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Abstract

;

—The crushing analysis of rotationally symmetric plastic
shells undergoing very large deflections is presented. A
general methodology is developed and simple closed form solu-
tions which can be useful for practical applications are derived
for the case of a conical shell and a spherical shell under
point load, a spherical shell crushed between rigid plates and
under boss loading, and a spherical cap under external uniform

pressure. The effect of the end conditions and the limitations

of this approach are discussed in detail.




1. Introduction

Thin metal shells of revolution subjected to axisymmetric
compressive forces are capable of carrying substantial loads
when deflections exceed by one or two orders of magnitude the
thickness of the shell, and become comparable to the largest
linear dimension of the structure. Thus, the deformation
process is far beyond what is commonly understood as post-
buckling behavior of elastic or plastic shells. A distinctive
feature of such deformation mechanism is that the strain energy
function {(in the case of elastic shells), or dissipation function
(in the case of plastic shells), is concentrated in narrow zones
(fold lines or hinge lines) while the remainder of the struc-
ture is undergoing a rigid body motion. Furthermore, with some de-
cree of symmetry, the fold lines are forced to move as the deforma-
tion process goes on. Depending on the geometrical parameters
of the structure and imperfections, either a symmetric or un-
symmetric deformation pattern may develop, even though the loading
and the structure itself are axially symmetric.

A known example of non-symmetric but regular deflection field is
the Yoshimura buckle pattern in conpressed thin elastic shells. In
the range of very large deflections, the geometry of such a field
can be conveniently described using the concept of isometric
transformation of surfaces. The foundations of the resrective
mathematical theory were laid by Pogorielov, (1], who alsc

presented brilliant applications of his theory to the analysis




of post-critical behavior of thin elastic shells, [2]. His
work was later followed by Lukasiewicz and Szyszkowski [3],
while Foster (4] presented a parallel but independent study

of the compression of thin tubes. Pugsley ard Macaulay

appear to be the first to study the crumpling process of

thin cylindrical shells with diamond shape lobes in the plastic
range [5]. Although no provision was made to accomodate in

the theory the travelling hinges, the corresponding calcula-
tions for the mean crushing force, especially the more recent
ones [6], agree well with experimental results. Further contri-
bution to the understanding of the process of progressive
crumpling of tubes in the multi-lobe modes was made in [7]

and [8], but no satisfactory solution of this interesting problem
was offered to date.

As tubes get thicker (R/h < 50), a well-known transition
takes place from the diamond pattern to the crinkling (concertina)
mode of deformation, discussed by Alexander [7]. Assuming a
simple deformation mechanism with circumferential extension
and equating the rate of internal energy dissipation to the
rate of work of external forces, he was able to calculate an
average crushing force. Minimizing next the force level he
evaluated the length of the local buckling wave, and derived a
simple expression for the optimal value of the crushing force.
The above procedure has proved to be most effective in the
approximate analysis of the crumpling process of various thin-

walled structures [8,10].




The tube inversion (outside-in or inside-out) is another
example of an axially-symmetric deformation of tubes. Two
solutions for the magnitude of axial loading necessary to main-
tein the plastic flow are available. One, due to Al Hassani
et al. [10], is good as long as the assumption of a constant
thickness holds, and another one, due to Abramowicz [ll], takes
into account changes of thickness and circumferential curvature.
The problem of hemispherical shell or spherical cap loaded by
central point-load, rigid boss, or crushed between plates, received
much less attention in the literature than the related bkuckling
problem under external pressure loading. Updike and Kalnins
performed a thorough analysis of postbuckling behaviour of
elastic spherical shells compressed between rigid plates, [12,
13]. Using Reiszner equations for shallow rotationally symmetric
shells, they determined the force-deflection relationship in
subsequent stages of deformation, and the point of bifurcation
into a symmetric inward dimple, and later into an unsymmetric
shape. In the subsequent study (14] Updike presented an approxi-
mate solution for the rigid-plastic shallow shell undergoing
symmetric deformations. An extensive theoretical and experi-
mental investigation into this problem was made by Kitching
et al. in (15], where the transition into an unsymmetric ylastic
mode was calculated numerically. Experiments in which polygon
rather than circular circumference dimple were observed, were

reportedly made earlier by Pian [9].




Leckie and Penny [16] performed a series of tests on
carefully manufactured hemispherical shells loaded centrally
by a rigid bcss. These experiments were followed by a theoretical
study due to Morris and Calladine [17], in which the deformed
shape of the shell and the force-displacement characteristics
were obtained by a sequence of upper bound calculations, in
conjunction with an ingenecus idea of treating the shell as a
three-dimensional body, [18].

The work of Morris and Calladine consititutes a milestone
in the understanding of the crushing behaviour of shells of
revolution. It shows through relatively simple numerical cal-
culations that plastic deformations are indeed confined to a
relatively narrow ring or section of a toroidal surface, and
that the ring is moving outward as the deformation process
goes on, leaving a rigid region behind. A snap-through effect
was observed whose extent depends on the boss size op.

