» AD-A101 996 DEPARTMENT OF DEFENSE WASHINGTON DC F/6 972
PROCEEDINGS OF THE SEMINAR ON THE DOD COMPUTER SECURITY INIT!AT-ETC(U)
1980

UNCLASSIFIED

i
an

-

PROCEEDINGS

of the

| THHIRD SEMINAR
J ON THE
| DOR COMPUTER SECURITY

ADA101996

CLEARED

HOR OBFN »18) 1Ca Tirm,

JuLio1er g

JIRECTORA Tt +uk r FHEEUUM Ut iNeurMA TION
AND SECUMITY REVIEW (UASO- -PA)
QEPARTMENT OF DEFENSE

L
-

"

NATIONAI. BUREAU OF $T. ANDARDS DTIC

’

§ ELECTE
| ERSBURG MARYI.AND JUL 24 1981

| 5 WS

DISTRIBUTION STATIMINE &

Appm d for public release,
Dix

. L e %PVEMBER 1820, 1900 o

j¢//»$§ 1

D e s ap

INITIATIVE PROGRAM <0

22 121 ?‘}i&’

i

TABLE OF CONTENTS

Page
Table of Contents i
About the Seminar iii |
[}
|
1 About the DoD Computer Security Initiative iv ;
Acknowledgements v 4
Program vi i
{
List of Handouts 1= d
"Introduction and Opening Remarks," Stephen T. Walker,
Chairman, DoD Computer Security Technical Consortium A-1 .
"Opening Remarks," Seymour Jeffery, ‘
National Bureau of Standards B-1
"DoD Computer Security Initiative," Stephen T. Walker,
Chairman, DoD Computer Security Technical Consortium c-1
"Honeywell Trusted ADP Systems," Irma Wyman, Honeywell D-1
"Computer Security Research at Digital,” Paul A. Karger,
Digital Equipment Corporation E-1
“Security and Protection of Data in the IBM System/38,"
Viktors Berstis, IBM F-1
"Gnosis: A Secure Capability Based 370 Operating System,"
Jay Jonekait, TYMSHARE, Inc. G-1
"Computer Security Developments at Sperry Umivac,”
Theodore M. P. Lee, Sperry-Univac H-1
Panel: "How Can the Government and the Computer Industry Solve
the Computer Security Problem?" Ted Lee, Sperry~Univac,
Jim Anderson, James P. Anderson, Inc., Steve Lipner, MITRE,
Marvin Schaefer, System Development Corporatiom,
Bill Eisner, CIA I-1
"Quality Assurance and Evaluation Criteria," Grace H. Nibaldi, 5
MITRE Corporation J-1 3
) »

. . e . . cggs , A
“Specification and Verification Overview," William F. Wilson, -
MITRE Corporation K-1

3

3

3

k

r

i i
; - 4

i A;,; ved bon o pubdrr toleo i §

Distadr uaca Unlimited

\ e e L N J

"FIM: A Formal Methodology for Software Development," Richard
Kemmerer, System Development Corporation

"Building Verified Systems with Gypsy," Donald I. Good,
University of Texas

"An Informal View of the HDM Computational Model," Karl N,
Levitt, Stanford Research Institute International, Inc.

"AFFIRM: A Specification and Verification System,"
Susan L. Gerhart, University of Southern California Information
Information Sciences Institute

"An Overview of Software Testing," Mary Jo Reece, MITRE
Corporation

"Update on KSOS," John Nagle, Ford Aerospace and
Comnunications Corporation

"Assurance Practices in KVM/370," Marvin Schaefer,
System Development Corporation

"Kernelized Secure Operating System (KS0S-6)," Charles H.
Bonneau, Honeywell

Accession For

NTIS GRAXI
M

DTIC TAB
Unannounced 0
Justification

Bymﬁzms’
| pistribution/oe €1 1€

Availability Codes
" lavail and/or
Dist Special

.

RN

Third Seminar on the
DEPARTMENT OF DEFENSE COMPUTER SECURITY INITIATIVE
November 18-20, 1980

National Bureau of Standards
Gaithersburg, Maryland

ABOUT THE SEMINAR o
—~A

7 This is the third in a series of seminars to acquaint fomputer
system developers and users with the status of %t rusted"* ADP system
developments within the Department of Defense and current planning for
the integrity evaluation of commercial implementations of similar
systems. The two previous seminars have stressed user requirements for
trusted computer systems within both the government and private sector.
The first day of this seminar includes presentations by five computer
manufacturers of the trusted system development activities within their
organizations. Following these presentations there will be a panel
discussion on "How can the govermment and the computer industry solve
the computer security problem?® Panelists are drawn from industry and
government .

The second day of the seminar opens with a discussion of the
technical evaluation criteria that have been proposed as a basis for
determining the relative merits of computer systems. The assurance
aspects of those criteria provide the context for the second and third
days of the seminar. After the context has been set, we provide an
introduction to formal specification and verification technology to
include descriptions of the basic types of formal specification and the
implications of design and program verification. Representatives of
several prominent specification and verification research groups will

then discuss their systems. f&,~_ﬂﬁuﬁm_ o o

As a way of rounding out the assurance criteria and providing
further context for the later talks, the opening talk on the third day
discusses software testing techniques. Current acquisition program
testing approaches are contrasted with the formal verification
techniques discussed on the second day, emphasizing the role of such
testing in revealing errors which formal verification cannot detect
today. Then the developers of the DoD-sponsored trusted systems will
discuss the techniques they have used to assure a quality product. The
seminar will conclude with a panel discussion on "Where should you put
your assurance dollars?" Panelists are drawn from the verification,
development and testing communities.

*A "trusted" ADP system is one which employs sufficient hardware and
software integrity measures to allow its use for simultaneously
processing multiple levels of classified and/or sensitive information.

iii

[P, gy

ABOUT THE DOD COMPUTER SECURITY INITIATIVE

The Department of Defense (DoD) Computer Security Initiative
was established in 1978 by the Assistant Secretary of Defense for
Communications, Command, Control and Intelligence to achieve the
widespread availability of "trusted" ADP systems for use within the
DoD. Widespread availability implies the use of commercially
developed trusted ADP systems whenever possible. Recent DoD
research activities are demonstrating that trusted ADP systems can
be developed and successfully employed in sensitive information
handling environments. In addition to these demonstration systems,
a technically sound and consistent evaluation procedure must be
established for determining the enviromments for which a particular
trusted system is suitable.

The Computer Security Initiative is attempting to foster the
development of trusted ADP systems through technology transfer
efforts and to define reasonable ADP system evaluation procedures to
be applied to both government and commercially developed trusted ADP
systems. This seminar is the third in a series which constitutes an
essential element in the Initiative Technology Transfer Program.

The NBS Institute for Computer Sciences and Technology, through
its Computer Security and Risk Management Standards program, seeks
new technology to satisfy Federal ADP security requirements. The
Institute then promulgates acceptable and cost effective technology
in Federal Information Processing Standards and Guidelines. The
Institute is pleased to assist the Department of Defense in
transferring the interim results of its research being conducted
under the Computer Security Initiative.

iv

¢
{
B

ACKNOWLEDGMENTS

A number of people in and outside of the DoD Computer Security
Technical Consortium have helped to make this seminar a success. At
the MITRE Corporation, Grace Nibaldi and Bill Wilson helped to organize
the speakers; Karen Borgeson and Dianne Mazzone managed registration,
and Annir Discepolo and George Huff prepared some of the handouts.

Als,, we are grateful to Jo Ann Lorden and Greta Pignone of NBS
for arranging the splendid facilities.

DISCLAIMER

The presentations in this proceedings are provided for
your information. They should not be interpreted as necessarily
representing the official view or carrying any endorsement, either

expressed or implied, of the Department of Defense or the United
States Government.

StpdT Lt

Stephen T. Walker, Chairman
Computer Security Technical Consortium

e

L e A PRI TR .

PROGRAM

November 18, 1980 Red Auditorium
9:15 Opening Remarks
Seymour Jeffery,
Institute for Computer Sciences & Technology
National Bureau of Standards

DOD Computer Security Initiative

Stephen T. Walker, Chairman
DOD Computer Security Technical Consortium

INDUSTRY TRUSTED SYSTEM ACTIVITIES

Paul A. Karger
Digital Equipment Corporation

10:45 Break
11:00 INDUSTRY TRUSTED SYSTEM ACTIVITIES - Continued

Irma Wyman
Honeywell

Viktors Berstis
IBM

Jay Jonekait
TYMSHARE, Inc.

Theodore M. P. Lee
Sperry~Univac

1:00 Lunch

2:00 PANEL: '"How Can the Government and the Computer
Industry Solve the Computer Security Problem?"

Theodore M. P. Lee, Sperry Univac
James P, Anderson, Consultant
William Eisner, Central Intelligence Agency
Steven P, Lipner, Mitre Corporation
Marvin Schaefer, System Development Corporation
3:00 Break
3:15 PANEL - Continued

4:30 Adjourn

vi

L o NPT R N T S

November 19, 1980 Red Auditorium

9:00

10:

11:

12:

:50

45

00

00

: 00

: 00

: 00

: 15

:15

"Quality Assurance and Evaluation Criteria"

Grace H, Nibaldi
Mitre Corporation

"Specification and Verification Overview"

William F. Wilson
Mitre Corporation

Break

SPECIFICATION AND VERIFICATION SYSTEMS

"FDM: A Formal Methodology for Software Development"

Richard Kemmerer
System Development Corporation

"Building Verified Systems with Gypsy"

Donald I. Good
University of Texas

Lunch
SPECIFICATION AND VERIFICATION SYSTEMS - Continued
"An Informal View of HDM°s Computational Model"

Karl N. Levitt
SRI International

Break

"AFFIRM: A Specification and Verification System"

Susan L, Gerhart
USC Information Sciences Institute

Adjourn

November 20,

9:00

9:45

10: 45

11:00

12:00

{ 3:00

1980 Red Auditorium ;
"An Overview of Software Testing"]

Mary Jo Reece '
Mitre Corporation

THE EXPERIENCES OF TRUSTED SYSTEM DEVELOPERS
"Update on KSOS"

John Nagle
Ford Aerospace and Communications Corporation

Break

KVM/370

Marvin Schaefer
System Development Corporation

"Kernelized Secure Operating System (KS0S-6)"

Charles H. Bonneau
Honeywell

Lunch

PANEL: '"Where Would You Put Your Assurance Dollars?"

Panelists: Developers, Researchers, & Testers
Break
PANEL - Continued

Adjourn

viii

LIST OF HANDOUTS

In addition to the information documented in these Proceedings,
the following materials were made available at the Seminar:

Computer Security Initiative Program Trusted Systems Bibliography.

Computer Security Initiative Program Glossary.

M. H. Cheheyl, M. Gasser, G. A, Huff, J. K. Millen, "Secure System
Specification and Verification: Survey of Methodologies," MTR-3904,
The MITRE Corporation, Bedford, Massachusetts, 20 February 1980.

G. H. Nibaldi, "Proposed Technical Evaluation Criteria for Trusted
Computer Systems,'" M79-225, The MITRE Corporation, Bedford,
Massachusetts, 25 October 1979.

] G. H. Nibaldi, "Specification of a Trusted Computing Base (TCB),"
M79-228, The MITRE Corporation, Bedford, Massachusetts, 30 November
1979.

J. D. Tangney, "History of Protection in Computer Systems,'" MTR-
3999, The MITRE Corporation, Bedford, Massachusetts, 15 July 1980.

¢

E. T. Trotter and P, S, Tasker, "Industry Trusted Computer System
Evaluation Process,'" MTR-3931, The MITRE Corporation, Bedford,
Massachusetts, 1 May 1980,

OPENING REMARKS

STEPHEN T. WALKER
DIRECTOR, INFORMATION SYSTEMS
ASSISTANT SECRETARY OF DEFENSE FOR
COMMUNICATIONS, COMMAND, CONTROL AND INTELLIGENCE

Good morning and welcome to the third seminar on the DoD Computer Security
Initiative.

My name is Steve Walker and I am Chairman of the DoD Computer Security
Technical Consortium which is the sponsor of these seminars.

I am very pleased to be with you today to report on the progress that has been
made in the area of trusted computer systems in the past several years and
indeed in the past few months.

I am particularly pleased to acknowledge two very significant developments
in the world of computer security that have made major strides since our last
seminar.

First, as you can tell from looking at your program, the major external
objective of the Computer Security Initiative, that of getting the computer
manufacturers involved in the development of trusted computer systems is
being accomplished. The credit for this belongs to many factors over and
above the efforts of the Initiative but as I hope you will realize from
today's presentations, the manufacturers are now seriously involved in
building trusted computer systems.

The other point I want to emphasize is that the Initiative's major internal
objective, that of getting the government organized to perform the technical
evaluation of the integrity of computer systems is also nearing an accomplished
fact. 1 had hoped to be able to formally announce the establisiment of

some form of Computer Security Evaluation Center. I cannot do that but

I can describe some of the concepts being considered at high levels within

the Government and I am sufficiently optimistic about these developments

that T am willing to predict that within a year there will be a technical
integrity evaluation process in being to serve the DoD and perhaps one to

serve the Federal Government as a whole.

I am excited about both of these developments because of the significant
impact that they will have, indeed are now having, on the quality of computer
systems for all users.

I would like now to review with you some of the background lecading up to
these developments and to share with you my feelings about where we are
and where we may be going.

R~ e

ez

Following this we will hear from 5 manufacturers' representatives about
trusted computer system activities in their companies.

This afternoon we will have an expanded version of the ''Ted and Jim'" Show
from the last seminar. We have a select panel of cynics to discuss the
status and pitfalls of developing and using trusted computer systems.
Tomorrow we will focus on the area of formal specification and verification,
hearing from several researchers. Thursday we will hear the experiences

of several of the DoD system development efforts in their use of these
verification tuols.

VT

OPENING REMARKS

THIRD SEMINAR ON THE
DEPARTMENT OF DEFENSE COMPUTER
SECURITY INITIATIVE PROGRAM

Seymour Jeffery
Institute for Computer Sciences and Technology
National Bureau of Standards

November 18, 1980

On behalf of the Directors of the National Bureau of
Standards and the Institute for Computer Sciences and Technology,
I would like to welcome you to this Third Seminar on the
Department of Defense Computer Security Initiative Program. ICST
is pleased to sponsor a forum for DOD to present the progress
made in the important area of computer security, DOD has defined
the term "trusted" ADP System as one which satisfies the DOD
requirements of simultaneously processing multiple levels of
classified or sensitive information. We at NBS feel there is a
strong need to transfer this technology to the non-DOD Government
sector as well as to private industry so that the technology may
be used to satisfy their computer security requirements. I
believe that this transfer of technology is an important part of
the NBS program in computer security.

This is the third DOD-NBS Seminar on trusted operating
systems. Some of you are new to the field; some of you have been
involved as long as I have; and some perhaps even longer.

Dr. Willis Ware of the RAND Corporation, who keynoted the
first seminar in this series, was the first to articulate the
computer security problem and to outline some approaches to
solving it. In his opening remarks at the first seminar in
January, 1979, Dr. Ware reviewed the computer security problem as
he perceived it in 1967. He noted the successes and the failures
in solving the problems during the last 12 years. I, too, would
like to spend a few minutes looking back at one of the milestone
events in the computer security area. This event was the
Controlled Accessibility Workshop co-sponsored by NBS and ACM and
held at Rancho Santa Fe, California in the Fall of 1972.
Controlled Accessibility was the term used to denote the set of
controls which could be used to limit the access to, and use of,
a computer only to authorized users performing authorized
activities. The Workshop brought together 65 computer security
technologists and managers. The group was tasked with
identifying technical and management controls which would provide

the desired protections. The controls were divided into five
areas:

~ Audit

- EDP Management

-~ Personal ldentification
- Security Measurement

- Access Controls

Since this seminar emphasizes the automated controls of a
"trusted computer operating system”, I want to spend a few
minutes describing the findings of the Access Controls Working
Group of the 1972 Workshop. This group was led by Clark Weissman
of System Development Corporation. The goal of the Working Group
was to define the nature of an automated access control mechanism
and to identify the technology involved in ensuring secure
computer system operation. Regarding the primary threats which
must be combatted by automated access controls, the group wrote,
"System security is most threatened by the vulnerability of the
internal access control mechanism to unauthorized modification by
subversion of normal internal system service, or exploitation of
system weaknesses, such as incomplete design and coding errors."”

Leading towards the technology which will be discussed here
the next three days, the following points were noted in the
Report of the Controlled Accessibility Workshop published by NBS
in 1973, and I am sure you will hear several of these repeated in
subsequent sessions this week.

One - Control mechanisms should be formal and always
invoked, never by-passed for efficiency or other
rationalized reasons.

Two - The design must accommodate evaluation and easy
system maintenance.

Three - The principle of "least privilege" should be applied
to system operation.

Four - The computer system vendor will have the ultimate
responsibility for delivering systems that can be
operated securely.

Finally - Product acceptance will require application of
certification techniques.

It has been eight years less 23 days since the Controlled
Accessibility Workshop. In some areas technology has advanced
rapidly. The capability of micro-computers has risen
dramatically. The Federal Data Encryption Standard is now
available in 13 different electronic devices which have been

B-2

e e A

e
e

d il -

validated by NBS. The need for such a standard was identified at
that Workshop. In other areas technology has made only modest
advances. For example, automated personal identification through
voice or signature recognition. In the area of "trusted"
systems, DOD has carried the research and development
initiatives. In other areas identified as having high priority
at that Controlled Accessibility Workshop, NBS has initiated the
development of technical standards and management guidelines to
address computer security requirements. These areas include risk
analysis, contingency planning, security audit and evaluation,
data communication and storage protection and physical security.
We have had some successes in these areas. At the first DOD-NBS
seminar, Willis Ware challenged NBS to, I quote, "STEP OUT
SMARTLY" in developing new and innovative standards in computer
security. We are pleased to sponsor this forum so that the
technology being developed to meet DOD's needs is also made
available to satisfy similar needs in the private and public
sectors. Security is not well understood, and in some cases not
well accepted, outside DOD. We feel it is important that the
vendors and the users of the technology underlying "trusted
systems" exchange their views in an open forum.

As we listen to the needs of the DOD and the private and
public sectors, we will initiate a plan for a tenth anniversary
workshop of the work that was started in 1972.

DoD

COMPUTER
SECURITY INITIATIVE

«+TO ACHIEVE THE WIDESPREAD
AVAILABILITY OF TRUSTED
COMPUTER SYSTEMS

Stephen T. Walker

Chairman

DoD Computer Security
Technical Consortium

\— —

-

SEMINAR
ON
DEPARTMENT OF DEFENSE
COMPUTER SECURITY
INITIATIVE

NOVEMBER 18-20, 1980

NATIONAL BUREAU OF STANDARDS
GAITHERSBURG, MARYLAND 21738

.

—
COMPUTER
SECURITY INTIATIVE
TRUSTED: SUFFICIENT HARDWARE AND

SOFTWARE INTEGRITY TO
ALLOW SIMULTANEOUS USE
AT MULTIPLE SECURITY/
SENSITIVITY LEVELS

WIDESPREAD: COMMERCIALLY SUPPORTED

f et e At o a ™ ak——— i

COMPUTER SECURITY

PHYSICAL SECURITY
ADMINISTRATIVE SECURITY
PERSONNEL SECURITY
COMMUNICATIONS SECURITY
EMANATIONS SECURITY

HARDWARE/SOFTWARE
SECURITY

5

COMPUTER NETWORK VULNERABILITIES

QADIATION

T TR

> T J/,é =
COMMUNICATION

a— — oG [T L.

.| eeocessor | : LiNES [N

: : T cener L’K D
S t i

COPYNG QPERATOR
UNAUTHORIZED ATESS REPLACE SUPEEVISOR TEMS PROGRAMM| REMOTE
prer PROTECTIVE DASABLE PROTECTIVE FEATURTS CONBOLES,
ASURES PROVIDE “(KS™
REVEAL PROTLCTIVE MEASURSES

WARDWARE
s o€ BF EETR o ctcrs L T ACCESS
CONTRIGUTS 10 30r TwaS FaLotEd) BEVKES Tt o
- V3% STAND-ALOWE UTILITY PROCEAMS g O “"‘"“““

FAILURE OF PROTECTION FEATURES OENTFCATION
ACCESS CoNTROL AUTHENTICATION
SOUNDS CONTROL SUBTLE 50F TWARE
(1[4 MODIFICATIONS.

-

HARDWARE/SOFTWARE
SECURITY

® DEVELOP A COMPUTER SYSTEM
THAT WDRKS CORRECTLY WITH
RESPECT TO THE CONTROL OF
INFORMATION FLOW

APPROVAL FOR DoD USE

\DODD 5200.28 |
} s \ POLICY

\—

R
E DEVELOPMENT PHYSICAL
9 ~__cmoup ADMINISTRATIVE
, s PERSONNEL
—— = SPECIFIC DESIGNATED 2~ - HARDWARE/
R = SYSTEM —= APPROVING 7 SOFTWARE
E —ReauesT AUTHORITY ¢ -==-=--=- s SECURITY
£ “\\TEMPEST
N COMSEC
N
s INDIVIDUAL
INSTALLATION
FOR USE OF ADP APPROVAL
PROCESSING
CLASSIFIED
INFORMATION
APPROVAL FOR DoD USE
INDUSTRY
SOON | oD s200.28, 1 1 1 l
~1982 e . POLICY
| \ EVALUATION
? DEVELOPMENT CENTER
a GROUP 1 l 1
u
. L .
) ——=SPECIFIC DESIGNATED EVALUATED
R —— SYSTEM —— APPROVING C:] PRODUCTS
& —REQUEST AUTHORITY LiST"
-
3 N
N
T
s INDIVIDUAL
INSTALLATION
FOR USE OF ADP APPROVAL
PROCESSING
CLASSIFIED
INFORMATION

EVALUATED PRODUCTS LIST

TECHNICAL POSSIBLE 1
CLASS FEATURES EXAMPLES ENVIRONMENTS
1 - MOST COMMERCIAL DEDICATED MODE
SYSTEMS
2 FUNCTIONAL SPECIFICATION “MATURE"” BENIGN, NEED TO
3 REASONABLE PENETRATION “ENHANCED" NOW
RESULTS OPERATING SYSTEM ENVIRONMENTS
3 REASONASLE MODERN MULTICS AF DATA SERVICE
PROGRAMMING TECHNIQUES CENTER TS-§
LIMITED SYSTEM INTEGRITY
MEASURES 1
. 4 FORMAL DESIGN NO USER
SPECIFICATIONS SYSTEM PROGRAMMING
INTEGRITY MEASURES 15-5-C
5 PROVEN DESIGN KSOS UIMITED USER 4
SPECIFICATIONS VERIFIABLE KVM PROGRAMMING
IMPLEMENTATION LIMITED 15.8-C
COVERT PATH PROVISIONS
& VERIFIED IMPLEMENTATION FULL USER
AUTOMATED TEST PROGRAMMING

GENERATION EXTENDED T8-S-C
COVERT PATH PROVISIONS

REASONABLE DENIAL OF

SERVICE PROVISIONS

COMPUTER SECURITY INITIATIVE

]
i EDUCATION PHASE 3
PUBLIC SEMINARS/WORKSHOPS 1.
i
1
] " SPECIFICATION PHASE]
DRAFT | DoD COORD. | INDUSTRY coonoj REVIEW AND ENHANCEMENT
1
1
m. EVALUATION PHASE j_
INFORMAL B FOAMAL
X0-1 : INDUSTRY
KVM 1 SUBMITTED
HONEYWELL : SYSTEMS
DIGITAL EQUIPMENT CORP :
TYMEHARE (]
} -gvaruaTep PRODUCTS LIST"
wn 10 1982 1984 3

COMPUTER
SECURITY INITIATIVE ;

DoD R&D IN 1970s
OPERATING SYSTEMS |
* MAJOR EMPHASIS i
* MOSTLY SOFTWARE, SOME .
HARDWARE
| APPLICATIONS

¢ MINOR FOCUS UNTIL LATE 70s

VERIFICATION TECHNOLOGY

* COMPUTER SECURITY WAS ONE
AMONG MANY POTENTIAL USERS

DoD R&D THRUSTS IN 70s

OPERATING SYSTEMS
! EXAMPLES:
KERNELIZED SECURE OPERATING SYSTEM
KERNELIZED VMI?0 SYSTEM
DRIVEN BY
WHAT CAN WE HOPE TO ACHIEVE IN
3-56 YEARS?
WHERE WOULD WE LIKE TO BE IN
6-8 YEARS?

