understand

that the modeling of this transient phenomena utilizes a number of impor-

tant constitutive relations, which form closure of the conservation equa-

tions. For example, one must have infcrmation on the burning rate of the

material that is a function of the surrounding pressure and temperature.

One must also have laws for the dynamic gas permeability and the subse.-

quent heat transfer rates of the hot gases as they are forced into the

unignited porous matCrial. In addition, relations which represent the

resistance to compaction of the solid matrix must be included. Equations

of state, not only for the high pressure in the prodict gases, but also

for the solid itself, must be supplied (as shown in the work by Hoffman

and Krier). The assumption of an incompressible solid, althougb provid-

ing some reasonable answers .s far as the deflagration speed, is not an

"accurate ^nctor of the peak pressures that ;re possible dutring tIl

accelerating deflagration mode. Since these pressures are precursor to

the final detonation solutions that would be expected, it is zlear that

a compressible solid must be modeled.

in summary, the analysis of the DDT problem requires the solution of

the conservation equations in bcth phases and the necessary constitutive

relations. The conservation equations form a system of nonlinear hyper-

bolic equations, which require numerical finite differencing schemes.

This report will summarize several of these integratior. schew'es and will
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evaluate which are more useful for this reactive flow problem. There are,

of course, many numerical techniques available to handle hyperbolic par-

tial differential equations which allow for solutions of shock waves.

Obviously, not all of these have been treated in this work.

1.2 Previous Results on DDT Modeling

A review -f References 2-4 indicates that a steady state detonation

solution was not a predicted result. As will be shown in Sections 1.3

and 2.4, for propellant chemical energy, the initial solids loading con-

sidered and the material parameters (e.g. 'j, a steady state detonation

(CJ) would propagate at speeds of the order of 5-9 mn/ýjsec, with a deto-

nation pressure of the order of 12-20 GP9. Although a fairly rapid flame

front, often approaching a steady state speed of 2 mm/psec was typical of

the solutions presented in the work by Gokhale and Krier [2], Kezerle and

Krier [4], and Hoffman and Krier [3], the associated peak pressures were

never of significant manner to suggest that these final flame spreading

rates were characteristic of an actual detonation, since fronts ranging

from j to 2 mm/Vsec cannot support a detonation (see following section).

However, the peak pressures previously reported, which ranged between

1/2 to 5 GPa, wefe consistent with the velocities.

Continued work, which is reported here, indicates that it is now

possible to obtain a detonation solution, but in order to do so a num-

ber of important modifications and corrections are required. To under-

stand what these changes are and why they are necessary, it i-, appro-

priate at this point to first provide a review on the topic of detona-

tion. Although the discussion that follows is documented in various

,,manners in several textbooks, including such a revj_cw here wiil allow
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for a clearer understanding of the steady state solution that is termed

"detonation", as well as define the flow properties of the DDT analysis.

1.3 Ju!• Conditions for Reactive Flow

In order to uderstand the jump conditions across a detonation wave

in two-phase (solid-gas) reactive flow, one should first look at the solu-

tion of the one-phase (all gas) flow problem. Fickett and Davis [5], ana

Strehlow [6] -evelop these jump equations in more detail in their texts.

This section will give the read.,r a brief review of their work and high-

light some of the key assumptions made in developing the fHugoniot and

Rayleigh line equations.

In Figure 1 a detonation wave with velocity D is moving through a

constant area duct into the unignited or "cold" end which is at rest.

For this analysis all chem cal reactions are assumed to rake place in d

narrow reaction zone. The products of combustion are shown moving with

velocity u in the same direction as D. In this figure, the subscript A

on pressure, density, and velocity designates the unignited or reactants

side, and B indicates the product side of the combustion zone.

To better understand the jump conditions across the shock in Figure

1, a new frame of reference may be helpful. From a coordinate system

attached to the moving detonation wave, an observer located at the origin

would see the reactants moving with velodity uA D into the stationary

reaction zone and the products of combustion exiting with velocity

uB = (D-u) (see Figure 2).

Conservation of ass and momentum through the flow area shown in

Figure 2 gives respectively

PA = P BUB = PB(D-u) (1)
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Moving Reaction Zone 7

Reactants / Products

A 0
PA D-- u U pB

UA=O U3B =U

Fig. 1. Detonation Wave Moving into Stationary Reactants.
(Reference Frame Fixed).

• Ila I I rUa I i y INIM; %I 11,IIM .v ,,. -7^

Reactants Products
PA PB

U A = D UB =D-U
PA PB

Fig. 2. Reactants Moving into Stationary Detonation Zone. (Reference
Frame Moving with Reaction Zone).
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and

PAD2 
+ = 2BB ~ P(U + PB(2)PAD2+ P A =PB UB 2+ P B = PB (D-u) PB 2

In this model all viscous effects are confined within the bounds of the

shock discontinuity. The expression for conservation of momentum (Eq. 2)

can be simplified by making use of Equation 1 to outain

PB PA = PAuD (3)

Later, it will be assumed that P A is nagligible with respect to P B' but

for the time PA will be retained in the momentum equation.

Elimination of u, the reaction products velocity expressed in the

fixed coordinate system, from Eqs. 1 and 3 gives the well known Rayleigh

or Michelson line.

AD ( -(P - PA )/(A - vB) = 0 (4)

Figure 3 illustrates a Rayleigh line on a P-v diagram for one specific

value of D. The line has slope -PA 2 D2 and passes 4irough the point (PA' VA).

For the case where D - -, the Rayleigh line approaches vertical and for

D - 0, the Rayleigh line is horizontal. In order to satisfy the conserva-

tion of mass and mompntiim. the final crnte (P .v u mict wl~n 1ýa nn th,

Rayleigh line as shown in Figure 3.

Simultaneously solving Equations 1 and 3 by eliminating D instead of

u, the result would be an expression for u, the gaseous product velocity

in the fixed reference frame.

u (P B " A) (VA - vB) (5)

Figure 4 shows several curves of constant u plotted oi, a P-v diagram.

Solving Equations 1 and 2 for uB = (D-u) one would obtain
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B
p B.B I (dP/dv):=- PD-

I Rayleigh Line

P -- - -- +------ - --- - A
AI

VB VA

Pico 3. Illustration of Rayleigh Line.
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P U

V- 1/p

Fig. 4. Curves of Constant Product Velocity.

,1
"1 

..... .4
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2 2
U13 = VB 2(PB- - A A- VB (a)

Equation 5a will be important later in showing that for a CJ detonation

the product velocity is sonic with respect to the detonation front.

The third conservation equation, the conservation of energy across

the reaction zone, can be written

Eint v 1 D 2  1 2 E.
intA AA 2 intB BB 2 B = itB

Pv 2
+ PVB + I (D-u)B (6)

In Equation 6, Eint represents the specific internal energy at each re-

spective location and v is the specific volume v = l/P. Since C , the

specific heat at a constant volume, is assumed constant throughout the

process, the internal energy at location B is simply

E =C T- (7a)
intB V h

Likewise, the internal energy at location A is similar with the inctusion

of the chemical energy yet to be released.

EintA Cv A ECHEM (7bJ

By convention a positive value of ECHEM is endothermic and a negative value

Elimination of u and D from the energy equation (Eq. 6) is obtained by

substituting in the mass and momentum equations (T'qs. I and 3). The re-

sult is a relation between E P, and v iin both reactant and prL.duct

states known as the Hugoniot equation. It is expressed as

EintB i En 1 (P + PA)(vA - VB) =0 (8)

If one assumes that Cv is a constant and the reaction products obey an ideal

equation of state
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Pv RT (9)

then the internal energy expressions (Eqs. 7a and 7b) take the form

CPvPB PBVB
E inttB R (y-l) (10a)

and

C vPAVA + AP A I EA
EintA R E CHEM = (y-l) + ECHEM (10b)

where y is the ideal gas limit of Cp/Cv. Substitution of Equations 10a

and 10b into Equation 8 gives a new form of the Hugoniot equation.

B iF v 1 2 F 2E

AB VBA I+ [+ J L CHEM-l V (11)SA Y+ vk A IA

On a P-v diagram Equation 11 plots as a hyperbola passing through (PA' VA)

for the case where ECHEM = 0 and displaced from this point for increasing

values of ECHEM (see Fig. 5). From the solution of the conservation equa-

tions, the Hugoniot relation states that flow coming in at pressure P = P
A

and specific volume v vA with chemical energy ECHEM = ECHEM , must have

a final state (PB' vB) which lies on the ECHEM Hugoniot. As discussed

earlier, the Rayleigh line connecting the initial state (PA' vA) with the

final state (PB, VB) dictates a unique solution for the detonation velocity,

D. for that process. Therefore, the steady s ate flow process between

states A and B shown in Figure 2 can be uniquely modeled by the Rayleigh

iine and Ilugoniot curve on Figure 6, knowing the initial state (P., vA)'

the final statt PBP vB ) and the chemical energy ECHEM of the re.ctant.

