
7 -A101 853 MASSACHUSETTS INST OF
TECH CAMBRIDGE LA FOR COMPUTE--ETC F/B 9/2

JUN al 6 BURKE N00014-75-C-OA61

UNCLASSIFIED MITLCS/TM-200 NL

13
LABOATOR FORMASSACHUSETTSLABORTORY OR ~INSTITUTE OF

COMPUTER SCIENCEU TECHNOLOGY

MIT/LCS/TM-200

LSB Manual

Glenn Burkeb

June 1981

in. fLegi- t hWbaVPYa

Support for this research was provided in part by National
Institutes of Health grant number 1 Ail RR O1O96-O0..from the
Division of Research Resources, and the Defense Advanced'

- Research Projects Agency under Office of Naval Research
contract number Nooo14-75-CO0661.

ilk. 545 TECHNOLOGY SQUARE, CAMBRIDGE. MASSACHUSETTS 02139

/i

SECURITY CLASSIFICATION OF THIS PAGE (1hen Data Enterodo
REPORT DOCUMENTATION PAGE READ ISTRUCTIONS

81FORZ COMPLETING FORM
I. REPORT NUMBER 2. GOVT ACCESSION NO S. RECIPIENT'S CATALOG NUM4ER

MIT/LCS/TM-200 I " A-..o~. ?SA
4. TITLE (A"d Sbtftloj S. TYPE OF REPORT A PERIOD COVERED

LSB Manual. Y)7T June 1981

-/ S. eiRPORMING ORG. REPORT NUMBER
.. ... i /- MIT/LCS/TM-200

7. AUTHORd() CONTRACT OR GXWNT NUMRER(a)

" Glen/Bure /I P41 -01096-04Glenn/Burke O." 1600 1 4-75-C-p66._

S. PERFORMING ORGANIZATION NAME AND ADDRESS
Laboratory for Computer Science / ,.(AA*RKUINUER
Massachusetts institute of Technology
54*5 Technology Square, Cambridge, Mass. 02139

I I. CONTROLLING OFFICE NAME AND ADDRESS REPORT DATE

DARPA June 1981 ' '
1400 Wilson Blvd. .NUBROPAE
Arlington. Va. 222oQ/-(E0 P

14. MONITORING AGENCY NAME A ADDRESS(It different from Controlling Offf*e -tS. SECURITY CLASS. (of Chi report)

Office of Naval Research Unclassified
Department of the Navy
Information Systems Program a*. oECLASSIFIrCATION/DOWNGRADING
Arlington, Va. 22217 S 4EOU.L

IS. DISTRIBUTION STATEMENT (of ltis Report)

*This document is approved for public release and sale; distribution is
~unlimited.

17. DISTRIBUTION STATEMENT (of the abstrect entered In Siock 20, It different from Report)

18. SUPPLEMENTARY NOTES

I9. KEY WORDS (Continue on reverse sde ifnececemy And identity by block niber)

LISP

20. ABSTRACT (Continuo an reverse side it necesary end Identify by block number)

i,.

DD I , 1473 EDITION OF I NOV ,6 1i OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE (Whm 0e Intered)

I , rIl , i -l ii i n - r1 Im

LSB Manual

June 1981 AAA I

AB

Glenn Burke

This report describes research done at the Laboratory for Computer Science of the Massachusetts

Institute of Technology. Support for this research was provided in part by National Institutes of
lealth grant number 1 141 RR 01096-04 from the Division of Research Resources, and the

Advanced Research Projects Agency of the Department of Defense under Office of Naval Research
Contract number N00014-75-C-0661.

:,ibitiou is unlmdltod. t

MASSACHUSFIITS INSITIUTE OF'ICHNOI.OGY
IABORATORY FOR COMPUT'ER SCIENCE

CAM BR IDGE MASSACHLISFI'S 02139

Abstract

'.SB (for Layered System Building) is an integrated set of facilities for aiding in the
construction of highly-modular, multi-layered, implementation-independent Lisp systems. It
provides for conditional inclusion of source text, documentation production, automated
declarations, and "high-level" definitions. Lisp code compiled with LSB in general does not
require LSB in its run-time environment. LSB has been in use for some time in PDP-10 Maclisp,
is operational in Multics Maclisp and Lisp Machine Lisp, and is being developed for NIL.

Acknowledgments

The rudiments of LSB were first conceived by Lowell Hawkinson in early 1978, and he and
John Thompson implemented a prototype version for Maclisp shortly thereafter. Since then,
Lowell has provided a constant source of ideas and inspiration that has been invaluable to the
design of LSB.

Among those individuals who have contributed strongly to the development of LSB through
their use of it are Bill Martin, Peter Szolovits, Bill Long, Ramesh Patil, Harold Goldberger, Ken
Church, and Brij Masand. Providing for their many needs and reacting to their assorted
experiences has much improved the design and presentation of LSB's facilities. David Moon,
Howard Cannon, and Peter Szolovits deserve special thanks for their comments on various specific
aspects of LSB.

Ibis manual is dedicaed to Bill Martin, who provided most of the ultimate support for the
work it presents. Never one for fancy programming tools, he nonetheless embraced LSB because
of its contributions to the buildability of large, layered systems - systems that might be made to
exhibit intelligence and expertise of a high order.

Note

Any comments, suggestions, or criticisms will be welcomed. Please send Arpa network mail
to BUG-LSB@MlT-ML.

Those not on the Arpanet may send U.S. mail to
Glenn S. Burke
I aboratory for Computer Science
545 Technology Square
Cambridge, Mass. 02139

Ihere is also an Arpa network mail distribution list for announcements pertaining to [SB.
Contact the author to be placed on it.

Q Copyright by die Mas;achusetts Institute of Technology; Cambridge, Mass. 02139
All rights reserved.

LSlI Manual iTable of Contents

Table of Contents

1. Introduction. 1
1.1 Conventions of this Manual 1

2. Overview. 3
2.1 Derivability 3
2.2 Visibility Classes. 3
2.3 Definitions 4

2.3.1 Routines 4
2.3.2 Variables 5

2.4 Conditional Inclusions. 5
2.5 Diversion Streams 7
2.6 Definition Availability. 8
2.7 Modules and Systems. 9

2.7.1 Pathnames 10

3. The System Definition 11
3.1 Thec System Definition Location11
3.2 Searching for the System Definition 11
3.3 Relations between Systems. 13
3.4 The LSB Processing EnvironhnenL. 13

3.4.1 Environment Options. 14
3.4.2 The Processing Support Options16
3.4.3 'l'e Diversion Stream Clauses. 17
3.4.4 Pathnamc Specification Clauses 17
3.4.5 The Module Specification18
3.4.6 E--nvironment Setup - Details. 19

3.5 The LSB Loader21

4. Conditional Inclusions 24
t4.1 Read Time Conditionalization.24

4.2 Multiple Contexts.25

5. Defining Operations.26
5. 1 Thew Prototype Call26
5.2 Variable Bindings.27

5.2.1 Auxiliary-bindings. 28
5.2.2 ilindq.29

5.3 Defining Routines. 29
7,5.4 Open Coding32

5.5 Defining Macros 33
5.5.1 Unneeded Macros.34

5.6 Compiler Macros.35
1k ~~~5.7 Special Forms 35

5.8 Opt imia tion anid T'ransformation.36
5.9 Rest Paraincter Imnplementation37
5.10 Mlacro Memoization.39
5.11 F~orward References.40
5.121 Dcfiinitionless Routine D efinitions41

29-JUN-81

LSB Manual iii Table of Contents

Index of Tables86

29-JUN-81

I.SB Manual 1 Introduction

1. Introduction
LSB (for Layered System Building) is an integrated set of facilities for aiding in the

construction of highly-modular, multi-layered, implementation-independent Lisp systems. It
provides for conditional inclusion of source text, documentation production, automated
declarations, and "high-level" definitions. Lisp code compiled with LSB in general does not
require LSB in its run-time environment. LSB has been in use for some time in PDP-10 Maclisp,
is operational in Multics Maclisp and Lisp Machine Lisp, and is being developed for NIl..

The basic idea is that when a programmer defines something, it should not be necessary to
declare it separately; after all, the definition itself usually makes a separate declaration redundant.
Definitions should be able to be located where style and modularity dictate; their positioning,
both with respect to location in a particular source file and the position in the file, should not
depend on the basis of the vagaries of the Lisp compiler. Documentation, especially on a local
level, is also best positioned in close proximity to what it describes. This allows for ease of
updating the definition and the documentation together, reducing the tendency for them to
diverge as development progresses.

It is becoming increasingly common for the same source code to be used in different Lisp
implementations. The programmer should be able to easily make use of implementation-specific
facilities, by having some mechanism for conditionalizing the source code. On the other hand, the
use of many facilities, particularly in the realm of function definition and type declarations, can
be specified at a high level, independent of any particular Lisp implementation.

In I.SB, definitions are aggregated into modules, and modules into systems. From the source
text for a module, I.SB derives the information necessary to compile and run code of that
module, of other modules of that system, and of modules in other systems which utilize that
system. A sample LSB system can be found in chapter 15, page 78.

1.1 Conventions of this Manual

The reader of this manual is expected to have a working knowledge of L.isp. particularly one
of the dialects for which LISB exists (Lisp Machine Lisp [IMMan], Maclisp [Moonuall. and NIL
(VAX) [NILDoc]). Terms which are in common use in these dialects will be used freely here.