INTENDED AS DEMONSTRATION
CAPABILITIES, NOT AS COMPETITION
WITH MANUFACTURERS

DoD R&D THRUSTS IN 70s

APPLICATIONS)
GUARD. SECURITY FILTERS
» BETWEEN EXISTING SYSTEMS
COMMUNICATIONS, FRONT END SYSTEMS
« ACCESS PROTECTION TO EXISTING SYSTEMS 3
3 MULTIPLE SINGLE-LEVEL FUNCTIONS
«KVM
TRUSTED MULTILEVEL SYSTEMS
* SPECIAL PURPOSE — MESSAGE HANDLING
« GENERAL PURPOSE — DBMS

DoD R&D THRUSTS IN 70s

VERIFICATION TECHNOLOGY
¢ EVOLVED FROM EFFORTS TO BUILD
“CORRECT PROGRAMS"
» SEVERAL APPRCACHES ARE
EVOLVING
NONE HAVE COMPLETE PACKAGE

* PROGRESS EMPHASIZED IN REST
OF THIS SEMINAR

DoD R&D IN 1980s

OPERATING SYSTEMS
RELY MAINLY ON INDUSTRY
EVOLUTION

SOME SPECIALIZED DEVELOPMENT
APPLICATIONS
MAJOR EMPHASIS BY R&D AND
USER COMMUNITY
VERIFICATION TECHNOLOGY
MAJOR THRUST BEGINNING

ENSURE UNDERSTANDING OF
PRODUCT INTEGRITY

TECHNOLOGY EVOLUTION

® HARDWARE CHEAPER, MORE
POWERFUL

e COMPLEX SOFTWARE FUNCTIONS
MOVING INTO HARDWARE

® BETTER UNDERSTANDING OF
OPERATING SYSTEMS
* WHAT IS NEEDED, HOW TO
PROVIDE EFFICIENTLY

& ASSURANCE TECHNIQUES
IMPROVING RAPIDLY

_J

SN

07 e AT

INDUSTRY THRUSTS IN 70s

DRIVING FORCE: IMPROVE PRODUCT QUALITY
* EASE MAINTENANCE, MODIFICATION
¢ IMPROVE PERFORMANCE
FLEXIBILITY
INTEGRITY
SECURITY

CONSTRAINT: EXISTING CUSTOMER BASE
EVOLUTIONARY VERSUS REVOLUTIONARY

~

MANUFACTURERS
PROGRESS

DIGITAL EQUIPMENT CORPORATION
HONEYWELL CORPORATION

INTERNATIONAL BUSINESS
MACHINES CORPORATION

TYMSHARE CORPORATION
SPERRY UNIVAC CORPORATION

Cc-8

HONEYWELL
TRUSTED ADP SYSTEMS

Irma Wyman

INTRODUCTION

It is my pleasure, and my privilege, to share with
you this morning, the position, and philosophy of
Honeywell Information Systems regarding computer
security. And, also, to let you know about our current
activities and future goals in this important area.

Slide 1

POSITION

Computer Security theorists tend to view computer
security in absolute terms,...and properly so. Their
visions of absolutely secure hardware/software systems
provide us with the conceptual upper 1limits of computer
security on what we at Honeywell believe must be viewed
as a spectrum...the "Perfect Ten" on a scale of "zero"
to "ten".

Slide 2

Honeywell”s position with respect to computer
security is that computer hardware/software products
should provide the systems integrity necessary to reduce
risks of unauthorized penetration to a level acceptable
to the intended product markets, subject to the

constraints of technology and acceptable costs and
performance.

We believe this position, and even more importantly
our activities in pursuit of the elusive "Perfect Ten",
to be supportive of the Computer Security Initiative
Program“s nbjective of achieving "trusted" ADP systems.

ISSUES

Before describing our philosophy and current
activities, I“d like to comment on three of the issues
that must be resolved before a "trusted" ADP system is
likely to become a commercial reality.

h-1

e p———

R o

Slide 4

l. Perhaps the most obvious issue, and one that I
understand will be addressed in some detail during the
next three days, is that of PROVABILITY. Edsger
Dijkstra (well known for his contributions to the
concepts of structured programming) once suggested that
"Testing only reveals the present of “bugs”, not their
absence". What then are the criteria and mechanisms to
be used to prove a system as "trusted"? Furthermore,
should this be a binary designation? Should there, in
fact, be a hierarchy of "trustworthiness"?

2. A second issue is concern with terminology---
specifically the terms "system integrity" and "adequate"
(or "sufficient” as used in the Initiative Program”s
definition of a "trusted” system).

- I know of no generally accepted definition of "system
integrity" and strongly suspect that if ten of us
here were to write down and compare definitions, we”d
come up with at least nine different answers.

- "Adequate" and "sufficient" are relative terms to
start with. When applied to various definitions
of "system integrity", the resulting differences
of opinion should be no surprise to anyone.

PHILOSOPHY

Honeywell“s philosophy, our school of thought, is
that system integrity--"trusted" ADP systems--will be
achieved through a hardware/software mechanism called a
SECURITY KERNEL, based on the REFERENCE MONITOR concept,
and implemented through DESCRIPTOR-DRIVEN PROCESSORS.

Honeywell and other vendors can, of course, offer
their own definitions. I suggest, however, that groups
in the public and private sectors, such as yourselves,
address this issue to mitigate nature vendor biases.
The December 1979 issue of the EDP Analyzer might be
useful in such an endeavor.

3. The third issue deals with the relationship between
technological advancement and practical business
economics. Technological advancement in computer
security (or any other area) is largely dependent upon

D-2

the resources devoted to that end. Allocation of
resources, of course, is in turn dependent on
management”s estimates of return on investment as the
advanced technology is applied to perceived needs in the
markets served. As I think you will see at the
conclusion of this presentation, Honeywell has perceived
an increasing demand for improved computer security and
is aggressively addressing this issue.

Slide 5

Numerous computer security groups in studying
access control mechanisms recognized the need for
provability of correctness. This led to the recommended
technical approach that computer security must start
with a statement of an abstract, ideal system. This
ideal system became known as the reference monitor. The
reference monitor abstraction permits or prevents access
by subjects to objects, making its decision on the basis
of subject/object identity and the security parameters
of the subject and the object. The implementation of
the abstraction both mechanizes the access rules, and
assures that they are enforced within the system. The
mechanism that implements a reference monitor must meet
three requirements: Complete mediation, isolation and
verifiability. These requirements demand that the
reference monitor implementation include hardware as
well as software. The hardware/software mechanism that
implements the reference monitor abstraction is called a
Security Kernel. It is felt that to implement a trusted
ADP System, the Security Kernel concept must be used.
And to implement the kernel, descriptor-driven
processors must be utilized.

Slide 6

The kernel mechanism must provide for complete
mediation, and be invoked on every access by a subject
to an object.

Slide 7

The kernel mechanism must provide for complete
isolation for itself, its data base, and for all users.

Slide 8

The kernel mechanism must be small, simple and
understandable so that it can be completely tested and
verified that it performs its functions properly. This
kernel mechanism is the key to certifiable, multi-level
security and a trusted ADP system.

Slide 9

One of the current challenges in verification and
certification is to find an agency or committee which
will - and can - with authority - say that: The design is
sound, the implementation is correct, the verification

methodology is correct, and it has been correctly applied
to proving the design and implementation of the trusted

ADP system.

Now, let us examine Honeywell”s involvement in
trusted ADP Systems.

Slide 10

1964 - Start of the MULTICS Program - An architecture designed for
controlled sharing from the beginning. Utilize modified 600,

1968 - The GCOS II 0.S. ~ which included enhanced software security
features.

1969 - MULTICS - Became operational on a G-645.

1969 - GCOS III ~ Enhance software security on GCOS.

1972 - Implement Multics on a 6190, Additional access control
implemented in hardware.

1972 - The GCOS III 0.S. - Provided the vehicle to investigate
and enhance software access control mechanisms.

1974 - Multics implemented on the A#800. Speed up access control
mechanism. Develop an access isolation mechanism to
enforce DOD security policy.

ALCOM 700 - Design and implement a secure remote batch

terminal. The only computer system to be
certified secure. Still the only certified
secure ADP system.

1974 - Project Guardian - Based on Multics - was begun
with the objective to build a provably secure,
general purpose system with a secure front end
processor.

1977 - Level 6 SCOMP Program was initiated to develop secure
communications processor.

1977 - CP-VI Plus Level 66 ~ Implementation of new, controlled
sharing access mechanisms on Level 66 hardware in order

‘_r..‘_.__,__

AN

to provide access control enhancements and provide an
upgrade path for CP-V users.

1979 ~ DPS-8/GCOS~8 was announced - New product with advanced
controlled sharing, access mechanisms to replace the

Level 66 and GCOS III. Security is a primary design
goal.

Slide 11

Let us review some of these significant events in
more detail. First, Multics.

Multics was designed as a general purpose computer
utility with interactive processing and controlled
sharing of all information. Data security was a primary
design goal. This controlled sharing is achieved by a
unique file system with virtual memory integration and
hardware enforced access controls.

Slide 12

To enforce complete mediation and allow controlled
sharing of all information, Multics utilizes descriptor
driven processors with segmentation. Each segment has an
access control list. The access control list is checked
by the system when the segment is opened. The system
then sets the access control bit into a descriptor.
Thereafter, the hardware enforces access controls on
every reference.

In addition to the access control list, the Multics
access isolation mechanism extends the basic access
controls of Multics to insure isolation of users
according to DOD security policy. Each user and segment
is assigned an access isolation mechanism access code
which enforces eight levels of clearance and eighteen
need-to-know category sets. This access code is checked
when a segment is opened, when the access control list is
changed, and when information is exchanged between users
in the system.

Slide 13

For isolation, the Multics structure provides for
eight hierarchical rings which separate the operating
system from system utilities and users, and the users

from each other, providing for complete hardware enforced
isolation.

P

FE . Sunind

Slide 14

For example:
Ring 4 contains procedures "A-1"
Ring 5 contains procedures "B-1"

Procedures "B~1" has read permissions for data
in ring 4.

Slide 15

Procedure "B" requests access to procedure "A"
data. The request is made via the control mechanism in
ring zero.

Slide 16

The control mechanism in ring zero "O0.K.”s” the
request and verifies that a gate mechanism exists
between procedure "A-1" and "B-1".

Slide 17

This gate mechanism permits procedure "B" to "read"
data from procedure "A". (Via Program Q).

Procedure "A" actually writes the data via the gate
to procedure "B".

It should be noted that if the access isolation
mechanism were activated then the request would have
been denied. (It would have been a lower clearance
level attempting to read data at the higher clearance
level.)

This access isolation mechanism was defined as a
part of Project Guardian.

Slide 18

Project Guardian, started in 1974, was the first
attempt to implement a kernel on a Honeywell system. As
a result of government funded studies, the Multics

D-6

system was selected as the host computer for the design
and implementation of a kernel mechanism which would
meet the three requirements of: Complete Mediation,
Isolation, and Verifiability. Unfortunately, Project
Guardian was cancelled because of funding problems prior
to achieving its ultimate goal.

However, as a result of Guardian, the Multics
system has been approved to run in a two level security
mode, simultaneously servicing Secret and Top Secret
users. Project Guardian demonstrated that complete
mediation of access, isolation from unauthorized access,
and verifiability - (that is, provability and
testability) - of a security kernel was possible. 1In
addition, a proof methodology was defined and a secure
front end processor was defined.

Slide 19

The secure front end processor was based on a
commercial Tempest Honeywell Level 6 minicomputer which
was to be enhanced by a hardware security protection
mechanism and special kernel software. To understand
how the security protection mechanism was to be
implemented, let us quickly review the standard Level 6
memory management mechanism.

Slide 20

Memory management on the Level 6 is embodied in a
hardware memory management unit, which provides for a
four ring architecture, and a descriptor driven
processor with segmentation. The descriptors define
location, size and access controls very similar to a
miniaturized version of the Multics access control
mechanism, and ring architecture. For the secure
front-end processor, this memory management unit was to
be replaced by a "virtual memory interface unit" and
extra hardware called a "security protection module"
which was to implement kernel functionality.

Slide 21
SCOMP -
The Secure Communications Processor (SCOMP) project

was started after the Guardian project. The object of
this project is to pick up the secure front end

D-7

processor development after it was stopped under project
Guardian and make it more general purpose. In other
words, to design and implement a provably secure multi-
purpose minicomputer, also known as a Trusted Computing
Base (TCB).

The SCOMP consists of a Level 6 central processor
with a virtual memory interface unit and security
protection module which runs with all other Level 6
hardware. The virtual memory interface unit replaces
the memory management unit previously mentioned. The
security protection module consists of additional
boards. The design of the security protection module is
based on the reference monitor concept and implements a
large portion of the security kernel functionality in
hardware. A key point is that hardware access controls
were extended to include I1/0.

That portion of the security kernel functionality
which is not implemented in hardware is handled by a
software security kernel termed KSOS-6.

Some people use the acronym KSOS-6 to refer to both
hardware and software.

Slide 22

The software security kernel (KSOS-6) resides in
ring zero of the SCOMP system. This software security
kernel works in conjunction with the hardware kernel
which is called the security protection mechanism. In
the outer two rings, user application and system
utilities operate. As a part of this project, certain
specialized trusted system routines are being designed
and implemented to form a comprehensive trusted
computing base. A more detailed presentation on the
SCOMP will be given later ir this seminar.

While working on joint effort projects, such as
SCOMP and Guardian, Honeywell has also been working on
system integrity control mechanisms.

Slide 23

We have applied the knowledge and experience gained
through these efforts to our product lines.

And, it is felt that our recently announced DPS-8 -
with an evolving GCOS-8 ~ is "potentially" a provable
trusted ADP system.

Slide 24
DPS-8 hardware supports:
1. Virtual Memory

2. Security Mechanisms that are emphasized in the
hardware

3. Domain Protection
Slide 25

The DPS-8 virtual memory architecture allows for
eight trillion bytes of virtual memory. All of the
security access control mechanisms are implemented in
the central processing unit and in the I/0 processing
unit, and reference a common set of working space
tables.

Slide 26

The working space tables are controlled by
descriptors which provide for segment definition and
access controls. This access control mechanism
accomplishes the first requirement of a security kernel,
to provide for complete mediation. The descriptor
mechanism provides protection, segment boundary control,
access control, and the ability to reduce the size or
the access rights to a segment.

Slide 27

The domain mechanism satisfies the second
requirement of a security kernel: to provide absolute
hardware enforced isolation. A domain is a logical
system territory consisting of all segments referenced
by a user”s procedure. This mechanism differs from
. Multics in that there is no implied hierarchical ring
structure.

Slide 28

The domain concept allows information to be
delivered strictly on a need-to-know basis for process
execution. All domain context switching is handled by
hardware.

B o bbbl

Slide 29

For Example:
The domain of procedure "A" is comprised of the program "A",
systems software working space tables, and different parts
of a data base.

Slide 30

The segments of domain "A" may in turn be shared by
other domains all under hardware enforced access control
mechanisms.” This means that any given entity needs to
exist only once within the operating system.

Slide 31

The domain mechanism also permits temporary sharing
between domains.

For example, procedure "A" desires to query
procedure "B" in domain "B".

Slide 32

Procedure "B" within domain "B", if the access
permissions are acceptable, will increase its domain
territory to include the argument segment of procedure
"A". Procedure "B" then deposits the requested
information in a temporarily shared portion of domain
"A'.

Slide 33

Upon completion, procedure "B"™ then executes a
command to "shrink"” its domain back to its original
territory.

Slide 34

We believe that the DPS-8 architecture provides the
base on which a secure system can be built, and that it

D-10

will prove to be the key to an effective, flexible,
multi-level "trusted” ADP system. Possibly a "Perfect
10".

As indicated by our past and current activities,
Honeywell has been, and is now, committed to aggressive
action in responding to the needs for improved computer
security.

Slide 35

To reduce the costs associated with providing
effective security features in our computer products.

Slide 36

To provide mission optimized, multi-level solutions
to the problems of computer security.

Slide 37

To optimize system efficiency in the multi-level
"trusted" ADP system environment.

Slide 38

To work cooperatively with government and private
industry to resolve the issue of provability--to
establish the criteria, process and accrediting
authority for "trusted" ADP systems.

We believe we offer the most secure systems
available today, and are determined to maintain our
leadership position in the future.

D-11

PPV

Honeywell
Trusted ADP Systems

The Leader

PR

HOW DO YOU ACHIEVE
TRUSTED ADP

s

PRINCIPLES OF SECURE SYSTEM

® COMPLETE MEDIATION
@ ISOLATION
® CERTIFICATION/SIMPLICITY

SECURITY

T v

FILE OF AUTHORIZED USERS
< AND ACCESS PERMISSIONS
5
COMPLETE MEDIATION

SECURITY

| MECHANISM) _ ™ | \ro

“KERNEL"

ALL
RMATION

MECHANISM
“KERNEL"

-

VERIFIABILITY/CERTIFIABILITY/ACCREDITATION

SIMPLE AND STRAIGHTFORWARD
KERNEL
TO PERMIT ANALYSIS

i

“KERNEL”
IS KEY TO
CERTIFIABLE MULTILEVEL SECURITY r

Honeywell

MULTICS

SECURITY

1

~
-

e

a)
MULTICS-THE SECURE SYSTEM
SECURITY MECHANISMS UNIFORMLY APPLIED

® ACCESS CONTROL LISTS

® ACCESS ISOLATION MECHANISM

® RING PROTECTION MECHANISM

® PASSWORDS

® AUDIT TRAILS |

® USER DEVICE ATTACHMENT CONTROLS
3

_ N Y,

(HIERARCHICAL

RINGS
_ v Honeywellj
4)
14 Noneywed
- J/

D-18

v -

6
D-19

15
@
S

A i e RS

17 Honeywell

PROJECT GUARDIAN

® ACCESS ISOLATION MECHANISM

® KERNEL FEASIBILITY ESTABLISHED

® PROOF METHODOLOGY DEFINED

@ SECURE FRONT-END PROCESSOR DEFINED

Honeywell

18

4 noneywen\ t

TEMPEST LEVEL 6 MINICOMPUTER

SPM + LEVEL 6 MINICOMPUTER = SCOMP

CENTRAL SECURITY
PROCESSOR PROTECTION MEMORY
UNIT MODULE

VIRTUAL
MEMORY
INTERFACE
NIT

CENTRAL
PROCESSOR
UNIT
BUS LOGIC

k 21

N\

SOFTWARE OVERVIEW

USER

LoV EST USER APPLICATION &
SYSTEM UTILITES TRUSTED USER DOMAIN
UTILIMES [OPERATIN

PRIVILEGE | |Nix EMULATOR SYSTEM ogM AN

KERNEL KERNEL DOMAIN
HIGHEST

HARDWARE 1

22

DPS 8/GCOS 8
AN EVOLVING SYSTEM

DPS8 + GCOS8 =
POTENTIALLY PROVABLE TRUSTED ADP SYSTEM

DPS 8/GCOS 8
SECURITY

® VIRTUAL MEMORY

® SECURITY MECHANISM EMPHASIZED
IN HARDWARE

® DOMAINS

Honeywell

MAIN MEMORY WORKING SPACE TABLE

MAIN
MEMORY
WORKING
CPu SPACE IOM

S| TABLE |

CPU & |IOM USE
SAME VIRTUAL REFERENCES

f)

- i Y,
4)

ACCESS CONTROL MECHANISM = COMPLETE MEDIATION

[SEGMENT 1

ACCESSRIGHTS WORKING SPACE BOUNDARY

1 |

BASE

TYPICAL DESCRIPTION

Honeywell

_ * Y,

D-24

DOMAIN ISOLATION

~

27 Honeywell
SECURITY HARDWARE
RELATED DESCRIPTOR
TABLES REGISTERS

SECURITY
MECHANISM

28

D-25

s

T, T " R SN ™I TE

TEMPORARY SHARING BETWEEN DOMAINS t i

“A" CALLS SUBROUTINE "8"
WITH WORK DEFINITION

k 31

\-

QUESTION

T4

L 33)

DPS 8/GCOS 8

THE ARCHITECTURAL KEY TO PRODUCTION ORIENTED
MULTI-LEVEL SECURITY

p=28

-

HONEYWELL GOALS
TO REDUCE THE COST FOR SECURE ADP OPERATIONS

35

‘\\

/
\
HONEYWELL GOALS
TO PROVIDE MISSION OPTIMIZED MULTI-
LEVEL SOLUTIONS
36
_/

D-29

HONEYWELL GOALS

TO OPTIMIZE SYSTEM EFFICIENCY IN THE MULT!H-
LEVEL TRUSTED ADP SYSTEM ENVIRONMENT

37

~

HONEYWELL GOALS

TO WORK WITH GOVERNMENT AND INDUSTRY TO
DEFINE AND "HOPEFULLY SOLVE" THE ACCREDITED/
CERTIFIABLE TRUSTED ADP SYSTEM PROBLEM

38

0 RhCals 4 - e

v

e st
e

—

COMPUTER SECURITY RESEARCH AT DIGITAL

Third sSeminar on the Department of Defense
Computer Security Initiative

18~20 November 1380

Paul A, Karger
Digital Equipment Corporation
Corporate R-search Group
146 Main Street (ML3-2/E41)
Maynard, MA 01754
(617)493-5131
ARPAnet: KARGER@DFC-MARLBORO

—~

-

COMPUTER SECURITY
RESEARCH
AT

RESEARCH GOAL

UNDERSTAND HOW TO BUILD AND
SUPPORT SECURE SYSTEMS FOR
GOVERNMENT AND COMMERCIAL
USERS

J

g

ada i

RESEARCH ISSUES

® EVOLVABLE SECURITY

® PRODUCTION QUALITY VERIFICATION TOOLS
® NETWORK SECURITY PROTOCOLS

* ENCRYPTION

® LAYERED PRODUCT SECURITY

EVOLVABLE SECURITY

® SECURITY MUST FIT IN WITH EXISTING
PRODUCTS

® SECURITY ENHANCED SYSTEMS FIRST
® THEN VERIFIED SECURITY KERNELS

\

SECURITY ENHANCED
SYSTEM

® FEATURES OF SECURITY KERNEL
-~ LATTICE MODEL
~ ACCESS CONTROL LISTS

® NOT VERIFIABLE

® BUILT RESEARCH PROTOTYPE
ON VAX-11/780

P —

Y

£

R gl

KERNELIZED SYSTEMS

® PERFORMANCE QUESTIONS

© PRODUCTION QUALITY VERIFICATION TOOLS
- MUST RE-VERIFY FOR NEW RELEASES

® CODE PROOFS IMPORTANT

- TOP LEVEL SPEC PROOFS DON'T FIND
SUBTLE CODING ERRORS

(

!

r Al PPLIC:‘G&S
LAYERED
PRODUCTS

SECURITY ENHANCED SYSTEM

i APPLICATIONS
| LAVERED

|
OPERATING l
srerEm

O SECURITY ENHANCED

-

N

ey P —
r APPLICATIONS , ; APPLICATIONS
1

|

SECURITY KERNEL
BASED SYSTEM

r '

R S wivias o= v
secume | | {secune \
LAYERED LAYERED
pnocucTs! I lomopucts i

[v L momvey
secumry I secumry |

KERNEL) SECURE me TWORR KERNEL

e T T ——— .
UNTAUSTED | UNTRUSTED
OPERA TG | OPEMATING
tratem (l AYSTEM

R

NETWORK SECURITY
PROTOCOLS

& AUTHENTICATION FORWARDING
- PASSWORD CONTROL

® ROUTING UNDER LINK ENCRYPTION
- ROUTING NODES ARE HOST COMPUTERS

© NETWORK-WIDE DISCRETIONARY CONTROLS

END-TO-END ENCRYPTION

® ESSENTIAL FOR ETHERNETS
® OUTBOARD FROM OPERATING SYSTEM
- CANNOT TRUST THE HOST
© WHAT WILL DOD SUPPLY?
- CRYPTOGRAPHIC DEVICES
- KEY MANAGEMENT
- SESSION LEVEL PROTOCOLS

\

LAYERED PRODUCT
SECURITY

® PROTECTED SUBSYSTEM SUPPORT FOR .
- DATA BASE SYSTEMS
- ELECTRONIC MAIL SYSTEMS

- TRANSACTION PROCESSING SYSTEMS
- ETC

E~4

WHAT SHOULD
GOVERNMENT DO?

® MAKE CLEAR RFP REQUIREMENTS
- ASK FOR BELL & LAPADULA LATTICE MODEL
- ASX FOR VERIFICATION
- ASK FOR KERNELIZED SYSTEMS

® OTHERWISE VENDORS WON'T BE MOTIVATED
@ INITIALLY SEPARATELY PRICED OPTIONS

WHAT ABOUT KSOS-11?

® DIGITAL IS WATCHING KSOS-11
DEVELOPMENT

® WE WOULD LIKE TO EVALUATE IT

® EXTENSIVE HANDS-ON REVIEW
REQUIRED

\

CONCLUSION

© DIGITAL IS ACTIVE IN SECURITY RESEARCH

® SECURITY IS IMPORTANT IN GOVERNMENT
& COMMERCIAL MARKETS

® SECURITY WILL EVOLVE IN DIGITAL
PRODUCTS

E-5

CORPORATE RESEARCH GROUP

SECURITY AND PROTECTION OF DATA ;

IN THE IBM SYSTEM/38

VIKTORS BERSTIS
IBM

ROCHESTER, MINNESOTA USA

(
-

\
y,

1BM SYSTEM/38

_

WHAT 1S THE 1BM SYSTEM/38 ?

- REPLACEMENT anp GROWTH ror SYSTEM/3 USERS

- AVERAGE CUSTOMER HAS 1-2 PROGRAMMERS

EASE OF USE PRIMARY GOAL

- LANGUAGES are RPG-111, COBOL, CL, QUERY ano DBS

- ConTroL ProGRAMMING FaciLity (CPF)

- HIGH LEVEL MACHINE INTERALE

- DATA BASE FUNCTIONS

SYSTEM INTEGRITY anp SECURITY

SMALL BUSINESS COMPUTER from InFORMATION SysTems Divisiown

_

WHAT 1S SYSTEM/38?

CONTROL RPG 111 INTERACTIVE
PROGRAM COROL DATA BASE
FACILITY UTILITIES
MICROCODE

PROCESSOR MEMORY

00O

DISKS

SYSTEM/38
MACHINE

F-2

HOW [S WORK DONE ON SYSTEM/38 ?

- USER SIGNS ON TERMINAL WITH PASSWORD

- SUBSYSTEM STARTS PROCESS

- USER PRUFILE ASSUCIATED WITH USER

- PROGRAMS CALLED TO DO WORK

- OBJECTS anp PROGRAMS ACCESSED

- MACHINE CHECKS AUTHOR!TY TO USE

\—

V —_— 4
IMPLEMENTATION OF SECURITY IN [BM SYSTEM/38 4

-

CAPABILITY BASED ADDRESSING

USER PROFILES

PROCESSES

%

SYSTEN/38 g

\ /1/ g

N HI%H ;
1

i

PROCESS)

DATA \7 DATA !
4

,‘A_,,‘».-'f Bl e " 2k i

CONTROL PROGRAMMING FACILITY (CPF)

- COMMANDS
- CONTROL LANGUAGE .