There are certain areas on the P-v diagram where a final solution to the

flow process is impossible. For instance, the pressure and specific
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PBB

ECHEM 2> ECHEM 1

ECHEML> ECHEM

vIs v VA

Fig. S. Hugofliots f017 Threem Dijf~fcreuit Values of rhbnmh-a1 Fnr~vy.

i-L~ L- .46.-
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volume cannot both increase over the shock discontinuity.

FiXure 6 shows a Hiugoniot curve and two Rayleigh lines, R and P29

on the same P-v diagram. For Rayleigh line labeled R2 there are two solu-

-ions labeled S for strong and W for weak. At the strong solution the

flow downstream of the shock (uB in Fig. 2) is subsonic with respect to

the stationary shock, and a pressure disturbance initiated, traveling at

the local speed of sound in the fluid, will propagate back and overtake

the shock front. Looking at the same strong solution but in the fixed re-

ference frame (moving detonation wave), a pressure fluctuation behind the

detonation front (i.e., moving the rear wall in a closed system) will over-

take the front and the front will adjust itself to that change. For the

weak solution the flow behind the front (uB in Fig. 2) moves away from

the stationary front at a velocity greater than the local sound velocity.

Therefore, a pressure disturbance in this case will not be felt by the

front. Both the strong and weak detonations will be discussed in more

detail in the next section. I,
In the case of the Rayleigh line labeled R and the Hugoniot curve,

there is only one unique solution to the conservation equations. At this

point the two lines are tangent and the final st.,te is identified as the

CJ (Chapman-Jouguet) point. For this case, the flow behind the front at

the CJ condition is moving at the local speed of sound with respect to

the front (i.e., uB = a)-

In order to prove that the flow is sonic with respect to the deto-

nation front, one should first look at the thermodynamic definition of

sound speed.

2 (aP ap a 3 -1
a ) ( ) ) ( 7)12)

3P s v s P s v s
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In Equation 12 the subscript '; indicates the derivative is evaluated

at constant entropy. Therefore, for a detonation the local sound velocity

a, the CJ point is simply obtained by evaluating the slope of an isen-

trope through that point on a P-v plot.

Since the slope of the Mugoniot and Rayleigh lineg are equPl at the

CJ point, it is useful to solve both derivatives and equage them. For

the Rayleigh line

dP R AD - PA).V - (13)t-d'-' ... (B A VA VB
R

and for the Hugoaiot curve

dP dE
(-)H 2  'Vd / (VA- vB) + (PB P / (VA VB) (14)

H if

Equating the ri.hc hand sides of Eqs. 13 and 14 you obtain

dE (15)

HCj

Fr'om the thermondynamic relation

dE Tds - Pdv (16)

you obt;-Lin

-P (17)
s

by evaluating Equation 16 on an isentrope. Equations 15 and 17 imply

that at the CJ point an isentrope is tangent to both Rayleigh and Hugoniot

lines. From this

(P -P
hP t oaB o PA esa (v A _ vB-)C

Therefore, at the CJ Point the local sound speed can be evaluated by using
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Equations 12 and 18 to obtain

2 2 (P - PA)

CJ _ B (v v (19)vA - B

This is exactly the same as Equation Sa, the square of the product ve-

locity for a stationary detonation. Therefore, the product velocity for

a CJ detonation is sonic with respect to the detonation front.

From Equation 18, one can define gamma to b 0the negative logarith-

mic slop,: of the isentrope through the CJ point.

z e-(a1n P/ýln v) 7 1 1.~ -1 (2(J)

The analysis of detonation procosses presented in this section as-

sumes y is not only a constant value but is the same in both product and

reactant sides of the detonation wave. For most gases y is about 1.2 [7].

In the case of a sclid (explosive) detonating, Fickett and Davis [5] use

a value of y = 3,0 and assumes the Adeal state equation holds for the

product gases. From this assumption and estimate of y, one coald directly

apply the analysis formulated in this section to the solid detonation.

However, for two-phase reactive flow the mixture momentum and mix-

ture energy diffe2' from Eqs. 3 and 4 by interactive stress and stress

work terms. Also, the gaseous products cannoz be assumed ideal when ex-

perimental work shows detonation pressures of the order 15-20 GPa (2.17-2.9

Mpsi) [8]. Recause of the high detonation pressure a nonideal, equation

Of state u_- implemented. This will be discussed in more detail in Chapter

2. Also, the jump conditions for a mixture with interactive terms is

outlined in Appendix A. It is similar to the maLerial presented in this

section with the exception of the stress and stress work terms.
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1.4 Rear Boundary Condition for Steady State Detonations

Reference 5 shows that the velocity, D, at which a detonation

propagates into the reactants is dependent on the velocity at which the

rear wall, or boundary, travels with respect to the CJ product velocity

u.. The product velocity was discussed in the previous section on the
J

Rayleigh line and Figure 4 shows several curves of constant product ve-

locity. The CJ product velocity would be the curve intersecting the CJ

point in Figure 6. Three different possibilities for the movement of

the rear wall with respect to the CJ product velocity exist and will be

discussed in this section.

The fizst case to consider is where the rear wall velocity is greater

than the product velocity at the CJ condition. On the P-v diagram (see

Fig. 6) this would correspond to the solution labeled S for "strong".

Here, the flow field following the detonation is constant with the pro-

duct velocity u = uw. Examining Figure 6, one can see that the final

state pressure, PB' is also greater than that of the corresponding CJ con-

dition. Because the flow behind the detonation front is subsonic with

respect to the front, any perturbation in the rear wall will propagate

forward to the pressure front. Figure 7a shows a pressure profile for an

overdriven detonation with the CJ pressure labeled on the figure.

The eff cts on the pressur-e by reducing the rear wall velocity can

be seen in Figure 7b. Here, a rarefaction from the decreased wall pres-

sure is shown propagating forward to the detonation front. An actual

overdriven or strong detonation must have an external force driving the

rear wall at a velocity greater than the CJ product velocity. Fickett

and Davis [51 give as an example for an overdriven detonation the case

where another detonatio,1 , stronger than the one being studied, is driving
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the rear wall.

A second possibility would be the case where the wall velocity is

exactly equal to the product velocity at the CJ condition. Here, the

detonation pressure is the CJ value and the flow following the front is

sonic with respect to the front. Figure 8 illustrates case 2.

The third, and most important case for our study of DDT initiated

by flame in a closed tube, is when the wall velocity is less than the CJ ve-

1 city. For this case, the front still propagates at the minimum detona-

tion velocity allowable by the conservation equations, the CJ detonation

velocity, b , and the combustion products leave at velocity uj, sonic with

respect to the front. Since the wall velocity is less than the product ve-

locity, a rarefaction from the rear of the combustion zone to the wall is

±ut~elpv. Thb 15 Can, L.2IsIen j'toi exptM1ansi1 on cha Vý I

specific heat, y, assumed for the products (see discussion ia previous sec-

tion). Figure 9 illustrates the case where the wall velocity is less than

the product velocity. As an example of the isentropicity of the flow be-

hind the front, the pressure ratio between the final reaction state (CJ)

and the location labeled k in Figure 9 is obtained from the expansion

wave

Pk

-PCJ = [i+(y21" Mk]/(- 2i

where M k is the Mach number of the flow at location k.

1.5 Stead and Unsteady Deflagration

Along with the three detonation solutions of the Rayleigh line tnd

Hugonlot curves (i.e, CJ, strong solution, and weak solution) discussed

in the previous section, there are ether steady state solutions possible.
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Figure 10 illustrates a solution to the conservation equations on the lower,

or deflagration, branch of the Hugoniot curve. For this solution the

flame propagates through the unburnt reactants at a low Mach number (MI<<l)

and as can be seen on the figure, the deflagration is characterized by a

drop in pressure and rise in specific volume across the reaction zone. Re-

call, for the detonation solution there was a rise in pressure and d'op in

specific volume. An example of a steady state deflagration would be the

case of a flame burning on a bunson burner. Here, the flame is stationary

and the reactant gas is flowing through thc flame sheet at a low velocity.

When discussing DDT in a packed porous bed, one must clarify exactly

the fluid dynamics of the deflagration branch. At time t=0, one end of

the packed bed is ignited and generating gas from the propellant surface.

As time progresses, it is the hot gases confined in the region behind the

ignition front which in a sense drives the ignition front through the bed.

That is, unlike the pressure drop across the steady state deflagra-

tion solution, there is a pressure rise across the ignition front. The

increase in pressure is a result of the gas generation in the region be-

hind the ignition front being confined to a finite volume. Also, in the

aiialysis made of the steady state deflagration, all reaction was assumed

to take place across an infinitely thin r!-'-cion zone. IP is obvious

that for the two-phase defiagration problem this is not the case. Be-

cause of the finite zone of reaction, the pzoblem of the deflagration

flame is at most quasisteady and it may be tha* the nonsteady terms in

the conservation equations should not be neglected. Because of this

inherent unsteadiness of the deflagration phase of the DDT problem, the

reader should not confuse it with the steady state deflagration soluti'n

shown in Figure 10. Later it will be shown that if transition from
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deflagration to detonation does occur, the reaction zono must collapsz

and a detonation solution can be analyzed as being steady and by the

jumqp conditions being properly satisfied.

