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Abstract

> A theoretical and experimental study was undertaken into the crushing
behavior of axially compressed short thin-walled open-section columns. The
effect of initial gecmetry of panels as well as distribution and magnitude of
shape imperfections on the efficiency of energy absorption was examined.
Results of model tests on O.lmm thick aluminum foil specimens have shown that
the panels collapsing in the symmetric and asymmetric deformation mode provide
respectively, upper and lower bound for the energy absorbed in any other buck-
ling mode. In both of the extreme cases, the crush response of the panel was
predicted theoretically with a reasonable accuracy. It is shown that an opti-
mum design of columns against crush can be achieved by introducing a beneficial
geometric imperfections of a specified magnitude so that the structure will be

forced to collapse in the most energy efficient deformation mode.
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Introduction

The problem of reducing the weight of a vehicle body without
sacrificing its strength, stiffness and crashworthiness properties
has become a great concern to auto manufacturers. The optimization
of thin-walled structures for energy absorption can be approached
in many different ways. Weight reduction can be achieved by con-
sidering alternative materials such as aluminum, high strength steel
or fiber reinforced composites,[1],{2]. Another possibility is to
strengthen properly the shell by means of stiffeners in order to
impose a desirable and energy efficient deformation mode. One
could also incorporate into the design initial imperfections of a
specified magnitude which again are aimed at triggering the right
buckling mode and forcing the structure to collapse in that mode.
Finally, great potential exists in properly shaping the sheet metal
structures for maximum crash resistance under prescribed geometrical
constraints.

The problem of shape optimization of thin-walled structures

subjected to guasi-static crushing can be formulated as follows:

For a given weight and prescribed total crush
distance,maximize the energy absorption of the
structure.
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Dual formulation:

For a given amount of the energy to be absorbed
and for a prescribed total crushing distance,
minimize the weight of the structure.

Clearly, the application of the optimal criterion requires
a careful determination of the admissible class of structures and
boundary conditions. Very little work on the more fundamental nat-

fm‘ ure has been done in this new area. It is generally understood that

closed - section members under compressive forces are far more
efficient from the point of view of energy absorption than omen -
section structures. It has also been observed that the crushing
force increases with the number of sharp corners (angles) of pris-
matic or channel section tubes [3]. According to various authors,

the mean crushing force is proportional to the gauge thickness h

6 raised to the power 1.5 + 2. On the other hand, only slight de-
pendence of the force was observed in the circumference of the
tube. These findings gave rise to the concept of using long, pro-
gressively collapsing tubular members for crash protection of auto-
mobile bodies. Its limitation is set by the condition of overall
loss of stability which restricts the length to width ratio &/p

to relatively low values. On the other hand, closed - section mem-
‘ bers with small £/b have to be excluded from most of the designs
;» because of package requirements. In order to get the required

crash resistance, one has thus to turn to open section shells.

In the present paper, the response of such shells under quasi-

<

-

static compressive loading is studied to get some insight into the

extremely difficult problems of the formation and motion of the
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plastic folds and wrinkles. Rather than solving the optimization

problem for general shells, we shall restrict the analysis to

axially loaded open panels forming one quarter of prismatic thin- i
walled tubes. The dependence of the crushing characteristics of
the panels on imperfections, boundary conditions and the transition
radius was studied experimentally and theoretically and important
parameters were identified which are controlling the process of

: energy absorption.

Experimental Procedure

Fourty-three model tests were run in three series on 0.1 mm
thick aluminum foil specimens with dimensions shown in Figure 1.
The height of all specimens was the same, & = 73 mm; the ratio
2/h being typical to large panels of the automobile body such as
the hood, fenders, trunk 1lid, etc. The total circumference of the
specimens was also held constant ¢ = 100 mm but the shape varied from
g the symmetric angle element to the cylindrical panel with the cen-
tral angle equal to %. The considered transition radii were respec-
tively, p = 0,5,20,25,35 and 65 mm. The lateral surface of the

1

.

specimens was fixed to the bottom and top plates by means of a

M'# .