Tlie I.Sl1 environment establishes an initial default input radix of decimal. Integers in text
and in examples should be so interpreted except where explicitly counterindicated.

In Lisp code examples, the symbol => should be read as "evaluates to". and the symbol
= => as "macro-expands to".

All Lisp code in this manual is written in lower case. Although most of the Lisp
implementations I.Sl) runs in canonicalize lower-case symbols to upper-case. Multics Maclisp does
not. All IS11 routines, macros, and variables are lower case in Multics. In general. in a
reasonably standard reading environment, atomic symbols may be typed in jusl as they are shown
in here. All atomic symbols in this manual which are shown with colons in their names, such as
:previously loaded or Ist-oken -equal. are, in MNaclisp. actually s)nihols with exacily thit print-
name. colon anrd all. It) I i sp inplement;ifions with packages, the package prefix part of the name
is intended to he interpreted as just that. 1lhtis. the same source code can refer to these names in

MIL'AI Sill)OC:INIRO 53 29-JUN-81

Conventions of this Manual 2 LSB Manual

the same way in different Lisp implementations.

The null value is represented by the symbol nil, and its canonical complement by t. In the
Nil, implementation, LSB will accept the atomic symbol t in various places as meaning #t or
"truth". Most notable of these are as an "argument" to a two-state definition option, such as do-
argument-type-checking, and as the predicate of a diversion stream. No Fach compensation
will be guaranteed for the symbol nil: if one is writing source code to be used in NIL, use 0
instead.

Certain Lisp implementations have missing functionality, which makes it difficult, inefficient,
or impossible to implement certain LSB features. These deficiencies are noted in this manual
without further explanation. Most notable in' this respect is Multics Maclisp, which has a severe
lack of functionality in dealing with the Multics file system.

In various places in this manual, atomic symbols may be referred to as keywords, and the
terms keyword equality and token equality may be used. LSB token equality is simply case-
independent print-name equality; this is used in many contexts to make things independent of
packages or case distinctions. Keyword equality is token equality extended to allow synonyms (a
table of which is given in chapter 16). The internal LSB primitives used for this are documented
in section 12.1, page 63.

A..

"

%11 :1 Sill)C:lN! RO 53 29-Jl IJN-81

LSB Manual 3 Overview

2. Overview
Tlhis chapter is intended as a descriptive explanation of how LSB works and what it can do.

It should provide a sufficient basis for casual and simple use of LSB. Precise and much more
detailed definitions of the facilities presented here occur in later chapters.

2.1 Derivability

One of the primary precepts of LSB is derivability. That is, it is assumed (although not
necessarily enforced) that all the information necessary to understand, compile, and execute some
code is derivable from a single source text. Thus, LSB provides facilities for

conditional inclusion
One may specify that parts of the source text are applicable only in certain environments
(e.g., certain Lisp implementations), and therefore a single source text may serve as the
source in many environments.

text diversion
Portions of the source text, while treated as comments by Lisp itself, may be copied
elsewhere (possibly transformed), perhaps to serve as documentation for the code.

fonn diversion
Lisp objects may be sent to various places, to provide information needed for
compilation, execution, debugging, etc.

combined definition and declaration
The definition facilities in LSB use the fomi diversion mechanism to produce the
declarations appropriate to the type of object being defined (e.g.. routine, macro,
variable). All of the information needed for these declarations can be included in the
definition syntax itself, obviating the need for separate, and potentially implementation-
dependent, declarations.

module and system organization
Modules, corresponding to the source files, are grouped into systems and share
information which need not be propagated elsewhere. Definitions of systems specify what
other LSII systems dey use, and may be used to customize the processing (e.g., loading,
compilation) environment to be used for each module.

2.2 Visibility Classes

I.SB associates with every defined object (e.g., routine, macro, or variable) a visibility class.
This is essentially an indicator of "how far" information about the object should propagate. The
three visibility classes provided are:

private restricted to the module

system restricted to the system containing the module

public intended fir explicit use by users of this system

The system vsibility cl;is ucd to be n ed intrasystem. 'lhat nime is still accepted, and
occurs Ilequently in existing code: define - iitrasystem - routine is defined to be the same as

define-system -routine. and intrasystem-compilation is synonomous as a keyword with system-

MI.:I Sill)OC:OVFR 101 29-JUN-81

Definitions 4 LSB Manual

compilation, for example.

1.SB, using visibility classes, does not attempt to resolve naming conflicts. It makes no use of
packages or other name resolution techniques, where such exist. A visibility class is used only for
informational (e.g., declaration and documentation) purposes. (This may not be the case in future
Lisp implementations where package organization is not limited to a strict hierarchy.)

2.3 Definitions

Everything in LSB gets "defined", even special variables. An LSB definition provides a means
for specifying all necessary information about what is being defined, and thus allows that
information can be localized. This includes such things as default or required initialization (for
special variables), argument types (for routines), and the value type (for both).

2.3.1 Routines

Routine definition is LSB's counterpart to Lisp's function definition. In a routine definition,
rather than specifying a function name and an argument list, one specifies a prototype call. This
is a form which describes what a call to that routine looks like. For example,

(print-decimal-number number (optional stream))
describes a call to the routine print-decimal-number, which can take one or two arguments.
The prototype call tells LSB what variables ("formal parameters") are to be bound, the data types
of those variables, how many arguments the routine may take, the data types of those arguments,
and how to process a call to the routine.

Call processing is the mapping of a call into a lambda expression which takes a fixed number
of arguments. Because of the information available to LSB, it is able to decide at what point
(from compile time to run time) this mapping may be made most advantageously.

A full definition of print-decimal-number might look like
(define-public-routine (print-decimal-number

number (optional stream))
((lambda (base ,nopoint)

(princ number stream))
10. t))

print-decimal-number is a routine, as opposed to (for example) a macro. When only one
argument is given to it. stream will be bound to nil. The prototype call might have been written
as

(print-decimal-number

number (optional stream standard-output))

if it were desired that the value of the variable standard-output should be used in lieu of a
missing second argument.

The following dcfincs the routine square$, which operates only on flonums:
(define-public-routine (squares (flonum n))

(declarations (value-type flonum))
(*$ n n))

It aio shows the declaration format for I.S11 routine and macro definitions. In general, the cdr
of the declarations form is an a-list of keywords and any other information specific to that

l II) S)(OVI.ER 101 29-.IUN-81

ISB Manual 5 Conditional Inclusions

declaration clause. The value-type declaration says that this routine always returns a flonum.

declarations may be abbreviated as dcls. Multiple declarations forms may be used, as long as
they all precede any code.

macros may be defined in a form similar to routines; a prototype macro call has the same
format as a prototype routine call.

(define-public-macro (foo x)
(list 'caddar x))

defines foe as a macro that is synonymous with caddar.

2.3.2 Variables

In LSB, one can "define" special variables as well as routines. Having a definition provides a
distinct locus for giving attributes to the variable. In the definition, one may specify such things
as the type of the variable, and its initialization. The expression

(define-public-variable *print-stm-props?
(default-initialization nil))

defines the special variable "print-stm-props?. A variable definition provides for the initialization
of the variable, if any, and appropriate declarations are generated to tell the compiler about the
variable. The default-initialization (or default-init) declaration says that if the variable is not
valued, it should be set to the value of the form specified, in this case nil. One could cause the
variable to be unconditionally initialized by using initialization (or init) instead. 'le type can be
specified, as in

(defitne-system-variable *stack-level
(value-type fixnum)
(default-init 0))

2.4 Conditional Inclusions

I.SB provides a mechanism for conditional inclusion of forms or subforms in a source file,
using the characters left brace ({) and right brace (}). When a left-brace is encountered by the
I.isp reader, a form (the inclusion test) is read. That form should be a list whose car is an

- atomic sytrbol (the inclusion lester). The inclusion test is interpreted to determine either "success"
or "failure". A failing test causes all of the text through the matching right-brace to be discarded,
"ffectively making it disappear from the input stream (as far as Lisp's read is concerned).
Otherwise, the text is left alone, and the matching right-brace will be ignored (treated as a blank)
when encountered. Thus,

(define-private-routine (make-a-frob size)
9; {(only-for Lispm) (make-array size ':type 'art-q)}

((only-for Maclisp) (*array nil t size)})

is like having
(define-private-routine (make-a-frob size)

(make-array size ':type 'art-q))
on the ILisp Maichine, but

(define-private-routine (make-a-frob size)
(*array iil It size)) *:,

in Maclip. Ihe only-for mn-lchion teter checks for implementation features of the cnmiionment,
* e.p.. (status feature Lispm).

1I :1 Sill O(':(M IR 101 29.IIN-81

~AUVINE :

Conditional Inclusions 6 SII Manual

Additionally, if the inclusion test is one of the atomic symbolsor * , then the text
within the braces is always ignored, and acts as a comment. The -- keyword is an "em-dash",
obscurely derived from ADA. The -*- is for use in "file property lists", as used on the Lisp
Machine, and also by the Emacs editor. Thus, one may put at the very beginning of a file
something like

{-.- Mode:Lisp; Package:Format -*-
random text treated as comments)

One may use a logical composition of implementation features in place of a simple one. For
example,

((only-for (and string Multics)) ...

is the same as
{(only-for string) ((only-for Multics) ...