- OBJECTS ;
~ FILES i
~ PROGRAMS)
- USER PROFILES
MESSAGE QUEUES

- SUBSYSTEMS
- JOBS 4
- DEVICES
- PROMPTING anp HELP 4
- SPDOLING ;
- DEBUGGING
- RECOVERY

SECURITY FEATURES ;
|

- MATRIX OF USER PROFILES vS OBJECTS
- AYTHORIZED TO CLASSES OF OPERATIONS
- SECURITY OFFICER

- CPF COMMANDS

- GRANT O0BJECT AUTHORITY

- REVOKE OBJECT AUTHORITY
DISPLAY OBJECT AUTHORITY
CHANGE OBJECT OWNER
DISPLAY USER PROFILE

0

CREATE USER PROFILE
- DESTROY USER PROFILE
- CHANGE USER PROFILE
- DISPLAY AUTHORIZED USERS

- DISCRETIONARY AUTMORIZATION

- NO MANDATORY POLICY

r

AUTHORITY CATEGORIES X

CATEGORY

P— { 3
RESOURCE
STORAGE ALLDTMENT o

PRIVILEGED INSTRUCTIONS
CREATE USER PROF ILE
INITIATE PROCESS |
TERMINATE MACHINE PROCESSING
CREATE LOGICAL UNIT DESCRIPT{ON
CREATE NETWORK DFSCRIPTION
CREATE CONTROLLER DESCRIPTION
MODIFY GSER PROFILE
MODIFY RESOURCE MANAGEMENT CONTROL
DIAGNOSE

SPECIAL AUTHOR{ TIES
ALL OBJECT
DUMP
SUSPEND
L0AD p
PROCESS CONTROL
SERVICE
MODIFY MACKINE ATTRIBUTES

OBJLLT AUTHORITIES--AUTHORTZED ON A PER OBJECT BASIS
EXISTENCE
0BJECT CONTROL
ACCESS
OBJLCT MANAGEMENT
AUTHORIZED POINTER

CONTENTS
SPACL
RETRIEVE
INSERT
DELETE
PBATE J
ADERESSING
POINTER
(CAPABILITY) 16 BYTES
TAGS
VIRTUAL ACCESS OTHER
ADDRESS RIGHTS INFORMAT (O
AY N
\\ S e -
\ VIRTUAL ADDRESS ™~ . _
0 ——— 38— &
SEGMENT OFFSET
IDENTIFIER
OBJECT
BASE SEGAENT]
| StaEwT SEENT ,
HEADER "ﬁ”‘/ HEADER k
OBJECT nORE
CONTENTS OBJECT E
CONTENTS k
M L/—l

T -

PROGRAM CREAT|ON

INPUT TO THE CREATE PROGRAM INSTRUCTION DEFINING THE PROGRAM:

INSTRUCTION STREAM

OPERAND DECLARATIONS

AUTOMATIC BINARY 4-BYTE

STATIC ZONED 4-BYTE

\

AUTOMATIC PACKED 8-BYTE BASED D
CREATE
PROGRAM
INSTRUCT ION
MACHINE INSTRUCTION INTERFACE VISIBLE IN A SPACE OBJECT
NOT VISIBLE
PROGRAM
MICROCODE
SUBROUT INE TO
$/38 INSTRUCTION SUPPORT OBJECT
TRANSLATED INTO QRIENTED S/38
MICRO- INSTRUCTIONS INSTRUCTION
LINKAGE T0 MICRO-CODE
SUBROUTINE |
EXECUTION STRUCTURE
PROCESS
USER CONTROL AUTOMATIC STATIC
PROFILE A SPACE SPACE SPACE
~ .
~ 9 _ﬂ
S ~J InvocaTION ACTIVATION
t 1.
TCROCODE | 1vocaT 10w ACTIVATION
INVOCATION [~~{
~J1nvocation
ADOPTED
USER
PROFILE B
e S ——
A+B

f ADDRESSABILITY FROM A PROCESS ‘\

AUTOMATIC OBJECTS OBJECTS P
& 3 1
STATIC OTHER OTHER
SPACES SPACES SPACES ;
1
i
i
POINTERS 4 SPACE Z .
“NAME * 7 |POINTERS

CONTEXT

NAME-
ADDRESS 1

OBJECT AUTHORIZATION

USER PROFILE B

USER PROFILE A

DWNERSHIP

USER PROFILE €

BJECT
AUTHORITY

OBJECT D

R
OWNER'S AUTHORITY

-

AUTHORITY CHECKING

1 RETRIEVE POINTER (CAPABILITY)
2 CHECK FOR AUTHORITY IN POINTER
3 CHECK FOR PUBLIC AUTHORITY
4 CHECK IF USER [S OWNER
-- IF OWNER, LOOK IN HEADER FOR AUTHORITY
5 CHECK FOR “ALL OBJECT” AUTHORITY
6 CHECK IF USER IS EXPLICITLY AUTHORIZED
-- LOOK IN USER PROFILE
7 OPTIONALLY PUT AUTHORITY IN POINTER FOR NEXT REFERENCE

GOALS OF SECURITY MECHANISM

® CONTROL ACCESS TO DATA

® MINIMUM OVERHEAD

* INTEGRITY/RELIABILITY

),

F-8

T T AR T

A

ABST

INTR

TYMSHARE

GNOSIS

GNOSIS:
SICURE CAPABILITY BASED 370 OPERATING SYSTEM

Presented by Jay Jonekait
Adva.iced Systems Development, TYMSHARE Inc.

RACT

Gnosis is a capability based operating system which
runs on 370 architecture computers. This paper de-
scribes why TYMSHARE developed Gnosis, introduces
some basic Gnosis concepts, and shows how they can
be applied to application programs. Gnosis appears
to be an attractive base for applications run in the
high security environments of both DOD and non-DOD
portions of the government. Possible alternatives
for Gnosis are explored at the conclusion of the
paper.

ODUCTION

About 1972, Tymshare business planners recognized
the need to evolve into new markets in order to sus-
tain profitable growth. One of the emerging trends
that was observed was that hardware was becoming
cheaper and that *he market for selling raw time-
sharing was 1likely ¢to flatten out and perhaps

evaporate 1in the future. At the same time machine
cycles were becoming cheap, access to usable infor-
mation was becoming more and more expensive.

Tymshare decided to specialize in the organization
and dissemination of the information.

Analyzing the market, Tymshare noticed several obvi-
ous business opportunities for general on-line
databases. In this market, the ability to protect
proprietary data and programs from accidental misuse

or theft was a vital prerequisite. One example of
this type of business 1is an online <chemical patent
database. No customer would ever query the database

if they thought the queries might might become known
to one of their competitors. This kind of security
breech would allow the competitor to find out what
research they were pursuing.

Al Kt e ot Ws e

THE

TN

TYMSHARE

GNOSIS

In essence, what Tymshare wants to do is to develop
an information wutility, with a large number of on-
line databases and a large number of programs that

create information from those databases. Most of
the programs and databases would not be owned by
Tymshare. Protecting the integrity and the security

of those programs is a vital concern to both their
owners and to Tymshare.

DEVELOPMENT FRAMEWORK

In the process o¢f researching how to build such a
system and analyzing the options available, it was
noted that the existing operating systems running on
existing computer systems were not adequate to do
the job. The basic problem was that there was no
protection mechanism for programs or for data, that
there was no way to let two programs that were writ-
ten by different people interact without having them
trust each other. This kind of interaction would
expose one or the other to possible theft or misuse.
Tymshare had discussions with several manufacturers,

and did a lot of research on its own, while trying
to envision what would happen over the next 5 or 10
years. We concluded that none of the manufacturers

were likely to build the system that would solve our
problems.

During the course of its research, Tymshare discov-
ered that there was a rather well-known architecture
called "capability based operating systems" which
had been prototyped in several universities, such as
Hydra from Carnegie Mellon, and CAL TSS from Univer-
sity of California. These systems seemed to offer
great promise for being able to solve the kinds of
problems Tymshare needed to solve in order to create
the businesses that it wanted to create.

So, <contrary to the then widely accepted philosophy
that it takes a large army or a small hoard to build
an operating system, a very low key project was
chartered at Tymshare in 1974 to build a commercial
quality, capability-based operating system.

There was a precedent for such temerity. The com-
pany had taken another similar risk about s8ix years
earlier when it went against all then common tech-
nology wisdom to produce what is now Tymnet. That

G-2

TYMSHARE

GNOSIS

investment was very successful. It was on the
strength of that investment and the fact that some
of the same people involved with Tymnet have been
involved in Gnosis, that the project was approved.

Thus, with a very small group, Tymshare set off to
build an operating system. One of the ideas that
Tymshare had to face up to was the fact that it was
not a hardware vendor and that therefore did not
have the luxury of being able to specify the design
of the system hardware.

Tymshare deliberately selected 370 hardware, despite
the fact that 370 hardware is probably not favored
in the security conscious environment. The primary,
and single biggest reason for selecting 370 hardware
was that there 1is a wide range of available CPU's
that extend from very small to very large configura-
tions. You may have noticed in the last couple of
years, that the small 370 CPU's are becoming smaller
and the largest ones are becoming larger. The trend
appears to be continuing and we expect both 370's on
a chip and 15 MIP processors to appear very soon.

The idea of extensibility was of particular interest
to Tymshare. We have built many applications on
small machines and have been somewhat embarrassed
when those applications became successful and sud-
denly there were more users than we knew what to do
with., We couldn't move them to a larger machine be-
cause there was no larger machine. We picked the
370 in part because if an application is built on a
small machine and the market grows, it is possible
to move it to a larger machine. Clearly, it is also
convenient to be able to take advantage of Gnosis on
the very small mini and micro 370's.

The second critical feature is that the 360/370
hardware has become an implicit industry standard.
This architecture is going to have a very long life
cycle, and we expect the evolution of the 370 to
continue. There will probably not be any
revolutionary changes to the 370 which will impact
Tymshare's business. Even if there are drastic
changes, at this moment, there are a large number of
second sources for 370 hardware available. We ex-
pect to take advantage of that fact if anything |is

DESI

TYMSHARE

GNOSIS

announced which precludes Gnosis operation on future
IBM mainframes.

Until now, hardware has been emphasized. There is
also a strong motivation on the software side for
picking 370's. There are literally tens of billions
of dollars of software invested in 370 based operat-
ing systems right now. There is a wide range of
language processors, debugging tools, database man-
agement systems and utilities. Having limited re-
sources, Tymshare didn't want to have to write all
those programs and wanted to take advantage of the
software that other people have written for 370's.

GN GOALS OF GNOSIS

To penetrate the markets described earlier, Tymshare
decided to build this system with several design
goals in mind. First and foremost it is necessary
to be able to protect proprietary programs and data;
this involves such things as being able to provide

execute only protection, or at least to have the
image of execute only programs where the source and
object cannot be displayed or tampered with. It

also involves the ability to have dynamic databases
which cannot 1in any way be accessed except through
the database management system. It involves ultra
secure file systems and so forth.

Second, in order to build this information utility
type system, Tymshare had to have a very high per-
formance system to do transaction processing. One
of the systems analyzed when considering possible
operating systems was the Airline Control Program,
ACP. ACP meets many of the performance objectives,
however, it is very difficult to work with and has
almost no security. Thus ACP tends to provide very
high performance, non-secure transaction processing
applications.

The third requirement is that the information utili-
ty business tends to lead to very complex applica-
tion programs (although complex application programs
and complex operating systems are not solely the
property of the information utility). However, one
of the things observed is that a complex application
is very difficult to enhance. It is also a well
known fact, that in most installations 80% of all

TYMSHARE

GNOSIS

in-house manpower is utilized doing maintenance and
extending existing applications. Thus the problem
is that when one changes a program to add new func-
tion, often something which wused to run 1is de-
stroyed.

Tymshare needed to have a system in which changes
could be introduced 1in a controlled manner without
impacting existing operational software. Gnosis is
such a system.

In addition, even when the system was not being
changed, it was necessary in the utility environment
to have a system which would degrade gracefully in-
stead of crashing around our ears. It is the prop-
erty of currrent operating systems and current ap-
plications to crash and disintegrate, kind of like
an old fashioned string of Christmas tree lights;
when one goes out, they all go out. This is not ac-
ceptable in Tymshare's environment. So Tymshare de-
signed an environment where very small portions of
an application program or a very small portion of
the operating system can fail without affecting the
rest of the system. Any user who is not particu-
larly involved with that portion of the application
or that portion of the operating system will be able
to continue to run unimpaired. All of this leads to
rather substantial benefits in programmer productiv-
ity.

Tymshare was not planning on building a military se-
curity type operating system. However, when
Tymshare heard about KVM, KSOS, and PS0S, we
wondered if we might have developed a system which
is suitable in this kind of an environment--not be-
cause it was designed for that environment--but be-
cause by using proper design techniques it solved
the problems of protecting proprietary programs, of
simplifying application maintenance, of building a
fail soft system with high performance and in the
process it also solved most of the security problems
that have been grappled with by many people in this
room. Tymshare obviously hasn't solved all the prob-
lems, but it has solved a great number.

ESSEN

COMP

TYMSHARE

GNOSIS

TIAL GNOSIS CONCEPTS

To clarify how it is possible to make these state-
ments, it may be appropriate to introduce you very
briefly to two of the basic ideas of Gnosis. First,
Gnosis, 1like any other capability based operating
system, allows you to take a program and break it up
into a bunch of small compartments. Second, it pro-
vides for explicit communication paths between
compartments.

EXPLICIT COMMUNICATION

BETWEEN COMPARTMENTS
(CAPABILITIES)

This compartmentalization of both the operating sys-
tem and of application programs serves the same pur-
pose as compartmentalization of information within
other kinds of secure environments. Each component
may have access to information only on a need to
know basis, and may make changes only where it has
the explicit authority to do so.

ARISON OF GNOSIS AND 370 SOFTWARE ARCHITECTURE

How is Gnosis different from other operating sys-
tems? Again; this architecture is not particularly
proprietary to Gnosis but is common to all capabil-
ity based operating systems. 1In a standard operat-
ing system, there are a bunch of objects called vir-
tual memories or tasks or control regions which con-
tain user programs. Underneath them is a supervisor
which keeps users from getting in each other's way,
decides which user can do what to whom, schedules
resources and generally controls things.

If an application package contained several pro-
grams, some mathematical subroutines, an interface
to a graphics system, and a data base management
system interface, all the <code supporting these
functions would co-exist in a single virtual memory.
Since all the programs share the same memory, there
is no asssurance that the code in any one of these
components will not destroy or alter data belonging
to any of the other components.

TYMSHARE

GNOSIS

In this environment, it is possible for any part of
the application to access the data buffers of the
data base manager (if it can find them). Even
though the data base manager carefully cleans up
after itself, a security exposure exists if the ap-~
plication program processes interrupts from various
external sources. Similarly, a bug in the graphics
package can clobber code in the mathematical
subroutine package without leaving a clue as to who
did it. These complex unintended interactions lead
to unreliable operating systems and application pro-
grams, frequently with disastrous consequences.

Reliability, integrity, and security can be attained
by breaking applications 1into separate, 1isolated
components which can communicate with each other
only through explicit and controlled interfaces. 1In
such a case, the graphics package, for example,
could exist in its own virtual memory with its code
and data completely protected. If any failure oc-
curred in the graphics package, it would be possible
to know with great certainty that that failure was
due to a flaw in that graphiecs package, and those
parts of the application that did not depend wupon
the operation of the graphics package would continue
to run.

In Gnosis, every application, and in fact most of
the operating system itself, is divided into small,
self-contained wunits called domains. Domains may
communicate with selected other domains via expli-
citly authorized communication paths called capabil-
ities. Domains are created and supervised by a very
small kernel of system code. A Gnosis domain serves
the same purpose as an address space or a virtual
machine in today's systems: it provides a place for
the program and its data to exist and to execute.
The difference is that a Gnosis application will
typicaly consist of several domains, each containing
a small subsystem (typically 50-1000 lines of source
code) implementing a specific function.

Each domain will typically hold capabilities which
let it communicate with a small number of selected
domains. It is not possible for a domain to access
its capabilities directly, or to counterfeit the
ability to interact with another domain. Thus, a
domain may only interact with those domains with

G-7

2

vl 2 S

r— e——— _ —

GNOSIS

which it has been given a capability to interact,

and the interaction may only be of the form repre-

sented by the capability. (A domain with a read- '
only capability to a file may not write into the

file.)

The same compartmentalization into domains has been !
applied to the operating system, so the difference
between the operating system and the application in
Gnosis is very blurred. In fact, almost everything,
except the kernel is in domains. One of the inter-
esting properties which results frcm this is that
there is a not a monolithic operating system. That
is, the user does not have to take the whole thing.
If you do not like the Gnosis command system, you
are perfectly free to build your own command systemn. @
If you do not like the Gnosis file system, you are

perfectly free to build your own file system and so

forth.

— e e

In particular, this also means that application code
can be replaced selectively. If there is a piece of
an application which is not performing properly and 3
you want to replace 1it, the piece can be safely re-
placed with another without jeopardizing the remain-
der of the application.

Gnosis has a kernel which performs some of the tasks
normally assigned - to the supervisor. The Gnosis
kernel is small, about 10,000 1lines of code, as op-
posed to half a million 1lines on some of the large
IBM operating systems. The kernel has been made very
small by making it a mechanism whose task is to im- 3
plement and enforc¢ce policy rather than define pol-
iey.

Because the kernel is small, we expect it to be more
trustworthy and reliable.

One other fact to be noted, is that the Gnosis
kernel has been designed in such a manner that it
can be easily put in microcode.

TYMSHARE

G-8

GNOSI

TYMSHARE

GNOSIS

S DESIGN OBJECTIVES/INTERDOMAIN COMMUNICATION

Considerr the relationship between any two domains
(here called A and B) of a Gnosis application pac-
kage. If the program in domain A breaks, with a
100% probability, ¢the bug is in the program in

domain A. There's nothing that domain B can do in
any way to impact the internal operation of domain
A. This makes debugging much simpler, since faults

can be clearly isolated.

GNOSIS application erchitectwre

When domain A calls domain B, information passes
using some protocol agreed upon by the authors of A
and B. The way one can tell that B is working is by
building a test program which exercises all the ap-
propriate parts of the protocol with A and checking
to see if B gives the right responses in every case.
OQutside of that no one need really care what goes on
inside of B. We have used this property to great
benefit in building the operating system. We spent
a lot of time working on the protocol between any
two domains. The code that goes inside the domains
is often implemented wusing the simplest possible
algorithms.

So, for example, it's very easy to build a quick and
dirty application domain which implements a proto-
col between A and B. If one decides some day 1later
to put in a high performance version of B, it's a
very simple matter to write a new B to replace the
old B. If the new B obeys its protocol, then A and
B will continue to work with a 100% probability.

One other thing is important to remember about the

connection between A and B. This connection is put
there by a person who has the authority to put the
connection there. This connection cannot be forged
in any way shape or form. There is no password pro-

tection, no possibility of A being able to introduce
itself to B unless someone who has the proper au-
thority makes the introduction and connects the two
domains. So there is a tremendous amount of secu-
rity involved in the architectural structure of
Gnosis.

-
o i

AUDI

DIST

TYMSHARE

GNOSIS

Let us now discuss the idea of connecting domains
together to perform an audit function.

TABILITY

The ability to audit specific transactions is vital
in any security concious environment. Gnosis has ex-
tremely powerful facilities to assist this activity.
If an auditor wishes to examine the transactions be-
tween A and B, (and if the auditor has the authority
to do so,) it is possible to take the connection be-
tween A and B and splice an auditing domain into
that connection. What is vitally important is that
A and B will continue to interact without being able
to detect the auditor's presence.

The ability to splice an auditor in between any two
domains 1is a significant property of capability
based architecture. It is possible to use this
function for other advantages. For example, one can
insert debugging routines, performance monitors, or
transaction logs.

RIBUTED COMPUTING

One of the more interesting ways in which it is pos-
sible to use this technology is to implement dis-
tributed computing. It is possible to move B physi-
cally to a remote machine without making any changes
to the code of either A or B. This is done by in-
serting two general purpose import-export domains in
the same manner the auditor was inserted. An
import-export routine is attached to A. B is moved
to a remote computing system and attached to another
import-export domain. When a telephone or satellite
link is established between the import-export
domains, A and B may communicate as before. No
changes were required in either routine, in fact, it
is not possible for either domain to know that B has

UNIQ

370
THEM

TYMSHARE

GNOSIS

been moved to another system.

rort/ WPORT/
o =

This technique will make it much easier for Tymshare
to develop distributed applications because all the
import-export logic and all the remote communication
logic have been removed from the application pro-
gram. Thus, the application programs can be devel-
oped on one machine. If the application grows and
will not fit on one machine it can be split and the
pieces put on additional machines as required.

UE FEATURES OF GNOSIS

There are no major architectural innovations in
Gnosis. The only thing that is unique about Gnosis
is the implementation. Gnosis 1is an instance of a
capability based system. Unlike the predecessors
built in universities, Gnosis is a commercial qual-
ity system. Gnosis 1is the only instance, that we
know of, of the union of a capability based system
with 370 architecture, which means union of the ca-
pability based system and 370 program compatibility.
This allows the use of most IBM compilers, languages
and application programs.

In addition, the system has been built not as a re-
search project, but as far as we know, the first
production quality capability based system.

Gnosis programs can be wWwritten in common languages
which provide a great deal of compatibility. Again,
the innovations are in the implementation, not in
the design.

ARCHITECTURAL WEAKNESS AND HOW GNOSIS OVERCOMES

SYST

TYMSHARE

GNOSIS

At the current time, the unique feature of Gnosis is
that it combines capability, architecture and 370
architecture. The 370 architecture is much maligned
because of its security weaknesses, and with due
cause. However, what many analysts have confused is
the 370 hardware architecture and the architecture
of the software systems that run on 370's.

Let wus address several of the architectural
weaknesses that are often quoted.

The first perceived weakness 1is that 370 is a
two state machine. (Some other computers have
three machine states.) Gnosis extends the lim-
ited two state architecture of the 370 by the
use of domains for both the operating system and
application programs. The result is a system
with an unlimited number of distinct states
without an implied heirarchy between them.

The second well known problem with 370 architec-
ture is that the I/0 architecture 1is very com-
plex and fraught with security exposures.
Gnosis solves the problem by architecturally
prohibiting any domain programs from executing

any channel programs. The kernel provides 1/0
services through a very small s¢t of simple
channel programs which c¢an be thoroughly
debugged.

The third common charge is that 370 system soft-
ware has massive denial of resource exposures.
Gnosis has been architected and implemented in
such a way that all denial of resource exposures
are closed, assuming the hardware is performing
correctly.

EM STATUS
Briefly, this is where Gnosis is today:

We are scheduled to do a performance benchmark
on a real machine by the end of 1980.

The kernel is complete and working. It compiles
and runs programs written in any standard 370
language.

GNOSIS

However, with limited resources we have not been
able to put in all the support functions which
one would normally expect 1in an operating sys-
tem. For example, Gnosis does not have: 1) a
data tase management system, 2) full screen
displey capabilities, or 3) a sophisticated
procedure language at this time.

SECURITY EVALUATION STATUS

We have been involved for the last year with the
Computer Security Initiative and the evaluation team
has come up with a report evaluating Gnosis from a
security standpoint.

The same team is now defining a security policy
which they will recommend be implemented on Gnosis.

We are also evaluating the need to develop formal
specifications for Gnosis.

SECURITY AND OTHER POLICY ISSUES

A PE

TYMSHARE

During the early parts of the evaluation, it was
discovered that the Army had a different set of se-
curity requirements from the Navy, which in turn had
a different set of requirements from the CIA, the
NSA, and so forth.

Being confronted by a multiplicity of requirements
and few resources, TYMSHARE realized that since no
security policy was universally acceptable, it was
better to provide universal tools which would enable
users to implement their own specific security poli-
cies.

One of the advantages of Gnosis is that it can pro-
vide an environment in which more than one, in fact
in which a number of policies can coexist. Each
user must follow the policy established by those in
authority who devise the policy for his group.

RSPECTIVE ON GNOSIS3

Tymshare, during the course of its research, has
tried to visualize where Gnosis fits in the spectrum
of currently available and proposed operating sys-
tems. On the Computer Security Initiative rating

Co S

s

GNOSIS

g p— -

systems, our current implementation will probably
achieve a level 3 rating. 1If we choose to produce
formal specifications, it seems possible to achieve
] a level U4 or 5 rating. Thus, Gnosis fits somewhere
betwee.. IBM's mainline products and KVM. On a per- .
formance spectrum we expect extreme variations de- '
pending wupon whether the application program can
take advantage of Gnosis features. We expect most
applications to run within a binary order of magni-
tude (either faster or slower) on Gnosis compared to '
IBM's operating systems. Most will run at about the
same speed.

SUMMARY OF GNOSIS ADVANTAGES

In summary, we expect Gnosis to provide significant
productivity benefits, major enhancements in ease of
maintenance for changirg applications, high perfor-
mance, compatibility with existing IBM programs and §
applications, and a high degree of protection for
both programs and data. These advantages may be re-
alized over a wide range of hardware configurations,
and will allow Tymshare to develop a number of com-
puter service businesses which cannot be realized
today.

P73

RV

POTENTIAL SECURE APPLICATIONS

Tymshare is now at the crossroads--with a limited
staff we can help prospective clients develop a
trusted environment for selected applications. Es-
sentially, there are four products that readily come
to mind that seem to have +the highest payoff in
terms of meeting a need for which there is no exis-
ting product.

i a i

The first, and these are not necessarily in order,
is to combine Gnosis with a relational database sys-
tem, to produce a database engine (commonly called a
backend or a database machine) which can be used to
support multi-level secure databases. 1In this case
we can support relations with multiple security lev-
els.

A second product would be a trusted message switch,
using Gnosis as a front-end processor to connect two
or three or five or ten machines, none of which
trusts any other, It might also be used as a mes-

TYMSHARE

CONC

TYMSHARE

GNOSIS

sage switch to transport messages between different
users who should not communicate with each other,
except through controlled channels.

