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ABSTRACT

This report summarizes the analyses of deflagratior to detonation

transition (DUT) occurring in a packed bed of granular, high energy soiid

propellant. A reactive two-~phase flow model of this phenomena is solved

by utilizing a Lax-Wendroff finite differencing technique.

A brief

overview of tne well known shock jump conditions for one-dimensional,

one-phase flow with heat addition is reported, and a similar analysis

Improvements

for one-dimensional, two-phase reactive flow is discussed.

made in the gas phase nonideal equation of state, gas permeability, and

numerical integration t chniques allow for the predictinn of a transition

to a steady detonation from initiation by deflagration.

Analyses are presented that clearly indicate the effect of the

'sical and chemical parameters on the predicted run-up

propellian
Predictions of this run-up length to detonation

length to detonation.

are presented as a function of propellant chemical energy, burning rate,

Limited comparison with actual DDI

bed porosity, and granulation (size).

data in the literature indicates good qualitative agreement with these

predictions.
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CHAPTER ONE
DEFLAGRATION-TO-DETONATION TRANSITION

1.1 TIntrcduction

This report summarizes the annlysis associated with the accelerating
deflagration wave in a porous medium of reactive solid provellant. The
phenomenon of DDT (deflagration-to-detonation transition) in solid pro-
pellants, e pecially solid propellants burning in rocket motor environ-
ments, is not usually considered a hazard. However, it may be that un-
der certain situaticns, for example a grain structure failure, the solid
motor may crack and form regions of granular or porous propellant. When
flame from the surface deflagrating propellant r:aches this seam uf porous
material it will accelerate into this medium and be supported by corvective
heat transfer from the burnt gas into the unignited porous region. If in
addition to this the product gases are confined to a finite volume, the
accelerating deflagration could transit into a detonation. Propellants
exhibiting a high chemical energy per unit mass and capable of rapidly
generating gases through their burning rate are more likely to experience
this cype of deflagrailion to detonation transitien.

Analysis of the flow, in such an unsteady two-phase mixture is a com-
plicated exercise. Work has been underway at the Univercity of Illinois
since 1975 to develop a reactive hydrodynamic code in which the combus-
tion of porous propellants can be modeled in such a way as to predict the
behavior of a convectively driven flame in a confined situation. Details
of these modeling exercises are found in References 1-4. In an evolutionary

manner this work included the formulation of the two-phase flow conserva-

tion equations, first assuming tihat the mixture was a continuum, and at a
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later dJdate treating each phase as a separate contisuum Irrespoectlve vi

the mixture properties. The most recent analysis of the unsteady two-phase
flows associated with DDT is documented in the paper by Hoffman and Krier
[(3]. This reference, therefore, repre :ents the scarting point for the

work that is presented here.

The reader, after reviewing the above noted reference, will understand
that the modeling of this transient phenomena utilizes a number of impor-
tant constitutive relations, which form closure of the conservation equa-
tions. For example, one must have infcrmation on the burning rate of the
material that is a function of the surrounding pressure and temperature.
One must also have laws for the dynamic gas permeability and the subse-
quent heat transfer rates of the hot gases as they are forced into the

unignited porous matcrial, In addition, relations which represent the

resistance to compaccion of the solid matrix must be included. Equations
of state, not only for the high pressure in the prodict gases, but also
for the sclid itself, must be supplied (as shown in the work by Hoffman

and Krier}. The assumption of an incompressible solid, although provid-

ing some reasonable answers .s far as the deflagration speed, is not an
accurate indicator of the peak pressures that are possihle during the
accelerating deflagration mcde. Since these pressures are precursor to
the final detonation soiutions that would be expected, it is clear that
a compressibie solid must be modeled.

In summary, the analysis of the DDT problem requires the solution of
the conservation equations in bcth phases and the necessary constitutive
relations. The conservation equations form a system of nonlinear hyper-
bolic equations, which require numerical finite differencing schemes.

This report will summarize several of these integratior scheres and will




evaluate which are more useful for this reactive flow problen. There are,
of course, many numerical techniques available to handle hyperbolic par-
tial differential equations which ailow for solutions of shock waves.

Obviousiy, not all of these have been treated in this work.

1.2 Previous Results on DDT Modeling

A teview -f References 2-4 indicates that a steady state detonation
solution was not a predicted result. As will be shown in Sections 1.3
and 2.4, for propellant chemical energy, the initiai solids loading con-
sidered and the material parameters (e.g. ~), a steady state detonation
{CJ) would propagate at speeds of the order of 5-8 mm/usec, with a deto-
nation pressure of the order of 12-20 GPa. Although a fairly rapid flame
front, often approaching a steady state speed of 2 mm/usec was typical of
the solutions presented in the work by Gokhale and Krier [2], Kezerle and

Krier {4), and Hoffman and Krier [3], the associated peak pressures were

never of significant manner to suggest that these final flame spreading
rates were characteristic of an actual detonation, since fronts ranging
from 1 to 2 mm/usec cannot support a detonation (see following section).
However, the peak pressures previously reported, which ranged between
1/2 to 5 GPa, were consistent with the velocities,

Continued work, which is reported here, indicates that it is now
possible to obtain a detonation solution, but in order to do so a num-
ber of important modificarions and corrections are required. To under-
stand what these changes are and why they are necessary, it is appro-
priate at this point to first provide a review on the topic of detona-
tion. Although the discussion that follows is documented in various

wanners in several textbooks, including such a revicw here wiil allow




for a clearer understanding of the steady state solution that is termed

"detonation", as well as dcfine the flow properties of the DDT analysis.

1.3 Jump Conditions for Reactive Flow

In order to uvaderstand the jump conditions across a detonation wave
in two-phase {solid-gas) reactive flow, one should first look at the solu-
tion of the one-phase (all gas) flcw problem. Fickett and Davis [5]}, and
Strehlow [6] “evelop these juwp equations in more detail in their texts.
This section will give the reader a brief review of their work and high-
light some of the key assumptions made in develeping the Hugonist and
Rayleigh line eqdations.

In Figure 1 a detonation wave with velocity D is moving through a
constant area duct into the unignited or 'cold" end which is at rest.

For this analysis all chem. cal recactions are assumed to take place in a

narrow reaction zone. The products of combustion are shown moving with

velocity u in the same direction as D. 1In this figure, the subscript A

on pressure, density, and velocity designates the unignited or reactants
side, and B indicates the product side of the combustion zone.

To better understand the jump conditions across the shock in Figure
1, a new frame of reference may be helpful. From a coordinate system
attached to the moving detonation wave, an observer iocated at the origin
would see the reactants moving with velozity u, = D into the stationary
reaction zone and the products of combustion exiting with velocity
ug = (D-u) (see Figure 2).

Conservation of ' ass and momentum through the flow area shown in

Figure 2 gives respectively

PpD = ppug = pp(D-u) : (1)




Moving Reaction Zone-,
LLLLLLLLLLLLLLL L L 2L

Reactants 7 Products

'OA - D v PB

ua=0 ug =u
Ve f; g
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Fig. 2. Reactants Moving into Stationary Detonation Zone. (Reference
Frame Moving with Reaction Zone).




and

2 _ 2 - o A .
pAD + PA = pBuB + PB = pB(D u) o+ PB (2}

In this model all viscous effects are confined within the bounds of the

shock discontinuity. The expression for conservatior of momentum (Eq. 2)

can be simplified by making use of Equation 1 to outain ! K

P -P, =p.uD O

g~ P =Py (3) ! '
Later; it will be assumed that PA is nagligible with respect to PB, but %;._
for the time PA will be retained in the momentum equation. llf;
Elimination of u, the reaction products velocity expressed in the g N
fixed coordinate system, from Eqs. 1 and 3 gives the well known Rayleigh i;,
or Michelson line. ‘3"
o 0% - (@ - PO/ ly, - vy) = 0 (4) ,

Figure 3 iilustrates a Rayleigh line on a P-v diagram for one specific

value of D. The line has slope -QAZDZ and passes (hrough the point (Pys VA).

For the case where D + =, the Rayleigh line approaches vertical and for

D =+ 0, the Rayleigh line is horizontal. In order to satisfy the conserva-

tion of mass and momentum, the final srate (P_, v_) must also lie on the

B> B’ "

Rayleigh line as shown in Figure 3.

Simultaneously solving Equations 1 and 3 by eliminating D instead of

u, the result would be an expression for u, the gaseous product velocity

in the fixed reference frame.

u? = (Py - P,) (v, - vg) (5)

Figure 4 shows several curves of constant u plotted on a P-v diagran.

Solving Equations 1 and 2 for ug = (D-u) one would obtain
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- )

uBZ - sz (Py - P/ (v, - Vp) (5a)

Equation 5a will be important later in showing that for a CJ detonation l
the product velocity is sonic with respect to the detonation front. !
The third conservation equation, the conservation of energy across

the reaction zone, can be written
(X}

1l .2 1
E. + Pv +=D"=E, + Pv. +>u = E
1ntA AA 2 1ntB B B 2 B

Py 4 %-(D-u)z (6 '

B'B

, represeats the specific internal energy at each re-

In Equation 6, E,
in

spective location and v is the specific volume v = 1/p. Since C,» the

specific heat at a constant volume, is assumed constant throughout the

process, the internal energy at location B is simply

F. = 7
int Cv TB (7a)

Likewise, the internal energy at location A is similar with the inclusion

of the chemical energy yet to be released.