Any composition of and, or, and not may be used in constructing these "feature predicates".
Multiple "argumcnts" to only-for are treated as an implicit or; thus, (only-for Maclisp Lispm)
is equivalent to (only-for (or Maclisp Lispm)).

{(except-for Lispm) ...

is the same as
((only-for (not Lispm)) ...

In general. (except-for frob-I frob-2 ... frob-n) is the complement of (only-for frob-I frob-2 ...
f'ob-n). There are some other inclusion testers, similar to only-for and except-for, which allow
the use of multiple "feature environments", in order to facilitate cross compilation. These are
discussed in chapter 4, page 24.

An inclusion test which is an atomic symbol (and not -- or -*-) is treated as a simple
implementation feature test, and interpreted as (only-for test). Thus,

{Lispm ...

is the same as
{(only-for Lispm) ...}

Conditional inclusions may conditionalize any number of forms. They may also be nested, to
allo successive selections and defaultings, as in

(define-private-routine (make-a-frob size)
{(only-for Lispm)

(make-array size ':type 'art-q)

((except-for Lispm)
q. ((only-for NIL)

(make-vector size)

{(except for NIL)
(*array nil t size)

I IoI

V x I NIll H K~tO\l R li)l 2')-JIN X l

-

LSB Manual 7 Diversion Streams

2.5 Diversion Streams

Diversion streams are an abstraction used by LSB to handle derivation (see section 2.1). An
I.SB definition processor partitions the various pieces of information it gathers, according to their
intended uses, and then "sends" them to appropriate diversion streams. hc effects of this
partitioning range from immediate evaluation, to outputting text into a file, to compiling Lisp
forms into a file.

In the routine definition
(define-public-routine (square$ (flonum n))

(dcls (value-type flonum))
(*$ n n))

there are two different kinds of information data which need to be dealt with. One is the
definition of square$ itself, and the other is the set of declarations needed to compile square$
and calls to square$. Using primitive Maclisp, that would be written out as

(declare (*expr squareS) (flonum (squares flonum)))
and

(defun squares (n)
(declare (flonum n))
(*$ n n))

LSB arranges for declarations similar to those in the declare form above to be sent to the
compilation-environment and pubdcl diversion streams. The first acts as a no-op when the
definition is being processed at nin time, but at compile time causes "immediate evaluation", as if
the compiler had seen a corresponding declare form. The pubdcl (public declarations) diversion
stream also does nothing at run time. At compile time, it causes the declaration forms to be
written into a file, so that they can be used for the compilation of other modules. There is a
declaration diversion stream for each visibility class. complementing pubdcl are sysdcl (system
declarations) and moddcl (module declarations).

In addition to form diversion streams, there are also diversion streams for text. Three
standard text diversion streams are pubdoc, sysdoc, and moddoc. Text diversion streams are

- used in a different manner than form diversion streams: an extension of the conditional inclusion
mechanism allows the excluded text to be diverted to any number of of these streams. Typically,
these diversion streams simply output the text to a file. fly means of text diversion, a single
source can contribute to multiple levels of documentation. 'he documentation files of the same
visibility class for several modules could be recombined to produce (say) a manual. In this
manner, one can have the documentation of some code or of a module itself located with the
source text it describes. For example, one might include in some module something like

((public-documentation)
.chapter "The Matcher"

The pattern matcher in FROBOZZ is guaranteed to

solve all of the world's problems. In order to do this.
blah blah blah.}

Ni I Sill X)('VIR 101 29-JUN-81

- - , -

Definition Availability 8 I.SB Manual

2.6 Definition Availability

When objects arc defined, it is sometimes necessary to specify where the definition is to be
diverted to. The most common case is that of a routine which is called by a macro. LSD needs
to be told to divert the routine to the same place(s) that the macro goes. lie needed-for
declaration clause handles this. There may also be random forms (e.g., calls to defprop) which
need to be diverted in a similar manner: the forms-needed-for special form will do the same
for arbitrary forms.

Consider, for example.
(define-private-routine (bar x y)

(define-public-macro (foo arg)
(bar arg t))

Each definition type (e.g., define- visclass-routine, define-visclass-macro) has a default
needed-for declaration, which may be overridden, or just added to (by use of the also-
needed-for declaration). In this example, the simplest way to achieve the desired effect is to
define bar using the also-needed-for declaration

(define-private-routine (bar x y)
(dcls (also-needed-for public-compilation))

which says that not only do we need the definition of bar when we are running (the default for
ordinary routine definition), but also during "public compilation". The way the default declaration
could be totally overridden (in this case for the same effect) is

(define-private-routine (bar x y)
(dcls (needed-for running public-compilation))

The needed-for keywords which may be used are:

running
* This corresponds to the toplevel diversion stream. The definition will be output in

the compiled output file, or to the interpreter.

interpretation
lThis corresponds to the interpreter diversion stream. The definition will be made at

run time, but not in the compiled output file (unlcss that is implied in some other
way).

i .4 public -compilation
system -compilation
private- compilation

lhese niip into boih the declaration diversion stream of the appropriate visibility class
(pubdcl. sysdcl. or moddcl). and the compilation-environment di,,crsion stream.

compilation
Just like the previous three, with the visibility class detennined from that of the
ohject being defined.

aZn.s do'riorn st(,ifil nlantC

IUhi is to bie used in case the ahne keywords are instifficient. as they %ould he if
one is detining one's own diversion streaims.

NI :1 sll)(C:(VI-IR 101 29-JUN-81

'U - -

iSB Manual 9 Modules and Systems

A typical situation where also-needed-for and forms-needed-for are called for is
(define-system-macro (hack-it a b)

(do-it-up a b (get a 'hack)))
(define-private-routine (do-it-up x y z)

(dcls (also-needed-for system-compilation))

(forms-needed-for (running system-compilation)
(defprop foo foo-hacker hack)
(defprop bar bar-hacker hack)
(defprop baz baz-hacker hack))

Occasionally one may have a routine or variable which may be implicitly referenced at a
higher visibility class than it is defined at. Obviously one could change its visibility class, but that
may not be the appropriate solution. Typically, the visibility class corresponds most closely to the
documentation: it is chosen on the basis of who should know about it. 'Fake the case of a macro
hairy-frob, which expands into code which calls the internal routine hairy-frob-internal:

(define-public-macro (hairy-frob this that)
(list 'hairy-frob-internal

this that t 0 ''hairy-frob))
In this situation, the declarations for hairy-frob-internal need to be public. "Ihe proper way to
achieve this is to use the referenced-at-visibility-class (or reference) declaration in the
definition of hairy-frob-internal:

(define-private-routine (hairy-frob-internal
this that flag
start-count caller)

(dcls (reference public))

2.7 Modules and Systems

In order to utilize the information derived from other modules during the compilation of one,
LSI requires that modules be organized into systemns. Fach system must be defined to LSB, to
say what other systems it utilizes, what 'nodules it contains, where to find it in the file system,
and environmental options, such as what input radix should be used. One puts a form like

(module print xlms)
at the front of a module to tell LISB what module and system the file corresponds to, in this
case, the print module of the xlms system. (Module and system names are compared by ISB for
token equality.) When this form is processed by the lisp interpreter or compiler, LSB sets up the
environment necessary for the interpretation (loading) or compilation of the remainder of the file,
as specified by the system definition. If the source code is to be used in a Lisp implementation
which supports "file property lists" (such as Lisp Machine lisp), one should also use the lab
option in the file property list:

{-*- Mode:Lisp; LSB:Print,XLMS -*- 1-Jun-81
Copyright (c) 1981 by Grandiose System Building
and Massachusetts Institute of Technology.
All rights reserved.)

IThis will then allow many othcr file property list options to he derived from tie I SB system
definition: most important of these are the package, readtable, and input radix.

t

SMl :1 Il BX)C_:(1\IR I 29-JLIN-81

Modules and Systems 10 L.SB Manual

System definitions typically reside each in a separate file: [SB has search and defaulting rules
for finding them when necessary, and also has initial knowledge of a large number of commonly
used systems. The system dcfinition typically resides on the directory with the same name as the
system name, a (first) filename the same as the system name, and a file-type of system. I.SB will
also look for it on the directory which the source file is being loaded or compiled from. For
example,

(define-system string
(directory amber)
(built-on loop ibind)
(users-implicitly-need user-hunk)
(modules (string (needed-for-user-compilation)) strfn char))

is the system definition for the string system, it resides on the amber directory, as does the
source for all of the modules (string, strfn, and char).

2.7.1 Pathnames

I.SB allows one to interact with the host file system in such a way that in many cases the
same LSB specification suffices in differing and incompatible implementations. This mechanism is
based on the assumption that the following "components" of a pathname exist as a superset of all
those a particular LSB implementation might handle:

host This is the name of the "host machine" the file is to be obtained from (or sent to).
This is necessary in implementations where one may need to reference multiple hosts,
such as the lisp Machine.

device Whatever is meant by a "device" in the host implementation.

directories
LSB has provision for specification of a directory path.

names LSB has provision for multiple filenames.

file-type
'he "type" of the file, as used (for example) I'OPS-20.

i -" version

,. v The version number of the file.
Thus, the TOPS-20 pathname "PS:<MACLISP>DEFMACRO.FASL.259" has a device of PS, a
single directory of MACLISP. a single name of DEFMACRO, a file-type of FASL, and a version
of 259. 'llat same pathname referenced from a Lisp Machine might also need to have a host
specified. In general, ILSB allows these components to he specified or defaulted separately, so that
the same I[SB specification suffices in different environments when the corresponding components
are the same.

