AD=A101 853 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE--ETC F/G 9/2
LS8 MANUAL. (L)
JUN 81 G BURKE , NODO14=75=C=0661
UNCLASSIFIED MIT/LCS/TM-200

2

T

T
T
T T
T
1
. O
I A
T
T
I
I
T T
1

. MASSACHUSETTS
LABORATORY FOR INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

MIT/LCS/TM-200

LSB Manual

ADA101853

Glenn Burke . i et
{) T, [tﬂ_
a2 3188 L ow

S o4
; "...\:V

June 1981

This document haa Deem
fer pubtc ralegsy oad webes g
{

digmitigion L wnltaadted

Support for this research was provided in part by National
Institutes of Health grant number 1 P41 RR 01096-04. from the
Division of Research Resources, and the Defense Advanced
Research Projects Agency under Office of Naval Research

contract number NOOO14-75-C-0661.

545 TECHNOLOGY SQUARE, CAMBRIDGE., MASSACHUSETTS 02139

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEr e o RUCTIONS
T. REPORY Nuniin 2. GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER
MIT/LCS/TM-200 l/) D- ANoM 9155

4. TITLE (and Subtitle) 8. TYPE OF REPORT & PERIOD COVERED

LSB Manual. 7) T s /‘ Tl / June 1981
/

™

) 7 |\§ PERFORMING ORG. REFORT NUMBER
7w e My L /5 - MIT/LCS/TM-200
S — TN TRRET ORI NCRRER
, .1t 1 Ph1 RR-01096-0k
) Glenn/Burke /—V'IPS‘ SARPA HQDQM-?S-C-M&;
i -

9. PERFORMING ORGANIZATION NAME AND ADDRESS T Py
Laboratory for Computer Science - REA & WORK UNIT NUMBERS

Massachusetts Institute of Technology
545 Technology Square, Cambridge, Mass. 02139

S

1Y. CONTROLLING OFFICE NAME AND ADDRESS 7'—~ 12. REPDRT DATE
DARPA "1 June 1981
1400 Wilson Blvd. - /T 13. NUMBER OF PAGES
Arlington, V) 190

- MONITORING AGENCY NAME & ADDRESS(I! different from Controlling Officej | 18. SECURITY CLASS. (of this reporf)

Office of Naval Research Unclassified
Department of the Navy e J
Inf?rmation Systems Program |LLY ?'gfzuagtu:icu' 1ON/ DOWNGRADING
Arlington, Va. 22217

|6, DISTRIBUTION STATEMENT (of this Report)

This document is approved for public release and sale; distribution is
unlimited.

P

17. DISTRIBUTION STATEMENT (of the abetract entered In Block 20, 11 different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if sary and identily by block number)

LISP

20. ABSTRACT (Continue on reverse side If necessary and identity by block number)

. FoRM o
N DD ,an'72 1473 Eoimion oF 1 NoOV 68 is OBsOLETE 1// / y
’ : SECURITY CLASSIFICATION OF THIS PAGE (When Dafs Entersd)

) =

LSB Manual

June 1981

Glenn Burke

This report describes research done at the Laboratory for Computer Science of the Massachusctts
Institute of Technology. Support for this rescarch was provided in part by National Institutes of
Health grant number 1 P41 RR 01096-04 from the Division of Research Resources, and the
Advanced Research Projects Agency of the Department of Defense under Office of Naval Research

Contract number N00014-75-C-0661.

This cocument has besm MA
¢ {or publie releuse cod scle; i
*ibhtion is unlimited.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
LLABORATORY FOR COMPUTER SCIENCE

CAMBRIDGE MASSACHUSET TS 02139

Abstract

\

q‘SB (for Layered System Building) is an integrated set of facilities for aiding in the
construction of highly-modular, multi-fayered, implementation-independent Lisp systems. It
provides for conditional inclusion of source text, documentation production, automated
declarations, and "high-level” definitions. Lisp code compiled with 1.SB in gcneral does not
require LSB in its run-time environment. LSB has been in use for some time in PDP-10 Maclisp,
is operational in Multics Maclisp and Lisp Machine Lisp, and is being developed for NIL.

f

Acknowledgments

The rudiments of LSB were first conceived by Lowell Hawkinson in carly 1978, and he and
John Thompson implemented a prototype version for Maclisp shortly thereafter. Since then,
Lowell has provided a constant source of ideas and inspiration that has bcen invaluable to the
design of LSB.

Among those individuals who have contributed strongly to the development of LSB through
their use of it are Bill Martin, Peter Szolovits, Bill Long, Ramesh Patil, Harold Goldberger, Ken
Church, and Brij Masand. Providing for their many necds and reacting to their assorted
experiences has much improved the design and presentation of LSB's facilities. David Moon,
Howard Cannon, and Peter Szolovits deserve special thanks for their comments on various specific
aspects of LSB.

This manual is dedicated to Bill Martin, who provided most of the ultimate support for the
work it presents. Never one for fancy programming tools, he nonetheless embraced I.SB because
of its contributions to the buildability of large, layered systems — systems that might be made to
exhibit intelligence and expertise of a high order.

Note

Any comments, suggestions, or criticisms will be welcomed. Please scnd Arpa network mail
to BUG-LSB@MIT-ML.

Those not on the Arpanct may send U.S. mail to
Glenn S. Burke
l.aboratory for Computer Science
545 Technology Square
Cambridge, Mass. 02139

There is also an Arpa nctwork mail distribution list for announcements pertaining to 1.SB.
Contact the author to be placed on it

@ Copyright by the Massachusetts Institute of ‘Technology: Cambridge, Mass. 02139
ANl rights reserved.

M i G R e o Y= o S AN A s AW Gy N0 "t

LSB Manual i Table of Contents

Table of Contents

LoIntroduction L i i e e e e e e e e e e e e e e e e e 1
L1 ConventionsofthisManual. ittt 1
L T 3
2.1 Derivability e e e e e e e e e e e e e e e e 3
22 ViSibility Classes v o v v vt e 3
23 Definitions. i e 4
23] ROUBDES s it et e e e e e e e e et e e e e e e e e 4
232 Vaniables e 5
24 Conditional InCluSIONS o v i i e e e e e e e e e e e e e e e e e e e 5
2.5 DIversion SUreams i e e e e e e e e e e e e e e e e e 7
2.6 Definition Availability i i e e e e e e e e 8
27 Modulesand Systems. i e e e e e e e e e e e e e e, 9
270 Pathnames. v v v it e e e e e e e e e e e e e e et e e e e 10
3. TheSystem Definition i v it it e e e e e e e e e e e 11
3.1 The System Definition Location. v v it it i ittt e et s e e e 11
3.2 Searching for the System Definition. i i i it i e e e e 11
J3 Relationsbetween SYStemIS v v v b e e e et e e e e e e e e e e 13
34 The LSBProcessing Environment. i it v i v it e e e e e 13
341 Environment OPtions v v i vt it e e e e e e e e e e e e 14
3.4.2 The Processing Support Options i i it i i it e e e e 16
343 TheDiversion Stream Clauses vt it v i i e e e et e e e e e e e 17
344 Pathname Specification Clauses v v v v v it e e e e e e e e e e 17
345 The Module Specification 0 i i i i it e e e e e e e e e e e 18
J4.6 EnvironmentSctup —Details L L L e e e e e e 19
35 The LSBLoader i i e e e e e e e e e e e e e e e e 21
4. Conditional InCIUSIONS 0 i i i s e e e et e e e e e e e e 24
4.1 Read Time Conditionalization i i i i i i et e et e e e 24
42 MUuliple CONEXIS . . v v v v v v o v v e e s e e s e et r s e e e e e 25
S e NN OPeratioNS . . v v v vt st e e e e e e e e e et e e e e e e 26
ST ahePrototypeCall L e e e e e e e e e e e e e e e e 26
5.2 Variable Bindings. e e e e e e e e 7
5.21 Auxiliary-bindings. s e e e e e e e e e e e e e e e e e e 28
5.2 BiNdg. L e 29
53 Defining ROULINES i o s s i e e e e e e e e e e e e e e e 29
SA 0PN COdINg. v ittt e e e e e e e e e e e e e e e e e s 2
S DCANNE MaCIOS i i i e 3
S5.1 Unneeded Macros. o v vt s e 4
56 Compiler Macros. o i i i s e 35
ST Special Forms L L e e e e e e e e e e e e e e e e e e e 35
5.8 Optimization and Transformation. it i e e e e e e e e e e 36
5.9 Rest Paramcter Implementation. o 0 0 o h 0 e e e e e e e e e e e KY)
S0 Macro MOmOIZAtIoN. L 0 i s i e 9
SI1 Forward References. & . . o o v v v i e e e e e e e e e e e e e e e e e 40

5.12 Definitionless Routine Definitions. e e e e e e e e e 41

29-JUN-81

L.SB Manual jii Table of Contents
J i L2 T3 (= 17 < 85
Index of Tables i i i et e 86
IndeX L s e e et e e et e 87

29-JUN-81

{.SB Manual 1 Introduction

1. Introduction

LSB (for Layered System Building) is an integrated set of facilities for aiding in the
construction of highly-modular, muiti-layered, implementation-independent Lisp systems. It
provides for conditional inclusion of source text, documentation production, automated
declarations, and "high-level” definitions. Lisp code compiled with I.SB in general does not
require LSB in its run-time environment. LSB has been in use for some time in PDP-10 Maclisp,
is operational in Multics Maclisp and Lisp Machine L.isp, and is being developed for NII..

The basic idea is that when a programmer defines something, it should not be necessary to
declare it separately; after all, the definition itsclf usually makes a separate declaration redundant.
Definitions should be ablc to be located where style and modularity dictate; their positioning,
both with respect to location in a particular source file and the position in the file, should not
depend on the basis of the vagaries of the Lisp compiler. Documentation, cspecially on a local
level, is also best positioned in close proximity to what it describes. This allows for ease of
updating the definition and the documentation together, reducing the tendency for them to
diverge as development progresses. ,

It is becoming increasingly common for the same source code to be used in different Lisp
implementations. The programmer should be able to easily make use of implementation-specific
facilitics, by having some mechanism for conditionalizing the source code. On the other hand, the
usc of many facilitics, particularly in the realm of function definition and type declarations, can
be specified at a high level, independent of any particular Lisp implementation.

In L.SB, decfinitions are aggregated into modules, and modules into systems. From the source
text for a module, [.SB decrives the information nccessary to compile and run code of that
module, of other modules of that system, and of modules in other systems which utilize that
system. A sample LSB system can be found in chapter 15, page 78.

1.1 Conventions of this Manual

The reader of this manual is expected to have a working knowledge of l.isp. particularly one
of the dislects for which 1.SB exists (Lisp Machine Lisp [.MMan], Maclisp [Moonual), and NIL
(VAX) [NILDoc]). Terms which are in common use in these dialects will be used freely here.

The LSB cnvironment establishes an initial default input radix of decimal. Integers in text
and in examples should be so interpreted except where explicitly counterindicated.

In Lisp code cxamples, the symbol => should be read as "cvaluates to", and the symbol
= => as "macro-expands to".

All Lisp code in this manual is written in lower casc. Although most of the Lisp
implementations 1.SB runs in canonicalize lower-casc symbols to upper-case. Multics Maclisp does
not. Al 1 SB routines. macros, and variables are lower case in Multics. In gencral, in a
reasonably standard reading environment, atormic symbols may be typed in just as they are shown
i here. ANl atomic symbaols in this manual which are shown with colons in their names, such as
:previously - loaded or Ishtoken-equal. arc, in Maclisp, actually symbols with exactly that print-
name. colon and all. In 1isp implementations with packages, the package prefix part of the name
is intended to be interpreted as just that, ‘Thus, the same source code can refer to these names in

ML:ESBDOCINTRO 53 29-JUN-81

Conventions of this Manual LLSB Manual

the samc way in different Lisp implementations.

The null value is representcd by the symbol nil, and its canonical complement by t. In the
NIL. implementation, LSB will accept the atomic symbol t in various places as meaning #t or
"truth”. Most notable of these are as an "argument” to a two-state definition option, such as do-
argument-type-checking, and as the predicate of a diversion stream. No sach compensation
will be guaranteed for the symbol nil: if one is writing source code to be used in NIL, use ()
instead.

Certain Lisp implementations have missing functionality, which makes it difficult, incfficient,
or impossible to implement certain LSB features. These deficiencies are noted in this manual
without further explanation. Most notable in’ this respect is Multics Maclisp, which has a severe
lack of functionality in dealing with the Multics file system.

In various places in this manual, atomic symbols may be referred to as keywords, and the
terms keyword equality and foken equality may be used. LSB token equality is simply case-
independent print-name equality; this is used in many contexts to make things independent of
packages or casc distinctions. Keyword equality is token equality extended to allow synonyms (a
table of which is given in chapter 16). The intcrnal LSB primitives used for this arec documcented
in section 12.1, page 63.

METSBDOCANTRO 53 29-JUIN-81

By 1ot a

-
ST W2

.-
Ve

LSB Manual 3 Overview

2. Overview

This chapter is intended as a descriptive cxplanation of how LSB works and what it can do.
It should provide a sufficient basis for casual and simple use of LSB. Precise and much more
detailed definitions of the facilities presented here occur in later chapters.

2.1 Derivability

Onc of the primary precepts of LSB is derivability. That is, it is assumed (although not
necessarily enforced) that all the information necessary to understand, compile, and execute some
code is derivable from a single source text. Thus, LSB provides facilities for

conditional inclusion
One may specify that parts of the source text are applicable only in certain environments
(e.g., certain Lisp implementations), and therefore a single source text may serve as the
source in many environments.

text diversion
Portions of the source text, while treated as comments by Lisp itself, may be copied
clsewhere (possibly transformed), perhaps to scrve as documentation for the code.

Jorm diversion
Lisp objects may be sent to various places, to provide information nceded for
compilation, execution, debugging, etc.

combined definition and declaration
The definition facilities in LSB use the form diversion mechanism to produce the
declarations appropriate to the type of object being defined (e.g.. routine, macro,
variable). All of the information necded for these declarations can be included in the
definition syntax itself, obviating thc need for separate, and potentially implementation-
dependent, declarations.

module and system organization
Modules, corresponding to the source files, are grouped into systems and share
information which nced not be propagated elsewhere. Definitions of systems specify what
other LSB systems they use, and may be used to customize the processing (c.g., loading,
compilation) environment to be used for cach module.

2.2 Visibility Classes

1.SB associates with cvery defined object (c.g.. routine, macro, or variable) a visibility class.
This is essentially an indicator of "how far" information about the object should propagate. The
three visibility classes provided are:

private restricted to the module
system restricted to the system containing the module
public intended for explicit use by users of this system
The system visibility class used to be named intrasystem. ‘That name is still accepted. and

oceurs frequentddy in existing code: detine -intrasystem -routine is defined to be the same as
define-system - routine. and intrasystem -compilation is synonomous as a keyword with system-

ML ESBDOC:OVER 101 29-JUN-81

. JBE W s W e s —— 2) TREYE QYN L AT g mey

Definitions 4 LSB Manual

compilation, for example,

1.SB, using visibility classes, does not attempt to resolve naming conflicts. It makes no use of
packages or other name resolution techniques, where such exist. A visibility class is used only for
informational (e.g., declaration and documentation) purposes. (This may not be the case in future
Lisp implementations where package organization is not limited to a strict hierarchy.)

2.3 Definitions

Everything in LSB gets "defined”, even special variables. An LSB definition provides a means
for specifying all necessary information about what is being defined, and thus allows that
information can be localized. This includes such things as default or required initialization (for
special variables), argument types (for routines), and the value type (for both).

2.3.1 Routines

Routine definition is LSB's counterpart to Lisp’s function definition. In a routine definition,
rather than specifying a function name and an argument list, one specifies a profotype call. 'This
is a form which describes what a call to that routine looks like. For example,

(print-decimal-number number (optional stream))
describes a call to the routine print-decimal-number, which can take one or two arguments.
The prototype call tells L.SB what variables ("formal parameters™) are to be bound, the data types
of those variables, how many arguments the routine may take, the data types of those arguments,
and how to process a call to the routine.

Call processing is the mapping of a call into a lambda cxpression which takes a fixed number
of arguments. Because of the information available to LSB, it is able to decide at what point
(from compile time to run time) this mapping may be made most advantageously.

A full dcfinition of print-decimal-number might look like
(define-public-routine (print-decimal-number
number (optional stream))
{(Yambda (base enopoint)
{princ number stream))
10. t))
print-decimal-number is a routine, as opposed to (for cxample) a macro. When only one
argument is given to it. stream will be bound to nil. The prototype call might have been written
as
(print-decimal-number
number (optional stream standard-output))
if it were desired that the value of the variable standard-output should be used in licu of a
missing sccond argument,

The following defines the routine square$. which opcrates only on flonums:
{(define-public-routine (square$ (flonum n))
(declarations (value-type flonum))
(*$ n n))
It also shows the declaration format for LSB routine and macro definitions. In genceral, the cdr
of the declarations form is an a-list of keywords and any other information specific to that

MIEESBDOC.OVER 10] 29-JUN-81

1.SB Manual 5 Conditional Inclusions

declaration clause. The value-type declaration says that this routine always rcturns a flonum.
declarations may be abbreviated as dcls. Multiple declarations forms may be used, as long as
they all precede any code.

macros may be defined in a form similar to routines; a prototype macro call has the same
format as a prototype routine call.
(define-public-macro {foo x)
(1ist ’caddar x))
defines foo as a macro that is synonymous with caddar.

2.3.2 Variables

In LSB, one can "define” special variables as well as routines. Having a definition provides a
distinct locus for giving attributes to the variable. In the definition, one may specify such things
as the type of the variable, and its initialization. The expression

(define-public-variable sprint-stm-props?
(default-initialization nil))
defines the special variable *print-stm-props?. A variable definition provides for the initialization
of the variable, if any, and appropriate declarations are gencrated to tell the compiler about the
variable. The default-initialization (or default-init) declaration says that if the variable is not
valued. it should be sct to the value of the form specified, in this case nil. One could cause the
variable to be unconditionally initialized by using initialization (or init) instead. The type can be
specified, as in
{define-system-variable #stack-level
(value-type fixnum)
(default-init 0))

2.4 Conditional Inclusions

[.SB provides a mechanism for conditional inclusion of forms or subforms in a source file,
using the characters left brace ({) and right brace (}). When a left-brace is encountered by the
Visp rcader, a ftorm (the inclusion test) is read. That form should be a list whose car is an
atomiic symbaol (the inclusion tester). The inclusion test is interpreted to determine cither “success”
or "failure”. A failing test causes all of the text through the matching right-brace to be discarded,
cffectively making it disappear from the input strcam (as far as Lisp's read is concerned).
Otherwise, the text s left alone, and the matching right-brace will be ignored (treated as a blank)
when cncountered. Thus,

(define-private-routine (make-a-frob size)
{(only-for Lispm) (make-array size ':type 'art-q)}
{{only-for Maclisp) (*array nil t size)})
is like having
(define-private-routine (make-a-frob size)
(make-array size ':type 'art-q})
on the Lisp Machine, but
(define-private-routine (make-a-frob size)
(sarray nil t size)) J
in Machsp. 1he only-for inclusion tester checks for implementation features of the emvitonment,
c.g.. (status feature Lispm).

METSBDOC:OVER TOI 29-JUN-81

Conditional Inclusions 6 L.SB Manual

Additionally, if the inclusion test is one of the atomic symbols -- or -s-, then the wext
within the braces is always ignored, and acts as a comment. The -- keyword is an "em-dash”,
obscurely derived from ADA. The -»- is for usc in “file property lists”, as used on the lisp
Machine, and also by the Emacs editor. Thus, one may put at the very beginning of a file
something like

{-+- Mode:Lisp; Package:format -e-
random text treated as commentis}

One may use a logical composition of implementation features in place of a simple one. For

example,

{(only-for (and string Multics)) ...}
is the same as

{(only-for string) {(only-for Multics) ...}}
Any composition of and, or, and not may be used in constructing these “feature predicates”.
Multiple "arguments” to only-for are treated as an implicit or; thus, (only-for Maclisp Lispm)
is equivalent to (only-for (or Maclisp Lispmy)).

{(except-for Lispm) ...}
is the same as

{(only-for (not Lispm)) ...}
In general. (except-for frob-1 frob-2 ... frob-n) is the complement of (only-for frob-1 frob-2 ..
frob-n). ‘There are some other inclusion testers, similar to only-for and except-for, which allow
the use of multiple "feature environments”, in order to facilitate cross compilation. These are
discussed in chapter 4, page 24.

An inclusion test which is an atomic symbol (and not -- or -*-) is trcated as a simple
implementation feature test, and interpreted as (only-for tesr). Thus,
{Lispm ...}

is the same as
{(only-for Lispm) ...}

Conditional inclusions may conditionalize any number of forms. They may also be nested. to
allow successive selections and defaultings, as in
(define-private-routine (make-a-frob size)
{(only-for Lispm)
(make-array size
}
{{except-for Lispm)
{(only-for NIL)
(make-vector size)
}
{{except for NIL)
(*array nil t siza)

}

.

:type ‘art-q)

ANESBDOCOVER 10t 29-JUN 81

LSB Manual 7 Diversion Streams

2.5 Diversion Streams

Diversion streams are an abstraction used by L.SB to handle derivation (sce section 2.1). An
1.SB definition processor partitions the various pieces of information it gathers, according to their
intended uses, and then “sends” them to appropriate diversion streams. The cffects of this
partitioning range from immediate evaluation, to outputting text into a file, to compiling Lisp
forms into a file.

In the routine definition
(define-public-routine (square$ (flonum n))
(dcls (value-type flonum))
(#$ n n))
there are two different kinds of information data which need to be dealt with. One is the
definition of square$ itsclf, and the other is the sct of declarations needed to compile square$
and calls 1o square$. Using primitive Maclisp, that would be written out as
(declare (*expr square$) (flonum (square$ flonum)))
and
{defun square$ (n)
(declare (flonum n))
(*$ n n))
LSB arranges for declarations similar to those in the declare form above to be sent to the
compilation-environment and pubdcl diversion streams. The first acts as a no-op when the
definition is being processed at run time, but at compile time causes “immediate cvaluation”, as if
the compiler had seen a corresponding declare form. The pubdel (public declarations) diversion
strcam also does nothing at run time. At compile time, it causes the dcclaration forms to be
written into a file, so that they can be used for the compilation of other modules. There is a
declaration diversion stream for cach visibility class; complementing pubdcl are sysdcl (system
declarations) and moddcl (module declarations).

In addition to form diversion strecams, there are also diversion strcams for text. ‘Three
standard text diversion strcams are pubdoc, sysdoc, and moddoc. Text diversion streams are
used in a different manner than form diversion streams: an cxtension of the conditional inclusion
mechanism allows the excluded text to be diverted to any number of of these streams. Typically,
these diversion streams simply output the text to a file. By mecans of text diversion, a single
source can contribute to multiple levels of documentation. The documentation files of the same
visibility class for several modules could be recombined to produce (say) a manual. In this
manner, one can have the documentation of some code or of a module itself located with the
source text it describes. For example. one might include in some module something like

{(public-documentation)
.chapter "The Matcher"

The pattern matcher in FROBOZZ is guaranteed to
solve all of the world's problems. In order to do this,
blah blah blah.}

MI:TSBDOC,OVER 10] . 29-JUIN-81

oA,

it

”

LL RSN
T Ve

ot

Definition Availability 8 1.SB Manual

2.6 Definition Availability

When objects are defined, it is sometimes nccessary to specify where the definition is to be
diverted to. The most common case is that of a routine which is called by a macro. LSB nceds
to be told to divert the routine to the same place(s) that the macro goes. The needed-for
declaration clause handles this. There may also be random forms (e.g., calls to defprop) which
need to be diverted in a similar manner; the forms-needed-for special form will do the same
for arbitrary forms.