1.6 DDT in Two-Phase Reactive Flow (Experimental Data)

As discussed in thea previous section, the transition from deflagra-

tion to detonation in a porous reactive med 4ium is an unsteady process.

Hot gases generated from the propellant surfaces are driven forward into

the unburnt solid matrix by the pressure gradient developed at the igni-

tion front. This phenomena is not found when a nonporous solid deto-

nates, since only pressure disturbances can be propagated ahead of the

ignition front. It is this convective heat transfer to the unignited

propellant and the extended deflagration reaction zone which makes DDT

in a porous bed unique when comparing it to DDT in either an all gas or

an all solid regime.

Much experimental work on DDT in porous material has been carried

out in the past decade. Bernecker and Price [8-10], have published the

most recent results on DDT in a series of three papers. Other experi-

mental studies prior to these include the work of Griffiths and Grocock

[11] and Taylor [12].

The worln presented in Reference 9 by Bernecker and Price is a study

on DDT in RDX (cyclotrimethylenetrinitramine), a shock sensitive high

energy explose. In their experiments the RDX was packed into a thick

walled tube having an inside diameter of 16mm and being approximately

300mm (12 in.) in length (see Fig. Ila [SJ). Both ends of the cilu-n were

closed and ionization probes were located throughout tne bed to trace the

ignition front locus. The RDX was packed in an inert wax mixture and
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had a mean particle size of 200um in diameter. Figure lib illustrates the

DDT mechanism on a distance-time plot for the 91/9 RDX/wax granular charge

[9]. ks shown in the figure, the convective flame front observed in their

work had no acceleration up to the detonation transition.

Their experimental work showed this convective ignition front traveled

at subsonic velocities (0.3-0.9mm/psec) for most cases when the initial

porosities, o0, ranged between values of 0.1 to 0.3. The lower data points

on thtý plot represent a post convective compressional wave in the burning

region which overtakes the ignition front. The length of porous propel-

lant it takes for the compressional wave to overtake the ignition front

and transit into a detonation is •j, the run-up length.

1.7 Topics to be Addressed

The work presented in this chanter reviewed those features which dis-

tinguish DDT in a porous reactive medium from DDT in other media. Since

the work that follows in sausequent chapters will attempt to model this

phenomena, it was important that the properties of an actual detonation

be understood(Sections 3-5).

It was also poiated out that the DDT process being studied cannot re-

present the transition between the lower CJ point and the uppor CJ point.

That is, because the flame propagates from a closed end and the deflagra-

tion reaction zone is never of infinitesiip I thickness, one cannot apply

steady state jump conditions for the deflagration phase.

The chapter that tollows reviews the past DDT modeling efforts and

inidcates how this work builds for the present effort. Numerical solu-

tions to the flow equations are carried out anm solutions are presented

in Chapter 4. These results will show that the detonation (steady state
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supersonic wave) is a solution for a certain class of problems. Such re-

suits have yet to be presented by others.
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CHAPTER TWO

ThE MODEL AND ANALYSIS

2.1 Introduction

The analysis that follows attempts to model the situation in which

a bed of tightly packed granular propellant is ignited at one end. Both

ends of the packed bed are considered closed, thus, modeling the problem

discussed in Section 1.4 where the velocity of the rear wall was less

than the CJ proiuct velocity. Recall for this case that after DDT, the

detonation propagates through the unignited region at the CJ detonation

velocity and detonation pressure and is followed by an isentropic expan-

sion of the gases to the pressure at the staLiunarv wall. The Eat sui-

rounding the particles at the initial time is considered inert, and to

be at atmospheric pressure. It is also assumed that the inert gas will

fully mix with the gases being generated from comiustion of the propel-

lant as time progresses. Figure 12 is a schematic of the propellant bed.

For numerical simplicity the propellant particles are assumed to be

unisized spheres. Particles of interest range in diameter 5011m < d < 200iim.p
To treat mult'-sized particles, oue would require N independent equations

of mass, momentum and energy for the solid phase, whore N is the number

of initially diffc-rent-2ized particles. A solids loading of 74% is the

tightest possible for unisized spheres, obtainable by arranging the spheres

in a face centered cubic. However, assuming granular deformation occurs

under high stress loads, as discussed by Kuo [13j, greater solids loadings

mly be predicted without error. Obviously, the spherical geometry must
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he altered for this to occur.

As the small fraction of propellant particles ignited at time t=O

burn, hot gases are generated as a function of the pressure-dependent

burning rate law and surface-to-volume ratio (3/rp) of the spheres. These
p

hot gases generated are convected forward through the lattice of unburned

propellant and flow gradients develop, as dictated by the solution of the

conservation equations and the necessary constitutive relations.

Heat transfer from the hot gases to the unignited propellant par-

ticles, dependent on the velocity of the gas relative to the particles

and several gas properties (i.e. viscosity, thermal conductivity), trans-

port% energy from the gas to the solid phase. Subsequent ignition of par--

ticles further down the bed is assumed to occur when a critical solid phase

internal energy is reached (2j. This energy can be expressed as a critical

increase in solid phase temperature, Tp, since the specific heat of the

solid is assumed to be known.

As time progresses the ga3 pressure behind the ignition front increases

due to the confinement of the gases from the closed rear boundary and the

pressure-dependent rate of mass generation in the gas phase. Under certain

conditions* the pressure gradient can develop into a shock front which

overtakes the ignition frent propagating through the bed. When this occurs

the ignition front experiences thc transition from deflagration to detonation

discussed in Section 1.6.

At the transition point the ignited region (zone of gas generation)

narrows in width and is followed by a region of all gas where the propellant

* These conditions will depend upon the solid chemical energy, granula-
tion (size and loading), burning rate, ignition energy, etc.
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particles are completely burned out (see Fig. 13). rhe thickness of the

reaction zone is a function of the initial particle size and solids load-

ing, and thicknesses approaching Imm may be possible as rp - 0 and o * 0.

2.2 Assumptions

In order to numerically model DDT in two-phase flow while retaining

the physics of the problem, several key assumptions had to be made. These

assumptions are similar to those made by previous investigators (Ref. 2

and 4).

(1) Both the solid and gas phases are independently treated as con-

tinuums requiring their own conservation relations.

(2) Each phase interacts with the other. This is modeled by the

mass, Tlio,)mntum and energy interaction terms in the conserva-
I'

tion equations.

(3) All propellant particle.s are unisized spheres.

(4) Ignition of a propellant particle is obtained when a critical

energy, expressed as a particle temperature, is transferred to

the solid.

nlTh.e p~rnn.loan+ pa~rt¾icl nrp initially su~rroiunded by an inpri-

gas at temperature, T

(6) During combustion of the propellant, the gaseous products mix

with the inert gas described in assumption (5).

(7) Both ends of the b~d are closed allowing no gases to escape.

(8) The specific heats at constant volume, Cv, for both phases are

constant.

(9) When the solid phase, at a given x-location in the bed, displays

a porosity ý >0.95 and a particle volume one-tenth of its initial

I
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volume, it is burned out and no longer generating gas. Reiults

show this phenomena to proceed smoothly from the left boundary

and thus not leaving any 'holes' in the continuum. This assump-

tion was necessary to prevent a singularity from arising as r -• 0

and r ÷ •.

(10) All the produ-.t gases obey an assumed nonideal equation

of state.

(11) The solid particles are compressible, without heating up, obey-

ing a modified Tait equation of state.

(12) Cnce ignited, the particies are assumed to burn on the outer

surface only, at a known pressure-dependent rate law.

(13) At some initial time, a "narrow" region at one end is ignited,

burning at the low pressure prescribed.

2.3 Governing Equations

Numerical modeling of the two-phase reactive flow process in DDT in-

volves the conservation of mass, momentum and energy per unit volume in

both gas and solid phases. This is a system of six conservation condi--

....wic on-a e of nonl~~inear hyperbo y. parta -14~ "ccn equa-

tions coupled iy the interphase mass, momentum and heat transfer terms. The

conservation equations for two-phase reactive flow have been Oeveloped

previously and References 3 and 4 will provide the reader with the defi-

nitions, assumptions and expressions for the six following field-balanced

conservation eauations. The e are:

Gas Continuity

a - ax + (22)



33

Particle Continuity

2(- u)- r (23)
a t ax

Gas Momentum

S-L -.& - D + F u (24)

at ax a

Particle Momentum
.(• ) _ 3(0Qu 2 )_i-)P

2 - - 2 u - ( + -ru (25)at = x axP

Gas Energy

aCP1Eg) (PuE + OUP) + 2

1 T199Tg 9 [Eu P-~]
I' [E___ CHIEM 2

- P_ -Q q(26)
P

Particle Energy

3(2EpT) 3( p2uPEPT + (1- C)u pp +) U 2

t ax C HEM 2

+ Du 4 (27)p

Here, the relations for the total internal energy in each phase are

12 i 2
!E C T + -u and E =C 'r +- u

T2g v p -2 pg P

The subscripts g and p denote gas and particle .espectively. In Equations

22 to 27, the phase densities, pI and p2, are defined as

P = Pg and P2 = (i-O) p

The porosity, €, is defined as the ratio of the instantaneous gas volume

to the mixture volume. Hence, the solids fraction is (1-0).I
I,
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In addition to the six conservation equations, three constitutive

relations are needed in order to solve for the nine inknown variables;

P g' P UgI Up, Tg , T , p , P and P . These relations include state equa-pg p g p

tions for both gas and solid states and a stress-resistance relation for

Pp. Appendix B gives a complete listing of the relations used.