M' I SIBl X)(.OVIIt 101 29-1 IN-81

- -I .- in 7

I.SB Manual 11 The System Definition

3. The System Definition

The system definition is where information not specific to individual routines, macros, or
variables is kept. It tells [.SB what other systems the one in question is built on. where various
things (including source files) reside in the file system, what Lisp environmental options should be
in effect. and how diversion streams should behave; much of this may be specified either. per-
module or per-system. For example,

(define-system write
(directory format)
(built-on loop lbind)
(modules wr.ite))

defines the system write, which uses (is built on) the systems named loop and Ibind, contains a
single module named write, and resides on the format directory.

3.1 The System Definition Location

When LSB needs the definition of a particular system (say xlms), it attempts to find it if it is
not already known. One way it might know where to look is through the use of the define-
system-location macro:

define-system-location Macro
(define-system-location system-name location) tells LSB that the system definition for
system-nanie may be found in the file named by the pathname location. For our example.
someone could have done

(define-system-location xlms "XLMS;XLMS SYSTEM")
since "XLMS;XLMS SYSTEM" is the pathname of the file which contains the system
definition for xlms on the MIT-MI. host. When this form is seen by the compiler (at
top-level, like a defun) it is treated such that the location of the system definition is

- defined at compile time. and also when the compiled output file is loaded (that is. it uses
(eval-when (eval compile load) ...) implicitly).

The padhname specified with define-system-location need not be complete; it may contain
unspecified components, which will get filled in: I.SB has searching and defaulting rules which in
many cases obviate the need for define-system-location completely.

3.2 Searching for the System Definition

*: When LSB does not already know a system definition, it searches for it in a prescribed
manner. 'liis searching is done even if a system definition location has been specified, because
that system definition may have missing components: for instance, the Brand-X system definition
location may only suite that the filename to look for is brandx. I.S1 maintains a dynamic stack

S(if where it should search: each entry corresponds to a directory path (and device and host,
Ahcre implementationally appropriate). The entries are pushed when I.SIB recursively looks at
syslems. fir instance When it is establishing the compilation environment for a module: the details
of this procedure arc described later. In any case, the .irsl directory to he looked at will he the
diiectorv with the same name as the system. Where applopriaIte. the deice will le tie
"c.noic' " dc icc 101 the illlcnlcnta1lioii (e.g., PS lhr IO1'S-211), and the host %ill be the

* current deflilt host. hoeever that is mainutined. '[he last place to be looked at will be the

NIl :I.Slll)C:SY SlIF 157 29-JLJN-81

Searching for the System Definition 12 I.SB Manual

directory (including the device and host components) where LSB is kept. Somewhere in the
middle will be the directory (and device and host) where the source file being processed was
found. TFhe searching involves iterating down this search list: of the components missing from the
system definition location (if there is one), missing directory, device, and host components are
filled in from the search list, a missing filename defaults to the system name, and a missing file-
type defaults to system. A file with name of Isbsystems is also looked for (the file type will be
the canonical "lisp source file" type, e.g. lisp on Multics, ">" on ITS, LSP on TOPS-20). If
during this procedure a system definition location is found for the system (and one was not
already known), the searching starts over again using that system definition location.

'rake, for example. the xlms system, which exists on MIT-ML The first place I.SB will look
in the absence of a system definition location will be ")SK:XLMS;XLMS SYSTEM" - this is in
fact where the system definition for xlms is kept.

There is one other way in which LSB may be told where to find a system definition: it may
be specified with the name of the system.

(module print (xlms "XLMS;TEST SYSTEM"))
(define-system write

(directory format)
(built-on (loop "LISPM2;") ibind)
(modules write))

A location specified in this way overrides any known system definition location; it is not used to
aid the defaulting process for finding the definition of that system, but rather to respecify it, if
(for example) one wants to test a perturbed system definition or test a new system by that name.
For simply supplying a system definition location when one might not be known, the Isbsystems
file should be used.

The Isbsystems file can be used for various purposes. It can be used to consolidate all of
the system definitions of systems which reside on the same directory. It can also be used to
define the system definition locations of systems which systems on that directory are built-on (or
otherwise reference). 'Ilis last is often necessary because otherwise LSB might have no handle on
where to look for some system definition, if the referencing module is on a different directory.
One solution to where to look is simply to have the system definition location pre-defined to ISB.
Systems which may be of general use are welcome additions. "le pre-defined systems are in the
Isbsystems file on LSlI's directory. Onl IvS, this is the file named "I)SK:I.SBI.SBSYS >", and
on Multics ">udd>Mathlah>l .Sll>lsbsystems.lisp". These files have identical contents, which are
conditionalized for the various implementions I.SB runs in.

l)ue to certain implementation screws pertaining to remcmbcring that a particular file has been
loaded, in lisp implementations with packages, i.SB binds the package to the user package when
it loads a ssten definition (or Isbsystems) filc. Ihis provides a ,h'him/l for the packge thait file
gets loaded into: it may be overridden, if necessary, by the use of the package option in the file
property list (since I-Si system definition files are not themselves modules).

NIl :1 SIll)X()(SYSID)I1 157 29-JI IN-81

.SB Manual 13 Relations betccu Systems

3.3 Relations between Systems

The iost significant relation between systems is the built-on relation. To say that the write
system is built on the loop system is to say that the code of the modules of the write system
utilizes public facilities of the loop system. The built-on relation is not transitive: thatt is, if x is
built on y and y is built on z. it is not assumed to be the case that x is built on z. Of course,
the actual dependencies involved depend on what context is being considered: ,uiipilation.
interpretation, or running compiled code. In general the built-on relation is vicac, tiofm the
context of compilation.

If the built-on relation does need to be transitive, that information may be glcn to ISB by
the use of the users-implicitly-need clause in place of the built-on clause. 1 he we (if this
clause in the system definition for pretty-print-definition

(define-system pretty-print-defini tion
(built-on loop {pdplO user-hunk))
(users- implicitly-need write)
(modules ppdef ppdesc))

says that the pretty-print-definition system is built-on the write system, and that sy ,teis which
are built-on the pretty-print-definition system are also implicitly built-on the write system.

Another possible relation between systems is sideways extension. For system hair to be built-
beside of system kernel means that hair utilizes the facilities of kernel just the saine as if it were
part of' the kernel si-stei, but implies that system kernel has no need for the facilities of system
hair. Thus, kernel could be a "core system" intended for extension, and hair could be a system
which does that extending. What this amounts to is that system hair utilizes both the public and
system information derived from system kernel.

3.4 The LSII Processing Environment

The "environment" which [SB establishes for the processing of a module consists of three
parts:

simple environmental options
These include such things as the package, readtable, and input radix. All of these map
into variable bindings; it is possible to bind this part of the LSB environment, and to
calculate what it should be without actually modifying the current Lisp environment.

processing support
For compilation, this is typically declarations and macro definitions: all of the stuff
obtained by loading the various declaration diversion streams of the systems involved.
[or interpretation, this is whatever the module or its system says needs to he loaded for
interpretation: usually nothing, as I.SB's automatic loading is oriented solely towards
compilation at this time.

diverion streams
The diversion stream definitions for the module.

The I.S processing environmcnt may be set up in one of two ways. TIhe niot ttmnon, and
the o1l4 one aiaihihle outside of the I .isp Machine. is driv en entirel by (he iiiLi o pol essig of
the module special fiorm. :irst. all loading necessary is perlormed: the procc.mn : 'lqport above.

Then, all of the ens ioinlent options are determined, and the variables arc side- ellcted to their

MI.:I SIll X)C:SYSI)l] 157 29-Jl.N-81

The LSB Processing Environment 14 L.SB Manual

appropriate values. Finally all of the diversion streams appropriate for the module are defined.
(These three steps are presented in much more detail in section 3.4.6, page 19.)

On the lisp Machine (or in any Lisp implementation which interprets and heeds the file
property list), there is one difference: the binding environment is determined at the time the file
property list is parsed, and so is established around the entire loading or compiling operation.
The module special form then knows not to bother. One uses the file property list with LSB by
using the LSB option, as in

; -*- Mode: Li sp; LSB :nodule-name, system-name
Note that the "arguments" are in the same order as they are to the module special form. Use of
this option does not obviate the need for the module special form at the beginning of the file.
Note also that if one uses the LSB system definition to specify the package a file should be
compiled or loaded into, it is necessary to use this. It is an error (which will have unpredictable
results) to specify any option in the file property list to which LSB provides a default, or which is
itself specified in the system definition. All such options which LSB handles are enumerated
below.