Consider, for example,
(define-private-routine (bar x y)
c) ‘
(define-publiic-macro (foo arg)
(bar arg t))
Each definition type (e.g., define-visclass-routine, define-visclass-macro) has a dcfault
needed-for dcclaration, which may be overridden, or just added to (by use of the also-
needed-tfor declaration). In this example, the simplest way to achieve the desired effect is to
define bar using the also-needed-for declaration
(define-private-routine (bar x y)
(dcls (also-needed-for public-compilation))
R
which says that not only do we nced the definition of bar when we are running (the default for
ordinary routine decfinition), but also during "public compilation”. The way thc default declaration
could be towily overridden (in this case for the same effect) is
(define-private-routine (bar x y)
(dcls (needed-for running public~compilation))
-)

The needed-for keywords which may be used are:

running
This corresponds to the toplevel diversion stream. The definition will be output in
the compiled output file, or to the interpreter.

interpretation
This corresponds to the interpreter diversion stream. ‘The definition will be made at
run time, but not in the compiled output file (unlcss that is implicd in some other
way).

public -compilation

system -compilation

private -compilation
These map into bork the declaration diversion strecam of the appropriate visibility class
{pubdcl, sysdcl. or moddcl). «nd the compilation-environment diversion stream.

compilation
Just like the previous three, with the visibility class determined from that of the
ohject being defined.

any diversion stream name
this 15 to be used in case the above keywords are insufficient, as they would be if
one is defining one’s own diversion streams,

M SBDOCOVER 101 29-JUN-81

1t _ aia La.d ., aWETRY T e -

e X -

R AR =)

1.SB Manual 9 Modules and Systems

A typical situation where also-needed-for and forms-needed -for are called for is
(define-system-macro (hack-it a b)
| (do-it-up a b (get a 'hack)))
; (define-private-routine (do-it-up x y z)
{dcls (also-needed-for system-compitation))
c..)
(forms-needed-for (running system-compilation)
(defprop foo foo-hacker hack)
{(defprop bar bar-hacker hack)
(defprop baz baz-hacker hack))

Occasionally onec may have a routine or variable which may be implicitly referenced at a
higher visibility class than it is defined at. Obviously one could change its visibility class, but that
may not be the appropriate solution. Typically, the visibility class corresponds most closely to the
documentation; it is chosen on the basis of who should know about it. Take the case of a macro
hairy-frob, which expands into code which calls the internal routine hairy-frob-internal:

(define-public-macro (hairy-frob this that)
{1ist ’'hairy-frob-internal
this that t 0 ''hairy-frob))
In this situation, the declarations for hairy-frob-internal need to be public. The proper way to
achieve this is to usc the referenced-at-visibility-class (or reference) declaration in the
definition of hairy-frob-internal:
(define-private-routine {(hairy-frob-internal
this that flag
start-count caller)
(dcls (reference public))

2)

2.7 Modules and Systems

In order to utilize the information derived from other modules during the compilation of one,
L.SB requires that modules be organized into sysrems, Fach system must be defined to LSB, to
say what other systems it utilizes, what riodules it contains, where to find it in the file system,
and environmental options, such as what input radix should be used. One puts a form like

{module print x1Ims)
at the front of a module to tell 1.SB what module and system the file corresponds to; in this
case, the print module of the xims system. (Module and system names arc compared by 1.SB for
token cquality.) When this form is processed by the Lisp interpreter or compiler, LSB sets up the
environment necessary for the interpretation (loading) or compilation of the remainder of the file,
as specified by the system definition. If the source code is to be used in a Lisp implementation
which supports "file property lists” (such as Lisp Machine Lisp), one should also use the isb
option in the file property list:
{-*- Mode:Lisp; LSB:Print ,XLMS -e- 1-Jun-81
Copyright (c) 1981 by Grandiose System Building
and Massachusetts Institute of Technology.
A1l rights reserved.}
This will then allow many other file property list options o be derived from the 1.SB system
definition: maost important of these are the package, readtable, and input radix.

ML SBDOC:OVER 101 29-JUN-R1

Modules and Systems 10 1.SB Manual

System definitions typically reside cach in a scparate file; 1.SB has scarch and defaulting rules
for finding them when necessary, and also has initial knowledge of a large number of commonly
used systems. The system definition typically resides on the directory with the same name as the
system name, a (first) filename the same as the system name, and a file-type of system. 1.SB will
also look for it on the directory which the source file is being loaded or compiled from. For
example,

(define-system string
(directory amber)
(built-on loop 1bind)
(users-implicitly-need user-hunk)
(modules (string (needed-for-user-compilation)) strfn char))
is the system definition for the string system; it resides on the amber directory, as does the
source for all of the modules (string, strfn, and char).

2.7.1 Pathnames

[.SB allows one to interact with the host file system in such a way that in many cases the
same LSB specification suffices in differing and incompatible implementations. This mechanism is
based on the assumption that the following "components” of a pathname exist as a superset of all
those a particular LSB implementation might handle:

host This is the name of the "host machine” the file is to be obtained from (or sent to).
This is nccessary in implementations where one may need to reference multiple hosts,
such as the Lisp Machine.

device Whatever is meant by a "device” in the host implementation.

directories
LSB has provision for specification of a directory path.

names LSD has provision for multiple filenames.

file-type
The “"type” of the file, as used (for example) TOPS-20.

version
The version number of the file.
Thus, the TOPS-20 pathname "PS:KXMACLISP>DEFMACRO.FASL.259" has a device of PS, a
single directory of MACLISP, a single name of DEFMACRO, a file-type of FASL, and a version
of 259. That same pathname referenced from a Lisp Machine might also need to have a host
specified. In general, 1.SB allows these components to be specified or defaulied scparately, so that
the samce 1.SB specification suffices in different environments when the corresponding components
are the same.

M' 1 SBDOCOVER 101 29-JUN-81

1.SB Manual 11 The System Definition

3. The System Definition

The system definition is where information not specific to individual routines, macros, or
variables is kept. It tells L.SB what other systems the one in question is built on, where various
things (including source files) reside in the file system, what Lisp environmental options should be
in effect, and how diversion streams should bchave; much of this may be specified cither per-
module or per-system. For example, '

(define-system write
(directory format)
(built-on loop 1bind)
{(modules write))
defines the system write, which uses (is built on) the systems named loop and Ibind, contains a
single module named write, and resides on the format directory.

3.1 The System Definition Location

When LSB needs the definition of a particular system (say xIms), it attempts to find it if it is
not alrcady known. One way it might know where to look is through the use of the define-
system-location macro:

define-system-location Macro
(define - system-location system-name location) tells LSB that the system definition for
system-nanme may be found in the file named by the pathname location. For our example,
somconc could have done
(define-system-Tocation x1ms "XLMS;XLMS SYSTEM")
since "XLMS;XLMS SYSTEM" is the pathname of the file which contains the system
definition for xims on the MIT-ML. host. When this form is seen by the compiler (at
top-level, like a defun) it is trcated such that the location of the system dcfinition is
defined at compile time, and also when the compiled output file is loaded (that is. it uses
(eval-when (eval compile load) ...) implicitly).
The pathname specified with define-system-location nced not be complete; it may contain
unspecified components, which will get filled in: [.SB has searching and defaulting rules which in
many cases obviate the need for define-system-location completely.

3.2 Searching for the System Definition

When LSB does not alrcady know a system definition, it searches for it in a prescribed
manner. ‘This scarching is done cven if a system definition location has been specified, because
that system definition may have missing components; for instance, the Brand-X system dcfinition
location may only state that the filename to look for is brandx. 1.SB maintains a dynamic stack
of where it should scarch: each entry corresponds 10 a dircctory path (and device and host,
where implementationally appropriate). ‘The entries are pushed when L.SB recursively looks at
systems, for instance when it is establishing the compilation environment for a module; the details
of this pracedure are described later. In any case, the first directory to be looked at will be the
directory with the same name as (he system. Where appropriate. the device will be the
“eanonic!” device for the implementation (e PS for TOPS-20) and the host will be the
current default host, however that is maintained. The last place to be looked at will be the

MI:LSBDOC:SYSDER 157 29-JUN-81

5 A

= 1i g2

P

- = i{

)

i h"”, .,

M A

»

-
Ve

¢,

Scarching for the System Definition 12 1.SB Manual

directory (including the device and host components) where LSB is kept. Somewhere in the
middie will be the directory (and device and host) where the source file being processed was
found. The searching involves iterating down this search list; of the components missing from the
system dcfinition location (if there is one), missing directory, device, and host components are
filled in from the scarch list, a missing filename defaults to the system name, and a missing file-
type defaults to system. A file with name of Isbsystems is also looked for (the file type will be
the canonical "lisp source file” type, c.g. lisp on Multics, ™>" on ITS, LSP on TOPS-20). If
during this procedure a system definition location is found for the system (and one was not
already known), the searching starts over again using that system definition location.

Take, for example. the xims system, which exists on MIT-ML. The first place 1.SB will look
in the absence of a system definition location will be "DSK:XILMS;XLMS SYSTEM" — this is in
fact where the system definition for xIms is kept.

There is one other way in which LSB may be told where to find a system dcfinition: it may
be specified with the name of the system.
(module print (xIms "XLMS;TEST SYSTEM"))
(define-system write
(directory format)
(built-on (loop "LISPM2:;") 1bind)
(modules write))
A location specified in this way overrides any known system definition location; it is not used to
aid the dcfaulting process for finding the definition of that system, but rather to respecify it, if
(for cxamplc) one wants to test a perturbed system definition or test a new system by that name.
For simply supplying a system dcfinition location when one might not be known, the Isbsystems
file should be used.

‘The Isbsystems file can be used for various purposes. It can be used to consolidate all of
the system definitions of systems which reside on the same directory. It can also be used to
define the system definition locations of systems which systems on that directory are built-on (or
otherwisc reference). This last is often nccessary because otherwise 1.SB might have no handle on
where to look for some system definiuon, if the referencing module is on a different directory.
One solution to where to look is simply to have the system definition location pre-defined to 1.SB.
Systems which may be of general use are welcome additions. The pre-defined systems are in the
Isbsystems file on 1.SB's dircctory. On ITS, this is the file named "DDSK:1.SB:1.SBSYS >, and
on Multics "dudd>Mathlab>1. SB>Isbsystems.lisp”. Thesc files have identical contents, which are
conditionalized for the various implementions 1.SB runs in.

Due o certain implementation screws pertaining to remembering that a particular file has been
loaded, in Lisp implementations with packages, 1.SB binds the package to the user package when
it loads a system definition (or Isbsystems) file. This provides a default for the package that file
gets loaded into: it may be overridden, if necessary, by the use of the package option in the file
property list (since 1.SB system definition files are not themselves modules).

M SBDOCSYSDEYE 157 29-J1IN-§1

P B v PRI . ¥ RPIIR T NOPE S RAT =

1.SB Manual 13 Relations between Sysiems

3.3 Relations between Systems

The most significant relation between systems is the built-on relation. To say that the write
system is built on the loop system is to say that the code of the modules of the write system
utilizes public facilitics of the loop system. The built-on relation is not transitive; that is, if x is
built on y and y is built on z, it is not assumed to be the case that x is built on z. Of course,
the actual dependencics involved depend on what context is being considered: compilation,
interpretation, or running compiled code. In gencral the built-on relation is viewcd from the
context of compilation.

If the built-on relation does need to be transitive, that information may be given o [.SB by
the use of the users-implicitly-need clause in place of the built-on clause. ‘fhe use of this
clause in the system definition for pretty - print-definition

(define-system pretty-print-definition
(built-on loop {pdp10 user-hunk})
(users-implticitly-need write)
(modules ppdef ppdesc))
says that the pretty-print-definition system is built-on the write system, and that systems which
arc built-on the pretty -print-definition system are also implicitly built-on the write system.

Another possible relation between systems is sideways extension. For system hair to be built-
beside of system kernel means that hair utilizes the facilities of kernel just the same as if it were
part of the kernel system, but implies that system kernel has no necd for the [acilities of system
hair. ‘[hus, kernel could be a “care system" intended for extension, and hair could be a system
which docs that extending. What this amounts to is that sysicm hair utilizes both the public and
system information derived from system kernel.

3.4 The LSB Processing Environment

The "environment” which L.SB establishes for the processing of a module consists of three
parts;

simple environmental options
These include such things as the package, recadtable, and input radix. All of these map
into variable bindings; it is possible to bind this part of the LSB environment, and to
calculate what it should be without actually modifying the current Lisp environment.

processing support
For compilation, this is typically declarations and macro definitions: all of the stuff
obtained by loading the various dcclaration diversion streams of the systems involved.
For interpretation, this is whatever the module or its system says needs to be loaded for
interpretation; usually nothing, as [.SB’s automatic loading is oriented solely towards
compilation at this time.

diversion streams
The diversion stream definitions for the module.

‘The 1.SB processing environment may bhe set up in one of two ways. The most common, and
‘f the only one available outside of the Lisp Machine, is driven entirely by the macto processing of
‘ the module special form. First, all loading necessary is pertormed: the processing support above.
' Then, all of the emvironment options are determined, and the variables are side-ctlected to their {

- ML SBDOC:SYSDEE 157 ' 29-JUIN-81

sl 20, LMWJ

)

NT e

-
* N2

Y
PO

e,

The LSB Processing Environment 14 [.SB Manual

appropriate values. Finally all of the diversion strcams appropriate for the module are defined.
(These three steps are presented in much more detail in section 3.4.6, page 19.)

On the lisp Machine (or in any Lisp implementation which interprets and heeds the file
property list). there is onc difference: the binding environment is determined at the time the file
property list is parsed, and so is ecstablished around the entire loading or compiling operation.
The module special form then knows not to bother. One uses the file property list with LSB by
using the LSB option, as in

i -+- Mode:Lisp; LSB:module-name,system-name ~»-

Note that the "arguments” arc in the same order as they are to the module special form. Use of
this option docs not obviate the need for the module special form at the beginning of the file.
Note also that if one uses the LSB system definition to specify the package a file should be
compiled or loaded into, it is necessary to use this. It is an crror (which will have unpredictable
results) to specify any option in the file property list to which LSB provides a default, or which is
itself specified in the system definition. All such options which LSB handles are enumerated
below.

3.4.1 Environment Options

input-radix radix
The value of ibase used for the processing of the module will be radix. The default
value is decimal.

readtable readtable-name
The readtable used will be the rcadtable associated with readtable-name, a symbol;
1.SB keyword cquality is uscd. The default used is the name standard, which is
associated with the readtable current when .S was loaded/created. There are initially
no other choices; the expectation is that large systems with special input syntax will
supply special readtables of their own (sce section 12.3, page 65).

inclusion -test-readtable readiable-name
‘This specifies the readtable to be used for recading in inclusion tests (chapter 4, page
24). readiable-name may be unspecified or nil, in which case whatever readtable is
current at the point of the conditional inclusion will be used; this is the default.

package package-name pathname

This option, which is ignored in Lisp implementations without packages, specifics that
the package to be uscd should be the package associated with package-name. If no
such package is defined, then a file is scarched for similarly to the way a system
definition is scarched for. using pathname (which is optional) as a default. This, in
fact, uses the same scarch list which scarching for the system definition does. The
default filename Jooked for will be puckage-name, and the default file-type will be
pkg. Also looked for will be the file Ishpackages, analogous to the Isbsystems file
used for system definitions, Of course, scarching is less likely to be uscful in this case
because the package option already has at its disposal the default directory, host, and
device of the system whose definition the clause appears in. It is unclear at this time
that scarching is an appropriate thing to do anyway. It is recommended at this time
that the package pathname be given, i i will not defauldt coreectly the first time
Gditectory of that given i the directory clause of the system definition, filename of the
system namie, €Ic.).

METSBDOCSYSDE 157 29-JUIN-8I

-

i
5
|
|
|
E.

LSB Manual 15 The LSB Processing Environment

This option is somewhat special for two reasons: it can have side-cffects during its
interpretation (the loading of the file and creation of the package), and it also does
not provide a canonical default package if this clause is not given: the package used
in the absence of this clause would be just that used if LSB were not present, i.c. one
specified in the file property list, or barring that, the current package.

announce kwd-1 kwd-2 ...

Use of this option causes the module special form to produce in its cxpansion a form
which will "announce” the loading of that module. The message printed will contain
the module name, system name, and the name of the source file. The only keyword
implemented at this time is version: it causes the version of the sourcc file to be put
on the version property of the module name. This hack is to allow the announce
option to supply a functionality similar to that of the Maclisp herald macro. This
functionality fits in poorly both with LSB (since only the module name is used) and
with non-Maclisp Lisp implementations, because of packages; outside of Maclisp,
both the module name and the property name (version) will be in the keyword
package.

do-macro-memoizing how
Controls macro memoization. If how is not supplied, the decfault is assumed.
Otherwisec how may be t for the default, nil for none, or some other keyword
describing a particular mechanism to use. For full details, see section 5.10, page 39.

type-check -visibility - classes vis-class-1 ...
Routines defined with the named visibility classes will have argument type checking
code automatically generated for them. This augments the do-argument-type-
checking clause (below), and is discussed more fully in chapter 5.

number-check - visibility - classes vis-class-1 ...
Routines and macros with the named visibility classes will have number-of-argument
checking code automatically generated for them. This augments the do-argument-
number-checking clause (below), and is discussed more fully in chapter S.

The following options are all "flag options”; they take a single “argument” which is
interpreted only as being t or nil. If the argument is not given, t is assumed.

do-argument-number -checking

do-argument-type -checking
Control automatic gencration of number-of-argument or argument type checking code,
for all visibility classes. Obviously, code is only gencrated when it is actually nceded.
This defaults to nil, i.c. no checking other than what is implicitly supplied by the Lisp
definition 1.SB produces.

needed - for - user -compilation

needed -for-compilation
These have to do with specifying whether the module (or all of the modules in the
systemn) are needed for the compilation of systems built on this onc. ‘They also control
the redundant outputting of certain definitions (c.g., macros) to both a declaration
diversion stream and to the compiled output file. This is currently in a bhad state, and
is being revised.

inhibit - documentation - production
This turns off documentation production. When one has source code which runs in
multiple Lisp implementations, it may be wasteful for cach implementation to

MISBDOCSYSDEL 157 29-JUN-81

e ¢

Deva

A \d

e P,

The LSB Processing Environment 16 1.SB Manual

redundantly produce the same documentation. The flag this scts also inhibits the
recording of information used for producing automatic documentation, as discussed on
page $6. This option works by sectting a flag which is checked by the Isb:divert-
documentation? function (page 51), which is a default diversion-strecam predicate for
documentation diversion streams. Thus, it only works if the documentation diversion
streams actually use that function for their diversion predicate.

3.4.2 The Processing Support Options

Here are the system definition clauses which are interpreted for various reasons such as setting
up the compilation environment. Unlike the environment option and diversion strcam clauses,
these may only appcar at top-level in the system definition, not in a module specification (a
component of the modules clause, below).

built-on system-spec-1 system-spec-2 ...
The built-on clause specifies that this system is built on each of the other systems
specified.

users-implicitly -need system-spec-1 system-spec-2 ...
users-implicitly-need is like built-on, and additionally spccifics that any systems
built on this one are implicitly built on all of the systems specified here: it is
transitive, whercas built-on is not.

built-beside system-spec-1 system-spec-2 ...
built-along-side-of ...
Sideways system extension, as described in section 3.3, page 13.

files -needed - for-compilation pathname-1 pathname-2 ...
The named files will be loaded in during compilation environment sctup, if they have
not been alrcady. (This clause used to be named additional -files-needed; that name
is accepted as a synonym for files-needed -for-compilation, but that synonymization
will be flushed someday.)

users-implicitly - need - files pathname-1 pathname-2 ...
The named files need to be loaded into the compilation environment. ‘This need
propagates to systems built on this onc. This should properly be named users-
implicitly - need - files - for-compilation bur that is quite a mouthful...

modules module-spec-1 module-spec-2 ...
Specifies the modules which comprise the system. A module-spec is either the name of
a module, or a list whose car is the module name, and whose ¢dr is a list of clauscs
similar to those in a system definition. What may appear there is described in section
345, page 18.

default-user - options option-clause-1 option-clause-2 ...
These specify default values for 1.SB environment options (previous section) which
should be used for systems built on this onc. Fhe defaulting process is described in
section 3.4.6, page 19.

M SBDOCSYSDEF 157 ~ 29-JUN-81

=) il A B .- B O . el s I, . R CIIETS WA L ATy v

e

|

LSB Manual 17 The LSB Processing Environment

3.4.3 The Diversion Stream Clauses

Diversion stream definition clauses allow onc to define new (or redefine existing) diversion
streams, for either all modules in a system, or even per-module. In this way, they default
similarly to other LSB options discussed above. (Diversion stream definition defaults cannot be
inherited from systems being built-on, however) A list of the keywords used for defining
diversion streams follows; they are discussed fully in chapter 8.

diversion-stream divstream-name clause-1 . . .
form-diversion-stream ...
form-divstream .

declaration- diversion -stream
declaration-divstream
dcl-divstream

textual -diversion-stream ...
text-diversion-stream ...
text-divstream ..
documentation-diversion -stream
doc-divstream

3.4.4 Pathname Specification Clauses

The following clauses may be used to specify default pathname components. These are not
only accepted in the system definition, but also within a module spec, and in various other places
where LSB looks for pathnames, such as in diversion strecam definitions.

directory subdir-1 subdir-2 ...
dir subdir-1 subdir-2 ...
(directory dir) says that the default directory to use is dir. In most cases this is all
that is nceded, since typically the “canonical” device of the host is the correct choice,
and there is no choice of host in most Lisp implementations. If multiple subdirs are
specified, then they specify a directory hicrarchy path. In the Multics implementation
of I.SB, one is also allowed to specify the entire path in a single atom, just as one
would for the Multics Maclisp namelist format:
(directory >udd>Mathlab>LSB>format)
is equivalent to
(directory udd Mathlab LSB format)
It is unfortunately necessary for this entire path to be specified.

device device-name
For whatever it is worth, this may be specified. For example, (device arc). This is
especially uscful for referencing an IS machine which is not on the Chaos network
from a l.isp Machine:
(define-system Brand-X

{host mc)

{device ml)

(directory brandx)

-)

host host-name
Specified the host to be used. This is obviously only useful in Lisp implementations

MIL:LSBDOCSYSDLEL 157 29-JUN-81

The LSB Processing Environment 18 L.SB Manual

which as a matter of course access multiple hosts, namecly Lisp Machine Lisp. It will
be ignored clsewhere.,

pathname host-dependent-pathname
This clause is nof actually a system definition clause; it is however used in many
places in conjunction with the directory. device, and host clauses, so is documented
here for completeness. It is used in places where a complete pathname is neceded,
and will have its missing components defaulted from the other three clauses. For
example, the dumb-objects system is defined as follows:
(define-system dumb-objects
(directory 1sbl)
{(built-on loop)
(modules (dumb-objects (pathname dumobj))) .
(needed-for-user-compilation))
The pathname clause shown says that the dumb-objects module has a filename of
dumobj rather than the default (dumb-objects). The directory is defaulted to Isb1. -
If that particular module werc on a different directory (say, test-dir), the modules
clause could be re-written as either
{modules (dumb-objects (pathname |test-dir;dumobj|)))
or as
(modules (dumb-objects (dir test-dir) (pathname dumobj)))
The last is less dependent on the pathname conventions of the particular host, so may
be a reasonable choice if the pathname components will be the same for different
hosts or Lisp implementations.

3.4.5 The Module Specification

A module specification is a description of a module in the system. It may be either just the
name of the module, as in the system definition clause
f < (modules ppcode ppdesc)
- or a list whose car is the module name. and whose cdr is a list of clauses:
(modules (dumb-objects (pathname dumobj)))

" These clauses describe various attributes about the module, such as where it resides in the file .

$' system and what environmental attributes its compilation environment should have. Most of these

can, in fact. be defaulted: the name of the file (both source and compiled output) defaults to the

R name of the module, with the directory, device, and host being taken from those defaults for the .
q systcm (as cither specified with the corresponding clauses or defaulted), and the extension or file-

‘.‘\; rvpe for the source and compiled output default to whatever is appropriate for them in the Lisp

3 implementation. These can be sclectively overridden by use of the pathname, directory, device,

. and host cliauses, as described above, Most of the clauses described above for system definitions

1l

arc also applicable to single modules: those that are not are those which describe system relations,
- listed in scction 3.4.2. ‘Thus,
(define-system mathematical-hacks

L & (built-on loop)
& {modules arithmetic
' (bit-twiddling
® (input-radix 8))))
'.; describes the mathematical -hacks system. which consists of the two modules arithmetic and bit -
twiddling. Module arithmetic uses an input radix of 10 (decimal), which is 1.SB's default, but :
A module bit - twiddling uses octal,
MELTSBDOCSYSDEFK 157 29-JUN-81 }

——

gL

SLEe we

¢, _a

R

1.SB Manual 19 The 1.SB Processing Environment

3.4.6 Environment Setup -- Details

The LSB environment setup is performed in one of two ways. In general, most if not all of
the work will be performed when the module form which should be at the front of the source
file is processed, either by the compiler or by being evaluated during loading. In both cases there
are three fairly discrete actions:

() Loading whatever support code is needed for the type of processing being performed,
and making the appropriate declarations (when compiling)

) Establishing the binding environment (specified with the various options)

3) Defining the diversion streams which will be used by that module

The module form first performs step /. For compilation, this involves loading all of the
pubdcl files of the systems this system is built-on (note the non-transitivity of the built-on
relation, and the implications of the users-implicitly-need clause), and any other files they have
specified with the users-implicitly-need-files clause. Then the pubdcl and sysdcl files for that
system itself are loaded. This is a depth-first operation; take, for example, the systems

(define-system write
(built-on loop Tbind)
(modules write))
(define-system pretty-print-definition
(built-on loop {pdpl0 user-hunk})
(users-implicitly-need write)
(modules ppdef ppdesc))
(define-system hacks
(built-on pretty-print-definition)
(modules crock kludge))
If we are compiling the crock module of the hacks system, the following files will be loaded
(assuming they cxist), in this order:
write pubdcl
ppdef pubdcl
ppdesc pubdc!
kiudge pubdcl
kludge sysdcl
Additionally, if the special 1.SB pre-processing compiier interface is nor being used (sec section
10.1, page 59; if available, this is the default action), the pubdcl, sysdcl, and moddc! files of
the module itsclf will be loaded. Notc that by default there is no moddcl file produced, but it is
provided for in casc this sort of forward-reference capability is needed.