The plastic behaviour of shallow spherical shells under
uniform pressure loading is similar to that of a shell under
rigid ktoss loading, as far as the occurrence of the plastic
snap-through phenomenon is concerned. This problem was studieAd
by Puzzek [19] and Jones and Ich [20], using an approximate yield
condition for rotationally symmetric shells. Recently, the
same problem was reconsidered by Kondo and Pian (21] by applyinc
the generalized yield line method, vhich takes into account

the changes in the geometry of the structure.
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In the present paper we shall extend the approach developed
in [7] and [l17] to general shells of revoiution, with the
purpose of deriving some simple results useful for practical
purposes. A detailed discussion will be presented on the
restrictions imposed on the solution by the conditions of
kinematic continuity on the moving hinge circles, and inextensi-
bility of the shell in the meridional direction. Intrcducing
simple displacement and velocity fields, closed-form solutions
on the crushing force will be derived for a variety of struc-
tures, including conical and hemispherical shells compressed
between rigid plates, and a spherical shell under a point-load
or central boss loading. The influence of the koss size,
and clamped edge conditions will also be discussed at
length.

The analysis will ke restricted to axisymmetric deforma-
tion modes only. A simplified approach to study the lateral
crushing of cylindrical shells using a polvgon shaped fan of
flat elements was developed by Morris and Calladine [22].

This method is particularly suited for treating nonsymmetric
but regular deformation modes in hemispherical shells such
as the ones observed by Pian [ 8]. The treatment of non-
symmetric problems with smooth deformation fields will be

the subject of a future publication [23].
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2. Analysis of Discontinuities

The condition of kinematic continuity on the moving hinges
or hinge circles in rigid-plastic beams and flat circular plates
were formulated by Hopkins [24] and Hopkins and Prager (25].
Before writing the continuity equation for a general shell
consider first the one-dimensional case, since the physical
arguments leading to these equations are the same.

Let [ denote a straight line yield hinge whose position
on the flat surface element is described by a scalar egquation
x = v(t). The downward deflection and velocity of the material
point lying on the shell middle surface are denoted respectively
by f£(x,t) and f(x,t). We assume that deflections and velocities
are continous at any time and at any point of the shell. i
Since the deflection f is continuous across [, the time deriva-

tive of £(v(t),t) along T is also continuous across I'. Thus

[£] + v () [£'] = 0 (1)
where the brackets denote discontinuties, if any, of the enclosed
quantities across I, i.e. [n] = n_ - n_. Now, f is continuous across
P and Eq. (1) therefore shows that the slope f' can be discontinuous
only across stationary yield hinges, for which b(t) = 0. If the

yield hinge T is not stationary, then f' must be continuous across

I'. By repeating similar arcuments one can show that
(£']1 + () [f"] =0 (2)

provided v (t) # 0.




Consider now a hinge line moving with a constant velocity
b(t) = V down the undeformed flat surface element
leaving a plastically deformed region, Fig. 1. The rate of
rotation and curvatures on both sides of the moving hinge are
respectively f+ = é, %l = 0, f: =«x, £" = 0. Now, Egq.(2)
reduces to

8 + vk =0 (3)

Ve can see that the movinc hinge line imposes a constant
curvature K = % on the initially flat surface element if the
slope of the velocity field é is related to the hinge velocity
by (3T.

Return now to the general case, following the derivation
presented in [l11] and consider a curved discontinuity line T
moving down the middle surface of the shell x. The line T
is dividing the surface x into two separable parts

(+) (-)x (+)

X = XUre X denotes the deformed part, subjected

. Then
to plastic deformation. The vector field f is defined over the
entire surface X. Now, the previous analysis still applies
except that the first and second derivation of f in (1) and

(2) should be replaced by the evalutation of the first and

second gradient of £ on the surface ¥x. This is equivalent

to the replacement of partial derivatives in (1) and (2) Ly

covariant derivatives, so these ecuations now read

[éi] + Vn[fi[a]na =0 i={(1,2,3} (4)

i B ¥y _ -
[f !S.Y]n n gna =90 alBIYI6 {1,2} (5)




where n is a surface vector normal to the discontinuity line
', while Vn denotes the velocity of the ninge line in the n
direction.

Considerable simplification can he okrtained in the case
of rotationally symmetric shells. The ihinge line becomes now

a circle and each of the continuity condition (4) and (5)

yields only one scalar eqguation in the meridional plane

(f] + Vv_[(£f, ] = & (€)
n a
[£,4) + V [£,,,] =0 (73
where [f,d] is a jump in the rate of rotaticn and [f’ua] is

the corresponding jump in the principle (meridional) curvature.
Take now an intermediate stage of the crushing process
ivhere plastic deformations are confined to a relatively narrcw
zone contained between an inner and outer hinge circle B and C, Fig. 2,
The outer hinge circle B moves down the undeformed shell with a

velocity V_ imposing a larger curvature, i.e. changing the

B

local radius of curvature from RB to Fy- The material in front

of the hinge is rigid and undergoes a constant and finite rate oF

rotation @. Thus, the continuity condition reduces in this

case to

: 11\ . \
et g T ) "

The inner hinge C is travelling with the velocity VC and remover
the curvature, or strickly speaking, it changes the small radiusz

of curvature rC back to the large one RC. e can then write




a similar equation to (8) expressing the continuity constraint

. 1 1
w_ + V — - =) =20 (9)
C c(rC Rc)

For the material behind the circle C to be rigid, the shell
should translate rather than rotate. Hence, there must be at
C a counterrotation we of the same magnitude as at B. The

.

condition &B=uc‘“implies the following relation between the six

KXinematic and geometric parameters of tue problem
’ il

e (i 5) e (T )
Egquation (10) can be further simplified. If for example the
deflected shapé_of the shell is assumed to be isometric to the
original one, it must be its mirror reflecticn i.e. RB = RC
see (17, rurthermcre the shape of the chell middle
surface between the hinge circle B and C may ke approxirated by
a section of a circular toroidal surface so that ry = rC =r,
as suggested in [14,11].