E. =C T

.
int v Ta ¥ Echem (7b)

By convention a positive value of E is endothermic and a negative value

CHEM
Elimination of u and D from the energy equation (Eq. 6) is obtained by
substituting in the mass and momentum equations (I'qs. 1 and 3). The re-

sult is a relation between E,

int? P, and v in both reactant and pruiduct

states known as the Hugoniot equation. It is expressed as

] 1 ) .
EintB " Fint, T2 (Pg + Pplvy - vg) = 0 (8)

If one essumes that Cv is a constant and the veaction products obey an ideal

equation of state




10
Pv = RT (9)

then the internal energy expressions (Eqs. 7a and 7b) take the form

] _ o A _ PaVy 108)
intB R (y-1D
and
CP,v P.v
v A'A A'A
EintA "R *Eoupm = 57t Ecuem (10p)

where vy is the ideal gas limit of Cp/cv' Substitution nf Equations 10a

and 10b into Equation 8 gives a new form of the Hugoniot equation.

P v I 2 2E

- D 3 R S o0 § I RS fal { I [1—1 CHEM 1),
P Y+1 v v+l y+1 y+1l| P, v

A A L A VA

On a P-v diagram Equation 1l plots as a hyperbcla passing through (PA, VA)

for the case where E-HEM = 0 and displaced from this point for increasing

values of ECHEM (see Fig. 5). From the solution of the conservation equa-

tions, the Hugoniot relation states that flow coming in at pressure P = PA

and specific volume v = Va with chemical energy E

a final state (PB, VB) which lies on the E

CHEM = ECHEMI’ must have

CHEMI Hugoniot. As discussed

earlier, the Rayleigh line connecting the initial state (PA, vA) with the
final state (PB, vB) dictates a unique solution for the detonation velocity,

D. for that process. Therefore, the steady s ate flow process between

states A and B shown in Figure 2 can be uniquely modeled by the Rayleigh

iine and Hugoniot curve on Figure 6, knowing the initial state (P,, vA),
. \ .

the final stat«(PB, vy’ and the chemical energy ECHEM of the re.ctant.

There are certain areas on the P-v diagram where a final solution to the

flow process is impossible.

For instance. the pressure and specific

gt —
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Echem,” EcHEm,

>
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volume cannot both increase over the shock discontinuity.

Figure 6 shows a Hugoniot curve and two Rayleigh lines, R, and R,,

1
on the same P-v diagram. For Rayleigh line labeled R, there are two solu-
:ions iabeled S for strong and W for weak. At the strong solution the

flow downstream of the shock (uB in Fig. 2) is subsonic with respect to

the stationary shock, and a pressure disturbance initiated, traveling at
the local speed of sourd in the fluid, will propagate back and overtake

the shock front. Looking at the same strong solution but in the fixed rve-
ference frame (moving detonation wave), a pressure fluctuation behind the
detonation front (i.e., moving the rear wail in a closed system) will over-
take the front and the front will adjust itself to that change. For the
weak solution the flow behind the froat (uB in Fig. 2) moves away from

the stationary front at a velocity greater than the local sound velocity.
Therefore, a pressure disturbance in this case will not be felt by the
front. Both the strong and weak detonations will be discussed in more
detail in the next secticn.

In the case of the Rayleigh iine labeled R, and the Hugoniot curve,

1
there is only one unique solution to the conservation equations. At this
point the two lines are tangent and the final st.te is identified as the
CJ (Chapman-Jouguet) point. For this case, the flow behind the front at
the CJ condition is moving at the local speed of sound with respect to
the front (i.e., ug = al-

In order to prove that the flow is sonic with respect to the deto-

nation front, one shouald first look at the thermodynamic definition of

sound speed.

2, 3P, _ 3P dv. _ 9P, -1
b GG G)s =G D (12)
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Fig. 6. Pressure-Specific Velume Plot foo One-Dimensiconal Flow
with Heat Addition. The Three Solutiuns Indicated (Strong,
Weak and CJ) ave for the Case wliere FB > PA.
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In Equerion 12 the subscript s indicates the derivative is evaluated
at constaat entropy. Thersfore, for a detonation the local sound velocity
ac the CJ point is simply obtained by evaluating the slope of an isen-
trope through that pcint on a P-v plot.

Since the siope of the Hugoniot and Rayleigh lines are equal at the
C) point, it is useful to solve both derivatives and equaie them. For

the Rayleigh liue

G = - o= By - POV, - vy) (13)

B

and for the Hugoaiot curve

P,  _ dE

G, 2GR G v By - B /vy - vy ()
Equating the righc hand sides of Eqs. 13 and 14 you obtain

& - (15)
fes

From the thermodynamic relation
dE = Tds - Pdv (16)

vou obtrin

.
() =-p (17)

by evaluating Equation 16 on an isentrope. Equations 15 and 17 imply
thet at the CJ point an 1sentrope is tangent to both Rayleigh and Hugoniot
lines. From this
ap
(NS Y CORT (18)
CJ

Therefore, at the CJ point the local sound speed can be evaluated by using

SENPURRAEY PSP Ty

u?
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Equations 12 and 18 to obtain

- P

3
2 2 (Pg - Pyl

This 1s exactly the same as Equation 53, the square of the product ve-
locity for a staticnary detonation. Therefore, the product velocity for
a CJ detonation is sonic with respect to the detonation front.

From Equation 18, one can define gamma to L= the negative logarith-

mic slopv of the isentrope through the CJ point.
P v
v

y =-(3ln P/3ln v) = |1- <A A
s PB

[# ]

The analysis of detonation processes presented in this section as-
sumes Y is not only a constant value but is the same in both product and
reactant sides of the detonation wave. For most gases y is about 1.2 [7].
In the case of a sclid (explosive) detonating, Fickett and Davis [5] use

a value of y = 3,0 and assumes the ideal state equation holds for the

apply the analysis formulated in this section to the solid detonation.
However, for two-phase reactive flow the mixture momentum and mix-
ture energy diffe: from Eqs. 3 and 4 by interactive stress and stress

work terms. flso, the gaseous products canno: be assumed ideal when ex-

Mpsi) [8]. Because of the high detonation pressure a nonideal equation
of

2. Also, the jump conditions for a mixture with interactive terms is

outlined in Appendix A. It is similar to the macerial presented in this

section with the exception of the stress and stress work terms.

o B B R (19)

- 1} (20)

product gases. From this assumption and estimate of v, one couald directly

perimental work shows detonation pressures of the order 15-20 GPa (2.17-2.9

state wos implemented. This will be discussed in more detail in Chapter

2 A I .
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1.4 Rear Boundary Condition for Steady State Detonations

Reference 5 shows that the velocity, D, at which a detonation
propagates into the reactants is dependent on the velocity at which the
rear wall, or boundary, travels with respect to the CJ product velocity
uy The product velocity was discussed in the previous section on the
Rayleigh line and Figure 4 shows several curves of constant product ve-
locity. The CJ product velocity would be the curve intersecting the CJ
point in Figure 6. Three different possibilities for the movement of
the rear wall with respect to the CJ product velocity exist and will be
discussed in this section.

The fiist case to consider is where the rear wall velocity is greater

than the product velocity at the CJ condition. On the P-v diagram (see

Fig. 6) this would correspond tc the solution labeled S for "strong".

Here, the fiow field following the detonation is constant with the pro-
duct velocity u = u - Examining Figure 6, one can see that the final

state pressure, PB, is also greater tham that of the cerresponding CJ con-

dition. Because the flow behind the dctonation front is subsonic with
respect to the front, any perturbation in the rear wall will propagate
forward to the pressure front. Figure 7a shows a pressure profile for an
overdriven detonation with the CJ pressure labeled on the figure.

The eff. cts on the pressuie by reducing the rear wall velocity can
be seen in Figure 7b. Here, a rarefaction from the decreased wall pres-
sure is shown propagating forward to the detonation front. An actual
overdriven or strong detonation must have an external force driving the
rear wall at a velocity greater than the CJ product velocity. Fickett
and Davis [5] give as an example for an overdriven detonation the case

where unother detonatiou, stronger than the one being studied, is driving
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the rear wall. i
A second possibility would be the case where the wall veilocity is E
|
exactly equal to the product velocity at the CJ condition. Here, the :
detonation pressure is the CJ vaiue and the flow following the front is i
sonic with respect to the front. Figure 8 illustrates case 2. }i
The third, and most important case for our study of DDT initiated i
by fiame in a closed tube, is when the wall velocity is less than the CJ ve- !
1.city. For this case, the front still propagates at the minimum detona-
tion velocity allowable by the conservation equations, the CJ detonation
velocity,q;], and the combustion products leave at velocity uj, sonic with

respect to the front. Since the wall veloccity is less than the product ve-

locity, a rarefaction from the rear of the combustion zone to the wall is

of
(624

specific heat, vy, assumed for the products (see discussion ia previous sec-
tion). Figure 9 illustrates the case where the wall velocity is less than
the product velocity. As an example of the isentropicity cf the flow be-
hind the firont, the pressure ratio between the final reaction state (CJ)
and the location labeled k in Figure 9 is obtained from the expansion

wave

P
_k-[x_-_l

= 114+ M
pCJ 2

T2v/ (¥-1)
] (21)

k

where Mk is the Mach number of the flow at location k.