Next, the binding environment is set up. If the 1.SB option was given in the file property list
of the source file, and that option was actually used by whatever is doing the processing (e.g.,
load, the compiler), then this has alrcady been done. It is expected that environments which will
be wsing this will have the support necessary alrcady loaded (this mainly concerns values of
defaulted options, or new option definitions); in other environments, this suppeit should have
been koaded in by the previous step. This also is why the Isb-load (page 22) function cxists—for
the Toading of an interpreted module, (he variables which comprise the processing environment
need 1o be bound so that the module form does not side-effect the global environment. - Anyway,
1 SB sets up the binding environment by calculating all of the variables which will be affected,
and then filling them in with their specilied values: first any per-module options for the module
being processed are looked at, then any for the system as a whole. ‘Then, any options specified

MIELSBDOCSYSDEFR 157 ' 29-JUN-81

.

;o-',‘.;.

i’id

4

P ey

The LSB Processing Environment 20 1.SB Manual

in any default-user-options clauses of systems this one is built-on. The order in which options
are defaulted in this last manner is not cxtremely well defined at this time, but it can be
guarantecd that, when built-on rclations only go one-level deep (as is normal unless the users-
implicitly -need clause has been used in one of these systems), it will be the order in which those
systems appcar in the system definition. Thus, looking at the write system definition given above,
if the write module were being compiled, first any default user options of the loop system would
be looked at, then thosc for Ibind. Any options which arc not either specified or defaulted from
other systems will have be set to their canonical default values.

Lastly, the diversion stream cnvironment is established. This may implicitly make use of
support loaded during step /, and options (variables) set up by step 2. FEssentially, what happens
is

(1) Al extant diversion streams are “killed”, if necessary, which it is not if the diversion
strcam environment is "bound" (as done by the Isb-load function, or by the use of
LSB in the file property list). If this is done, a warning message may be printed, as
this could in theory involve closing and deleting files being written, But normally
nothing interesting is happening in the interpreter.

(2) All diversion stream definitions specified for the module only are processed

(3) Al diversion strcam definitions given at top-level in the system definition, which have
not alrcady been defined, are processed

(4) All other diversion strecams which 1.SB vses and which have not been defined, are, using
defauit definitions determined from the type of processing being performed.
Most simple systems rely solcly on step 4.

Finally, the module form macro-expands into various potentially interesting things, in an
implicit progn. Some of this might involve bootstrap code (to load things up); this has not been
worked out yet. This is also the place where any actions dictated by the announce option are
performed. And:

*source-file-information Variable
The module special forim cxpands producing a setq of this variable to a disembodied
property list containing much information about the module. (At this time, this variable
may cither not get set or not contain much information when the module is loaded
interpretively.) The car of this list is the actual real pathname (truename) of the source
file (if it could be determined). ‘The plist part may contain the following properties:

:module
The module name. In Lisps with packages, this will be a symbol interned in
the user package. 1t will be all in one case: lower on Multics, upper elsewhere.

‘system
Similar

lisp -version
Ihe version number of the Lisp the processing was performed in. This will be a
fixnum,

:system -version -info
This is a hairier version of lisp-version. On the Lisp Machine. this will be a
string which is the result of calling si:system-~version -info. Flsewhere, 1 SB
will mike do with whan it can get. but in any case. if this property is present,

MIETSBDOCSYSDEE 157 29-JLIN-R1

4 - : Ut Tl __ e Prope————

Py

0-'*‘ v,

i

T

Pl A AC R

> -
2 Vst

e,

1.SB Manual 21 The 1.SB l.oader

it will be a string (symbol, in PDP-10 Maclisp) containing some descriptive
information. See si:system-version-info and related topics in the lisp Machine
manual for more information.

:site Some name for the machine the processing was performed on. Prescntly, 1.SB
only knows how to do this for PDP-10 Maclisp. On Lisp Machines, it is
undccided whether this will be only the Lisp Machine name or possibly some
composition of the specific Lisp Machine and its site, as in (MIT CADR-6).

:culprit
The name of the user. On the Lisp Machine, this is simply the value of user-
id. On the ITS operating system, this is the uname rather than the xuname for
rcasons having to do with INIT files: in that case, the xuname, which
supposecdly represents the real user name as opposed to some instantiation of it
will be under the :claims-to-be property.

:claims-to-be
On ITS only, the xuname of the uscr, if it differs from the uname.

:compiler - version
Some type of description of the compiler version. This is a brief descriptive
history on Multics. On the PDP-10 this will simply be the version number of
the compiler. This will not be pregsent on the Lisp Machine because the
compiler is an integral part of the basic lisp Machine system, implicitly included
in the :lisp-version and :system-version-info properties, and no explicit
informacion is available.

«date Date and time of the processing, in the form
((year month day) hour minute second)
The year is excess-1900.

1.SB also handles a few more mundane things automatically. When sctting up a compilation
environment in Maclisp, a genprefix is automatically performed on the concatentation of the
system name, a ".", the module name, and a "-"; ecg., “mysys.mymod-". In the PDPIO
Maclisp implementation, 1.SB does some hackery to avoid having the garbage collector thrash duc
to array relocation during compilation environment setup (this being a result of the large number
of arrays used by fasloading so many files). If onc has a system which causes very many files o
be loaded and this scems to be happening (indicating that [.SB's default handling is too modest),
a (getsp n) clause may be included in the system definition. 1.SB by dcfault does this with n of
20000. This mechanism may be improved at some point. Obviously n should be significantly
smaller than the amount of free memory remaining.

3.5 The LSB Loader

Because of the possibility of an interpreted 1.SB module side-cflecting the environment, which
can oceur in Lisp implementations which do not wtilize the file property list or i’ the madule does
not use the L.SB option in the file property list, it may be necessary to use a loading function
which properly scopes all of the 1 SB environment variables.

MILSBDOC:SYSDIE 157 29-JUN-81

paed RGP W " 34 R OB % A TR

—~d

-~ -
P AR

e, e

TRataaE I ST LW TS ——)

The 1.SB L.oader 22 1.SB Manual

1sb-10ad pathname kwd-! kwd-2 .. kwd-n

This is the routine LSB uses to load in files. It causes the 1.SB environment to be scoped
around the loading: all of the flag variables are bound, as is the diversion strecam
environment. Note that all of these things maintain their current values; if the file being
loaded is an interpreted { SB module, it is the module form in that file which will reset
them. The various keywords are as follows. In general the few keywords provided negate
default actions,

noerror
Do not cause an error if the file is not found. A message stating this may be
printed depending on other keywords given, in any case, Isb-foad will return
nil.

conditional
If this file has been loaded alrcady, do not load it again. The atom
:previously-loaded will be returned. Note that in the Llisp Machine
implementation this atom is previously-loaded in the user (keyword)
package, but in Maclisp it is an atom with a colon as its first character.

nodetauit
Do not set the pathname defaults used by load (and Isb-load). Normally,
they are sct to the pathname that gets loaded. Programs that call Isb-load
may not wish to change the default pathname on the user without his
cognizance, in which case they should use this option.

verbose
Normally, the verbosity of Isb-load defaults to the value of °*Isb-verbose?.
This explicitly savs that Isb-load should be verbose.

silent ‘The opposite of verbose.

uninteresting
This is primarily useful for scarching for a file 10 load. as is done for system
and package definitions. Isb-load will not modify the file defaults, and will
not error out if the file is not found. Additionally, it will not even print an
crror message if the file is not found; however, it may st print a loading
message if the file is found, dependent on the presence of the verbose or
silent keywords, or the value of *lsb - verbose?.

‘The default behiviour of Isb-load is for it (o follow the standard system load function
fairly closely, sumply augmenting it by "scoping” the 1SB processing environment
appropriately.

In order for Isb load to deteronne whether some file has alteady been Joaded. it
matntaing a database about loaded files. In the Tip Machine implementanon, such a
facility alrcady exists, so Isb-load uses it; elsewhere there s none, ~o Isb load s
incapable of determining that a file loaded with load or fasioad has m fuact been loaded.
In the common cases where Isb load is used. such as Toading the vanous dectaration files
into a compiter, this normally does not matter. The Multics implementation of Isb -load
v not able 1o determine that a more recent file of the same mame as one previously
loaded has hanged.

M SBDOCSYSTIEL 187 M UN 8

Dk YT gy~ —

-

X0 ¥ ot

EX" e -

R

LA e g

14

3

-
-

.-
-

"

.;."

LSB Manual 23 The LSB Loader

In the Maclisp implementation, Isb-load does (sstatus uuolinks) after loading, to avoid
redefinition problems. It is not yet smart enough to figure out if it needs to bind fasload,
however.

IS NIEA SNSRI B LY 29 1UIN-RI

. o . P W Wy ————— ~ oy p 7 b i MBI e LTS

B

FECTY

7

- W3 o Al

-

"

PRGN
hd L

Conditional inclusions 24 1.SB Manual

4. Conditional Inclusions

Conditional inclusions allow one to conditionally include portions of the source code being
processed. This may be done by the use of reader syntax which conditionalizes the input scen by
read, or by the use of conditionalization macrus to conditionalize code being compiled or
exccuted. Fssentially, all forms of conditional inclusion require the specification of an inclusion
test. An inclusion test may be onc of the following:

normal inclusion test
A regular inclusion test is a list whose car is an atomic symbol, referred to as the
inclusion tester. The inclusion tester is cxamined using 1.SB keyword equality to
determine how the form should be interpreted to determine success or failure of the
inclusion test.

~--or-s-
An inclusion test of either of these tokens fails.

atomic symbol
Any other atomic symbol used as an inclusion test is treated as being shorthand for
(only-for atomic-symbol).

only-for Inclusion Tester

The inclusion test (only-for x) interprets x as an implementation feature fest, and
succeeds iff that test succeeds. An implementation feature test is cither the name of an
implementation feature, or a logical composition of implementation feature tests, made
with and. or, and not. An implementation feature name is tested for by looking in
(status features) (but note also scction 4.2, page 25). LSB token cquality is used.
Multiple “arguments” to only-for are trcated as an implicit or; thus, (only-for Maclisp
Lispm) is equivalent to (only-for (or Maclisp Lispm)), succeeding if cither Maclisp or
Lispm are "features”.

except-for Inclusion Tester
(except-for il i2 ...) is equivalent to (only-for (and (not i/) (not i2) ..)). Thus, it is
the complement of (only-for il i2 ..).

A mcchanism for extending the composition operators for implementation feature tests is
under development.

4.1 Read Time Conditionalization

Read ume conditionalization is cffected by use of the { reader-macro. The gencral format is
{inclusion-test anything-else-with-matching-braces)
Inclusion-rest is read in (by calling read) and interpreted as described above. If the test fails,
then the reader-macro gobbles down all of the text up to the matching }; to the Lisp reader, the
result is like a space (i.c.. an atom dclimiter). I the test succeeds, then the reader-macro
immediately returns, leaving anything-else-with-matching-braces intact in the input stream; the)
will behave like a space (an atom delimiter, but otheiwise ignored) by the Lisp reader.

METSBDOC.CONDIT 54 29-JUIN-81

L TN g e W, o ey = K . AV QA . L AT s

[.SB Manual 25 Multiplc Contexts

When text is being skipped over due to a failing inclusion test, matching open- and close-
braces are kept track of. ‘There is no way to "quote" one of them in such a context: what one
should do is to match an unmatched brace by placing it in a comment appropriate for the syntax
of whatever is within the braces. For example,

{(only-for Lispm)
; Matching "{"
{(princ "}" error-output)
}
Note that since excluded text is not read by the Lisp reader, it need not be syntactically valid
Lisp; thus, this mechanism is good for conditionalizing syntactic constructions which are not valid
in all Lisp implementations, as in
(member x '(0 0.0 {Lispm 0.0s0})) ‘
where 0.0s0 is "small-lonum” zero, a syntax not supported in Maclisp. And of course, the
excluded text may be used as comments, by using cither -*- or -- as inclusion tests:
{-*- Mode:Lisp; Package:PP -e- 1-Apr-84
This file defines a universal pretty-printer
with capabilities far exceeding any thus-far
etc}

When the inclusion test is read, readtable is bound to the readtable spccificd with the
inclusion-test-readtable system definition option (page 14). If nil was specified as the readtable
(which is the default), then the current readtable is used. This option exists to allow normal Lisp
syntax to be used (if desired) from within some abnormal syntax.

4.2 Multiple Contexts

Thus far, the test for an implementation feature has been said to be based on the
membership of the feature name in (status features). This is not strictly true, as very often what
is intended is cxamination of the target environment as opposed to the processing (e.g.
compilation) environment. The inclusion tester only-for and except-for arc intended to refer to
the target environment, which is normally assumed to be the same as the processing environment.
‘To guarantec that the test is based on the processing environment, one can use:

only-on Inclusion Tester
except-on /nclusion Tester
These arc the same as only-for and except-for, cxcept that they always usc (status
features). guarantceing conditionalization based on the environment in which the test is
made. ‘Thus,
{(only-for tops-20) suff}
includes sayf if the code is intended to run in a TOPS-20 Lisp, whereas
{(only-on tops-20) swuff}
includes stuff only when it is being rcad into a TOPS-20 L.isp.

There is currently no mechanism for specifying multiple “"feature environments”. Sce section
12.5.1. page 67 for a description of the current facilities which may be used to implement the
above. [t is expected to change drastically when a better facility is defined, and is only provided
as an interim solution,

MITSEDOC:CONDI 54 ' 29-JUIN-81

Defining Opcrations 26 .SB Manual

S. Defining Operations

For the purposes of discussion, a defined object which is either a routine or a macro will be
called an operation. A routine is one where the body of code in the definition form is to be
executed when the call is cxecuted; a macro is one where the body of code is to be executed to
produce a form to replace the call. All 1.SB operation definition forms have the same gencral
format:

(def ine-visclass- definitiontype protatype-cail
(declarations dcl-clause-1 dcl-clause-? . ..)
Jorm-1 form-2 ...)
where visclass is the visibility class, i.c. public, system, or private, and definitioniype is the type
of dcfinition, e.g. routine, macro, optimizer. ‘There may be any number of declarations
(abbreviated dcls) forms, but they must precede any of the body forms.

5.1 The Prototype Call

The protorvpe call shows what a call to a routine or macro looks like, dcfines the mapping
from the arguments into the formal parameters, and specifics the data types of both the
arguments and the variables. For example,

(frobnicate foo (optional bar ’'ugh) (any-number-of bletch))

shows a prototype call for frobnicate, which takes one required argument, onc optional argument,
and any number of other arguments. It shows how the call is to be mapped into the formal
paramcters of frobnicate (foo. bar, and bletch): the first argument is required, and maps into
the foo variable, The second is optional; if it is not specified, then bar will be bound to the
symbol ugh. All remaining arguments map into the bletch variable, which will be bound to a
list of them. This process of mapping from the arguments into the formal parameters is known as
call mapping, and the keywords such as optional are known as call mapping keywords. Other
keywords which may be used like any-number-of arec one-or-more-of and two-or-more-of
which require therc to be at least one or two arguments corresponding to that formal parameter.
rest and body are synonymous with any-number-of; the latter is intended for macros which
take any number of forms to be used in some kind of implicit progn. If there is a minimum
number of arguments required for this type of paramecter (a rest parameter), it is mcaningless (and
an crror) to have any optional arguments. There may only be one rest parameter, and it must
come last.

One can also specify the data types of the arguments and variables in the prototype call, as in

the example shown previously,

(define public-routine (sqrt$ (flonum n)) ...)
For optional and rest parameters, note that the type of the variable and the type of the
corresponding argument(s) nced not be the same. One can thus have:

(my-routine (notype (optional (fixnum count) nil))

(vector (any-number-of (flonum frobs))))

which sass that my-routine tikes an optional argument, count, which must be a fixnum. The
variable count, howcever. 1s of type notype. and will be bound to nil if no argument is given.
Al other arguments are required to be flonums, and are gathered into a vector which frob is
hound to. The ail shown is a form 1o be evalugted 10 supply a default value for the variable if
no cotpespondmg argnment s present; this evaluation will be done in an environment where only
the vanables e the dett in the prototype call have been bound o their argumemts or default

My UBDOCDEFUN 181 29-JUIN-81

g e o

'

-

) ¥

o .- -
L“" <.

e,

[.SB Manual 2 Variable Bindings

values. In this instance, that nil is supcrfluous, because the default default value will be chosen
on the basis of the variable type, notype.

The optional syntax allows for the specification of a variable to be used as a flag for whether
or not the corresponding argument was supplied:
(frob-name frob (optional new-name nil new-name-p))
which could be the prototype call for the routine frob-name. The variable new-name-p will be
bound t t if frob-name reccives two arguments, nil if it receives only one. This variable is
automatically declared to be of type truthvalue (chapter 7).

The any-number-of syntax allows for the specification of a variable to receive the count of
the arguments which were mapped into the formal parameter:
(define-public-routine (average (one-or-more-of numbers count))
{quotient (apply (function plus) numbers) count))
This variable is automatically dcclared to be fixnum; a type must not be specified for it.

Sometimes an operation takes an argument which is not actually used by the code of the
operation. This situation typically arises when the code is not totally complete, but that argument
position necds to be “allocated” for future compatibility. Since the author of the code knows of
the situation, it is undesirable to have the compiler warn him about it. One may use the unused
keyword to tell [.SB that the variable so designated does not get referenced by the code, as in
this prototype call for hairy-routine:

(hairy-routine
file-to-be-processed
file-to-send-output-to
(optional die-on-errors?)
{any-number-of (unused keyworded-additional-options)))

‘This option is applicable in all 1. SB operation definitions. It should not be used with the supplied-

p variable for an optional argument, nor for the count variable for a rest argument. [.SB will do
whatever the Lisp implementation requires to ensurce that the compiler will not complain about a
lack of reference to the variable. It is an error for the variable to be referenced in the code of
the operation when the unused keyword is used.

5.2 Variable Bindings

1.SB operation definition forms provide syntax for binding variables within the bedy of the
operation. When a forn appearing at top level only in the definition body starts with one of the
keywords auxiliary -bindings or bindg, the cdr of that form specifies a binding environment to
be used around the remainder of the definition form. Some may find this syntax distasteful and
prefer 1o use a form which textually shows the binding scoping (such as Ibind and Ibind*); others
may find it convenient to use, as it allows the bindings to be placed more naturally while not
producing deeply nested code. Ibind and tbind* arc macros which provide similar functionality,
but without restrictions on their positioning; they arc documented in chapter 13, page 73.

MIETSBDOC:DEFUN 18] 29-JUN-81

et S RIS e c e

Variable Bindings 28 LSB Manual

5.2.1 Auxiliary-bindings

An auxiliary-bindings (abbreviated as ecither aux-bindings or auxs) form binds a set of
variables sequentially, allowing the value computed for one to depend on a previous variable.
This form looks like

(auxs aux-bind-spec-1 aux-bind-spec-2 ...)
where each aux-bind-spec may take one of the following forms:

variable
The variable is bound to nil.

(variable value)
The variable is bound to the value of value.

((data-type variable) value)
The variable is bound to the value of value, and declared to be of type data-type.

(variable)
((data-type variable))
If a value is not specified, it will default to the initial value for the stated data type.
Thus, the body of the code in
(define-public-routine (frobnicate x)
(auxs (a (f x)) ((fixnum b)) ((flonum c) (g a)))
do-this
{auxs (p (hack a b c)))
do-that)
produccs the following binding contour:
((Vambda (x)
((1ambda (a)
((1ambda (b)
((1ambda (c¢)
do-this
((Yambda (p) do-that)
(hack a b c)))
(g a)))
0))
(f x)))
argument)
along with local declarations appropriate for the Lisp implementation. There is actually a bit of
optimization performed to try to bind as many variablcs in parallel as possible; this is done for
the sake of Lisp implementations where that may be more efficicnt, cspecially if they are special.
In the above example, b would be bound in the same lambda as a, since it is hciﬁg bound to a
constant.

M1 SBDOC:DEFUN 181 " 29-JUN-8I

v v Wl > g~ B P TN, - D -\ W ppc: IS 7 e AP M g et -

r-q A S G -—'m

LSB Manual 29 Defining Routines

CaRLol g

5.2.2 Bindq

bindg is an alternative to auxiliary-bindings. In addition, it al/ways binds variables in
parallel. A bindq form looks like
(bindq varspec-! value-1 varspec-2 value-2 . ..)
and can be used in the same places as an auxiliary-bindings form. Each varspec may be either
the name of a variable, or a list of the data-type for the variable and the name of the variable.
The code for
(define-public-routine (frobnicate x)
(bindq a (f x) (fixnum b) 0 ¢ (g x))
do-this
(bindg p (hack a b ¢))
do-that)
produces the binding contour
((1ambda (x)
((1ambda (a b ¢)
do-this
((V1ambda (p) do-that)
(hack a b c)))
(f x) 0 (g x)))
argument)

5.3 Defining Routines

define-public-routine (= defpubr) Special Form

define-system-routine (= defsysr) Special Form

define-private-routine (= defprivr) Special Form
In LSB, one does not define ordinary functions; one defines routines. The difference is
that a Lisp function definition implies a specific implementation, whereas an LSB routine
definition simply says how one desires to call the routine. The actual implementation of
the call is left to 1.SB, and may differ across Lisp implementations. There are declaration
options to give I.SB information which may be wuseful in choosing a particular
implementation, and to demand a particular one.

Consider the following routine definition:
(define-public-routine (print-decimal-number
(number n)
(optional stream))
(bindg base 10. ¢nopoint t)
(princ number stream))
The functional specification of print-decimal-number ultimately reduces to the primitive lambda
expression {lambda (p stream) ..). Somcwhere between the processing of a call such as {print-
decimal-number mon) and the evaluation of the forms in the definition body there has w be a
mapping made between the call and the application of that primitive Tambda expression. One
possibility is o wrn the call (print-decimal -number num}) into a new call (print -decimal -

" 32N

N number-aux num nil), with print-decimal - number-aux defined to take the same argunents as
o print decimal number, except that they are all reguired. 1SH does in fact make this kind of
!’., teansfornation in Lisp implementations which have a significaly less efficient calling sequance for
’. functions of a variable mumber of arguments.

ey

MEESBDOCT-UN 181 29 JUN-8]

E Defining Routines 30 1. SB Manual

The prototype call for a routine may also specify that the argument(s) mapping into a variable
be implicitly quoted, by use of the quoted keyword wrapper around the variable, as in the
) prototype call
] (foo (quoted x) (optional (quoted y))

; (any-number-of (quoted frobs)))

which says that foo takes one or morc arguments, and none of them are evaluated. This implicit
quoting is done as part of the call processing. What actually happens is that foo is defined as a
macro which quotes the appropriate arguments, producing a call to foo-aux, just as done by the
optimization for routines taking a variable number of arguments (in fact, both of these
transformations may occur at the same time). The implication of this is that it is not possible in
gencral to apply or funcalt a routine which takes quoted arguments. This restriction is based on
the "lowest common denominator” of the various Lisp implementations LSB is aimed at; this
restriction may be lifted at some point, at least for some of these implementations.

.

The following declaration options may be of use in defining routines:

value-type data-type-name

data-type data-type-name
‘This specifies that the value returned by the routine will always be of type data-type-
name. If the typc and the Lisp implementation so warrant, this may produce
appropriate declarations which may affect the calling sequence of the routine.

caie it g S e r.m’yaruw AT

do-argument-type -checking flag
‘This wrns on argument type checking for this routine if flag is non-nil or unspecified,
otherwise turns it off. Thus, argument type checking can not only be specified per-
module or per-system (with the do-argument-type-checking system definition
keyword), but also per-definition.

do-argument-number -checking flag
Like do-argument-type-checking, but cnables or disables number-of-argument
checking for this routine, and is also applicable to macros.

type-check-arguments var-/ var-2 ...
- If there are no vars supplied. this is cquivalent to (do-argument-type-checking t);
otherwise, it cnables it for the arguments corresponding to only those variables named.