The first two examples illustrate that Gnosis is not
particularly a replacement for MVS or for any stan-
dard operating system, but a tool with which ¢to
build almost any kind of ¢trusted high-performance
computer system.

If one combines the message switch and the rela-
tional database in the same machine, one can build a
secure transaction processing system. We have in-
vestigated the possibility of using this system to
help defense contractors who need to have subcon-
tractors! information <collected in some safe place
but cannot allow subcontractors to see each other's
information.

A network of computers between government agencies
who don't wish to share their all secrets can also
be envisioned.

The trusted intermediary - An example in the commer-
cial world 1is the case where a person has written a
program which processes seismic o0il data and another
person has some 0il data that he needs to have pro-
cessed. Neither wentity 1is willing to give up the
program or the data and yet the two of them can
cooperate with great mutual benefit.

LUSIONS

Tymshare 1is planning the future of Gnosis. We need
more information about where Gnosis is appropriate,
and where 1in government there is a need for Gnosis.
We have tried to mention a few potential applica-~
tions here which come to mind. We would like very
much to get more information about whether the ap-~
plications mentioned are appropriate.

We also are attempting to decide the value of formal
specifications. We would very much 1like to have
some information as to whether having formal speci-
fications would make a difference 1in terms of the
potential market for Gnosis. To answer these ques-
tions, we need your help.

G-15

GNOSIS

In order to provide you with more background that
has been possible in this brief 30 minute presenta-
tion, we have a considerable amount of available
literature. Some information is still preliminary,
but it describes 1in more detail the system as it
stands, and what we expect to be able to do with it.
We have available the report from the evaluation
team, which deals with the security-oriented aspects
of the system rather than the functionally oriented
aspects of the system. Finally, we are willing to
engage 1in considerable technical discussion with
those who are interested.

Computer Security Developments at Sperry Univac

Theodore M, P, Lee
Manager, Systems Security
Sperry Univac
Roseville, Minnesota

November 18, 1980

Good morning. You have heard much -- and will be hearing much
more -- about a number of efforts at the fore-front of computer
security technology research and development. We thought it
would be useful to set these efforts in perspective by talking
about how the company I work for has dealt with the subject of
computer security in the context of very large, mature operating
systems and a diverse and well-established customer base.

As you know, Sperry Univac is the computer manufacturer with the
second-largest installed customer base in the world. Our share
of the federal government market is larger than our share of the
over-all market, especially when you include our Defense Systems
Division -- which produces the U.S. Navy standard ruggedized
ship-board computers.

One would think that with that kind of customer base we would
feel strong pressures and recognize a strong incentive to quickly
produce a "trusted computer system," as that phrase is understood
here. We do perceive a concern and a need, but not ones with
much wurgency or clarity; the reasons why this is so are mostly
what I am going to be talking about.

Before I begin, however, 1°d like to make a comment, lest anyone
misinterpret my purpose. We believe that we do build trustworthy
computer systems. You trusted them when you flew into the air-
port here, ov almost anyplace else; in fact, you most 1likely
trusted them when you asked the airline to hold a seat on the
plane for you. Many of you trusted them when you took your pay-

check to the bank. If the situation in the MidEast -- or Africa.

-- or Afghanistan ~- or anyplace else -- gets much worse there
are many people who are going to trust some of our computers to
do what they are supposed to do in that eventuality. There are
also many people who are trusting our machines to help them know
if things are getting worse. And these people really do know and
care about computer security, even if they don”“t talk to anyone
much about anything. So, in a way, by replacing the word

"secure" in discussions like this by the word "trustworthy" -- so
as not to give the false impression that the computers in the
U.S. government”’s inventory are insecure -~ my friend Steve may

be making a different set of people upset with him.

So with that off my mind, what am I going to talk about?

First, I'm going to tell you a little about Sperry Univac and
what it makes.

Then I am going to tell you about what we have done over tne last
ten years or so in the name of computer security -- or that has
been done to us.

Finally, I will tell you what we have going on now and in the

near future that I think does show progress towards more trust-
worthy computer systems.

What is Sperry Univac?

Sperry Univac is the major revenue and profit-generating part of
the Sperry Corporation (until recently known as the Sperry Rand
Corporation.) It was in effect started by the U.S. Government
shortly after the second World War and has a fascinating history
-- much of which, as they say, remains to be told. Its early
progenitors -- Eckert-Mauchley and Electronic Research Associates
-—- produced the firs: modern commercial computers; (I”“1ll let the
courts argue over exactly how to word that and exactly what it
means)

We have six major product development centers -- each of which is
responsible for a different -- but coordinated -~ set of pro-
ducts, a number of manufacturing locations, and scores of sales
and customer support offices all around the world. (About half
of our business is outside the United States.)

The major product lines, then, are:

In Blue Bell, Pa. -- company headquarters -~ we make our series
90 and System 80 lines of small and medium~scale byte-oriented
computers with an architecture similar to the IBM 360/370-style
architecture, supported by our own software.

In Salt Lake City we produce communications processors and termi-

nals -- smart and dumb -- used on all the mainframes.
In Irvine, Cal. our Mini-Computer Operations -- acquired from
Varian Data Machines a few years ago -- supplies the V77 line of

mini-computers, which are sold both on their own or as OEM pro-
ducts, to ourselves and to others.

In Cupertino, Cal., ISS makes disk-storage devices.

In the Minneapolis-S*. Paul area there are two other major divis-
ions.

The Defense Systems Division produces ruggedized and other
special-purpose systems, mostly for the U.S. Defense Department,
mostly for the U.S. Navy. But it is out of there that the air
traffic control computers used at most of the major U.S. airports
come.

H-2

PN s ol

b

And finally, in Roseville, Mn -- a suburb of St. Paul -- we make
the large-scale 1100 series family of computers. The currently
produced products in that family range in size and cost from the
1100/60 -- selling for about $500,000, running at about 600,000
instructions-per-second -- to the large-scale 1100/84 -~ about
$10,000,000 at about 8 million instructions-per-second. Previous
products in that family trace back to the ERA 1101, although the
first machines with truly similar architectures began with the
1107 and 1108 in akout 1962.

The operating system for the 1108 -- called Exec 8 ~- was the
first modern multi-processing operating system that had a full-
service file system, full suite of utilities and compilers, and
supported multi-programming and interactive time-sharing. We
take pride -- and incur much technical challenge -- in the fact
that even though the hardware has been continually enhanced over
the years, the current version of the operating system still sup-
ports -- from a single source tape of the system -- all previous
versions of the hardware since the 1108. And this includes the
fact that we have added iore base registers, added new instruc-
tions, and changed I/0 and error~reporting interfaces with almost
every new model of the hardware.

The complete set of systems software for 0S/1100 contains about
ten million instructions, of which maybe 500,000 are the execu-
tive itself, a couple of million lines are in compilers, and the
rest are the data management system, transaction processing sys-
tem, and utilities. It has been estimated that the core of the
operating system -- what would form a Trusted Computing Base --
could be pared down to about thirty-two thousand instructions.

I know the foregoing sounds like a sales talk, but it is very
relevant: we have much history behind us and cannot start from
scratch. (I“11 have more to say on that shortly, because we did
try -- twice, in fact -- to start again from scratch.)

History of Computer Security at Sperry Univac

Although it can be claimed that Sperry Univac”s history of com-
puter security activities stretches back to the beginning -- we
had the first equipment approved under TEMPEST criteria before it
was even called TEMPEST -- serious attention was really given to
the problem at the start of the Exec 8 operating system first
delivered 1in about 1967. Just to make a multi-user, multi-
processing, interactive system work reliably we had to have pro-
tection features in it -- features that we thought were quite ef-
fective for their intended purpose. :

It has taken us just as long as our customers and the other ven-
dors to recognize that the picture wasn”t as comforting as it
seemed.

_—

T T R

The history of our loss of innocence parallels that of everyone
else. It probably started with our attempt to bid an 1100 series
system on the WWMCCS program. We did bid and were technically
responsive. We did meet the half~formed "security requirements"
of the RFP through major special additions to the standard soft-
ware. Partly as a result of this WWMCCS experience, but also
following close on the issuance of DoDR 5200.28, our federal gov-
ernment marketing organization put together a task force to make
recommendations on what we should be doing about computer secur-
ity. Other members of the task force came from both our domestic
and international marketing groups, and from product development.
Customer representatives were invited to present their needs and
thoughts. Perhaps coincidentally, a subcommittee - f our user”s
organization was formed at about the same time to m1 e computer
security recommendations: the report of the marketing task force
mostly echoed and endorsed the user”s report.

Both reports were issued 1in March of 1973. Notice that DoD
5200.28 had just been issued in January, the Ware report was
still classified, and the Anderson report had not yet been widely
read.

The report of our user”s group is interesting, for its history
tells much about the education and communication problems in this
field. The committee writing the report was chaired by the head
of the University of Maryland”s computer center and the other
members came from NSA, the Navy, the National Bureau of Stand-
ards, and RCA. Neither of the two reports said anything about
assurance —- as we now understand that subject -- or much about
security labelling of output media. The user”s report said noth-
ing about special access categories or compartments or about
need-~to-know lists. The marketing report strongly felt it was
impossible to fix on a single form of security policy -- such as
the DoD policy -- for all customers and instead asked for a quite
general, almost programmable, means to specify the security
"authority"™ of a user and the security "requirements" to be met
for accessing a particular file.

It took us back in Roseville a number years to draft our response

to the marketing report -- for it contained numerous detailed
recommended changes that needed to be coordinated with our other
development plans and commitments -- and we are now just about to

ship the first pieces of code implemented in response to that
process.

During this long period we have had until recently very few addi-
tional demands from our customers. In 1973 NRL commissioned a
small penetration study of a particular widely-used but already
obsolete version of Exec 8. They documented one already-known

small class of vulnerabilities -- not applicable to later ver-
sions of the exec -- and despite the fact that -- and probably
partly because of it -~ the report of the study was classified

for about six months its not-very-favorable conclusions made the

H-t

e kel o

national press, starting with Jack Anderson”s column, and even
resulted in congressional and DoD-wide investigations. I under-
stand there may have been a few other risk assessments and pene-
tration studies of our systems, but we are generally not told of
their happening or of their results.

About the only other "demands" have been in the form of the
"security requirements" of various requests-for-proposals. I
want to give you several examples, all within the last year. For
the most part, these have not clarified customer requirements.

A very large procurement from the Air Force said that the system
"must provide the capability to process personal information
under the ... Privacy Act of 1974 [and] to process defense clas-
sified information ..." without giving much of any criteria for
what that meant. It said that "An access control mechanism which
denies unauthorized access and allows authorized users to selec-
tively share data files without violating established access
authorizations ... must be provided" without saying what consti-
tutes an authorized access. The initial version of the RFP asked
that user identifiers and passwords be up to 10 characters 1long
and be system-generated, but a later re-issue of the RFP deleted
those requirements.

A Navy RFP specified that the system shall include "functions to
establish relationships between password/identifiers and any data
base or file." Nothing about what that relationship should be;
nothing about security assurance. Another Navy RFP specified
that "It is desired that the system provide multi-level security
operations; i.e., it shall be possible -- under NSA regulations
-- to process unclassified and classified jobs concurrently."
Not providing that would entail a penalty of $1,000,000 in the
first month of the 1life cycle cost estimate of the system. I
don“t know of any requlations even being contemplated by NSA
regarding Navy multi-level security.

Our commercial customers naturally seem to be even less demanding
than our government ones. This includes, for instance, financial
institutions, service bureaus, manufacturing industries, or air-
lines. The major requirements we do see here derive from the
various privacy acts of the countries we do business in, and
these are met with slight modifications to existing software.

Now, to summarize what I“ve just said: as far as I know -- and
I’ve done some careful checking ~- we have not lost a procurement
-- or even declined to bid on one -- because our systems could

not meet the customer”s computer security requirements.

Other Computer Security Developments at Sperry Univac

In addition to this main thread of the security developments con-
cerning the series 1100 systems there have been several other
activities throughout Univac related to security. In a sense,

TR

these parallel my career through the company, but I do not want
to take credit for them.

I started 1in this computer security business back in about 1972
while I was in our Defense Systems Division. At that time my
main technical expertise was in interactive computing, especially
graphics. For some reason I was visiting in the Boston area and
wanted to stop by AF ESD to see what the latest in computer
graphics was; my contact said, "We aren“t doing much in computer
graphics anymore, but we have this guy who is really gung-ho to
talk to computer manufacturers about computer security.". That
guy was Roger Schell.

Not long after, we started a small project on company IR&D funds
to learn about computer security. We ran into two problems -- we
never made enough progress that we could interest someone like
ARPA or NSA in giving us real money, and the Navy still seemed
(to us) to be of the view that computers on ships were isolated
out in the middle of the ocean and had no security problems.

Anpyway, in mid-1973 I was drafted by headquarters to move from
the Defense division to our commercial division in Roseville to
work on a project that was developing a completely new product
line, The goals were ambitious, but there was excellent manage-
ment support. Amongst many other things, the system was to have
all the security architecture -features anyone would want —-
descriptors, virtual-memory, stacks, domain-protection, program-
med entirely in a modern high-level language. We managed to get
many people to understand what a security kernel was. We hired

Jim Anderson as a consultant -- a process that required approval
by the President of Univac. But we had to deal with a fundamen-
tal fact of life -~ the new system would not be compatible with

the existing well-established series 1100 or 90 machines,
although we did intend for it to support multiple wvirtual
machines, some of which would emulate the o0ld modes. We did know
when we began the project that one over-riding constraint on it
was that of preserving our customers” software investment. Ulti-
mately, we could find no convincing way to overcome that hurdle
on a radically innovative hardware architecture and the project
was cancelled after over five-years of work.

It was shortly after the cancellation of this project -- and
partly as a consequence of what we learned during it -- that our
management recognized we d4id indeed need to better focus the
attention paid to computer security issues. It was at this time
that I was appointed to my current position with the responsibil-
ity to over-see all computer security activities.

The same recognition that the best way to move forward would be
to have a new architecture surfaced in our newly-acquired mini-
computer operations a year or two later. In some ways, that
effort made even more progress: it had as a stated goal the need
to support DoD multi-level security (in the full meaning of
that), had in fact programmed a rough-cut at the security kernel,

H~6

|
i
.
|
i
&

L i

and was starting to inquire about obtaining formal specification
and verification tools or services from outside suppliers.
Things were going well enough that we took DoD up on its offer to
look over our shoulder in an informal security evaluation.
Unfortunately, much the same fate overtook this project: the
need for preservation of the existing customer base, experience,
and software led to its cancellation.

Future Developments

Both of the cancelled projects I°ve 3just mentioned were not
wasted investments. We learned a lot -- not just about security
-~ and the results of that learning are being directly applied to
several future products of a more evolutionary, rather than
revolutionary, nature. Without giving away any company secrets,
let me tell you some about them.

We are making a number of changes to the series 1100 operating
system and the hardware architecture with sec:rity specifically
in mind, although we are doing these things for many other rea-
sons as well.

First, we will be enhancing the hardware -- in an upward-
compatible way -- to add what some of you would understand as a
segmented capability addressing structure, with a domain protec-
tion scheme. This will give finer control over accessibility,
allow the more flexible creation of protected subsystems, and
regularize interfaces so that state-switching can be made faster
through specific hardware assists. There will also be a virtual
machine facility that at least gives us the option of doing a KVM
kind of system.

Secondly, we are restructuring the operating system. Although it
already attempts to have as much code outside of privileged mcde
as possible, much more will be broken out and placed into sepa-
rate domains that have only exactly as much privilege and acces-
sibility as required. We are using more rigorous (but not vyet
mathematically formal) specification and configquration management
tools.

We are also well-along in creating a massive computer-based model
of the existing software to document its internal and external
interfaces and data structures. This includes not only the exec-
utive itself but also the data management system, utilities, com-
pilers, etc.

A second development is taking place in our communications proc-
essors. The hardware has been modified to explicitly recognize
the kind of job it is doing -- i.e., it has data structures spe-
cifically designed to take care of messages and queues of
messages. In particular, coupled in an unaccessible way with a
message are address descriptors that govern exactly what kind of

H~7

access any code processing a given message needs to have; this
includes the micro-processors that are attached to each communi-
cations line. The hardware is now designed so that the software
can be structured into many small procedures, each of which can
only access small parts of memory and can only call specific
other procedures. The planning people in Salt Lake City are set-
ting their security goals for the software that will use that
hardware; the requirements contain strong words about policy,
! mechanism, and assurance that were directly influenced by the
q kinds of things being talked about at these seminars.

Our just announced system-80 machines already have a more useful
architecture for protection than that of their ancestors and fut-
ure improvements are well underway.

Concluding Remarks

To summarize, Sperry Univac 1is a large company, with diverse
interests, customers, and products. I hope I have been able to
give you an accurate and instructive picture of how we perceive
the computer security problem and are responding to it.

We are closely following all the research activities discussed at
these seminars, but can”“t yet commit ourselves to their applica-
bility. This is a very expensive business to make experiments in
-- a small kernelized secure text-editor, filing system, and desk
calculator can in no way be viewed as a pilot-plant for a large
centralized corporate database system.

I thank you for this opportunity to share my thoughts on the sub-
ject. Notice that we all will have a second chance this after-
noon to raise some of these questions in even more detail.

o

H-8

How Can the Government and the Computer Industry
Solve the Computer Security Problem?

A Panel Discussion

Ted Lee, Sperry Univac
Jim Anderson, Consultant
Steve Lipner, Mitre
Marvin Schaefer, SDC
Bill Eisner, CIA

[At the Second Seminar on the DoD Computer Security Initiative Program,
January 15-17, 1980, Ted Lee — attempting to speak for the computer indus-
try — and Jim Anderson -—— attempting to speak for the government --
presented a "dialogue" on the subject of "What every vendor always wanted
to know about government computer users” security needs (but was afraid to
ask) " There was considerable audience interest in the dialogue, but little
time for audience participation. In fact, the interest was so strong that
we have invited them back again to pursue the issues in more detail, with
more time for audience participation, and we have put three additional peo-
ple on the panel to ensure that all viewpoints are heard.]

[At the 1last seminar Lee and Anderson were guided by a list of questions
and answers that had been prepared in advance — the questions obtained
through an informal canvassing of several vendors, the answers written by
Arderson. For this seminar, the major points of those questions have been
reduced to ten questions, which are printed below. The answers will come
from the panel.]

{All participants are speaking as individuals out of their own experience
and do not necessarily represent the views of their respective organiza-
tions.]

1. We are generally talking about the data security needs and desires of
"the government computer user." 1Is it meaningful to undertake such a dis-
cussion — i.e., is there a "typical government computer user"? Does he
care about camputer security? How does a vendor discern the computer
security needs of that user? Are those needs unambiguously documented in
accessible forms, consistent throughout the government? And does responding
to them REALLY make a difference (now or ever)?

2. What kinds of applications for computers — e.g., commnications,
transaction processing, data management, process control, general user-
programmable data processing — and what kinds of configurations — e.g.,
networks, centralized, distributed — are going to have the most severe
computer security requirements? Wwhich are of lesser importance? And what
portion of the total usage of computers does each represent?

I-1

oy

3. In various forms and in various places, such as in DODR 5200.28, AR
380-380 or NBS Special Pub 500-57, attempts have been made to categorize
camputer systems into a small number of classes of increasing sensitivity
based on factors like the amount and mix of classified or other sensitive
information involved, how benign the physical and personnel environment is,
and what kinds of interaction with the system are allowed. Without arguing
about the details of any particular categorization scheme, what mixes of
data sensitivity, user trustworthiness, and application environment is it
going to be important or highly desirable to support? (e.g., is it meaning— - ‘i
ful and important to think about handling Top Secret information on a sys-— !
tem with same people having only Confidential clearances programming in P
assembly language?) "

4. In the first question we asked generally about whether the '"typical
government camputer user" knew and could express what he needed or desired
in the way of computer security. Specifically then, what kind of security
policy DOES that user want his computer system to support — i.e., what
rules should it enforce? What information is to be used in enforcing the
rules? How is the system to interface with the manual world (e.g., marking
of output)? And what kind of auditing procedures are to ke supported? How
fine a granularity (e.g., file, record, field within record) are the rules
and other measures to be applied to?

5. How badly does he care that the policy discussed above be applied?
What is the perceived importance of the possible threats to it? (e.g., ex-
ternal physical attack, active or passive wiretapping, human error or cul-
pability, malicious legitimate user — cleared or not ~-~ attempting techni-
cal subversion of the operating system, collusion through Trojan Horses and
covert channels, or trap~doors planted at the vendors hardware or software
factory?)

6. We are all generally aware of the efforts being made to establish some
form of government bureaucratic apparatus for certifying the trustworthi-
ness of camputer systems. Will this really happen? When? Where will it be?
How will it operate? Will the criteria it applies look much like the draft
criteria that now exist? Will it truly be able to make a more standard]
approach to computer security possible throughout the government? What '
effect will it really have on future procurements — both inside and out-
side the government? {And, how reliable are the answers to those ques-—
tions?)

7. Some aspects of the technology and the certification criteria being
developed imply radical changes in the way vendors develop their systems
and how they interact with at least their government customers. 1o what
extent is the government going to need closer scrutiny of a vendor”s inter-
nal development operations? Will it be able to do so in an impartial way
and without directly or indirectly -- for instance, by the way it words a
procurement — revealing proprietary information of one vendor to another?
What aspects and physical copies of a highly trustworthy computer system
are going to need to be treated as classified? Who will have the responsi-
bility for maintaining the security kernel software? What new export con-
trol restrictions will apply to this new technology?

8. A significant amount of new software technology is involved in the
current government-fostered development of "secure computer systems." Of
the various options being currently explored — security kernels on more-
or-less conventional architectures, capability architectures, encryption as
a substitute for other forms of security, different specification, verifi-
cation, and implementation tools and languages - will any particular ones
emerge as "best" (either through natural selection or through government
fiat)? Will computer security technology ever be good enough that less
attention needs to be given to other forms of security?

9. Are the current R&D efforts credible? — they ignore hardware and
micro-~code problems, appear to have grossly unacceptable performance penal-
ties, and are perceived to have been done on only limited purpose or "toy"
systems. What about enforcement of "need-to—know" principles and other
rules in addition to the over-simplified partitioning of the world into a
few security levels and compartments?

10. Wwhat is the economic impact of all these computer security develop-
ments — i.e., how much are users willing to "pay" for security (including
incompatibility, overhead)? Does it make sense for a vendor to attempt to
offer security as a (possibly high-priced) option? When will strong
requests for security show up in RFP“s? What kind of market forecast could
one make —i.e., $§ value of systems to be bought in each of the years 1980-
1995 at each of the levels 0-5 of the Mitre TCB evaluation criteria?

I-3

OPENING STATEMENT
COMPUTER SECURITY

(S. B. LIPNER)

In late 1970--just about ten years ago--I returned from a field
assignment and was asked by MITRE to look at the computer security
problem. At the time we were looking at needs for a multilevel
secure time-sharing system and a multilevel secure command system—-
both at unclassified through secret levels. Neither system has yet
gone operational as required, though in the intervening years we did
achieve some significant things. As far as I'm concerned three of
the most significant (in no special order) were:

(1) The development of the Bell-LaPadula (star-property) model
and a set of formal techniques for proving that system
Security complies with the model;

(2) The development of a Multics time-sharing system that
embodies the *-property (but is not proven) and is in
multilevel use today (though all users have some level of
clearance):; and

(3) The development of a prototype security kernel for the
PDP-11/45 that was subject to limited proofs of compliance
with the *-property and demonstrated in simulated
multilevel applications.

In the early seventies if we talked to industry about security,
the responses we got were "if you just tell us your requirements,
we'll meet them". I think those responses were oversimplified. 1If
the requirements are the star~property and proofs nobody in industry
is enthused about meeting them. And I'm not sure whether they
should be or not.

I do think a lot can be done to make systems better for many
requirements. The Multics effort--adding the star-property,
plugging the holes, and limiting the risk--is a neat example. I'm
not sure that industry is really seizing on that example and
emulating it to give customers more choices. I'm also not sure that
the government is emphasizing the utility of such systems.

I also worry about security kernels. The original kernel idea
(from the Anderson Report) was to have a mechanism that was always
invoked, tamperproof and small enouch to be subject to complete
analysis and tests. Our prototype for the PDP-11/45 and Jerry
Popek's were about 1000 lines of HOL each. KSO0S-11 is around 10,000
lines. Some of that growth is for efficiency and real-world
features. Some is the introduction of neat advanced operating

B

U

system concepts that may not be necessary for a small simple secure
kernel. I wonder if our desire to do things in the neatest, most
advanced way has compromised our ability to adhere to the original
Anderson Report principles. I read Lee Schiller's kernel (cover to
cover) one night in a hotel room. A proof has to be awfully good to
be as convincing as reading and comprehending the entire kernel.

Since leaving the security business in 1976, I've been working
on acquisition of fielded systems for the Air Force. Security has
raised its head a few times and I've thought of the option of
building a kernel for the job. 1I've always avoided that option in
favor of the best off-the-shelf approach available--even if that
approach was less secure than I'd like or operationally painful.
The cost and schedule risk of building a kernel for a real fielded
system has just been too great. But I've been dissatisfied both
with what I've had to do and with the quality of the options
available to me. If there were more products comparable to the
Multics system I mentioned above in level of security (not in
specific features) I'd have been much happier with my options and
results. This represents a reversal from positions I took in
1973-75--but a realistic one. And if there were off-the-shelf
usable kernels that, of course, would be great. The important point
is that off-the-shelf options will get used while development gets
avoided.

I'd like to think that some synthesis would occur merging the
advanced security ideas with the needs of the broader market and the
realities faced by industry. Everybody can compromise some and
still get significant improvements in capability and security. The
important thing is off-the-shelf capabilities available to a user.