Scotch tape whose bending stiffeness was much smaller than that of i

i

=

the foil. Thus, the boundary conditions were of the simple sup-

L2

ported type along the horizontal edges and free along the vertical

edges. Intentionally, little care was given to eliminate the shape
imperfection in order to best resemble the real world situation.

On a certain number of the specimens, intial imperfections were im-

- ARl

posed described by the amplitude £, half wavelength A and number

Y
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of waves n, Figure 2. All specimens were crushed up to one half

of its original length in a kinematically driven testing machine.
Both the bottom and top plates were fixed to the cross-head plates
to prevent rotation. In each experiment, the force-shortening
characteristics was recorded on the x-y plotter. From these dia-
grams, the energy absorbed at 30 mm crush and the average force
level were calculated. Photographs of all specimens were taken
before and after each test. In the first series of tests, "perfect"
structures were crushed with the transition radius p as a design
variable. In the second serics, the effect of large initial imper-
fections was studied for specimens with selected transition radii.
Finally, the effect of the deformation mode on the energy absorption

of panels with p = 25 mm was examined in the third series.

E - Experimental Results and Discussion

A typical load-deflection relationship is shown in Figure 3.

[ One or several peaks of the load are observed, the first being usu- {
'% ally, but not always, the maximum one. Each distinct peak is assoc-

f’ iated with the formation of a different local buckling mode. The

;h force is generally diminishing with deflections. In most cases, the

3} pattern of folds and wrinkles is very complicated and depends on

. - initial random imperfections. In spite of this seemingly unpredic-
table behavior of panels, some interesting features of the crush-

ing process have been identified.

y
$‘ Effect of the Panel Curvature
{’ The total energy absorbed at 30 mm crush distance was plotted
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against the transition radius p for all test pieces without imposed
imperfections (Figure 4). While the scatter of experimental points
for each value of the radius p is quite significant, a well defined
tendency can be observed. The full line in Figure 4 represents the
best fit of all experimental pointsf Thus, an optimum structure con-
sists of a cylindrical panel supported on both sides by two flat
plates. The energy absorption of the panels with the largest radius
p=65mm was only one half of the optimum value while the efficiency

of angle elements with p = 0 falls between these two extreme cases.

Effect of Imperfections

The objective of the crushing tests on imperfect structures
with imposed large initial imperfections was to see whether it is
possible to excite deformation mode with short wavelength and get
a progressive collapse of the considered open-structure members.

In most cases we have introduced very large imperfections, sometimes
exceeding by two orders of magnitudes, the gauge thickness of an
element! Panels with large imperfections generally followed the
collapse mode imposed by imperfections regardless of their wave-
length. In constrast to the closed-section members, the deforma-
tion mechanism was not progressive; we have simply observed a sim-
ultaneous folding of the material along the stationary hinge line.
The associated force - deflection relationship was relatively smooth
but far below the corresponding curve for "perfect" shells. The
dramatic decrease in the maximum force is mainly attributed to the
large magnitude of initial imperfections. Examples of crushed spe-

cimens with large symmetric and asymmetric imperfections are shown

*It has clearly a maximum for p = 25 mm




respectively, in Figures 5 and 6. Specimens with much smaller ini-
tial imperfections behave in a different manner, as exemplified in
Figure 7. When the wavelength of imperfection is relatively short,
the structure disregards its presence and eventually assumes an
asymmetric rather than symmetric deformation mode with H = %. The
associated reduction in the force level is now much less pronounced.
Some aspects of the transition from the symmetric to asymmetric buck-
ling mode will be discussed further in the paper.