3.4.1 Environment Options

input-radix radix
The value of ibase used for the processing of the module will be radix. The default
value is decimal.

readtable readtable-name
fle readtable used will be the readtable associated with readtable-name, a symbol;
LSH keyword equality is used. The default used is the name standard, which is
associated with the readtable current when [SB was loaded/created. ihere are initially
no other choices: the expectation is that large systems with special input syntax will
supply special readtables of their own (see section 12.3, page 65).

inclusion -test- readtable readtable-name
'[his specifies the readtable to be used for reading in inclusion tests (chapter 4, page
24). readtable-name may be unspecified or nil, in which case whatever readtable is
current at the point of the conditional inclusion will be used; this is die default.

package package-name pathname
'[his option, which is ignored in lisp implementations without packages, specifics that
the package to be used should be the package associated with package-name. If no
such package is defined, then a file is searched for similarly to the way a system
definition is searchcd for. using pathnae (which is optional) as a default. This. in
fact. uses the same search list which searching for the system definition does. The
del' uli filename looked fir will be packag'-nanic, and the dcfault filc-t)pc will be
pkg. Also looked for will be the file Isbpackages. analogous to the Isbsystems file
used for system definitions. Of' course, searching is less likely to be uscful in this case
hccause the package option already has at its disposal the delault directory, host, and
device of the system whose definition the clause appears in. It is unclear at this time
that s ar(hing is an appropriate thing to do an.iva.v'. It is recomthended at tits tite

that thl plt (Aus, pthniaicbe h' ptn. it' it 1ill not eilulnl cotrcc/'l/v Ilw firl time
(diclor Y that giv(nm in the directory ('hIu '(' f ile T.xt'ol definilton. Jilenaum' of tihe
.i I:S l 'lit nhamlle. e9It.).

Mi1:1 SIlWI)C:SYSIWFI 157 29-.l IN-81

LSB Manual 15 The LSB Processing Environment

This option is somewhat special for two reasons: it can have side-effects during its
interpretation (the loading of the file and creation of the package), and it also does
not provide a canonical default package if this clause is not given: the package used
in the absence of this clause would be just that used if LSB were not present, i.e. one
specified in the file property list, or barring that, the current package.

announce kwd-I kivd-2 ...
Use of this option causes the module special form to produce in its expansion a form
which will "announce" the loading of that module. The message printed will contain
the module name, system name, and the name of the source file. The only keyword
implemented at this time is version: it causes the version of the source file to be put
on the version property of the module name. This hack is to allow the announce
option to supply a functionality similar to that of the Maclisp herald macro. This
functionality fits in poorly both with LSB (since only the module name is used) and
with non-Maclisp Lisp implementations, because of packages; outside of Maclisp,
both the module name and the property name (version) will be in the keyword
package.

do- macro- memoizing how
Controls macro memoization. If how is not supplied, the default is assumed.
Otherwise how may be t for the default, nil for none, or some other keyword
describing a particular mechanism to use. For full details, see section 5.10, page 39.

type-check -visibility-classes vis-class- ...
Routines defined with the named visibility classes will have argument type checking
code automatically generated for them. This augments the do-argument-type-
checking clause (below), and is discussed more fully in chapter 5.

number-check-visibility-classes vis-class-l ...
Routines and macros with the named visibility classes will have number-of-argument
checking code automatically generated for them. This augments the do-argument-
number-checking clause (below), and is discussed more fully in chapter 5.

The following options are all "flag options"; they take a single "argument" which is
interpreted only as being t or nil. If the argument is not given, t is assumed.

do-argument -number -checking
do-argument-type-checking

Control automatic generation of number-of-argument or argument type checking code,
for all visibility classes. Obviously, code is only generated when it is actually needed.
'This defaults to nil, i.e. no checking other than what is hnplicitly supplied by the Lisp
definition LISB produces.

needed -for- user -compilation
needed -for- compilation

lhcse have to do with specifying whether the module (or all of the modules in the
system) are needed for the compilation of systems built on this one. They also control
the rcdund,mit outputting of' certain definitions (e.g., macros) to both a declaration
diversion strcani and to the compiled output file. This is currently in a bad state, and
is being re~iscd.

inhibit- documentation- production
C; 'I is turns oil' documenittiom production. When one has source code which runs in
* multiplc l.isp iinplemcntations, it may be wasteful for each implemncntation to

M :1 Sill)O(":SYSI)[. ' 157 29-JLIN-81

The LSB Processing Environment 16 [SB Manual

redundantly produce the same documentation. The flag this sets also inhibits the
recording of information used for producing automatic documentation, as discussed on
page 56. This option works by setting a flag which is checked by the lsb:divert-
documentation? function (page 51). which is a default diversion-stream predicate for
documentation diversion streams. Thus, it only works if the documentation diversion
streams actually use that function for their diversion predicate.

3.4.2 The Processing Support Options

Here are the system definition clauses which are interpreted for various reasons such as setting
up the compilation environment. Unlike the environment option and diversion stream clauses,
these may only appear at top-level in the system definition, not in a module specification (a
component of the modules clause, below).

built-on system-spec-! sysiem-spec-2 ...
The built-on clause specifies that this system is built on each of the other systems
specified.

users- implicitly- need system-spec- i system-spec-2 ...
users-implicitly-need is like built-on, and additionally specifies that any systems
built on this one are implicitly built on all of the systems specified here: it is
transitive, whereas built-on is not.

built- beside systemn-spec- I system-spec-2 ...
built -along -side-of ...

Sideways system extension, as described in section 3.3, page 13.

files- needed - for-compilation paihnaine- I pathname-2...
Thle named files will be loaded in during compilation environment setup, if they have
not been already. (This clause used to be named additional-files-needed; that name
is accepted as a synonym for files-needed-for-compilation, but that synonymization
will be flushed someday.)

users- implicitly- need- files pathname- I pathname-2...
The named files need to be loaded into the compilation environment. This need
propagates to systems built on this one. This should properly be named users-
implicitly-need-files-for-compilation but that is quite a mouthfuL..

modules module-spec- I module-spec-2 ...
Specifies the modules which comprise the system. A module-spec is either the name of
a module, or a list whose car is die module name, and whose cdr is a list of clauses
similar to those in a system definition. What may appear there is described in section
3.4.5, page 18.

default -user - options option-clause- I option-clause-2...
These specify default values for ISH environment options (previous section) which
should be used for systems built on this one. ihe defaulting prxcess is described in
section 3.4.6, page 19.

MI'1: SIIIX)CSSI)FF 157 29-JU 'N-81

LSB Manual 17 The LSB Processing Environment

3.4.3 The Diversion Stream Clauses

Diversion stream definition clauses allow one to define new (or redefine existing) diversion
streams, for either all modules in a system, or even per-module. In this way, they default
similarly to other l.SI options discussed above. (Diversion stream definition defaults cannot be
inherited from systems being built-on, however.) A list of the keywords used for defining
diversion streams follows; they are discussed fully in chapter 8.

diversion -stream divslream-name clause-I ...

form -diversion -stream ...

form-divstream ...
declaration-diversion -steam
declaration -divstream
dcl-divstream
textual -diversion -stream ...
text-diversion -stream ...
text-divstream ...
documentation -diversion -stream
doe- divstream

3.4.4 Pathname Specification Clauses

The following clauses may be used to specify default pathname components. These are not
only accepted in the system definition, but also within a module spec, and in various other places
where LSB looks for pathnames, such as in diversion stream definitions.

directory subdir- I subdir-2 ...
dir subdir-I subdir-2 ...

(directory dir) says that the default directory to use is dir. In most cases this is all
that is needed, since typically the "canonical" device of the host is the correct choice,
and there is no choice of host in most Lisp implementations. If multiple subdirs are
specified, then they specify a directory hierarchy path. In the Multics implementation
of LSB. one is also allowed to specify the entire path in a single atom, just as one
would for the Multics Maclisp namelist format:

(directory >udd>Math1ab>LSB>format)
is equivalent to

(directory udd Mathlab LSB format)
It is unfortunately necessary for this entire path to be specified.

device device-name
For whatever it is worth, this may be specified. For example, (device arc). This is
especially useful for referencing an ITS machine which is not on the Chaos network
from a L.isp Machine:

(define-system Brand-X
(host mc)

(device ml)
(directory brandx)

host hot-ncne
Specified the hiost to he used. This is obviously only useful in i.isp implemrntations

MI.:l.SIIIX)':SYSI)I. 157 29-JtIN-81

The LSB Processing Environment 18 LSB Manual

which as a matter of course access multiple hosts, namely Lisp Machine Lisp. It will
be ignored elsewhere.

pathname host-dependent-pathname
This clause is not actually a system definition clause: it is however used in many
places in conjunction with the directory. device, and host clauses, so is documented
here for completeness. It is used in places where a complete pathname is needed,
and will have its missing components defaulted from the other three clauses. For
example, the dumb-objects system is defined as follows:

(define-system dumb-objects
(directory lsbi)
(built-on loop)
(modules (dumb-objects (pathname dumobj)))
(needed-for-user-compilation))

lhe pathname clause shown says that the dumb-objects module has a filename of
dumobj rather than the default (dumb-objects). The directory is defaulted to Isbi.
If that particular module were on a different directory (say, test-dir), the modules
clause could be re-written as either

(modules (dumb-objects (pathname Itest-dir;dumobjl)))
or as

(modules (dumb-objects (dir test-dir) (pathname dumobj)))
The last is less dependent on the pathname conventions of the particular host, so may
be a reasonable choice if the pathname components will be the same for different
hosts or Lisp implementations.