I hope these conferences are a step toward dialogue, compromise and
the delivery of more real systems.

AD=A101 996 DEPARTMENT OF DEFENSE WASHING6TON DC F/6 9/2
PROCEEDINGS OF THE SEMINAR ON THE DOD COMPUTER SECURITY INITIAT-ETC(U)
ap 8

| Qj[...........

UNCLASSIFIED
20or 3

RN

P

Quality Assurance
and Evaluation Criteria

Grace H. Nibaldi 7

MITRE Corporation : ;
\ 4

Seaad s

4)

Problem

B e S St

o

How does One Build Quality Trusted Software in
the Face of:

-

Large. complex operating systems
High-inteyrity applications
t.asilk penetrable computer systems

-
—

Solution

1 d Saof E

inq Approach

Inc o;rpor:ting:
Policy
Mechanism
Assurance

Policy

g e

Integrity
Desial of Service

Mechanism - Trusted
Computing Base

Complete
isolated i
Verifiable !

Assurance

Software Life-Cycle
System requirements

Design

Code and debug

Testing

O O and mai e

J-2

- e

s A SraMMA e o ke ded skWina

£

Assurance

Software Development Approaches

REQUIRFMENTS] |DESIGNOR | | pgopuic 1
SPECIFICATION r" DEVELOPMENT 1| spg (1) ATION

SPECIFICATION)
ra
/ . ¢
A '
RE QUIREMENTS| cont |
{
/ i
+ ORMAL '
P FORMAL i
SECURITY A
L N !
ODEL] setCwicanc Y

Evaluation Criteria for
Trasted Systems

No protection

Limited access control
Extensive mandatory security i
Structured protection mechanism
Design verification

Code verification

Hardware specifications

oW e W~ O

A e L

Mechanism

Prevention Collusion Recovens - Hardware
thata protes 1wn 5 Timung & worage chanfele o pare Fout Det
1 Adcceve omtrot Detection 1 Disgmatic »
Subverier progr.
System niegriv Audhi loggng ¢ i -
1 blated ON 2 Violstiona HW taull tolerance
} Uiser por prcess 2 Clanaified output 4 Lumwted operation
3 bolated protes hon mec harsam 2 Tume of use H W lault recoven,
3 Complete meduton 2 Logne 5 Backup wetems
Authenx stron 4 Leakage channch & Sell-dhagnosie & <orvec tion
11 ogmn (user) 5 Real-tvne surveillance Jooks o

2 Specut character
1 Backup recoveny

Diersal ol Servace 2 Outpur _
2 Fime abng « Confauration management
¢ Masquerading ¢ Reverifuc ation
5 Space quotas

\\ _J

Assurance
Dwsige Tasting Vevification
Methodology, Production teshing Design 1o model proof
1 Good engrg practice § Debuggng § Flow snalysie
3 Strucrured methodoloy 1 Func tional teasing @ Invarianis
3 Topdunum desisn 3 Based on TLS 5 Code to design proafs
":‘""""' T""F":: nb’“‘"""‘“" 6 Object code to source proots
4 bormal TLS 5 From low bevel specs 6 H'W spec snalyzed againet TLS
5 1ow level specs 6 From H/W specs
6 H W speciicanons Penctration
lmplemcatation 2 Peneiration & patch

5 Tirrung channels
1 Imnges none

2 Madern programemng tec hmiques
1 Mrw tured programmng
§ Verhable splementation

' a8 A

Assurance

Desé -

Implementation 3
. L

Testing d

Verification

J-4 .

Assurance

Methodology
Formal specifications

Assurance

Implementation
Methodology

Verifiable implementation

-

(

Testing
Production testing
Test case generation
Penetration analyeis

J-5

Sxhaik to o b e a -

Assurance

Verification

Design to model
Code 10 desé

Object code to source code
Hardware

To Come

Specification & Verification .
Specification & Verification o "'":m
Soltware Testing Overview Researc!
Trusted System Developers

~

Termimelogy
Role of Verifi n Security
T 48 Acanisiti

4
i
o ok bove. ot —— e s "T*'J

adtnian kg

Specification and Verification ,
Overview I

William F. Wilson
? LMITRE Corporation

~)

Questions

What is formal verification?
What properties can be proved about a system
design?

What properties can be proved about an
implementation?

The Problem

ARt THESE CONSISTINT? :]
- EMENTATOA

——

R W

The Problem Dissected

~orseAl o won < oo
e Lmy mvew Lrossa | vemsuanon QRMAL ATREK AT
v lunn J |) J

~ B

Software Development Approaches

DESIGN OR T
SPECIFICATION [| SEVELOPMENT) SprCIFICATION

r-====--" %—___""——___""""_"'"""\ ''''' |
! 5
il

! |neQuireMENTS| CODE |
1 1
" /)
')
: FORMAL :

SECURITY .

: MODEL SPECIFICATION \\
S J

Types of Models

Access Control
Considers subjects and objects
Requirements:

a) If S has read access to O, security — level (S) >
security — level (O)

b) I S has write access to O, security — level (S)<
security — level (O)
Flow Analysie
Considers system variables
Requirement:

If information can flow from A 10 B, security — level (A)<
security — level (B)

Formal Specifications

State Machine
Relates values of variables before and after operations
Example
Exchange (X, Y)
New — value (X) = Y,
New — value (Y) = X;

Algebraic
Relates results of sequences of operations
Example
Exchange (Exchange (Pair)) = Pair;
First (Exchange (Pair)) = Last {Pair);
Last (Exchange (Pair)) = First (Pair).

Levels of_ Specifications

-

Stepwise Refinement
Lower levels describe the same operations in greater detail

Hierarchical

Lower levels describe
higher levels

used (o impiement

P

\

Design Verification -
What is Proved?

Proof of Consistency Between Model and
Specification

State invariants

Transition properties

Asenmes:

Model is appropriate

Specification is complete

K-3

Design Verification -
Practical Considerations

Ussally Dene with A tic Th P
Easier thas Cede Verification

Caa be Useful without Code Verification

Must be an Early Part of Software Development

Code Verification

Entry Assertion 1=0 J=0
prog‘ram exchange

Exit Assertion Iinal = Jstart

Jfinal ~ lstart

Prove: Iif the entry assertion is true when the program
begins, the exit assertion will be true when the
program ends.

Inductive Assertion Method

Introduce intermedinte Assertions
Assertion 0 (Entry)

Code 0

Assertion |

Code 1

Assertion N-1

Code N-1

Assertion N (Exit)

Prove: if Assertion | is True, then Aseertion | + 1 will
be True After Code | is Rus.

Verification Conditions

K-4

Loops

bty Aseertion

(-3
]

Loop Assertion

L% kit Assestion

zm.

Partial Correciness

Code Verification -
Practical Considerations

[

Harder than Desiys Verification

Many lang verification conditions

Need loop assertions

Practical Only for Critical (Small) Portions of Code
Requires A ic Th Provers

Part of the Software Development Process

(.

Role of Automatic Theorem Provers

Masy Lowg Theorems to Prove
Repeatable Results

Summary

Formal Verification: Prool of Consistency

Design verification:
Consistency between model and specification
Assumes:
Model is appropriate
Specification is complete

Code verification:
Consistency between specification and implementation
Assumes:
Specification is appropriate
Implementation language is correctly defined

FDM ~ A Specification and Verification Methodology
Richard A. Kemmerer ¢

System Development Corporation
Santa Monica, California 90406

1. Introduction

System Development Corporation’s Formal Development
Methodology (FDM) is an integrated methodology for the
design, specification, implementation, and verification of
software, FDM enforces rigorous connections between succes-
sive stages of development. The FDM is used as follows:

1. The correctness requirements for the software are

modeled.

2. A top-level design specification is written and ver-
ified to be consistent with the model.

3. The design specification is repeatedly refined to
include more detail until a program design specif-—
ication is derived.

4. The intermediate design specifications and the pro-
gram design specification are verified as the
refinement process is carried out.

5. An implementation is coded from the program design
specification and this implementation is verified
to be consistent with the program design specifi-
cation,

By verifying that specifications are <consistent with the
model, design werrors are detected immediately rather than
during implementation verification.

A key point about the FDM is that all theorems to be
proved about specifications and implementation are generated
automatically by the verification system. In addition,
development stages are integrated: the output of one stage
is used as the input to the next; a user need not massage
the data into the format needed for the next stage. Furth-
ermore, since all tools run on the same machine, the output
from one tool is written directly on a file used as input to
another tool.

2. The Ccmponents of FDM

Four basic components comprise the FDM verification

system. These are the Ina Jo specification language, the
Ina Jo processor, the interactive theorem prover (ITP), and
the v.rification condition generator (VCG). Each component

Richard Kemmerer is a consultant to System Development
Corporation working on enhancements to the FDM. He is
an Assistant Professor in the Computer Science Depart-
ment at the University of Californmia, Santa Barbara.

a

e b e e .

PO T

B e

-

is discussed in detail in the following sections.

2.1. The

na Jo Language

The Ina Jo language is a non-procedural assertion
language that is an extension of first-order predicate cal-
culus., The language assumes that the system is modeled as a
state machine. Key elements of the language are types, con-
stants, variables, definitions, initial conditions, cri-
terion, constraints, transforms, modules, levels, and map-
pings. The following paragraphs contain examples of some of
these elements, An Ina Jo Specification that contains these
examples is presented in Appendix A.

Some examples of types are:

type element,
subject{(element,
access = (read,write,append,exec),
accesses = set of access

The type element is an unspecified type and subject is an
unspecified subtype of element. The only operation that is
defined on unspecified types is equality, Access is an
enumerated type with four possible values, and accesses is a
set of type access. The only primitive types in Ina Jo are
integer and boolean.

The initial condition is an assertion that must hold
for the initial state of the system, The following initial
condition specifies that initially no subject has access of
any type to any object.

initial A”"s:subject,o:object
(accesses_allowed(s,o0) = empty)

The correctness requirements of the system are modeled
in Ina Jo by the criteria, The criteria was originally a
conjunction of assertions called <criterion that specified
what was a good state., These are often referred to as state
invariants since they must hold for all states. In the pro-
cess of specifying real systems it was found that it was
often necessary to include restrictions on the relationship
of one state to the next in the model. To meet this demand
a constraint was added to the criteria. The <constraint is
an invariant about state transitions that compares the old
and new states., Thus, although it is not in agreement with
the English language an Ina Jo correctness criteria is made
up of the conjunction of the individual <criterion and the
constraint, The following example of a criterion specifies
that for all subjects s and objects o if s has write access
to o, then the class of s is equal to the class of o and the
category of s is equal to the category of o.

P

A” s:subject, o:object(
write{(:accesses_allowed(s,o)
-> class(s)=class(o) § catg(s)=catg(o))

An Ina Jo transform is a state transition function it
specifies what the values of the state variables will be
after the state transition relative to what their values
were before the transition took place.

Only a subset of the Ina Jo language has been presented
here. A complete description of the language can be found
in the Ina Jo Reference Manual [LSS 80] and in the tutorial
overview [Egg 801.

2.2. The Ina Jo Processor

The Ina Jo processor reads specifications written in
Ina Jo and produces theorems to be proved by the interactive

theorem prover. Two types of theorems are generated by the
processor: consistency theorems and correctness theorems.
Consistency theorems guarantee that the effect of a

transform is not false, that defined terms are well defined,
that type restrictions are observed, and that mappings are
consistent, These theorems are usually existentializations.
For instance, if the effect part of a transform <contains
N”"x=x+1 and N”x=x then a theorem is generated stating that
there exists an element of the type of x that satisfies
these two conditions. Since this reduces to false the
specification cannot be proved consistent.

A number of correctness theorems are generated by the
Ina Jo processor. One states that the initial conditions
satisfy all of the criterion, This guarantees that the sys-
tem is initially in a good state. In addition, for each
transform in the top-level specification a theorem is gen-
erated that guarantees that the transform satisfies the cri-
teria. This theorem states that if the old state satisfies
all of the «criterion then the new state will also satisfy
all of the criterion, and that the relationship between the
o0ld and new states satisfies the comstraint, Since the imi-
tial state is shown to satisfy the criteria, and following
any transform that starts in a state that satisfies the cri-
teria the new state satisfies the criteria, by induction one
can conclude that all states satisfy the criteria,

In addition to the theorems generated for the top-level
specification, it is mnecessary to generate correctness
theorems that guarantee that each lower—level specification
correctly implements the corresponding higher-1level
transform with respect to the mappings.

Finally, it is possible to introduce transforms at the
lower levels that do not correspond to any transform at the

level above; it is necessary to generate correctness
theorems for these transforms that pguarantee that they
satisfy a mapping of the criteria.

In addition to generating consistency and correctness
theorems the Ina Jo processor must generate entry and exit
assertions for each of the high order 1language procedures
that implements a transform in the program design specifica-
tion. To do this the Ina Jo processor needs to know how the
objects of the 1lowest level specification (program design
specification) map on to objects in the high order language
(HOL) implementation. This is provided by the implementa-
tion specification which is nothing more than these map-
pings. Thus, the Ina Jo processor for this step in the
verification process accepts as input the program design
specification and the implementation specification and out-
puts the entry and exit assertions for the HOL procedures
that implement transforms of the program design specifica-
tion.

2.3. The Interactive Theorem Prover

The interactive theorem prover (ITP) aids the wuser in
documenting the proofs of long theorems, The ITP uses the
principle of reductio ad absurdum (proof by contradiction).
That is, the first step in the proof process is for the ITP
to automatically assume the contrary and the wuser then
proceeds to show that this assumption reduces to false.

The design of the ITP adheres to the following objec-
tives: all proofs must be avtomatically checked for sound-
ness, the user must be in complete control, the output must
be inmn a format that can be audited, and the user must be
relieved of typing voluminous amounts of information that
can be typed by the theorem prover under user direction,
The following paragraphs discuss how these design objectives
have been met.

Each time the user directs the ITP to perform a step
the ITP checks its knowledge base to see if the step is log-
ically sound., If the step is not logically soumd it will
not be performed and the user will be notified.

The proofs are written in a human-readable form by
adopting a Dewey Decimal like line numbering scheme that
indicates the step sequence in the proof as well as the
nesting level. That is, each time a new step of the proof
is executed the last part of the line number is incremented
by one. In addition, each time a theorem is needed to com-
plete the proof the user states the theorem and the current
line number has a decimal point and a one appended to it to
arrive at the next line number. Thus, each decimal point
indicates the nesting of theorems being proved. When the
proof of a theorem is completed the last decimal point and

L-4

o

o 4

TS T

any numbers following it are removed. The proofs are also
made more readable by appending English justifications to
each proof step. For instance, when the ITP automatically
assumes the contrary this step has "ASSUME” appended to it.
Also, if a reswlt of false is derived from contradicting
statements at steps 11.3 and 11.12, then this step has
*(11.3 11.12)CONTRADICTION” appended to it.

The ITP accomplishes automatic deductions by generating
corollaries to proof steps. These corollaries are numbered
with the proof step number followed by a hyphen and then an
integer value (see example below). An example of when
corollaries are generated is when the proof step is a con-~
junction of predicates and the ITP automatically and splits
these into the individual <conjuncts each as a separate
corollary. Although the ITP performs most deductive steps
automatically, it never enters into lengthy excursions to
heuristically discover deductions, For instance it never
attempts substitutions unless the user requests a particular
substitution.

To give an example of the numbering scheme and the
proof by contradiction approach consider the following
scenario. After executing proof step 99 the wuser realizes
he would like to have a theorem to use in the proof; there-
fore, he states this theorem as step 100,

100 BT § H2 § H3 ~-> C1 § C2
The theorem comsists of three hypothesis H1, H2, and H3 and

two conclusion C1 and C2. Since the ITP uses the method of
proof by contradiction it automatically assumes the con-

trary. In addition since the proof of this theorem intro-
duces a new level the next line number is the previous line
number with " .,1” appended to it. Thus, the next line is

100.1 H1 § H2 § H3 § (~C1 | ~C2)

Next the ITP automatically snd splits this conjunction get-
ting the following four corollaries.

100.1-1 H1
100.1-2 H2
100.1-3 H3
100.1-4 ~C1 | ~c2

The user next proceeds to prove that ~Cl1l is false and that
~C2 is false which yields corollary 100.1-4 to be false,
which reduces 100.1 to false, and thus proves the theorem
stated at line 100,

A detailed discussion of the ITP can be found in the
ITP User’'s Manual [Sch 801.

L S A W

o
i
1

2.4. The Verification Condition Gemerator

For the verification process to be complete, it is
necessary to perform <c¢ode level proofs in additiom to
specification verifications, To meet this need a verifica-
tion condition generator (VCG) for Modula is currently being
boilt. The VCG accepts as input the asserted HOL <code of
the implementation and the entry and exit assertions output
by the Ina Jo processor, The output of the VCG is the
verification conditions (theorems) that assert that each
subroutine satisfies its exit assertion assuming that its
entry assertion holds at the ©point of invocation, The
verification conditions output by the VCG are used as input
to the ITP which is used to prove them.

3. Applications of the FDM
The FDM has been thuoroughly tested on a variety of
real-world problems, Most noteworthy of the systems to
which the FDM tools have been applied include:
1. An operating system kernel for KVM/370
2, Three kernels for a secure network system
3. A capability based Secure Transactiom Processing
System (STPS)
4, A system for auntomating the periods processing for a
large scientific processor using a Job Stream
Separator (JSS) approach
5. A secure network front-end

For KVM the kermel as well as four trusted processes
running on the kernmel had top-level specifications written
and verified. The top-level specifications are to be
refined to lower 1level specifications which will also be
verified. '

The specifications for the second system were written
by non-SDC personnel, These specifications included top-
level specifications for three different kernels of which
each node of the system was comprised. Each of the specifi-
cations was verified to be consistent with its correctmness
criteria,

For the STPS there were three levels of Ina Jo specifi-
cation written of which the top two were verified to be con-
sistent with the STPS correctness criteria.

There are presently two levels of specification written
for the JSS., The top—level specification has been verified)
and the second level specificationm is in the process of ‘
being verified, The code for this system is being written
in Modula, and the Modula VCG will be used to perform code
level verification of the system,

The specification and verification of the secure

b i St i a e .

network front-end is also currently im process.
includes an executive and twenty trusted processes, At the
present time the top-level specification for the executive

has been written and verified and the second level
ﬁ cation is being written. In addition top-level specifica-
tions for two of the trusted processes are being written,

This system

Parts of this system may be verified down to the code level.

The Formal Development Methodology is a

specification

and verification methodology that is well integrated and
rigorous. FDM is capable of performing verification against

a variety of <correctness <criteria without requiring any
.changes to the tools., The methodology has been successfully
applied to a number of complex real-world systems,

to date none of these verification efforts have been carried
to code level, this will be done in the near future. FDM is

a useful methodology for systems that warrant
formal verification.

S. Acknowledgments

the <cost of

The principal designers and implementors of the FDM and

its tools are John Scheid and Val Schorre. Also currently

active in enhancements to the tools are Sue
Paul Eggert.

6. References

Landauer and

[Egg 80] Eggert, Paul R., "Overview of the Ina Jo Specifica-

tion Language,” System Development
document SP-4082, October 1980.

Corporation

[LSS 80] Locasso, R., J. Scheid, V. Schorre, and P. Eggert,

”"The Ina Jo Specification Langua
Manual,” System Development Corporat
TM-(L)-6021/001/00, June 1980.

ge Reference
ion document

[Sch 80] Schorre, V., "The Interactive Theorem Prover (ITP)
User's Manual,” System Development
document (in preparation).

Corporation

specifi-

Although

Appendix A - A Specification Example

00010 $TITLE EXAMPLE

00020 SPECIFICATION EXANPLE %
00030 LEVEL TOP_LEVEL

00040

00050 TYPE ELEMENT,

00060 SUBJECT < ELEMENT.

00070 OBJECT < ELEMENT

00080

00090 TYPE ACCESS = (READy WRITE, APPEND» EXEC)»

00100 CLASSIFICATION»

00110 CATEGOKY

00120

00130 TYPE CATEGORIES = SET OF CATEGORY:s

00140 ACCESSES = SET OF ACCESS

00150

001460

00170 CONSTANT

00180 - CLASS(ELEMENT) ICLASSIFICATION»

00190 CATG(ELEMENT) iCATEGORIES

00200

00210 CONSTANT

00220 OK_TO_WRITE(SISUBJECT »0L{OBJECT) {BOOLEAN =

00230 CLAS8(8) = CLASS(0)

00240 & CATG(S8) = CATG(D)

00250

00260

00270 VARIABLE {
00280 ACCESSES-.ALLOWED(SUBJECTOBJECT) :ACCESSES

00290

00300

00310 INITIAL

ggggg A°*SISUBJECT»0lOBJECT (ACCESSES.ALLONED(S:0) = EMNPTY)
00340 CRITERION

00350 A*SISUBJECT»0:0BJECT(

00360 (WRITE <: ACCESSES_ALLOWED(S+0)

00370 ~> CLASS(8S) = CLASS(0) & CATG(S) = CATG(0))
00380) :

00390

00400 TRANSFORM GET.WRITE.ACCESB(S:SUBJECT»0:0BJECT) EXTERNAL
00410 EFFECT

00420 A*S1ISUBJECT01:0BJECT(

00430 N*ACCESSES.ALLOWED(S1,01) =

00440 (OK.TO_-WKITE(S:0)

00450 § 61 =8

004460 $ 01 =0 >

00470 ACCESSES.ALLOWED(81,01) 1I S*(WRITE) :
00480 <O ACCESSES.ALLOWED(51,01))]
00490) 3
00500

00510 END TOP.LEVEL
00320

00530 LEVEL SECOND_LEVEL UNDER TOP_LEVEL L
00540 '
00550 TYPE ELEMENT,
00560 SUBJECT1 < ELEMENT,
00570 OBJECT < ELEMENT,
00580 SUBJECT2 < OBJECT
00590
00600 TYPE _ 4
00610 ACCESS = (READ» WRITE: APPEND» EXEC)» ;
00620 COM_ACCESS = (READ» WRITE), :
00630 CLASSIFICATION = (UNCLASSIFIED» CONFIDENTIAL»
00640 SECRET» TOP_SECRET)»
00650 CATEGORY ‘
00660]
00670 TYPE CATEGORIES = SET OF CATEGORY» b3
00680 FILE_ACCESSES = SET OF ACCESS, :
00690 COM_ACCESSES = SET OF COM_ACCESS :
00700 i
00710
00720 CONSTANT
00730 CLASS(ELEMENT) :CLASSIFICATION,
00740 CATG(ELEMENT) {CATEGORIES
00750 &
00760 CONSTANT |
00770 . OK.TO_WKITE(S:SUBJECT1,0:0BJECT) : BOOLEAN = |
00780 CLASS(S) = CLASS(0) !
00790 8 CATG(S) = CATG(D) :
00800 a
00810 VARIABLE 2
00820 ACCESSES_GRANTED(SUBJECT1»0BJECT) :FILE_ACCESSES |
00830 COMMUNICATION_ACCESSES (SUBJECT1+SUBJECT2) : COM_ACCESSES»
00840 ACTIVE_USER1(SUBJECT1) { BOOLEAN
00850 ACTIVE_USER2(SUBJECT2) { BOOLEAN

: 00860

; 00870 INITIAL
00880 A'E1rE2SELEMENT(
00890 ACCESSES_GRANTED(E1sE2) = EMPTY
00900 2 (E*S1:SUBJECT1,S2!SUBJECT2(S1 = E1 & S2 = E2)
00910 -> COMMUNICATION_ACCESSES(E1+E2) = EMPTY)
00920)
00930 % A*S1:SUBJECT1(YACTIVE_USER1(S1))
00940 % A*S2:SUBJECT2(~ACTIVE_USER2(S2))
00950
00960 TRANSFORM GRANT_SEND(S1!{SUBJECT1,52:5UBJECT2)
00970 EFFECT
00980 A*T1:SUBJECT»T2:SUBJECT2(
00990 N*COMMUNICATION_ACCESSES(T1,T2) =
01000 (OK_TO_-WRITE(S1,52)
01010 $ ACTIVE_USER1(S1)
01020 $ ACTIVE_USER2(S2)
01030 t T1 = 81
01040 T T2 = §2 ->
01050 COMMUNICATION-ACCESSES(T1,T2) 11 S§°¢
WRITE) E
01060 < COMMUNICATION_ACCESSES(T1,72))
01070)

01080

01090 TRANSFORM GRANT_WRITE(S:SUBJECT1»,0l0BJECT)

|
{‘

01100 EFFECT

01110 A*S13SUBJECT1,01:0BJECT(

01120 N®ACCESSES_GRANTED(S1,01) =

01130 (OK_.TO_WRITE(S,0)

01140 $ A°S2ISUBJECT2(S2~=0)

01150 8 S1 =5

01160 t 01 =0 =>

01170 ACCESSES_GRANTED(S1,01) 1} S*(WRITE)

01180 < ACCESSES.GRANTED(S1,01))

01190)

01200

01210 TRANSFORM LOGON(S:SUBJECT1) EXTERNAL

01220 EFFECT

01230 A*S13SUBJECT1(

01240 N*ACTIVE_USER1(S1)=

01250 (S1 =8 => TRUE

01260 < ACTIVE_USER1(S1)

01270 »

01280 3 A°S2:SUBJECT2(

01290 N*ACTIVE_USER2(S2)=

01300 (s2=35 => TRUE

01310 <> ACTIVE_USER2($2)

01320 »