1.5 Steady and Unsteady Deflagration

Along with the three detonation solutions of the Rayleigh line and
Hugon.ct curves (i.e, CJ, strong solution, and weak solution} discussed

in the previous section, there are cther steady state sojutions possible.
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Figure 10 illustrates a solution to the conservation eguations on the lower,
or deflagration, branch of the Hugoniot curve. For this sclution the
flame propagates through the unburnt reactants at a low Mach number (M<<1)
and as can be seen on the figure, the deflagration is characterized by a
drop in pressure and rise in specific volume across the reaction zone., Re-
call, for the detonation solution there was a rise in pressure and d.op in
specific volume. An example of a steady state deflagration would be the
case of a flame burning on 4 bunscn burner. Here, the flame is stationary
and the reactant gas is flowing through the flame sheet at a low veiocity.
When discussing DDT in a packed porous bed, one must clarify exactly
the fluid dynamics of the deflagration branch. At time t=0, one end of
the packed bed is ignited and generating gas from the propellant surface.
As time progresses, it is the hot gases confined in the region behind the
ignition front which in a sense drives the igniticen front through the bed.
That is, unlike the pressure drop across the steady state deflagra-
tion solution, there is a pressure rise across the ignition front. The
increase in pressure is a result of the gas generation in the region be-
hind th2 ignition front being confined to a finite volume. Also, in the
aialysis madc of the steady state deflagration, all reaction was assumed
to take place across an infinitely thin reaccion zone, 1I* is obvious
that for the two-phase deflagration problem this is not the case. Be-
cause of the finite zone of reaction, the problem of the deflagration
flame is at most quasisteady and it may be tha* the nonsteady terms in
the conservation equations should not be neglected. Because of this
inherent unsteadiness of the deflagration phase of the DDT proublem, the

reader should not confuse it with the steady state deflagration solutinon

shown in Figure 10. Later it will be shown that if transition from
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deflagration to detonation does occur, the reaction zono must collapse
and a detonation solution can be analyzed as being steady and by the

jump conditions being properly savisfied.

1.6 DDT in Two-Phase Reactive Flow (Experimental Data)

As discussed in the previous section, the transition from deflagra-
tion tc detonation in a porous reactive medium is an unsteady process.
Hot gases generated from the propellant surfaces are driven forward into
the unburnt solid matrix by the pressure gradient developed at the igni-
tion front. This phenomena is not found when a nonporous solid deto-
nates, since only pressure disturbances can be propagated ahead of the
ignition front. It is this convective heat transfer to the unignited
propellant and the extended deflagyration rsaction zone which makes DDT
in 2 porous bed unique when comparing it to DDT in either an all gas or
an all solid regime.

Much experimental work on DDT in porous material has been carried
out in the past decade. Bernecker and Price [8-10], have published the
most recent results on DDT in a series of three papers. Other experi-
mental studies prior to these include the work of Griffiths and Grocock
[11] and Taylor [12].

The work presented in Reference 9 by Bernecker and Price is a study
on DDT in RDX (eyclotrimethylenetrinitramine), a shock sensitive high
energy explose. In their experiments the RDX was packed into a thick

walled tube having an inside diameter of lémm and being appreximately

300mm (12 in.) in length (see Fig. 1la [8]). Both ends of the columm were

closed and ionization probes were located throughout tne bed to trace the

ignition front locus. The RDX was packed in an inert wax mixture and

s tematteiesitinkiinlonsinis




=

23

* (sansoid pus Ie)-H ‘oqni-9 feBieyd

aATsordxe-4 ‘UOTI3IBOOT @qoad uoT13BZTUOT-J ‘so8e8 uielis-g
f9o5®8}I93UT m>HmoHaxn\.SuEwﬁ ) uou::mﬁ -g 1310q 103TuUBT-V)
{g] @911d pue IINI3UIag Aq pasn snieteddy 352l JO DTIBWSYDS

“ell

3td




24

had a mean particle size of 200um in diameter. Figure 1lb illustrates the
DDT mechanism on a distance-time plot for the 91/9 RDX/wax granular charge

[9]. As shown in the figure, the convective flame front observed in their

work had ne acceleration up to the detonation transition.

Their experimental work showed this convective ignition front traveled !
at subsonic velocities (0.3-0.9mm/usec) for most cases when the initial i
porosities, ¢0, ranged between values of 0.1 to 0.2. The lower data points
on the plot represent a post convective compressional wave in the burning
region which overtakes the ignition front. The length of porous propel-
lant it takes for the compressional wave to overtake the ignition front |

and transit into 2 detonation is KCJ' the run-up length. E
¥

1.7 Topics to be Addressed

The work presented in this chapter reviewed those features which dis-
tinguish DDT in a porous reactive medium from DDT in other media. Since
the work that follows in suusequent chapters will attempt to model this

phenomena, it was important that the properties of an actual detonation

be understood(Sections 3-5).

It was also poiated out that the DDT process being studied camnot re-
present the transition between the lower CJ point and the upper CJ point.
That is, because the flame propagates from a closed end arnd the deflagra-
tion reaction zone is never of infinitesim ! thickness, one cannot apply
steady state jump conditions for the deflagration phase.

The chapter that tollows reviews the past DDT modeling efforts and
inidcates how this work builds for the present effort. Numerical solu-

tions to the flow equations are carried out an: solutions are presented

in Chapter 4. These results will show that the detonation (steady state
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supersonic wave) is a solution for a certain class of problems.

sults have yet to be presented by others.

Such re-
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CHAPTER TWO

THE MODEL AND ANALYSIS

2.1 Introduction

The analysis that follows attempts to model the situation in which
a bed of tightly packed granular propellant is ignited at one end. Both
ends of the packed bed are considered closed, thus, modeling the problem
discussed in Section 1.4 where the velocity of the rear wall was less
than the CJ product velocity. Recall for this case that after DDT, the
detonation propagates through the unignited region at the CJ detonation

velocity and detonation pressure and is followed by an isentropic expan-

]

sion of the gases to the pressure ai ihe sidilonary wail. The gas sus-
rounding the particles at the initial time is considered inert, and to
be at atmospheric pressure. It is also assumed that th: inert gas will

fully mix with the gases being generated from comuustion of the propel-

lant as time progresses. Figure 12 is a schematic of the prepellant bed.
For numerical simplicicy the propellant particles ave assumed to be

unisized spheres. Pariicles of interest range in diameter S0um < dp < 200um. W

To treat mult’ -sized particles, one would vequire N independent equations

of mass, momentum and energy for the scolid phase, whore N is the number

of initially diff-:rent-_ized particles. A solids loading of 74% is the

tightest poussible for unigized spheres, obtainable by arranging the spheres

in a face centered cubic. However, assuming granular deformation occurs

under high stress loads, as discussed by Kuo [13), greater solids loadings i

may be predicted without error. Obviously, the spherical geometry must

Lkt

-

—————
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he altered for this to occur.

As the small fraction of propellant particles ignited at time t=0
burn, hot gases are generated as a function of the pressure-dependent
burning rate law and surface-to-volume ratio (S/rp) of the spheres. These ,

i
hot gases generated are convected forward through the lattice of unburned i
propellant and flow gradients develop, as dictated hy the solution of the !
|
conservation equations and the necessary constitutive relations. !

Heat transfer from the hot gases to the unignited propellant par- ¥.
ticles, dependent on the velocity of the gas relative to the particles i
and several gas properties (i.e. viscosity, thermal conductivity), trans- 2
ports erergy from the gas to the solid phase. Subsequent ignition of par-
ticles further down the bed is assumed to occur when a critical soclid phase
internal energy is 7veached [2]., This energy can be expressed as a critical
increase in solid phase temperature, Tp, since the specific heat of the
solid is assumed to be known.

As time progresses the gas pressure behind the ignition front increases
due to the confinement of the gases from the closed rear bouandary and the
pressure-dependent rate of mass generation in the yas phase. lnder certain
conditions* the pressure gradient cun develop into a shock front which
overtakes the ignition frent propagating through the bed. When this occurs
the ignition front experiences thc transition from deflagration to detonation
discussed in Section 1.6.

At the transition point the ignited region (zone of gas generation) 'f

narrows in width and is followed by a region of all gas where the propellant

* These conditions will depend upon the solid chemical energy, granula-
tion (size and loading), burning rate, ignition energy, etc.
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particles are completely burned out (see Fig. 13). The thickness of the

reaction zone is a functicn of the initial particle size and solids load-

ing, and thicknesses approaching lmm may be possible as rp + 0 and ¢0 + 0.

2.2 Assumptions

In order to numerically model DDT in two-phase flow while retaining

the physics of the problem, several key assumptions nad to be made. These

assumptions are similar to those made by previous investigators (Ref. 2

and 4 ).

(1)

(2)

{3)

(4)

P
n
~

(6)

(7
(8)

Both the solid and gas phases are independently treated as con-
tinuums requiring their own conservation relations.

Each phase interacts with the other. This is modeled by the
mass, nmomentum and energy interaction terms in the conserva-
tion equations.

All propellant particles are unisized spheres.

Ignition of a preopellant particie is cbtained when a critical

energy, expressed as a particle temperature, is transferred to

the solid.
The preopsllant particles are initially surrounded hy an inert

gas at temperature, T

During combustion of tﬁe propellant, the gaseous products mix
with the inert gas described in assumption (5).