3.4.5 The Module Specification

A module specification is a description of a module in the system. It may be either just the
name of the module, as in the system definition clause

(modules ppcode ppdesc)
-" or a list whose car is the module name. and whose cdr is a list of clauses:

(modules (dumb-objects (pathname dumobj)))
'hese clauses describe various attributes about the module, such as where it resides in the file
system and what environmental attributes its compilation environment should have. Most of these
can, in fact. be defaulted: the name of the file (both source and compiled output) defaults to the

W? name of the module, with the directory, device, and host being taken from those defaults for the
system (as either specified with the corresponding clauses or defaulted), and the extension or file-
nvpc for the source and compiled output default to whatever is appropriate for them in the L.isp
implementation. These can he selectively overridden by use of the pathname, directory, device,
and host clases, a;s described above. Most of the clauses described above for system definitions
are also applicable to single modules: those that are not are those which describe systcm relations,
listed in section 3.4.2. Ibus.

(define-system mathematical-hacks
9(built-on loop)

(modules arithmetic
(bit-twiddling

Ilk (input-radix 8))))
describes the mathematical-hacks system, which consists of the two mod.'les arithmetic and bit-
twiddling. Niodulc arithmetic uses an input radix of 10 (decimal), which is IS1's default, but
lmo(dile bit-twiddling uses octal.

MI A Sill X)(':SYSI)lF 157 29-JIN-81

LSB Manual 19 The [SB Processing Environment

3.4.6 Environment Setup -- Details

The [SB environment setup is performed in one of two ways. In general, most if not all of
the work will be performed when the module form which should be at the front of the source
file is processed, either by the compiler or by being evaluated during loading. In both cases there
are three fairly discrete actions:

(I) Loading whatever support code is needed for the type of processing being performed,
and making the appropriate declarations (when compiling)

(2) Establishing the binding environment (specified with the various options)

(3) Defining the diversion streams which will be used by that module

The module form first performs step 1. For compilation, this involves loading all of the
pubdcl files of the systems this system is built-on (note the non-transitivity of the built-on
relation, and the implications of the users-implicitly-need clause), and any other files they have
specified with the users-implicitly-need-files clause. Then the pubdcl and sysdcl files for that
system itself are loaded. This is a depth-first operation, take, for example, the systems

(define-system write
(built-on loop Ibind)
(modules write))

(define-system pretty-print-definition
(built-on loop {pdplO user-hunk)]
(users-implicitly-need write)
(modules ppdef ppdesc))

(define-system hacks
(built-on pretty-print-definition)
(modules crock kludge))

If we are compiling the crock module of the hacks system, the following files will be loaded
(assuming they exist), in this order:

write pubdcl
ppdef pubdcl
ppdesc pubdcl
kludge pubdcl
kludge sysdcl

Additionally, if the special [SB pre-processing compiler interface is not being used (see section
10.1, page 59; if available, this is the default action), the pubcdcl, sysdcl, and moddcl files of
the module itself will be loaded. Note that by default there is no moddcl file produced, but it is
provided for in case this sort of forward-reference capability is needed.

Next, the binding environment is set up. If the [SB option was given in the file property list
of the source file. and that option was actually used by whatever is doing the processing (e.g.,
load, the compiler), then this has already been done. It is expected that environments which will
he using this will have the support necessary already loaded (this mainly concerns values of
deliulted options, or new option definitions): in other environments, this supp(.rt should have
been loadcd in by the previous step. 'Ihis also i% why the lsb-load (page 22) function exists-for
the loading of an interpreted module, the variables which comprise the processing enironment
necd to be nitl b , t hait the module firm does not side-efl.'c the glohal enironnmcnt. Anyway,
I Sl1 sets tip the hinding enironmtict by calculiting all of' the %aiables %hich will he affected,
ind thti fillinig them in wili their specified values: first any per-module options foi the module

being processed are looked at. theon any for Ihe system as a whole. Then, any options specified

NilI :SIHX)CSYSI)Ii[157 29-JLIN-81

The LSB Processing Environment 20 I.SB Manual

in any default-user-options clauses of systems this one is built-on. The order in which options
are defaulted in this last manner is not extremely well defined at this Lime, but it can be
guaranteed that, when built-on relations only go one-level deep (as is normal unless the users-
implicitly-need clause has been used in one of these systems), it will be the order in which those
systems appear in the system definition. Thus, looking at the write system definition given above,
if the write module were being compiled, first any default user options of the loop system would
be looked at, then those for Ibind. Any options which are not either specified or defaulted from
other systems will have be set to their canonical default values.

Lastly, the diversion stream environment is established. This may implicitly make use of
support loaded during step 1, and options (variables) set up by step 2. Essentially, what happens
is

(I) All extant diversion streams are "killed", if necessary, which it is not if the diversion
stream environment is "bound" (as done by the Isb-load function, or by the use of
LSB in the file property list). If this is done, a warning message may be printed, as
this could in theory involve closing and deleting files being written. But normally
nothing interesting is happening in the interpreter.

(2) All diversion stream definitions specified for the module only are processed

(3) All diversion stream definitions given at top-level in the system definition, which have
not already been defined, are processed

(4) All other diversion streams which I.SB uses and which have not been defined, are, using
default definitions determined from the type of processing being performed.

Most simple systems rely solely on step 4.

Finally, the module form macro-expands into various potentially interesting things, in an
implicit progn. Some of this might involve bootstrap code (to load things up). this has not been
worked out yet. This is also the place where any actions dictated by the announce option are
performed. And:

*source-file-information Variable
The module special form expands producing a setq of this variable to a disembodied
property list containing much information about the module. (At this time. this variable
may either not get set or not contain much in formation when the module is loaded
intcrpretikely.) The car of this list is the actual real pathname (truename) of the source
file (if it could be determined). The plist part may contain the following properties:

:module
The module name. In L.isps %ith packagcs, this will be a symbol interned in
the user package. It will be all in one case: lower on Noultics, upper elsewhere.

:system
Similar

:lisp-version
[hc version number of the Lisp the processing %as performed in. This will be a
fixnum.

:system version-info
Ihi is a hairier verNion of :lisp-version. On the I isp Machine. this will be a
siring which is the res'ult of calling sr:system -version -ino. lisewhere, I SII
Aill imke do vmith whit it can get, but in any case. if this propcrty is present,

Mil .I lItl X)(M :l . 157 29-l1 1N-81

LSII Manual 21 The ISB L.oader

it will be a string (symbol, in PDP-10 Maclisp) containing some descriptive
information. See si:system-version-info and related topics in the Lisp Machine

manual for more information.

:site Some name for the machine the processing was performed on. Presently, [SB
only knows how to do this for PDP-10 Maclisp. On Lisp Machines, it is
undecided whether this will be only the Lisp Machine name or possibly some
composition of the specific Lisp Machine and its site, as in (MIT CADR-6).

:culprit
The name of the user. On the Lisp Machine, this is simply the value of user-
id. On the ITS operating system, this is the uname rather than the xuname for
reasons having to do with INIT files: in that case, the xuname. which
supposedly represents the real user name as opposed to some instantiation of it,
will be under the :claims-to-be property.

:claims-to-be
On ITS only, the xuname of the user, if it differs from the uname.

:compiler- version
Some type of description of the compiler version. This is a brief descriptive
history on Multics. On the PDP-10 this will simply be the version number of
the compiler. This will not be present on the Lisp Machine because the
compiler is an integral part of the basic Lisp Machine system, implicitly included
in the :isp-version and :system-version-info properties, and no explicit
infornation is available.

:date Date and time of the processing, in the form
((year month day) hour minute second)

The year is excess-1900.

[SB also handles a few more mundane things automatically. When setting up a compilation
environment in Maclisp, a genprefix is automatically performed on the concatentation of the
system name, a ... the module name, and a "-"; e.g., "mysys.mymod-". In the PI)PI0
Maclisp implementation, ISB does some hackery to avoid having the garbage collector thrash due
to array relocation during compilation environment setup (this being a result of the large number
of arrays used by fasloading so many files). If one has a system which causes very many files to
be loaded and this seems to be happening (indicating that I[Sf's default handling is too modest).
a (getsp n) clause may be included in the system definition. ISB by dcfault does this with n of
20000. ihis mechanism may be improved at some point. Obviously n should be significantly
smaller than the amount of free memory remaining.

3.5 The LSB Loader

lecause of' the possihility of an interpreted 1I1 module side-effecting the environment, which
can occur in IisIp ilplcinenitaions which do not utilite the file propert) list or if the modtle does

1n4t use the I Sll option in tihe file property list, it may he necessary to use a loading function
which properly scop';es all o f the I Sil environment variables.

