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Summary

This paper presents a comprehensive review of the research

literature on an aspect of probability assessment called

"calibration." Calibration measures the validity of probability

assessments. Being well-calibrated is critical for optimal

decision-making and for the development of decision-aiding

techniques.

Subjective probability assessments play a key role in

decision making. It is often necessary to rely on an expert

to assess the probability of some future event. How good are

such assessments? One important aspect of their quality is

called calibration. Formally, an assessor is calibrated if,

over the long run, for all statements assigned a given

probability (e.g., the probability is .65 that "Romania will

maintain its current relation with People's China for the next

six months."), the proportion that is true is equal to the

probability assigned. For example, if you are well calibrated,

then across all the many occasions that you assign a probability

of .8, in the long run 80% of them should turn out to be true.

If, instead, only 70% are true, you are not well calibrated,

you are overconfident. If 95% of them are true, you are

underconfident.

While this characteristic of assessors has obvious

importance for applied situations, people's calibration has

rarely been discussed by decision analysts or decision advisors.

In the last few years, there has developed an extensive

literature about calibration, reporting both laboratory and

real-world experiments. It is now time to review this literature,

to look for common findings which can be used to improve

* decisions, and to identify unsolved problems.
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Findings 7

Two general classes of calibration problem have been

studied. The first class is calibration for events for which

the outcome is discrete. These include probabilities assigned

to statements like "I know the answer to that question," "They

are planning an attack," or "Our alarm system is foolproof."

For such tasks, the following generalizations are justified

by the research:

1. Weather forecasters, who typically have had several

years of experience in assessing probabilities, are quite well

calibrated.

2. Other experiments, using a wide variety of tasks and

subjects, show that people are generally quite poorly calibrated.

In particular, people act as though they can make much finer

distinctions in their degree of uncertainty than is actually

the case.

3. Overconfidence is found in most tasks; that is, people

tend to overestimate how much they know.

4. The degree of overconfidence untutored assessors show

is a function of the difficulty of the task. The more difficult

the task, the greater the overconfidence.

5. Training can improve calibration only to a limited

extent.

The second class of tasks is calibration for probabilities

assigned to uncertain continuous quantities. For example, what

is the mean time between failures for this system? How much

iv



will this project cost? The assessor must report a probability

density function across the possible values of such uncertain

quantities. The usua. method for eliciting such probability

density functions is to assess a small number of fractiles of

the function. The .25 fractile, for example, is that value of

the uncertain quantity such that there is just a 25% chance

that the true value will be smaller than the specified value.

Suppose we had a person assess a large number of .25 fractiles.
The assessor would be giving numbers such that, for example,

"There is a 25% chance that this repair will be done in less

than xi hours" and "There is a 25% chance that Warsaw Pact1
personnel in Czechoslovakia number less than x.." This person

will be well calibrated if, over a large set of such estimates,

just 25% of the true values turn out to be less than the x-value

specified for each one. The measures of calibration used most

frequently in research consider pairs of extreme fractiles. For

example, experimenters assess calibration by asking whether 98%

of the true values fall between an assessor's .01 and .99

fractiles.

For calibration of continuous quantities, the following

results summarize the research.

1. A nearly universal bias is found: assessors' probability

density functions are too narrow. For example, 20 to 50% of

the true values lie outside the .01 and .99 fractiles, instead

of the prescribed 2%. This bias reflects overconfidence; the

assessors think they know more about the uncertain quantities

than they actually do know.

2. Some data from weather forecasters suggests that they

are not overconfident in this task. But it is unclear whether

this is due to training, experience, special instructions, or

I
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the specific uncertain quantities they deal with (e.g.,

tomorrow's high temperature).

3. A few studies have indicated that, with practice, people

can learn to become somewhat better calibrated.

Implications

Since assessed probabilities are central to a wide variety

of decision problems (e.g., making intelligence estimates,

assessing system reliability, projecting costs, deciding whether

to acquire more information), the question of whether such

probabilities are calibrated has far-reaching importance.

Almost all decision analyses involve probability assessments.

If these assessments are in error, the finest analysis relying

on them may be faulty. The bias towards overconfidence reported

here is widespread and well documented. What is not so well

established is whether, and how, this bias can be overcome

through training. The superior performance of weather fore-

casters is encouraging. These people have been using

probabilities in their forecasts on a daily basis for several

years; one might assume that this experience accounts for

their excellence. Further research is needed to document just

how much training, with what kind of feedback, is most efficient

for improving assessors' calibration. Such research is crucial

to developing a viable decision analysis technology. It also

helps tell us how much faith to put in the probability

assessments and decisions of untrained decision makers working

without the benefit of decision aids.
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CALIBRATION OF PROBABILITIES: THE STATE OF THE ART TO 1980

Introduction

From the subjectivist point of view (de Finetti, 1937) a

probability is a degree of belief in a proposition. It expresses

a purely internal state; there is no "right," "correct," or
"objective" probability residing somewhere "in reality" against

which one's degree of belief can be compared. -In many circum-

stances, however, it may become possible to verify the truth

or falsity of the proposition to which a probability was

attached. Today, one assesses the probability of the proposition

"it will rain tomorrow." Tomorrow, one looks at the rain gauge

to see whether or not it has rained. When possible, such

verification can be used to determine the adequacy of probability

assessments.

Winkler and Murphy (1968b) have identified two kinds of
"goodness" in probability assessments: normative goodness, which

reflects the degree to which assessments express the assessor's

true beliefs and conform to the axioms of probability theory, and

substantive goodness, which reflects the amount of knowledge of

the topic area contained in the assessments. This paper reviews

the literature concerning yet another aspect of "goodness,"

called calibration.

If a person assesses the probability of a proposition being

true as .7 and later finds that the proposition is false, that in

itself does not invalidate the assessment. However, if a judge

assigns .7 to 10,000 independent propositions, only 25 of which

subsequently are found to be true, there is something wrong with

these assessments. The attribute that they lack is called
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calibration; it has also been called realism (Brown & Shuford,

1973), external validity (Brown & Shuford, 1973), realism of

confidence (Adams & Adams, 1961), appropriateness of confidence

(Oskamp, 1962), secondary validity (Murphy & Winkler, 1971), and

reliability (Murphy, 1973). Formally, a judge is calibrated if,

over the long run, for all propositions assigned a given

probability, the proportion true equals the probability assigned.

Judges' calibration can be empirically evaluated by observing

their probability assessments, verifying the associated

propositions, and then observing the proportion true in each

response category.

The experimental literature on the calibration of assessors

making probability judgments about discrete propositions is

reviewed in the first section of this paper. The second section

looks at the calibration of probability density functions

assessed for uncertain numerical quantities. Although

calibration is essentially a property of individuals, most of

the studies reviewed here have reported data grouped across

assessors in order to secure the large quantities of data needed

for stable estimates of calibration.

Discrete Propositions

Discrete propositions can be characterized according to the

number of alternatives they offer:

No alternatives: "What is absinthe?" The assessor provides

an answer, and then gives the probability that the answer given

is correct. The entire range of probability responses, from 0 to

1, is appropriate.
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One alternative: "Absinthe is a precious stone. What is

the probability that this statement is true?" Again, the

relevant range of the probability scale is 0 to 1.

Two alternatives: "Absinthe is (a) a precious stone; (b) a

liqueur." With the half-range method, the assessor first selects

the more likely alternative and then states the probability (a .5)

that this choice is correct. With the full-range method, the

subject gives the probability (from 0 to 1) that a prespecified

alternative is correct.

Three or more alternatives: "Absinthe is (a) a precious

stone; (b) a liqueur; (c) a Caribbean island; (d) .... " Two

variations of this task may be used: (1) the assessor selects

the single most likely alternative and states the probability that

it is correct, using a response z 1/k for k alternatives or

(2) the assessor assigns probabilities to all alternatives, using

the range 0 to 1.

For all these variations, calibration may be reported via a

calibration curve. Such a curve is derived as follows:

(1) Collect many probability assessments for items whose correct

answer is known or will shortly be known to the experimenter.

(2) Group similar assessments, usually within ranges (e.g., all

assessments between .60 and .69 are placed in the same category).