Both ends of the b:d are closed allowing no gases to escape,

The specific heats at constant volume, Cv. foer both phases are

constant.

When the solid phase, at a given x-location in the bed, displays

a porosity ¢ »0.95 and a particle volume one-tenth of its initial

o

i

SO NP S
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volume, it is burned out and no longer generating gas. Reuults ";
show this phenomena to proceed smoothly from the left boundary
and thus not leaving any 'holes' in the continuum. This assump- I3
tion was necessary to prevent a singularity from arising as r_ + 0

and T + o,

{10) All the produ:t gases obey an assumed nonideal equation

of state.

(11) The sclid particles are cumpressible, without heatinrg up, obey-
ing a modified Tait equation of state. . '8
(12) Cnce ignited, the particies are assumed tu burn on the outer v
surface only, at a known pressure-dependent rate law. " 3
(13) At some initial time, a '‘marrow'" region at one end is ignited, !

burning at the low pressure prescribed.

¥
2.3 Governing Equations !

Numerical modeling of the two-phase reactive flow process in DDT in-

volves the conservation of mass, momentum and energy per unit volume in

both gas and solid phases. This is a system of six conservation condi-

tinnc whi
C1IONRS wWal

Arvsen

tions ceouplea iy the interphdase mass, momentum and heat transfer terms. The

conservation equations for two-phase reactive flow havc been developed

previously and References 3 and 4 will provide the reader with the defi- g
nitions, assumpticns and expressions for the six following field-balanced

conservation equations. The e are:

Gas Continuity

at ax (22)

[T
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Particle Continuity
ap 3(p.,u_)
2 _ . 2P
at 9x r (23)
Gas Momentum
2
a(p,u ) a(o,u’) oP
1 g _ . 18 _ 48 -
T = - 5 ¢ 53 D+T uy, (24)
Particle Momentum
2
3(p,u ) 3(p,ul) aP
2p .. 2P 1.6y R -
T = - (1-0) 5z~ + D-T u, (25)
Gas Energy
3(p,E 3 E P 2
1 gT) (Pyuy g v dughy! R vy
T =T ox + T (Boypy * 3]
S Du - 0Q 26
np ) ()
Particle Energy
3(pE a(o,u E + (1- P 2
() e - W
TR 3% + By "7
+Du_ : 27)
P Q (

Here, the relations for the total internal energy in each phase are

u2 and E = C T + -+ u
g P 4

(31l
1]
(@]
-3
+
|-

The subscripts g and p denote gas and particle .espectively. Ia Equations

22 to 27, the phase densities, Py and Py» are defined as

Py = og¢ and o, = (1—¢)op

The porcsity, ¢, is defined as the ratio of the instantaneous gas volume

to the mixture volume. Hence, the solids fraction is (1-4).

o=

T, PP
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In addition to the six conservation equations, three constitutive
relations are needed in order to solve for the nine 'nknown variables;
o o) u,u, T, T ¢, P and P_. These relations include state equa-
g’ "B g p g p 7 g p b

tions for both gas and solid states and a stress-resistance relation for

PP. Appendix B gives a complete listing of the relations used.

2.4 Improvements

Since the work reported in Reference 3, certain "improvements" in
the modeling effort have allowed solutions which may be considered to be
actual detonations. These improvements are discussed in some detail later
in the tex:, but basically include:

1. Implementation of the necessary gas phase (nonideal) equation
of state, to insure that at the (J (Chapman-Jouget) co -ditions,
the isentrope provides for a ''gamma law" suitable at the hydro-
dynamic CJ state. (Appendix C rpresents a review of such an
equation of state.)

2. Implementation of a new gas-particle friction coefficient, a:c
developed by Wilcox and Krier [14], for flows at the high Reynolds
numbers encountered in the developing DDT flows, Previously such
coefficients were based on data only available fos moderate Reynolds
aumber ranges.

3. Utilization of a modified numerical integration scheme, which
allowed for a reduction in the grid spacing (and hence reduc-
tion of the time increment) without the usual penalty of exces-

sive computation costs and numerical instability that often follows

when the total number of integrations is significantly increased.

MEmassy @ EpewEy $ gEeme—
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2.5 Equations of State: Constraint Due to the Detonation State

As mentioned in Chapter 1, a nonideal equation of state must be uti-
lized for the product gases. The analysis presented here uses a nonideal
equation of state for hard spheres developed by S. J. Jacobs {15}. Pre-
vious to this study, a covolume-type state equation with data made avail-
able by Cook [1€] was used (see discussion in Ref, 2).

The hard sphere equation of state takes the form

P 2
ﬁ‘i—=1.0+bo+2(bo)+--- (28a)

where the constants b and ¢ are determined by the value of the gamma law
coefficient, y, for the product gases as discussed in Appendix B. As
stated, v is the negative logarithmic slope of the i1sentrcpe tangent
tv boil the Rayleigh and lugo
tion state. That is, the slope of the isentrope that the product gases
expand along in the product stzte. The reader may refer to Appendix C
for the complete solution of the constants b and c.

Values for ¥ range from two to three for detonating high density
explo:.ives [15]. For the baseline case considered in this study, a
value of y = 2.05 was selected and the corresponding nonideal equation of

state is:

Pv - 2
BT = 1.0 + 2.5 Dg 0.50 Og (28b)

When the above coefficients (2.5 and 0.50) were altered to treat a case

for vy = 3.0, excessively high gas and particle temperatures were predicted
as one might expect. In addition, during the numerical integration severe
oscillations in :as and particle temperatures occurred in most cases when

Y > 3. Since one is always constrained by the numerical integration schemes
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that are employed to handle very severe gradients in the flow, it is under-
standable that previcus efforts in DDT modeling [2, 3], which without
knowing were utilizing high y values for the produ:: gases, almost always
ran into numerical failure.

Evaluating the covolume state equation previously used in Ref. 3, an
approximate value of vy = 3.6 is calculated. This extreme value for y may
be one important reason why the calculations, as reportel in Ref. 2-4,
were unable to hundie the high pressures associated with steady cstate

detonations.

In the solid phase the particles obey a modified Tait equation allow-

ing for compression of the granules. This is written as:

PP 1/3
o, =0, |y= +1 (29)
R Lo a

wnere Ko is the bulk modulus. Reference 3 discusses the Tait equation in

more detail. A typical value is K = 1.38 GPa (2.0 x 10° psi).

2.6 CJ (Detcnation) State

In the text by Fickett ard Davis [5] equations are presented for es-

timating detonation VelGCitY.DCJ , and the detonation pressure.PC, + for

a steady state detonation. These are given for a single phase «xplosive:

= -1 J
Ry T 20e, By, (30)
and
D2 2 2 E 31
c3 = (y"-1) CHEM (31)
Here, p is the initial solid material density and E is the chemical

0
energy liberated by burning the solid. Since the problem being cunsidered

is two-phase (solid-gas), Eqs. 30 and 31 must be modified to account for
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o

solid phase density 0, = pp (1-¢0). For an initial solid density oP = 1994
) o 0

kg/ms, an initial porosity ¢o =0.30, a chemical energy E

this by converting pp , the initial solid density, to Py the iritial
o

chEM= 5+48 MI/kg,

and assuming Yy = 2.05, Eqs. 30 and 31 give respectively:

iEJ = 16.06 GPa
and
mm
DCJ = 5,92 .I:I-S—EC

These equations were developed from the jump equations for one-phase flow
where the equation of state for the product gases was assumed ideal. Be-
cause of this, these equations should only be used to get a good esti-
mate of the detonation pressure and velocity.

In addition to Egquatioms 30 and 31 another method was presented by

Fickett and Davis [5] for estimates of detonation pressure and detona-

tion velocity. This is Kamlet's Short Method and was developed by Kamlet

and Jacobs [17]. In the CJ state they are:
0.5

-— 2 N .
p o KQO (NECHEM) 1000 (32)
P
and
0.25
D= A(1+BDOP)LNqﬂiEM) 31,62 (33)
-1, -1/2

where the constants A = 2.23 (m-kg-s ~{mole MJ) }Y: B = 0.0013

(m>/kg) and K = 0.762 (vm” kg L(mole M1)"Y/?). Again, o, is the initial
solid density in kg/m3 and N the reciprocal of the gaseous molecular
weight in mole/kg. Equations 32 and 33 give detonation pressure and ve-
locity for a detonating solid explosive going to all gas in the product
state. To modify Equations 32 and 33 for the two-phase problem,po , the
solid density, is again converted to the solid phase demnsity Py = %l~¢o)o

Po
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It should be noted that Equation 33 expresses detonation velocity as
a function of propellant density, while Equation 31 shows it to be inde-
pendent of density. Like Equations 30 and 31, Equations 32 and 33 should
only be taken as approximations.