MI :.SitIX)C:SYSI): " 157 2)-JUN-81

LhelSB Loader 22 I.SB Manual

lab-load pihitne kwd-I kwd-2 .. kwd-n
This is thc routine LSII uses to load in fI'les. It causes the I.SB1 environmecnt to be %Lo~ped
around the loading: all of the flag variables are bound, as is the diversion stream
environment. Note that all of these things maintain their current valucs; if the filec being
loaded is an interpreted I.SB module, it is the module form in that file which will reset
them. The various keywords are as follows. In general the few keywords provided negate
default actions.

noerror
D~o not cause an error if the file is not found. A message stating this may be
printed depending on other keywords given; in any case, lsb-load will return
nil.

conditional
If' this file has been loaded already, do not load it again. The atom
:previously -loaded will be returned. Note that in tie Lisp Machine
implementation this atomn is previously- loaded in thle user (keyword)
package, but in Maclisp it is an atomi with at colon ats its first character.

nodefault
D~o not set the pathrrnm defaults used by load (and lsb -load). Normally.
they are set to the pathnlanie that gets loaded. Programs that call lsb -load
may not wish to change the dlefault padinamec on the user without his
cognizance, in which case they should use this option.

verbose
Normally, the verbosity of lsb-load defaults to the value of 'Isb-verbose?.
Tbis explicitly sass that lsb-load should be verbose.

silent The opposite of verbose.

uninteresting
This is primarily useful for scarching for at file to load. as is dne for system
and package definitis. lsb -load " ill rint modify thle file dc0u1i0ts, and will
niot error out if the file is niot found. Additionall), it %%ill niot even print an
error miessage if the file is niot found;, ho~ ever. it may still print a loading
Message if' thle file iS fouind, dependent onl the presence of' the verbose or
silent keywords, or thle oalue of' *Isb - verbose?.

- [ie defanilt behim our of' lsb load is for it to follim thie standard svsteni load function

fairl) closel . siniply augmenting it k "scoping" the I.SlI pro cessinig environmient
* appropriately.

*Inl 0rder IMr Isb load to detiemiic "11clilr ,.onw Weit1' haltItI lic~'n lied. it
11,iiritaims a dIlaaase about loaded fles. Inl thek I isp Nlatliinle iile etitn.such a
faicility alre~idvr exists. so lsb load uses it, elsowhert' there is none, so lsb load is
incapable of' determtininig that a file loaded with load or fasload his inl Iact been loadvd.
Inl thle commnon cases w heie lsb load is uised, such as lo~iding thec % mtius' dt-claraxhui files
into a conipilcr. this noinmill does niot mater. fihe Nhultics inmlciiintaun of lsb-load
is not ible in (leteriline that a ore re'cent file of thle same namne ats one previouisly
h ,idedt Is luInged.

\Il I Ml)()(fl:S~) l* 157 29 .1lt!N 8 1

693M 7--

LSB Manual 23 The LSB Loader

In the Maclisp implementation, Isb-load does (sstatus uuolinks) after loading, to avoid
redefinition problems. It is not yet smart enough to figure out if it needs to bind fasload,
however.

,,

9-

Conditional Inclusions 24 LSB Manual

4. Conditional Inclusions
Conditional inclusions allow one to conditionally include portions of the source code being

processed. This may be done by the use of reader syntax which conditionalizes the input seen by
read. or by the use of conditionalization macros to conditionalize code being compiled or
executed. Essentially, all forms of conditional inclusion require the specification of an inclusion
test. An inclusion lest may be one of the following:

normal inclusion test
A regular inclusion test is a list whose car is an atomic symbol, referred to as the
inclusion tester. The inclusion tester is examined using LSB keyword equality to
determine how the form should be interpreted to determine success or failure of the
inclusion test.

or-*-
An inclusion test of either of these tokens fails.

atomic symbol
Any other atomic symbol used as an inclusion test is treated as being shorthand for
(only-for atomic-symbol).

only-for Inclusion Tester
The inclusion test (only-for x) interprets x as an implementation feature test, and
succeeds iff that test succeeds. An implementation feature test is either the name of an
implementation feature, or a logical composition of implementation feature tests, made
with and, or. and not. An implementation feature name is tested for by looking in
(status features) (but note also section 4.2. page 25): LSB token equality is used.
Multiple "arguments" to only-for are treated as an implicit or; thus, (only-for Maclisp
Lispm) is equivalent to (only-for (or Maclisp Lispm)), succeeding if either Maclisp or
Lispm are "features".

except-for Inclusion Tester
(except-for il i2 ...) is equivalent to (only-for (and (not il) (not i2) ...)). Thus, it is
the complement of (only-for il i2 ...).

A mechanism for extending the composition operators for implementation feature tests is
under development.

4.1 Read Time (ondiionalization

Read time conditionali/ation is effected by use of the { reader-macro. The gencral format is
{ tncluMn-Wrsi atn.thig-elst,- with-maiching-braces)

nclusion-it'st is read in (by calling read) and interpreted as described above. If the test fails,
then the reader-macro gobbles down all of the text up to the matching }; to the I isp reader, the
result is like a spce (i.e., an atom delimiter). If the test succeeds, then the reader-macro
immediately returns, leaving n.vihtn'g-else- with-matching-bra(ces intact in the input stream; the)
will behale like a space (an atom dclimiler, but othe wise ignored) by the Lisp reader.

N .i II)tiC:CONI)lT 54 29-JU.N-81

LSB Manual 25 Multiple Contexts

When text is being skipped over due to a failing inclusion test, matching open- and close-
braces are kept track of. There is no way to "quote" one of them in such a context; what one
should do is to match an unmatched brace by placing it in a comment appropriate for the syntax
of whatever is within the braces. For example,

((only-for Lispm)
; Matching "{"
(princ ")" error-output)
I

Note that since excluded text is not read by the Lisp reader, it need not be syntactically valid
Lisp: thus, this mechanism is good for conditionalizing syntactic constructions which are not valid
in all Lisp implementations, as in

(member x '(0 0.0 {Lispm 0.OS0}))
where O.OsO is "small-flonum" zero, a syntax not supported in Maclisp. And of course, the
excluded text may be used as comments, by using either -e- or -- as inclusion tests:

(-*- Mode:Lisp; Package:PP -.- 1-Apr-84
This file defines a universal pretty-printer

with capabilities far exceeding any thus-far
etc}

When the inclusion test is read, readtable is bound to the readtable specified with the
inclusion-test-readtable system definition option (page 14). If nil was specified as the readtable
(which is the default), then the current readtable is used. This option exists to allow normal Lisp
syntax to be used (if desired) from within some abnormal syntax.

4.2 Multiple Contexts

Thus far, the test for an implementation feature has been said to be based on the
membership of the feature name in (status features). This is not strictly true, as very often what
is intended is examination of the target environment as opposed to the processing (e.g.
compilation) environment. The inclusion tester only-for and except-for are intended to refer to
ie target environment, which is normally assumed to be the same as the processing environment.

'To guarantee that the test is based on the processing environment, one can use:

only - on Inchlusion Tester
except-on Ihwlusion Tester

These are the same as only-for and except-for, except that they always use (status
features), guaranteeing conditionalization based on the environment in which the test is
made. 'llus,

{(only-for tops-20) stuff)
includes stuff if the code is intended to run in a TOPS-20 Lisp, whereas

{(only-on tops-20) stuff)
- includes stuff only when it is being read into a TOPS-20 L.isp.

'There is currently no mechanism for specifying multiple "feature environments". See section
12.5.1. page 67 for a desription of the current facilities which may be used to implement the
above. It is expected to change drastically when a better facility is defined, and is only provided
as an interim solutioi.

MI 1 .:I 111)X) :(')NI)l I 54 29-11 IN-81

Defining Operations 26 [SB Manual

5. Defining Operations
For the purposes of discussion, a defined object which is either a routine or a macro will be

called an operation. A routine is one where the body of code in the definition form is to be
executed when the call is executed; a macro is one where the body of code is to be executed to
produce a form to replace the call. All I.SB operation definition fo-ms have the same general
format:

(d e f i n e - visciass- definitioiitype prototype-call
(declarations dcl-clause-I dcl-clause-2 ...
form-I fonn-2 ...)

where visclass is the visibility class, i.e. publii, system, or private, and definitiontype is the type
of definition, e.g. routine, macro, optimizer. 'There may be any number of declarations
(abbreviated dcls) forms, but they must precede any of the body forms.

5.1 The Prototype Call

The protofipe call shows what a call to a routine or macro looks like, defines the mapping
from the arguments into the formal parameters, and specifies the data types of both the
arguments and the variables. For example,

(frobnicate foo (optional bar 'ugh) (any-number-of blotch))
shows a prototype call for frobnicate, which takes one required argument, one optional argument,
and any number of other arguments. It shows how the call is to be mapped into the formal
parameters of frobnicate (too. bar, and bletch): the first argument is required, and maps into
the too variable. The second is optional; if it is not specified, then bar will be bound to the
symbol ugh. All remaining arguments map into the bletch variable, which will be bound to a
list of them. This process of mapping from the argumnents into the formal parameters is known as
call mapping. and the keywords such as optional are known as call mapping keywords. Other
keywords which may be used like any-number-of are one-or-more-of and two-or-more-of
Ahich require there to be at least one or two arguments corresponding to that formal parameter.
rest and body are synonymous with any-number-of; the latter is intended for macros which
take any number of forms to he used in some kind of implicit progn. If there is a minimum
number of arguments required for this type of parameter (a rcst parameter), it is meaningless (and
an error) to hae any optional arguments. There may only be one rest parameter, and it must
come last.

One can also specify the data types of the arguments and variables in the prototype call, as in
the example shown previously,

(define public-routine (sqrt$ (flonum n)) ...)