(3) Within each category, compute the proportion correct (i.e.,

the proportion of items for which the proposition is true or the

alternative is correct). (4) For each category, plot the mean

response (on the abscissa) against the proportion correct (on

the ordinate). Perfect calibration would be shown by all points

falling on the identity line.

3



For half-range tasks, badly calibrated assessments can be

either overconfident, whereby the proportions correct are less

than the assessed probabilities, so that the calibration curve

falls below the identity line, or underconfident, whereby the

proportions correct are greater than the assessed probabilities

and the calibration curve lies above the identity line.

For full-range tasks with zero or one alternative,

overconfidence has two possible meanings. Assessors could be

overconfident in the truth of the answer; such overconfidence

would be indicated by a calibration curve falling always below

the identity line. Alternatively, assessors could be overconfid-

ent in their ability to discriminate true from false propositions.

Such overconfidence would be shown by a calibration curve below

the identity line in the region above .5 and above the identity

line in the region below .5.

Several numerical measures of calibration have been proposed.

Murphy (1973) has explored the general case of k-alternative

items, starting with the Brier score (1950), a general measure of

overall goodness of probability assessments such that the

smaller the score, the better. The Brier score for N items is:

1 NB=- £ (r. - ci)(r. - ci)'

where ri is a vector of the assessed probabilities for the k

alternatives of the i'th item, ri = (rli' ... f r ki' £i is the

associated outcome vector, c. = (Cli, ... , cji' ... Cki ),
where cji equals one for the true alternative and zero otherwise,

and the prime (') denotes a column vector. Murphy showed that

the Brier score can be partitioned into three additive parts.

4 I
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To do so, sort the N response vectors into T subcollections

such that all the response vectors, rt' in subcollection t are
identical. Let nt be the number of responses in the t'th

subcollection, and let t be the proportion-correct vector for

the t'th subcollection:

t (C c .t C where

nt

c E C. c/ncjt Z c t

Let be the proportion-correct vector across all responses,

-4 c = (Cl' "'" ,cj,... , Ck) , where

N
c j = i l c i •

) N1 ...~ji

Finally, let u be the unity vector, a row vector whose k elements

are all one.

Then Murphy's partition of the Brier score is:

1T
B =3(u-)' +- n t r t  ) (rt-)' -

t 1

The first term is not a function of the probability
assessments; rather, it reflects the relative frequency of true

events across the k alternatives. For example, suppose all the

1.
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items being assessed had the same two alternatives, (rain, no rain).

Then the first term of the partition is a function of the base rate

of rain across the N items (or days). If it always (or never)

rained, this term would be zero. Its maximum value, (k-l)/k,

would indicate maximum uncertainty about the occurrence of rain.

The second term is a measure of calibration, the weighted average

of the squared difference between the responses in a category and

the proportion correct for that category. The third term, called
"resolution," reflects the assessor's ability to sort the events

into subcategories for which the proportion correct is different

from the overall proportion correct.

Murphy's partition was designed for repeated predictions of

the same set of events (e.g., rain vs. no rain). When the

alternatives have no common meaning across items (e.g., in a

-! multiple-choice examination, then all that the first term indicates

is the extent to which the correct answers appear equally often

as the first, second, etc., alternative.

When only one response per item is scored, Murphy's

partition (Murphy, 1972) reduces to:

1 T 2 1 T 2B' I lc + N Z n t (r t - c t )  - z n t (c t - 8 )
t=l t=l

where 8 is the overall proportion correct, and ct is the

proportion correct in the t'th subcategory. When the scored

response is the response a .5 (as with the two-alternative,

half-range task), the first term reflects the subject's ability

to pick the correct alternative, and thus might be called

"knowledge." As before, the second term measures calibration,

and the third resolution.
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Similar measures of calibration have been proposed by
Adams and Adams (1961) and by Oskamp (1962). None of these
measures of calibration discriminates overconfidence from

underconfidence. The sampling properties of these measures are

not known.

Meteorological Research

In 1906, W. Ernest Cooke, Government Astronomer for
Western Australia, advocated that each meteorological prediction
be accompanied by a single number that would "indicate,

approximately, the weight or degree of probability which the

forecaster himself attaches to that particular prediction."
He reported (Cooke, 1906a, b) results from 1,951 predictions.

Of those to which he had assigned the highest degree of

probability ("almost certain to be verified"), .985 were correct.
For his middle degree of probability ("normal probability"),

.938 were correct, while for his lowest degree of probability
("doubtful"), .787 were correct.

In 1951, Williams asked eight professional Weather Bureau
forecasters in Salt Lake City to assess the probability of
precipitation for each of 1,095 12-hour forecasts, using one of

the numbers 0, .2, .4, .6, .8, or 1.0. Throughout most of the
range, the proportion of precipitation days was lower than the
probability assigned. This might reflect a fairly natural form

of hedging in public announcements. People are much more likely

to criticize a weather forecast that leads them to be without
an umbrella when it rains than one that leads them to carry an

umbrella on dry days.

7



Similar results emerged from a study by Murphy and Winkler

(1974). Their forecasters assessed the probability of

precipitation for the next day twice, before and after seeing

output from a computerized weather prediction system (PEATMOS).

The 7,188 assessments (before and after PEATMOS) showed the same

overestimation of the probability of rain found by Williams.

Sanders (1958) collected 12,635 predictions, using the

eleven responses 0,......, .9, 1.0, for a variety of

dichotomized events: wind direction, wind speed, gusts,

temperatures, cloud amount, ceiling, visibility, precipitation
occurrence, precipitation type, and thunderstorm. These data

revealed only a slight tendency for the forecasters' probability

assessments to exceed the proportion of weather events that
1occurred. Root (1962) reported a symmetric pattern of

calibration of 4,138 precipitation forecasts: assessed

probabilities were too low in the low range and too high in the

high range, relative to the observed frequencies.

Winkler and Murphy (1968a) reported calibration curves for

an entire year of precipitation forecasts from Hartford,

Connecticut. Each forecast was for either a six-hour or a

twelve-hour time period, with a lead time varying from 5 to 44

hours. Unfortunately, it was unclear whether the forecasters

had included "a trace of precipitation" (less than .01 inch) in

their predictions. The data were analyzed twice, once assuming

that "precipitation" included the occurrence of traces and

again without traces. The inclusion or exclusion of traces had

a substantial effect on calibration, as did the time period.

Six-hour forecasts with traces included and twelve-hour forecasts

excluding traces exhibited excellent calibration. The calibration

curve for twelve-hour forecasts with traces lay above the

8 1]



identity line; the curve for six-hour forecasts excluding traces

lay well below it. Variations in lead time did not affect

calibration.

National Weather Service forecasters have been expressing

their forecasts of precipitation occurrence in probabilistic

terms since 1965. The calibration for some parts of this

massive data base has been published (Murphy & Winkler, 1977a;

U.S. Weather Bureau, 1969). Over the years the calibration has

improved. Figure 1 shows the calibration for 24,859 precipitation

forecasts made in Chicago during the four years ending June 1976.

This shows remarkably good calibration; Murphy says the data for

recent years are even better! He attributes this superior

performance to the experience with probability assessment that

the forecasters have gained over the years and to the fact that
2

these data were gathered from real on-the-job performance.

Early Laboratory Research

In 1957, Adams reported the calibration of subjects who used

an eleven-point confidence scale: "[the subject was] instructed

to express his confidence in terms of the percentage of responses,

made at that particular level of confidence, that he expects to

be correct . . . . Of those responses made with confidence p,

about p% should be correct" (pp. 432-433).

In Adams' task, each of four words were presented

tachistoscopically ten times successively, with increasing

illumination each time, to ten subjects. After each exposure

subjects wrote down the word they thought they saw and gave a

confidence judgment. The resulting calibration curve showed

that proportions correct greatly exceeded the confidence ratings

; I
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along the entire response scale (except for the responses of

100). Great caution must be taken in interpreting these data:

because each word was shown 10 times, the responses are highly

interdependent. It is unknown what effect such interdependence

has on calibration. Subjects may have chosen to "hold back" on

early presentations, unwilling to give a high response when

they knew that the same word would be presented several more

times.