2.4 Improvements

Since the work reported in Reference 3, certain "improvements" in

the modeling effort have allowed solutions which may be considered to be

actual detonations. These improvements are discussed in some detail later

in the text, but basically include:

1. Implementation of the necessary gas phase (nonideal) equation

of state, to insure that at the CJ (Chapman-Jouget) co ditions,

the isentrope provides for a "gamma law" suitable at the hydro-

dynamic CJ state. (Appendix C rresents a review of such an

equation of state.)

2. Implementation of a new gas-particle friction coefficient, as

developed by Wilcox and Krier [14], for flows at the high Reynolds

nuumberh encountered in the developing DDT flows. Previously such

coefficients were based on data only available fov moderate Reynolds

number ranges.

3. Utilization of a modified numerical integration scheme, which

allowed for a reduction in the grid spacing (and hence reduc-

tion of the time increment) without the usual penalty of exces-

sive computation costs and numerical instability that often follows

when the total number of integrations is significantly increased.

I
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2.5 Equations of State: Constraint Due to the Detonation State

As mentioned in Chapter 1, a nonideal equation of state must be uti-

lized for the product gases. The analysis presented here uses a nonideal

equation of state for hard spheres developed by S. J. Jacobs '15). Pre-

vious to this study, a covolume-type state equation with data made avail-

able by Cook (16] was used (see discussion in Ref. 2).

The hard sphere equation of state takes the form

Pv 1.0 + bp + c (bp) + (28a)RT'

where the constants b and c are determined by the value of the gamma law

coefficient, y, for the product gases as discussed in Appendix B. As

stated, y is the negative logarithmic slope of the isentrope tangent

-ub~h tt Ra i.. Lg an II.ll .. a...t 1¾...,.. !-1- 4-ic .- poi n i-,, n4 the detonA a -

tion state. That is, the slope of the isentrope that the product gases

expand along in the product stete. The reader may refer to Appendix C

for the complete solution of the constants b and c.

Values for y range from two to three for detonating high density

explo:ives [15]. For tbe baseline case considered in this study, a

value of y = 2.05 was selected and the corresponding nonideal equation of

state is:

Pv 2
R = 1.0 + 2.5 pg - 0.50 p (28b)

When the above coefficients (2.5 and 0.50) were altered to treat a case

for 'y = 3.0, excessively high gas and particle temperatures were predicted

as one might expect. In addition, during the numerical integration severe

oscillations in •as and particle temperatures occurred in most cases when

y > 3. Since one is always constrained by the numerical integration schemes
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that are employed to handle very severe gradients in the flow, it is under-

standable that previous efforts in DDT modeling [2, 3], which without

knowing were utilizing high y valueý for the produý" gases, almost always

ran into numerical failure.

Evaluating the covolume state equation previously used in Ref. 3, an

approximate value of y = 3.6 is calculated. This extreme value for y may

be one important reason why the calculations, as reportel in Ref. 2-4,

were unable to handle the high pressures associated with steady state

detonations.

In the solid phase the particles obey a modified Tait equation allow-

ing for compression of the granules. This is written as:

.3P 111/3
p =. l + (29)

10 1-O

wnere K is the bulk modulus. Reference 3 discusses the Tait equation in

more detail. A typical value is K° = 1.38 GPa (2.0 x 105 psi).

2.6 CJ (Detonation) State

In the text by Fickett ard Davis [5] equations are presented for es-

tifiniating d1+ .... velocity, D. , A thp detonation pressure. P__ . for
Li a .LL . .. u. . -. .... .. . . - j . .. .. . . L .J

a steady state detonation. These are given for a single phase explosive:

P 2(y-l)p ECHEM (30)

and

D = 2(-y 1) E (31)CJ CHEM

Here, p is the initial solid material density and E is the chemicalP0  CHEM

energy liberated by burning the solid. Since the problem being coansidered

is two-phase (solid-gas), Eqs. 30 and 31 must be modified to account for
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this by converting p , the initial solid density, to p2 o the initial
P 0 0

solid 3hase density Q2 0 P(-• ). Foa an initial solid density o = 1994

kg/n , an initial porosity ýo =0.30, a chemical energy E CHIM 5.48 MJ/kg,

and assuming y = 2.05, Eqs. 30 and 31 give respectively:

PCJ = 3.6.06 GPa

and

DCJ = S.92-mmCsJec j e

These equations were developed from thc jump equations for one-phase flow

where the equation of state for the product gases was assumed ideal. Be-

cause of this, these equations should only be used to get a good esti-

mate of the detonation pressure and velocity.

In addition to Equtations 30 and 31 another method was presented by

Fickett and Davis [5] for estimates of detonation pressure and detona-

tion velocity. This is Kamlet's Short Method and was developed by Kamlet

and Jacobs [17]. In the CJ state they are:
2 0.5

Pcij KP 2(NEHEM) "1000 (32)

and
0.25

D C A(l+Bop 0)(HM -31.62 (33)

p

where the constants A = 2.23 (m-kg-s-I(mole MJ)-1/2), B 0.0013

3 4 -1 1/2
(m /kg) and K = 0.762 (Nm kg (mole MJ)- ). Again, p is the initial

3 P
solid density in kg/mr and N the reciprocal of the gaseous molecular

weight in mole/kg. Equations 32 anti 33 give detonation pressure and ve-

locity for a detonating solid explosive going to all gas in the product

state. To modify Equations 32 and 33 for the two-phase problem,.° , the
p

solid density, is again converted to the solid phase density o, = (l-o) p
0 ,PC
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It should be noted that Equation 33 expresses detonation velocity as

a function of propellant density, while Equation 31 shows it to be inde-

pendent of density. Like Equations 30 and 31, Equations 32 and 33 should

only be taken as approximations.

Using the same input as above, Equations 32 and 33 give respectively

P - 16.52 GPacJ
D = 7.83 nun
CJ lisec

2.7 Gas Permeability

One of the key constitutive relations required in the analysis is

the gas-particle (interphase) viscous force, which governs hot gas pene-

tration into the unignited region of the granular material. As presented

in Appendix A:
D = -g Cu-- f (34)

4r 2 U p Pg
p

where f is the drag coefficient. Until recently, the packed bed corre.-pg

lations by Ergun or Kuo and Nydegger (as reviewed in Ref. 14) were uti-

lized for f P. Thus, the modeling efforts presented in Ref. 3 and 4 used

the expression of Kuo and Nydegger [18]:

Re 7
{276 + 5 ( } (35)pg $

Equation 35 was developed for 460 < Re < 14,600. Here, Re is the appro-

priate Reynolds number, defined as:

Re = [(4u )pg 2r p]/I (36)

Based on experiments at both high gas velocities and high Reynolds numbers,

Wilcox and Krier [14] developei the correlation:
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f = 5.06 x 105 r Re/u2 (37)
Pg p g

where u is given in m/sec, r in meters, and the constants 5.06 x 105
g P

9 ~ 2
must have units of mr/s. This expression is not valid for either very

low gas velocities, since Equation 37 would give f P9 n as u -* 0, orPg g

for very high gas velocities*, since f. g 0 as u - The equation

was found to be fairly accurate for 103 < Re < C2 x 10 S)and 15 m/s< u < 150 M/s.g

While a straight forward comparison is not easy, the difference between the

value for f as predicted by Equation 35 versus that by Equation 37 can
Pg

be seen in the example. At Re = 104 and • = 0.4, Equation 35 gives

f = 53,600 and Equation 37 gives a value of f = 5448. To utilizePg Pg

Equation 37 one must specify the average gas velocity, ug, and the par-

tidle radius, rp, that were used to obtain the Reynolds number. A kine-

matic viscosity i = 1.8 x 0 m /sec, a particle radius rp 1.Omm,
9 p

and an average gas velocity u = 30.5 m/sec were used to obtain a Reynoldsg

number Re 10 4. From this particular example, the Wilcox/Kri.er correla-

tion (Eq. 37) allows about .10 times the permeability, i.e., I/10 the viscous

drag force as correlated by the Kuo/Nydegger relation.

Soluitions, to tieV f~lw prnrpqq IAAdin fn MDT. r,•I thip frnInw-

ing chapter, clearly indicate that sufficient gas permeability is necessary

to allow for a detonation transition.

*Data from Ref. 14 was limited to ug < 3U0 m/sec.