01330

01340 MAP

01350 ELEMENT =s ELEMENT,

01360 SUBJECT == SUBJECT1vs »
01370 OBJECT == OBJECT, t
01380 ACCESS w= ACCESS»

01390 CLASSIFICATION == CLASSIFICATION, }
01400 CATEGORY == CATEGORY,

01410 CATEGORIES == CATEGORIES: {
01420 ACCESSES == FILE_ACCESSES, 3
01430 READ == READ, l
01440 WKITE == WRITE,

01450 APPEND == APPEND»

01460 EXEC == EXEC)

01470

01480 CLASS(E) == CLASS(E)»

01490 CATG(E) == CATG(E),

01500 OK-TO_WKITE(S»0) == OK_TO_WKITE(Ss0)s

01510

01520 ACCESSES_ALLOWED(S,0) ==

01530 (E*S2:SUBJECT2(D = §2) =>

01540 COMMUNICATION_ACCESSES(S+0)

01550 <> ACCESSES_GRANTED(S¢0)) s

01560

01570 GET_MRITE_ACCESS(Ss0) ==

01580 (E*S2!SUBJECT2(S2 = 0) =>

01590 GRANT_SEND(S,0)

01600 & NC®(ACCESSES_GRANTED)

01610 < GRANT_WRITE(S,0)

01620 & NC*(COMMUNICATION.ACCESSES))
01630) 1
01640 3
01650 END SECOND.LEVEL g
01640 -
01670 END EXAMPLE

L~10

FDM

A FORMAL METHODOLOGY
FOR SOFTWARE DEVELOPMENT

FDM

* INTEGRATED METHODOLOGY FOR DESIGN, SPECIFICATION,
IMPLEMENTATION AND VERIFICATION OF SOFTWARE

¢ ENFORCES ESTABLISHMENT OF RIGOROUS CONNECTIONS
BETWEEN SUCCESSIVE STAGES OF DEVELOPMENT
— IDENTIFICATION AND MODELLING OF REQUIREMENTS
~ DESIGN SPECIFICATIONS
~ VERIFICATION OF SPECIFICATIONS
~ PROGRAM DESIGN SPECIFICATIONS
- VERIFICATION OF IMPLEMENTATION

~

TOOLS OF FDM

SPECIFICATION LANGUAGE (INA JO)

LANGUAGE PROCESSOR

INTERACTIVE THEOREM PROVER (ITP)

VERIFICATION CONDITION GENERATOR (VCG}

Tl

PROOF EVIDENCE

s

IMPLEMENTATION ﬁ} ASSERTED
SPECS IN INA JO HOL

ENTRY AND EXIT

INA JO ASSER’ -1om o
PROCESSOR]
HINTS

THEOREMS TP THEOREMS

| PROOF EVIDENCE

INA JO LANGUAGE

* STATE MACHINE REPRESENTATION
* NON-PROCEDURAL

o ASSERTION LANGUAGE: EXTENSION OF FIRST-ORDER
PREDICATE CALCULUS

* LANGUAGE ELEMENTS
— TYPES
~ CONSTANTS
— VARIABLES
— DEFINITIONS
— INTTIAL CONDITIONS
— CRITERION
— CONSTRAINTS
— TRANSFORMS
— MODULES
— LEVELS
- MAPPINGS

* TYPE ELEMENT,
SUBJECT < ELEMENT,

OBJECT < ELEMENT

* TYPE ACCESS = (READ. WRITE, APPEND, EXEC),
ACCESSES = SET OF ACCESS

* TYPE TIME = INTEGER

¢ CONSTANT
CLASS (ELEMENT) : CLASSIFICATION

* VARIABLE
ACCESSES__ ALLOWED (SUBJECT,0BJECY): ACCESSES

¢ DEFINE
OK__TO_. WRITE {S:SUBJECT, 0:0BJECT): BOOLEAN = =
CLASSIS} = CLASSIO)
& CATGIS) = CATGIO)

-

4)

* INITIAL

&

A" S: SUBJECT, O: OBJECT
(ACCESSES ALLOWED (5.0! = EMPTY)

* CRITERION
A”S- SUBJECT O: OBJECT (
WRITE < : ACCESSES ALLOWED (S.0/
~= CLASSIS) - CLASSIO! & CATG(S) - CATGIO}

* CONSTRAINT

a2

N TIME > TIME N'TIME - O & TIME > O

* CRITERIA = CRITERION + CONSTRAINT i

¢ CRITERION IS AN INVARIANT ABOUT STATES

* CONSTRAINT IS AN INVARIANT ABOUT STATE ,
TRANSITIONS

- J v

(")

* TRANSFORM GET__WRITE__ACCESS {S:SUBJECT. 0:0BJECT)

EXTERNAL
EFFECT
A" SI: SUBJECT. Ol: OBJECT {
N ACCESSES__ALLOWED (S1, O)) =
{ OK_TO_WRITE (S,0}
48)=8§

L0I=0
=> ACCESSES _ ALLOWED (S!. O} || " IWRITE)

<> ACCESSES__ ALLOWED (S.00

MAPPINGS

o ALL TYPES, CONSTANTS. VARIABLES, AND EXTERNAL
TRANSFOAMS ARE MAPPED TO THE NEXT LOWER LEVEL

* EG.
GET_WRITE ACCESS (8,0] = =
! (€ 82 SUBJECT21{82 ~ O} >

GRANT__ SEND (5.0}
& NC” (ACCESSES _GRANTED) 1
<> GRANT_WRITE (5.0}

& NC" ICOMMUNICATION ACCESSES)

)

INA JO PROCESSOR

* READS SPECIFICATIONS. INCLUDING CRITERIA AND
MAPPINGS

* GENERATES CONSISTENCY AND CORRECTNESS
THEOREMS

* GENERATES ENTRY AND EXIT ASSERTIONS FOR
PROGRAM MODULES FROM IMPLEMENTATION LEVEL
SPECIFICATION

CONSISTENCY THEOREMS

* EFFECT OF TRANSFORM NOT “'FALSE"”

DEFINED TERMS ARE WELL-DEFINED

TYPE RESTRICTIONS ARE OBSERVED

* MAPPINGS ARE CONSISTENT

CORRECTNESS THEOREMS

INITIAL CONDITIONS SATISFY CRITERIA

TLS TRANSFORMS SATISFY CRITERIA

LOWER LEVEL TRANSFORMS CORRECTLY IMPLEMENT
CORRESPONDING HIGHER-LEVEL TRANSFORMS WITH
RESPECT TO MAPPINGS

LOWER-LEVEL TRANSFORMS THAT DO NOT CORRESPOND
TO HIGHER-LEVEL TRANSFORMS SATISFY A MAPPING OF
THE CRITERIA

TLS TRANSFORM SATISFIES CRITERIA

* RELATIONSHIP BETWEEN OLD STATE AND NEW STATE
SATISFIES CONSTRAINT

¢ IF OLD STATE SATISFIES CRITERION THEN SO DO NEW
STATES

TOP LEVEL
SPECIFICATION

SECOND-LEVEL
SPECIFICATION

N
i} -
N-LEVEL IMPLEMENTATION
SPECIFICATION SPECIFICATION

CODE

ASSERTED HOL J

J

\—
(v

INTERACTIVE THEOREM PROVER (ITP)

* AIDS THE USER IN FINDING AND DOCUMENTING PROOFS
OF LONG THEQREMS

o USES THE PRINCIPLE OF REDUCTIO AD ABSURDUM

~

IL-16

e " 1

OBJECTIVES OF THE ITP

¢ ALL PROOFS MUST BE AUTOMATICALLY CHECKED FOR
SOUNDNESS.

* THE USER MUST BE IN COMPLETE CONTROL.

* THE OUTPUT MUST BE IN A FORMAT THAT CAN BE
AUDITED.

¢ THE USER MUST BE SAVED FROM VOLUMINOUS TYPING
OF PROOFS.

-

ITP

CHECKS ALL PROOF STEPS FOR LOGICAL SOUNDNESS

WRITES PROOFS IN HUMAN-READABLE FORM
— PROOFS ORGANIZED IN NESTED FASHION

- LINE NUMBERS INDICATE STEP SEQUENCE AND
NESTING LEVEL

— ENGLISH JUSTIFICATION AUTOMATICALLY
APPENDED TO EACH PROOF STEP

PERFORMS MOST DEDUCTIVE STEPS AUTOMATICALLY,
BUT NEVER ENTERS INTO LENGTHY EXCURSIONS TO
HEURISTICALLY DISCOVER DEDUCTIONS

ACCOMPLISHES AUTOMATIC DEDUCTIONS BY GENERATING
COROLLARIES TO PROOF STEPS AS THEY ARE PRODUCED, EG..
—~ SIMPLICATION
— INSTANTIATION
— AND SPLITTING

EXAMPLE

USER STATES THEOREM AT STEP 100
00 Hy&Ha&H; > Cy&Cp
ITP ASSUMES THE CONTRARY
1001 Hy& Hp& Hz&(«Cq | ~Cyl
' ITP AUTOMATICALLY AND SPLITS

10011 Hy
10012 Hy
10013 Hy

100.1-4 ~Cq ~Cy

r__,_ﬂ_ . T e ————r s

-)
ANNOTATION EXAMPLES

ASSUME

{16.1) 'AND SPLIT
{40.8 40.10) SUBSTITUTION (40.100)
(38.11-3 38.2-2) CONTRADICTION

(23.12.3) 'Q.ED.’

- .

4 ™

VERIFICATION CONDITION GENERATOR
{(VCG)

¢ ACCEPTS AS INPUT
— HOL CODE
—~ ENTRY AND EXIT ASSERTIONS FROM INA JO
~ ADDITIONAL ASSERTIONS IMBEDDED IN HOL CODE

* GENERATES VERIFICATION CONDITIONS THAT ASSERT
THAY EACH SUBROUTINE SATISFIES ITS EXIT ASSERTION
ASSUMING ENTRY ASSERTION HOLDS AT POINT OF
INVOCATION

¢ VERIFICATION CONDITIONS THEN PROVED TO BE
THEOREMS USING ITP

-

APPLICATIONS OF FDM

* OPERATING SYSTEM KERNEL FOR KVM/370
* KERNELS FOR A SECURE NETWORK SYSTEM

* CAPABILITY BASED SECURE TRANSACTION PROCESSING
SYSTEM

¢ JOB STREAM SEPARATOR FOR AUTOMATING THE
PERIODS PROCESSING FOR A LARGE SCIENTIFIC
PROCESSOR

* SECURE NETWORK FRONT-END

FUTURE DIRECTIONS

o BETTER USER INTERFACE
— CRT WITH EXTENDED SEARCH CAPABILITY

—~ PROOF TREES

* DIRECT PROOF OPTION

* AUTOMATING STEPS THAT ARE ALWAYS PERFORMED
BY THE USER OF ITP

PRINCIPAL DESIGNERS

JOHN SCHEID

VAL SCHORRE

Cae i

BUILDING

VERIFIED SYSTEMS

WITH

GYFSY

DONALD I. GOOD
UNIVERSITY OF TEXAS

_

GYFSY

WHAT DOES IT DO7
HOW DPOES ITY WORK?
WHAT HAS BEEN DONE™

WHAT IS THE CURRENT STATUS?

-

r A Y

WHAT DOES GYPSY DO7

PURPOSE {
THE PURFOSE OF GYPSY IS THE DEVELOPMENT

OF VERY HIGHLY RELIAERLE SOFTWARE SYSTEMS.

APPROACH
GYPSY IS A WELL-~INTEGRATED SYSTEM OF b

METHODS» LAMGUAGES» AND TOOLS FOR SFECIFYING:» 1

IMPLEMENTING Y AND VERIFYING OPERATIONAL

SOFTWARE SYSTEMS.

_ _/

4)

HOW DOES GYFPSY WORK?

LANGUAGE

ey e R

THE GYPSY LANGUAGE DESCRIBES ROUTINES
THAT OPERATE ON OBJECTS. THE DESCRIFTION
INCLUDES BOTH IMPLEMENTATION AND

SPECIFICATION.

VERIFICATION ENVIRONMENT -

THE VERIFICATION ENVIRONMENT IMPLEMENTS . +
THE TOOLS NEEDED TO CONSTRUCT AND EXECUTE A
SET OF VERIFIED GYPSY ROUTINES. THE
ENVIRONMENT AMPLIFIES HUMAN CAFABILITY AND

REDUCES FROBABILITY OF HUMAN ERROR.

_ w, g

e

RELIABILITY FROM VERIFIABILITY

<= =@DdD =MD
e <O
.-

\
ARBPITRATION
]

MODEL
OF EXPECTATION

HIGH LEVEL LANGUAGE
IMPLEMENTATION

EXECUTABLE COOE

e m e ——————————

~

\.

TO0OLS

L ANGUAGLE S

METHODS

-

GYFSY METHODOLOGY STRUCTURE

I SYSTEM DEVELOFMENT STRATEGY 1

STATE
MACHINES»
ALGEEBRALC

- ey o o owe ws am

USER SELECTED

| THEOREM PROVER
I INTERACTIONS

_4.., _________________
CONVENTIONAL

'
ASSERTIONSy | TESTING,
t

RUN-TIME
! VAL IDATION>
{ DEDUCTIVE FPROOF

e e

SPECIFICATION

VERIFICATION

______________ +
|

GYPSY '

1

______________ +
1

WELL - |
STRUCTURED |
PROGRAMS |

1

______________ +
IMPLEMENTATION

/

nisiti g

LIV

% ol

KELTAKRIL TTY ¢ OB LYi'SY
FXPECTATTONG
'

ARKKLIKRATION
1

oo m e e m o

- +
1 MODEL [
t GYPSY FORMAL SFEL '
DR e +
1
PROOF
|
I ettt #- - oo
DESIGN | HIGHEST | GYPSY TFORMAL SIHEC |
' 1 Rl N [
1] 1 | 1
v) LEVEL 1| TEST KTy FROOF
] 1
\ + A»L —————— J,,‘,__‘ -4
I ROUTINE § GYFSY IMILLMENTATIONI
L i e +
* |
GYPSY
. STRUCTURING
1
» [l
R [+
' 10w I GYPSY FORMAL SHEC |
t L -4
| ' $ i)
A ' LEVEL P TEST RTY FiOOf
] 1 1
! . F IS DR
CODING '
+

ROUTINE | GYP'SY IMPLEMENTATIONI
- PO -

R [P Y

1
GYFSY COMFILATYTION
i

EXECUTARNLE CQDE
FPDE 11)

*-=
-——

~

GYPSY LOGICAL STRUCTURE

SPECIFICATION

LANGUAGE LANGUAGE

PROGRAM DESCRIPTION LANGUAGE

IMPLEMENTATION

_J

(’ GYPSY TEXTUAL STRUCTURE !

SCOPE DEMO= ,
BEGIN

PROCEDURE P(VAR X: IN_BUFF) = ...}

FUNCTION F(NS: INTEGER)>? INTEGER = «..¢3
!

TYPE HISTORY = SEQUENCE OF PACKET; ;.

CONST HI = 256+%

LEMMA MAKE_SECURE (A, B! HISTORY) = ...3

NAME <CUNITY U FROM {SCOFEX> Sy

k\‘snn;)
- B

ROUTINES

PREDEFINED? FUNCTIONS FOR FREDEFINED
TYPES

ASSIGNMENT

IFy CASE>» LOOPs LEAVEs SIGNAL
MOVE» REMOVE

SENDs RECEIVEs, GIVE

COBEGIN» AUWAIT

USER DEFINED: FUNCTIONS» PRUCEDURES

\— , /

$————————————
1
WHAT? i EXTERNAL
i
+ _____________
|
)
HOW? 1 INTERNAL
i
i
o ———————

\—

LOGICAL STRUCTURE OF ALL ROUTINES

_________________ +
INTERFACE SFEC !
¢

FUNCTIONAL SPEC
_________________ +
LOCAL VARIAERLES |
_________________ .‘
OFERATIONS {

AND !

SFELCS }
_______________ s

-

—

TEXTUAL STRUCTURE OF PROCEDURES

PROCEDURE DOWNGRADER (VAR H: IN_BUF# ...> = INTERFACE
SPEC
BEGIN
BLOCK AUTHORIZED_DOWNGRADING (...)7% FUNCTIONAL
s SPEC
VAR MESSAGE: TEXT»# tocat
oo VARS
-J
Loor -
OPERATIONS
SFEC ASSERT OQUTTO (L+MYID)
=SAUTHORIZED_SEQ (INFROM (M,MYID))# AND
RECEIVE MESSAGE .../ SPECS
END} J
END3

-

TEXTUAL STRUCTURE OF FUNCTIONS

FUNCTION F (N: INTEGER): INTEGER = INTERFACE
SFEC
BEGIN -
ENTRY N>O3 TFUNCTIDNAL
SFEC
EXIT RESULY = FACTORIAL (N)3
VAR I! INTEGER :!= 13 TLOCAL VARS
RESULT = 13]
OPERATIONS
LOOF
AND
SPECS
END3
J
END3

\

~

FUNCTION FACTORIAL (X! INTEGER): INTEGER =
BEGIN

y

SPECIFICATION FUNCTIONS

ENTRY X GE O35
EXIT (ASSUME RESULT =

IF X = 0 THEN 1

ELSE X % FACTORIAL(X - 1) FI)}

BEGIN
EXIT ALLOWED_TRANSITION (S’» S)3
FENDING?

END;

FUNCTIUN ALLOWED_TRANSITION (Py» Q@
BEGIN
EX1T (ASSUME RESULT

e e

ELSE FALSE FI...FID+
END;

IS_SECURE (F)
AND ALLOWED_TRANSITION <(F» Q)
- IS_SECURE <Q)3#

STATE TRANSITION SFECIFICATIONS

FROCEDURE SYSTEM (VAR S: SYS_OBJECTS) =

SYS_OBJECTS)
BOOLEAN =

IFF IF IN_STATE_1 (P> THEN AFTER_1 (F,Q)
ELSE IF IN_STATE_2 (P) THEN AFTER_2 (F» Q)

LEMMA SECURITY_FRESERVED (F, Q! SYS_OBJECTS) =

FUNCTION 1S_GEUURE (F: SYS_OBJECTS)

~

BOOLEAN = ...}%

~

FROVING ROUTINES

A ROUTINE TOGETHER WITH ITS

TRANSFORM
e +
PROGRAM i GYFSY i
THEOREM -->1 SEMANTICS 1-->
FT o +

EXTERNAL. SPECS
OF CALLED ROUTINES

SUCH THAT

VE1L AND ... VCn --> PT

PROVE

Ll AND ... Lm ——>» VUCk

SPECIFICATIONS IS A “PROGRAM® THEOREM.

THEN» GIVEN LEMMAS Lls..,.rLm AS A BASIS,

ORLDINARY
THEOREMS
VClr...»VCnH

FOR EACH k.

/

Ay o

FROVING LEMMAS
A GYFSY LEMMA IS AN ORDINARY THEOREM
OF PREDICATE CaALCULUS.
EXAMFLE
LEMMA AUTHORIZED_SUBSEQ (P> Q: HISTORY) =
F SUrR Q -~
AUTHORIZED _SEQ (P) SUHR AUTHORIZED_SEQ <Q)3;
FROVE A LEMMA L. FROM OTHER LEMMAS L1lyr...rlLk

Ll AND ... Lk —-> L

DATA OBJECTS

GL.OBAL CONSTANTS: CONST N = 4
FORMAL PARAMETERS! (VAR H: IN_BUFF; N:INTEGER)
LOCAL VARIABLES? VAR M: MESSAGE

CONST P = 7

\
J

ep—— e
P

e R

TYPES OF OBJECTS

PREDEF INED?: INTEGER
BOOLEAN
CHARACTER (ASCII»
RATIONAL

ARKRAY
RECORD

SET
SEQUENCE
MAPF ING
BUF FEKR
ACT)IVATIONID
USER DEFINED? COMFOSITIONYS UOF FREDEFINED TYFESy

ABSTRACT TYFEY VIA ENCAFSULNT ION

N y
4 N

FROVING AHBSTRACT TYFES

ALGEBRAIC TYFE AXIOMS ARE EXFRESSED ANL FROVEIr AS

LEMMAS.

EXAMFLE TYFE STACKN - PUSHys FOPy» ... > =
BEGIN
S! RECORD A
HOLD S.P > O
END

ARFRAY _OkJs F: INTEGEK);
{CUNCRETE INVARIANTY>

.
.
»

LEMMA FOF_T'USH (S! STACKy X! ORJECT)Y =
POF (FUSH (Xs» S)) = Si
THE CONCRETE INVARIANT IS FROVED FROM THE EXTEKRNAL
SFECS OF EACH ROUTINE <~FUSHs FOi'»... THAY HAS CONCRETE
ACCESS TO THE TYFE.,

(CONCRETE EXIT OF KROUTINiLD)
—> C(CONCRL TE IHNVARIANT OF 1YWL

\- ,

e A

STRUCTURING

*"SUMMARIZING: AS A SLOU WITTED HUMAN EKEING I
HAVE A VERY SMALL HEAD AND 1 HAD BETTER LEARN
TO LIVE WITH IT AND TO KRESPECT MY LIMITATIONS
AND GIVE THEM FULL CREDINIIT, RATHER THAN TRY TO
IGNORE THEMs FOR THE LATTER VAIN EFFORT WILL
BE PUNISHED BY FAILURE.*®

CE.W. DIJKSTRA>

NOTES ON STRUCTURED

FROGRAMMING » 1972y
P32

\ J
4)

GYPSY STRUCTURING
IMPLEMENTATION? ROUTINE A
CALLS
/ \
ROUTINE B ROUTINE C
SPECIFICATION? . FUNCTION F
REFERS TO
7/ N\
FUNCTION G FUNCTION H
OBJECTS: TYPE T
DEFINED FROM
/ \
TYFE U TYPE V
FROOF ¢
LEMMA L PROOF OF LEMMA L
REFERS TO ASSUMES
/ N\ / \
FUNCTION FL FUNCTION GL LEMMA M LEMMA N

- /

FROOF INDEFENDENCE

it +

PROGRAM | GYPSY] ORDINARY
THEOREM —~>1 SEMANTICS I--> THEOREMS
FT $om e + VC1,...VCn

EXTERNAL SFECS OF

CALLED ROUTINES
THE PROOF OF PT ASSUMES ONLY THAT CALLED
ROUTINES CaAaN ERE IMFLEMENTED TO MEET THEIR
STATED EXTERNAL SFECS. THE FPROOF IS
INDEFENDENT OF ANY FARTICULAR IMPLEMENTATION.
THIS ALLOWS PROOF OF INDIVIDUAL ROUTINES
YO BE DONE IN PARALLEL WITH ANY DESIRABLE

ORDER OF DEVELOPMFNT.

\

(

REUSAERLE

THEORY

PROEBLEM DIOMAIN THEORIES

VERIFICATION CONDITION -> FROGRAM THEOREM
LEMMA A —-» VERIFICATION CONDITION

LEMMA B > LEMMA A

FROPERTIES OF FPREDEFINED
GYFSY FUNCTIONS =» LEMMA 2

e e e

VERIFICATION ENVIRONMENT

TOOLS AVALIABLE!?

GYPSY SYNTAX AND SEMANTIC
SYNTAX DIRECTED EDITOR>,

CONDITION GENERATOR»
PROVER» INTERPRETER»

DISPLAY»
UNDER DEVELOPMENT:

GYPSY TO BLISS TRANSLATOR»
DRIVEN HIGH-LEVEL OPTIMIZER>»
TO INTERLISPs EXPANSION OF
CAPACITY

ANALYZER »

VERIFICATION

INTERACTIVE THEOREM
COMPILER>»

PROGRAM DEVELOPMENT MANAGER

DATA BASE

SPECIFICATION-

CONVERSION
DATA BASE

_/

TRIAL

APPLICATIONS

~

4)

CUWELLSy 767 NETWORK COMMUNICATION SYSTEM

LAYER 1. 4-NQOQDE MESSAGE SWITCHING NETWORK

2. A-NODE PACKETIZER/ASSEMBLER NETWORK

3. S—NODE FPACKET SWITCHING NETWORK

SPECIFICATION: 1500 LINES

IMPLEMENTATION: 1000 LINES

CONCURRENT PROCESSES:? 16

VERIFICATION: MANUAL FPROOFS OF CONCURRENCY
EXECUTABLE: NO

EFFORT: 1~-2 WORK YEARS

\. J
a)

CHORN» 771 SECURE INTERNETWORK

AN N-NODE NETWORK OF ACTUAL HOSTS WITH
SENSITIVE INFORMATION COMMUNICATING VIA END-
TO—-END ENCRYFTION OVER AN UNSECURED
INTERNETWORK THAY INCLUDES THE ARFANET.

SFECIFICATIONS: 372 LINES
IMPFLEMENTATION 10 LINES
CONCURRENT FROCESSES: UNSFECIFIED N = O

VERIF LCATIONS: MANUAL »

35 MAJUR DEDUCTIVE STEPS,
20 -40 FAGES

EXECUTIARI L MODILL OF ACTUAL NETWORKS

EFFORT: .5-1 WOKN YEAR

_ Y,

(

CONCURRENT

EXECUTABLE

EFFORT: 3

_

CMORICONI» 771 N X N MESSAGE SWITCHER

N CONCURRENT SWITCHER FROCESSES FROUTING
MESSAGES AMONG N USERS.

SPECIFICATIONS: 90 L1INES

IMPLEMENTATION: S0 LINES

FROCESSES? UNSPECIFIED N > O

VERIFICATION: FULLY MECHANICAL AND
INCREMENTALy 60 PAGES OF TRANSCRIPT.

H NO

—6 WORK MONTHS

~

_

-

VERIFICATION:
EXECUTABRLE ¢

EFFOKT 2 1-2

\—

CHAYNES AND NYHBERG, 781 DISCRETE ADDRESS BEACON SYSTEM

SELECTED COLLISION AVOIDANCE ROUTINES FROM AN
TRAFFIC CONTROL SYSTEM.

SHFECIFICATIONS: H44 LINES (105 SFEC FUNCTIONS)

1ML EMENTATIONS 929 LINES (1% ROUTINES)

MECHANICALLY FROVED 30-40 OF SO VCS.
MODEL OF RUNNING FORTRAN 1V PROGRAM

WORK YEAKRS BY TEXAS INSTRUMENTS

~

AIR

~

793

CSMITH AND GOOD.»