The following year, Adams and Adams (1958) reported a

training experiment, using the same response scale, but a new,

three-alternative, single-response task: For each of 156 pairs
of words per session, subjects were asked whether the words

were antonyms, synonyms, or unrelated. The mean calibration

scores (based on the absolute difference, Irt-Eti) of 14

experimental subjects,-who were shown calibration tallies and

calibration curves after each of five sessions, decreased by 48%

from the first session to the last. Six control subjects, whose

only feedback was a tally of their unscored responses, showed a

36% mean increase in discrepancy scores.

Adams and Adams (1961) discussed many aspects of calibration

(using the term "realism of confidence"), anticipating much of

the work done by others in recent years, and presented more bits

of data, including the grossly overconfident calibration curve

of a schizophrenic who believed he was Jesus Christ. In a

nonsense-syllable learning task, they found large overconfidence

on the first trial and improvement after 16 trials. They also

briefly described a transfer of training experiment: On Day 1,

subjects made 108 decisions about the percentage of blue dots

in an array of blue and red dots. On Days 2 and 4, the subjects

decided on the truth or falsity of 250 general knowledge

statements. On Day 3, they lifted weights, blindfolded. On

I
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Day 5, they made 256 decisions (synonym, antonym, or unrelated)

about pairs of words. Eight experimental subjects, given

calibration feedback after each of the first four days, showed

on the fifth day a mean absolute discrepancy score significantly

lower than that of eight control (no feedback) subjects,

suggesting some transfer of training. Finally, Adams and Adams

reported that across 56 subjects taking a multiple-choice final

examination in elementary psychology, poorer calibration was

associated with greater fear of failure (r = .36). Neither

knowledge nor overconfidence was related to fear of failure.

Oskamp (1962) presented subjects with 200 MMPI profiles 3 as

stimuli. Half the profiles were from men admitted to a VA

hospital for psychiatric reasons; the others were from men

admitted for purely medical reasons. The subjects' task was to

decide, for each profile, whether the patient's status was

psychiatric or medical and to state the probability that their

decision was correct. Each profile had been independently

categorized as hard (61 profiles), medium (88), or easy (51) on

Kthe basis of an actuarially-derived classification system,

which correctly identified 57%, 69% and 92% of the hard, medium,

and easy profiles, respectively.

All 200 profiles were judged by three groups of subjects:

28 undergraduate psychology majors, 23 clinical psychology

trainees working at a VA hospital, and 21 experienced clinical

psychologists. The 28 inexperienced judges were later split

into two matched groups and given the same 200 profiles again.

Half were trained during this second round to improve accuracy;

the rest were trained to improve calibration.

12



Oskamp used three measures of subjects' performance:

accuracy (percent correct), confidence (mean probability

response), and appropriateness of confidence (a calibration

score):

E ntlrt - 5tJ
Nt

All three groups tended to be overconfident, especially the

undergraduates in their first session (accuracy 70%, confidence

.78). However, all three groups were underconfident on the

easy profiles (accuracy 87%, confidence .83).

The subjects trained for accuracy increased their accuracy

from 67% to 73%, approaching their confidence level, .78, which

did not change as a result of training. The subjects trained

for calibration lowered their confidence from .78 to .74,

bringing it closer to their accuracy, 68%, which remained

unchanged. As would be expected from these changes, the

calibration score of both groups improved.

Signal Detection Research

In the early days of signal detection research,

investigators looked into the possibility of using confidence

ratings rather than Yes-No responses in order to reduce the

amounts of data required to determine stable receiver operating

characteristic (ROC) curves. Swets, Tanner, and Birdsall (1961)
asked four observers to indicate their confidence that they had
heard signal plus noise rather than noise alone for each of 1200

trials. Although three of the four subjects were terribly
calibrated, the four calibration curves were widely different.

-I13

13



One subject exhibited a severe tendency to assign too small

probabilitities (e.g., the signal was present over 70% of the

times when that subject used the response category ".05-.19").

Clarke (1960) presented one of five different words, mixed

with noise, to listeners through headphones. The listeners

selected the word they thought they heard, and then rated their

confidence by indicating one of five categories defined by

slicing the probability scale into five ranges. After each of

12 practice tests of 75 items, listeners scored their own results
and noted the percentage of correct identifications in each
rating category, thus allowing them to change strategies on the

next test. Clarke found that although all five listeners

appeared well calibrated when data were averaged over the five

stimulus words, analyses for individual words showed that the

listeners tended to be overconfident for low-intelligibility.

Pollack and Decker (1958) used a verbally defined 6-point

confidence rating scale that ranged from "Positive I received the

message correctly" to "Positive I received the message

incorrectly." With this rating scale it is impossible to

determine whether an individual is well calibrated, but it is

possible to see shifts in calibration across conditions.

Calibration curves for easy words generally lay above those

for difficult words, whatever the signal-to-noise ratio, and

the curves for high signal-to-noise ratios lay above those for

low signal-to-noise ratios, whatever the word difficulty.

In most of these studies, calibration was of secondary

interest; the important question was whether confidence ratings

would yield the same ROC curves as Yes-No procedures. By 1966,

Green and Swets concluded that, in general, ratings scales and

14



Yes-No procedures yield almost identical ROC curves. Since then,

studies of calibration have disappeared from the signal detection

literature.

Recent Laboratory Research

Overconfidence. The most pervasive finding in recent research

is that people are overconfident with general-knowledge items of

moderate or extreme difficulty. Some typical results showing

overconfidence are presented in Figure 2. Hazard and Peterson

(1973) asked 40 armed forces personnel studying at the Defense

Intelligence School to respond with probabilities or with odds

to 50 two-alternative general-knowledge items (e.g., Which maga-

zine had the largest circulation in 1970, Playboy or Time?).

Lichtenstein (unpublished) found similar results, using the same

items, but only the probability response, with 19 Oregon Research

Institute employees, as did Phillips and Wright (1977) with dif-

ferent items, using British undergraduate students as subjects.

Numerous other studies using general-knowledge questions have

shown the same overconfidence (Nickerson & McGoldrick, 1965;

Fischhoff, Slovic & Lichtenstein, 1977; Lichtenstein & Fischhoff,

1977, 1980a, 1980b; Koriat, Lichtenstein & Fischhoff, 1980). Cam-

bridge and Shreckengost (1978) found overconfidence with Central

Intelligence Agency analysts. Fischhoff and Slovic (1980) found

severe overconfidence using a variety of impossible or nearly im-

possible tasks (e.g., predicting the winners in 6-furlong horse

races, diagnosing the malignancy of ulcers). Pitz (1974) repor-

ted overconfidence using a full-range method.

Fischhoff, Slovic and Lichtenstein (1977) focused onthe appro-

priateness of expressions of certainty. Using a variety of methods

(no alternatives, one alternative, and two alternatives with half

15
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range and full range), they found that only 72 and 83 percent of

the items to which responses of 1.0 were given were correct. In

the full-range tasks, items assigned the other extreme response,

zero, were correct 20 to 30 percent of the time. Using an odds
response did not correct the overconfidence. Answers assigned

odds of 1,000:1 of being correct were only 81 to 88 percent cor-

rect; for odds of one million to one, the correct alternative was

chosen only 90 to 96 percent of the time. Subjects showed no re-
luctance to use extreme odds; in one of the experiments almost one

fourth of the responses were 1,000:1 or greater. Further analyses
showed that extreme overconfidence was not confined to just a few

subjects or a few items.

The effect of difficulty. Overconfidence is most extreme with

tasks of great difficulty (Clarke, 1960; Nickerson & McGoldrick,

1965; Pitz, 1974). With essentially impossible tasks (discrim-

inating European from American handwriting, Asian from European

children's drawings, and rising ftom falling stock prices) calibra-

tion curves did not rise at all; for all assessed probabilities,

the proportion of correct alternatives chosen was close to .5

(Lichtenstein & Fischhoff, 1977). Subjects were not reluctant

to use high probabilities in these tasks; 70 to 80 percent of all

responses were greater than .5.