.g
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CHAPTER THREE

NUMERXCAL INTEGRATION

3.1 Finite Difference Mesh

To solve the Eulerian formulated system of conservation equations

discussed in Chapter 2 with the constitutive relations listed in Appendix

B, the length of the bed being integrated over is divided into I segments,

each a constant Ax in width (i.e.,x= jAx; j = 1, 2, 3-....I). The value

required for Ax will be discussed later in the chapter.

At t = 0 values of the nine independent variables; pg, Pp, U U,

L Fpg and ý ax- ±irtialIzed at eaz"h jt-lh v-io____ in the grid.g P g P ,• ,. .. . . . . . . . . . . . . . . . . . .

Before inurementing the primary variables (i.e. mass, momentum and energy)

to the future time, t t + At, the auxiliary variables in the equations
0

(e.g.,drag, gas generation, heat transfer) must be computed at the present

time, t to. The nine equations axe then solved at the incremental time,

method along % .th another tested are presented in kppendix D. The second

method, developed by Rubin and Berstein [191, was .'.pler, ented for several

test cases and proved to give results similar to that of the Lax-Wendroff

":.cheme. However, to keep all results consistet, the Lax.-Wondroff scheme

wis choli-n as the integrator.

The time increment, At, over which the equations are solved is cal-

ý,ulated by the Courant, Fredrich'i, Levy stability criteria [20], for hv-

per'o iic equatioens,

At XAx (33)(uiT)
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In Equation 38, the term c is the mixture sound speed and lul is the maxi-

mum gas velocity in the bed. Also. X is a stability constant, less than

unity. For most cases X = 0.5 was used. This smaller time incremCet

was necessary in order to integrate the equations -.hen large gradients

developed in the flow.

3.2 Initial end-Boundary Conditions

To initialize the problem, the bed is assumed to be quiesent, i.e.,

at a constant gas temperature and constant gas pressure throughout the

length of the bed. The spherical propellant particles are typically fix-

ed at a constant solids loadings, although a variable initial porosity

can be treated. Then to ialtiate the flow, the propellant at the first

few grid points is assumed ignited and generating gas. To be consistent

with the fiat initial pressure profile, all gas and particle velocities

at time t = 0 are set equal to zero.

In the past an exponential pressure profile was ý.onstructed at the

initial time in order to speed up the deflagration process. This was

iriaccu'ate, however, in that it was unsupported (i.e. , no fluid motion

was associated with the pressure gradient). Nevertheless, the computa-

tion time necessary for the pr'ssure gradient to develop on its own was

too great and the initial pressure gradient was implemented to speed up

the prGces- Since then the compurfr code was modified to include an in-

tegration process .4hich cuts the computation .ime drastically and allows

for the use of a more iealistic flat initial pressure profile (P - P Atm).

Table 1 is a summary of typical input data for the cases studied.

3.3 Modification to the lntegration Scheme

To solve on a -!igitai ., nputer the flow which is to represent a DDT
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Table 1

TYPICAL INPUT DATA

PA•RAMETER VALUE

Burn)ing Rate Index 0.8 < n < 1.2

Burning Rate Proportionality Constant b = 0.001 in-
secPS

Initial Bed Porosity 0.25 < o 0< 0.50

Particle Diameter 5Ojm < d < 50011M

Bed Length L = 25.0 cm

Grid Spacing Ax 1.27 mm

Chewmical Energy 4 < E < 7kg CHEM kg

•J < 1 KJ
Gas Specific Heat: 1.0 k < CVg < 1 k-9 k

Initial Bed Temperature T 9 294 OKg

Ignition Temperature (Bulk) Tign = 303 OK

Ignition Energy E, = 9.0
ign kgI
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phenomena, requires the repetitive integrations of many equations. All

of the conservation equations and constitutive relations are solved indi-

vidually at each grid point i-.i the entire bed, for each time increment.

A study of several test cases showed, for instance, that when the ig-

nition front was at a given x-location, there was little activity several

grid points ahead of it. That is, the gas and particles were at velocities I
close to zero and all transport coefficients were negligable in the region

not far in front of the ignition front. This phenomena occurred for both

the detonation state where the front was propagating betweti S-8mm/wsec,

and the deflagration state where the propagation velocity was much less.

Because of this, an addition was made to the computer code which allows

the code to only integrate the active region and bypass the inactive zone.

Ahead of the ignition zone, the computer code locaLes Lte iied•e•L

point to the zone where there is no significant particle or gas movement.

This point is then designated as the new front boundary of the integration

region for that particular integration step. When the pressure front

builds the ignition front moves rather rapidly through the bed (5-l0e--)
ilisec

and a new integration boundary must be locat.ed after each time increment.

Figures 14 sttd 15 show a comparison of a case run without the movIng

integration tone (Fig. 14) and one with (Fig. 1-) . To assure a correct

solution the actual f:.'ont integration boundary is extended a few grid

points beyond the location calculated by the code. The addition of this

new logic to the current code reduced computation ti. e by at least one

half, for the same time increment and grid space.

3.4 Artificial Smoothing

Inherent to the solution of the sysrem of interdependent conservation
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equations is a numerical instability. A small perturbation can in some

cases amplify with each time increment and eventually destroy the numeri-

cal solution. This phenomena can start at the Lirst time increment and

in ten to twenty integrations the oscillations can be so large that the

solution becomes unstable and terminates. In order to smooth out these

oscillations before they amplify, an artificial smoothing routine must

be incorporated into the code.

From experience in integrating the two-phase flow equations (Eqs.

22-27) with significant nonlinear source-sink terms, the problem of nu-

merical instability occurs often enough to warrant artifical smoothing.

An extensive study by the author and other investigators [2-4], 3hows the

final solution to be independent of any artificial smoothing used.

The aa•lyzation of numerous test casus has shown, suprisingly, that

the stable solution did not require smoothing of all the variables. It

is obvious that the following results have an inherent dependency on

smoothing. Extreme care has been taken to minimize these effects on the

qualitative trends and quantitative results predicted. Nevertheless, it

should b-- obvious that smoothing techniques can supply variability in the

predicted parameters which are reflections of the scheme utilized, and not

necessarily of the conservation equations.

The particular artificial smoothing technique found to be useful is

a three point averaging technique where the variable V determines what

weight is placed on each point. After the system of equations are solved

for at a given time, each variable in the vector U is recalculated by,

new (old old old
-(- + ( (39)j_1' i~
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wheýrre

P2

u
U= .

U U

gp

For example, if v 0.1 then V retains 80% of its original value and is

influenced by 10% of the U values on each side. This is shown graphically

in Figure 16.

For all cases studied, a minimum ,alue of v ,ias used that wuuld pro-

vide for a stable solution. This required repeating each test case nume-

rous times, lowering v each time until the solution went unstable.

3.5 Grid Spacing

It is obvious that in order to minimize computation time, a maximum

value of Ax which gives a stable solution should be used. Based on the

calculations carried out in References 2-4 a grid space of Ax =! 1.27 nu

was shown to be the largest Ax that would provide a solution to a flow

problem which exhibited rather steep gradients.
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-%N

Fig. 1.6. lllusuiations of Three-Point Artificial Smearing.
Open Circle Indicate Values of the Vector U Before
Smearing and Dots Denote the Values of U After Smearing.

i
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CAPTER FOUR

RESULTS COMPUTED

4.1 Introduction

This chapter will Present the calculations made on the possibility

of DDT occurring in packed beds of high energy, granulated, unisized pro-

pellants or explosives. It is obvious that there are an infinite number

of loading combinations possible for the DDT study. Fortunately, the work

of Hoffman and Krier [3] ana Krier and Gokhale [2], in which conditions

of rapid convective flame spreading have been calculated, is available

and can be used as a starting point. it should be noted that none of

the calculations made in References 2 or 3 predicted DDT. As pointed out

irn the previous chapters, there are probable reasons why this has not been

accomplished and it is expected that certain improvements and modifica-

tions will now allow for the calculation of the steady state detonation

solution.

The study made of a DDT potential attempts to model conditions simi-

lar to the test conditions of the Bernecker and Price work [9] (i.e., a

long column of granulated material in a closed pipe ignited by an ener-

getic ignition material at one end). In order to model the flow tran-

sient, one must assure that the lengtn of the bed exceeds XCJ' the run-up

length to detonation. Since the experimental work of Bernecker and Price

[9] indicated that .i 10 in (25 cm) bed was sufficient for most of their

experiments where DDT occurred, this length was selected as the longest

bed length to be considered.

i
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Since unisized spheres are being treated, the initial porosity can

be no less than o = 0.26, although randomly packed unisized spheres

generally give a high porosity, about ¢o = 0.40, Therefore, for this

study 0.26 < o 0.0.40. The initial particle radii studied were also in

the same range as those considered by References 2 and 3. Results in

these studies showed that particles must be less than one millimeter in

diameter in order to generate sufficient gases for the rapid flame spread-

ing phenomena.