Equation (6) carries the informaticrn that the shape of shell
at B and C should be continuous at all times, except at the
stationary hinge, i.e. at the rigid boss or clamped edge.

In the next section we shall see whether conditions (6)

and (10) can be made compatible with other simplifying

assumptions regarding the kinematics of the crushing process.

3. Mechanisms of Plastic Deformation

The foregoing analysis has shown that there are two con-

centrated plastic hinges at B and C and that the cross section
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between them rotates as a rigid shape with an angular velocity w,
as the displacement of the shell increases. Our aim is to evaluate
the internal energy dissipated in such a recde of deformation.
Equating this energy to the rate of work of external forces

an instantaneous crushing force can be fcund necessary to

maintain the plastic flow.

The dissipation is due to a discontinuousz velocity field
at plastic hinges, and to a continuous deformation field in the
shell section between B and C. Consider first the latter.

In rotationally symmetric shells there are four components
of the generalized strain rate and stress fields. The meridional
curvature rate ;® is infinite at hinge circles and vanishes
tetween them. This follows from the asczurrtion that the rate
cf rotation is a step function.

It should be noted that the meridioral curvature itself
Ky, governed by (8) is kept constant at any material point
rassing through the plastically deformin¢ arnulus, but does nct
have to be constant along srpatial coordinrate between B and C.

The circumferential curvature rate ée is continuously
changing between B and C from pocitive g; throuch zero to negative
éz,and consequently some energy is dissirated in this deformaticn
rechanism. An exact formula for ;e was aerived in [1l1l] using

a rigorous Eulerian description. 1In the same paper it was

shown that the associated energy dissipaticn is a small fraction

of the total energy.

e
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For the sake of simplicity we shall disregard Kéin the
equation for the energy dissipation. A very good estimate of
the contribution of Lé to that energy can hbe given in a
straightforward manner,

Suppose the circumferential curvature is reversed between
1 1

B and C from i to X - The rate of work done is twice
the energy required to remove the curvature from % to zero.

The curvature is removed by rotating two ends of a cut circle
through the angle 27, (cf. [2€)}). Thus, the rate of energy

in the considered mechanism of deformation can be approximated

by:

E(kg) = 2 (21) MV = 47 w (11)

Nojry

o
where it was assumed that there are no interaction bLetveen the cir-
cumferential bending moment and the remaining non-vanishing
components of the generalized stress field. The velocity V in

(11) is an average downward velocity of the deforming zone,

V = = w; see Fig. 3.

| o

At certain stages of the crushing process considerable
meridional membrane forces may be developed. 1In the present
paper the meridional extension rate is assured to vanish in
the zone of continuous deformations. Any extension or
shortening of the arc length in the meridional direction is
accommodated ty the hinge circle B and C. Thus, we do not
require inextensibility of the material in the meridional

direction but instead extensional plastic hinges are intro-

duced. This assumption is in the spirit of Calladine's approxi-

{ mation in the problem of moderately large deflection of clamped

circular plates [18].

I K S oo
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The only significant component of the ceneralized strain
rate is the circumferential compression ie. In order to calcu-
late the associate dissipation energy we shall strictly follow
the approach developed in [17], and treat the shell section
between B and C as a three-dimensional todyv. The rate of internal
energy dissipation is equal to

E= /goeedv= 2nfcox€8ds (

v S

-
[

where v and S denote respectively the tcteal volume and area

of the cross section between B and C, and : denotez a current
distance of the given point F from the axic of symmetry of the
shell, see Fig. 3. Note, that the yield ztress ic positive in
tension zones and negative in compressicr zcnes. The circumfer-
ential strain rate is given by ée = %grwhere y is the current
distance fror the axis of instantaneous rotation I-I. The

rosition of this axis with respect to tlie siell cross section

is yet to be determined. Substitutinc =, in (12) yields

v

Eint = 2noow_/1y|ds (12)
s

Cne has to distinguish now two special cacec. If the rise of
the toroidal surface over the points E anc. C is comparable

to the shell thickness, the assumption akout non-uniform

distribution of €4 across the thickness is justified, and (13)

holds. If the converse is true, one caii rejplace 45 = hdx, and

(13) simplifies:




T
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F = 270_hw flyldx (14)
int © B¢

The integral appearing in (14) is the area between the
riddle surface of the annular section of the shell and the
axis of instantaneous rotation, as noted in [14].

The energy dissipated in any of the two plastic hinges

|

h

vy

gdise _ f i dy = 2mac flld 10

int - °7"@ OoUgdy = <Tawg, 1 Yidy (1)
) Z

where a denotes the rosition of the hinge with respect to the

axis of symmetry, and 66 is in-plane component of the velocity field.

One can easily evaluate (15) as a function of the position of

the center of instantaneous rotation with respect to the middle

surface of the hinge &:

h2

T for £ =0 (l16a)
pdisc _ 5o -2, h’ v<g <l (16b)
'int ~ “"%% N 4 2

£h for £ > 1% {(lec)

In the present approach the hinge circle is indeed a
ceneralized plastic hince analysed for exarple
by Jones [27], since either bending or extension or both can
be devleoped in it.