A HIGH SECURITY

AND LOW SYSTEMS.

SPECIFICATIONS:

IMPLEMENTATION:

CONCURRENT FROCESSES:

VERIFICATION?

EXECUTABLE ON FPDFP 1

EFFORT?

.

INTERACTIVELY MONITORS MESSAGE TRAFFIC BETWEEN
SYSTEM
TERMINAL DRIVERS ARE PROVIDED TO SIMULATE HIGH

252 LINES

241 LINES

MECHANICAL
32 PAGES OF FINAL PROOF

TRANSCRIPT

2 WORK MONTHS

~

SIMPLE DISTRIBUTED GUARD

AND A LOW SYSTEM.

15

1/03s

S S L gl

s

CURRE

SPECIFICATION
IMFLEMENTATION
VERIFICATION

METHODS

GYPSY
LANGUAGES

VERIFICATION
ENVIRONMENT

DEVELOFMENT OF
VERIFIED SYSTEM
EXAMFLES

STAHELLE

NT STATUS

STABLE SINCE
JAN 1979

SINCE
SEFT 1978

IN EXFERIMENTAL USE.
DEVELOPMENT AND MALINTENANCE
IN PROGRESS.

IN FROGRESS

ACKNOWLEDGMENTS

M-17

T3 s TR T PR ORI S SRR - e N

HDM

(Hierarchical Development Methodologv)

An Approach to Designing Secure Systems and Proving
Them Correct

Karl Levitt
Computer Science Laboratory
SRI International
Menlo Park, CA

OUTLINE

An Overview of HDM
Writing "Good" Specifications in Special

An Example of the Application of HDM ~- PSOS (a "provably"
secure operating system)

Formal Requirements for Secure Systems -- and how to prove
them

HDM Tools

Assessment of HDM

Qutstanding Problems

N\

\—

CREDITS

Creation of HDM and S?erlal
Larry Robinson (David Parnas)

HOM “Checking” Tools
Olivier Roubine

Towards a Second Generation HDM
Brad Silverberg” , David Ellfott, Joe Goguen

Formalization of HDM Subset -- and Theorem Proving
Bob Bover, J. Moore

Desipgn of PSOS R 4
Peter Neumann, Larry Robinson, Rich Felertap
Multi-level Security (MLS) Requirement
and Proof Tool
Rick Felertag

Program Verificatton Tools
Dwight Hare, Mark Morkoki, Bover, Moore

Specification of Concurrency
Les Lamport, Richard Schwartz, P. H. Melliar-Smith

1 Now at Pord Aerospace
2 Now at Honeywel.
I Now at Summic Systems

4 Now at Sytek

f

HDM is an Integrated Collection Of
* Languages
* Tools
* Concepts
* Guidelines

To Aid In Developing and Verifying lLarge Real-World Software Systems.

Developed at SRI From 1973 - Present

Distinguishing Characteristics of HDM
* QOriented Towards Real-World Solutions to Real-World Problems
* MHas a Formal Basis
* 1s Comprehensive
* 1s a Research Vehicle
* Supports Verification
- of design

- of code

e pm—— T

¢
t

HDM Handles many of the "dirty" aspects of real-world systems, including

* Resource Limitations

* Resource Sharing
* Side-Effects
* Aliasing

Does not yet handle full concurrency

HDM is for use by the general communicy,
not just a sophisticated elite.

Still, learning HDM is a non-trivial task

A rigorous approach to software development
is intrinsically difficult

Applications of HDM

*PSOS ~-
- designed by SRI

- implementation underway at Ford Aerospace

*KS0S (at Ford and Honeywell) --

A Unix-Compatible 0. S. supporting a multi~level
security policy

*STFT --

A software implementation fault-
tolerant avionics computer. Production
and verification of sift is underwav at SRI

o —— e

p Ty

S

ppT—=er

Vertical Structure

(Hityarchv «{ Abstract Machines ~-Dijkstea)
each level provides a set of facilities

to the next higher level. The facilities
at one level depend for implementation

only on the facilities provided by the next
lower level

The facilities provided by the top level
are those available to the user

Horizontal Structure
(provided by Modules)

Each module encapsulates closely related
concepts, loosely coupled to other modules

in the level

(’7 HDM Structures at System Design

J

~

- Families of Instruction Set Processors,
e.g., IBM System/370

Hierarchies of Communications Protocols

Operating Systems (e.g., T.H.E., PS0S)

t

But,

The key is to formalize the concept

There are many examples of the abstract machine concept, e.g.:

~

Some "key" levels ia
an operating system hierarchy

M9

M4

M3

=
(=)

M1

“Interprocess
Communication”

"Files™

"Virtual Memorvy"

"Pages"”

"Physical Storage”

Key
Virtual Memorv
File Directories

Interprocess Communications

Multiple Processes

PA Pages

PM Page Mapping

MM Main Memory

8§ Secondary Storage

MMAP Memory Mapping

Figure 2: PSOS GENERIC DESIGN HIERARCHY

']
k {LEVEL} PSOS ABSTRACTION i PSOS LEVEL , \
] |
|
2 i F | USER ABSTRACTIONS ! 14=16 { '
i E | COMMUNITY ABSTRACTIONS i 10-13
i D | ABSTRACT OBJECT MANAGER] 9]
i C | VIRTUAL RESOURCES i 6-8] \
i B i PHYSICAL RESOURCES i 1-5 : .
+ A |} CAPABILITIES i 0]
] '

adeed

MR e S

r
N\

amdhe

~

Figure 1: PSOS DESIGN HIERARCHY \

LEVEL] PSOS ABSTRACTION OR FUNCTION

USER REQUEST INTERPRETER #

USER ENVIRONMENTS AND NAME SPACES *

USER INPUT-OUTPUT ®

PROCEDURE RECORDS ¥

USER PROCESSES % AND VISIBLE INPUT-OUTPUT *
CREATION AND DELETION OF USER OBJECTS #
DIRECTORIES (#)(C11]

EXTENDED TYPES (®){C11)

SEGMENTATION AND WINDOWS (#)[C11]

PAGING (8]

SYSTEM PROCESSES AND INPUT-OUTPUT (12]
PRIMITIVE INPUT/OUTPUT [6]

ARITHMETIC AND OTHER BASIC OPERATIONS #
CLOCKS (6]

INTERRUPTS (6]

REGISTERS (%) AND ADDRESSABLE MEMORY [7)
CAPABILITIES ®

MODULE FUNCTIONS VISIBLE AT USER INTERFACE.

MODULE PARTIALLY VISIBLE AT USER INTERFACE.

MODULE HIDDEN BY LEVEL 1I.

C11] = CREATION/DELETION ONLY HIDDEN BY LEVEL 11.

-
~r
w o

-

HIM 4ls. structures the development pruocess -- {nt o stages o
Jdevelopment and veritication,

The «tapes are:
* Decompesitian
* Maduyle Selection
* Module Specification

* Kepresentalion
Realization

l Desinn
)
|
f

* Implementation

- Veritication can be attempted as system develops
- Decisions are recorded as thev are made
- uften, "important” Jdecisions are made carlyv and, heove, subiect

to early review (4 svstem gsually gees bad in desien?

Motherhuod: Recognize that backtracking and "crvstal-ball vazine”
are necessary, The "stages of HDM' are guidelines, not hard-and-tast
rules

\—

(ff

An abstract machine (or module) in HDM consists of:

1. A set of Internal Data Structures
that defines its state

2. A set of operations that can access and modify

the state
opP
51® ® ¢
op

Realizing an abstract machine in terms of ancther

|38

te

Data structure representation --

each upper~level state maps to a set
of lower-level states, and distince

upper states must map to disjoint
sets of lower states, i.e.,

sL sz D R(slu)ﬂ R(s2) = f

Operation lmplementation =~-
Let operation OPU take state Slu to SZu,

o,
S§1, ——p $2

u

An implementation of OP is correct if,
when started from any state in R(S1).
it terminates in some state in v
R(S2 Y. (The well-known commutativity
qgggfgg illustrates this)

e?,
_—a
S’ v ' \519

Y RepgesENTATAN

-

e

T ra(89)) 2629
‘~..___~‘

TURPLENCNTA TN

SPECIAL:

Special is HDM's module specification language.
A module specification specifies:

l. State-functions: functions that characterize
the module's data structures, i.e., that
determine its state,

The specification of a state-function
provides its signature and constraints
on {ts initial value.

2. Operatjons: The specification of an operation
describes a state change and a returned value.

A state change is degcribed by a predicate

that nonprocedurally” relates the post-invocation
values of the state-functions to their pre-
invocation values.

The returned value is described in terms of
constraints it must satisfy.

1and non~determinist{cally

-~

SYSTEM DESIGN WITH HDM & SPECIAL:

When given a problem statement, the first step {s to
formulate a model of a solution.

Generally, the more abstract the model at this point, the better.
The process of hierarchical decomposition involves the formulating
of successively more concrete models to implement the more
abstract cnes.

EXAMPLE:

7
Consider the problem of keeping word counts. The user is to be
provided with the ab{lity to:

I. Query the count for a given word.

[

Insert a word, If previously inserted, {ts count s
{ncremented by one; if not, its count is set to one,

3. Delete a word oceurrence,

e, e

~

Several alternative models are:

4} An iutinite mapping from words to integers,.
with the mapping inftiallv everywhere undefined.

This can b pictured by an infinfte (unordered) cable:

AT e s G-

a b ar foo

p—

The onty defined words are “b”, “c", "bar”, & "foo”
with counts 3, 17, 15, I.

hi An unserted finite Vst of word, count pairs
for detined words.

(oo Gar 1D Loon DL e, 1D

¢V Bwe dnterer~indexed arravs, one tor detined words in sorted
order, the ather for caunts

1 ey o S Y

Y

We'll choose alternative (a), the infinite mapping,
since it is the most abstract.

In Special, it is specified:

VFUN word store (word w) --% INTECER count:
HIDDEN;
INITIALLY
FORALL word wl: word store (wl) = UNDEFINED.

The query operation reads otf word store,
trapping references to undefined words.

OVFUN Get count (word w) =) INTEGER i;

EXCEPTIONS
undef: word store(w) = UNDEFINED{

DERIVATION
word store {(w);

»

The operation Insert word changes the state and returns as
value the new count.

OVFUN Insert word (word w) --> INTEGER cnt;
EXCEPTTIONS
full: RESOURCE_ERROR;

EFFECTS
IF word_store(w) = UNDEFINED
THEN 'word store(w) = 1
ELSE 'word store(w) = word_store(w) + 1;
cat = 'word store(w);

IMPORTANT NOTE:

The EFFECTS section specifies an unordered conjunction
of effects, and "=" denotes mathematical equality, not
assignment.

The operation Delete word deletes a word occurrence and returns
the new count.
OVFUN Delete word (word w) -2» INTEGER cnt;

EXCEPTIONS
undef: word store(w) = UNDEFINED;

EFFECTS
IF word_store(w)~= 0 THEN
'word_store(w) = word store(w) - 1

ELSE 'word store(w) = 0;

'word_store(w) = cnt;

‘*‘\\

N-11

(

MODILE segment

fet_mimber: | INTHOER § ! 3>« 0)

INTRORS mma_atse;
FORCTIONS

1708 veg_val (mat_susber 1) -> INTOORA data;
nID088;

INETLIALLY
ats s T

WU sise!) -> sat_mmber v;
AIVAYION
CARDIMALITE({ wmt_musbor 1 @ swg wal{1} "w ?t 1)}
W s _rend (at_mater lec) -> ISTHEN dmta;
SEPTIaNY
out_of_tpanty: BT stow() > lev);
IERIVATION
weg_val(leo);
Gl rewrite(aat_smaer Lec; MEDER dats)i
EECEPT 1085
out_of_benmds: Kt (mim{) > Mec);
‘ong_wal(lec) = duta;
VR append(INTEGES esta);
EECHPT 10N
out_of_ress: simm() « enx_mims;
‘ang val{eise()) ¢ data;
OF N sarink();
RICKPTIONS
empty: sise{) s 0;
‘oag_wel(mise() - 1) s T;
SEO_MODULE

\

MODULE pages

TYPES
nat_number: [INTEGER § | J >= 0 };

PARAMETERS

IlﬁSGER max_pages, page_size;
FUNCTIONS

VFUN page_val(nat_number k, loc) -> INTEGER data;
HIDDEN;
INITIALLY
data = 0;

VFUN number_of_pages() -> nat_number n;
WIDDEN;
INITIALLY
n s 0;

YFUN size_last_page() -> nat_number n;
HBIDDEN;
INITIALLY
n sz 0;

=y

R A At o)

3

RWORw 3

e Mmmm s

-

VPUN page_read{oat_number k, loc) -> INTRGER dats;
RICEPTIONS

ao_page: NOT{ousber_of_peges() > k);
oo_loc: IF k ¢ samder_of_pages()
THEN 100 > page_sise
ELSE oo >s sise_last_page();
DERIVATION
page_val(k, loo);

QPUM page_write(nat_ousber k, loc; INTEGER data);
RXCRPTIONS
no_page: NOT(number_of_peges() > k);
no_loo: IF k < ousbar_of_pages()
THEN loo >= page_sise
ELSE loc >a size_last_page();
EFFRCTS
‘page_val(k, loc) s datas;

OF UN new_page(};
TICRPTIONS
no_more_pages: number_of_sages{} = max_pages;
EFPECTS
‘oumber_of_pages() » mumbar_of_pages() « 1;

QFUN resize_last_page(nst_nusber new_length);
EXCEPTIONS
no_last_page: number_ ol _pages() s 0;
full: new_length > page_size;
BFPECTS
*size_last_page() » new_langth;
FORALL nat_nuaber n | n
IMSET [new_lengtn - 1 ..
eize_last_page() - 1 }:
tpage_val(mmber_of _pages(), n) s 0;

OFUN deallocate_last_page();
EXCEPTIONS
no_last_page: number_of_pages(} = 0;
BFPECTS
‘number_of_pagea(} = number_of_pages() - 1;
‘size_last_page() s paga_sise;
FORALL nat_nusbar 0: 'page_val{mmber_of_pages{), a) s 0;

END_MODULE

N

MAP segment T0 pages;

TYPES

nat_number: { INTRGER n | n >s 0 };

EXTERMALREFS

FROM segment :
INTEGER max_size;
VFPUN seg_val(nat_number n) ~> INTEGER data;

FROM pages:
INTEGER max_pages, page_size;
VYFUN page_val(nat_nusber k, loc) -> INTEGER data;
YFUN number_of_pages{) -> nat_number n;
YFUN size_last_page() -> nat_nusber n;

NAPPINGS

sax_size: sax_pages ®* page_size;

seg_val (nat_number loc):
IF loc

<z page_size *(number_of_pages() - 1) + size_last_page(:

THEN page_val (INTPART(loc / page_size),
PRACTPART(loc / page_size))
RELSE 7;

END_MAP

A REQUIREMENT STATEMENT FOR A SYSTEM

(Not Adequately Expressible in Special)

An abstract statement of what the system does, Generally, a

requirement expresses a subset of the information contained in

the specification and requires

* Expression of "information flow"
* Expression of the effect of sequences of operations
*

Second order logic

The top-level specification of a system can ..

TH principle -- be verified with respect to its requirement

\

REQUIREMENT STATEMENT FOR MULTI-LEVEL SECURITY

Level = (Classification, éategory_seﬂ>

Classification {s an element of a totally ordered set

For two levels
L1 = {CL1, CAT 1)
L2 = €CL2, CAT 2>

Ll 2 L2

cLl 2 cL2
and

CAT 1 2 CAT 2

Example
Classificat{ons:

Unclassified, Confidentfal, Secret, Top Secret

Categories

Atomic, Nato

Intformation can flow from L2 to L1

1f and only if L1 2 L2

This model is flawed since:

- All information will eventually reach the highest
security level

- Information at a high securfity level can be
"destroyed” by low security level information

Neverthefess --

This model is widely used as the basis for secure systems, e.g., KSO$

LY LATT«CE

<71y, th,at)

ALY <rs, §a3D>
<rs,ttd g
Cs, Tn,aY>
<4, 180,
(s, tat>
3,1 J
Altsnt o, Flon
» €e,in,AVD wee. Al
LT
¢, 1Yy
<¢,tv) ¢
v, tn,A\D
(CX 0\ M) <v, 1AV
<u, 197

N~15

W

x

Proving that a top-level special specification is multi-level secure
is conceptually very easy

* Write the specifications such that a security level
is assoclated with each data structure (V, function),

* Show that according to the specs, the new value of a data
structure at Level L is dependent only on the old
values of data structures at Li, Li €L,

The identification of dependencies is complicated by the "syntactic
sugar" and "real-world" features of special -- but very doable.

~

MODULE virtual_memory
PARAMETERS
INTEGER max_seg_no, max_seq_index;

TXTERNALREPS

FROM security:
security level: DESIGNATOR;
BOOLEAN Tteg(security_level 11, 12);

PONCTIONS

VPUM contents (INTEGER segno, Index; security_level sl)
~> INTEGER ¢;
NIDDEN;
INITIALLY
c=

YP\M resd (INTEGER segno, index; security_level s])
[security level pl}
-> INTEGER ¢/
EXCEPTIONS
segno < 0 OR segno > mex_seg_noj
eontcntl(lQ’nc. index, 8T) 72
'llnq(ll.
DERIVATION
contents({segno, index., 81);

OFUN write (INTEGER segno, index, c; security_level sl)
[security_level pl);
EXCEPTIONS
segno < 0 OR segno > niu seg_no,

~ lteq(pl, 81);

EFFECTS
‘contents(segno, index, s1) e c;
FORALL INTEGER i | 1 > 0 AND | < index

AND contents(segno, i, Bl1) e 2:
‘contents(segno, 1, 81} = O)

£ND_MoouLE

s

i iknia

HDM Tools:

1. Specifications checkers (completed)

2. Multilevel security verifier (completed)

3. Modula verification system (completed)

4, Pascal verification system (in progress) {3

TR

All in Interlisp and available for public use.

~
_J

1. Spec checkers
* Usual parsers, type checkers, and pretty-printers for Special,
HSL, & ILPL.
* Varfous external consistency criteris also checked.

* Limited in scope, but heavily used.

* Support small amount of version control.

2. Multilevel security verifier

) Basic multilevel security property: whenever information flows from v
one entity to another, the security level of the recipient [s at least B
as high as the sender. *

N-17

augment ed
- > T
Madule specs formula formulas Boyer -Moore e
theorem- o
generator e e rover —fp Falled
& tp commands Ls

Multileve! Security Veriffier
Crich Fetertag -- Now at Svtek)

Validity ot generated formulas > multilevel security.

ool {s conservative, {.e., mdy not be able te demonstrate
mls fuor some secure specs, but never the other wav.

Hax been used extensfvelvy bv SRI & non-5R1 people, and has exposed many
previously unknown security violations.

Theorem-praving is completely avtomatic.

Formulas to be proved usually easy bul numerous.

_/

MODULA VERIFICATION ENVIRONMENT

Developed for verification of Modula code in Ford Aerospace's
KSOS implementation.

Based directly on the Boyer-Moore formalization of HDM,

* Specs are written in Special variant VSSL
(a.k.a. "the formalized subset').

USSL is a cleaned-up, formally-defined version
of Special. Assertion level consists of
expressions in B-M theory. Concrete syntax

is Lisp-like, internal-form like (e.g.., more
like a linearized abstract svntax).

* Implementation language supported by the B-M
formalization is the assemblv-like language
(CTF (like [LPL)

~

k.

Verification y
(ondvon
Genesater
1,3 [7

,f.‘u
k
o

4. Pascal Verification System

Currently under development for proof of SIFT.
Deals directly with Special specs and Pascal code

b
(not USSL & CIF). :
A novel component is the meta-verification condition
generator (meta VCG). -

The meta VCG processes formal semantic descriptions
along the lines of the way meta-parsers (i.e., parser
generators) process formal syntax descriptions.

Spees

grammar o L ———)‘ Acte patrser
J parse» dor L
P,"A“' | driver . - b » parse
L —)l program l l:.g::rﬁbks Ny "—5"“
AV aVe
qruener for L —
seh yC
Sepantics o4 L —-—J & }
, vey oo L
frmram driver —pecif - apacix ves
gt - .,,.3'.3 s,.:: tabies :l::hlh —

\-

N

Special medvie ¢
~m M.
*ecs

l

uﬁs and @it
assertron

w‘.v

R}Gl am‘ f
Proed syles

}

nclaVChH

The FPasaal Werificaton SyTtem mill losk fike:

-

EXPERIENCE WITH SPECIAL:

While well-conceived, Special has flaws

* The concrete syntax is too often awkward and unpredictable
(the syntax-checker gets used a lot!)

* The provided language structures C0-, V-, and OV-functions)
do not correspond directly with the structures of the
underlving model (state-fn's & op's).

A great source of confusion.

* Some constructs contain "dark corners' with semantics not
easily deducible from principles.

* Other constructs nst as general as they could (or should) be.

* The tvpe system should be integrated better, with more modern
abstract data type facility,

J

r’!"‘7

_

NEVERTHELESS ~--

* Special has been (and is being) used extensively
and productively in the design of numerous
systems.

* While module specification in Special is harder
than it should be, it's not hard to learn
one's way "around" the problems. Effort is
well worth it.

* The "formalized subset" is extremely clean and
does not suffer from these flaws.

WORK IS IN PROGRESS TO DEVELOP A SUCCESSOR TO SPECIAL.

~

N-21

P e

AN ASSESSMENT OF HDM:

HDM has been most successtul as a design tool,

Most users see HDM as just Special.

That is, they use HMM primarily for Module desipgn & specification.
he specs capture desipn decisions and serve as a reference tor
discussing alternatives.

Users are tvpicallv interested in verifving some properties ot
the design, so appreciate the rigor Special provides.

Current HDM activity is creating a "second generation” methodolopv,
taking into consideration user experiences md recent rescarch,
particularly in the area of data tvpe specification,

\-

Our appraisal has affirmed the appropriateness of the state-machine
approach to specification -- most often, it is easier to use "han the
algebraic approach, especially when:

- new concepts are beiny specified
(i.e., things other than stacks, queues, etc.)

espectally if those concepts are more
"process' oriented, as opposed to data
oriented.

- difficult "real-world" features must

be specified, including side-effects,
aliasing, etc.

People tend to think in models.

r—

AFFIRM
A Specificstion and Verification System

Susan L. Gerhart
USC Information Sciences Institute
4676 Admirelty Way
Marina del Rey, Calforria, USA
213-822-1511

Project Members

. Baker

Bates

Erickson

Gerhart

London

. Musser (Now of GE Labs)
Taylor

Thompson

Wile

PODUDRNARO

Others
Guttag (now MIT) - elgebraic axioms
. Lankford (now Louisiana) ~ rewriting rule theory

O -

Support: Defense Advanced Resesrch Projects Agency

\

HSTORY

Predecessors
Xivus GaodLondonBledsoe 1975
oTvS Musser,Guttag, Horowitz 1976-1978
Stanford Luckhsm & Oppen - decision procedures
SRI Boyer & Moors - sutomatic induction
Texas Good & Bledsos - integrated languege

(GYPSY)
1BM Corter, ot 8l - simulation, microcode
Cornell Constable - programming logics
Edinburgh Milner, ot al. ~ proof strategies

Successor AFFIRM « POPART (Producer of Pacsers and Relsted
Tools)
Transformation System

Grammer -bused
Durivation Histories

_J

GOALS
1. Routine. production—quelity proofs of ‘
s. Program correct wrt specificat
b. Specification properties

2. Strong siternative & compiement to program testing
3. Stimuus to mathematicsl basis for

s software reliability
b, programming methodology I
4. Uitimately, certification use in highly critical software ‘1

8. Nuclesr Reactors

b. Avionics Systems ?