The chemical energy of the material considered is in the range of

explosives or high energy propellants of the nitramine family (i.e., HIMX,

RDX). Thus, the chemical energies studied were always larger than 1000

cal/g (4.15 4J/kg). Other parameters one must consider in the DDT studies

are the burning rate properties of the propellant. Again, the values used

in References 2 and 1, which attempted to model the burning rate of an

HMX solid propellant, were utilized. However, the burning rate index,

n, is a parameter which is explicitly studied.

In this analysis, the deflagration will be initiated by assuming at

time, t = 0, that except for a small portion of the bed at one closed end,

the bed is quiescent and unreacting. As has been mentionud in Chapter 3,

a closed end situation is considered and hence at the two end points ( x = 0,

x = L) it is assumed that all flow gradients are zero and that the veloci-

ties of the particles and gas must also be zero.

The following section begins with a solution that indicates, for the

first time, a steady state detonation can be predicted. This result is

then compared to conditions where no such detonation solution occurs.

Additional calculations will indicate the sensitivity of the initial

porosity, ýo, chemical energy, F CHEM I burning rate index, n, and ignition
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energy, Eign, on the run-up length to detonation.

4.2 Calculations

Figures 17a and 17b present a case where a transition from deflagra-

tion to detonation has occurred. For this example, the burning rate in-

dex was n = 1.0, the chemical energy ECHEM ý 5.48 MJ/kg and the particle

radius r = 127 Um (.005 in).p

The pressure-distance profiles at five separate times after ignition

of the propellant at x = 0 are shown in Figure 17a. Examining the pro-

file for t = 50 psec, one can observe that the profile is characterized

by a shock front at x = 23 cm followed by a smooth expansion back to the

wall at x = 0 cm. The pressure in front of the shock is at atmospheric

conditions and, therefore, negligible with respect to the pressure behind

the shock.

The ignition locus plot for this particular case is shown in Figure

17b. Here, the ignition front moves through the bed at a low subsonic

velocity for the initial ten microseconds and then accelerates to reach

a steady state velocity of 06 = 7.2 mm/psec. This occurs within 12 to 15

cm frnm the ionited end. Nnte that the. retnnatinn znliition- for P.

and D are in fair agreement with the approximations made in Ch- r. 2

(Eqs. 30 and 31) for the given input (•Fm' Po Y.)"

Obviously, hydrodynamic steady state analysis (like Eqs. 30 and 31)

cannot guarantee that a transition from deflagration to detonation will

occur. However, it seems that "critical" values of porosity (related to

gas confinement), gas generation rates, and chemical energy will provide

for a DDT. For example, when the burning rate index was lowered to

n - 0.8, as :ihown in Figures 18a and 18b, the steep pressure front associated



52

30 1 - 1 -

2.0 Locus of Pressure Peaks

j-Pi--- 16 GPa

10 a,-- f

0 0 sec 55 45 50
0 F 2 2-1- - -

0 5 10 15 20 25
X - Location (cm)

Fig. 17a. Pressure History During Accelerating Deflagration in a
Packed Bed Leadi-ng to a Detonation Transition (n - 1.0).
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Fig. 17b. Ignition Front Locus with Detonation Transition (n 1.0).
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with a detonation did not develop. Corresponde:ngly, uic detonation speed

was predicted. in this example the peak pressure in *ihe bed never ex-

ceeded 5 GPa, no shock was predicted, and only a steady convcction-dri.ven

front of 2.2 mm/psec occurred at 100 jisec after ignition of x = 0. It ii

not clear at this time whether or not this can be defined as a "low-ve-

locity'" detonation.

According to Equation 30 in Chapter 2, for the case whcre a transi-

tion to detonation actually occurs, the stead)y state detonation pressure,

P CJ should increase linearly with the chemical energy, LCHEM' Also, Equa-

tion 31 states that the detonation velocity, Dcji is a function of the

square-root of the chemical energy. Figures 19a and 19b prrsent the re-

sults of a calculation where all parameters were identical to thoste used

to give the DDT results of Figures 17a and 17b, except ECHFM = 6.,5 MJ/}cg,

an increase of 25%. The steady state shock pressure predicted for this

case, shown in Figure 19a, was 21 GPa. This represents a (21/16.4 = 1.28)

23% increase in pressure over the first case. The predicted detonation

speed (Fig. 19b), calculated from the slope of the x-t diagram, was 8.70

mm/psec. According to Equation 31, the ratio of D for the case given in
CJ

riguLe 1ýU LU W11LL FýSIe in Figure 17b should be

V (6.8/S.43)=

This is approximately the increase predicted.

Table 2 summarizes the detonation pressure, PcJ and the detonation

velocity, Dcj, (which were the end results of the DOT calculations) all

as a function of the propellant chemical en',rgy. These predicted condi-

tions are compared with the approximate steady state hydrodynamic solu-

tions discussed earlier, i.e., Eqs. 30 and 31. The excellent agreement
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of the detonation pressure with the analytic solution should be noted.

However, the predicted value for the detonation velocity, D j, from

the hydrodynamic solution (Eq. 31) shows to be slightly less than the

value predicted by the code for all cases. Although one cannot judge

which of the two values, detonation velocity or detonation pressure, is

more accurate, the percent increase in the detonation velocity as the

chemical energy is increased compares favorably with the hydrodynamic

solution.

4.3 DDT Run-Up Length

The run-up length to detonation is defined in this report to be the

distance from the closed end where the bed is ignited to the location

where both the peak pressure and the detonation speed are constant, i.e.,

the equilibrium steady state solution.

Figures Z0a and 20b plot the predicted run-up ler to detonation

as a function of the burning rate pressure-index, n (Fig. 20a), and the

initial bed porosity, oj(Figure 20b). The "no-solution" boundary indi-

cates that, with the integration scheme used, the ,riesh size would have

to be drastically reduced (thereby lecreasing the integration time incre-

ment) in order to obtain a rtable solution. Fhis is a costly ekercise.

but future work is planned to increase the solution regions. Figure 20a

clearly indicates that, as expected, one cannot. aichieve detonation if
che burning rate during the deflagration Those is not sufficiently large

(see "no transition" boundary). For the solids ]uading considered

(I - 0. 70), it would appear that a minimum DDT run up length is S cm

for particles of 250 linm in diameter.

Figure 20b begins to resomble the required "f-Thaped" curve of ,
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TABLE 2

Comparison of the Predicted Detonation State with

an Approximate Hydrodynamic Solutioa

ECHEM J (predict 1) PCJ (Eq. 30) D Dj (predicted) I Dc(Eq. 31)** ZCj

4.11 MJ/kg 14.0 GPa 12.0 GPa 6.48 mm [ 5.12 raMf
1.sec vPsec 89 mm

5.48 16.6 16.07 7.25 5.92 51

6.85 21.8 20.08 8.24 6.62 44

8.22 24.6 1.. 9.17 3.

II

10,96 30.0 33.2 10.58 l :.72

* CJ = 2(y 3 -1) P (1--0) ECIIEM (Eq. 30)

2
D 2 = 2 (y1-i) ECIEM (Eq. 31)

Cj i IE N
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versus initial porosity. DDT experiments by Korotkov et. al. [21] show

a similar behavior (see Fig. 21). One would expect that for a relatively

porous bed, #o > 0.60, nc transition will occur since local pressure con-

finement is limited. If the porosity is too small no gas penetration

for the accelerating deflagration wave will occur. The net result is a

porosity where a minimum run-up length occurs. I
Figure 22 presents a study on the effect of the chemical energy, ECHEM,

on the run-up length, kj, the values which were presented in lable 2.

As expected, the run-up length to detonation increases as the amount of

zhemical eneroy decreases. Again, as expected there is a minimum value

where no transition occurs, E 3.0 MJ/kg. For this case it does ap-
CHEM -

pear that a constant but small run-up distance is still required as the

chemical energy increases beyond the values studied here.

4.4 Detonation Reaction Zone

One measure of the fact that detonation occurs is a plot of the

reaction zone width versus the locus of the ignition front. This is pre-

sented in Figure 23, where the reaction zone is defined as the region

where particles are ignited and generating gas (i.e., are not burned out).

As shown, the zone initially increases during the deflagration phase as

the convective heat transfer provides energy to ignite more and more of

the bed. The zone then collapses to a thin (constant) width as the sur-

rounding high gas presssure causes the part'cles to burn out rapidly. A

steady reaction zone thickness of approximately 9 mm is predicted. How-

ever, most of the gas is generated in a small region immediately behind

the ignition front where the particles are still relatively large. Aote

that in all the cases reported here, the initial particle diameter was
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250 pm. Obviously, smaaller particles will provide for a thinner detona-

tion reaction zone. Figure 24 presents a porosity-distanc.e profile for

a case where DDT occurred. flere, a porosity of • 0.95 is for all in-

tents and purposes the condition when the propellant is burned out, i.e.,

no generation of hot gases.

4.5 Comments and Interpretations

The results shown in Figures 17-24 have clearly indicated that, as

expecte,', high solids loading of relatively small particle size ener-

getic propellant with perfect confinement will transit into a detonation

in space domains of several centimeters. One would expect that propel-

lant properties and packing configurations have limits where detonation

cannot occur and this was clearly shown in some of the figures which show

the run-up length versus property parairieters. In conclusion, it wiI be

useful to review these studies to determine the propeyties and configura-

tions which minimize a DDT hazard.