The total dissipated energy is the sum of energies

dissipated in continuous and discontinuocus dissipation fields.
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4. Determination of the Crushing Force

In the actual solution the rate of change of external work
is always egual to the internal dissipation @energy. A similar
equality for any kinematically admissible velocity and dis-
nlacement field can be understocod as a definition of the approx-
imate value of the external locading. The more close the
assumed fields are to the real one, the better the approximate
colution is. A considerable success of this methcd in predicting
the crush behavior of various thin-walled structures (see [7,15])
is due to the correct choice of the admissible field with few
free parameters, and also to a somehow weak dependence of the
solution on the details of the assumed share of the shell.

For example, any shape of the shell middle surface between

inner and outer hinge circles, satisfving kinematic continuity
and giving the same area in (1l4), would yield the same force
level. In the present paper we shall take the shape of the shell
middle section in the form of a circular or parakolic arc.
Furthermore, we shall assume the deformed but rigid portion CC

to be a shifted mirror reflection of the criginal shape AB

(doted line on Fig. 2) by a magnitude b. This implies opposite
but eqgual in magnitude radius of curvature and slopes at points

B and C. From the continuity of displacerents and slopes at

B and C, it follows that the transition shape is determined to within
a single parameter which in either the distance between points

B and C, or local radius of curvature r. Another free parameter

is the position of the axis of rotation g,
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The rate of work of external loading is

P %; w = for crushing between plates (17a)

Pbe - for point load or boss loading (17b)
Now for any given value of the parameter describing the
crushing distance (for example central deflection or central
radius of the annular zone), the integral (14) is evaluated and

the value of the force P becomes a function of two free para-

meters £ and b.
The function P{ b,£) was studied and it was found that for a
certain value of Ek, the force attains a minimum. Cn the other
hand, except at a very early stage of the crﬁshing process, P
attains a lower limit rather than a minirum with respect to

= 0, Fig. 5.

yry

Assuming the minimum principle to hold for geometrically
nonlinear problems, the lowest possible value of P is identifiecd
as the best approximate solution. This approach is equivalent
to the sequence of upper bound numerical calculations performed

by Morris and Calladine [17].

5. Tube Inversion

The approximate solution of the stationary plastic process
of tube inversion with various degrees of approximation can be
found in [l11] and [15]. We shall study the same problem to explain
the details of the derivation and to determine the accuracy of

the present approach by comparing it with known results.

N - — - -— S R s . Lo . - i~ .
SRt e oo, e o T - Y T T YT T T P Py
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R e diat e

Consider a tube of the initial radius R being inverted
inside out to a final radius R + 2r. At the hinge circle B

the straight line generator of the cylinder is bent into the

S alic diaany vt il

curvature % and at the hinge circle C the curvature is re-

F . , . .

¥ ' moved, Fig. 6. A simple and yet accurate solution of this
nroblem, accounting for continucus circumferential extension and

|
L concentrated bending at B and C, was worked out by Kitching et al. ([15]
:

and has the form

P

min _ E R. _JBEh o
2tM_ ‘YR G E%24w N3 (12)

Tn order to apply the present approach, ve assume that the
~ortion of the shell between hinge circles 3 and C form one
nalf of the toroidal surface. We also assure for simplicity
cthat r/h > 1, so that Eq. (14) applies ana ¢ = 0. The distance
i;etween B-and C iz h = 2r and the integral aprearing in (16)
represents the area of the half circle., Usinrg this result and
Eq. (15), the rate of energy balance eguaticn yields

b}

2

Pr w = 270 hwli— + 2nooth [R + (R+27) ] (17)

The rate of infinitesimal rotation w drors out from both sides

of (19) and the dimensionless force beconecs

Minimizing the right hand side of (20) with respect tc r and

substituting the optimal radius back into (2C) we can obtain

the final formula:
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P_. -
min _ 7R ~ R . _ o/ Bh
TTH. = 4{—h + 2 = 7.09Vh + 2 r -{—n (21)

The above results compares well with soluticn (18), especially
for large R/h.

It is interesting to estimate the effect of the variable
circumferential curvature, according to the approximate formula
{(11). One can easily find that the magnitude of the non-
dimensional force in (21) increases then by 2, which again is a
small contribution for large R/h. At the came time the optimum
radius of inversion remains the same.

It can be checked that the condition (10) of kipematic

\Y \Y
continuity, reduces now to ?? = < and thus is satisfied.

Finally it should be noted that the crushing force of a
tube loaded by a central force rather than cruvshed between

plates, is cne half of that predicted by (21).

6. Crushing of a conical shell

The geometry of the partially crushed conical shell is sho'r
in Fig. 7. We assume that the portion of the shell subjected to
localized plastic deformation fcrms a secticn of a tcroicdal eurface
and that the inverted cone is of the same angle o. The area of
the section of a circle between the points F and C is S = %; [(r=2a)

~ sin(n-2a)) and the distance b = 2rcosa. It is ncw straight-

forward to work out the solution which takes the form

Pmin 4 Y
M~ = o33 JH J(w-za) ~ sin(mT~Za) (22
o}

- PR -~
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r =“/ ha
3 (m=2a) - sin(mn-2q) (23)

Here a is the measure of the crushing distance, which is related

to the central deflection by

] vz éiza (24)

%' The formulas become increasingly inaccurate for o - % and

fJ also for small %, since then the assumptions leading to £ = 0

E are not satisfied. 1In these cases a more exact solution can
be obtained when needed, using (13) rather than (14) and
minimizing the solution with respect to 2.