The third series of tests was run on panels with an optimum
radius, p = 25mm and no imposed initial imperfections. The random im-
perfections cause the structure to assume in each case a different,
and in most cases, quite a complicated collapse mode leading to dif-
ferent load-deflection characteristics. However, two type of acti-
vated modes are of particular interest. One is a regular asymmetric
mode with H = %, Figure 8, while the other one is a symmetric mode

with H = &, Figure 9. The plastic energy dissipated in these modes

were found to furnish respectively, the lower and upper bound on the

energies dissipated in all other modes. This is the most important

conclusion of the present experimental program. These findings bear
important implications for the analysis and design of the thin pan-
els. Now, the worse and best possible case of energy absorption can
be predicted on the basis of a relatively simple collapse mechanism.
Consequently, the analyst should not be worried about the effect of
random imperfections and about the difficulties associated with con-
sidering in the calculations more complicated buckling pattern. On
the design side, the problem of maximizing the energy absorption can

be reduced to the problem of triggering the desirable symmetric
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buckling mode.
In the remainder of the paper, attention will be focused on
the plastic crushing analysis and elastic post-buckling analysis

of panels with symmetric and asymmetric collapse mechanism.

General Analysis of the Plastic Crushing Process

Consider a typical fold line which moves down the shell ele-
ment as the deformation progresses goes on,Figure 10. Since the
?h; fold line always lies in a certain plane, (see Ref. [4], it is reason-
able to model the deformed shell element by a section of an elliptic
toroidal surface, four sections of a cylindrical surface and four plane
trapezoidal elements. Such a model, first suggested in [5] and [6],

is fully consistent geometrically and kinematically. In previous

models considered in the literature, the toroidal surface was not
considered which leads to the discontinuities in the displacement
o field at the corner point C, ([71,([8]1,(9]1. To simplify the calcula-
tions, the elliptical toroidal surface will be approximated by a cir-

cular one defined by a central angle 28 and a small and large radii,

;’ denoted respectively by r and R, Figure 12. The global geometry
é of the crushing process is described in Figure 11. The angle 2y
5 between two adjacent sides and the total length of segments AC+CD
s 1
: are kept constant while the angles y (o) and 7-B(a) diminish with the
a parameter of the process a.
$ -
i The angles o, B, vy and y are related by (tg stands for tangent),
) tgy 2. _ 1-sin’q .
! t9Y = gipgs GOS8 B =T —— (1)
¥ 1+ (sina)
2 tgy
The crushing distance § and crushing velocity are related to the
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wavelength H and a through

§ = 2H (l-cosa), & = 2H(sina)a (2)

According to the assumed model, four mechanisms contribute to

the energy dissipation. There are:

1. Extension in the hoop direction of the toroidal surface.

2. Change of curvature in the circumferential direction from
positive 1/R to negative - 1/R.

3. Bending and rebending along moving plastic hinges 1 and 2.

4. Pure bending in stationary plastic hinges 3 and 4.

The strains developed in the toroidal surface may sometimes be
very large thus requiring consideration of the variable thickness.
The exact expressions for the dissipated energies in each of these
mechanisms was calculated in {5] and [6]. 1In the present analysis,

we shall use the following simplified formulas, valid for constant

thickness:

Ehoop = 4hoo VtBr51nw (3) ;

;- v

Ecur = 4Mo % Eqv (4) ;
1

. _ H 1 (5) |

Epr = Mo Vi siny tgy

Ey = 4MO ca (6) ]

"
where Mo = %qo h“ and the magnitude of the normal and tangential
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component of the velocity of the line AC or CD is

V = H(cosa)a , V, = — (7)

Equating the sum of (3) + (6) to the rate of work of external

forces

ext Pé (8)

one gets a final expression for the magnitude of an instantaneous

axial force necessary to maintain the plastic flow,

P _ r ctga
Mo = 88 h cosy ctgo + 2a toU +

H ctga 1 c 1
r siny tgy | 2 § Sina (9)

We shall consider now two special cases of Equation (9).