As tasks get easier, overconfidence is reduced. Lichtenstein
and Fischhoff (1977) allowed one group of subjects in the hand-

writing discrimination task to study a correctly-labeled set of

sample stimuli before making their probability assessments. This

experience made the task much easier (71% correct versus 51% for

the no-study group), and the study group was only slightly over-

confident. Lichtenstein and Fischhoff (1977) performed post hoc
analyses of the effect of difficulty on calibration using two
large collections of data from general-knowledge, two-alternative

&
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half-range tasks. They separated easy items (those for which most
subjects chose the correct alternative) from hard items and know-

ledgeable subjects (those who selected the most correct alterna-

tives) from less knowledgeable subjects. They found a systematic
decrease in overconfidence as percent correct increased. Indeed,

the most knowledgeable subjects responding to the easiest items
were underconfident (e.g., 90% correct when responding with a

probability of .80). This finding was replicated with two new
groups of subjects given sets of items chosen to be hard or easy

on the basis of previous subjects' performance. The resulting

calibration curves are shown in Figure 3, along with the corres-
ponding calibration curves from the post hoc analyses.

In the research just cited, difficulty was defined on the basis
of subjects' performance (Clarke, 1960; Lichtenstein & Fischhoff,

1977). More recently, Lichtenstein and Fischhoff (1980a), fol-

lowing a lead of Oskamp (1962), developed a set of 500 two-alter-
native general knowledge items for which difficulty could be de-
fined independently. The items were of three types: which of two

cities, states, countries, or continents is more populous (e.g.,

Las Vegas vs. Miami), which of two cities is farther in distance

from a third city (e.g., Is Melbourne farther from Rome or from

Tokyo?), and which historical event happened first (e.g., Magna
Carta signed vs. Mohammed born). Thus, each item had associated

with it two numbers (populations, distances, or elapsed time to

the present). The ratio of the larger to the smaller of those

numbers was taken as a measure of difficulty: the 250 items with

the largest ratios were designated as easy; the remaining, as

hard. This a priori classification was quite successful; over 35
subjects, the percent correct was 81 for easy items and 58 for

hard items. These results, too, showed overconfidence for hard
items and underconfidence for easy items.
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The hard/easy effect seems to arise from assessors' inability

to appreciate how difficult or easy a task is. Phillips and Choo

(unpublished) found no correlation across subjects between per-
centage correct and the subjects' ratings on an 11-point scale of

the difficulty of a set of just-completed items. However, subjects

do give different distributions of responses for different tasks;

Lichtenstein and Fischhoff (1977) reported a correlation of .91

between percentage correct and mean response across 16 different

sets of data. But the differences in response distributions are

less than they should be: over those same 16 sets of data, the

proportion correct varied from .43 to .92 while the mean response

varied only from .65 to .86.

Ferrell and McGoey (1980) have recently developed a model for

the calibration of discrete probability assessments that addresses

the hard/easy effect. The model, based on signal detection theory,

assumes that assessors transform their feelings of subjective un-

certainty into a decision variable, X, which is partitioned into

sections with cutoff values fxi}. The assessor reports probability

ri whenever X lies between xi. 1 and xi . Ferrell and McGoey assume

that, in the absence of feedback about calibration performance,

the assessor will not change the set of cutoff values, {xi}, as

task difficulty changes. This assumption leads to a prediction of

overconfidence with hard items and underconfidence with easy items.

Application of the model to much of the data from Lichtenstein and

Fischhoff (1977) showed a moderately good fit to both the calibra-

tion curves and the distribution of responses under the assumption

that the cutoff values remained constant as difficulty changed.

Thus, the hard/easy effect is seen as an inability to change the

cutoffs involved in the transformation from feelings of certainty

to probabilistic responses.

Effect of base rates. One alternative (true/false) tasks may
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be characterized by the proportion of true statements in the set

of items. To be well calibrated on a particular set of items one
must take this base-rate information into account. The signal-

detection model of Ferrell and McGoey (1980) assumes that calibra-

tion is affected independently by (a) the proportion of true

statements and (b) the assessor's abiiity to discriminate true

from false statements. Assuming that the cutoff values,{xi}, are

held constant, the model predicts quite different effects on cali-

bration from changing the proportion of true statements (while

holding discriminability constant) as opposed to changing dis-

criminability (while holding the proportion of true statements

constant). Ferrell and McGoey presented data supporting their

model. Students in three engineering courses assessed the proba-

bility that the answers they wrote for their examinations would

be judged correct by the grader. Post hoc analyses separating

the subjects into four groups (high vs. low percentage of correct

answers and high vs. low discriminability) revealed the calibra-

tion differences predicted by the model. Unpublished data collec-

ted by Fischhoff and Lichtenstein, shown in Figure 4, also suggest

support for the model. Four groups of subjects received 25 one-

alternative general-knowledge items (e.g., "The Aeneid was written

by Homer") differing in the proportion of true statements: .08,

.20, .50, and .71. The groups showed dramatically different cali-

bration curves, of roughly the same shape as predicted by Ferrell

and McGoey for their base-rate changing, discriminability constant

case.

Individual differences. Unqualified statements that one per-

son is better calibrated than another person are difficult to make,

for two reasons. First, at least several hundred responses are

needed in order to get a stable measure of calibration. Second,

it appears that calibration strongly depends on the task, particu-
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larly on the difficulty of the task. Indeed, Lichtenstein and

Fischhoff (1980a) have suggested that each person may have an

"ideal" test (i.e., a test whose difficulty level leads to neither

over- nor underconfidence, and thus the test on which the person

will be best calibrated). However, the difficulty level of the

"ideal" test may vary across people. Thus, even when one person

is better than another on a particular set of items, the reverse

may be true for a harder or easier set.

Comparisons between different groups of subjects have gen-

erally shown few differences when difficulty was controlled.

Graduate students in psychology, who presumably are more intelli-

gent than the usual subjects (those who answered an ad in the col-

lege newspaper), were no different in calibration (Lichtenstein &

Fischhoff, 1977). Nor have we found differences in calibration or

overconfidence between males and females (unpublished data, Lich-

tenstein & Fischhoff).

Wright, Phillips, Whalley, Choo, Ng, Tan, and Wisudha (1978)

have studied cross-cultural differences in calibration. The cali-

bration of their British sample was shown in Figure 2. Their other

samples were Hong Kong, Indonesian, and Malay students. The Asian

groups showed essentially flat calibration curves. The authors

speculated that fate-oriented Asian philosophies might account

for these differences.

Corrective efforts. Fischhoff and Slovic (1980) tried to ward

off overconfidence on the task of discriminating Asian from Euro-

pean children's drawings by using explicitly discouraging instruc-

tions:

All drawings were taken from the Child Art Collection of

Dr. Rhoda Kellogg, a leading proponent of the theory that

12
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children from different countries and cultures make very
similar drawings . . . Remember, it may well be impossible

to make this sort of discrimination. Try to do the best

you can. But if, in the extreme, you feel totally uncertain
about the origin of all of these drawings, do not hesitate

to respond with .5 for every one of them (p. 792).

These instructions lowered the mean response by about .05, but sub-

stantial overconfidence was still found.

Will increased motivation improve calibration? Sieber (1974)

compared the calibration of two groups of students on a course-
related set of four-alternative items. One group was told that

they were taking their mid-term examination. The other group was
told that the test was not the mid-term, but would be used to
coach them for the mid-term. The two groups did not differ in the

number of correct alternatives chosen, but the presumably more
motivated group, whose performance would determine their grade,

showed significantly worse calibration (greater overconfidence).

Training assessors by giving them feedback about their cali-

bration has shown mixed results. As mentioned, Adams and Adams

(1958) found modest improvement in calibration after five training

sessions and, in a later study (1961), some generalization of
training. Choo (1976), using only one training session with 75 two-

alternative general-knowledge items, found little improvement and

no generalization.