Using the same input as above, Equations 32 and 33 give respectively

P.. = 16.52 GPa

CcJ
mm
DCJ = 7,83 usec

2.7 Gas Permeability

One of the key constitutive relations required in the analysis is
the gas-particle (interphase) viscous force, which governs hot gas pene-
tration into the unignited region of the granular material. As presented

in Appendix A:

D= _liL_

- £ (34
2 (g - ug) (34)
P

pg

where fpg i.s the drag coefficient. Until recently, the packed bed corre-
lations by Ergun or Kuo and Nydegger (as reviewed in Ref. 14) were uti-
lized for fpg' Thus, the modeling efforts presented in Ref. 3 and 4 used
the expression of Kuo and Nydegger [18]:

.87
) 1 (35)

2
< L9 (276 4+ 5 (RS

Equation 35 was developed for 460 < Re < 14,600, Here, Re is th2 appro-

priate Reynolds number, defined as:

Based on experiments at both high gas velocities and high Reynolds numbers,

Wilcox and Krier [l14] developed the correlation:

-
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5 2
f =5.06 x10 rp Re/ug (37

Pg

where ug is given in m/sec, rp in meters, and the constants 5.06 x 105

must have units of m/sz. This expression is not valid for either very

low gas velocities, since Equation 37 would give fpg +~®asu > 0, or

for very high gas velocities*, since fpg + 0 as u_ + =, The equation

was found to be fairly accurate for 103 < Re < 2 x 105)and 15 m/s< ug< 150 m/s.

While a straight forward comparison is not easy, the difference between the

value for fpg as predicted by Equation 35 versus that by Equation 37 can b

be seen in the example. At Re = 104 and ¢ = 0.4, Equation 35 gives &

fpg = 53,600 and Equation 37 gives a value of fpg = 5448. To utilize F-ﬂ
[
i

Equation 37 one must specify the average gas velocity, u_, and the par-

ticle radius, T that were used to obtain the Reynolds number. A kine- .

matic viscosity ug/og = 1.8 x 10°° mz/sec, a particle radius r_ = 1.0mm, I

and an average gas velocity u_ = 30.5 m/sec were used to obtain a Reynolds

|

number Re = 10%. From this particular example, the Wilcox/Krier correla- l-
tion (Eq. 37) allows about .10 times the pe.meability, i.e., 1/10 the viscous | .

drag force as correlated by the Kuo/Nydegger relation. }*
Salutions to tre flow nrocess leading to DDT, discussed in the follow- l .

ing chapter, clearly indicate that sufficient gas permeability is necessary

to allow for a detonation transition.

*Dhata from Ref. 14 was limited to ug < 300 m/sec.
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CHAPTER THREE

NUMERYCAL INTEGRATION

3.1 Finite Difference Mesh

To solve the Eulerian formulated system of conservation equations
discussed in Chapter 2 with the constitutive relations listed in Appendix
B, the length of the bed being integrated over is divided into I segments,
each a constant Ax in width (i.e.,xj = jAx; j =1, 2, 3.,..1). The value
required for Ax will be discussed later in the chapter.

At t = 0 values of the nine independent variables; pg, P, u, u,

P & P

lg, xp, rg, PP and § are initialized at each ith x-location in the grid.
Before incrementing thc primary variables (i.e. mass, momentum and ener_gy)
to the future time, t = Lo + At, the auxiliary variables in the equatiens
(e.g.,drag, gas generation, heat transfer) must be computed at the present
time, t = t,- The nine equations are then solved at the incremental time,
t = t, * At, by = modified Lax-Wendroff finite differencing scheme. This
method along v.th ancther tested are presented in Appendix D. The second
method, developed by Rubin and Berstein {19}, was implemented for several
test cases and proved to give results similar to that of the lax-Wendroff
scheme. However, to keep all results consistent, the Lax-Wendroff scheme
was chooen as the integrator.

The time iacrement, At, over which the equations are soived is cai-
<ulated by the Courant, Fredrichs, Levy stability criteriz [20], for hv-

perbolic equations,

AXI’.\X
A o= —— (3
' ('\:"L U ) b 8)
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In Equation 38, the term ¢ is the mixture sound speed and |u| is the maxi-
mum gas velocity in the bed. Also. X is a stability constant, less than
unity. For most cases \ = 0.5 was used. This smaller time increment

was necessary in order to integrate the equations ‘hen large gradients

developed in the flow.

3.2 Initial end Boundary Conditions

To initidalize the problem, the bed is cssumed to be quiesent, i.e.,
at a constant gas temperature and constant gas pressure throughcout the
length of the bed. The sphevrical propeliant particles are typically fix-
ed at a constant solids loadings, although a variable initial porosity
can be treated. Then to initiate the flow, the praopellant at the first
few grid points is assumed ignited and generating gas. To be consistent
with the fiat initial pressure profile, all gas and particle velocities
at time t = 0 are set equal to zero.

In the past an exponential pressure profile was constructed at the
initial time in order to speed up the deflaygration proces:c. This was
inaccurate, however, in that it was unsuppor-ad (i.e., no fluid motion
was associated with the pressure gradient). Nevertheless, the computa-
tion time necessary for the pr->ssure gradient to develop on its own was
too great and the initial pressure gradient was implemented to speed up
the prccess  Since then the computsr code was medified to inciude an in-
tegration process wvhich cuts the computation .ime drastically and allows
for the use of a more realistic flat initial pressure profile (P ~ Pdtm)'

Table 1 15 & summary of typical input data for the cases studied.

3.3 Modification to the Integration Scheme

To solve on a -!igitai ..nputer the flow which is to represent a DDT

ik b A
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Table 1

TYPICAL INPUT DATA

PARAMETER

VALUE

Burping Rate Index

Burning Rate Proportionality Constant

Iritial Bed Porosity
Particle Diameter
Bed Length

Grid Spacing

Chemical Energy -

Gas Specific Hea:

Initial Bed Temperature
Ignition Temperature (Bulk)

Ignition Energy

0.8 <n<1.2

b =

0.25 < ¢ < 0.50

50um < d < 500um

in 1
0.001 Sec [5§T]

n

L =25.9¢m
Ax = 1.27 mm
Ml MJ
4 = < E —
kg = cHEM © 7 Tg

KJ

KJ
1.0 rivwk_(_ Cvg <19 T(-g-rk

294 °K

303 °K

- 9.0 M

kg
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phenomena, requires the repetitive integrations of many equations. All
of the conservation equations and constitutive relations are solved indi-
vidually at each grid point i the entire bed, for each time increment.

A study of several test cases showed, for instance, that when the ig-
nition front was at a given x-location, there was little activity several
grid points ahead of it. That is, the gas and particles were at velocities
close tc zero and all transport coefficients were negligable in the region
not far in front of the ignition front. This phenomena occurred for both
the detonation state where the front was propagating betwecn 5-8mm/usec,
and the deflagration state where the propagation velocity was much less.
Because of this, an addition was made to the computer code which allows
the cede to only integrate the active region and bypass the inactive zone.

Ahead of the ignition zone, the computer code locaies Lhe uearesi
point to the zone where there is no significant particle or gas movement.
This point is then designated as the new front boundary of the integration

region for that particular integration step. When the pressure front

builds the ignition front moves rather rapidly through the bed (5-10%%;3)

and a new integration boundary must be located after each time increment.
Figures 14 and 15 show & comparison of a case run without the moving
integration 2one (Fig. 14) and one with (Fig. 1%). To assure a correct
solution the actual front integration boundary is extended a few grid
points beycend the location calculated by the code. The addition of this
new logic to the current code reduced computation ti. e by at least one

half, for the same time increment and grid space.

3.4 Artificial Smeothing

Inherent ro the solution of the sysrem of interdependent conservation

ooy
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equations is a numerical instability. A small perturbation can in some
cases amplify with each time increment and eventually destroy the numeri-
cal solution. This phenomena can start at the first time increment and
in ten to twenty integrations the oscillations can be s¢ large that the
solution becomes unstable and terminates. 1In order to smooth out these
oscillations before they amplify, an artificial smoothing routine nust
be incorporated into the code.

From experience in integrating the two-phase flow equations (Eqs.
22-27) with significant nonlinear source-sink terms, the problem of nu-
merical instability occurs often enough to warrant artifical smoothing.
An extensive study by the author and other investigators [2-4], shows the
final solution to be independent of any artificial smcothing used.

The analyzation of numerous test cases
the stable solution did not require sroothing of all the variables. It
is obvious that the following results have an inherent dependency on
smoothing . Extreme care has been taken to minimize these effects on the
qualitative trends and quantitative results predicted. Nevertheless, it
should be obvious that smoothing techniques can supply variability in the
predicted parameters which are reflections of the scheme utilized, and not
necessarily of the conservation equations.

The particular artificial smoothing techpnique found to be useful is
a three point averaging technique where the variable v determines what
weight is placed on each point. After the system of equations are solved

for at a given time, each variable in the vector U is recalculated by:

ne 1d old old

W [} Q
= - e ! + 3

]
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whare

For example, if v = 0.1 then Y retains 80% of its original value and is
influenced by 10% of the U values on each side. This is shown graphically
in Figure 16.

For all cases studied, a minimum value of v was used that wculd pro-
vide for a stable solution. This required repeating each test case nume-

rous times, lowering v eag¢h time until the solution went unstable.

3.5 Grid Spacing

It is obvious that in order to minimize computation time, a maximum
value of Ax which gives a stable solution should te used. Based on the
calculations carried out in References 2-4 a grid space of Ax = 1.27 mm
was shown to be the largest Ax that would provide a solution to a flow

problem which exhibited rather steep gradients.
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J Jtl

Fig. 16. Illustsations of Threc-Point Artificial Smearing.
Open Circle Indicate Values of the Vector U Before
Smearing and Dots Denute the Values of U After Smearing.
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CHAPTER FOUR

RESULTS COMPUTED

4.1 Introduction
This chapter will present the calculations made on the possibility

of DDT occurring in packed beds of high energy, granulated, unisized pro-
pellants or explosives. It is obvious that there are an infinite number
of loading combinations possible for the DDT study. Fortunately, the work
of Hoffman and Krier [3] anu Krier and Gokhale [2], in which conditions
of rapid convective flame spreading have been calculated, is available
and can be used as a starting point. It should be noted that none of

the calculations made in References 2 or 3 predicted DDT. As pointed out
in the previous chapters, there are probable reasons why this has not been
accomplished and it is expected that certain improvements and modifica-
tions will now allow for the calculation of the steady state detonation
solution.