Crush Prediction in the Asymmetric Mode

Consider a panel with p = 0, in which an asymmetric mode is
activated. The angle ¢y is equal to Tr/4, so that the formula (9)

is reduced to

c 1
H sina (10)

P _ 3 H
M= 5.66 § Ctga + 2 ctga + - fctga + 2
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The right hand side of (10) can be formally minimized with respect

to the radius r and wavelength H. The conditions oF

BP/

/ar = 0 and

SH = 0 yield

ropt = 0.42 \IthB (11)

3
“\ l C ﬂz
H = 0.89 — (12)
opt chos Q

Thus, the optimum values of r and H turn to be a function of a
which is inconsistent with the assumed mechanism of deformation

in which r and H were both taken as constant. While the variation
of r with a can easily be accommodated by the present solution with-
out requiring much of the additional energy to be dissipated, the
3P/

= 0 should be discussed

consequences of the condition, SH

in more detail,

The variation of dimensionless wavelength, H = H/i[gig—_ with
the parameter of the process shown in Figure 13. The wavelength
of the corresponding elastic buckling mode is Hel = %f, which
yields ﬁe = 3,75 (broken line in Figure 13). Experiments show
that the panels collapse in the asymmetric mode with the elastic
wavelength. A considerable variation of H, predicted by (12) would
not be possible without dissipating additional energy on the down-
ward motion of the otherwise stationary hinge lines ACD and corner
point . The necessary calculations have not been performed but it
is anticipated that the new energy terms would prevent any major

variation of H. It is thus, very likely that the wavelength of

£ 5. - ~ g . -
. iy 4 ;. SO TR N 0 AT W oy | =T

—
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the plastic collpase mode is decided early in the deformation pro-
cess and a possible adjustment of the H takes place in the stage
of an elastic post-buckling behaviour of the panel.

Substituting (11) and H = 37.5 mm, ¢ = 100 mm, h = 0.1 mm
into (10), we get the parametric representation of the force-dis-

placement relationship of the considered panel

%L {92 B+ 2a} ctgo + 5.3/sina (13)
[e}

o
W

2H {l-cosa}

The prediction of (13) has been compared with P ~ § curve measured
in tests No. 32 and 35. The agreement is very good except for the
initial phase when the present theory is not valid. (Figures 14 and
15). In matching the theory with experiments, we have assumed the

KG/ 2 .

yield stress of the aluminum foil to be Oy = 8 mm

Crush Prediction in the Symmetric Mode

The simplified model of the symmetric collapse mode is shown
in Figure 16. The existence of such a mode can be easily evidenced
by making an inextensible paper model of the panel. Now, there
are two hinge lines and hence, all terms in the energy balance
equation, except the contribution of the stationary hinge lines,
should be doubled. The angle ¥ becomes "/8 and from (9) one can

get an expression for the crushing force

Pg _ r H __'_C
W " 14.78 § ctga + 9.65actga + 4.82zfctga + 3.14 pao

(14)

.

—y
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A minimization of the right hand side of (14) with respect to r

and H gives

_ | -1
rOpt = 0.57 hHER (15)

3 [c%n

chos:a

]

0.52 (16)

Hopt

The plot of Eg. (16) reveals that the predicted wavelength of the
symmetric mode is two times smaller than that corresponding to the
asymmetric mode for all values of o, Fiqure 13. This tendency is
confirmed by test No. 30 where H was of the order of 2/4 rather than
4

3 . Substituting (15) back into (14}, we obtain the sought for

expression for the crush resistance of the panel

P _ IH C 1
-M—o- = {16.85 T fg + 9.65(!} ctga + 3.14 i Sina (17)

Plots of Eq. (17) for several chosen values of H are shown in
Figure 17. The correlation with the experimentally measured force
is not as good as in the case of the asymmetric mode of deformation.
The present solution correctly predicts the general character of

the P - § relationship but overestimates the force level for a

realistic value of the wavelength H = % 18.75. It should be

noted that the activation of the symmetric mode, clearly visible
in Figure 6 is preceded by the development of some other modes
near the bottom plate, which explains a poor agreement of the

theory with test results at the initial stage of the crushing pro-
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cess up to § = 10 mm. Some discrepencies between the theory and
experiments may also be attributed to the fact that the calcula-
tions were made for panels with p = 0 while the measurements were
taken for p = 25 mm.

In the same figure shown is also the P-§ curve corresponding
to the asymmetric mode (broken line). Under any circumstances,
this curve is much lower than those representing a symmetric mode
solutions and so is the dissipated energy.