Lichtenstein and Fischhoff (1980b) trained two groups of sub-

jects by giving extensive, personalized calibration feedback after

each of either 2 or 10 sessions composed of 200 two-alternative

general-knowledge items. They found appreciable improvement in
calibration, all of which occurred between the first and the second
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session. Modest generalization occurred for tasks with different

difficulty levels, content, and response mode (four rather than
two alternatives), but no improvement was found with a fractile

assessment task (described in the next section) or on the discrim-

ination of European from American handwriting samples.

Another approach to improving calibration is to restructure the

task in a way that discourages overconfidence. In a study by Kor-

iat, Lichtenstein, and Fischhoff (1980), subjects first responded
to 30 two-alternative general-knowledge items in the usual way.

They then received 10 additional items. For each item they wrote

down all the reasons they could think of that supported or contra-
dicted either of the two possible answers, and then made the usual

choice and probability assessments. This procedure significantly

improved their calibration. An additional study helped to pinpoint

the effective ingredient of this technique. After responding as

usual to an initial set of 30 items, subjects were given 30 more
items. For each, they first chose a preferred answer, then wrote

(a) one reason supporting their chosen answer, (b) one reason con-
tradicting. Then they assessed the probability that their chosen

answer was correct. Only the group asked to write contradicting

reasons showed improved calibration. This result, as well as corre-

lational analyses on the data from the first study, suggests that
an effective partial remedy for overconfidence is to search for

reasons why one might be wrong.

Expertise. Students taking a college course are, presumably,

experts, at least temporarily, in the topic material of the course.
Sieber (1974) reported excellent calibration for students taking a

practice mid-term examination (i.e., the group of students who were

told that the test was not their mid-term). Over 98 percent of their

1.0 responses and only .5 of their 0.0 responses were correct.

Pitz (1974) asked his students to predict their grade for his course;
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they also were well calibrated.

Would these subjects have been as well calibrated on items of

equivalent difficulty that were not in their area of expertise?

Lichtenstein and Fischhoff (1977) asked graduate students in psycho-

logy to respond to 50 two-alternative general-knowledge items and

50 items covering knowledge of psychology (e.g., the Ishihara test

is (a) a perceptual test, (b) a social anxiety test). The two sub-

tests were of equal difficulty and the calibration was similar

for the two tasks.

Christensen-Szalanski and Bushyhead (in press) reported nine

physicians' assessments of the probability of pneumonia for 1,531

patients who were examined because of a cough. Their calibration
was abysmal; the curve rose so slowly that for the highest confi-

dence level (approximately .88), the proportion of patients actu-

ally having pneumonia was less than .20. Similar results have

been reported for diagnoses of skull fracture and pneumonia by

Lusted (1977) and for diagnoses of skull fracture by DeSmet, Fry-

back, and Thornbury (1979). The results of these field studies

with physicians were in marked contrast with the superb calibration

of weather forecasters' precipitation predictions. We suspect

that several factors favor the weather forecasters. First, they

have been making probabilistic forecasts for years. Second, the

task is repetitive; the hypothesis (Will it rain?) is always the

same. In contrast, a practicing physician is hour by hour consi-

dering a wide array of hypotheses (Is it a skull fracture? Does

she have strep? Does he need further hospitalization?). Finally,

the outcome feedback for weather forecasters is well defined and

promptly received. This is not always true for physicians; patients

fail to return or are referred elsewhere, or diagnoses remain uncer-

tain.
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People who bet on or establish the odds for horse races might
also be considered experts. Under the parimutuel (or totaliator)

method, the final odds are determined by the amount of money bet

on each horse, allowing a kind of group calibration curve to be

computed. Such curves (Fabricand, 1965; Hoerl & Fallin, 1974)

show excellent calibration, with only a slight tendency for people

to bet too heavily on the long shots. However, such data are only
inferentially related to probability assessment. More relevant

are the calibration results reported by Dowie (1976), who studied

the forecast prices printed daily by a sporting newspaper in Bri-

tain.- These predictions, in the form of odds, are made by one

person for all the horses in a given race; about eight people made
the forecasts during the year studied. The calibration of the

forecasts for 29,307 horses showed a modest underconfidence for

probabilities greater than .4 and superb calibration for probabi-

lities less than .4 (which comprised 98% of the data).

The burgeoning research on calibration has led to the develop-

ment of a new kind of expertise: calibration experts, who know
about the common errors people make in assessing probabilities.

Lichtenstein and Fischhoff (1980a) compared the calibration of

eight such experts with 12 naive subjects and 15 subjects who had
previously been trained to be well calibrated. The normative ex-

perts not only overcame the overconfidence typically shown by

naive subjects, but apparently overcompensated, for they were
underconfident. The experts were also slightly more sensitive to

item difficulty than the other two groups.

Future events. Wright and Wisudha (1979) have speculated

that calibration for future events may be different than for gener-

al-knowledge questions. If true, this would limit extrapolation

from research with general-knowledge questions to the prediction
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of future events. Unfortunately, Wright and Wisudha'a general-

knowledge. items were more difficult than their future events,

which could account for the superior calibration of the latter.

Fischhoff and Beyth (1975) asked 150 Israeli students to

assess the probability of 15 then-future events, possible outcomes

of President Nixon's much-publicized trips to China and Russia

(e.g., President Nixon will meet Mao at least once). The result-

ing calibration curve was quite close to the identity line. How-

ever, Fischhoff and Lichtenstein (unpublished) have recently found

that the calibration of future events showed the same severe over-

confidence as was shown for general-knowledge items of comparable

difficulty. Phillips and Choo (unpublished) obtained calibration

curves for three sets of items: general knowledge, future events,
and past events (e.g., a jumbo jet crashed killing more than 100

people, some time in the past 30 days). For both British and Chi-

nese subjects, all three curves showed overconfidence. Calibration

for future and past events was identical, and somewhat better than

for the general-knowledge items. The difficulty levels of the

three sets of items could not account for these results.

Jack Dowie and colleagues are now collecting calibration data

from several hundred students in the Open University's course on

risk, using course-related questions, general-knowledge questions,

and future event questions. The students received a general intro-

duction to the concept of calibration and were given feedback

about their performance and calibration. Preliminary results5

suggest that they were moderately overconfident. Calibration was

best on general-knowledge itms and worst on course-related items,

but the significance and origins of these differences remain to be

investigated.
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Continuous Propositions: Uncertain Quantities

The Fractile Method

Uncertainty about the value of an uncertain continuous

quantity (e.g., what proportion of students prefer Scotch to

Bourbon? What is the shortest distance from England to Austral-

ia?) may be expressed as a probability density function across

the possible values of that quantity. However, assessors are not

usually asked to draw the entire function. Instead, the elicita-

tion procedure most commonly used is some variation of the frac-

tile method. In this method, the assessor states values of the

uncertain quantity that are associated with a small number of

predetermined fractiles of the distribution. For the median or

.50 fractile, for example, the assessor states a value of the

quantity such that the true value is equally likely to fall above

or below the stated value; the .01 fractile is a value such that

there is only 1 chance in 100 that the true value is smaller than

the stated value. Usually 3 or 5 fractiles, including the median,

are assessed. In a variant called the tertile method, the assess-

or states two values (the .33 and .67 fractiles) such that the

entire range is divided into three equally likely sections.

Two calibration measures are commonly reported. The inter-

quartile index is the percentage of items for which the true value

falls inside the interquartile range (i.e., between the .25 and

the .75 fractiles). The perfectly calibrated person will, in the

long run, have an interquartile index of 50. The surprise index

is the percentage of true values that fall outside the most ex-

treme fractiles assessed. When the most extreme fractiles assessed

are .01 and .99, the perfectly calibrated person will have a sur-

prise index of 2. A large surprise index shows that the assessor's

confidence bounds have been too narrow to encompass enough of the

true values and thus indicates overconfidence (or hyperprecision;

Pitz, 1974). Underconfidence would be indicated by an interquar-
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tile index greater than 50 and a low surprise index; no such data

have been reported in the literature.