The study made of a DDT potential attempts to model conditions simi-

lar to the test conditions of the Bernecker and Price work [9] (i.e., a
long column of granulated material in a closed pipe ignited by an ener-
getic ignition material at one end). In order to model the flow tran-
sient, one must assure that the lengtn of the bed exceeds QCJ’ the run-up
length to detonation. Since the experimental work of Bernecker and Price
[9] indicated that 4 10 in (25 cm) bed was sufficient for most of their
experiments where DDT occurred, this length was selected as the longest

bed length to be considered.

T
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Since unisized spheres are being treated, the initial porosity can
be no less than ¢0 = (), 26, although randomly packed unisized spheres
generally give a high porosity, about ¢0 = 0,40, Therefore, for this
study 0.26 f_¢o < 0.40. The initial particle radii studied were also in
the same range as those considered by References 2 and 3. Results in
these studies showed that particles must be less than one millimeter in
diamecter in order to generate sufficient gases for the rapid flame spread-
ing phenomena.

The chemical energy of the material considered is in the range of

explosives or high energy prapellants of the nitramine family (i.e., HMX,
RDX). Thus, the chemical energies studied were always larger than 1000
cal/g (4.15 Mi/kg). Other parameters one must consider in the DDT studies

are the Lurning rate properties of the propellant., Again, the values used

in References 2 and 3, which attempted to model the burning rate of an
HMX solid propellant, were utilized. However, the burning rate index,

n, is a parameter which is explicitly studied.

In this analysis, the deflagration will be initiated by assuming at
time, t = 0, that except for a small portion of the bed at one clesed end,
the bed is quiescent and unreacting. As has been meniioned in Chapter 3,

a closed end situation is considered and hence at the two end points ( x = 0,
X = L) it is assumed that all flow gradients ar¢ zero and that the veloci-
ties of the particles and gas must also be zero.

The following section begins with a solution that indicates, for the
first time, a steady state detonation can be predicted. This result is
then compazed to conditions where no such detonation solution occurs.
Additional calculations will indicate the sensitivity of the initial

porosity, ¢o, chemical energy, E burning rate index, n, and ignition

CHEM?
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energy, Ei , on the run-up length to detonation.

gn

4.2 Calculations

Figures 17a and 17b present a case where a transition from deflagra-

tion to detonation has occurred. For this example, the burning rate in- '3

dex was n

1.0, the chemical energy ECHEM = 5.48 MJ/kg and the particle &3_

radius r

127 um (.005 in).

The pressure-distance profiles at five separate times after ignition

of the propeilant at x = 0 are shown in Figure 17a. Examining the pro-

file for t = 50 usec, one can observe that the prcfile is characterized

by a shock front at x = 23 cm followed by a smooth expansion back to the

wall at x = 0 cm. The pressure in front of the shock is at atmospheric

conditions and, therefore, negligible with respect to the pressure behind

the shock.

The ignition locus plot for this particular case is shown in Figure

17b. Here, the ignition front moves through the bed at a low subsonic

velocity for the initial ten microseconds and then accelerates to reach

a steady state velocity of [EJ =7.2 mm/usec. This occurs within 12 to 15

em from the ignited end. Note that these detonation solutions for P

“CJ

and DCJ are in fair agreement with the approximations made in Ch:m' ¢ 2

(Eqs. 30 and 31) for the given input (Egypys s Yj)-

(Obviously, hydrodynamic steady state analysis (like Eqs. 30 and 31)

cannot guarantee that a transition from deflagration to detonation will

occur. However, it seems that ''critical' values of porosity (related to

gas confinement), gas generation rates, and chemical energy will provide

for a DDT. For example, when the burning rate index was lowerad to

n = 0.8, as :hown in Figures 18a and 18b, the steep pressure front associated
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with a detonation did not develop. Correspondingly, nc detonation speed
was predicted. In this example the peak pressure in vhe bed never ex-
ceeded 5 GPa, no shock was predicted, and only a steady convection-driven
front of 2.2 mm/usec occurred at 100 usec after ignition of X = 0. 1t is
not clear at this time whether or not this can be defined as a "low-ve-
locity” detonaticn,

According to Equation 30 in Chapter 2, for the case where a transi-
tion to detonation actually occurs, the steady state detonaticn pressure,

PCJ’ should increase linearly with the chemical energy, Also, Lqua-

“CHEM
tion 31 states that the detonation velocity, DCJ’ is a function of the
square-root of the chemical encrgy. Figures 19a and 19b present the re-

sults of a calculation where all parameters were identical to thoss used

to give the DDT results of Figures 17a and 17b, except Eo oy = 6.85 MJ/ky,

an increase of 25%. The steady state shock pressure predicted for this

case, shown in Figure 192, was 21 GPa. This represents a (21,/16.4 = }1.28)

28% increase in pressure over the first case. The predicted detonation 5
speed (Fig. 19b), calculated from the slope of the x-t diagram, was 8.70

mm/usec. According to Equation 31, the ratio of DCJ for the case given in

[ nL - - = 3 E
Figure 1%b to that prescnted in Figure 17b should be

v(6.85/5.438) = 1.12
This is approximately the increase predicted.

Table 2 summarizes the detonation pressure, and the detonation

PCJ'
velocity, DCJ,(which were the end results of the HDT calculations) all
as a function of the propeilant chemica® en:rgy. These predicted condi-

tions are compared with the approximate steady state hydrodynamic solu-

tions discussed earlier, i.e., Eqs. 30 and 31. The excellent agreement
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of the detonation pressure with the analytic solution should be nroted.
However, the predicted value for the detonation velocity, DCJ‘ tfrom
the hydrodynamic solution (Eq. 31) shows to be slightly less than the
value predicted by the code for all cases. Although one cannot judge
which of the two values, detonation velocity or detunation pressure, 1is
more accurate, the percent increase in the detonation velocity as the

chemical energy is increased compares favorably with the hydrodynamic

solution.

4.3 DDT Run-Up Length

The run-up length to detonation is defined in this repoert to be the
distance from the closed end where the bed is ignited to the location

where both the peak pressure and the detonation speed are constant, i.e.,

the equilibrium steady state solution. -
Figures z0a and 20b plot the predicted run-up lenn to detonation

as a function of the burning rate pressure-index, n (Fig. 20a), and the
initial bed porosity, ¢O(Figure 20b). The 'no-solution" boundary indi-

cates that, with the integration scleme used, the mesh size would have

ment) in order to obtain a ctable solution. This is a costly exercise.
but future work is plauned to increase the solution regions. Figure 20a
clearly indicates that, as expected, one cannot achieve detonation if
che burning rate during the deflagration phase is not sufficiently lurge
(see "no transition' boundary). For the solids loading considered

(1-¢,= 0.70), it would appear that a minimum DD run up length is 5 cm

for particles of 250 uym in diameter.

Figure 20b begins to resemble the required "H-shaped" curve ot L

to be drastically reduced (thereby decreasing the integration time incre-

Dk
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TABLE 2

Comparison of the Predicted Detonation State with

an Approximate Hydrodynamic Solutioa

(Eq. 30)*

DCJ(Eq.

31)**

ECHEM DCJ (predict 1) pCJ DCJ (predicted) cJ
R
4.11 MJ/kg 14.0 GPa 12.0 GPa 6.48 u’;"é‘c 5.12 u’;“";c 89 mn
5.48 16.6 16,07 7.25 5.92 51
6.85 21.8 20.08 8.24 6.62 44
8.22 24.6 4.1 .17 g 7.25 33
10,96 30.0 33.2 10.58 ;[ 3.37 8
* Py o= 20y pp(l--cb) E - LEM (Eq. 30)
" = 20v;71) By (Eq. 31)

cJ

T —
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versus initial porosity. DDT experiments by Korotkov et. al. {21] show
a similar behavior (see Fig. 21). Omne would expect that for a relatively
porous bed, ¢° > 0.60, nc trancition will occur since local pressure con-
finement is limited. If the porosity is too small no gas penetration
for the accelerating deflagration wave will occur. The net result is a
porosity where a minimum run-up length occurs,

Figure 22 presents a study on the effect of the chemical energy, ECHEM’
on the run-up length, S the values which were presented in Table 2.

As expected, the run-up length to detonation increases as the amount of

chemical ener_y decreases. Again, as expected there is a minimum value
where no transition ocecurs, Eqyru = 3.0 MI/kg. For this case it does ap-
pear that a constant but small run-up distance is stili required as the

chemical energy increases beyond the values studied here.