¢ Secure Systems !
i Blectronic Funds Transfer
i Opersting
. Military

d Protocols in Message/Dats Systems
i Electronic Mail f
iL Electronic Funds Transfer
Wi Distributed Systems

~

AFFIRM's PARADIGM
1. Abstract Data Types

v

a. Algebraic specification (Guttag)

b. User-defined in programs
2. Inductive Assertion Method for Programs

a. Assertions on Loops, Entry/Exit
b. Turn programs into Verification Conditions

3. Interactive Theorem Prover/Checker

a. User gives strategy and directions

b. System does book-keeping, formula manipulation

_ Y,

(ALGEBRAIC SPECIFICATIONS W >

1. Abstract Data Types
8. Set
b. Queue
c. BinaryTree

d. Sequence i,

2. Parts of a Type
8. interfaces of operations, strongly typed
b. axioms defining operations
c. schema for induction on the type

3. Operations are

8. Constructors - Other operstions defined over
constructors

b. Extenders (Modifiers)

c. Selectors

k d. Predicates)
(type QueucOfElemType;

declare g al. G2, qa QueueOfElemType:

declere i, il, i2, & ElemType;

interfaces Constructors NewQueusOftlemType, q Add i,
Extenders Remove(q), Append(ql, q2), que(i)
- QueuaOftiemType;

interfaces Selectors Front(q), Back(q): ElemType;

interfaces Induction(q),
Predicate i in ¢ Boolesn;

axioms Axioms for Equality
Q=g == TRUE,
q Add i = NewQueusOitilemType == FALSE,
NewQueueOftiemType = q Add i == FALSE,
ql Add il = q2 Add 12 == ((gl=q2) and (11=2));

axioms Remove(NewQueusOfElemType) == NewQueueOftlemType.
Remove(q Add i) == if q = NewQuausOfEiemType
then q
slse Remove{q) Add i

sxgms Append(q. NewQueusOftlemType) == q
Append(q ql Add i1) = Append(q ql) Add il;

axiom que(i} == NewQueueOfElemType Add i

axigm Front(q Add i) == if q = NewQueueOftiemType
then i

olse Front(q);
" y

ok ke

s 4

i{ axiom Back(q Add i) == i

axioms i in NewQueueOfElemType == FALSE,),
i in (q Add il) == (i in q or (i=il));

schema Induction(q))
== cases(Prop(NewQueueOfElemType),
all qq, ii (IH(qq) imp Prop(qq Add ii)));
end (QueueOfElemTypel ;

\

(THEOREM PROVER: MECHANICAL

- Rewrite Rule Orientation

% Axioms lhs = rhs become rules lhs + rhs

% Properties of good rules:
- Finite Termination
- Unique Termination -- Knuth-Bendix algorithm
- Sufficient completeness

- Natural Logic

% Combine with conditional expressions for logic
b and ¢ » if b then c else FALSE

bimp c + if b then c else TRUE »

it (if b then c else d) then e else f + 1

it b then (if ¢ then e else f) i
else (if d then e else f) ;

% Aiso quantifiers some and forall ‘i

~ Recursive function definitions (an escape mechanism from
otherwise infinite rewrite rules)

- y

ki

Examples
Notation

define splitat(qi)== i in q imp
some ql,q2 (q=Append(ql Add i, q2));

Recursive Function

define MakeQueue(en)==
if n<=0 then NewQueueOfElemType
else MakeQueue(e, n-1) Add e;

_

-

THEOREM PROVER: HUMAN

Proof Structure
% Nodes: propositions
x Arcs: names of subgoals

% Movement around tree via cursor
up, down - to retrace steps
retry, resume - current theorem
next - to "natural” successor
named node or arc

Name, annotate, print status and theorems

_/

PR
PO RN

_/

EXAMPLE PROOF TREE \

"QueueSplit is: not (q = NewQueueOfElemType)
imp Append(que(Front(q)), Remove(q)) = q
proof tree:
4 QueueSplit
employ Induction(q)
NewQueueOftlemType:
Immediate
6: Add:
2 cases
8: 3 invoke first IH
10: 4 replace qq'
10> (proven)

_/

\

\

Proof Commands

———

try prop sets up a goal
apply prop use prop &s a lemma
invoke def invoke a definition
employ Induction(v) use a schema

suppose prop divide with prop and ~prop

replace use equalities

e e 2

~

USER HABITABILITY
Proving is hard - the system should help, not hinder

User Interface Features
1. Spelling correction
2. User profile
3. Command abort, fix, unde, redo

4. Recursive Execs

System Interfaces
1. Transcript of sessions
2. Output through formatter to variable font device
3. Automatic loading of needed types

4. Easy access to editors

EXAMPLES

Data Types
Queue
Set
Sequence Xokoiok
Circle
Binary Tree
Array

Small Examples
interpolation Search
Root Finding (numerical snalysis)

Large Examples

Delts - 1000 line BLISS module for file updating

Fully specified
Partially proved

Communication Protocols
Alternating Bit
3 way handshake (TCP)
Specification
Toy Security Kernel

=

EXPERIENCE

Easy to learn, knowing literature and logic
Several “external’ users (protocols)

e R At e At s mtia s e

Error-prone users
Using commands
Getting lost
Stating theorems and lemmas wrong

Proofs are
Simple, well-structured ot end
Messy, long in middle
Crudely planned st start
Easier to find than theorems ook

Paradigm good
Proving must be interactive

Rewnting rules are effective, naturei
Data abstraction methodology

Now widely known
Extendible - transition systems

User interface is criticsl to productivity

Resource demsnds sre bottle neck -

CURRENT STATE OF AFFIRM \ :

Released for wider use over ArpaNet |
December 1979

REFERENCE LIBRARY
Reference Manual
User's guide
Type Library
Annotated Transcripts
Collected Papers

PROTOTYPE FOR EXPERIMENTATION
Variety of users
Variety of applications

CONTINUED EVOLUTION
More theory of rewrite rules
Better interface, display capabilities
Integration with testing
Methodology for errors, exceptions]
Support for proof persistence :

k Larger, stable library

? 4)
|
E
F An Overview of
ii Software Testing
i
Mary Jo Reece
MITRE Corporation
_ W,
4 ™
Outline
What is Software Testing?
Why is Soft Teating Imp ?
Where does Software Testing Fit into the
Software Life Cycle?
How is Software Testing Conducted?
Summary
\ J
4 ™
What is Software Testing?
_ J

P-1

Why is Software Testing
Important?

4
)
Why is Software Testing Important?
Software Effort
Amnalysis Coding
& & Test
Design Anditing
SAGE 3% 14% 47%
Gemini 36% 17% 47%
0O/S 360 33% 17 50%
J
Where does Software Testing
Fit into the Software

Life Cycle?

Software Development Approaches

Where does Software Testing Fit

Into the Software Life Cycle?
SPECIFICATION
A

In:vuomm PRODUCT l |
srscmculonH;cmc;mon]
BS ’ cs \:nm Cs

GOVERNMENT CODE
AUTHENTICATION
QUALIFICATION
TESTING
.......................... - TIME AUTHENTICATION

J

Relationship of Development to
Test Activities

~

SOFTWARE REQ. & PERF.
! SPECIFICATION I E SYSTEM TESTS J

GENERAL DESIGN
[SPECIFICATION I INTEGRATION TESTS l

DETAILED DESIGN
! SPECIFICATION ” MODULE TESY J

CODE DEBUG
CODED
MODULE

o BT R

How is Software Testing

Conducted?

How is Software Testing
Conducted?

Overall Software Testing Activity

Test planning

Test case design

Test execution
Evaluation of test results

-

.
('

How is Software Testing
Conducted?

Test Case Desiga

Test plans
Test procedures
Test reports

—

How is Software Testing
Conducted?

_

Software Testing Approaches
Module tests
What are they?
Why start at this level?

Integration tests
What do they do?
How do they differ from module testing?

—

How is Software Testing
Conducted?

-

Explicit vs. Implicit Testing

ESSAGE]
NPUT

\-

How is Software Testing
Conducted?

Explicit vs. Implicit Testing

g AT ep A

How is Software Testing
Conducted?

Explicit va. Implicit Testing

|
|

How is Software Testing
Conducted?
Implicit Testing

Exercising soff ithout k Aedge of structure :
Based entirely on external inputs ’ i
Cannot control software variables

Difficult to isolate source of any failures

Requires entire software structure
[

r
-

2
J

Summary

Summary i

Testing does not introduce quality into the
product per se — it only provides a measure of the
existing quality level and may identify the extent
and location of the defects.

il i

UPDATE ON THE
KERNELIZED SECURE OPERATING SYSTEM
(KSO0S)

John Nagle

. Y,

4 D
UPDATE ON KSOS - OVERVIEW

e Project goals and their realization
e Problems along the way

e Insights into trusted computing

_ Y,
~

FLASH!

SHIPPED TO ALPHA TEST SITE
ON 11 SEP 80!

. J

LF VRSP

\-

PROJECT GOALS

J

r

L

KSOS REQUIREMENTS SUMMARY

L] Provable securily: based on security Kernel and

trusted processes

. UNIX compatibility
L4 Efficiency comparable with UNIX
L Administrative support features

. General purpose Kernel

- Muitiple machines
Emulators for other operating systems
- Non-UNIX applications

—

)

-

KSOS SECURITY ASSURANCE

MOUE RN
SOF TWARE
ENGINEERING

FORMAL
TESTING

—~

.

e o ™

MR O

oy

(" T]

UNIX COMPATIBILITY

e Functional compatability - very close to UNIX 7

e Performance of Alpha release 4x to 8x UNIX ' 1

- Costs of security, mostly structural

- Overhead of kernel/emulator structure
y

- UNIX maturity

- Reduced possibilities for global optimization 1

BROAD APPLICABILITY

e Support turn-key operation
- Need for trusted support tools
- Reduce known vulnerabilities requiring a “GURU"
for repair
- Eliminate “Super-User” by providing encapsulated
utilities

e Reduce UNIX specific aspects of kernel
- Flat file system
- Rich inter-process communications
- General process creation support

PROBLEMS ALONG THE WAY

Co g

4 A
MAINTAINING CONSISTENCY

Problem

* How to maintain consistancy between the multiple i
independent representations of a system component)]

Solution

e Extensive use of on-line configuration management
tools

e Management discipline prudently applied

¢ Independent test team

e Formal testing J

- A
MULTIPLE LANGUAGE SUPPORT

Problem

e Seven different languages used for
various aspects of the project. All
required modification and support.

Solution

e Hire muiti-linguai staff

¢ Encourge ADA

e Need more research in integrated
software development environments

(
.

\
J

MODULA

Problem

¢ Significant re-work of compiler was required.

Solution B

e ADA?

_ .

MODULA (Continued)

Problem

e Strongly modular languages discourage

highly efficient structures, or incur
substantial overhead

Solution

e Additional research in compilers

s Better machine support

f

BENEFITS OF MODULA

e Strong typing

e Language-generic multi-programming

¢ Enforced modularity

Problem

Solution

FORMAL TOOLS

Limitations of existing formal specification
languages

More research, particularly in integrated
environments

o ,mm*" ws

oy

ey AT g RO 3 NN S T

-

MATHEMATICAL MODEL LIMITATIONS

Problem
¢ Bell-Lapadula model too restricted
Solution

e Research in models of security

j

-

INSIGHTS INTO
TRUSTED COMPUTING

— A T

HINDSIGHT - THINGS THAT WORKED

Success of disciplined methodology

Value of formal specilications lor unexpected purposes
Integrated development environment worked well
Personnel accepted formal methods easily

Although occasionally annoying, MIL-SPEC documentation
was useful

Having a model to work against very heipful

~ ™ |
HINDSIGHT - WHAT MIGHT HAVE BEEN DONE BETTER

e Better integration of segment and flle systems
e More insight Into consistency between multiple representations

e Better implementation language

» Simpler secure path mechanism

® Afternate Emulator structure

e ™

INSIGHTS INTO TCB DESIGN AND IMPLEMENTATION

L] It can be done!

® Need for consistency between different languages, care
in their use

e Utilit- and beneflts of formal specifications

e Code proofs are not yet practical except for demonstrations.
Howsver, being ready to do them is of greai benefit.

® Need for additlonal tools and concepts

PP 4

ASSURANCE PRACTICES
IN KVM/370

MARVIN SCHAEFER
SYSTEM DEVELOPMENT CORPORATION
SANTA MONICA, CALIFORNIA

ASSURANCES FOR ACCREDITATION

e SECURITY EVIDENCE
— HARDWARE ADEQUACY
— SECURITY ANALYSIS
— FORMAL SPECIFICATION/VERIFICATION
— SOFTWARE ENGINEERING PRACTICES

— TESTING METHODOLOGY
— DOCUMENTATION

— PEER REVIEW

PREHISTORY OF THE CONCEPT

¢ REFERENCE MONITOR DEFINED
— ANDERSON, ET AL

* VIRTUAL MACHINE MONITOR STUDIES
- POPEK, WEISSMAN, BELADY

¢ VMI/370 IMPLEMENTED
- REFERENCE MONITOR IS EMULATOR 1
- CP IS CP/67 ON BETTER HARDWARE i
—~ 3 STATES FROM 2
— SEPARATE ADDRESS SPACES .
— SMALL, SIMPLE, CONSISTENT 1
~ EVEN IMPLEMENTS 8/370 SECURITY FLAWS

(" EARLY HISTORY

* PENETRATION STUDY — SDC/IBM

* “HARDENING” EFFORTS
— YORKTOWN HEIGHTS
— APARS DEMANDED

— OTHER PROPOSALS

(" KVM SECURITY RETROFIT

* MINIMAL REWRITE OF CODE

* VERIFIABILITY ALL THE WAY TO THE CODE
- "PARNAS" SPECIFICATION
FORMAL VERIFIED SPECIFICATION
- EXTENDED SECURITY ANALYSES
~ EUCLID, VERIFIED IMPLEMENTATION

* CONTINUING PEER REVIEW
- ARPA KVM REVIEW COMMITTEE
-~ ARPA SECURITY WORKING GROUP
- IBM

¢ PERFORMANCE AND ME ASUREMENT GOALS

\— J
- ™

ARCHITECTURAL INFLUENCES

¢ KERNELIZED DESIGN
- UCLA SECURE UNIX™
— MITRE 11/45 KERNEL
- AFDSC SECURE MULTICS °
MIT PROJECT GUARDIAN

—- SRI PSOS

* HIERARCHICAL DATA TYPE MONITORS
- HOARE. BRINCH HANSON
JANSON, REED

BASIC KVM ARCHITECTURE

KERNEL
{VERIFIED)

REAL ADORESS
REAL SUPEAVISQR STATE

—

CONTROVERSIES AND CONUNDRUMS

* TRUSTED PROCESS
— POLICY ENFORCEMENT IN KERNEL
— POLICY INTERPRETATION IN TRUSTED PROCESSES

¢ TRUSTED PROCESSOR AND PERIPHERALS
— CONTROL UNITS
— UNTRUSTED DEVICFS

* CONFINEMENT AND SCHEDULERS
~ WHAT COUNTS FOR CORRECTNESS?
— WHAT CAN BE VIRTUALIZED?
— SECURITY/PERFORMANCE TRADEOFFS

j

N\

[

.

ABSTRACT SPECIFICATIONS

* IMPRECISE INFORMAL SPECS
— “PARNAS” FORMAT
- ENGLISH AND PSEUDO CODE STRUCTURE

* IMPRECISE FORMAL SPECIFICATIONS
~ TIMELESSNESS
— NON-PROCEDURAL PROCEDURAL: IY
* TIMEQUTS
* CAPABILITY FAULTS
o CONTEXT RESTORATION
* ABEND

| - ™

SEARCH FOR SUITABLE. VERIFIABLE HOL

e EUCLID'S DEMISE

* PASCAL'S INEFFICIENCIES AND
DATA-STRUCTURE INADEQUACIES

* PUI'S SUPPORT PACKAGE
* FREGE'S KARMA

* JOVIAL COMPROMISE

— J

a2)

CODING FROM FORMAL SPECIFICATIONS

* INFINITE SETS BECOME FINITE TABLES
CONSIDERATIONS
— HOW FINITE?
— HOW SPARSE?
— HOW ACCESSED?
— HOW FREQUENTLY?

¢ FAITHFUL IMPLEMENTATION OF 3, Vv
CONSIDERATION
- S IT A SPECIFICATICN “FICTION"

e LEGALITY-CHEC¥ING

- _/

- ™
REVISED SPECIFICAT:ON/VERIFICATION
THRUST
* ORIGINAL SPECS
— COMPLETED 1978

— NEVER VERIFIED

* REVISED. VERIFIED TOP LEVEL SPECS (1980)
— DERIVED FROM CODE, IMPLEMENTORS

— ARCHITECTURAL MODIFICATION/SIMPLIFICATION

* SECOND-LEVEL SPECIFICATIONS (1980)
- CORRELATION REVIEWED WITH IMPLEMENTORS

k - MAPPINGS COMPLETED BETWEEN LEVELS

AD=-A101 996 DEPARTMENT OF DEFENSE WASHINGTON DC

F/6 9/2

PROCEEDING6S OF THE SEMINAR ON THE DOD COMPUTER SECURITY IN!T!AT-’ETC(U)“
1980

CODING

* TWO PARALLEL EFFORTS
— NKCP-XKERNEL INTERFACE MACROS
— NKCP MQDS PERFOBMED VIA CMS EXECS
— KERNEL IMPLEMENTED BOTTOM-UP
¢ SUB KERNEL

* TRUSTED PROCESSES STUBBED

\.

TESTING

* KvM DEVELOPED b TESTED UNDER VM/370

- HEAVY USE OF CMS- AND CP- TEST ENVIRONMENTS
* ADSTOP
* PER TRACE
* MACHINE CONFIGURATION

* KERNEL "UNIT" TESTING
- DRIVER IS PSEUDO NKCP
* GROWN OVER TIME
* SELECTABLE KERNEL CALL TEST CASES
* LEGAL AS ILLEGAL PARAMETERS USED
* KEANEL "INTEGRATION ' TESTING
DRIVER IS NXCP OR NKCPs

- VMs USED TO DRIVE NKCPs

\—

f

TESTING SYNCHRONY AND ASYNCHRONY

* STRICT SYNCHRONY
— KERNEL, 1 KNCP, 1 VM

¢ A SYNCHRONOUS NKCP
— KERNEL, 1 NXCP, 2 VMs

s ASYNCHRONOUS KERNEL
— KERNEL, 2 NKCPs, 1 VM EACH

* TOTAL ASYNCHRONY
— KERNEL, 2 NKCPs. 2 VMs PER NKCP

R-5

e ——_— =

)

g R
FIELD TEST

¢ INITIAL TESTS TO BEGIN JANUARY 1981
~ SDC IBM 4331
— ARMY ITEL AS/S
— NAVY AMDAHL Vi7
— AIR FORCE !1BM 30314341

* PERFORMANCE MEASUREMENT AND TUNING
* FUNCTIONALITY TESTING
* SECURITY INTERFACE EVALUATION/FEEDBACK

¢ SECURITY TESTING

IN RETROSPECT

INSUFFICIENT DETAILED DOCUMENTATION

JOVIAL WAS NOT OPTIMAL CHOICE
— NOT MAINTAINED VM/370 COMPILER

— ORIGINAL KVM CONVENTIONS EXCEEOED MANY
COMPILER CAPABILITIES

— LACK OF MODERN LANGUAGE FEATURES

PEER REVIEW SHOULD BE FREQUENT

WAS RETROFIT SUCH A GOQD 'DEA?

STAFF SIZE SHOULD HAVE BEEN INCREASED EARLIER

STAFF SHOULD HAVE HAD ACCESS TO A LOCAL
COMPUTER

—

4 R
KERNELIZED SECURE OPERATING SYSTEM
(KS0S-6)
CHARLES H, BONNEAU
HONEYWELL
_ Yy,
TOPICS

e PROJECT OBJECTIVES
o HARDWARE DESIGN OVERVIEW

e SOFTWARE DESIGN OVERVIEW

o ASSURANCE TECHHIQUES

-

PROJECT OBJECTIVES

DEVELOP ADD-ON HARDWARE TO COMMERCIAL MACHINE WHICH MAKES IT

EASIER T BUILD SECURE SYSTEMS

DEVELOP TCB SOFTWARE
- ENFORCE DoD SECURITY POLICY
- FORMALLY PROVABLE
- SUPPORT UNIX + OTHER APPLICATIONS

_/

ff"*

SPM + LEVEL 6 MINICOMPUTER = SCOMP

CENTRAL
PROCESSOR

UNtY
Y

VIRTUAL
NEMORY SECURITY INPUT/

PUT
INTERFACE fee—e=] PROTECTION out
UNIi WODULE CONTROLLER

Y

CENTRAL
PROCESSOR
Uit

BUS LOGIC

MENORY

t t

~

-

)
‘

~

SECURITY PROTECTION MODULE FEATURES

FAST PROCESS SWITCHING

~ PPOCESS DESCRIPTOR TREE DEFINITION VIA DESCRIPTOR BASE ROOT

- AUTD LOAD OF DESCRIPTORS

NO CPU TC MCHOPY MEDIATION OVERHEAD AFTER INITIAL ACCESS

1-3 LCVEL NMEMORY DESCRIPTOR SYSTEM
- r, w, E COHTROL AT ANY LEVEL
- SEGMENTS: 2K WORDS (512)
- PAGES: 128 WORDS

1/0 MEDIATION
- CPY T0 DEVICE
- DEVICE TO MEMORY

NULTICS-LIKE RING STRUCTURE
- 2 PRIVILEGED, 2 NON-PRIVILEGED RINGS
- READ, WRITE, EXECUTE, AMD CALL BRACKETS
- RING CROSSING SUPPORT INSTRUCTIONS

PAGE FAULT RECOVERY SUPPORT

KSNS-6 SOFTWARE

e SECURITY KERNEL
e TRUSTED SOFTWARE

o UNIX EMULATOR

’._A

P gareryo

KERNEL DESIGN OVERVIEW
HON-FILESYSTEM 10 OUTSIDE KERMEL
FILES CONSTRUCTED EXTERHALLY USING SEGMENTS
DEMAND PAGIHG VIRTUAL MEMORY

NON-DISCRETIONARY ACCESS CONTROL - BELL AND LaPADULA
- PRIVILEGE
- ACCESS ATTRIBUTES NOT FIXED

DISCRETIDNARY ACCESS CONTROL
- UNIX R, w, € FOR OWNER, GROUP, OTHER
- RING BRACKETS FOR OWHNER, GROUP, OTHER
- SUBTYPES

KERNEL OBJECTS
- PROCESSES
- SEGMENTS
- DEVICES

KS0S-6 ARCHITECTURE

ADDRESS SPACE PARTITIONING
- MEMORY
o SEG 0-95: DISTRIBUTED KERWEL
o SEG 96-127: LOCAL KERNEL
e SEG 128-511: USER
- DEVICE
e DEV 0-31: DISTRIBUTED KERHEL
e DEV 32-511: USER
RING STRUCTURE
- RING 0 : KERHEL
- RING 2 : UNIX EMULATOR
TRUSTED S/M
- RING 3 : USER APPLICATIONS

| Tt

P

-

PROCESSES

CREATE_PROCESS
INVOKE_PROCZSS
RELEASE _PROCESS

GET PROCESS_ACCESS
SET_PROCESS_ACCESS
GET_PROCESS_STATUS
SET _PROCESS _STATUS
SET _PROCESS_SUBTYPLS
RECEIVE_MESSAGE

SEND MESSAGE
INTERRUPT_RETURN

GET SYSTEM_PARAMETERS
SHUTDOWN

VISIBLE FUNCTIONS

SEGNENTS DEVICES
® CREATE_SEGMENT ® CREATE_DEVICE
& DELETE _SEGMENT ® REMOVE _DEVICE
® GET_SEGMENT_ACCESS ® GET_DEVICE_ACCESS
@ SCT_SCGMENT_ACCESS ® SET _DEVICE ACCESS
® GET_SEGMENT_STATUS ® GET_DEVICE_STATUS
@ SET_SEGMENT_STATUS ® SET DEV.CE_STATUS
® MAP_SEGMENT @ MAP DEVICE
9 UNMAP_SEGMENT ® UNMAP_DEVICE
9 WIRE_SEGMENT ® SECURE TERMINAL_LOCK
® UNWIRE_SEGMENT ® SECURE TERMINAL UNLOCK
® SYNC_SEGMENT 8 MOUNT
® UNMOUN®
@ READ_SYSTEM CLO(K
® SET SYSTEM CLOCK

TRUSTED SOFTWARE A

o OPERATIOLS SERVICES

SECURE STARTUP
OPERATOR INTERFACE
SECURE LOADER(S)
SHUTDOWH

¢ USER SERVICES

SECURE INITIATOR
SECURE SERVER

LOGIN

SET USER ACCESS LEVEL
SET FILE ACCESS LEVEL

Los0uT
_J

. audihacie st

A

TRUSTED SOFTWARE (CONT)
o MAINTENANCE SERVICES

- MAKE FILE SYSTEM

- SEGMENT DUMP

~ SAVE/RESTORE FILESYSTEM

- FILESYSTEM CONSISTENCY CHECK

ASSURANCE TECHNIAUES

HARDWARE
- DESIGN VERIFICATION
e TESTING USED TO VERIFY DESIGN
e ANALYSIS USED TO VERIFY COMPLETENESS OF TESTING

- FAILURE INDUCED SECURITY COMPROMISE
o ESTABLISH PROBABILITIES THAT FAILURE WILL RESULT
IN COMPROMISE
o IDENTIFY FUNCTIONS THAT REQUIRE RUNNING PERIODIC
"HEALTH CHECKS”
- HARDWARE “GATES" INCLUDED IN FORMAL TOP-LEVE! SPEC

_J

Py

4
b
9
3

r ASSURANCE TECHMIOUES '

o SOFTWARE
- SPECIFICATIONS
¢ FORMAL TOP-LECVEL SPEC
e BS5 DESIGN SPEC
e (5 DESIGN SPEC
- IMPLEMENTATION
o VERIFIABLE LANGUAGE - UCLA PASCAL
o 10K SOURCE LINES
- DESIGN REVIEWS
o INFORMAL VERIFICATION BY CORRESPONDENCE
THROUGH IMPLEMENTATION
- FORMAL VERIFICATION OF SYSTEM DESIGN
o SRI HIERARCHICAL DEVELOPMENT METHODOLOGY (HDM)
- ILLUSTRATIVE PROOF OF IMPLEMENTATION

- TEST --- TEST
_ /

\

~

KERNEL VERIFICATION STATUS/RESULTS

o PROOF OF DESIGN ALMOST COMPLETE
- 1 MODULE REMAINS |
o FALSE THEORENS EXIST]
- RESOURCE EXHAUSTION |
- TRANQUILITY PRINCIPLE VIOLATIONS }
- EXCEPTION REPORTING ON WRITE-UPS ‘
o DIFFERENCES FROM IMPLEMENTATION '
- PRIVILEGE IS REMOVED |
e TOOLS "
- IMPROVED
- ISOLATING REASONS FOR FALSE THEOREMS IS TEDIOUS

_ Y

S-7

g M

SCOMP TLS
LLVEL HODULE HO. OF FUNLTIONS
13 PROCESS_VIRTUAL_PR. _LSSES 11
12 PROCESS_VIRTUAL. DEVICES 15
11 PROCESS_VIRTUAL SEGMENTS ih
10 {NTERPROCESS _COMMUNICATION 3
9 PROCESS_OPERATORS 10
8 SEGMENTS 15
7 MOUNTABLE _F ILESYSTEMS 11 .
6 DEVICES 2t 4
: PROCESS_STATES 1’ ‘
4 SUBTYPE_CONTROL 5
3 OBJECT _ACCESS_CONTROL 16
2 PRIVILEGE_CONTROL 3
1 OBJECT NAMES 3
0 CLOCK o
151 I
- APPROX 400 oINES OF SPECIAL .
SC VISIBLE FUNCTIONS - 12 HARDWARE GATES .
38 SOFiWARE GATES ;

- y
e A

o s

T g