The impetus for investigating the calibration of probability
density functions came from a 1969 paper by Alpert and Raiffa (see

Chapter 21). Alpert and Raiffa worked with Harvard Business

School students, all familiar with decision analysis. In Group 1,

all subjects assessed five fractiles, three of which were .25,

.50, and .75. The extreme fractiles were, however, different

for four subgroups: .01 and .99 (Group A); .001 and .999 (Group

B); "the minimum possible value" and "the maximum possible value"

(Group C); and "astonishingly low" and "astonishingly high"

(Group D). The interquartile and surprise indices for these four
subgroups are shown in Table 1. Discouraged by the enormous num-

ber of surprises, Alpert and Raiffa then ran three additional

groups (2, 3, and 4) who, after assessing 10 uncertain quantities,

received feedback in the form of an extended report and explana-

tion of the results, along with perorations to "Spread Those Ex-

treme Fractiles!". The subjects then responded to 10 new uncer-

tain quantities. Results before and after feedback are shown in

Table 1. The subjects improved, but still showed considerable

overconfidence.

Hession and McCarthy (1974) collected data comparable to

Alpert and Raiffa's first experiment, using 55 uncertain quantities

and 36 graduate students as subjects. Their instructions urged

subjects to make certain that the interval between the .25 frac-

tile and the .75 fractile did indeed capture half of the probabi-

lity. "Later discussion with individual subjects made it clear

that this consistency check resulted in most cases in a readjust-

ment, decreasing the interquartile range originally assessed"

(p. 7)--thus making matters worset This instructional emphasis,

not used by Alpert and Raiffa, may explain why Hession and McCar-
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Table 1

Calibration Sumary for Continuous Items: Percent of True
Values Falling Within Interquartile Range

and Outside the Extreme Fractiles

Interquartile
Indexb Surprise Index

Observed Observed Ideal

Alpert & Raiffa (1969)

Group 1-A (.01, .99) 880 46 2
Group 1-B (.001, .999) 500 J 40 .2
Group 1-C ("min" & "max") 700 47 ?
Group 1-D ("astonishingly high/low") 700 38 ?
Groups 2, 3, & 4 Before Training 2270 34 34 2

After Trai ing 2270 44 19 2

Hessian & McCarthy (1974) 2035 25 47 2

Selvidge (1975)
Five Fractiles 400 56 10 2
Seven Fractiles (ncl. .1 & .9) 520 50 7 2

Moskowitz & Bulers (1978)
Proportions

Three Fractiles 120 - 27 2
Five Fractiles 145 32 42 2

Dow-Jones
Three Fractiles 210 - 38 2
Five Fractiles 210 20 64 2

Pickhardt & Wallace (1974)
Group 1, First Round ? 39 32 2

Fifth Round ? 49 20 2
Group 2, First Round ? 30 46 2

Sixth Round 7 45 24 2

Brown (1973) 414 29 42 2

Lichtenstein & Fischhoff (1980b)
Pretest 924 32 41 2
Posttest 924 37 40 2

Seaver, von Winterfeldt, & Edwards (1978)
Fractiles 160 42 34 2
Odds-Fractiles 160 53 24 2
Probabilities 180 57 5 2
Odds 180 47 5 2
Log Odds 140 31 20 2

Schaefer & Borcherding (1973)
First Day, Fractiles 396 23 39 2
Fourth Day, Fractiles 396 38 12 2
First Day, Hypothetical Sample 396 16 50 2
Fourth Day, Hypothetical Sample 396 48 6 2

Larson & Reenan (1979)
"Reasonably Certain" 450 - 42 ?

Pratt (Personal Comunication)
"Astonishingly high/low" 175 37 5

Murphy & Winkler (1974)
Extremes were .125 & .875 132 45 27 25

Murphy & Winkler (1977b)

Extremes were .125 & .875 432 54 21 .25

!Stail von Holstein (1971) 1269 27 302

SN to the total number of assessed distributions.

.b The ideal percent of *vents falling within the interquartile range is 50, for all
experiments except Brown (1973). He elicited the .30 and .70 fractiles, so the

ideal is 40Z.
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thy's subjects were so badly calibrated, as shown in Table 1.

Hession and McCarthy also gave their subjects a number of

individual difference measures: Authoritarianism, Dogmatism,

Rigidity, Pettigrew's Category-Width Scale, and Intelligence.

The correlations of the subjects' test scores with their inter-

quartile and surprise indices were mostly quite low, although

the Authoritarian scale correlated -.31 with the interquartile

score and +.47 with the surprise score (N = 28). This is con-

sistent with Wright and Phillips' (1976) finding that Authoritar-

ianism was modestly related to calibration.

Selvidge (1975) extended Alpert and Raiffa's work by first

asking subjects four questions about themselves (e.g., Do you

prefer Scotch or Bourbon?). Their responses determined the true

answer for these group-generated proportions (e.g, what proportion

of the subjects answering the questionnaire preferred Scotch to

Bourbon?). One group gave five fractiles, .01, .25, .5, .75, and

.99. Another group gave those five plus two others: .1 and .9.

As shown in Table 1, the seven-fractile group did a bit better.
The five-fractile results are not as different from Alpert and

Raiffa's results as they appear. Three of Alpert and Raiffa's

uncertain quantities were group-generated proportions similar to

selvidge's items. On these three items, Alpert and Raiffa found

57% in the interquartile range and 20% surprises. Finally, for

one of the items, half the subjects in the five-fractile group

were asked to give .25, .5, and .75 first, and then to give .01

and .99, while the other half were instructed to assess the ex-

tremes first. Selvidge found fewer surprises for the former order

(8%) than for the latter (16%).

Moskowitz and Bullers (1978) also used group-generated pro-
portions, but found many more surprises than did Selvidge. One

[
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group gave the same five fractiles that Selvidge used (in the
order .5, .25, .75, .01, .99). Another group was asked for only
three assessments (the mode of the distribution and the .01 and

.99 fractiles). Before making their assessments, the three-frac-

tile group received a presentation and discussion of some typical
reference events (e.g., "Consider a lottery in which 100 people

are participating. Your chance of holding the winning ticket is

1 in 100") designed to give assessors a better understanding of
the meaning of a .01 probability. As shown in Table 1, the three-

fractile group had fewer surprises than the five-fractile group.
In another experiment using the same two methods, Moskowitz and

Bullers asked 44 undergraduate commerce students to assess the
average value of the Dow-Jones Industrial Index for 1977, 1974,

1965, 1960, and 1950. Each subject gave assessments before and
after engaging in three-person discussions. Since no systematic

differences were found due to the discussions, the data have been

combined in Table 1. Again, the three-fractile group (who had
received the presentation on the meaning of .01) had fewer sur-

prises than the five-fractile group. The performance of the five-

fractile group was extremely bad.

Pickhardt and Wallace (1974)replicated Alpert and Raiffa's

work, with variations. Across several groups they reported 38 to

48 percent surprises before feedback, and not less than 30% sur-
prises after feedback. Two variations, using or not using course
grade credit as a reward for good calibration, and using or not
using scoring rule feedback, made no difference in the number of

surprises. Pickhardt and Wallace also studied the effects of

extended training: Two groups of 18 and 30 subjects (number of
uncertain quantities not reported) responded for five and six ses-

sions with calibration feedback after every session. Modest im-
provement was found, as shown in Table 1.
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Finally, Pickhardt and Wallace studied the effects of in-

creasing knowledge on calibration in the context of a production

simulation game called PROSIM. Thirty-two graduate students each

made 51 assessments during a simulated 17 "days" of production

scheduling. Each assessment concerned an event that would occur

1, 2, or 3 "days" hence. The closer the time of assessment to the

time of the event, the more the subject knew about the event.

Overconfidence decreased with this increased information: there

were 32% surprises with 3-day lags, 24% with 2-day lags, and 7%

with 1-day lags. No improvement was observed over the 17 "days"

of the simulation.

Brown (1973) asked 31 subjects to assess seven fractiles (.01,

.10, .30, .50, .70, .90, .99) for 14 uncertain quantities. The

results, shown in Table 1, are particularly discouraging, because

each question was accompanied by extensive historical data (e.g.,

for "Where will the Consumer Price Index stand in December, 1970?,"

subjects were given the Consumer Price Index for every quarter

between March, 1962, and June, 1970). For 11 of the questions,

had the subjects given the historical minimum as their .01 frac-

tile and the historical maximum as their .99 fractile, they would

have had no surprises at all. The other three questions showed

strictly increasing or strictly decreasing histories, and the true

value was close to any simple approximation of the historical

trend. The subjects must have been relying heavily on their own

erroneous knowledge to have given distributions so tight as to

produce 42% surprises.