A returnable
3 the declaration (returnable) causes the cntire definition body to be formed inside a
prog. with a return wrapped around the last form. ‘I'his is convenient for routines
which ordinarily would not need this except for a smail number of extraordinary cases
which must be handled specially and return carly. (returnable name) causes the prog
lo be "named” name. so that it may be explicitly returned from (even through other
prog or do forms) by using the return-from special form, as in

v (define-public-routine (hack 1)

(dcls (returnable george))

(do ((11 7 (cdr 13))) ((null 11))
(cond ((not (numberp (car 11)))

o {return-from george ‘'error)))
\ o)
5)
f Sice naming the containing prog requires the Lisp implementation o support nanied
o progs, this extenston does not work in Maclisp.
A ESBDOC:DEFUN 181 29-J1IN 81

N

LSB Manual k)| Defining Routines

Where multiple values are supported, LSB uscs multiple-value-return instcad of
return, and multiple-value-return-from instead of return-from so that they will be
passed back properly.

default-definition-from routine-name

If this declaration is given, there should be no "body"” for the routine. The definition,
instcad of bheing created, will be gotten from the definition of routine-name, which
must be defined. [t is imperative that the prototype call and declarations for this
routine reflect those with which routine-name was defined, as they will be used to
produce declarations for the new name. This option should not be used lightly; it is
designed primarily to save away the dcfinition of an existing routine so that that
routine may be redefined.

redefinition
This exists to tell 1.SB that the routine is a redefinition of some existing routine. LSB
will try to keep the Lisp and compiler from complaining about the redcfinition. Other
than that, you redefine things at your own risk.

primarily-applicable -routine

applicable-routine-only
This declaration tells 1.SB that the routine is used primarily to be funcalled or
applyed. so there is no point in doing sophisticated call processing on it. Appropriate
declarations will still be produced, however. It is illegal to have quoted arguments
for a routine with this declaration. applicable-routine-only is the old namec for this
declaration; it should not be used in new programs, as it will be recycled to
additionally inhibit diversion of declarations.

slow-and-hairy
This tells 1.SB that the routine is complex enough that time should be discounted
when a space/time tradeoff is made for deciding what (if any) calling scquence
optimizations should be performed.

perform-calling -sequence - optimizations
Tells 1.SB to perform calling sequence optimizations. Useful only if 1.SB’s default
action is inappropriate.

inhibit-calling -sequence - optimizations
inhibit-calling -sequence - optimizations is exactly the opposite of perform-calling-
sequence -~ optimizations.

implement-as how bvl

This requests [.SB to usc a specific implementation for the routine being defined, and
supplies it. how should be one of the tokens expr, lexpr, or fexpr, and is used to
make the appropriate functional declaration for the routine. Information as to number
of argumcnts and the argument types still comes from the prototype call, however no
automatic argument type checking or number-of-argument checking will be performed.
The bound variable list for the function definition will be bvl, and any items afier bv/
in this declaration form will be prepended to the body of the definition.

assembly -language - definition
If this is present, then the body of the definition is assumed to consist of assembly
language code (in Lisp format appropriate to the implementation) rather than Lisp
code. ISB will provide the appropriate header and args information to be output,
and will automatically default the declarations which would otherwise have to be

MI: T SBDOCDEEFUN 181 ' 29-JUN-81

Wmu ——

Open Coding 32 LSB Manual

supplied by such clauses as implement-as and inhibit-calling-sequence-operations.
Use of assembly code in this fashion keeps it in textual proximity to the “dcfinition
form", and also allows LSB to continuc to automatically produce declarations.
Additionally, any pre- and post-definition forms implicitly gencrated by such clauses as
redefinition will be properly placed around the actual definition. For an example, see
page 42. This is only supported in PIDP-10 Maclisp at present.

5.4 Open Coding

detine-pudblic-open-codable-routine (= defpubopen) Special Form
define-system-open-codable-routine (= defsysopen) Special Form
define-private-open-codable-routine (= defprivopen) Special Form
These define routines just like define-visclass-routine, and in addition tell L.SB that
compiled calls to such a routine should be open-coded.

open coding means that when a call to a routine is compiled, the body of the routine will be
compiled in place of a call to it. That is, if we have
(define-public-open-codable-routine (cube (number n))
(expt n 3))
then the expression
(plus (f x) (cube (g x)))
will be compiled as if it were
(plus (f x) ((lambda (n) (expt n 3)) (g x)))
The routine cube will be defined just as if it were an ordinary routine, exccpt that no calling
sequence optimizations will be performed, since they arc obviated by the open-coding.

Defining somcthing as an open-codable routine has some advantages over defining it as a
macro. First and foremost is the clarity of the definition. Also. the routine definition typically
uses less space in the runtime environment than a corresponding macro definition would. An
open-codablc-routine, because it is a routine, may be funcalled or applyed if there are no
quoted arguments specified in the prototype call. lastly, the use of an open-codable-routine
makes the visible semantics of a call to that routine obvious: if we have

(define-public-open-codable-routine (foo a b)
(bar b a))
then a caller of foo does not have to worry that foo will evaluate its arguments repeatedly or out
of order,

Obviously, there will be cases where it is nol necessary to bind the formal parameters of an
open-codable-routine around the body of the code. 'This is the case in the cube example. Rather
than producing (for compilation) an expansion fike

({1ambda (n) (expt n 3)) (f x)}
for {(cube (f x)). it is obvious that

(expt (F x) 3)
would suffice. for any function (or special-form or macro) £. L.SB has two mcchanisms to handle
this.

The first, wsed by defaule, is kambda optimization. Fssentially, the code expanded to be used
i place of the origindl call is re-examined. and wherever possible. Tambda-bindings are
climinated. “This succeeds in making such transfonmations as the one shown above for cube. 158
knows not (o optimize out the bindings of special variables.

Mt SBDHOC:DERUN 18] 29-JUIN-81

[.SB Manual 33 Defining Macros

The second is to explicitly tell LSB that the arguments to the routine may be safely textually
substituted into the body of the routinc. This is done by means of the use-sublis-for-open-
coding declaration. For example, cube could have been defined as

(define-pubiic-open-codable-routine (cube (number n))

(dcls {(use-sublis-for-open-coding))

(expt n 3))
Obviously this is unsafe and not recommended if the routine refercnces the variables out of order
or anything but exactly once, as that destroys the implied semantics of function calling. And,
since sublis is actually used, there should be no name conflicts. The use of sublis does not mean
that the body of the routine may be a pattern to be substituted into; t must still be viable as an
ordinary routine. 1.SB reserves the right to not actually use sublis if it can preserve the
substitution semantics and produce better code in some other manner.

Open-codable-routines may be defined with optional, any-number-of, and quoted
arguments. The checking for optional arguments will be performed at compile time, and the
argument or default value form inserted into the code as appropriate. any-number-of arguments
work, but they can only be implemented as heap-consed lists, so are not recommended; often in
this case a macro is called for, or perhaps an ordinary routine.

Occasionally a situation arises where one desires to have a routine open-coded only in certain
Lisp implementations. For this. onc may give an ordinary routine definition the open-code
declaration, which may be placed inside of a conditional inclusion:

(define-public-routine (cube (number n))
{Lispm (dcls (open-code))}
(expt n 3))
which causes cube 10 be open-coded only if is being compiled for a Lisp Machine.

A note is in order with respect to the setf special form: since an open-codable-routine is not
a macro, setf cannot determine what a call to it will cxpand to, so if one is being uscd to create
a synonym for some sort of structure reference and is meant to be invertable with setf, either
setf must be informed how to make its transformation, or the routine should be defined as a
macro. The same is true for the loct special form in Lisp Machine Lisp.

5.5 Defining Macros

define-public-macro (= defpubmac) Special Form

define-system-macro (= defsysmac) Special Form

define-private-macro (= defprivmac) Special Form
Macro definition format in 1.SB is similar to routine definition format. The same call
mapping kevwords (e.g. optional, any-number-of) may be used, but typed and implicitly
quoted arguments may not be. If any type of rest purameter is used, no implementation
type should be specified for it, as the variable will be bound to a sublist of the original
call.

Thus,
(define-public-macro (frob-name frob)
"{caddr ,frob))
cffectively defines frob-name to be a synonym of caddr. ‘This particular example is defined as a
macro rather than as an open-codable-routine so that the setf special form can invert it

MEESBDOCDEEUN 18] 29-JUN-81

Bt 7 A

oty

i3 -
P ™

a

Defining Macros 34 1.SB Manual

(setf (frob-name x) 'new-name)
==> (rplaca (cddr x) 'new-name)

The flag variable which may be specified to flag whether an optional argument is supplied may
be useful with macros as well as with routines:
(define-public-macro {frob-name
frob (optional val nil val?))
(cond ((null val?) ‘(caddr ,frob))
(t '(rplaca (cddr ,frob) .val))))
And, of course, macros are the best way to write code which changes environments or control
flow:
(define-public-macro (if predicate consequent
(any-number-of else-forms))
(cond ((null else-forms)
‘(and ,predicate ,consequent))
(t '(cond (.predicate ,consequent)
(t . .else-forms)))))
(define-public-macro (using-decimal-radix (body body))
‘((vambda (base =*nopoint) ,@body) 10. t))

5.5.1 Unneeded Macros

Quite often one nceds macros around in the runtime cnvironment for running interpreted code
(which may or may not be in the same module a macro is defined in) but it is undesirable for
them to be present in an environment where all of the code is compiled. This is often necessary
in small address-space Lisps, and is often not unrcasonable in cven large address-space Lisps
which do not have packages. such as Multics Maclisp, to avoid cluttering up the runtime
environment with definitions which are only necded for running code interpreted, or for
debugging.

define-public-xmacro (= defpubxmac) Special Form

dofine-system-xmacro (= defsysxmac) Special Form

define-private-xmacro (= defprivxmac) Special F'orm
The only difference between this and normal macro definition (define - visclass -macro) is
that the (compiled) macro definition will be sent to the macros diversion stream rather
than output into the compilation output file. The utility of this is that the macros
definitions (which are normally not needed if all callers arc compiled) will not be present
in the compilation output file, but will be in the file written as the macros diversion
strecam, so may bhe loaded when needed. This type of macro definition is common in
systems which define many (or large) macros which are not normally used, such as pretty-
printers. Note that the semantics of this depends on how the macros diversion stream
bchaves—see page 54.

11 SBOOC:DEFUN 181 29-JUN-81

A\

—

il g
-7

e g,

A

i’

L]

oy e

-
Fl

" .
. s Vet

e,

LSB Manual 35 Compiler Macros

5.6 Compiler Macros

Sometimes one wishes to define something as a routine (for cfficiency or argument checking
when it is called from interpreted code, or for its ability to be funcalled), but desires special
handling of a call to it when .it is compiled, that only a macro can provide. Another scenario is
where one is defining a special form (section 5.7, page 35), and it is émperative to have special
handling of the form when it is being compiled. LSB allows one to define macros which enly are
used for the expansion of code being compiled.

define-public-compile-time-macro Special Form
define-system-compile-time-macro Special Form
define-private-compile-time-macro Special Form
These have syntax identical to that of define-visclass-macro, but the definition is only
used for expanding code being compiled.

The definition of cube as an open-codable-routine
{(define-public-open-codable-routine (cube (number n))
(dcls (use-sublis-for-open-coding))
(expt n 3))
is performed by 1.SB just as if the user had done
(define-public-routine (cube (number n}))
(dcls (inhibit-calling-sequence-optimizations))
{expt n 3))
(define-public-compile-time-macro (cube n}
(sublis (1ist (cons 'n n)) ’'(expt n 3)))
More examples are given with the descriptions of definition constructs which may also require the
use of compile-time-macros.

Note that use of this facility may compete with automatically gencrated code for calling
secquence optimization or open coding: if this is suspected, one should explicitly disable calling
scquence optimization as in the above example, by use of the inhibit-calling-sequence-
optimization declaration.

5.7 Special Forms

special forms are constructs which do strange non-functional things with their arguments, like
eval them. cond is a special form, as are do. prog. and go. In most cases it is best to define
special constructs like this as macros, so that only onc definition is needed, and so that code
analyzers (and the like) nced not understand the form specially. ‘Thus, if can be defined as a
macro as it is on page 34. There may be situations where there are overriding rcasons for using a
special form instead. cven considering the extra cffort of defining a compile-time-macro so that
such a form can be properly compiled. Onc possible scenario (in fact, the onc which led to the
implementation of special form definition in LSB) is a system (cspecially in a limited address
space Lisp) where there are many special constructs defined, and they get much uwe. The
overhead of expanding and remeimbering all of those macros, combined with the occasional
tendeney of macros delinitions o take up more space than the corresponding routine definitions,
nvay be just oo farge o price o pay.

M SBDOC DEFUN 18] 29-JUN-81

4 W v TN PR . RS Wl - - Y oy e Sy 4 =1 ymar~—apry oy ey

:“’Va@‘ i‘

2l

"

.

M

»

ey

LY

Optimization and Transformation 36 1.8 Manual

define-public-special-form (= defpubspec) Special Form
Only public special form definition is provided for. Automatic type checking is not
handled here. Use of the quoted keyword to specify implicit quoting of arguments is an
error; all arguments are implicitly quoted. (This is a special form, after all.)

As an example, we can define if as a special form:
(define-public-special-form (if predicate consequent
(any-number-of else-forms))
(cond ((eval predicate) (eval consequent))
((null else-forms) nil)
(t (do {((1 else-forms (cdr 1)))
((null (cdr 1)) (eval (car 1}})
(eval (car 1))))))

To be properly compiled, if would also need to be defined as a compile-time-macro, in the same
way it is defined as a macro on page 34: that is, simply defined with define-public-compile-
time-macro instcad of define-public-macro.

5.8 Optimization and Transformation

define-public-optimizer (= defpubopt) Special Form

define-system-optimizer (= defsysopt) Special Form

define-private-optimizer (= defprivopt) Special Form
An optimizer is similar to a compile-time-macro (scction 5.6, page 35), and additionally
has the option of deciding not to expand the call. Although the specific mechanism used
to signify that the optimizer "did nothing” differs in differing Lisp implementations, LSB
optimizers should indicate this by returning nil; if nil is desired as the actual value,
(quote nil) should be returned, as it is entirely cquivalent in any context the optimization
will be performed in.

When the compiler compiles a call, it will try the optimizers for that call before it tries a
macro definition (if any). Additionally, [.SB arranges for compile-time-macros (and thus LSB
generated calling sequence optimization code) to come last, if it could conflict with any user-
defined optimizers (since compile-time-macros and calling sequence optimization may use the
optimizer mechanism to do their work). User optimizers will get tried in the order they are
defined in.

When an 1.SB routine or macro is defined. code is generated {as part of the declaration
information) to flush any existing optimizers and compile-time-macros. Thus, optimizer definitions
should come after the routine or macro definition they are for, and they should appear in the
same file. 1t does not work o mix visibility classes cither: that is, if the routine is public, it
does not necessarily work for an optimizer to be private or system.

Since a given name can have multiple optimizers associated with it, it is helpful for
redefinition purposes to associate some kind of identifier with cach particular one. This should be
specified in the identifier (abbreviated id) declaration clause:

(define-public-optimizer (foo argl arg2)
(dcls (id number))
(and (numberp argl) (numberp arg?)
‘(super-foo .(plus argl arq?))))
Ihis wdentificr should be a symbol, and need only be unique with respect to the operation name

AMIETSBDOCDEFUN 181 29-JUN-81

RS ST - - e~ —pry e

STt

R TR)

e

:,mr——----»—rmw

1

1.SB Manual 37 Rest Parameter Implementation

the optimizer handles. It is highly recommended that the identifier clause be used. If it is not
used, in environments such as Lisp Machine Lisp, incremental recompilation of an optimizer will
not properly redefine the old one.

Optimizers do not work in Multics Maclisp. Do not try to use them.

5.9 Rest Parameter Implementation

One of the most obvious points of incompatibility between various lisp dialects is the
implementation of rest parameters. 1.S§} attempts o0 compensate for this by providing a consistent
and safe default, and by allowing explicit specification of how the data object the formal
parameter is bound to is to be implemented.

The default implementation of a rest parameter is as a heap-consed list: a list is a simple data
representation guaranteed to be common to all Lisp implementations. It is heap-consed to prevent
obscure and crratic behaviour when a pointer to it is passed up outside the dynamic scope of the
function cail.

The single commonality between Lisp dialects is that such an object is a kind of sequence.
This means that (in theory at ieast) onc should be able to access components of the object by
some sort of indexing routine. Gne may thus declare in the prototype call that the variable is to
be implemented as a sequence:

(define-public~routine (print-items
(sequence (any-number-of items n)))

(terpri)
(do ((i 0 (1+ i))) ((= i n))
(princ (elt items i)})))

where elt is the generic sequence accessor {defined in NIL, but not in Lisp Machine Lisp, nor by
default in Maclisp). ‘This particular implementation is still heap-consed, however; it could lead to
the production of quantitics of garbage free storage. Since most of the time onc uses a rest
parameter one is only going to use it within the dynamic scope of the routine it is a parameter of,
it is wasteful for the storage used to hold this sequence to nor be temporary. Thus, 1.SB provides
the concept of the argument-sequence sequence type and rest parameter implementation.

The argument-seguence (abbreviated argseq) rest parameter implementation causes the rest
parameter 1o be implemented as the best method which does not consuime free storage provided
by the Lisp implementation. There are mechanisms defined for manipulating them, which map
directly into the methods actually used in the [isp implementation. What happens is that in Lisp
Machine |isp, specifying argument-sequence is like specifying pdl-list; in NIL, it is like
specifving pdi-vector; and in PDP-10 Maclisp, the variable is bound to a fixnum which
incorporates the information which is implicitly present in the call to a lexpr, and also acts as a
fixnum declaration.

argref argseq index
Hus Tetches the indevth clement of the argument-sequence argsey. Index is rero-origined.

N In POP-10 Maclisp this is almost the same as a call o the arg function: in |isp
¢ Machune Faspo s the same as o smnlar call to nth, and i NI, it tarns into o vrel,
e In sl implementations, this will be imbime-coded when compiled.
¢
‘.
: M1 SBDOCDEFUN 181 ' 29-JUN-8]
- Y —

ey DS AT AP VU < ot Ry | e e T Rase

LAy g

&’

I}

oy

s -
»

-
Ve

L

Rest Parameter Implementation 38 1.8 Manual

argset argseq index val
‘This clobbers the indexth clement of the argument-scquence argseg to be val. In all

implementations, this will be inline-coded when compiled,

argseq-length argseq
This returns the length of the argument-sequence argseq. Note that this is often not
necessary, as one can get a variable bound to the length of the argument scquence in the
prototype call. This will be inline-coded in all implementations.

argseq-1ist argseq
Returns the clements of argseg. in a list. This routine is not inline-coded, and its use is
discouraged. It is provided so that one can get the clements out of an argument-sequence,
as a list; this is primarily for dcbugging, and primarily for PDP-10 Maclisp, where an
argument-sequence is implemented as a data-type which does not print out its components.
It is reasonable to declare a variable which is not a rest parameter to be an argument -sequence.
Consider the following:
(define-public-routine (print-items (argseq (any-number-of items)))
(terpri)
(print-items-aux items))
(define-public-routine (prinl-items (argseq (any-number-of items)))
(print-items-aux ijtems))
(define-private-routine (print-items-aux (argseq items))
{(do ((i 0 (t+ i)) (n (argseq-length items)))
((= i n))
{prinl (argref items i))
(princ " ")))
FFor use with the loop iteration macro {1 OOP], 1.SB defines the argseq-elements (aka argseq-
element) scquence iteration path, so that one may iterate over the elements of an argument
sequence (or some subset of them):
(define-private-routine (print-items-aux (argseq items))
(loop for x being the argseg-elements of items
do (prinl x) (princ " ")))
In Lisp implementations where an argument-sequence is a kind of list (Lisp Machine Lisp and
Multics Maclisp), the argseq-elements iteration path is guaranteed to produce just a simple
iteration over the list in simple cases like the above; that is, in thesc cases the list will not be
repcatedly indexed into.

For those who know what they are doing, the following data-type keywords are recognized as
specifying rest parameter implementations:

argseq
argument -sequence
This is as described above.

list A heap-consed ordinary fist. In the Lisp Machine implementation, this list will be
made with all the clements cdr-next cxcept for the last, which will be cdr-normal
rather than cdr - nil=—this is presumed (o be a reasonable compromise.

vector A heap-consed sectar. This exisis primarily for NIE.

sequence
A heap-consed sequence of the type appraprude for the implementation: cquinalent 1o

METSBDOC I FUN (8] 29-JUIN-8]

P g 1 camy- - oy ST e ———

AT,

- e ——TW"——’M

1.SB Manual 39 Macro Memoization

fist in Maclisp or l.isp Machine Lisp, vector in NIL.
The following additional implementations cxist, but are less general, and primarily exist for one to
take advantage of particular Lisp implementation features.

pd!-list

temporary - list
This says to implement the rest parameter as a stack-allocated list. This is only truly
possible on the Lisp Machine; in PDP-10 Maclisp, it causes explicit reclamation of
the list on normal exit of the routine, and clsewhere is equivalent to list.

j pdl-vector
temporary -vector
The rest parameter is to be implemented as a stack-allocated vector. This is only
possible in NII.. FElsewhere it may attempt to coerce the argument sequence into a
heap-consed vector, but that of course will not work uniess there is vector support.

Of course, if one is very concerned with cfficiency and needs to take advantage of particular
implementation features, one can always specify an implementation-dependent implement-as
clause, such as the following (for the Lisp Machine):

{define-public-routine (print-items (any-number-of items))
(dcls (implement-as expr (&rest items)))
(do ((V items (cddr 1))) ((null 1)) ;
{print (car 1)) (prinl (cadr 1})))

5.10 Macro Memoization

It is normally the case that any particular cali to a macro will expand into the same code. It
is thus a significant inefficiency for interpreted macro calls to be repeatedly expanded every time
they arc cvaluated. ‘the term macro memoization refers to the process of somehow remembering
the expansion of a particular macro call so that it does not need to be repcatedly expanded.

There are various mechanisms for accomplishing this. The easiest and most efficient is to
simply clobber the calling form with the expansion, by usc of rplaca and rplacd. Another way is
to clobber the form with another macro call which encodes both the original form and the
expansion; this intermediate macro form can then be recognized specially by pretty-printers, which
can choose to show cither the original form or the cxpansion. [f additional information like a
definition count is encoded, then the clobbered expansion can be checked for validity and re-
expanded when the macro is redefined. Yet another way to perform macro memoization is to
store the expansion in a hash table; this has the advantage of not modifying the call at all, and
also not showing the cxpansion in the code. The data stored in the hash table can also encode
information like a definition count, so that the form can be re-expanded if the macro definition
has changed. ‘

I.SB supplics three methods for macro memoization. ‘They differ in the code which will be
produced in the macro body: any particular option could additionally be under runtime control,
Ihe method chosen may be specified with the do-macro-memoizing clause, cither in a system
definiton. module specification, or in the declarations of the macro itself.

o none M the "argument” given o do -macro- memoizing is nil, then o macra memaoization
" vode is produced. Bvery time a call to such a macro is encountered, the expansion will
’. be re-computed.

MEESBDOCDEFUN R] 29-JUN-R1

Ty

- -
AT R &

¢, .

Forward References 40 1.SB Manual

the implementation default
This is the default used by LSB. The actual mcthod used varies according to the Lisp

implementation; the intent is for the code generated in the macro definition to be
runnable in a default environment of that Lisp implementation.

In Multics Maclisp, code is generated to clobber the original form with the expansion by
use of rplaca and rplacd. In Lisp Machine llisp, the displace function is called (q.v.).
The PDP-10 and NIL. implementations produce slightly more complicated code, calling
functions which allow virtually all of the macro memoizing possibilities described above,
under runtime control.

displace
This may be spccified by use of the keyword displace as the "argument” to do-macro-
memoizing. The code generated for the macro definition will call the displace function.
Note that this is equivalent to the (current!) default action for Lisp Machine Lisp. If
one uses this in Multics Maclisp, one should be sure that a displace function will be
available at runtime. Again, the precise runtime semantics of this depend on exactly

what displace does.

It is anticipated that a mechanism similar (if not identical) to that used in PDP-10 Maclisp
and NII. will be implemented for Multics Maclisp and Lisp Machine Lisp. Even if not supported
by the Lisp systems themsclves, it would be usable in environments where it could be ensured
that the necessary runtime support was loaded, and may aid in problems evident in those Lisp
impiementations duc to redefinition of macros not affecting already-expanded calls to those macros.

5.11 Forward References

declare-routine Special Form
(declare-routine prototype-call

dcl-clause-1

dcl-clause-2

L)
produces all of the information nceded to compile a call to the specified routine, in the
current compilation environment, without defining the routine. This is not nceded if one
is using the 1.SB compiler interface (described in section 10.1, page 59) which makes a
pass over the file extracting all information nceded for compilation. It may be nceded,
however, if one is using 1.SB on Multics (which docs not currenily support the 1.SB
compiler interface). or if one has specifically disabled this intertace in the PDP-10

unplementation.

Consider two routines which call cach other:
(define-public-routine (foo a (optional b 0))
(cond {((zerop b) a)
(t (bar (times a b) (subl b)))))
(define-public-routine (bar x (optional y 0))
(cond ((zerop y) x)
(t (foo (plus x y) (subl y)))))
It the defimnon of bar has not been processed when foo gets compiled, the compiler will make
detautt asumptions about bar when it compiles the call to i, These assumptions. if incorrect.
cmld make the call less cfficient; they might evéen make the compiler error out. or generate

AMETSBDOCDERUN 18] ©29-JUN-RI

— ——

N e AR % SRS A ., . GO | Y

T W

fa -

o S

s
« Ve

.

1.SB Manual 41 " Definitionless Routine Definitions

incorrect code.

The fix for this example is to put
(declare-routine (bar x (optional y 0)))
before the definition for foo. LSB will extract from this the very same declaration information
which it cxtracts from the definition of bar, including any code needed to perform calling
sequence optimizations.