) Equation (23) predicts an increasing radius of the toroidal
surface,£ >0, as the crushing zone is expanding. The change of
the radius is related to velocities of hinge circles by

2 = (VB-VC)tana (2%)
At the same time we have assumed that RB = RC = o and Iy = I'a
which yields VB = VC' We see that the condition of kinematic

continuity is not satisfied by the present solution. The
difficulty encountered can be overcome ky considering the general
case in which rB # rC RC # », Now, the tcroidal surface ceases
to be of a circular cross-section and the hinge circles B and C
will no longer be positioned on the samre level. As a result
membrane force will develop in the hinge C which would result in

a slight increase of the force level. BAlso, with a variable

radius Rcla) the hinge circle will produce a curved line rather than a

conical one on the meridional vlane. It is not difficult to write
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a system of ordinary differential equations with a shifted
argument describing variation of VB VC rs I¢ and RC with

the crush distance. We shall not attempt to study this sytem
since it is believed that insiginificant changes would have then

been introduced to the solution. The problem however is

interesting by its own right.

7. Spherical Shell Under Point Load

This problem has been analysed in {27] but as we shall
see, its range of validity is very small. Morris and Calladine
{17] evaluated the force-deflection relaticnship for a particular
shell with R/h = 60 up to a deflection ratio w/h = 6. -

Let the current position of the outer hinge circle on the
shell be defined by the angle &, see Fig. 8. The distance between
the two hinge lines Lk is related tc the radius of the toroical
surface through b = 2rsina. The expression for the crushing
torce, derived in an analogous way as in the case of a conical

chell, has the form

“min _ 24mn -1 (26)
2mhig h
r? = BR (27)
n
where n = 2°‘s;n§ln2°‘ (28)

T"rom purely geometrical considerations we can derive a rela-

tion between the angle o and the crush distance w

R h
(l-coso) - " 1 - J].- 4 T

oo

wo_
B =2

1
siﬁza
n
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Equations (26) and (29) furnish a parametric representation of

the function force versus displacement. A plot of this function

for several values of the radius to thickness ration R/h is shown

in Fig. 9. The dependence of the solution on R/h appears to be

weak. Indeed, treating % as a small parameter and expanding the square

root in (2%) in pover series with resgpect to % arcund % = 0 one gets

‘/ h sinza sinzoc h
, 1l - 4§ R =1 - 2 = R + . . . (30)

co that (29) can now be approximated by

w R sin“a
7= ZH (l=-cosa) 2 - (31)

Comkining next (26) and (31) to eliminate the parameter R/h

we Obtain

D . 2 ‘ ) ., 2
W _ ( m1n4n) l-cosaf _ ‘E&E_Ez (32}
h 2M0n 4 lZn(a)’ In(u) ’

Exranding the trigonometric function aprearing in (32) in power'

series and retaining terms up to the third power, the two

coefficients in (32) become .
l-cosa 1l 2sina - sin20 . 3
A R : x 2 33
2n(a) 4 200 - sina 16 (33a)
25in2a__ 2sin’a =3 . gi (33b)
n ~2a - sin2o 2\~ 6

Thus, the first coefficient turns to be constant, while the
cecond varies very little which o, especially for a < 1., Sub-
stituting (33) back into (32), the final formula for the force-

ceflection relationship takes the form
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i P_.
‘ w_ 3 min _ 3
1 R~ 16 (ZnMo * l) 2 (34)
F The plot of the function (34) is given in Fig. 9 by a brcken

line. The agreement with the exact solution (full line), which
depends on R/h, is seen to be very good.

It is interesting enough that the same solution can be
obtained by making a different set of assumpticns. Suppose the

? hemispherical shell is approximated by a parabolical shell. The

relationship between the angle a and central deflection is now
~iven by

b2

2hR

w _ R . 2
H—HSan‘

Replacing likewise the circular cross-section of the toroidal

surface by a parabolic arc

(gz_xz
2

T (36)

the area intecral in (14) car be readilv evaluated, and the

expression for the crushing force takes the form:

5%4—0- = 2D ging 4 2R SI0E _ (37)
Optimization the right hand side of (37) with respect to b
results in
b% = 3nR (38)
Now combining (35), (37) and (38), the expression (34) for the

crushing force is obtained in the same form as hefore. This result is

important from the practical point of view, since the mathematics
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involved in the alternative derivation of (34) are ruch simpler.
We shall take advantage of this property, and in the remainder of
the paper dealing with spherical shells always replace a circle
by a parabolic arc. ©Note that by doing so the condition of con-
tinuity of slope of the displacement field (6) is not satisfied,
hut as we have seen, the solution is hardly affected by this.

The second continuity condition (10) reduces now to

r

Vg L g
7 = (39)

C 1 + R

thich means that IVB] # |v

cle Oon the other hand formula (38)

in the present solution implied that b # 0. Recalling that

b = (v, - VC) cosa, we have ]VB[==]V !, which contradicts the

B ch’

condition-of continuity. A consistent set of equations can

‘e written, as discussed previously. However, the resulting
colution, which apparently looses its apgealing simplicity,

is believed to introduce insignificant changes and thus will not
~e discussed further.

The present solution with two moving liinges becomes increas-
ingly inaccurate with decreasing value of the parameter . Two
factors are responsible for that. First, at an early stage of
the crushing process, only one hinge circle is formed and the kine-
matics ot the process does not involve a free parameter to be opti-
mized. Secondly, for small ¥ the portion of the toroidal shell
Lecomes relatively shallow so that the assumrtion leading to

Z = 0 is no longer valid, and the shell should be treated as a

three-dimensional body, according to the method developed by




Calladine ([18]. UVe shall study these two cases separately.
Assume that the radius of the inner hinge is zero. From
simple geometrical consideration Fig. 10, it follows that
b =R sino , R =2r (40)
Introducing (40) into (35) and (37) and eliminating k/h we
obtain the following force-deflection characteristics

P

_ 4w ,
M- - 3n 1 (41)
o
which is identical to the one derived in [27]. The function

(41) represents a straight line intersecting the curve described
‘ wo_ 3o
Ly {34) at ) > Fig. 11l.