4.4 Detonation Reaction Zone

Cne measure of the fact that detonation occurs is a plot of the

reaction zone width versus the locus of the ignition front. This is pre-

sented in Figure 23, where the reaction zone is defined as the region
where particles are ignited and generating gas (i.e., are not burned out).
As shown, the zone initially increases during the deflagration phase as
the convective hest transfer provides energy to ignite more and more of
the bed. The zone then collapses to a thin (constant) width as the sur-
rounding high gas presssure causes the particles to burn out rapidly. A
steady reaction zone thickness of approximately Y mm is predicted. tow-
ever, most of the gas is generated in a small region immediately behind
the ignition front whers the particles are still relatively large. .lote

that in all the cases reported here, the initial particle diameter was
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250 um. Obvicusly, smaller particles will provide for a thinner detona-

tion reaction zene. Figure 24 presents a porosity-distance profile for

a case where DDT occurred, Here, a porosity of ¢ = 0.95 is for all in-

tents and purposes the condition when the propellant is burned out, i.e.

n¢ generation of hot gases.

4.5 Comments and Interpretations

The results shown in Fipures 17-24 have clearly indicated that, as
expecte:l, high solids loading of relatively small particle size ener-
getic propellant with perfect confinement will transit into a detonation

in space domains of several centimeters. One would expect that propel-

lant properties and packing configurations have limits where detonation
cannot occur and this was clearly shown in some of the figures which show
the run-up length versus property parameters. In conclusion, it wii! be

useful to review these studies to determine the properties and configura-

tions which minimize a DDT hazard.
For example, for a fixed chemical energy, ECHHM = 5.48 MI/kg, a fixed

ignition energy, Atign = 9,0 ¥I/kg, a fixed particle radius, roo= 127 um

L3
the burning rate indsx,

(01.605 in) and a fixed solids loading, (1~¢Q = (0.7,
, must be larger than n = §.80 if DDT is to occur. T7This was shown in Figure

20a. Of course, had the burning rate coefficient, b, been 3 different num-

ber, this exponent may have been different. A general statement n then

bi made that the burning rate, and hence rate of gas generation, should be

kept as low as possible to minimize DDT. Conversely, the higher the burn-

ing rate, the better the chance of 2 transition to detonation zccurring.

Figure 20b showed the vun-up length to detonation versus initial

porosity, ¢o. As was stated ip the previcus section, for all pacuseters
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equal, there is a maximum initial porosity where no transition occurs.
Since a randomly packed bed of unisized particles has an initial porosity
of the order ¢o = 0.4, this figure indicates that this is in the region
where DDT potential is at a maximum. As one reduces the initial porosity
(that is increases the solids loading) the run-up length to detonation
slightly decreases until, as experimental work of Bernecker and Frice [9]
has indicated, there is a mimimum initia. porosity where DDT cannot occur.
Since at these initial solids loadings multi-sized particles and mechanical
packing are required, these lo lings are not of interest, whereas the ran-
domly packed loadings are of interest.

A similar comparison of the run-up length to detonation was shown in
Fig. 22 where the chemical energy content was varied. Recall that a chemi-
cal erergy, ECHEM = 4.138 MJ/kg (1000 cal/g). can be considered an ener-
getic propellant material. Based on the results shown in Fig. 22, one
can state that less energetic material than this has little chance of en-

countering a DDT. Doubling the chemicai energy from E 4,18 MJ/kg to

CHEM ~
ECHEM = 8.36 MJ/kg, represents a reduction in the run-up length of only
about one half. To summarize, high energy propellant of the nitramine
tamily where ECHEM > 4.18 MJ/kg, definitely fall within the regime of a
DDT hazard if properly confined.

The final comparison of this type is shown in Figure 25. This shows
the run-up length to detonation versus the particle radius. As one would
expect, there is a maximum particle radius (i.e., surface-to-volume ratio)
where transition is not predicted to occur. This is indicated by the 'no-
transition' boundary on that figure. The figure also indicates that as

the particles get smaller 1n size, the run-up length to detonaticn also

decreases, as expected. Reducing the initial particle size, rp , to
o

| |
,\
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values less than 25 um results in gas gensration rates, per unit-volume,
that are so large finer yrid spacing must be utilized to assure stability.
This expensive task has beepn delayed and is recommended only after improved
numerical integration schemes have been developed.
A final topic studied dealt with the effect of ignition temperature
(or more appropriately AEign) on the run-up length to devonation. For
the results shown in this chapter a nominal value of Tign = 545°R was used.

Fur this study ¢o = 0.03, r 0 © 127 yum and n = 1.0.

P

Calculations were made in which Tign varied over the range 530°R <

Tign < 575°R. For a constant initial bed temperature of T =T = 530°R,
) Py
this represents a range of ignition energy of 0.0 < AEign < 25;%53

For most of the ignition temperatures tested there was little change in

the steady state detonation pressure or velocity. Only when AE

approached the improbable value of AEign = 0.0 KJ/kg did the values

change significantly.
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APPENDIX A

JUMP CONDITIONS FOR TWO-PHASE REACTIVE FLOW

In Section 1.3 (Jump Conditions) of the text the reader was provided
with a review of the jump conditions across a shock discontinuity for one-
dimensional, one-phase flow with heat addition. This Appendix will out-
line the Jevelopment of the jump conditions for one-dimensional, two-phase
flow with heat addition. As d scussed in Section 2.3, the heat addition
for two-nhase flow comes as a release of chemical energy from the ignited
propellant particles to the surrounding ga.cs. For a detonation this is
assumed to occur in an infinitesimally thin reaction zone.

In order to evaluate the jump conditions for twc-phase flow across
a steady state combustion wave, the conservation equations (Eqs. 22-27)
are first written as conservation equations for the mixture.

Mixture Continutrty:

S Dol + 5z [(1-0)pu ) = 0 (a.1)

Mixture Momentum:

]

d p; d . 2
X [¢ogug + ¢P81 * ix [(l-¢)opup + (1-¢) Pp] =0 (A.2)

Hixtuve E, ergy:

c . d :
- E P 4 1- E
dx [¢Dgug £ * bug g] ax L ooy, Py
+ (1-¢Ju P ] =0 A3
(1-¢ p p] (A.3)

As in Secti.m 1.3. the unreacted or '"cold" end is denoted by subscript A

and the products or "hot'" end is dencted by subscript B in the analysis
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that follows,
The mixture conservation equativns (Eqs. A.1-A.3) are now integrated

fror the 'cold'" end to the "hot" end of the bed with the boundary conditions

¢(B) = 1.9
ug[A) = up(A) = VA
ug(B) = Vg

og(B) = Py

Integratel Mixture Continvity:
Vo = ¢Amg Vy # (l--ch)ppAvA (A.4)

Integrated Mixture Momentun:

. 2 5
+ 1 0,) [ppAVA + PPA] (A.5)

Intup ozl Maxture Evergy:

Fa }- -
Vp v (9o ViE, )]

E g

PV (E )1 + F
[ Vel
B A

T

oy R T .
IS [(l—d’))p}l\’(t'_ PR |‘;'\,/!A 4 L(l-i)‘-pV‘!v (A.6)

T 2A L -

AN

At first glance, Equation A.4 Yo A.% seem te @ asily evaluated know-
ing the conditions at both ends uf the riow. Howevir, as was pornted out
by Kuo and Sumnerfield [23], they are rot simple +lpcbrais cquations un-
til P_, the stress transmitted through the parti:': phase at lncation 4,

A
is evaluated. This war shown to be obtainable by . texrating the momentum

equation from the cocld end, A, to the location wiz. e the particles are no

e T T L s

S
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longer in contact, denoted by subscript C. From this you obtain

C C
-P - =z - + I
lp (1 ¢A) I D dx J 1 Jp dx
A A

. [pp ug (1-¢)}C - [pp v2(1—¢>)]A (A.7)

It should be noted that if the flow situation being modeled consists
of an infinetly long bed, then the particle stress ac location A, Pp ,
will also be equal to zero. 7This is true since pressure disturbanceﬁ ini-
tiated at the combustion zone (i.e., compression of the propellant par-
ticles) are propagated through the medium at the spead of sound of the
solid, and would therefore take an infinite amount of time to reach loca-
tion A.

Since all experimental work consists of finite length beds (the nu-
merical model studied in this report was L = Z5 cm), a ~omment on the
integration limits of Equation A.7 is appropriate. If .1e region where
particle drag is of -igrificance extends from the combustion wave (C) to
the wall conditicp (A), then the integrals in Equation A.7 must ve evalu-
ated after each time increment and heunce the particle stress at the wall,
Pp , is changing. tlowever, if the region of significant particle drag
isAassumed to be only that z:ne immediately ahead of the combustion zone,

then the integrals in Eq. A.7 are always constant and, therefore, PP is
A

also constant.

A {inal comment on the particle stress is that if the time to detona-
tion is less than the time it takes a pressure disturbance to travel
through the solid matrix to the rear wall, then the rear wall has pot

felt the pressure listurbance and hence, Pp = 0.
A

et ik

-
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APPENDIX B

CONSTITUTIVE RELATIONS

As discussed in Chapter 2, a system of nine independent equations is
necessary in order to solvae for the nine unknown variables describing two-
phase flow: pg, pp, ug, up, Eg' Ep’ Pg’ Pp and $.

Cf the three additional equations necessary for the soclution, one is
the nonideal equation of state for the gas phase as described in the text.

P

—-g-—c + + :
RTg 1 bpg c (bpg) + .. (8.1)

Values for the constants b and c¢ are discussed in Appendix C.

The second represents an equation of state which relates the solid
density to the stress on the particle. (See Ref. 3). This 1s also men-
tioned in the text.