A declare-routine form should be constructed from the same prototype call and declaration
clauses which arc used in defining the routine, with the exception of any declaration clauses
pertinent only to real definitions. The clauses which may be used are implement-as, value-type,
primarily-applicable-routine, slow-and-hairy, called-as-lexpr, and perform-calling-
sequence- optimizations.

5.12 Definitionless Routine Definitions

Sometimes one would like to use 1.SB to propagate declaration information about a routine,
but cither the routine is defined elsewhere (possibly without LSB) or it is not defined in Lisp.
For this, one can simply omit the body of the definition. It is the responsibility of the user to
ensure that the calling sequence LSB determines for the routine to in fact be identical to what it
actually is, by use of the appropriate declarations. For example, the following dcfines for the
PDP-10 a flonum-only + function which checks for overflow:

{(define-public-routine (f+ (flonum x) (flonum y))
(dcls (value-type flonum) (implement-as expr))
)
(lap-a-1list
"((1ap f+ subr)
(args f+ (nil . 2))
(push p (% 0 0 floatl))
(move tt 0 a)
(jrst 2 @ (¥ 0 0 foo))
foo (fadr tt 0 b)
(jsp £ (» 1))
{(tinn f 40000) : this is octal
(popj p)
(lerr 0 (% sixbit |FLOATING-POINT OVERFLOW!|))
nil))

Actually, this example is simple cnough that it would be best written with the assembly-
fanguage-definition clause, as follows:

A ORI IDEETIN IR 29-JUN-81

. W) B R e T PSP e -~ W e YNNI . <7 RS TSN G . L RS o - EECo—

St .n W

Defining Functional Properties 42 L.SB Manual

(define-public-routine (f+ (flonum x) (flonum y))
(dcls (value-type flonum) (assembly-language-definition))
{push p (% 0 0 floatl))
(move tt 0 a)
{jrst 2 @ (% 0 0 foo))
foo (fadr tt 0 b)
(dsp f (e 1))
(tinn f 40000) : this is octal
(popj p)
(Yerr 0 (% sixbit |FLOATING-POINT OVERFLOW!|)))
Of course, not all such cases are this simple, and it may not be possible to share code between
various routines when the assembly code for them is in scparate 1.SB definition forms.

5.13 Defining Functional Properties

Very often it is necessary to put a "function” on some property of a symbol. Lisp has the
syntax
(defun (foo propname) (this that) ...)
such that one may do
(funcall (get 'foo ‘'propname) this that)
in order to invoke this function. LSB supports a similar syntactic construct.

For routines, one may simply use a list of the symbol and the property in place of the name

of the routine, as in
(define-public-routine ({(foo propname) this that) ...)

which is the LSB way of doing the previous example. Although it may seem that there is no call
for a visibility class in such a definition, there is: such a dcfinition might nced to be
documented, and a visibility class is nceded to determince where the docu:nentation may need to
be sent to. There is unfortunately no mechanism for remembering this information at this time,
however, so one should not attempt to use document-routine (page 55) on such a thing.

For such a definition, J.SB automatically inhibits declaration production and calling-sequence
optimizations.

In PDP-10 Maclisp, one may also usc the "three-list” format:
(define-public-routine ((foo hackexpr hacksubr) a b) ...)
being essentially the same as
(defun (foo hackexpr hacksubr) (a b) ...)
which puts the intcrpreted definition on the hackexpr property. but the compiled subr pointer on
the hacksubr propcerty.

If onc considers macros 1o be simply a way to perform a mapping from onc cail-like form to
some other fornm. then this extension is applicable (o them aiso.
(define-public-macro ((foo frobnicate) x y)
(list ‘cons x y))
puts a function on the frobnicate property of foo such that
{funcall (get 'foo ‘frobnicate) '(foo 1 2))
=> (cons 1 2)
Macro memoization (section 510, page 39) is turned off by default for this type of construct.

M1 :ESBDOCDEDNUN 181 ' , 29-JUN-8]

r_r T TEUTTReETRTY R 1

L.SB Manual 43 Prototype Call Summary

The syntax for this is both cumbersome and moderately unaesthetic. It is expected, however,
that such constructs will rarely be written out, but rather constructed by macros which can hide
the property-list implementation:

(define-system-macro (define-frobnicator name bvl (body forms))
‘(define-private-routine ((,name frobnicator) ,@bv1)
(dcis (also-needed-for public-compilation))
,@forms))

5.14 Prototype Call Summary

A variable specification in a prototype call has the full form shown below.
varspec ::= simple-varspec | optional-varspec | rest-varspec

simple-varspec : := typed-variable | (quoted lyped-variable)
| (unused typed-variable) | (unused (quoted iyped-variable))
| (quoted (unused (yped-variable))
The quoted option may only be used with routines, and is described on page 30. The
unused is applicable to any type of 1.SB operation definition, and is described on page 27. If
a simple-varspec appears in a prototype call to the right of an optional-varspec, it is interpreted
as if it were (optional simple-varspec).

typed-variable : := variable-name | (data-type-kwd variable-name)
All pre-defined data type keywords are cnumerated in chapter 7, page 47.

optional-varspec : : =
simple-optional-varspec | (data-type-kwd simple-optional-varspec)

simple-optional-varspec : :=
K (optional simple-variable)
- | (optional simple-variable default-value-form)
: | (optional simple-value default-value-form variable-name)
The uses of default-value-form and variable-name are explained in section 5.1, page 26.

. rest-varspec : : =
simple-rest-varspec | (rest-variable-implementation-type simple-resi-varspec)

simple-rest-varspec ; : =
' (rest-varspec-kwd simple-variable)
v . | (rest-varspec-kwd simple-variable variable-name)
The specifics of the optional variable-name are discussed in section S.1, page 26. 1

rest-varspec-kwd 2= a rest-implementation keyword
Lhese are fully discussed in section 5.9, page 37.

- MITSBDOC D] TUN 181 ' 29-JUN-81

LR I

:.'u'*‘.

Prototype Call Summary 44 LSB Maaual

rest-variable-implementation-type : : =
any-number-of | one-or-more-of | two-or-more-of | body | rest
The specific keyword used implies the minimum and maximum number of arguments which
are t0 be mapped into the particular rest-variable. There are none currently defined which
specify a maximum. one-or-more-of and two-or-more-of specify one or two arguments as
a minimum; any-number-of, body, and rest have no restriction.

ME:TSBDOC:DEFUN 181 29-JUIN-8I

bl i - R - I <5 e AIDONG.. . PP AT® W~ . R s

trma

7 ."A.-,

- "‘ = i‘

¥ M « -

[2 4&”-’.
A PL S <

e,

1.SB Manual 45 Defining Variables

6. Defining Variables

An LSB variable dcfinition allows for all declaration and initialization information normally
needed. The definition form thus provides a distinct locus in the source text for that information
and the documentation, Defining a variable constitutes declaring it to be special; the specification
of type information for variables which are not special (i.e., local or lexical variables) is handled
by the constructs with which the binding is specified, as discussed in the previous chapter, and
chapter 13.

define-public-variable (= defpubvar) Special Form
define-system-variable (= defsysvar) Special Form
define-private-variable (= defprivar) Special Form
These are the special forms with which one defines variables. As with all LSB definition
forms, they should only appear "at top level” in a module, to be processed by the

compiler or interpreter.

The general format of variable definition forms is
(define-visclass-variable variable-name
clause-1
clause-2
. L)
as in
(define-public-variable *#maximum-l1ine-length
{value-type fixnum)
(default-init 78))
which declares *maximum-line-length to be special, says its value is always fixnum, and will
initialize it to 78 if it is does not already have a value.

The clauses which mo. be supplied in addition to the common definition clauses (scction 2.6,
pagce 8) are:

value-type type-name
data-type /ype-name
Asserts that the value of the variable is always of this type. Appropriate type

declarations may be produced if warranted in the Lisp implementation.

initialization initialization-form
init initialization-form
When the module is loaded, the variable will be unconditionally initialized to the

value of initialization-form,

default -initialization initialization-form
default-init initialization-form :
[.ike the initialization clause, but only sets the variable if it is not alrcady valuced.

divert -reinitialization -to divsiream-1 divstream-2 ...

divert-reinit-to divsircam-1 divstream-2 ...
This clause causes a setqg form of the variable to its initialization o be output to cach
of the named diversion streams. 1t thus may only be specified if cither the
initiafization or default-initialization clauses are given. Note that the reinitialization is
always unconditional. This can be used o produce a file which when loaded will

MELSHDOCDEFVAR 26 249-JUIN-8I

il K G BN SN " e I O~ TN, % O IT® W . ATt e T

LSB Manual

Defining Variables 46

reset a collection of variables to their initial states,

also-divert-reinitialization-to divstream-1 ...

also-~divert-reinit-to divstream-1 ...
Although this probably is not nceded because there arc no default reinitialization

diversions, it is included for uniformity. It could conceivably be of use if one had a
macro which produced an LSB variable definition which provided for reinitialization
diversion and also passed along declaration clauses.

The 1LSB variable definition facility may also be used purely for declaration purposes. This is
useful in cases where either forward references occur (but see section 10.1, page 59), or where the
variable is not really a part of the module but still needs to be declared for some reason.

declare-variable Special Form
This is a variant of the variable definition special forms which can be used for

implementation-independent declaration purposes. It only accepts the value-type
declaration clause, as none of the others are applicable.
Example:
(declare-variable scounts
(value-type fixnum))

MEESBDOCDEFVAR 26 29-JUN-RI

- ™ b5 53 P 0o - P g —— ————
il L . - - 5 . ~
al a il A IS e e I i

¥ TN

ek

L.SB Manual 47 Data Types

7. Data Types

LSB provides a scheme whereby one may symbolically specify the data fype of something.
This data type is used to provide variable and function value declarations (when appropriate to
the Lisp implementation) and also to default the initial values of bound variables and unspecified
optional arguments. 1t is also used to provide automated type checking for arguments.

Here are the data type keywords which LSB defines initially.

notype
This cssentially means “untyped”. This is what you get when no data type keyword is

specified, and there is: no default for the particular context.
fixnum A limited-precision integer.

integer
Any sizc integer.

number
Any number.

flonum
A flonum. This in general corresponds to the Lisp object with typep of flonum.

small -flonum
Similar to flonum. This exists only in Lisp implementations which have such a data-

type. such as Lisp Machine Lisp.

character-cade
In practice, this is equivalent to fixnum. In theory, it might cause special storage
strategies to be used because of the limited range.

truthvalue
In practice, this is the same as notype. In thcory, it might be used to optimize
returned-values of conditionals (and the like). It cssentially states that only the t-or-
nil-ness of the value is of interest.

argseq
argument-sequence
list
temporary - list
pdi-list
vector
temporary - vector
pdl-vector
sequence
These data type keywords are all specially recognized as specifying the implementation

of rest parameters. ‘This is fully discussed in section 5.9, page 37.

MEESBDOC:IITYPE 20 29-JUN-81

Defining Data Types 48 L.SB Manual

7.1 Defining Data Types

One may define a data-type keyword to LSB in terms of an already dcfined type it is a
specialization of.

define-public-data-type Special Form
define-system-data-type Special Form
define-private-data-type Special Form
(define-public-data-type dula-type-keyword
clause-1
clause-2
N
defines data-type-keyword to LSB. The information is declared in the current environment,
in the compiled output file, and in the declaration file appropriate for the visibility class.
All the normal definition keywords may be used in the clauses. One may additionally use
the following clauses:

continue-with data-type-keyword
This says we should get other information from the data-type-keyword data-
type. This defaults to notype.

predicate routine-name
This says that routine-name is a predicate of one argument which defines this

data-type.

initial - value initial-value
Specifics the default initial valuc to be used for this data-type.
For example, the Brand-X system defines the following data-types:

(define-public-data-type Brand-X-object

(predicate Brand-X-objectp))
(define-public-data-type triple

(predicate triplep)

(continue-with Brand-X-object))

Fach data-type which has a predicate associated with it can also have automatic argument type
checking performed for an argument of that type. When onc defines a data-type, the code to Jdo
this is automatically generated. The way in which this is done varies in different Lisp
mplementations: i Maclisp, the (output from) define-viscluss -data-type is needed for this
argumment checking to be performed. but on the Tisp Machine it is not (although the predicate is
if it will not be open-coded). For example. Brand-X gets automatic type checking for the
gargument given to the ik routine, which is defined:

(define public routine (ilk (triple x))
(dcis (check-args))
)

MIETSBDOCDINPE 20 9-JUIN 81

1.SB Manual 49 Diversion Streams

8. Diversion Streams

Diversion strcams are used by I.SB to implement derivability (section 2.1). They can be
loosely divided into two categories, depending on the kinds of objects and operations they handle:
Jorm diversion streams, which are used generally for Lisp code or forms, and textual diversion
streams, which handle text. Within each of these broad divisions there are various additional
types which determine how the diversions are to take place, and the transformations to be made
on the objects diverted. For cxample, a declaration diversion stream is intended to divert
declarations—hat is, forms to be cxecuted and operations to be defined, to tell the compiler how
to compile things. The forms diverted to a declaration diversion stream will be compiled into a
file. A forn diversion stream is similar, but does not imply that the contents are for the use of
only the compiler. A textual diversion stream is one which accepts text—it is copied dircctly to a
file. A documentation diversion stream is similar, but additionally implies that the text is some
form of documentation, and transformations may be made on it in the diversion process. There
are also types of form diversion streams which cause the diverted forms to appear "at top level”,
as if they had not been diverted (since all form diversions can only occur by means of toplevel
special forms), and those which cause the diverted forms to be immediately evaluated.

The definition or redefinition of diversion streams, if it becomes nccessary, may be done by
using the diversion-stream clause in the system definition. This clause has the format
(diversion-stream name clause-! clause-2 . ..)
as in
(diversion-stream interpreter
(type toplevel)
{predicate (lsb:not-compiling?)))
(diversion-stream topilevel
(type taplevel)
(predicate t))
which are the default dcfinitions used for by L.SB for the interpreter and toplevel diversion
strcams. In general, every diversion stream has a fype, which determines how it handles data
sent 1o it (and the restrictions on that data, ic. forms versus text), and a predicate which is
evaluated every time an attempt is made to divert somcthing (o that diversion stream, to see if
the diversion should be performed. The type toplevel handles only forms, and says that they
should be treated as if they were "seen at toplevel” in the module,

The types of diversion strcams are:

toplevel
This handles forms only, and makes them "appear at toplevel™.

form A diversion stream of this type saves the forms in a file. This is done by compiling
them.

declaration
Currently the same as form. This is for saving information needed for compilation of

things (like declarations and macros).
text Handles text. The text is copied to a file.

documentation
Like text, but additionally implies that the text is documentation: transformations may

be made on it when it is diverted, See section 8,21, page 53,

MEESBDOC:DIVDLEE 03 29-JUIN-R1

- > T e, YRRy Sogeel dadtuciid

o -—-w—w:_nm-_-“'m-_'“——-—'-

Diversion Streams 50 [.SB Manual

eval Forms diverted to such a diversion stream arc immediately evaled.

non-existent
Attempting to divert anything to a diversion stream of type non-existent is an error.
Attempting to “load” one, if for example the pubdcl diversion strcam of some
module is of this type, does nothing. This is used by some LSB systems which are
not actually implemented with LSB.

: The other clauses of a diversion stream definition are only pertinent to diversion streams
\ which produce files: these are the same clauses which may be specified for a module: host,
3 device, directory. and pathname. When [.SB constructs the pathname for a diversion file,
missing components default to the corresponding components of the pathname of the module (as

{.SB calculates it to be from the system definition). except for the file-type and the version. The
] version defavlts to the version of the module being read or compiled. The file-type defaults to
the name of the diversion stream, with some exceptions dependent on the host file system:
Diversion Stream LispM NTL Three-character
pubdcl pubdql pubdvl pdc
sysdcl sysdql sysdvl sdc
maddct moddql sysdv]l mdc
pubdoc pubdoq pubdov pdo
sysdoc sysdoq sysdov sdo
moddoc moddoq moddov mdo
macros maqros mavros mac
These exceptions exist cither (as in the case of TOPS-10) to compactify the name into 3
characters, or (morec commonly) because corresponding diversion files for different Lisp
. implementations will be kept on the same file system. If for somc reason these name defaults
b nced to be hacked, sce Isb:*diversion-fn2s, page 67.
There are additional system definition (and module specification) keywords which define ;
diversion streams, and additionally default the type and predicate of it:
T textual-diversion - stream
i text-diversion - stream
- text -divstream
f' This defaults the diversion strcam to be of type text. ‘The predicate defaults to
§ (Isb:compiling -to-file?); the text will only be diverted if a module is being fully i
?.. compiled. t
b documentation -diversion - stream

e
'S

doc -divstream
¢ Fhis defauls the diversion stream to be of type documentation. 'The predicate defaults
to (Isb:divert documentation?),

form-diversion -stream
form -divstream

; The diversion stream will be by default of type form. Forms (lisp code) diverted to it
will be compiled into a file. ‘The predicate defaults 1o (Isb:compiling -to -file?).
declaration -diversion -stream
9; dcl divstream
"_‘ the diverstion stream will be by default of ype declaration. Forms dinerted to it will
4 be compiled into a file: the predicate used by default s (Isb:divert - declarations?).
“ s pe of diversion stream is distinet from form becaase it miay do additional

MIECTSBDOCDIVDEE 63 29-1UN R

ESSLAC NG A S04 . YT NPT,

1.S3 Manual 51 Form Diversion Strcams

processing or setup on the forms, such as implicitly diverting some kinds of setup forms
first; this is not done yct however.

Here are some predefined predicates for use with diversion stream definitions.

1sb:compiling?
This returns t if evaluated during a compilation, nil otherwise. It will return nil if called

during the loading of a file (by Isb-load only, sorry), cven if during a compilation.

I1sb:not-compiling?
Equivalent to (not (Isb:compiling?)).

Isb:compiling-to-file?
This returns t if evaluated during the compilation of a file to a file, nil otherwise (and

during loading of a file). This is the default for randomly defined diversion streams.

I1sb:divert-documentation?
This returns t if Isb:compiling-to-file? would. and if the inhibit-documentation-
production flag was not set by specification of that clause in the system definition or
module specitication. This is the default diversion stream predicate for all diversion
strcams defined with the textual-diversion-stream clause. Note that if one uses the
diversion-stream clause but spccifies a type of text or documentation (as cxplained
below), the default predicate is still (Isb:compifing~to-file?).

Isb:divert-declarations?
This is the default predicate used for declaration diversion streams. It is currently
equivalent to Isb:compiling-to-file? (q.v.), but may become more complex as facilities
become better adapted to the use of a Lisp environment with a resident compiler, such as

Lisp Machine 1isp.

8.1 Form Diversion Streams

When an 1SB definiton is processed, the information from it is partitioncd up on the basis
of what nceds to he known where, and the forms generated are “sent” to various form diversion
strcams, An example of this is given in section 2.5, page 7:

{(define-public-routine (square$ (flonum n))
(dcls (value-type flonum))
(*$ n n))
This says that square$ is a routinc of onc argument (n, a flonum) which always returns a flonum
result. What is actually produced from this definition is something more on the order of
(divert-forms-to (pubdcl compilation-environment)
declaraions forsquare$)
{divert forms-to (toplevel)
(dafun square$ (n)
local-declarations if needed
(+$ 0 n)))
That is, the defimtion of square$ is sent to the toplevel diversion stream, which is like having it
specificd at woplevel in the source file. The declaations for square$, however, aic sent o the
pubdc! and compilation environment diversion streams: the former is o decharation diversion
streant for public declarations, and the fatter s eval diverston stream which has o predicate such

METSBDOCDIVDET 63 29-JUN-8R1

cua

e I R

i

Textual Diversion Streams 52 [.SB Manual

that the forms will be evaluated immediately, but only during compilation.

divert-forms-to Special Form
(divert-forms-to diversion-stream-names
Jorm-1 form-2 . ..)
This is the primitive macro for initiating form diversions. It is only valid as a “toplevel
form” in a module (similar to defun and eval-when). One may not nest this construct,
and the behaviour of eval-when and declare inside of it is not defined. What is usually
more convenient to use than this is forms-needed -for: ,
forms-needed-for Special F'orm
(forms-needed-for needed-for-keyword-list
form-1 form-2 ...)
This is similar to divert-forms-to, but accepts needed-for keywords, as described in
scction 2.6, page 8. If a keyword implicitly needs a visibility class, private is assumed;
hence, in this context, the compilation keyword is cquivalent to private - compilation,

8.2 Textual Diversion Streams z
 }

textual diversion streams arc diversion strcams whose primary operation is manipulation of
text, rather than forms. There are two types of diversion strcams defined which handle text:
text. which transcribes the diverted text literally, and documentation, which may perform some
transformations in the process.

Text diversion is cffected by an extension of the read-time conditional inclusion mechanism:
the exclusion of text by the { reader macro allows its inclusion fest to specify what diversion
streams the excluded text should be diverted to. There is additionally provision for actions to be
taken before, after, and during the exclusion process.

divert-to /nclusion Tester
(divert-to divstream-! divstream-2 ...} is the simplest inclusion test for diverting text. It is
only for use in rcad-time conditional inclusions, as there is no other conditional inclusion
mechanism which can provide a source of "text”. Thus,
{(divert-to pubdoc)
This is some documentation.

}

diverts all of the text from the first)" to the last "} to the pubdoc diversion stream.
”
¢

There are several other inclusion tests for use with diverting documentation in*f'“bmorc
complicated wavs, rather than just a literal transeription as divert-to does. It is therefore pu\'x’lth
for tranformations on the diverted text to occur both as a result of the wav the dunersion stream
handles the diverston operation, and as a result of the way the text 18 sent 6 the diversion
stream. These complications are described in chapter 9, page 55. Many of them only function on
documentition diversion streams, s they implicitly perform higher-level formatting operations
which only documentation diversion streams can supply.

METSHBDOCIDIVDELR 63 CO29-JUIN-K

A

R

A A AL

-

LV @™

“D

1.SB Manual 53 Pre-Defined Diversion Streams

8.2.1 Documentation Diversion Streams

Documentation diversion streams differ from plain text diversion streams mainly by extension.
A documentation diversion stream has a documentation-type, which may be spccified with the
documentation-type clause in the diversion stream definition, and it may be defaulted for all
documentation diversion streams by being used as a system definition or module specification
clause. ‘There are two documentation types currently defined: bolio, the default, and tex. This
normally only manifest themselves when the more complicated documentation diversion inclusion
tests are used; thesc are documented fully in chapter 9.
{(define-system hairily-documented

{built-on this that the-other-thing)

(documentation—lype tex)

(documentation-diversion-stream extra-doc

(documentation-type R))
(modules foo
(bar (documentation-type bolio))
(baz (documentation-diversion-stream pubdoc
: (documentation-type bolio)))))

The hairily-documented system has a dcfault documentation-type of tex; this is implied by the
(documentation-type tex) at top level in the system definition. All documentation diversion
strcams which are not otherwise specified will default this way. For the bar module, however,
the default documentation type is botio. Note that the type of defaulting going on here does not
affect the extra-doc diversion stream, since the documentation type for that never gets defaulted;
for all modules, it will be of documentation type R. Likewise, for the baz module, all the
documentation diversion strecams will have documentation type tex except for extra-doc and
pubdoc, which will be R and bolio. Note that there is no R documentation type presently.

8.3 Pre-Defined Diversion Streams

Herc are the diversion streams initially defined in an LSB environment.

pubdoc
A documentation diversion stream, intended for public documentation. Its predicate

causes diversion to occur only when the containing module is being compiled and
documentation diversion is cnabled: it uscs the Isb:divert-documentation? predicate.

sysdoc
Similar to pubdoc, but for system documentation,

moddoc
A documentation diversion strcam, intended for private documentation. By default this
diversion strcam has a predicate of nil, so text sent to it goes nowhere: that predicate
may however be modified in the system definition.

info likc pubdoc. This is provided somewhat spuriously. It could be used for sucy things
as online documentation,

pubaci
This is a declaration diversion stream, for public declarations. [ts predicate causes

diversion o oceur only when the module is being compiled.

sysdc)
[ike pubdcl. for system declarations.

MESBDOCDIVDEE Y 29-JUIN-81

S — ——
-~ A . i T e e e T T <

Pre-Defined Diversion Streams 54 1.SB Manual

moddct
For private declarations. This normally has predicate of nil, causing no diversions. That
may be changed by the user if it is found to be nceded for some obscure forward-
reference problem.

compilation -environment
An eval diversion stream, with a predicate that causes the diversion (and hence
evaluation) to occur only in the compiler.

readtime -environment
In a compilation cnvironment, this is defined as an eval diversion stream, causing the
forms diverted to be immediately evaluated; otherwise, it is a toplevel diversion stream,
thus being equivalent to interpreter. The result of this is that the "diversion” occurs in
the processing environment, so may be used to modify the LSB cnvironment, or the
reading environment. This may be renamed to processing-environment.

interpreter
This is a diversion stream of type toplevel, defined with a predicate which causes no
diversion when being processed by the compiler: thus,
(divert-forms-to (interpreter) ...)
acts like
(eval-when (eval) ...)

compiler -toplevel
A toplevel diversion stream with a predicate complementary to that of the interpreter
diversion stream.

toplevel
A toplevel diversion strcam with a predicate of t. This is useful if the forms to be
diverted not only should be processed "at top level” in the module, but also sent
sumewhere else {c.g., to the pubdcl diversion stream).

macros
This diversion stream is used primarily for macro definitions which arc not needed in a
totally compiled system (see scction 5.5.1, page 34). In Maclisp, it is by dcfault a form
diversion strcam which will compile its forms into a file, when used in the compiler,
and do nothing in the interpreter (like pubdcl). In Lisp Machine Lisp and NIL, it will
by default be a toplevel diversion stream, so that the forms in it are put in the
compiled output file.