Lichtenstein and Fischhoff (1980b) elicited five fractiles

(.01, .25, .5, .75, .99) from 12 subjects on 77

uncertain quantities both before and after the subjects received

extensive calibration training on two-alternative discrete items.
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As shown in Table 1, the subjects did not significantly im-
prove their calibration of uncertain quantities.

Other Methods

Seaver, von Winterfeldt, and Edwards (1978) studied the
effects of five different response modes on calibration. Two
groups used the fractile method, either five fractiles (.01, .25,

.50, .75, .99) or the odds equivalents of those fractiles (1:99,
1:3, 1:1, 3:1, 99:1). Three other groups responded with probabi-

lities, odds, or odds on a log-odds scale to one-alternative
questions that specified a particular value of the uncertain quan-

tity (e.g., What is the probability that the population of Canada
in 1973 exceeded 25 million?). Five such fixed values were given

for each uncertain quantity, and from the responses the experi-
menters estimated the interquartile and surprise indices. For

each method, seven to nine students responded to 20 uncertain
quantities. As shown in Table 1, the groups giving probabilistic
and odds responses had distinctly better surprise indices than

those using the fractile method. It is unclear whether this su-

periority is due to the information communicated by the values
chosen by the experimenter. The log-odds response mode did not

work out well.

Schaefer and Borcherding (1973) asked 22 students to assess
18 group-generated proportions in each of four sessions. Each

subject used two assessment techniques: (1) the fractile method

(.01, .125, .25, .5, .75, .875, .99), and (2) the hypothetical
sample method. In the latter method, the assessor states the
size, n, and the number of successes, r, of a hypothetical sample

that best reflects the assessor's knowledge about the uncertain

quantity (i.e., I feel as certain about the true value of the

proportion as I would feel were I to observe a sample of n cases
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with r successes). Larger values of n reflect greater certainty
about the true value of the proportion. The ratio r/n reflects

the mean of the probability density function. Subjects had great
difficulty with this method, despite instructions that included

examples of the beta distributions underlying this method. After

every session, subjects were given extensive feedback, with em-
phasis on their own and the group's calibration. The results

from the first and last sessions are shown in Table 1. Improve-

ment was found for both methods. Results from the hypothetical

sample method started out worse (50% surprises and only 16% in

the interquartile range), but ended up better (6% surprises and

48% in the interquartile range) than the fractile method.

Barclay and Peterson (1973) compared the tertile method (i.e.,

the fractiles .33 and .67) with a "point" method in which the
assessor is asked to give the modal value of the uncertain quan-

tity, and then two values, one above and one below the mode, each

of which is half as likely to occur as is the modal value (i.e.,

points for which the probability density function is half as
high as at the mode). Using 10 almanac questions as uncertain

quantities and 70 students at the Defense Intelligence School in
a within-subject design, they found for the tertile method that

29% (rather than 33%) of the true answers fell in the central

interval. For the point method, only 39% fell between the two

half-probable points, whereas, for most distributions, approxi-
mately 75% of the density falls between these points.

Pitz (1974) reported several results using the tertile method.
For 19 subjects estimating the populations of 23 countries, he

found only 16% of the true values falling inside the central third
of the distributions. In another experiment he varied the items
according to the depth and richness of knowledge he presumed his
subjects to have. With populations of countries (low knowledge)
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he found 23% of the true values in the central third; with
heights of well-known buildings (middling knowledge), 27%; and

with ages of famous people (high knowledge), 47%, the last being

well above the expected 33%. In another study, he asked six sub-

jects to assess tertiles, and a few days later to choose among

bets based on their own tertile values. He found a strong pref-

erence for bets involving the central region, just the reverse of

what their too-tight intervals should lead them to.

Larson and Reenan's (1979) subjects first gave their best
guess at the true answer (i.e., the mode), and then two more va-

lues that defined an interval within which they were "reasonably

certain" the correct answer lay. Forty-two percent of the true

values lay outside this region. Note how similar this surprise

index is to the indices of Alpert and Raiffa's subjects given

the verbal phrases "minimum/maximum" 947%) and "astonishingly

high/low" (38%).

Real Tasks with Experts

Pratt6 asked a single expert to predict movie attendance for

175 movies or double features shown in two local theaters over a
period of more than one year. The expert assessed the median,

quartiles, and "astonishingly high" and "astonishingly low"

values. As shown in Table 1, the interquartile range tended to

be too small. Even though the expert received outcome feedback

throughout the experiment, the only evidence of improvement in

calibration over time came in the first few days.

Three experiments used weather forecasters for subjects. In

two experiments, Murphy and Winkler (1974, 1977b), asked weather

forecasters to give five fractiles (.125 .25, .5, .75, 875) for

tomorrow's high temperature. The results, shown in Table 1, indi-
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cate excellent calibration. These subjects had fewer surprises

in the extreme 25% of the distribution than did most of Alpert

and Raiffa's subjects in the extreme 2%! Murphy and Winkler

found that the five subjects in the two experiments who used the

fractile method were better calibrated than four other subjects

who used a fixed-width method. For the fixed-width method, the

forecasters first assessed the median temperature (i.e., the high

temperature for which they believed there was a .5 probability

that it would be exceeded). Then they stated the probability

that the temperature would fall within intervals of 50F and of

90F centered at the median. These forecasters were overconfident;

the probability associated with the temperature falling inside

the interval tended to be too large. The superiority of the frac-
tile method over the fixed-width method stands in contrast with

Seaver, von Winterfeldt, and Edwards' finding that fixed-value

methods were superior, perhaps because the fixed intervals used

by Murphy and Winkler (50F and 90F) were noninformative.

Stael von Holstein (1971) used three fixed-value tasks:

(1) Average temperature tomorrow and the next day (dividing the
entire response range into 8 categories), (2) average temperature

four and five days from now (8 categories), and (3) total amount

of rain in the next five days (4 categories). From each set of

responses (4 or 8 probabilities summing to 1.0), he estimated

the underlying cumulative density function. He then combined

the 1,269 functions given by 28 participants. From the group

cumulative density function shown in his paper, we have estimated

the surprise and interquartile indices (see Table 1). In contrast

to other weather forecasters, these subjects were quite poorly

calibrated, perhaps because the tasks were less familiar.

Summary of Calibration with Uncertain Quantities

The overwhelming evidence from research using fractiles to
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assess uncertain quantities is that people's probability distri-

butions tend to be too tight. The assessment of extreme fractiles
is particularly prone to bias. Training improves calibration

somewhat. Experts sometimes perform well (Murphy & Winkler, 1974,

1977b), sometimes not (Pratt,6 Stael von Holstein, 1971). There
is some evidence that difficulty is related to calibration for

continuous propositions. Pitz (1974) and Larson and Reenan (1979)

found such an effect, and Pickhardt and Wallace's (1974) finding

that one-day lags led to fewer surprises than three-day lags in
their stimulation game is relevant here. Several studies (e.g.,

Barclay & Peterson, 1973: Murphy & Winkler, 1974) have reported
a correlation between the spread of the assessed distribution and

the absolute difference between the assessed median and the true

answer, indicating that subjects do have a partial sensitivity
to how much they do or don't know. This finding parallels the

correlation between percent correct and mean response with dis-

crete propositions.

Discussion

Why Be Well Calibrated?

Why should a probability assessor worry about being well

calibrated? Von Winterfeldt and Edwards (1973) have shown that

in most real-world decision problems with continuous decision

options (e.g., invest $X), fairly large assessment errors make
relatively little difference in the expected gain. However,

several considerations argue against this reassuring view. First,

in a two-alternative situation, the payoff function can be quite

steep in the crucial region. Suppose your doctor must decide
the probability that you have condition A, and should receive

treatment A, versus having condition B and receiving treatment B.
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Suppose that the utilities are such that treatment A is better

if the probability that you have condition A is x .4; otherwise

treatment B is better. If the doctor assesses the probability

that you have A as p(A) = .45, but is poorly calibrated, so that

the appropriate probability is .25, then the doctor would use

treatment A rather than treatment B and you would lose quite a

chunk of expected utility. Real-life utility functions of just

this type are shown by Fryback (1974).