In summing up, it can be stated that the present solution
gives a good prediction of the crushing resistance of panels de-
formed in an asymmetric and symmetric mode, provided that the wave-
length of the collapse mode is properly determined. The energy
absorption calculated in these two modes furnishes
a lower and upper bound on energies associated with any other de-

formation modes of panels with various p and random imperfections.

Post~Buckling Analysis of Elastic Panels

A further insight into the problem of an optimum design of
panels against crash can be gained by analyzing the buckling and
post buckling behavior of perfect and imperfect elastic structrues.
We have shown that the plastic energy absorption would be maximized
if we succeed in activating a symmetric buckling mode.

Buckling of an angle element in the asymmetric and symmetric
modes is equivalent to considering a plate element with respectivcely
free-simply supported and free-clamped end conditions, Figure 18.
The corresponding classical buckling load is given by (see for

example [10])

P = e (18)




-14-

where D is the bending rigidity of a plate, b - its width and
the coefficient k depends on the aspect ration b/a which in our
case is f%. With the present dimensions of the plate < = 100 mm,

£ = 75 mm. This coefficient is equal to

0.9 asymmetric mode

1.34 symmetric mode

The buckling mode corresponding to the lowest buckling force is in
both cases a half of the sinusocidal wave, i.e. H =%@. After the
critical load is reached, a post buckling path is followed
for both symmetric and asymmetric case, Figure 19. Thus, a per-
fect elastic angle element will always buckle in an asymmetric mode,
which requires a much lower critical load.

The situation might be different for an imperfect structure
since now the two modes may interact with each other. In the
majority of cases, the most degrading effect on the load have the

imperfection in the shape of the buckling mode [1ll]. Denote by f’
a

and ?' , the maximum amplitude of initial imperfections respec-~
s
tively in the asymmetric and symmetric mode. If § #0 and § = 0,
a s

the structure will follow the equilibrium paths in the asymmetric
mode, Figure 19. If the compression of the plate is continued,

this will eventually lead to the lowest possible energy dissipa-
tion. Suppose now that E; = 0 and E; # 0. The structure will ini-
tially follow the symmetric mode deformation but at a certain point,
such as F may bifurcate into the asymmetric mode. The question
which remains to be answered is whether this will happen and if so,

when and how the coordinates of the point F depend on the magnitude

—

of the initial imperfections Ys.
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The important problem is being studied using Koiter's theory
of post-~buckling behaviour of imperfect structures with mode inter-
actions, [12],[13) and the results will soon be published, [l4].

If we succeed in controlling the deformation process so that the
structure will not pop back from the symmetric mode to the pref-
erable {giving lower force) asymmetrié one, then the way for opti-

mizing the structure for crash would be open.

Concluding Remarks

We have shown that the energy absorption of compressed panels
can be considerably increased if a proper shape of the cross-section
is assumed. Within the considered class of structures, the best
shape consists of a cylindrical panel representing one quarter of a
complete cylinder supported on both sides by flat plates. The
presence of random initial imperfections give rise to guite a
variety of collapse mechanisms. However, two specific types of im-
perfections are of utmost importance. It was found that the imper-
fections in the asymmetric and symmetric elastic buckling mode have
respectively the most degrading and beneficial effect on the energy
absorbed by the panel. In both of the extreme cases, the crash
response of the panel can be predicted with a reasonable accuracy.
Investigation is under way regarding the stability of the buckling
modes imposed by symmetric imperfections. A new series of experi-
ments is also being planned to demonstrate the effect of the bene-
fitial imperfections on the crush response of the panels.

The required symmetric collapse mechanisms may be triggered
in many different ways, for example, by attaching string stiffeners

with initial curvature to the free edge of the panel. The problcm
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of interaction of stiffeners and a shell with the view of maximizing
the energy absorption will be the subject of a future research.
It is believed that some of the factors identified in the pre-

sent study would also affect the energy absorption of sheet metal

structures with different geometry and boundary conditions.
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