-
’

PR Pt

PENL R

i - M SBDOC:DIVDEF 63 29-JUN-81

1.SB Manual 55 Documentation Diversion

9. Documentation Diversion

Scction 8.2 described textual diversion streams, and how text may be sent to them. This
chapter discusses more advanced facilities for diverting text and producing documentation.

public-documentation /nclusion Tester

system-documentation Inclusion Tester

private-documentation /nclusion Tester

online-documentation Inclusion Tester
‘These routines are for use as inclusion tests. They are equivalent to (divert-
documentation-to divstrean) for the appropriate diversion stream: pubdoc, sysdoc,
moddoc, or info.

divert-documentation-to Inclusion Tester

(divert-documentation-to divstream-1 divstream-2 ...) is an inclusion test which always
fails, and causcs the text within curly-brackets to be interpreted as documentation and sent
to the specified diversion streams. Example:

{(divert-documentation-to pubdoc)

.chapter "Hacking Around"

This is a test of the emergency broadcast system.

It is only a test. Had it been a real emergency you

would have run out of list storage.

}
This inclusion test is not equivalent to divert-to (page 52). The enclosed text is output
within a "documentation block”, which means that it will be preceded by a blank line;
this is irrespective of whether a newline immediately follows the inclusion test, as such a
newline is ignored.

When [.SB dcfines operations or variables, it rccords various attributes of them in the
environment (cither compiler or interpreter). This information is then used by the following
routines to supplement user-supplicd documentation. For operations (routines, macros, and
special-forms, but nof compile-time-macros), this information includes such things as the type of
definition, information about the prototype call, and the value-type. For both, most importantly,
it includes the diversion stream(s) to which documentation about the object defined is to be sent
to. - 'The following inclusion tests utilize this infermation in order to figure out where to send the
excluded text.

document-routine /nclusion Tester

document-routines /nclusion Tester
These two inclusion tests arc identical; both names are provided for cuphony,
{document -routine) as an inclusion test will document the most recently defined routine;
(document-routine a) will document a, and (document-routines a b ¢) will document
a. b. and ¢ as a group. for an cffect simitar to that in this text here. For example, one
might do

.
v
.

i

"N .-

",

M SHDOCDOCHIV 43 29-JUIN-§!

Y T T e ———

Documentation Diversion 56 1.SB Manual

(define-public-open-codable-routine (square (number n))
(dc1s (value-type number))
(times n n))

{(document-routine)

e3squarees returns the square of its argument.

}

(define-public-open-codable-routine (square$ (flonum n))
{dcls (value-type flonum))
(*$ n n))

(define-public-open-codable-routine (square& (fixnum n))
(dc1s (value-type fixnum})
(* na))

{(document-routines square$ square&)

edsquare$e* and e3square&es» are the flonum-only

and fixnum-only versions of e3squarees.

What happens is the diverted text is output between stuff computed from the definition
information, to produce a special text-justificr construct for the particular type of
definition. What is actually produced depends on the documentation-type of the
diversion stream(s); this is described later in this chapter.

document-variable /nclusion Tester
document-variables /nclusion Tester
These is similar in form and function to document-routine.
(define-system-variable *frobozz»
(default-init (create-a-crock)))
{(document-variable)
This is a disgusting crock.

}

When one is utilizing the same source text in different Lisp implementations, it is often
unnecessary to redundantly produce documentation from both. The defauit predicate used by
documentation diversion streains (Isb:divert-documentation?, page 51) checks the flag set by
inhibit-documentation - production system definition option, which says that documentation
should not be diverted. For example, the pretty-print-definition system is defined:

(define-system pretty-print-definition
(directory format) .
(built-on loop sharpsign backquote {PDP-10 user-hunk}})
(users-implicitly-need write})
{{except-for PDP-10) (inhibit-documentation-production)}
(modules ppdef ppdesc)
)

When address space is a consideration and the above operation and variable documentation
facifities are not being used. one should also use the inhibit-documentation - production option,
hecause i addition to inhibiting the diversion of documentation, it tells 1.SB not to record
mlomation about the definitions.,

AMETSBDOCDOCIEV 43 2)-JUIN-81

- "

- a8 AL R

s -
1 Ve

9

LSB Manual 57 ‘The Bolio Documentation Type

9.1 The Bolio Documentation Type

Bolio is a text justifier written in PDP-10 Maclisp. It comes with predefined operators and
conventions for documenting Lisp programs; because of this, it is the default documentation type.
Bolio was used to produce the Lisp Machine Manual, and this document.

The output produced for Bolio by
(define-public-open-codable-routine (square (number n))
(dcls (value-type number))
(times n n))
{(document-routine)
e3squaree* returns the square of its argument.

looks like
.defun square el{numberes¥nel)ew
eIsquaree* returns the square of its argument.
.end_defun
All of that randomness after square on the .defun line is font switching and spacing so that
Bolio does not need to do any parsing of the argument descriptions. The output produced by
(define-public-open-codable-routine (square$ (flonum n))
(dcls (value-type flonum))
(*$ n n))
(define-public-open-codable-routine (square& (fixnum n))
(dcis (value-type fixnum))
(* nn))
{(document-routines square$ square&)
e3square$es and e3squarelke+ are the flonum-only
and fixnum-only versions of e3squarees.
}
tooks like
.defun square$ e1(flonumesVnel)es
.defunl square& el(fixnumes¥nel)es
t3square$e+ and e3squarede+ are the flonum-only
and fixnum-only versions of e3squarees.
.end_defun
Different types of definitions produce different documentation opcrators, in a similar format,
differing only in the text-justifier commands used and the argument descriptions: only routine
definitions, producing .defun, output any argument descriptions. Variable definitions use .defvar,
defvart, and .end_defvar, macro dcfinitions usc .defmac, .defmact, and .end_defmac, and
special forms (or routines or macros which have the document-as-special-form option specified
in their declarations) use .detspec, .defspeci. and .end_defspec.

Except on Multics (which does not do casc-conversion on input), variable, argument, data
type. and operation names arce converted to lower case when output. Call mapping keywords,
such as optional. arc capitalized. Tn Lisp implementations with packages, some heuristics are
used to attempt 1o determme how the defined object’s name shonld be printed. I“or routines, the
nantes of the arguaments will always be output withouwt any package information,

MIETSBDOC:DOCDIV 43 29-JUN-81

TR

1

-

)
PR

e,

The TEX Documentation Type 58 1.SB Manual

9.2 The TEX Documentation Type

The output produced by the tex documentation type for the square example of the previous

section looks like

\defun SQUARE \argtype{number}{n}.

user-text
Note that no indication of the end of the text is given, although there will be a blank line there.
‘The tex format in general produces calls like argtype above rather than pre-formatting the type
and call-mapping keyword information; e.g., the routine

(define-public-routine (foo (quoted a) (optional (flonum b)))

ca)

would produce the \defun header

\defun FOO \quoted{quoted}{a}

\optional{optional}{\argtype{flonum}{b}}.

except that it would all be on one line. The reason quoted and optional appear to be duplicated
above is that the name in braces is the actual keyword used in the definition, which may be
diffcrent from the macro name. Currently, the routine, macro, or variable name is nof lower-
casified. although the variable names and kcywords are. Like bolio, the tex documecntation type
can produce multiple \defuns in a block, by using \defun1. It will also produce calls to
\defvar, \defmac. and \defspec, and \defvari ctc. Unlike bolio, all of the operation
documenting macro calls produced will contain the argument information from the prototype call.

The full list of argument descriptor macros used is:

\optional{ kwd}{ innards}

\rest{ kwd}{innards}
where kwd is the actual call-mapping keyword used, and innards is the remainder of
the argument description,

\quoted{ kwd}{innards)
Similar to the above.

\argtype{ kwd}{ variable}
The \argtype will be the most deeply nested macro call if it is present, so its second
“argument” can only be the variable name.
{hus the output produced for the variable args in the prototype call (foo (any-number-of
(quoted (fixnum args))) looks like
\rest{any-number-of}{\quoted{quoted}{\argtype{fixnum}{args}}}

There is no existing package of TEX macros to do anything with this output, yet.

A SBDOC DOCDIV 43 " 29-JUN-81

Dk B Z BB P 7 = T e PRI % remp I AT G AT v

T X

3

@

-
LY.

T NGO

s e " T = TV

1.5SB Manual 59 Getting LSB

10. Getting LSB

10.1 The LSB Compiler

[.SB provides its own standard compiler interface. It is very similar to whatever standard
compiler interface is normally provided, but offers one option (as a default) which none do: it
reads and macro-processes the input file fully before it begins compilation. That is, it
incrementally reads in the file, expanding toplevel macros, LSB dcfinitions and diversions,
declares. eval-whens, and includes, but instcad of immecdiately outputting or compiling the
resultant forms as an ordinary compiler would, they are buffered up. Only when all of the input
has been processed are the forms compiled.

This is a very useful action, due to the way LSB works. Because all of the declarative
information about defined objects in LSB is derived from the definition form, one does not
declare cverything that needs declaring at the front of the file; thus, this first pass allows LSB to
extract all of the declarations (and macro definitions) which will be necded for the compilation
before the compilation starts. Note that the reading of the file is done incrementally with this
form processing: onc may, in somecthing like an eval-when or in a toplevel macro call {(which
the modute form at the front of the file is) modify rcader attributes, such as syntax and input
radix. ‘This also obviates the need for declare-routine (page 40) and declare-variable (page 46)
in many cases.

Having the file processed in this manner does not solve all forward-reference problems; only
those "one level deep”. if that much. LSB makes use of some declaration information when it
expands out definitions, and information it needs should be around before one of its forms is to
be processed. Thus, if one does something like

{(define-public-routine (ilk (triple x))
{dcls (type-check-argument x))
..)
(define-public-data-type triple
(predicate triplep)
(continue-with brand-x-object))
the itk routine will not have type checking performed for it, because at the time LSB creates
type-checking code the triple data-type (and the associated mechanism for doing argument type
checking for that type) has not been defined. The same could be true for top-level calls to
macros which are defined later in the file:
(define-a-frob foobar)
(define-public-macro (define-a-frob name)
R
Whether or not the ordering matters in this last case depends on what (define-a-frob foobar)
expands into; for safety, constructions like this should be ordered properly. Note also that this
ordering constraint is in fact that which would be necessary to load the code interpreted anyway,
since there is no pre-pass made when a source file is loaded into a lisp.

MELSBDOC:.COMPLR 25 29-JUN-R]

i ra s

i’

Y

‘;c".""

DRSS]

The LSB Compiler 60 1.SB Manual

10.1.1 The Maclisp Compiler

The PDP-10 LSB compiler is a normal PDP-10 compiler with L.SB in it, running the LSB
compiler interface. The command interface to it is the same as the ordinary PDP-10 Lisp
compiler, although it will run the 1.SB file-processing interface as described above. If for some
reason this LSB interface is undesirable, say the file is particularly large and docs not fit into the
compiler, then one can disable this mode by negating the "L" compiler switch: for cxample, to
the compiler’s command-processing loop, saying:

myfile (t-1)
On the ITS operating system, the LSB compiler may be invoked with the :[.SBCL command.
There is currently no 1.SB compiler available on non-ITS operating systems.

In Multics Maclisp, there is also currently no saved 1.SB compiler available. The special LSB .
file-processing interface is not available either. One may, however, bootstrap up an LSB in an
ordinary compiler by placing the following form at the front of the source file, before the module
form:

(eval-when (compile)
(or (status feature LSB)
{1oad ">udd>Mathlab>LSB>compilation-environment.lisp")))
This form will thus work both in a compiler without [.SB, and in a saved L.SB compiler if and
when one becomes available. One must use a compiler/lisp which understands the eval-when
special form; 1.SB depends on it. If the source file is also to be used in Lisp implementations
other than Multics, the Multics feature should be checked for too:
(eval-when (compile)
(and (status feature Multics)
(not (status feature LSB))
(1oad ">udd>Mathlab>LS6>compilation-environment.lisp”)))

10.1.2 On the Lisp Machine

At some future time, 1.SB should cxist saved on a disk band. Currently, one may cause 1.SB
o be loaded by doing
(load "MC:LSB;LISPI4 LOAD")
which loads everything, and is thus a bit time consuming.

To compile an 1.SB module, do notr use qc-file:
1sbcom wmfile &oplional outfile puckage-spec

This is similar to qc-file, but runs the 1.SB compiler interface. ‘The arguments Isbcoin
takes are interpreted the same way qc-file interprets them (q.v.).

ML T SBDOC.COMPIR 25 © 29 JUNSSI

oy,
WMQQMW*'@;*MQ‘ - T —

1.SB Manual 6l Interpreted LSB

10.1.3 On the VAX

To be written when developed. It is suspected that it may not be possible to compile I.SB on
the 10 for the VAX because of address-space limitations. LSB use on the VAX will probably not
differ drastically from that on the PDP-10.

10.2 Interpreted LSB

On ITS, LSB is available as a dumped environment under the name LSB. This environment
contains some things which arc not strictly a part of LSB but which are commonly used by most
current [.SB users. If demand indicates, this can be cleaned up.

Dumped subsystems on ITS very often will neced [.SB in them if any code is going to be run
interpreted in them, but for production purposes this may be undesirable. It is possible (o create
versions of dumped subsystems which do and do not contain LSB, and which share the portion
of the subsystem not containing [.SB. This is, in fact, a general feature of Maclisp on ITS, and
has nothing to do with LSB; it is documented elsewhcre. The file I.SB FILES on the 1SB
directory will, when loaded, load in those parts of LSB normally neceded for running interpreted
code, and set up autoload propertics for some others which are only rarely used. All LSB
autoload propertics in PDP-10 Maclisp are of the form ((Isb) ..), so on a non-ITS system the
atom Isb may be given a ppn property if nceded. Much LSB code automatically defaults the isb
ppn property to that for lisp.

On Multics, the file dudd>Mathlab>LSB>Isb-loader.lisp is cquivalent to the LSB FILES file
of PDP-10 Maclisp—-it loads only those parts of 1.SB normally nceded for interpretation.

The Lisp Machine programming environment is such that getting 1.SB for interpretation is the
same as getting it for compilation,

N SBDOCCONMPLR DS 29-JUIN-§I

=T Tty Y e R A ’ ki G TR

T

Rl

Coming Attractions 62 1.SB Manual

11. Coming Attractions

These are random notes on things which are either under development or are being
considered.

In PDP-10 Maclisp, it is possible for the file property list to be parsed and used in a
LEDIT/EMACS combination, to allow the proper binding environment 1o be established when
code is transferred from the EMACS to the LISP. ‘This can use the 1.SB option of the file
property list. An experimental version of this has been tried, but the minimal hooks necessary do
not yet exist with the system-supplied LEDIT.

One problem with using LSB is that things which are logically built-on it are then required
to use L.SB if they arc to properly have their compilation (for example) environment established.
In most cases, howcver, loading the various pubdc! files of the system(s) involved will suffice. A
rclatively small amount of code would be needed to support the loading of these files into a bare
compiler. This is mainly applicable to Lisp environments like Maclisp where the compilation
environment is distinct from the runtime environment. For the Lisp Machine, the potential cxists
for either causing the contents of the declaration diversion files to be “"expanded out™ so that they
do not utilize LSB. or again, to simply have some special code to allow them to be loaded. The
latter would require there to be an LSB package. Yet another alternative for the [isp Machine
(or similar) implementation is to cause @/l of the declaration information to be output into the
compilation output file; this differs from splitting it into multiple (c.g.. qfasl. pubdcl, sysdcl)
files in that there would be no duplication of code. Again, this might possibly be done cither by
having some bootstrap 1.SB codce around at load time, or by convincing L.SB to "open-code” the
declaration info it outputs; this last is only moderately space-consuming, as much of the stuff
output involves declaration info which is redundant with the runtime ecnvironment, and error
checking.

it is possible to compile portions of an LSB module "out of context”. All that needs to be
done is to run the [.SB pre-processing step (section 10.1, page 59) over the original file to extract
all private declarations, and then compile the file as if it were that module itself. Appropriate
fudging of the diversion strecams is nccessary to ensurc that erroncous diversions are not created
for that module. but is not difficult. An experimental version of this has been tricd. and all that
1S necessary 1S to put a patch-module form at the front of the file, instcad of using module.
Thus facthity 1s not available by default yet, but probably will be soon.

Mo LBDOC2COMES

1.SB Manual 63 Extending 1.SB

12. Extending LSB

This chapter describes various methods and conventions which may be used to extend or
customize 1.SB in somec way. The contents are somewhat haphazardly organized, and in many
cascs there is missing description of how to do things, but it is suitable as a refercnce for
relatively stable but internal facilities of 1. SB. Nothing in this chapter should be used frivolously;
it is primarily compensation for lack of better "public” facilities. Also, any changes to the
contents of this chapter would warrant a warning to the INFO-L.SB mailing list, so it is safer to
use what is listed here than just anything you might find in the source code.

If you use any facilities documented here, it is recommended that the system using them be
built-on the Isb system. Although use of some things here does not require this, not all macro
definitions and declarations may be pre-loaded in all Lisp implementations.

12.1 LSB Keyword Comparison

Here are the various routines for comparing symbols for LSB keyword or token equality.
Note that in all cases the “"keywords" being compared are expected to be interned symbols; this
may matter in some Lisp implementations.

1sb:token-equal rvken!/ token?
implements foken equality testing,

1sb:token-member foken list
1sb:token-assoc token a-list
1sb:token-1oakup foken a-list
arc analogous to member and assoc. Isb:token-lookup is like using the Lisp Machine
function memass; it returns the sublist whose car is what would be returned by
Isb:token-assoc. That is,
(defun 1sb:token-assoc (token a-list)
(car (1sb:token-lookup token a-list)))

1sb:kwd-equal rokenl 1oken2
1sb:kwd-member (oken list
1sb:kwd-assoc¢ wken a-list
1sb:kwd-lookup roken a-list
‘The versions of the above predicates which check using keyword equality.

1sb:kwd-bassoc wken a-list
‘This is like tsb:kwd-assoc but bubbles an entry found forward in a-fist. This should
only be used for things which may be safely modified.

Many 1.SB “tables™ arc implemented as association lists. Since the keys of the entries cannot
necessarily be compared with eq or equal, the following macros may be used to push new entries
on,

MILSBDOCEXTIEND 37) 29-JUIN-8]

moyrap

‘.i‘:

.y -y -
LN P4

L

Defining System Definition Options 64 [.SB Manual

1sb.push-pair AMacro
{1sb:push-pair (displace . 1sb:displace-macmem)
I1sb:#macro-memoizers)
pushes the enury (disptace . isb:displace -macmem) onto the list Isb:*macro-memoizers.
If the variable is not bound, it will be sct to nil first. If there is already an entry for
displace there, it will be removed.

This macro is defined such that its expansion can be run in a lisp without L.SB present.
Therefore it does not actually use keyword equality, but cheats and only uses foken
equality. For that reason, it is imperative that only the "canonical” form of a keyword be
used in this manner. Note that if the compiler puts the call to Isb:push-pair rather than
its cxpansion in the compiled output file, then 1.SB will need to be around when the file
is loaded. The PDP-10 Maclisp compiler normally will completely macro-expand forms
before stuffing them into its output file.

1sb:push-sym Macro
This is just like Isb:push-pair, only it does use eq for comparing “keys". It may thus be
used for adding entries to association lists of (say) variable names. Qualifications for
Isb:push-pair about runtime support apply here also.

12.2 Defining System Definition Options

This section documents some facilities which may be used for defining 1L.SB options, which are
specifiable in system and module definitions. [t may be safely skipped by those who are not
interested in defining their own. The facilitics here should not be used frivolously; they are
intended to be used by the maintainers of systems which need to provide special processing
environments for their users.

An 1.SB option is essentially a statc which can be cncoded in some variable(s). It has a
routine to determine the value(s) implied by the option clause, and each variable has a default
valuc which is uscd in the absence of a specification,

define-1sb-option Macro
(define-1sb-option opfion-kevword interpretation-fn
varspec-1 varspee-2 ...)
defines option-keyword to be an option for inclusion in a system definition or module
specification. mrerpretation-fu is a function of onc argument, the clause, which should
return an association list of the variables to be modified and their values. Fach of the
varspec-1 Jeseribes the variables which may be madified (and thus may nced to be bound
to set np an TSB environment): it may be cither just the variable, in which case nil is
used as the default value, or a list of the variable and a form to be evaluated to get the
value. For example,
(defun bhack-input-radix (clause)
(list (cons "ibase (cadr clause))))
(define-1sb-option input-radix hack-input-radix
(ibase 10.))

N SBDOCENTEND 37 29-JUN-81

1.SB Manual 65 Defining New Rcadtables

define-1sb-flag-option Macro

This is really a special case of define-Isb-option. The variable(s) will take on only t or

nil as values. For example,
(define-1sb-flag-option do-argument-type-checking

1sb:stype-check?)

defines do-argument-type -checking such that either of the clauses
(do-argument-type-checking)
(do-argument-type-checking t)

turns on type checking (by sctting Isb: *type-check? to t), and
(do-argument-type-checking nil)

wrns off type checking. ‘The syntax to define-isb-flag-option is the same as that to

define-Isb-option, minus the function.

Note that if one desires an option defined with define-lsb-option or define-Isb-flag-option
to take effect in the compilation environment, one must explicitly use a forms-needed-for form,
like

(forms-needed-for (running public-compilation)
{(defun hack-input-radix ...)
(define-1sb-option input-radix ...))
unless the module is needed-for-user-compilation and the option is not used by the systtm
which dcfines it.

By special dispensation, in Maclisp it is possible to load compiled calls to define-Isb-option
and define-Isb-flag-option into a Lisp which docs not have 1.SB present. if 1.SB is loaded in
at a later time. these options will be in cffect (unless otherwise redefined).

12.3 Defining New Readtables

I1sb:*readtables lariable
This is an association list of keywords and the readtables they represent. Fach “readtable”
itself is allowed (and in fact recommended) to be a symbol whose value is the readtable
to be used. The initial value of this variable is
((standard . lIsb:*standard-readtable))

1sb:*standard-readtable Variable
The value of this is used as the "standard” and default readtable by [.SB. It is initialized
to the readtable current when 1.SB is loaded in; it will typically be the one and only
readtable in the lisp environment.

Thus. onc might define a new readtable to L.SB by doing
(1sb:push-pair (readtable . Brand-X-Readtable)
1sb:sreadtables)
in some appropriate place.

METSBDOCENTEEND 37 29-1UIN-81

Playing with the System Definition 66 1.SB Manual

12.4 Playing with the System Definition

1sb:establish-sysdef system-spec
system-spec is cxactly what might be specified inside of (say) a built-on clause, as
described on page 12; either the name of a system, or a list of the name of a system,
and a pathname suggesting where to find the system definition. This performs all the
actions associated with scarching for a system definition (if it is not already known!)
described early in this manual. It returns a list, the car of which is the canonical name
for the system, and the cdr of which is the system definition body.

1sb:*sysdefs Variable
An a-list of all known system definitions. The car of cach entry is the name of the
system (which should be compared using L.SB token equality). and the cdr is, if non-
atomic, the definition. If the cdr is atomic, then it is the name of another system whose
dcfinition should be used instead ("indirected to™).

1sb:*syslocs Variable
An a-list of system names and locations. The location here is cxactly that supplied with
define-system-location.

1sb:determine-module-f1le-group module-spec system-def
system-def is a system definition, of the form returned by Isb:establish-sysdet. module-
spec is the entry for the appropriate module out of the modules clause of the system
definition. This returns a representation for the pathname of the module which does not
include a file-type or version; this is used for such things as finding either the source or
compiled output file, or for defaulting the pathname for a diversion strcam associated with
that module.

1sb:determine-diversion-f1lename divsiream-clause module-spec system-def version?
This determines the actual pathname for the diversion stream specified by divstream-clause,
with respect to module-spec and system-def, using a version of version?. module-spec and
system-def are the same as for Isb:determine -module-file-group. divstream-clause is the
clause defining a diversion stream. version?, if not nil, should be the version o be used
in the generated filename.

When [SB itself calls this to determine the owrput pathname for a diversion stream,
version? is the version of the module source file. module-spec is the module-spee of the
module being compiled. and svstem-def is the system definition of the system the module
15 a part of. dostream-clause 15 whatever Isb:find-divdef would return for modude-spec
and system-def.