Furthermore, when the payoffs are very large, when the er-

rors are very large, or when such errors compound, the expected

loss looms large. For instance, in the Reactor Safety Study

(U.S. NRC, 1975) "at each level of the analysis a log-normal

distribution of failure rate data was assumed with 5 and 95 per-

centile limits defined" (Weatherwax, 1975, p. 31). The research
reviewed here suggests that distributions built from assessments

of the .05 and .95 fractiles may be grossly biased. If such

assessments are made at several levels of an analysis, with each

assessed distribution being too narrow, the errors will not can-

cel each other, but will compound. And because the costs of

nuclear power plant fa'lure are large, the expected loss from

such errors could be enormous.

If good calibration is important, how can it be achieved?

Cox (1958) recommended that one externally recalibrate people's

assessments by fitting a model to a set of assessments for items

with known answers, From then on, the model is used to correct

or adjust responses given by the assessor. The technical diffi-

culties confronting external recalibration are substantial. When

eliciting the assessments to be modeled, one would have to be

careful not to give the assessors any more feedback than they

normally receive, for fear of their changing their calibration
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as it is being measured. As Savage (1971) pointed out, "you

might discover with experience that your expert is optimistic or

pessimistic in some respect and therefore temper his judgments.

Should he suspect you of this, however, you and he may well be

on the escalator to perdition" (p. 796). Furthermore, since re-

search has shown that the type of miscalibration observed depends

on a task's difficulty level, one would also have to believe that

the future will match the difficulty of the events used for the

recalibration.

The theoretical objections to external recalibration may be

even more serious than the practical objections. The numbers pro-
duced by a recalibration process will not, in general, follow the

axioms of probability theory (e.g., the numbers associated with

mutually exclusive and exhaustive events will not always sum to

one, nor will it be generally true that P(A) • P(B) = P(A,B) for

independent events); hence, these new numbers cannot be called

probabilities.

A more fruitful approach would be to train assessors to

become well calibrated. Under what conditions might one expect

that assessors could achieve this goal?

One should not expect assessors to be well calibrated when

the explicit or implicit rewards for their assessments do not

motivate them to be honest in their assessments. As an extreme

example, an assessor who is threatened with beheading should any

event occur whose probability was assessed at <.25 will have good

reason not to be well calibrated with assessments of .20. Although

this example seems absurd, more subtle pressures such as "avoid

being made to look the fool" or "impress your boss" might also

provide strong incentives for bad calibration. Any rewards for

either wishful thinking or denial could also bias the assessments.
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Receiving outcome feedback after every assessment is the

best condition for successful training. Dawid (in press) has

shown that under such conditions assessors who are honest and

coherent subjectivists will expect to be well calibrated regard-

less of the interdependence among the items being assessed. In
7

contrast, Kadane has shown that, in the absence of trial-by-

trial outcome feedback, honest, coherent subjectivists will ex-

pect to be well calibrated if and only if all the items being

assessed are independent. This theorem puts strong restrictions

on the situations under which it would be reasonable to expect

assessors to learn to be well calibrated. Even if the training

process could be conducted using only events that assessors be-

lieved were independent, there may be good reason to doubt the

independence of the real-life tasks to which the assessors would

apply their training. Important future events may be interdepen-

dent either because they are influenced by a common underlying

cause or because the assessor evaluates all of them by drawing on

a common store of knowledge. In such circumstances, one would

not want or expect to be well calibrated.

The possibility that people's biases vary as a function of

the difficulty of the tasks poses a further obstacle to calibra-

tion training in the absence of immediate outcome feedback. The

difficulty level of future tasks may be impossible to predict,

thus rendering the training ineffective.

Calibration as Cognitive Psychology

Experiments on calibration can be used to learn how people

think. Even if the immediate practical significance of each study

is limited, it may still provide greater understanding of how

people develop and express feelings of uncertainty and certainty.

However, a striking aspect of much of the literature reviewed here
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is its "dust-bowl empiricism." Psychological theory is often

absent, either as motivation for the research or as explanation

of the results.

Not all authors have avoided theorizing. Slovic (197Z

and Tversky and Kahneman (1974) argued that, as a result of lim-

ited information-processing abilities, people adopt simplifying

rules or heuristics. Although generally quite useful, these

heuristics can lead to severe and systematic errors. For example,

the tendency of people to give unduly tight distributions when

assessing uncertain quantities could reflect the heuristic called

"anchoring and adjustment." When asked about an uncertain quan-

tity, one naturally thinks first of a point estimate such as the

median. This value then serves as an anchor. To give the 25th

or 75th percentile, one adjusts downward or upward from the an-

chor. But the anchor has such a dominating influence that the

adjustment is insufficient; hence the fractiles are too close

together, yielding overconfidence.

Pitz (1974), too, accepted that people's information-proces-

sing capacity and working memory capacity are limited. He sugges-

ted that people tackle complex problems serially, working through

a portion at a time. To reduce cognitive strain, people ignore

the uncertainty in their solutions to the early portions of the

problem in order to reduce the complexity of the calculations

in later portions. This could lead to too-tight distributions

and overconfidence. Pitz also suggested that one way people

estimate their own uncertainty is by seeing how many different

ways they can arrive at an answer, that is, how many different

serial solutions they can construct. If many are found, people

will recognize their own uncertainty; if few are found, they will

not. The richer the knowledge base from which to build alterna-

4
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tive structures, the less the tendency toward overconfidence.

Phillips and Wright (1977) presented a three-stage serial

model. Their model distinguishes people who tend naturally to

think about uncertainty in a probabilistic way from those who
respond in a more black-and-white fashion. They work on cultural

and individual differences (Wright & Phillips, 1976; Wright et al.,

1978) has attempted, with partial success, to identify distinct
cognitive styles in processing this type of information.

Koriat et al. (1980) also took an information-processing

approach. They discussed three stages for assessing probabili-
ties. First, one searches one's memory for relevant evidence.

Next, one assesses that evidence to arrive at a feeling of cer-

tainty or doubt. Finally, one translates the certainty feeling

into a number. The manipulations used by Koriat et al. were
designed to alter the first two stages, by forcing people to

search for and attend to contradictory evidence, thereby lowering

their confidence.

Ferrell and McGoey's (1980) model, on the other hand, deals

entirely with the third stage, translation of feelings of cer-
tainty into numerical responses. By assuming that, without feed-

back, people are unable to alter their translation strategies as

either the difficulty of the items or the base rate of the events

changes, the model provides strong predictions which have received

support from calibration data.

Structure and process theories of probability assessment are

beginning to emerge; we hope that the further development of such

theories will serve to integrate this rather specialized field

into the broader field of cognitive psychology.
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Footnotes

The writing of this paper, and our research reported herein,

were supported by contracts from the Advanced Research Projects

Agency of the Department of Defense (Contracts N00014-73-C-0438

and N00014-76-C-0074) and the Office of Naval Research (Contract

N00014-80-C-0150).

We are grateful to P. Slovic, L. R. Goldberg, A. Tversky,

R. Schaefer, D. Kahneman, and most especially K. Borcherding for

their helpful suggestions.

1. The references by Cooke (1906), Williams (1951), and

Sanders (1958) were brought to our attention through an unpub-

lished manuscript by Howard Raiffa, dated January 1969, entitled

"Assessments of Probabilities."

2. Personal communication, August, 1980.

3. The MMPI (Minnesota Multiphasic Personality Inventory)

is a personality inventory widely used for psychiatric diagnosis.

A profile is a graph of 13 subscores from the inventory.

4. MMPI buffs might note that with this minimal training

the undergraduates showed as high an accuracy as either the best

experts or the best actuarial prediction systems.

5. J. Dowie, personal communication, November, 1980.

6. J. W. Pratt, personal communication, October, 1975.

7. J. Kadane, personal communication, November, 1980.
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