For examole, for a fixed chemical energy, ECHEM = 5.48 MN/kg, a fixed

ignition energy, AL. ---" 9.0 VJ/kg, a fixed particle radius, r = 127 pmign P0
(;l.WS in) and a fixed solids loading; .(l.-fl, = 0.7. the hurning rate index;

must be larger than n - 0.8u if DDI is to occur. This was shown in Figure

20a. Of course, had the burning rate coefficient, b, been a different num-

burn, this- exponent may have been different. A general statement ).n then

bU: made that the burning rate, and hence rate of gas generation, should be

kept as low as possible to minimize DDT. Conversely, the higher the burn-

ing rate, the better the chance of a transition to detonation ee,urring.

Figure 20b showed the run-up length to detonation versus initiaj

porosity, o As was stated in the previous sectiioia, for all p3c.1 ,wt.
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equal, there is a maximum initial porosity where no transition occurs.

Since a randomly packed bed of unisized particles has an initial porosity

of the order po = 0.4, this figure indicates that this is in the region

where DDT potential is at a maximum. As one reduces the initial porosity

(that is increases the solids loading) the run-up length to detonation

slightly decreases until, as experimental work of Bernecker and Price [9]

has indicated, there is a mimimum initia, porosity where DDT cannot occur.

Since at these initial solids loadings multi-sized particles and mechanical

packing are required, these lo lings are not of interest, whereas the ran-

domly packed loadings are of interest.

A similar comparison of the run-up length to detonation was shown in

Fig. 22 where the chemical energy content was varied. Recall that a chemi-

cal energy, E ---- = 4.18 M.J/kg (1000 cal/g), can be considered an ener-
LAiLM 0clg ecniee

getic propellant material. Based on the results shown in Fig. 22, one

can state that less energetic material than this has little chance of en-

countering a DDT. Doubling the chemical energy from ECIEM = 4.18 MJ/kg to

ECHEM = 8.36 MJ/kg, represents a reduction in the run-up length of only

about one half. To summarize, high energy propellant of the nitramine

family where tH > 4.l8 mJikg, definitely fail within the regime of a
THEM-

DDT hazard if properly confined.

The final comparison of this type is shown in Figure 25. This shows

the run-up length to detonation versus the particle radius. As one would

expect, there is a maximum particle radius (i.e., surface-to-volume ratio)

where transition is not predicted to occur. This is indicated by the "no-

transition" boundary on tiat figure. The figure also indicates that as

the particles get smaller in size, the run-up length to detonation also

decreases, as expected. Reducing the initial particle size, r , to
p0
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n= 1.0 

/

CH-M 5.48 MJ/Kq /

"g2,6D -- !/0

4.0 - -

20 I .0,F I I v .
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°o... 40 80 120 160 200
rp" (/JLm) !

Fig. 25. Run-Up Length to Detonation Versus Initial Particle
Radius, r P.

PO)
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values less than 25 Lim results in gas generation rates, per unit-volume,

that are so large finer grid spacing must be utilized to assure stability.

This expensive task has been delayed and is recommended only after improved

numerical integration schemes have been developed.

A final topic studied dealt with the effect of ignition temperature

(or more appropriately AEign) on the run-up length to detonation. For

the results shown in this chapter a nominal value of T. -- 545°R was used.ignl

Fur this study p° 0.03, ro P, 127 vim and n = 1.0.

Calculations were made inL which T. varied over the range S30°R <ign

T. < 5750R. For a constant initial bed temperature of 'T T = 530 0 R,
ign - go Po

this represents a range of ignition energy of 0.0 < 6gE. < I.C. ' 1
ign - Y. 5

For most of the ignition temperatures tested there was little change in

the steady state detonation pressure or v0ioLity. .....y ,whe L• .I

approached the improbable value of AEign = 0.0 KJ/kg did the values

change significantly.
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APPENDIX A

JUMP CONDITIONS FOR TWO-PHASE REACTIVE FLOW

In Section 1.3 (Jump Conditions) of the text the reader was provided

with a review of the jump conditions across a shock discontinuity for one-

dimensional, one-phase flow with heat addition. This Appendix will out-

line the development of the jump conditions for one-dimensional, two-phase

flow with heat addition. As d scussed in Section 2.3, the heat addition

for two-nhase flow comes as a release of chemical energy from the ignited

propellant particles to the surrounding ga.;' For a detonation this is

assumed to occur in an infinitesimally thin reaction zone.

In order to evaluate the jump conditions for two-phase flow across t
a steady state combustion wave, the conservation equations (Eqs. 22-27)

are first written as conservation equations for the mixture.

Mixture Contiraity:

[1pgugJ + [(l-4)pUp] 0 (A.1)
ax gg9 dx p p

Mixture Momentum:

d [tOgig + 4P ' " [(i-0)Op Up + (1-0) Pp] 0 (A.2)
gg 9 xp p p

Aixture E, ergy:

d|
[ýp [ggEg + ýUgP I + k [(-)lp upET

d [tu 9 tu 9T 99 XPpP

+ (l-•)u Pp] - 0 (A.3)

As ia Secti.-' 1.3. the unreacted or "cold" end is denoted by subscript A

and the produots or "hot" end is denoted by subscript B in the analysis



72

that follows,

The mixture conservation equations (Eqs. A.l-A.3) are now integrated

froi the "cold" end to the "hot" end of the bed with the boundary conditions

¢()=1.0

Ug (A) u (A) = VA

Ug(B) V8

p (B) p B

IntegrateJ2 Mixture Continuity:

B -- ýAD A V,ý +. (I-.A )pPA VA (A.4).PBVB 4 '•V A(A

Integrated Mixture Momentum:

2 ,2PBr • P YB=£A[•%VA + P•]

+ R •A) 1 % V2 + PR]

PA PA(A)
Intkx,..:-c.--. Aixture pielr y:

In.vw r LV (Eglj + VIp, V )(E)1

L g T

T, 4) V( P" [ I-, l • 1- 3 (A.6)
I t I-. ]T/ JA "JAl !t

At first glance, Equation A.4 'o . t- ;eer.m tc. .aiiy evaluated know-

ing the conditions at both ends uf the flow. However, as was pointed out

by Kuo and Suminerfield [23j, they are not S:,rpie 'JgFC,,bTai.-. eCUat).Ous un-

til P , the stress transmitted through the partiQ:.- phase at 1,,cation A,

is evaluated. This way shown to be obtainable by .te•rat.now the momentum

equation from thi: cold end, A, to the Iocat o,i wi '.e the partic les: are no
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longer in contact, denoted by subscript C. From this you obtain

(•A) - fCD dx + fC, u dxPA
A A

U, (-)] - p V2(F -) (A.7)

It should be noted that if the flow situation being modeled consists

of an infinetly long bed, then the particle stress ac location A, PPAP

will also be equal to zero. This is true since pressure disturbances ini-

tiated at the combustion zone (i.e., compression of the propellant par-

ticles) are propagated through the medium at the speed of sound of the

solid, and would therefore take an infinite amount of time to reach loca-

tion A.

Since all experimental work consists of finite length beds (the nu-

merical model studied in this report wds L - 2S cm), a somont on the p

integration limits of Equation A.7 is appropriate. If ise region where

particle drag is of 4ignificance extends from the combustion wave (C) to

the wall conditicn (A), then the integrals in Equation A.7 must be evalu-

ated after each time increment and hence the particle stress at the wall,

P , is changing. ilowever, if the region of significant particle drag

is assumed to be only that z)ne imnmediately ahead of the combustion zone,

then the integrals in Eq. A.7 are always constant and, therefore, P is
PA

also constant.

A fina! comment on the particle stress is that if the time to detona-

timk) is less than the time it takes a pressure disturbance to travel

through the solid matrix to the rear wall, then the rear wall has pot

felt the pressure dtistcrbance and hence, P p, 0.

.1
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APPENDIX B

CONSTITUTIVE RELATIONS

As discussed in Chapter 2, a system of nine independent equations is

necessary in order to solv'i for the nine unknown variables describing two-

phasýe flow: pgR p, Ug, Up, Eg, E&, P , P and t.
9 P g P ) 9 1

Of the three additional equations necessary for the solution, one is

the nonideal equation of state for the gas phase as described in the text.

p 2-g 1+bpg + c (bpg ÷.. (B.1) i
RTg

Values for the constants b and c are discussed in Appendix C.

The second represents an equation of state which relates the solid

density to the stress on the particle. (See Ref. 3). This is also men-

tioned in the text.

p3 K
p P 1)~l~ 0S (B3.2)

Po

Finally, the third additional constraint is a relation fore the par-

ticle phase stress, Pp, as a function of the solids .-ading and the maturial

bulk modulus, K (also see Ref. 3).