When 1SB calls this to determine the impur pathname for a diversion strcam (say a
pubdcl diversion stream to be loaded). version? is nil. In theory, cither it could be the
actual version of the "installed” source for the module in question, or some symbolic
indicator that that 15 what should be used. For input it is assumed that an unspecified
version does something reasonable (typicaily, retrieving the "most recent” one).

A SBDOCENTEND 37 " 29 JUN-8I

o

2y

»

+

clew A T,

4

£

- .
’ g d

v Vst

LSB Manual 67 Inclusion Tests

I1sb:find-divdef divsiream-name module-spec system-def
This looks up the diversion stream dcfinition for divstream-name for module module-spec in
system-def. If therc is a diversion-strcam defining clause for divstream-name in module-
spec, that is returned; otherwise, if there is one in system-def, that is recturned;
otherwise, if there is an LSB default for divstream-name, that is returned, otherwise nil.

1sb:*diversion-fn2s Variable

This is an association list of diversion stream names and their default file-types. It may

neced to be hacked if cross-compilation is being done. Its value on the lisp Machine, for

example, is:
((pubdoc . pubdoq) (sysdoc . sysdoq) (moddoc . moddogq)
(pubdcl . pubdql) (sysdcl . sysdql) (moddcl . moddql)
(macros . maqros))

The diversion strcam names are looked up, as always, using LSB keyword cquality,

12.5 Inclusion Tests

A non-atomic inclusion test has a routine associated with it. When the inclusion test is
performed, this routine should return nil if the text enclosed in curly-brackets is to be skipped
over, non-nil if it is not.

12.5.1 Simple Inclusion Tests

The variables, routines, and macros described here should be sufficient to define simple
inclusion test routines, such as only-for, except-for, only-on, and except-on.

1sb:*implementation-features Variable
This variable is normally nil. If it is sct non-nil, then it is used as the sct of “destination
features” used by the only-for and except-for inclusion tests, instead of the result of
(status features). Note that the only-on and except-on inclusion tcsts always use
(status features).

I1sb:perform-implementation-feature-tests implementation-feature-tests
return-first-null-result? return-first-non-null-result? features-to-consider?
This is the routine used to parsc implementation feature tesis, like those given to the
only-for inclusion test. If features-to-consider? is nil, then Isb:*implementation -features
is usced if that is not nil, otherwise (status features). See define-inclusion-test, below.

define-1nclusion-test AMacro
(define-inclusion-taest name bvl
Sorm-1 form-2 .. .)
At this time, the function defined for an inclusion test gets exactly onc argument, the cdr
of the inclusion test. At some future date it is anticipated that bvl will be treated in some
other manner so that there can be automatic number-of-argument checking. The only-for
inclusion test is defined as:
(define-inclusion-test only-for (tests)
(Vsb:perform-implementation-feature-tests
tests () 't ()))

MLTSBDOCEXTIND 37 29-JUN-81

i AR

»

. -y
PRy

“.,.

W -
L .. e 2

Inclusion Tests 68 LSB Manual

12.5.2 Environment Modifying Inclusion Tests

I.SB keeps a stack of data which is used around succecding conditional inclusions, This is
used both for recording the location of the initiating left-curly-bracket, and for possibly
performing some specific cleanup action when the right-curly-bracket is encountered.

1sb:input-file-status
Returns some information about the name and position of the current input file.
Normally this will be a list of the name of the file, and the current file position.

1sb:®*asynchronous-environment-stack Variable
This is the stack of information on how to deal with all currently unmatched left-curly-
brackets. Each entry on the stack is a cons of a description of the left-curly-bracket, and
how to undo it. The latter if not nil, is a cons of a function to apply to do the cleanup
action, and the arguments to apply it to. The default action performed for a succeeding
conditional inclusion is
(push (1ist (lists (1sb:input-file-status)
"conditional inclusion test"
the-inclusion-test))
Isb:wasynchronous-environment-stack)
If an inclusion test desires to manipulate Isb:*asynchronous-environment-stack, it may
do as as shown below, and instcad of recturning just any non-nil value, it should return
the atom lIsb:*asynchronous-environment-stack to tell the caller that it has already
performed that action. For example, the following defines the gross-hack inclusion test
(which for simplicity ignores its arguments) to make the variable *gross-hack* t for the
duration of the curly-brackets:
(define-inclusion-test gross-hack (ignore)

{(push (V1ist (1ist (lsb:input-file-status) "Gross Hack")
#'(Yambda (val) (setg =gross-hacke val))
sgross-hacks)

Isb:easynchronous-environment-stack)

(setq »gross-hacke t)

‘1sb:sasynchronous-environment-stack)

12.5.3 Text Diverting Inclusion Tests

Text diverting inclusion tests arc inclusion tests which always fail, and which aiso manage to
state where the excluded text should be diverted to. The simplest way for this to be done is with
the following routines:

Vsb:divert-to-1 lisi-of-diversion-strcam-names
This should only be called from within an inclusion test which is going to return nil.
Isb:divert-to-1 itsclf returns nil so that it may be used as the last form of an inclusion
test routine. It causes the excluded text o be transcribed verbatim to the named diversion
strcams. Multiple calls may be made to Isb:divert-to-1 if nccessary; specifying a
diversion stream multiple times will have no effect. For example,
(define-inclusion-test divert-my-text (ignore)
(¥sb:divert-to-1 "(m- "°c)))

defines the melusion test routine diver ~y-text such that (divert-my-text) is cquivalent
o {divert -to mydoc).

M, SBDOCENTEND 37 2-JUN-81

]

oA e

A

o

-
,

@ o
e

LSB Manual 69 Inclusion Tests

1sb:divert-doc-1 Iist-of-diversion-stream-names
This is just like Isb:divert-to-1, but additionally defaults Isb:*diversion-routine (see
below) to a routine which (1) starts the diversion output on a fresh line while (2) flushing
the initial newline (if any) at the start of the diverted text. Thus, the public-
documentation inclusion test could have been defined by
(define-inclusion-test public-documentation (ignore)
(1sb:divert-doc-1 '(pubdoc)))
Note: the "-1" suffix on the preceding two routines is vestigial, and is expected to disappear,
someday.

If one is doing complicated textual diversions, such as those done by document-routine, the
following variables may be hacked by the inclusion test routine:

1sb:*diversion-bindings Variable
This is an a-list of variables and values they should be bound to. These bindings are
established around the diversion of the text.

1sb:*diversion-setup-forms Variable
A list of forms to be evaled before the diversion starts. This is done inside the binding
environment specified by Isb:*diversion-bindings.

isb:*diversion-cleanup-forms Variable
A list of forms to be evaled after the diversion finishes. This also is done inside the
binding environment specified by Isb: *diversion -bindings.

Isb:*d1iversion-routine Variable
If this is not nil, it is a function to be called with no arguments. It has sole
responsibility for reading and diverting the text between matching curly-brackets.

Isb:diversion-tyo character-code
Diverts character-code to all of the diversion streams currently being diverted to. This is a
special case of and is slightly faster than doing (Isb:diversion-operation 'tyo character
code).

1sb:diversion-operation operation (Any-number-of args)
Scnds the operation message to all of the diversion streams currently being diverted to.
‘The operations which may be of interest inside a textual diversion are:

:tyo character-code
Outputs the single character.

:princ object
Does the obvious.

:prin1 object

This too.
‘terpri
This too.
fresh-line
Performs a :fresh-line operation on the stream: if the stream is not at the start
of a line, then a newline is output.
ML SBDOCEX TEND 37 ' 29-JUN-81

—

- b . Y ¥ PR ST - gp— . o — Ay - TNt -

T e .

Defining Documentation Types 70 1.SB Manual

Other special-purpose operations may be defined for documentation purposes, such as
:start- operation-documentation; scc the discussion on documentation types, below.

12.6 Delining Documentation Types
The squeamish and those prone to heart attacks read this section at their own risk.

Internally, diversion streams use a relatively simple message-passing mechanism. A
documentation type has associated with it a function which can field some subset of the messages
which get sent to documentation diversion streams; if it does not support some message, the
default behaviour (that provided by simple text diversion strcams) will be obtained. The function
gets a first argument of the operation name, a second argument of the output strcam, and
remaining arguments which depend on the operation. It should thus be prepared to accept any
number of arguments. Notc that this calling convention is that produced by a function defined
with the Lisp Machine defselect macro.

Here are somce of the messages a documentation-type handler should support:

:which-operations
‘The handler should return a list of the operations it supports. That list need not
include :which-operations. but :which-operations must be handled. The result of
this is cached by the diversion strcam for efficiency, so it cannot dynamically change.
This operation is special in that the handler may be called on it before the stream has
been created, in which case the stream argument will be nil,

:start- operation -documentation data-list
We are starting to produce some operation documentation, as gotten from document-
routine. data-list is a list of datastructures which contain the information for each of
the operations being documented; see <not-yct-written> for using these datastructures.
The handler should output whatever is necessary to start the documentation; for Bolio,
this is the .defun and .defun1 lines.

:end - operation -documentation dala-list
data-list is the same as for :start-operation-documentation. The handler should
“finish up"” the documentation block.

:start - variable - documentation data-list
likc :start-operation-documentation, but for variables. The clements of data-list
arc in a different format; sce <not-yet-written).

.end -variable documentation data-list
Analogous to :end - operation -documentation.
More operations like the above may be added in the future,

The messages listed above are exactly those supported by the bolio and tex documcentation
types. [t is possible, however, for the documentation type handler to have much finer control
over the output which is produced. For this, it needs (o field most if not all messages which are
passed on to diversion strcams, ‘These are:

:tyo character-code
The character should be output to the stream. ‘The information on whether the
documentation type hindler ficlds this message v cached specially for cfficiency.

M SBDOCEXTENIE 37 20-JUIN-RI1

1.SB Manual 71 Macro Memoization

:prin¢ object
The object should be princed to the stream.

:prini object
The object should be printed to the stream.

terpri A newline should be output to the siream. Note that newlines in text being diverted
do not get converted to terpri operations, but are left as whatever character(s) they
were read in as. The documentation producing routines, however, should not
generate newline character sequences, but rather use the :terpri operation.

fresh-line
A newline should be output to the stream iff it is not at the beginning of a line.

‘tab -to destination (Optional increment)
see documentation on the ~T operator of format

:close The stream should be "closed”. This operation is only used for successful completion.

kill The stream should be "closed”, and aborted. What normally happens here is the
streamn is closed and the partially written file deleted.

:open pathname

The handier can support this if it desires to produce a non-standard [/Q stream;
normally, open would be cailed. Note that if the :open message is passed 10 the
handler, no stream has yet been created, so the stream argument to the handler will
be nil. The handler should return an output stream; this will be cached by the
diversion strcam mechanism, and passed in to the handler for all subscquent
operations.

If the handler is going to field character-leve! stuff, i.c. the :tyo opcration, it must also handle

any of the other operations which may produce output (such as :princ and :terpri); the default

action in these cases doces nof involve breaking the high-level operation into its components and

passing them back to the handler. In Lisp implementations where gencral 1/0 streams are

available, it is probably better for the handler to ficld the :open message and return an /0

strcam which will then handle the output operations appropriately.

Finally, if one is willing to wade through all of this and needs to associate a function with a
documeniation type name:

I1sb:*documentation-types Variable
The value of this is an association list of documecntation typc names and their handler
functions. The documentation type names are compared using [.SB keyword equality.

12.7 Macro Memoization

1sb:*macro-memoizers Variable
This is an a-list of keywords acceptable to the do-macro-memoizing system definition
(and macro declaration) clause, ‘The cdr of cach entry iy a function which will be called
to produce the macro memaoization code, and any setup code which must come before the
defininon, The aiguments are the macro name, the name of the variable which will have
as ity value the ongmal call form, and the form which will need 0 be evaluated to
produce the axpansion, “The function shoutld return a dist of forms. The first form will be
used as the body of the macro, and 1 SB will arrange for the remaining forms to precede

MIEESBDOCEXTEND 37 29-JUN-8]

ot ac g -

LTeeA T,

eyl

e

-
-

R Lk

¢, a

Macro Memoization 72 L.SB Manual

the macro definition itself. The original value of Isb:*macro-memoizers looks like
((t . 1sb:standard-macmem) (displace 1sb:displace-macmem))
and the displace method of macro memoization is dcfined by

(defun ¥sb:displace-macmem (macro-name
original-form-var

new-form-farm)
macro-name ; maybe unused
‘{(displace ,original-form-form ,new-form-form)

{(only-for (or PDP-10 NIL))
: This is so that any previous form of
; macro-memoization will revert so we can undo it.

(flush-macromemos ' ,macro-name ())}

))

M SBDOCEXTEND 37 29-JUN-81

2 L B L - _Jam - - W
. O P SIS - -"4-’-—,mm“m’”’r.‘ pryryr——wremar—,

"q
v v

oy -
At

e,

1.SB Manual 73 Variable Binding - LBIND

13. Variable Binding - LBIND

The LBIND module, although not a part of the default LSB environment, is closely related
to it, and quite useful with LSB, both to supplant the use of the bindg and auxiliary-bindings
forms in operation definitions, and in places where those forms are not valid. It also is extremely
useful for writing implementation independent code, as the data types of the variables may be
specified using the standard 1.SB data type keywords; no implementation dependent declarations
arc needed. If it is used, the Ibind system should be noted in the built-on clause of the system
definition.

1bind Macro
Ibind provides let-like syntax for binding variables. The syntax provides for the
specification of data types rather than destructuring. The general syntax is
(1bind (bind-spec-1 bind-spec-2 ...)
Jorm-1
form-2
)

A bind-spec is one of the following;

variable
The variable will be bound to nil, and declared to be of type notype.

(variable value-form)
The variable will be bound to the value of value-form, which is evaluated
outside the binding environment of the variables. It is declared to be of type

notype.

((data-type variable) value-form)
The variable will be bound to the value of value-form, and declared to be of
type data-type.

(variable)
({(data-type variable))
((data-type variable) nil)
An unspecified value-form is seen simply as being a value-form of nil, which
causes Ibind to determine the initial value from data-type. Thus,
(1bind (({(fixnum foo) nil)) foo)
» => 0
because foo gets bound to O rather than nil.
It should be noted that a bind-spec for Ibind has identical syntax to that of the auxiliary-
bindings form recognized in operation definition bodies (scction 5.2.1, page 28). Thus,
the form
(1bind (((fixnum foo) (mumble)) ((flonum bar)) baz)
..
==>
({(1ambda (foo bar baz) ...)
(mumble) 0.0 nil)
along with local declarations for the typed variables appropriate to the lisp
implecmentation.

MIZLSBDOC: | BIND 13 29-JUN-81

x W N d 5 T L R WS <o N . SIGIPENE. < RSN RS RANELT we ~ RSN

oA,

e

3

-

-
L Ve #

" .

e,

Variable Binding - LBIND 74 LSB Manual

In many cases, one would like to compute a variable’s value as some function of other
variables’ value, For this, there is the Ibind* macro:

1bind® Macro
Ibind* has syntax identical to Ibind. The bindings are nested, however. That is,
(1bind (((fixnum foo) (mumble)) ((flonum bar)) baz)
==2>)
((1ambda (foo)
((1ambda (bar)
((1ambda (baz) ...)
nil))
0.0))
(mumble))

METSBDOCTBIND 13 29-JUIN-81

= 3 ~3-¥ T TR - - s O e RIS S NANVENCRETR W . L R

[+ LS.

EXogeey

:.h'*' i'

4

Y

ok 2 AE A

&, ™

LSB Manual 75 Useful L.SB Systems

14. Useful LSB Systems

There are a number of pre-defined systems in LSB which may be of general interest. Many
of these are not written using [.SB (in fact, [.SB may require them to be bootstrapped), but some
have L.SB-style definition extensions.

14.1 Pre-Defined Systems

Here are some of the systems which are pre-defined (ecither with define-system or define-
system-location) to 1.SB. This list is incomplete; the full list is in the file ML:LSB;L.SBSYS >.

format The Maclisp implementation of the format function is written using LSB. This same
source will be used to bring up format in NIL.. The Lisp Machine format is a totally
different implementation, although the major public definition of it is compatible,
format is documented in the Lisp Machine Manual [[.MMan), and documentation of
the Maclisp version is in preparation.

Brand-X-Triple
Brand X is a low-level extension to Lisp for use in building knowledge bases
[BrandX]. It is written using 1.SB, and runs in PDP-10 Maclisp and Lisp Machine
Lisp.

defstruct
defstruct is a structure defining facility which operates compatibly in Maclisp and Lisp
Machine lisp (NIL?). Therc are 1L.SB definition extensions to defstruct, described
later in this chapter.

loop loop is a hairy iteration macro already mentioned [[LOOP). It, like defstruct, has LSB
definition extensions which arc described later. loop is not written using LSB; being
(built- on loop), however, cnables a system to not only use loop whether or not loop
is accessible by default in the given Lisp implementation, but also gives the system
access to the LSB definition cxtensions.

backquote

sharpsign
These are for the backquote (') and sharpsign (#) rcader macros. These exist as
systems solely for the Multics implementation of LSB; they are available in PDP-10
Maclisp, Lisp Machine Lisp, and NIL by decfault, in which case being built-on cither
of them is a fast no-op.

Mathlab-Macros
This, like backquote and sharpsign, exists only for the Multics implementation of
1.SB. Essentially, it compriscs all of the various utility files used by the Mathlab
group on Multics, which arc not covered by some other 1.SB systemn definition (such
as backquote, sharpsign, and defstruct). It includes such macros as setf, if, push,
and pop—most of the things which are obtainable by default in PDP-10 Maclisp, Lisp
Machine Lisp. and NIIL.

LSB 1.SB itself has a system definition so that certain internal facilities may be accessed by
users if necessary. See chapter 12, page 63.

MITSBDOCEFXTRAS 12 29-JUN-81

Yy

.
-

"

1.00P 76 1.S3 Manual

user-hunk
A low-level PDP-10 Maclisp interface to hooks in the Lisp for treating hunks as

extended-type objects [LSBULil].

ttyscan
Fancy parser-driven rubout processing, for PDP-10 Maclisp only. (Only runs on ITS

and TOPS-20 systems.) [L.SBULil]

write A protocol for performing text output which can be used to build such things as
pretty-printers [pp/write].

pretty - print-definition
A layer built on write for pretty-printing Lisp objects [pp/write].

pretty - print
A layer built on pretty-print-definition for pretty-printing Lisp code [pp/write).

14.2 LOOP

1.SB defines the following extensions to the loop iteration macro, for defining iteration paths.

define-public-loop-path Special Form

define-system-loop-path Special Form

define-private-loop-path Special Form
These are all essentially equivalent to define-loop-~path, but arrange for the information
to be sent to the diversion streams necessary for appropriate compilation and runtime
support.

define-public-loop-sequence-path Special Form

define-system-loop-sequence-path Special Form

define-private-loop-sequence-path Special Form
These hack define-loop-sequence-path similarly.

One might thus do the following to define a public toop itcration path:
(define-private-routine (parse-my-loop-path ...)
(dc)s (also-needed-for public-compilation))

)
(define-public-loop-path my-loop-path parse-my-loop-path ...)

Becanse of the simplicity of the define-loop -path and define-loop-sequence-path forms,
If it is necessary to divert a loop path definition somewhere clse, the forms-needed-for spcecial
form may be used
{forms-needed-for (running public-compilation hacks)
(define-loop-path ...))

MIUTSBDOCEXTRAS 12 29-JUN-31

1.SB Manual DEFSTRUCT

14.3 DEFSTRUCT

defstruct is documented in the Lisp Machine Manual, and documentation of the Maclisp
version is in preparation. On the ITS systems there is also online documentation in the file
LIBDOC;STRUCT >.

define-public-structure Special Form

define-system-structure Special Form

define-private-structure Special Form
These arc the LSB variants of defstruct. They will cause the structure definitions to be
available at runtime, and in the compilation environment (propagated according to the
visibility class). In this respect, structure definition is similar to macro definition.

The arguments to these forms are the same as those to defstruct, with the addition of
optional 1.SB declarations clauses, as in the example
(define-system-structure (matrix
{named)
(default-pointer)
(size-macro matrix-structure-size))
(dcls (reference public))
matrix-array
matrix-type
matrix-ncols
matrix-nrows)
which says that although thc matrix structure has a visibility class of system, it will be needed
for public compilation. This might be because there is an open-codable-routine or a macro which
expands into a reference to the matrix structure. The declarations allowable here are those
common to all L.SB defimtions: the definition availability declarations (e.g., needed-for and
reference,), and other similar ones like divert-documentation-to.

define-public-xstructure Special Form

define-system-xstructure Special Form

define-private-xstructure Special Form
These are just like the corresponding define-visclass-structure forms, but divert the
structurc definition the way the define-visclass -xmacro forms do (scction 5.5.1, page 34).
That is, when compiled, the dcfinition will be sent to the macros diversion stream
instead of the compiled output file.

29-JUN-R1

A e

.

-~

-
-V e

An Example System 78 LSB Manual

15. An Example System

This is an example system written using LSB. Two modules arc included here, with some
deletions for brevity.

15.1 The System Definition

This is the contents of the system definition file for the stats system, which is in the file
ML:STATS:STATS SYSTEM. The file ML:STATS:STATS PKG contains the package definition
for the statistics package, which is not particularly interesting. Thie source code is assuming only
that it will run in Lisp Machine Lisp or Maclisp. Note that the package refnamc stats is
equivalent to statistics.

(define-system stats
{{only-for Lispm)
(host mc)
(device ml)
}
{(except-for Maclisp)
{package statistics)
}
(directory stats)
(built-on loop)
{(type-check-visibility-classes public)
(modules interpolate ttable ctable ftable normal))

15.2 The INTERPOLATE Module
This is the contents of the interpolate module, which is in the file ML:STA'IS;INTERP >.
{ »- Mode:Lisp; LSB:interpolate,stats -s- 26-Jun-81

Copyright (c) 1981 by Grandiose System Building
and Massachusetts Institute of Technology. A11 rights reserved.}

{module interpolate stats)

{(system documentation)

Tha wdinterpolates* module defines common routines to allow
trivial definition of two-parameter statistical functions.
}
ME L SEDOCTENANMPE 2) 29-JUIN-RI
A i D Cagd “ERE, SEY VI — = =" . e T TR e

1.SB Manual 79 ‘The INTERPOLATE Module

(define-system-xmacro (make-stat-table dimension-list init-list)
(and (atom dimension-1ist)
(setq dimension-list (list dimension-list)))
(bindq (fixnum implied-size) (length init-list)
(fixnum actual-size) (apply '+ dimension-list))
(and (not (= implied-size actual-size))

(error {if (< implied-size actual-size)
"|Initialization list has too few entries|
"|Initialization list has too many entries|)

(list 'make-stat-table dimension-1list)))
{(only-for Maclisp)

£ _ “(fillarray (tarrdy nil ‘flonum . ,dimension-list) ',init-1ist)
Bt }
3 {{only-for Lispm)
g *(fillarray (make-array '.dimension-l1ist ':type ’'art-q)
< ',init-list)
}
)
{(document-routine)
.lisp
(make-stat-table e2dimension-listes e2init-listes)
* .end_1lisp

expands into a form which will create a table (implemented as an
array) which will contain flonum components and be initialized with
the elements from e2init-listes. ¢€2init-Tistes is required to

< contain exactly the number of elements required to fill the table.
The array will be of type e3flonumes in Maclisp, but a normal array
{e3art-qes) on the Lisp Machine so that accessing does not do
additional number consing.

. }

(define-system-xmacro (stats:tabref table i j)
{(only-for Maclisp) ‘(arraycall flonum ,table ,i ,j)}

N {(only-for Lispm) ‘(aref ,table .i ,j)})

T {(document-routine)

%4 .lisp

. (stats:tabref r2tablece e2ice €2jes) !

é .end_lisp !
accesses a two-dimensional table created by e¢3make-stat-tablecs. |
)

LY

~ |

)

¢!

- ;
|

"

MELSBDOC: EXAMPL 23 29-JUN-81

CihwaA T,

X

The TTABLE Module 80 LSB Manual

(define-system-routine (table-interpolate
(fixnum x1) (flonum v1)
(fixnum x2) (flonum v2)
{(fixnum xprime))
(declarations (value-type flonum))
(+$ v1 (*$ (//% (-$ v2 v1) (float (- x2 x1)))
{float (- xprime x1)))))

{(document-routine)
This calculates the value corresponding to e¢2xprimee* by linear
interpolation, given e2xles and e2vles, and e¢2x2e* and e2v2es,

}

(define-system-routine (table-2dim-lookup
{(fixnum n) (flonum cf) cf-1ist basis-size
more-n-values infinity-index? table who)
(dcls (value-type flonum))

i..