Return now to the general case of the shell in which the
internal energy dissipation is governed by (13) and (l6b). We
assume that (40) holds, and that the shape of the shell middle

surface represents a parabolic arc. The energy balance equation

can be written in the form
b

2 yI yII 5
h™b .2
Pb = 2mg,y -2 ydy + f ydy ; dx +(T + £ b) 27700 (42)
0

0 0

-here yI and yII are respectively the uprer and lower contour of

the shell cross-section, measured from the axis of instantaneous

rotation, see Fig. 4.

(43a)
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The integrals in (42) can be readily evaluated and the

crushing force becomes a function of a single parameter ¢

P _ s\2 47y b2 g b?
- 2 + 8 T - = ( ) —_—t — -—2-—2-
27 _ h 3 \B/ rRn 15 R“h

Introduction (40) into (35) we obtain a unique relation

between the radius of the hinge and central deflection

[38)

. b

2hR

L

The minimization of the right hand side of (44) yields an

optimum value of the parameter §

Substituting (45) and (46) back into (44) we finally obtain

P 2+.]_'i1. Ez
2T™M_ 45 \h

The above relation is depicted in Fig. 11 by a solid line.

(43b)

(44)

(47)
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Ecuation (47) is valid as long as the line of instantaneous
rotation first touches either the inner or cuter contour

1 cor yII. This first occurs at % = %. Thve, the

range of applicability of both solutions aprears to be the same.
The forrmula (41) is easy to evaluate but it gives unsatisfactoy
results for w/h = 0. This will become even more evident in the
problem of a shell locaded "y a rigid boss. <In the other hand, the
solution (47) predicts correctly the yield point load but the
mathematics involved are much more complicated.

The 4% difference between the functions (24) and (47) at
w/h = % is attributed to the fact that the former involves the
simplifying assumption § = 0, while the latter not. By con-
tinuing the exact calculation beyond that point, the correspondinc
sclution (doted line in Fig. 11) would c¢raduvally converge to the
curve representing the formula (34). The thin full line in the
same figure denotes the Morris and Calladine numerical solution.
Unfortunately, no information was given in [17] on the magnitude
of the integration step emploved so it is difficult to assess
its accuracy. A good agreement of both solutions is observed
over the entire range of deflection coverea v the Morris and

Calladine solution.

&. Crushing of a Spherical Shell Between Rigid Plates

The procedure for solving this problem essentially follows
that presented in the preceding section, except that now the
rate of external work should be computed according to (17h) and

the relation between w and a1 is different. As before,
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the analysis follows several stages. The yield point and post-

yield behavior is accurately predicted by the formula

Ty

2
P__ 3 (E) 4
P S Vo (48)
o)
valid for % < %. In the later stage of the crushing process,

when the inner hinge leaves the shell axis, the plate displacement

] is related to the angle a by

W R , 2 h .
"~ 3n sin a - n sina (49)

The optimum value of width of the deforring radius is the same
as before b = v3hR, Equation (38), and the resulting force-

deflection relationship takes the form

ek (mnr ) - (e
The above solution is valid theoretically until the crush
distance reaches the shell radius w = R. 1t is interesting to
compare the formula (50) with an approximate solution due to

Updike [14]:

48 \2™™
o

2
w _ 1 P
h ™ (“‘» (51)
which was believed by the author to be valid for deflections
not exceeding about one tenth of the shell radius. When both
solutions are plotted, it is seen that a relative difference

between them is small over the entire range of variation of w,

Fig. 12.
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9. Rigid Boss Loading

Leckie and Penny performed a series of tests on carefully
manufactured spherical shells with R/h =60 and variable boss size
{(16]. They observed that with increasing downward deflection
the crushing force for a given radius of the boss p reaches a
maximum, then drops suddenly as the shell buckles, and starts
to rise again. They also found that the initial plastic yield-

point load depends markedly on a single geometrical parameter

(52)

2

but with increasing deflection this dependence is much less
pronounced. However, the tests were not run far enough to decide
whether all P - w curves did converge to a single one.

Assuming a rigid perfectly plastic material idealization
Morris and Calladine [17] were able to predict accurately the
initial response of the shell. Their numerical calculations have
shown that while the slope of the load-deflection curves becomes
the same for % > 2, the curves corresponding to different
3 are cénsiderably shifted.with respect to one another.

It is reasonable to expect that the effect of the boss
size is a local one and should be almost entirely "forgotten"
by the shell at later stages of the deformation process, so that
all curves would eventually converge. Indeed, the deformation
mechanism with expanding ring of plastic defcrmation is the same

as before, except that the reference point for measuring deflec-

tion changes with the boss size. This gives rise to a new term
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in the force~displacement relationship
2

2
%“13_6('2?5;4;*1) -3-5 (53)
The above solution reduces to the one describing the shell
under central-point load (formula (34)) by setting £ = 0. TlLe
new term is relatively small, and provides a shift of P ~ w
curves in the w/h direction Fig. 13. The horizontal disvlacement of
P-w curves in the numerical solution reported in [(17] for the same
values of 8 are much larger, which is probably attributed to
the trial and error optimization procedure employed.