K

p. 3
P o= (-2 -1 2 B.2
ot (G- g (B.2)
Po

Finally, the third additional constraint is a relation fov the par-
ticle phase stress, Pp’ as a function of the solids l-ading and the material
bulk modulus, Ko (also see Ref. 3).

As discussed in References 2 and 3, one must alsv szpecify functicnal
relautions for the following:

a) ' ¥ mass gener:tion rate per unit “rolume

N v (8.3)

.
v

Here, r i5 the instantaneous particie roadius and ¢ 15 the strtace burnong
b
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rate specified as a function of pressure (and possibir partirle temperature),

For all cases run in this study.
r = b (E.4)

. T
where r has units of (in/sec), P (psi) and bis of the order (1 x 107)
in/sec .

(psi)“

b) D = interphase (gas-particle) viscous force (as discussed irn the

text).
u
D = -——g——z (u - U) f (3'5)
4r 8 P PR
P
where
, S 2
f =5.06 x 107 r_ Re/u (see Eq. 37)
re b g
¢) Q = interphase heat transfer rate
Q=3 (1-¢) h__ (T - T) (B.6)
rooo Pg g P )
P
In the analysis carried out here, the heat transfer cnefficicn® w~as
k u./7 .35
= B 1Y . '
hpg 0.65 [2r 1 [Rel (Pr) (B.7]

p
where kg is the thermal conductivity, Re is the Reyucids number and Pr is

the Prandtl number.
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APPENDIX .

NONIDEAL EQUATIONS OF STATE

As describesd by Jacobs [ L&}, the nonideal equation of state is ini-

tially written as a polynumizl expansion in gas density.

7 2 3
-P-\-'-=l+x+c>:"+d)”’+.... c.1)

Here, x = bp =
1f Cv’ *he specific heat at u constant volume, is assumed constant
over the varying temperatures, as was in the mcilel, Eq. C.1 can be

written as:

Py = (y;-1) E f(v) (C.2.

In kq. C-Z»Yi is the specific heat ratie for the ideal gas limit, Y o® ER .
v

and f(v) is the gas density poiynomial expansion.

3

o b b © -
f{v) = 1 + vt C(sd o (€ 3

For simplicity tae higher order terms are dropped.
The local speed of sound, a, in the detonation state 1is defined as:

2 [k 1y
a - .)1 a 1()-5) . if d)

fdere, Yy 13 the effective specific f2at ra.'o wn the detonatjion state.

Fov detotaring »opiosives sorype Ty hegeen twi Lo choee. The

el

equal ity 1n Equation o & @ 0w 500 o

PR
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)

L ) A

oP -
v (C.5)
s

I
at - (2 v (C.6)

Jdr 27 ,dV (C-7)

v $ S

the const.nt entropy thermodynamic relation

{C.8)

E -
=)o+ \?:)
v 5 E
(C.9)
- Al vat I annesring in En .9
- - T et ol e Tt = ~
7 A “w - oore v o3 taken Lholding bt constant,

o) : £V

L e (C.10)

UV PRV, RN R S ov-es
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the form:

oD EF) (-1 E £ (v)y

Y o= (v~ f(v) + o -

But, since from Eq. C.2

Pv .1
(v;-L)E T (V)

Eq. C.12 is now:

. (y - o1 -y B

the constant b aid ¢ can be fit to equate Eq. C.13.

Pv

(C.12)

(C.13y

Knowing approximately what value of v an explosive erhibits, values of

Ay

P P SR

e e
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APPENDIX D

FINITE DIFFERENCING TECHMNIQUES

This section will give the reader a more detailed description of the
finite differencing scheme referred to in Chapter 3, the Lax-Wendroff
center differencing technique.

In order to solve the system of six hyperbolic partial differential
equations describing iwo-phase reactive flow, the Lax-Wendroff scheme pre-

sented in Reference 19 for one-phase flow was modified to model two-phase

flow. This modification was necessary because of the interactive source-
sink teruws invelved in the gov

The six conservation equations described in Chapter 2 (Eqs. 22 to 27)

can be written in vector form as:

ol oF
— o+

1 3% - c (D.1)

In this notation U, F and C are the vectors

-
P r -
1 s
P
2 oJuy
. 2
da
1% (pyu'+ ¢ P)
v = P F = 2
2p pu- + (1-¢)P
( M+ (1-9) p)
pE uE 4 p

27g, pyu b ry.
L r 2P Pp+ (1-0) uy P
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r r h
T
I'ua -9
C = -T + D
“p
2
3 Up. ‘
F(Efpy * D) - D, - 4
2
p Y :
[ TGy - D) +0u, v Q]

The Lax-Wendroff solution, as described by Richtmeyer and Morton [22]

brgins as a Taylor's series expansion accurate to the second-order.

T 2.4t
U§+At =yt + At [29 + L Ltz 2—2- (0.2)
X X At 2 "
[N - Y -0t - X

[n order to make use of Equation I'.2, the time derivatives must be replaced

by derivatives in space.

By using Equation D.1 and introducing the matrix A, where Aij =

Iy 3 [ OF | _3C 9 jak) 3C 3 p 93U | _3C 3 |, 9F
w2 T B R il T > [Bt_,-ac'ax[Aat]'at'ax[Aax] (D.3)

Q
t
r
13
7

Replacing x-derivatives with finite difference quotients (i.e.,

JE/o9x = (Fx+A - FX_AX)/ZAx), the Lax-Wendroff solution can now be written

X

t+At |t At |.t t .
Uy = U " 3 [Fx+Ax B Fx-Ax] + Buec

2 )

- _1_ é_'i:._ t t .t t -t t 1 .

> [Ax} [AX"Q,{ [F”Ax - }-XJ— AL ax [rx - Feax| |t AEC .
2 2L :
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t ) 1.t .
2 = ) : th -Wendroff
Ax+A§_ denotes A [ U, *+ 3 Ux] For A a constant matrix the Lax-Wen
2
solution takes the form

tedt _ t AAt [t ot
Ux b Ux 2 Ax [‘x+Ax Ux—Ax]
2 .
1 [, At t st 3
. 7[ -A-;] [Uxmx -l . UX_AJ +3 atec (D.5)

Richtmeyer [22Z] developed a variation of the Lax-Wendroff solution al-
so of second-order accuracy. This method involves two steps and eliminates
the use of the A matrix found in the Taylor's series expansion solution.

Richtmeyer's first step involves computing intermediate values in

time and x-location of U.

Step 1
At
T g £ e Tt 1A e
UX* Ax ) LLx+Ax * Ux J * 20X L x+Ax ' x 1 ta e Cx (D.6)
&
SteE 2
At At
Lty — t+ —
t+At t At 2 2 .t .
Ux Ux + Ax F Ax F Ax + At Lx D.7)
x+ 5= x- 3=

The first step (kq. D.6) is of first-order accuracy. However, the final
step (Eq. D.7) is 1ccurate to the second-order since I quantities of
8(Ax) are differenced over Ax. For the linear case where F(U} = AU
Equations D.6 and D.7 combine to yield the Lax-Wendroft solution, Equa-
tion D.5.

A two-dimensional (x-t) grid is helpfu' in understanding how the

Lax-Wendroff differencing scheme can be applied to the numerical sclution

5§ the conservation equations on a digital computer. In Figure D.1 a known




§2

value of the vector U (mass, momentum and energy per unit volume) at a
time t = to and located at x = X, is indicated on the grid by a solid
dot at (xo, to). Locations where the vector U is yet to be solved at
are indicated by open circles. Figurss D.2 and D.3 illustrate the

Richtmeyer two-step routine using the x-t grid. For instance, in Figure

D.2 the vector U at (xO - %5 . to * %3‘ is solved fer by using known values

A

4t two locations (xo, to) and (x0 -~ AX, to,.
In a later paper by Rubin and Berstein [19] it was shown for cne-
phase flow that a modified version of Richtmeyer's 2-step method was
more stable in solving the system of equations. The use of half-time
steps was eliminated bty averaging ¥ differences at present time, t, and

future time,to + At. This is w~ritten as

Step 1
t ..t
Ut+At ~ Ux+Ax N q5> . St pt _ St (L.8)
x+Ax 2 Ax| xedx r&} T
2
Step 2
ptat |yt At T 1N IS T - s (5.9)
X T Vx U 28x | 2 | x+Ax x-AxJ ReAx ‘X-QE.J b
2 2

This method is illustrated in Figures D 4 and D.5 on the following page.
The fellowing is @ sumnary of the schemes described in this Appendix,
Each will be applied to the gas continuity 2quatisn of 1-D, two-phase flow.

Here, T represents the gas beirg generated ifrom the s50lid phase.

Gas continuity equaticn
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Fig. D.1 Schematic of x-t Grid Used to
Illustrate Finite Differencing
Techniques, Open Circles Indicate
Values Solved for and Black Dots
Represent Known Values.
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Richtmeyer 2-step Method

Step 1
.t t
we 2t (Pyy + (0]
0.) 2 . x+Ax x_ bt (0. t
SO 2 26x {P1¥g’ xetx
2
T r At
Gy | 7
Step 2
At At
t+ —— te
t+At t At 2 2
(0,) = (P, ~ 5z (fpyu)) (oyu_)
1°x I"x  Ax l'g x+ Ax 8 4. Ax
7 R
LW2 - Methcd of Rubin/Berstein
Step 1
_."L . .
) + o))
JtHit X+AX X } )t
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