{(document-routine)
This implements the basic two-parameter lookup. €2ne¢ is the number
el

}

15.3 The TTABLE Module

{-*- Mode:Lisp:; LSB:ttable,stats -»- 9-Jun-81

Copyright (c) 1981 by Grandiose System Building
and Massachusetts Institute of Technology. A1l rights reserved.}

(module ttable stats)

MUTSBDIOC EXAMPL 23 29-JUIN-81

T . N Y e o L VR Te)

-

ATMaF

&
4

T LT

R

1

uy

-
« T

4

e,

1.SB Manual 81 The Documentation Produced

(define-system-variable +basic-T-table
(init (make-stat-table (34. 8.)
i3 60% 75% 90% 95% 97.5% 99% 99.5% 99.95%
(0.325 1.0 3.078 6.314 12.706 31.821 63.657 636.619 ;n=1
0.289 0.816 1.886 2.920 4.303 6.965 9.925 31.598 ;n=2

0.277 0.765 1.638 2.353 3.182 4.541 5.841 12.924 ;n=3
elc. ele.

0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.646 ;n=30
0.255 0.681 1.303 1.684 2.021 2.423 2.704 3.5651 ;n=40
0.254 0.679 1.296 1.671 2.000 2.390 2.660 3.460 ;n=60
0.254 0.677 1.289 1.658 1.980 2.3568 2.617 3.373 ;n=120
0.253 0.674 1.282 1.645 1.960 2.326 2.576 3.291 ;n=inf
))))

(define-public-routine (stats:t-table (fixnum n) (flonum cf))
(declarations (value-type flonum))
(table-2dim-1lookup
n cf *(6000. 7500. 9000. 9500. 9750. 9900. 9950. 99956.)
30. '(40. 60. 120.) 300. #basic-T-table 'stats:t-table))

{(document-routine)

This implements a T-distribution lookup for degrees-of-freedom e2nee
and confidence-factor e2cfee. e2cfes may be either a fraction or

a percentage; they can be distinguished because the former must be
less than €21.0e+. It may range from 60% to 99.956%.

}

15.4 The Documentation Produced

Here is what the system documentation for the interpolate module looks like when
formatted.

The interpolate module defines common routines to allow trivial definition of two-parameter
statistical functions.

make-stat-table AMacro
(make-stat-table dimension-list init-list)
expands into a form which will crcate a table (implemented as an array) which will
contain flonum components and be initialized with the elements from inir-list. init-list is
required to contain exactly the number of elements required to fill the table. The array
will be of type flonum in Maclisp, but a normal array (art-q) on the Lisp Machine so
that accessing docs not do additional number consing.

stats:tabref Alacro

{(stats:tabref ftable i j)
accesses @ two-dimensional table created by make - stat -table.

MI :ESBDOCEXAMPL 23 ' 29-JUN-81

I~ S gter AN 7 1TV G i T

The Documentation Produced 82 LSB Manual

1
3
i
L,
!
]
1
3
E
g
3
)

table-interpolate (fixnum x/) (flonum v/) (fixnum x2) (flonum v2) (fixnum xprime)
This calculates the valuc corresponding to xprime by lincar interpolation, given x/ and v/,
and x2 and v2.

table-2dim-1ookup (fixnum n) (flonum ¢f) cflist basis-size more-n-values infinity-index? table
who
This implements the basic two-parameter lookup. = is the number of degrees of freedom
desired. ¢f is the confidence-factor; if it is less than 1.0 then it is assumed to be a
fraction, otherwise it is assumed to be a percentage. table should be a two-dimensional
table created by make-stat-table. The first dimension indexes different n values, and the
second different ¢f values. It is assumed that some low range of n values are complete,
and are in the (1- n)th components of the table. basis-size is the greatest n for which
these contiguous entries exist. Other n valucs may be sparse; more-n-values is a list of the
other n values. If infinity-index? is not nil, then it should be the value of n which is
considered to approximate infinity; in this case, table should have one additional n row
(not accounted for by basis-size and ntore-n-values) which contains the ¢f values for n =
infinity. Values of n below infinity-index? will be linearly interpolated. who is simply used
for gencrating errors, and should be the name of the caller. For example: if we have
data points for n from 1-30, 40, 60, 120, and infinity, then the first dimension of table
should be of size 34, basis-size should be 30, and more-n-values should be (40 60 120).
infinity-index? should be an n value for which the data are not significantly different from
those for infinity, If this table contains data for confidence-factors of 60%, 75% 90%, 95%,
97.5%, 99%, 99.5%, and 99.95%, then ¢flist should be (6000 7500 9000 9500 9750
9900 9950 9995). These parameters are in fact those used by the stats:t-table function,

q.v.

This routine always returns a flonum, obtained by linear interpolation from the points
surrounding the desired point.

METSBDOCEXAMPL 23 29-JUIN-81

. -
~3

LSB Manual 83 Table of Abbreviations

16. Table of Abbreviations

Here arc all of the predefined keyword synonyms defined. Reasonable suggestions for
additions are solicited.

also-divert-reinitialization-to
also-divert-reinit-to
argument-sequence
argseq, arg-sequence, arg-seq
auxiliary-bindings
: auxs, aux-bindings
E~. built-along-side - of
) built-with, built-beside

declaration-diversion-stream
dcl-divstream

declarations dcls

default-initialization
default-init

L

device dev
directory dir
diversion -stream
divstream
divert-documentation-to
' divdoc, divert-doc-to

divert-reinitialization-to
divert-reinit-to
document-routines
. document-routine

document-variables
document-variable

documentation-diversion -stream

'

.

t .
I doc-divstream
‘ _ files - needed - for-compilation
S additional-files-needed
q . .
N form-diversion-stream
R form-divstream
> identifier id
o initialization init
- number -check - visibility - classes
Y number-check-visibility-class
’ ‘ pathname filename
, private-documentation
; module-documentation
] .
" '.'

i

ML:IISBDOC.ABRTHI. 14 29-JUN-81

AT IS, = g gy PR S rn = NP YA ., b R

Table of Abbreviations 84 LSB Manual

quoted unquoted
: referenced-at-visibility -class
3 reference
system intrasystem

gystem-compilation
intrasystem-compilation

system-documentation
intrasystem-documentation

textual -diversion-stream
text-diversion-stream, text-divstream

e .
<" type-check-arguments
type-check-argument, check-arg, check-args
type -check - visibility - classes .

type-check-visibility-class

3 value-type data-type

3

H

Rt

. 1 . AL]

e

ML SBDOCABRTIBO 7 29-JUN-81

1.SB Manual 85 References

References

[BrandX]
Szolovits, Peter, and Martin, William A., Brand X Manual, MIT Laboratory for Computer
Science ‘Technical Memo 186 (November 1980).

[LMMan])
Moon, David A., and Weinreb, Daniel L. Lisp Machine Manual, MIT Artificial
Intelligence Laboratory publication, March 1981.

[LOOP]
Burke, Glenn S., and Moon, David A., LOOP Iteration Macro, MIT Laboratory for
Computer Science Technical Memo 169 (July 1980, revised January 1981.) LOOP is also
documented in the March 1981 version of the Lisp Machine Manual.

{L.SBULil]
Burke, Glenn S., et al, LSB Ulilities Reference, MIT Laboratory for Computer Science
Technical Memo (in preparation). Documentation on various independent facilities which
either extend or are convenient to use with LSB.

[Moonual)
Moon, David A., Maclisp Reference Manual, MIT Lab. for Comp. Sci, Cambridge,
Mass. (1974). Out of print; updated chapters may be available, revision in preparation.

[NIl.Doc]
Unwritten documentation on NIL.

[pp/writc]
Documecntation on the write system, by l.owell Hawkinson, in preparation.

Documentation on the pretty -print-definition extension to the write facility, by Glenn
Burke, in preparation.

MITSEDOCMANUAL 1) 29-JUN-R1

IO NT I TR TR TN Mk TG Ty St T EROS SmmeCSwGTT S T W

e

IR A A R R N R e

Index of Tables 86 L.SB Manual
Index of Tables
Datatype keywords L . e e e e e e e e e e e 47
Definition Availability (needed-for)keywords. e 8
Diversion Stream DefinitionOptions. 0 e e 50
Diversion Stream Types e e e e e e e e e e e e 49
Environment Options 0 i Lt e e e e e e e e e e e e e e e e e 14
Pathname Components. v ¢ i v v i e e i s et e e e e e e e e e 10
Pathname Specification Options i i v i e e e e e e e e e e e 17
Pre-defined Diversion Streams. L L. L e e e e e e e e e e e 53
Pre-dcfined Keyword Synonyms. L e e e e e e e e e e 83
Processing Support Options (system definition) 16
Prototype Call BNE o i e e e e e e e e e e e 43
Rest-parameter Implementation Types. L e e e 38
Routine Declarations, v . v v o e 30
Variable Definition Oplions i i i e e e e e e e e e e e e e e 45
Visibility Classes v it i e e e e e e e e e e e e e e e e e 3
29-JUIN-R1

1.SB Manual

*Isb-verbose? Variable

*source-file-information Variable

abbreviations, table of

additional-files-nccded System Definition Keyword

also-divert-reinitialization-to Variable Definition Clause

also-needed-for Definition Clause

announce System Definition Keyword

any-number-of Prototype Call Keyword. 0 i i i i e e 26, 44
applicable-routine-only Routine Definition Clause

argref Function

argseq Data Type Keyword. o i i i e e e e e e e e e e 37,38,47
argseq-length Function

argseq-list Function

argscet Function

argument-sequence Data Type Keyword 37,38,47
auxiliary-bindings Special Hack 28,29, 73
bindq Special Hack

body Prototype Cull Keyword

built- along-side - of System Definition Keyword

built-beside System Definition Keyword

built-on

built-on System Definition Keyword

call mapping

call mapping keywords

Call processing

character-code Data Type Keyword

conditional inCIUSIONS L e e e e e e e e e e e e e e e e e e 24
data types

data-type Routine Definition Clause

data-type Variable Definition Clause. 0 i i it e e e e e 45
dcl-divstrcam System Definition Keyword

declaration diversion stream

declaration-diversion-strcam System Definition Keyword

declaration-divstream System Definition Keyword

declarations, in routine/macro definition

declare-routine Special Form

declarc- variable Special Form

default-definition-trom Routine Definition Clause

default-init Variable Definition Clause

default-initalization Variable Definition Clause

define-inclusion-test Macro

define-Ish-flag-option Macro

define-Isbh-option Macro

define - private -compile - time-macro Special Form

define - private -data-type Special Form

define - private -loop -path Special FForm

:“'V*‘ i,

LARETS

LN . .
R I oy

.

Index 88 L.SB Manual

define-private-loop-sequence-path Special Form. 76
define-private-macro Special Form e e e e e e e e e 33
define-private-open-codable-routine Special Form. 32
definc-private-optimizer Special Form e e e e e e e e 36
define-private-routine Special Form. e e e e e e e 29
define-private-structure Special Form. e e mn
define-private-variable Special Form o v i i e e e e e 45
define-private-xmacro Special Form. i e e e e e e e e e 4
definc-private-xstructure Special Form e e e e m
define -public-compile-time-macro Special Form. 3
define-public-data-type Special Form. e e e e e 48
define-public-loop-path Special Form e e e e e 76
definc -public-loop -scquence-path Special Form 76
define-public-macro Special Form e e e e e e 33
define-public-open-codable-routine Special Form e e e 32
define-public-optimizer Special Form. e e e e e 36
define-public-routine Special Form e e e e e e e e e 29
define-public-special-form Special Form e e 36
define-public-structure Special Form e e n
define-public-variable Special Form. e e e e e 45
define-public-xmacro Special Form e e e e 34
define-public-xstructure Special Form. e e e e e e e m
define-system-compile-time-macro Special Form. 0 0., 35
definc-system-data-type Special Form e e 48
define-system-location Macro. o e e e e e e e e e e e e e 11
definc-system-loop-path Special Form e e e 76
definc-system-loop-sequence-path Special Form 76
definc-system-macro Special Form e e e e e e e e e e e e KX]
define-system-open-codable-routine Special Form, 0., 32
define-system-optimizer Special Form. e e e e e e e e e e e e e e e e e 36
define-system-routine Special Form. e e e e e e e e 29
define-system-structure Special Form L L e e e e e e n
definc-system-variable Special Form e e e e e e 45
define-system-xmacro Special Form. 0 e e e e e e 34
definc-system-xstructure Special Form e e e e e m
derivability. .« . . . L e 3
device Sysiem Definition Keyword o o e e e e e e e e 17
device inPAthNAMES L . L e e e e e e e e e e e e e e 10
directories, mpathpames., e e e e e e e e e e e e e e e e e 10
dircctory Svstem Definttion Keyword 0 0 L 0 L e e e e 17
diversion streant fille-types L L e e e e e e e e e e e e 50
diversion SEFCAMIS. L o e e e e e e e e e e e e e e e e e e e 49
diversion -stream System Definition Keyword o o e e 17,51
divert-documentation-to Inclusion Tester e e e e 55
dinert-forms-to Special Formo e e 52
dunert-reimit-to Variable Definition Clause. 0 0 0 e 45
divert-reinitialization-to barable Defimition Clause 45
divert-to Inclusion Tester e e e e e 52
do-argument-number -checking Rowtmie Definition Clause. 30
do-argwment-number-checking Svseom Definition Keyword 0 0 0 0 .0 . o 15

29-JUN-81

. £ ~ W, RN -

NIRRT O 50 A RPRIREN . W% LWy sz

-
r Ve

L3

L.SB Manual 89 Index
do-argument-type-checking Routine DefinitionClause 30
do-argument-type-checking System Definition Keyword. 15, 30
do-macro-memoizing System Definition Keyword 15, 39,40, 71
doc-divstream System Definition Keyword. e e e e 17, 50
document-routine Inclusion Tester« . v i i e e e e e e e e e e e e e 55
document-routines Inclusion Tester. e e e e e e 55
document-variable Inclusion Tester« . 0 0 i i e e e e e e e 56
document-variables Inclusion Tester« . i i i i e e e e e e e e e e 56
documentalion diversSion SITCAM v v v v b e e e e e e e e e e e e e e e e e 49
documentation-diversion-stream System Definition Keyword 17, 50
ceval diversion SITEAM. vt e 51
except for Inclusion Tester @ . i i e e e e e e e e e e e e e 24
except-on Inclusion Tester i e e e e e e e e e e e 25
file-type, inpathnames e e e e e e e e e e e e e e e e 10
files-nceded-for-compilation System Definition Keyword 16
fixnum Data Type Keyword« . . e e e e e e e e e e 37,47
flonum Data Type Keyword e e e e e e e e e e e e e e e e 47
formdiversion Sream L L e 49
form diverSion SITCAIMS. & . v v vt e v e et e 51
form-diversion-strcam System Definition Keyword 17, 50
form-divstream System Definition Keyword e 17,50
forms-needed-for Special Form. e e e e e e e e 8,52
host System Definition Keyword L e e e e e 17
hosSL N Pathnames. o i e e e e e e e e e e e e e e e e e e e 10
ibase Variable. e e e e e e e e e e e 14
implement-as Routine DefinitionClause. , e, 31,39
implementation feature test L L e e e e e e e e e e e e e e e e e e e 24
IMPHCILQUOLNE o o ot e et et e 30
1L L1 10) 110 =<1 S 5, 14,24, 52
INCIUSION BESIET. i e 5,24
inclusion-test-readtable System Definition Keyword 14,25
inhibit-calling-scquence-optimization Routine DefinitionClause 35
inhibit - calling -sequence -optimizations Routine DefinitionClause 3l
inhibit- documentation - production System Definition Keyword. 15, 51, 56
init Variable Definition Clause i i i i e e e e e e e e e e e e e e 45
initialization Variable DefinitionClause i i i i i i i i i e e 45
input-radix System Definition Keyword e e 14
integer Data Type Keyword e e e e e e e e e e e 47
keyword cqQUality L L o L e e e e e e e e e e e e e e e e e 2
keyword synonyms, tableof L L L L L e e e e 83
KEYWOTAS « « & o v o v e e e e e e e e e 2
lambda optimization. L L L L e e e e e e e e e e e e e e 32
Ibind Macro. e e e e e e e e e e e e e e e e e 73
Ibind® AMacro o e e e e e e e e e e e e e e e 74
st Data Type Keyword o o o e e e e e e e e 38,47
loop Mdacro L e e e e e e e e e e e e e e e 8
Ish-toad Function. e e e e e e e e e e e e e e e e e e 22
Isb:*asynchronous-cenvironment-stack Variable.o .. o0 L 68
Ish:*diversion-bindings Variable L e e e e e e 69

Ish:*diversion-cleanup-forms Fariable o oo e e 69

B B I M

-
.

L ki ot i

Index 90 LSB Manual
Isb:*diversion-fn2s Varigble. L e e e e 67
Isb:*diversion-routine Varigble e e e e 69
Isb:*diversion-setup-forms Variable. L e e 69
Isb:*docun.entation-types Variable e e 71
Ish:*implementation-features Varigble. o e e 67
Isb:*macro-memoizers Variable L n
Isb:*readtables Variable e e e e e e 65
Isb:*standard-readtable Varigble. e e 65
Isb:*sysdefs Variable. e e e e e e e e e e e e e e e 66
Isb:*syslocs Variable.« 0 i e e e e e e e e e e e e e 66
Ish:compiling-to-file? Function e e e e e e e 51
Isb:compiling? Function i e e e e e e e e e e e e e 51
Isb:determine-diversion-filename Function o o0 n s 66
Isb:determine-module-file-group Function 0 0 e e e e e 66
Isb:diversion-operation Function e e e e e e 69
Isb:diversion-tyo FURCHON. o v i e i i e e e e e e e e e e e e e e e 69
Isb:divert-declarations? Function L e e e e e e 51
Isb:divert-doc-1 Function.« . o i e e e e e e e e e e e e e 69
Isb:divert-documentation? Function e e e e e e e 51
Isb:divert-to-1 Function. e e e e e e e e e e e e e e e e e 68
Ish:establish-sysdef Function 0 e e e e e e e e e e e e 66
Isb:find-divdef Function. e e e e e e e 67
Ishiinput-file-status Function e e e e e e e e 68
Ishikwd-assoc Function o e e e e e e e e e e e e e e e 63
Ish:kwd-bassoc Function L e e e e e e e e e e e e e e e e e e 63
Isb:ikwd-cqual Function. e e e e e e e e 63
Ishikwd-lookup Function 0 e e e e e e e e e e e 63
Ish:kwd-member Function. i e e e e e e e e e e 63
Ishinot-compiling? Function.« . . . o e e e e e e e e e e e 51
Ish:perform - implementation-feature-fests Function. oo 67
Ishipush-pair Macro. o e e e e e e e e e 64
Ishipush-sym Macro. e e e e e e e e e e 64
Ishitoken-assoc Function o o . e e e e e e e e e e e e e e e e 63
Ishitoken-ecqual Function L o e e e e e e e e e e 63
Ishitoken-lookup Function Lo L e e e e e e e 63
Ihitoken-member Function. L L L e e e e e e e e e e e e 63
ISheom Puncuon. L e e e e e e e e e e e e 60
MACTO MCIMIOIZAUHON . . 0 o o e 15, 39
make st table Macro . L L L L L e e e e 81
module System Definition Keyword, 00 0L L e 16
module specification L L L L e e e e e e e e e e e e e e 18
mModules . . L e e e e e e e s 1
NAmMES N PAthNAMES o o o o e e e e e e e e e e e e e e e e e 10
needed for Defimtion Clause 0 e e e e e e e e e e 8
needed-forkeywords . . . L L L L L e e e e e e e e e e e 8
needed -for-compilation System Definition Keywordo 0. oo 15
needed tor user-compilation Syseem Defittion Keyword oo 15
natype Dare Type Kevword. L e e e e 47
number Data Type Kevword . . . 0 0 0 . . 0 L e e R ¥
nenher check -visibility -clisses Svstem Definition Keyword 0 . . . 0. . ..o 15

AD=A101 853 MASSACHUSETTS INST
LSB MANUAL. (U)
JUN 81 G BURKE
UNCLASSIFIED MIT/LCS/TM=200

OF TECH CAMBRIDGE LAB FOR COMPUTE==ETC F/6 9/2 N !

NDO0Q14=75=C=0661
NL

.

¢
H

oo

LSB Manual 91 Index
one-or-more-of PrototypeCall Keyword i i i i e e, 26,44
online-documentation Inclusion Tester o v i v i it s e e e 55
only-for Inclusion Tester i i i i i i i e e e e e e e e e e 24
only-on Inclusion Tester o i i i i it e e e e e e e e e e e e e e 25
opencoding. i e 32
OPETAtION v ottt it e 26
OPUIMIZET o v o i e it e et et e et e e e e e e e e e e e e e e e e e 36
optional Prototype Call Keyword. i i i i i e e e e e e e e e e 26
package System Definition Keyword e e e e e e e e e 14
package hacks L e e e e e e e e e e e e e e e e 12,14, 15,20
packages. et e 4
pathname Clause i i i i e 18
Pathname CoOmMPONENS. . . . & v v v v v o vt e e e et e et b e e e e e e e e e 17
PAtNAMES, & . i s i i e 10
pdl-list Data Type Keyword e e e e e e et e e e e e e e e 37,39, 47
pdl-vector DataType Keyword @ i i i it i e e e e e e e e e 37, 39,47
perform-calling -secquence-optimizations Routine DefinitionClause k)|
primarily - applicable-routine Routine DefinitionClause k)|
private-documentation InclusionTester. i i i i i e e e e e 55
prototypecall L e e e e e e e e e e e e e e e e e 4,26
public-documentation Inclusion Tester v i v e i i e e e e e e S5
quoted Prototype Call Keyword, e e e 30,43
rcadtable System DefinitionKeyword. 0 e, e e e e e 14
readtable Variable. e e e e e e e e e e e e e e e e e 25
redefinition Routine DefinitionClause i v v v v i i i i it ettt en o k)|
reference Definition Clause i i i i e e e e e e e e e e e 9
referenced-at-visibility-class DefinitionClause @ i i v i v v i et e et e e e 9
rest Prototype Call Keyword i i e i i i i e e e e e e e e e e 26,4
TESLPATAMEICT & & . v v e v v e b e m o e e e o e st e e e e e e e 26,37,47
returnable Routine DefinitionClause. i i i i it i et et et e 30
0010141 - 26,29
routinedefinitions. L L L e e e e e e e e e e e e 29
sequence DataTypeKeyword 0 i i e e e e e e 37,38, 47
siisystem-version-info Function. e e e e e e e e e e e 21
sideways SyStem eXtCNSION e e e e e e e e e e e e e e e e e e 13
slow-and-hairy Routine DefinitionClause. 0 v tunnean. k)|
small-flonum Data Type Keyword. 0 i i i i it s et e e e e 47
special O L e 35
statsitabref Macro. L e e e e e e e e e e e e e e e e e 81
Synonyms, table Of e e e e e e e e e et e e e e e e e e et e e 83
system-documentation Inclusion Tester« . i it e e e e e 55
31 (1 11 L3
table-2dim-lookup Function o e e e e e e e e e 82
table-interpolate Function. o e e e e e e e e e e e 82
temporary-list Data TypeKeyword 0 0 0 e e e e e e 39,47
temporary=vector Data Type Keyword. 0 e e e 39. 47
text-diversion-stream System Definition Keyword 0 0o oo o 17, 50
text-divstream System Definition Keyword. 0 . . . o e e e e e 17, 50
extal dIversion SIFCAM L L o i e e e e e e e e e e e e e 49, 52, 55
textual-diversion-strcam System Definition Keyword,« . v 0. 17, 50, 51

29-JUN-81

« g »

- "*.,4

Index 92 1.SB Manual

tokenequality L L e e e i e e e e et e e e e e 2
truthvalue Data TypeKeyword. i i i i i i et e e e e e e e 47
two-or-more-of PrototypeCall Keyword 26, 44
type-check~arguments Routine DefinitionClause. oo 30
type-check - visibility-classes System DefinitionKeyword. 15
unused PrototypeCall Keyword i i i it e e e e e e e e e 27,43
user-id Variable. e e e e e e e e e e e e 21
users-implicitly-need System DefinitionKeyword 13,16
users-implicitly-need- files System Definition Keyword. 16, 19
value-type Routine DefinitionClause. i 0 i i i i ittt s e et e 30
value-type Variable DefinitionClause @ i i i i it ittt e 45
variablebinding L e e e e e e e e e e e 21,713
vector DataTypeKeyword. e e e e e e 38,47
version,inpathnames e e e e e e e e e e e e e e 10
VISIDItY C1aSS L e 3

29-JUN-81

OFFICIAL DISTRIBUTION LIST

Director

Defense Advanced Research Projects Agency
1400 Wilson Boulevard

Arlington, Virginia 22209

Attention: Program Management

Office of Naval Research
800 North Quincy Street
Arlington, Virginia 22217

Attention: Marvin Denicoff, Code 437

Office of Naval Research

Resident Representative
Massachusetts Institute of Technology
Building E19-628

Cambridge, Mass. 02139

Attention: A. Forrester

Director
Naval Research Laboratory
Washington, D.C. 20375

Attention: Code 2627

Defense Technical Information Center
Cameron Station
Arlington, Virginia 22314

Office of Naval Research
Branch Office/Boston
Buiiding 114, Section D
666 Summer Street
Boston, Mass. 02210

2 copies

3 copies

1 copy

6 copies

12 copies

1 copy