We were unable to derive a simple closed-form solution for
the initial phase of loading based on the exact formula (13)
showing the nature of the convergence. However, the interesting
pattern of behavidr of the shell assoc%ated with plastic snap-
through can be described, at least qualitatively using the
approximate formula (l14). Assuming that a stationary hinge circle
is formed at I = p and the moving one at = p + b, the load-
deflection relationship was found to be

P _2l[0w 2 _ ’ W 2 28
W-§[2H+ 8 8]2h+8+ + 1 (54)

W 2
2H+B 8

The above solution reduces to (41) for B = 0 but it leads to an
unrealistic infinite force magnitude with % + 0. This is a
consequence of the assumed symmetric geometrical shape of the
shell cross-section (36) with zero initial width of the plastic
zone to initiate the motion. 1In reality, the shape is unsymmetric

with finite width., It was possible to derive an approximate

expression for the initial yield-point locad (w/h = 0) in the form:

e LRKIE ety L L L
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P_ _ _ /Rh _ Rh

The plot of the function (54) with (55) for several values of
the parameter B8 is shown in Fig. 14.

10. Spherical Cap Under External Pressure Loading

Consider a simply supported spherical shell with base radius
a, and rise H, Fig. 15. The shallowness of the shell is described
by the parameter

2

=2 _ _ i
a—m—-h (56)

Following Ref. [21] define the total lcad P and the reference
load P, by

= 2 =
P = wpa P, = 6TM] (57)

where p is a uniformly distributed downward pressure. It is
relatively easy to derive the load-deflection relationship for

any value of a, using the present method. We shall however
restrict the analysis to the limiting cases of small and large

2. Consider first the case o >> 1 for which equation (14) applies.
Suppose the outer boundary of the plastically deforming zone BC

is b while the portion AB remains rigid. The assumed velocity

field consist, as previously, of the rotation around the point B

.

Q(x) = wx {x < b < a) (58)

This rotation imposes a continuous change in the initially
circular shape of the shell middle surface. If the central

deflection is smaller than the rise of the shell above the

2

circle b, w < %ﬁ' the current shape can be approximated by




the parabolic arc.

2 2 2
_ 2b ¥ b X
yx) = 3% (E)‘ (7§ * W) (S) (59)

For the time being we assume the plastic hinge circle to be

located somewhere between the shell center and the support
0 < b < a. Equating the rate of external work to the energy
dissipated in the region of continuous deformation and plastic

hinge circle one gets

b, . b 2 .
27 f pw(x)xdx = Zvoohwf y(x)dx + cho %—— wb (€0)
o) o)

or after integration

P b_8¢_ 4w
p-g-3°-3f5*+1 (61)
o
— bz
where b = BR" We can see that for the force to be a minimum

one has to consider the largest possible value of b, i.e. b = a.
With the assumed simply supported boundary conditions there will
not be any contribution of the concentrated hinge to the total
dissipation energy, and the last term in Eqg. (6l1l) should vanish,

giving the final expression for the force deflection characteristics

P _8_ _
P -3¢
(o]

(SIS

% for w < o {62)

In particular, the initial yield-point load is obtained from
(62) by putting w = 0, P/P, = 8/3a. A plot of the above formula
is undistinguishable from the curve representing the much more
complicated solution derived by Kondo and Pian [21], Fig. 16

At the other extreme we have very shallow shells in which

the line of instantaneous rotation lies within the contour of

the shell cross-section, Fig. 4. This implies a < 1.
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Assume that the shape of the shell middle surface is
changing with deflections according to Eg. (59). The energy
in the continuous deformation field is given by

. b‘ yI yII )
Econt = 2TTO'° f l f ydy +f ydy | dx (63)
' 7 0 $

where the limits of the integrals appearing in (63) are

yl=y+3-¢ (64a)

II
b4

-yt Rk (64b)
The expression for the energy dissipated at the outer hinge

wculd depend on the position of the hinge circle. If b < a,

then the boundary conditions do not have any effect on the

solution and Eg. (16b) applies. If the plastic zone extends

up to the support, b = a, then for a simply supported shell

restrained from axial motion, the term responsible for bending

vanishes
E 2 'b[hz 2] ‘llfb(a (65)
inge = 2TCnWE [ng + £7) n =
hinge SR o if b = a
The left hand side of the energy balance equation is the same
as before (60), while the right hand side is a sum of (63) and
(65), Evaluating the integral, one cbtains
P b _ 32 22 _ 12 — 4 =2 2 _ 4 = _
ia_(l+n)+-l—5-b S q+5q + 2 gE(Zb q) (66)

!l

where E %?

ol

r 4=

e s, T, R Mt R - T - . . . - . . .
i v " VR vy ik IR N T T T T W . e g
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After minimization with respect to &, the formula (66) becomes

5

[«)}

2 _ 68 & , 26 2
B* - 75 ba *+ 75 q (67)

[

= (1 + n) +

o

>
Uy
-3

2

P

o
The load-deflection curve, represented by (67) is dropping

with increasing b and attains the lowest position when

2 45 . 26

b = (1L +n) 55 Y5z ¢ (68)

For example at g = 0, the optimum value of radius of the outer
hinge is b = 1.3, falling beyond the range of applicability of
the present solution, which is b < a £ 1. Consequently, the least
value of the crushing force is obtained by taking the largest
possible radius,i.e. b = a. We have thus shown that for shallow
shells the zone of continuous plastic deformations is extending
right up to the support. Substituting n =0 and o = Db into (59},

leads to the following force-deflection relation.