As discussed in References 2 and 3, one must also specify fui.cticn-il

relations for the following:

a) I' :- mass gener,.tion rate per unit "olumc

S - -. (1-) f r (B.3)
r p

Here, r sis the instantaneous pan- it:le rad iu- and Lr : St'Ie st'faCe h)uriingP
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rate specified as a function of pressure (and possibi- partic:1e ter.perature),

For all cases run in this study.

r - rE.4)

where r has units of (in/sec), P (psi) and bis of the order (1 x 10)

in/sec
(psi)n

b) D interphase (gas-particle) viscous force (as disc,;ssed ir. the

text).

D g 2- C -9 f P9(3.5)

4r 2 pg
p

where

f =5.6x 105 r Re/u2 (see Eq. 37)

c) Q interphase heat transfer rate

- (1-0) h j - Tp) (B.6)
r p pg g pp

In the analysis carried out here, the heat transfer coefficicni -,as

k U / 0.66(.7
hp 0.65 [--&] (Re]' (Pr) (B.7

where k is the thermal conductivity, Re is the Re-yuclds nuMber and Pr is
g

the Prandtl numbex.
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APPENDIX

NONIDEAL EQUATIONS OF STATE

As descr.W&O~ by .Jaobs I t , the nonideal equation of state is ini-

tf atly written as a polyn ,,.i" expansion in gas density.

i7 3 + X + c . - d., (C .1)

b
Here, x = bp b V'

if Cv, the specific heat at a constant volume, is assumed constant

over the varying temperaturcs, as was in the molcl, Eq. C.1 can be

written as:

Pv= Y-1) E f(v) (C.2.,

In Eq. C.2, y is the specific heat ratio for the ideal gas limit, -i C

and f(v) is tht gas density polynomial expansion.

f(v) + ... . (C

For simplicity tie higher order terms are dropped.

The local speed oF ;ound, a, in th.± detonation state is defined as:

zi2 PI ' (4

Here, y is the effec _iVe i•tecifi'. I..!at ra. o in the detonation state.

For ,2. -t ,,tating ""t iu ':k '- t . '' j , t , ' e4. tlti •

e q u a l i ,l y i n L .4u a C i o n " 4 &.i' , , ' •, ,
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Y (aP P (aP) (v 1
p tIý- P - Sc- 7)

O:

0: = -V(')' (C. s)

Since P = P(E, v),

"- (d-! d' (c.6)

and

dP : dvd = E I• d\ v,) I-a-v (C.7)
"E s

Substituting Eq C.- i,'i tvie cons:t.nt entropy thermodynamic relation

P (C.8)

t,-o Eq C I&I:

• + -)

V S

(C. 9)

- -. •. .. -., 4•, ..- ,, ,, t .,. jflqn~ i~n F ri C (

t, . t _i)f ". , v .,3 taken holding . constant,

"t • f'(v)
: . . ... . '(c . 10)

.rd ,con• ,, ,•rt a .. -* o : i•s taken, 'loiding v

,1_i: -UFI

(.A -- (C. ,

A M. .. .. . . ... ( : •
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the form:
-Y =('riJ fv) (y-1) E f(v) - ~.... f,(~

Y (yi-1) f(V) + Pv Pv (C.12)

But, 3inre from Eq. C.2

Pv I

(yi -BE £fv)

Eq. C.12 is now:

y = (y f(v) + I V- v i (C.13-)
1 f(v)

Knowing approximateiy what value of y an explosive exhibits, values of

the constant b aznd c can be fit to equate Eq. C.13.

I
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APPENDIX D

FINITE DIFFERENCING TECHNIQUES

This section will give the reader a more detailed description of the

finite differencinv scheme referred to in Chapter 3, the Lax-Wendroff

center differencing technique.

In order to solve the system of six hyperbolic partial differential

equations describing two-phase reactive flow, the Lax-Wendroff scheme pre-

sented in Reference 19 for one-phase flow was modified to model two-phase

flow. This modification was necessary because of the interactive source-

sin.k L.uib....VUI-VCU Ain. thC-.".'. , ,neoinnc

The six conservation equations described in Chapter 2 (Eqs. 22 to 27)

can be written in vector form as:

DU ýF
7 4 • C(D.1)

In this notation U, F and C are the vectors

P2 02u p

01l0 (P lU 2 Pg

U= P2:p F: 2

JIEgT (PlUgEg *T g Pg)

L T P2UpPT u (I-) UP)



80ID A: 1

1 u P - vU

C= -I'u +V-0

r (EgE
2

U
r(EP D u 4-Q

CHEM p

The Lax-Wendroff solution, as described by Richtmeyer and Morton (221

b,,gins as a Taylor's series expansion accurate to the second-order.

t+At t Fatu1 1. 2 21 (P.2)

U + tt)U. X U X+A t + LM t I~

In order to make use of Equation L'.2, the time derivatives must be replaced

by derivatives in space,

By using Equation D.1 and introducing the matrix A, where A.. = 3-

3 NJ

2i U C aF 3 C J Fa C ;r.a C 3 aF

2 ýT-5t '- Tt C = - iA T - [ A~. (D.3)

Replacing x-derivatives with finite difference quotients (i.e.,

HF/ax = (Fx÷Ax - FXAx)/ 2Ax), the Lax-Wendroff solution can now be writtcn

ut+At = t _At [t -t x
x x -2"-x x+Ax - 6 F .XA.] + ttC

- f t xl + t ft Ft- At _t 1
S26 X+Ax x-Ax A- ) x- At-x 2.4)

[A 2 -
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At entsAIUt 1it

A denotes A [! + + 12 U For A a constant matrix the Lax-Wendroff
- U]

solution takes the form

ut+At = ut A At [Ut ut ]

X x 2 Ax L x+Ax x-A

1 , [ALt] 2  t 2 t +Ut 1 At (.5
"2 •Ax j UX+Ax U xUA 2 At •C (D.5)

Richtmeyer [22] developed a variation of the Lax-Wendroff solution al-

so of second-order accuracy. This method involves two steps and eliminates

the use of the A matrix found in the Taylor's series expansion solution.

Richtmeyer's first step involves computing intermediate values in

time and x-location of U.

Step I

4t r - r-
U + 1 Ut 4 F L Ax - F' • C CD.6)X+ Ax = Lx~x+x-x •

Step 2

[ + At At+
t At

ut+At = ut At + •- F 2 + At •C.7
UAx x x F A x Ax x

x+- x-T-

The first step (Eq. D.b) is of first-order accuracy. However, the final

step (Eq. D.7) is accurate to the second-order since F quantities of

B(Ax) are differenced over Ax. For the linear case where F(U) = AU

Equations D.6 and D.7 combine to yield the Lax-Wendroff solution, Equa-

tion D.S.

A two-dimensional (x-t) grid is helpful in understanding how the

Lax-Wendroff differencing scheme can be applied to the numerical solution

•.i the ..iiiorvation vquzations on a digital computer. In Figure D.1 a known
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value of the vector U (mass, momentum and energy per unit volume) at a

time t = t and located at x = x is indicated on the grid by a solid
0 0

dot at (x, t ). Locations where the vector U is yet to be solved at
09

are indicated by open circles. Figures D.2 and D.3 illustrate the

Richtmeyer two-step routine using the x-t grid, For instance, in Figure

0.2 the vector U at (x° - to + 2 is solved fcr by using known values

at two locations (xo, to) and (x - AX, to.
0 0

In a later paper by Rubin and Berstein [19] it was shown for one-

phase flow that a modified version of Richtmeyer's 2-step method was

more stable in solving the system of equations. The use of half-time

steps was eliminated by averaging F differences at present time, t , and

future time, t + At. This is ,vritten as

U t + U
u t+At _ UX AX X +l tF t rt] L,8

X+AX_ 2 LX X ,AX X1
Ste 2

X x A t 2 xAx- x-AxJ +FAx -x (-.9)

This method is illustrated in Figures D 4 and D.5 on the following page.

The following is a summary of the schemes described in t-his Appendix.

Each will be applied to the gas continuity equation of I-D, two--phi,-e flow.

Here, F represents the gas beipg generated from thr, ,oli.I phase.

Gas continuity equation

.-Y- + ?•x"
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t+At

t I
I I

I I Ito I ,.

x-Ax x x+Ax

Fig. D.I Schematic of x-t Grid Used to

Illustrate Finite Differencing
^'Ir . . ..e h . -'•r , - r P-i , -' r l T n d i r a t

Values Solved for and Black Dots
Represent Known Values.

I I I II I I 1
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Richtmeyer 2-step Method

Step 1 tt

A t x +6 xx A
( P I) X + A 2 2Ax ( pi a g ' x+Ax

Step 2

t+At At.it
tAt = t _At T 2 01  At (.2

(PlX 1Qx Ax (p1 g I2 +A pu9x x(.2

LW2 -Method of Rubin/Ber stein

Step 1
+pt

( t+At 1X+AX 1 x At F t
Vlx+Ax 2 7x (p11 9x+Ax

Step 2

T (0. u ()1

IX A '(.Ox

+(p u) -+t ( u t + r At (D. 14)
19x+Ax 19XA
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