P 56 2 _ 68 26 2
5 = 1 + 7T © 75 %9 t 75 4 (69)

(o]

In particular, the initial yield-point load is given by

=1 + = 0 ail (70}

In deriving Eq. (69), shell deformations both in radial and
circumferential directions were taken into account. A relative
contribution of the two components of the dissipated energy is
controlled by the position of the axis of instantaneous rotation I-I.
The optimum position is one which minimizes the magnitude of

the pressure required to maintain the plastic flow. It is
interesting to note that the neglect of meridional strain, an

assumption made in Ref. [21], would lead tc an increase rather




than decrease in the level of the yield-point load. 1Indeed, in
the present approach all work done by the meridional strain is
concentrated in the generalized tensile hinges and the corres-
ponding dissipation energy is given by (65). This term can
easily be made egqual to zero by taking £ = 0. Substituting

o = b and £ = 0 into (66) we obtain a new solution

2 2

12 4 .
-5 o9 + 5 g (71)

w

P
= 2 —
P, = 1+73gb

st

Load-deflection curves for few chosen values of the parameter g
are shown in Fig.l7 together with the solution due to Kondo and Pian.
The initial yield-point load is obtained from (71) by setting

g = 0:
P
.PT...=1+1—5-OL af_l (72)
o

The above formula is identical to the one derived by Kondo

and Pian and the corresponding P - o curve clearly lies above

that given by (70), Fig. 16. Thus, the neglect of meridional
strain rate was offset by even larger increase of the dissipa-
tion due to the circumferential strain rate. With increasing

a, the contribution of dissipated energy in meridional direction
diminishes, illustrating a nature of the approximaticn introduced
in replacing (13) by (14), Note that the solution (62) was derived
on the assumption that § = 0, and this explains the excellent
correlation of the present solution with the more elahorate

solution due to Kondo and Pian, which employs a full set of equations

descriking moderately large deflection of shells,
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It is not in principle difficult to extend the present
solution to shells with intermediate values of the parameter a.

The P - o curve would first follow Eq. (70) and then converge

assymptotically to Eg. (62).

11. Effect of End Condition

According to the present analysis, the boundary conditions
are not felt by the shell until the outer hinge reaches the
support located at o*. It is seen frorm (35) and (38) that this

occurs when deflections become

2
* 3 , *
G) =% -2 s =% (73)

For a shell under.central-point lozd, the width of the plastic
zone predicted by the approximate solution is b = ¥Y3Rh. From now

on the outer hinge remains fixed, and any further increase of w/h

is due to the diminishing of the width of the toroidal secticn b.

Introducing the dimensionless parameter a = —EL—, the geometrical
v3kh
relation becomes
" p*2 3 2 w* 3 2 ,
H = Tﬁf - 7 a = TT + 7 (l - Q ) \74)

For fully clamped boundary conditions, the solution (37) with
two concentrated plastic hinges still applies, so that after

introducing (73) into (37) we have

‘%
R < 2 T (@ + D -1 (75)
‘0 Y3Rh

Equations (74) and (75) provide a pararetric representaticr of the

lcad-deflection relationship at the terminal stage of the shell motion
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With o - ¢ the force hlows up to infinity.Fig, 18. This occurs

W o_ wk¥* w* 3 . .
when AT R &% t3 In reality the force level in shells
subjected to central point load is equal to the strength of the
inverted spherical shell in tensicn. An upper bound for this

force is

Tugr R (76)

This is much higher than (75) with o = 1, but finite. For shells
compressed between rigid plates the formula (75) applies
multiplied by the coefficient 2. The force increases with a
approaching zero and indeed goes to infinityv when the upper plate
comes in contact with the supporting plate. A typical loading
situation for the two cases described above is shown in Fio., 18.

12. Conclusions

This paper presents a general methodology for predicting the
crush resistance of arbitrary rigid plastic shells of revolution
deforming in an axisymmetric mode. The implications of the condi-
tions of kinematic continuity, as well as the bhoundary conditions,
are discussed. Several practical problems are solved, including
a conical shell and a spherical shell crushed between rigid plates
and under boss loading, and a spherical cap under external uniform
pressure.

For the initial stage of deformation the structure has been
treated as a three dimensional body, in the spirit of Calladine's
approach [18], while in subsequent stages a simplification to this
approach has been suggested, which results in simple closed form

solutions useful for engineering applications. A good correlation

I Y N o - . .
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was found with some existing solutions of similar problems obtained
through much lengthier calculations.

In all cases treated, the zone of plastic deformation was
found to be confined to a relatively narrow region. Also, the
level of the crushing force was shown to be gquite insensitive to
the particular shape of that zone.

The present method makes it possible to study the crush
behavior of rotaticnally symmetric shells strengthened by circum-
ferential ring stiffeners. The stiffner acts initially as a
clamping ring until the force reaches a critical level. Then the
ring becomes a rigid boss. Thus the determination of the initial-
point load for a shell loaded by a rigid boss provides a basis
for studying the optimum design of stiffened plastic shells

against crash. In the optimum design the rigidity of the stiffeners

must be compatible with the local crushing strength of the shell.

This problem will be studied in detail in a future publication.
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subjected to pressure loading.

Effect of the boundary condition of a spherical
shell on the magnitude of the crushing force.
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