I o4r op ionil ;111d reNt parameters, note that the type of the variable and the type of the
(orresponding argument(s) need not he the same. One can thus have:

(my-routine (notype (optional (fixnum count) nil))
(vector (any-number-of (flonum frobs))))

which sass tht my- routine takes an optional argunent, count, which must be a fixnum. The
*ariahlc count, however. is of type notype. and will be hound to nil if no argument is gixen.
All oilher argumnents arc required to he flonunls, and are gathered into a \ector which frob is
hormd to. I he nil Nh%% in is a lormo he% ealileCd to supply a default \alble lr the %ariable if
1104 1C4)11C4 oldldIig i.'rpllo.'nt is prcsillt this c\,lliation \& ill ie done iii an ens ironniut % here only
Ihe , blcs to the lelt in the prototype call have been| homd to their arguments or default

M; Ill I)(:I)F1'LIN 181 29-JLIN-81

I.SB Manual 27 Variable Bindings

values. In this instance, that nil is superfluous, because the default default value will be chosen
on the basis of the variable type, notype.

The optional syntax allows for the specification of a variable to be used as a flag for whether
or not the corresponding argument was supplied:

(frob-name frob (optional new-name nil new-name-p))
which could be die prototype call for the routine frob-name. The variable new-name-p will be
bound to t if frob-name receives two arguments, nil if it receives only one. 'his variable is
automatically declared to be of type truthvalue (chapter 7).

The any-number-of syntax allows for the specification of a variable to receive the count of
the arguments which were mapped into the formal parameter:

(define-public-routine (average (one-or-more-of numbers count))
(quotient (apply (function plus) numbers) count))

This variable is automatically declared to be fixnum; a type must not be specified for it.

Sometimes an operation takes an argument which is not actually used by the code of the
operation. This situation typically arises when the code is not totally complete, but that argument
position needs to be "allocated" for future compatibility. Since the author of the code knows of
the situation, it is undesirable to have the compiler warn him about it. One may use the unused
keyword to tell [SB that the variable so designated does not get referenced by the code, as in
this prototype call for hairy-routine:

(hairy-routine
file-to-be-processed
file-to-send-output-to
(optional die-on-errors?)
(any-number-of (unused keyworded-additional-options)))

This option is applicable in all IoS3 operation definitions. It should not be used with the supplied-
p variable for an optional argument, nor for the couni variable for a rest argument. [SB will do
whatever the lisp implementation requires to ensure that the compiler will not complain about a
lack of reference to the variable. It is an error for the variable to be referenced in the code of
the operation when the unused keyword is used.

5.2 Variable Bindings

I.SB operation definition forms provide syntax for binding variables within the body of the
operation. When a fonn appearing at lop level only in the definition body starts with one of the
keywords auxiliary -bindings or bindq, the cdr of that fonn specifies a binding environment to
be used around the remainder of the definition form. Some may find this syntax distasteful and
prefer to use a fonn which textually shows the binding scoping (such as Ibind and lbind'); others
may find it conlenient to use, as it allows the bindings to be placed more naturally while not
producing deeply nested code. Ibind and Ibind* arc macros which provide similar functionality,
bmu without restrictions on their positioning- they are documented in chapter 13, page 73.

Mil :1 Slcl)OC:A IUN IX1 29-JUN-81

Variable Bindings 28 LSB Manual

5.2.1 Auxiliary-bindings

An auxiliary-bindings (abbreviated as either aux-bindings or auxs) form binds a set of
variables sequentially, allowing the value computed for one to depend on a previous variable.
This form looks like

(auxs aux-bind-spec-! aux-bind-spec-2 ...)
where each aux-bind-spec may take one of the following forms:

variable
The variable is bound to nil.

(variable value)
The variable is bound to the value of value.

((data-type variable) value)
The variable is bound to the value of value, and declared to be of type data-type.

(variable)
((data-type variable))

If a value is not specified, it will default to the initial value for the stated data type.
Thus, the body of the code in

(define-public-routine (frobnicate x)
(auxs (a (f x)) ((fixnum b)) ((flonum c) (g a)))
do-this
(auxs (p (hack a b c)))
do-that)

produces the following binding contour:
((lambda (x)

((lambda (a)
((lambda (b)

((lambda (c)
do-this
((lambda (p) do-that)
(hack a b c)))

(g a)))
V 0))

(f x)))
argument)

along with local declarations appropriate for the Lisp implementation. There is actually a bit of
optimi/ation performed to try to bind as many variables in parallel as possible: this is done for
the sake of Lisp implementations where that may be more efficient, especially if they are special.
In the above example. b would be bound in the same lambda as a, since it is being bound to a
constant.

Ni. ,II.): C I)I'ILIN 181 29-JIIN-81

LSB Manual 29 Defining Routines

5.2.2 Bindq

bindq is an alternative to auxiliary -bindings. In addition, it always binds variables in
parallel. A bindq form looks like

(bin d q v'arspec- I value- I varspec-2 value-2 ..
and can be used in the same places as an auxiliary -bindings form. Each varspec may be either
dhe name of a variable, or a list of the data-type for the variable and the name of the variable.
The code for

(define-public-routine (frobnicate x)
(bindq a (f x) (fixnum b) 0 c (g x))
do-this
(bindq p (hack a b c))
do-thai)

produces the binding contour
((lambda (x)

((lambda (a b c)
do-this
((l ambda (p) do-that)
(hack a b c)))

(f X) 0 (g x)
argument)

5.3 Defining Routines

define-public-routine (=- defpubr) Special Formn
deflne-system-routine (S dotsysr) Special Form
defIne-private-routine (=- defppivr) Special Fonn

In LSB, one does not define ordinary functions; one defines routines. The difference is
that a Lisp function definition implies a specific implementation, whereas an LSII routine
definition simply says how one desires to call the routine. The actual implementation of
the call is left to I.SII. and may differ across Lisp implementations. There are declaration
options to give ILSB information which may be useful in choosing a particular
implementation. and to demand a particular one.

Consider the following routine definition:
(define-public-routine (print-decimal -number

4 (number n)
(optional stream))

(bindq base 10, *nopolnt t)
(princ number stream))

'The functional specification of print -decimal -number ultimately reduces to the primitive lambda
- expression (lambda (n stream) ...). Somewhere between the processing of a call such as (print-

decimal -number ,,:i) aind the evaluation of the forms in the definition body there has to be a
rmpping made between the call and the aipplication of that primitive lambdii exprestion. One
j)os%ihility is to turn the call (print -decimal - number nm) into a new call (print -decimial -
number -aux im~, nil), % ith print - decimal- numnber- aux delincd to take the %miie mrgw 'tents as
print doiinal numiber, est,-'ut that they are all retpired. I S11 (lies inl lict imake this kind of

V t~isltit~tnn ttI isp implemlentations, whlich have al signlificantily less% cllicienit caling sequ~nicc for
lonc~tionts of ai % i alc itiher of' algtitents.

NII.:lSIII)tCAl iiIN 181l 29 JLIN-81

Dcfining Routines 30 I.SB Manual

1'he prototype call for a routine may also specify that the argument(s) mapping into a variable

be implicitly quoted, by use of the quoted keyword wrapper around the variable, as in the
prototype call

(foo (quoted x) (optional (quoted y))
(any-number-of (quoted frobs)))

which says that foo takes one or more arguments, and none of them are evaluated. This implicit
quoting is done as part of the call processing. What actually happens is that foo is defined as a
macro which quotes the appropriate arguments, producing a call to foo-aux, just as done by the
optimization for routines taking a variable number of arguments (in fact, both of these
transformations may occur at the same time). The implication of this is that it is not possible in
general to apply or funcall a routine which takes quoted arguments. This restriction is based on
the "lowest common denominator" of the various Lisp implementations LSB is aimed at; this
restriction may be lifted at some point, at least for some of these implementations.

The following declaration options may be of use in defining routines:

value-type data-type-name
data- type data- type-name

This specifies that the value returned by the routine will always be of type data-type-
name. If the type and the Lisp implementation so warrant, this may produce
appropriate declarations which may affect the calling sequence of the routine.

do- argument -type -checking flag
This turns on argument type checking for this routine if flag is non-nil or unspecified,
otherwise turns it off. Thus, argument type checking can not only be specified per-
module or per-system (with the do-argument-type-checking system definition
keyword), but also per-definition.

do-argument- number-checking flag
Like do-argument-type-checking, but enables or disables number-of-argument
checking for this routine, and is also applicable to macros.

type-check-arguments var-I var-2 ...
If there are no vars supplied, this is equivalent to (do-argument-type-checking t):
otherwise, it enables it for the arguments corresponding to only those variables named.

returnable

the declaration (returnable) causes the entire definition body to be fonned inside a
prog, with a return wrapped around the last form. This is convenient for routines
which ordinarily would not need this except for a small number of extraordinary cases
which must be handled specially and return early. (returnable name) causes the prog
to be "named" name. so that it may be explicitly returned from (even through other
prog or do form%) b using the return-from special forn, as in

(define-public-routine (hack 1)
(dcls (returnable george))

(do ((11 1 (cdr 11))) ((null 11))
(cond ((not (nurnberp (car 11)))

(return-froin george 'error)))

4,.,

Since naming the containing. prog requircs the I.isp implementation to support namled
progs, this extension does not work in Maclisp.

\I :1 1ll l I-LIN 1l 1 29-JI IN 81

LSB Manual 31 l)efining Routines

Where imuhiple values are supported. LSB uses multiple-value-return instead of
return, and multiple-value-return-from instead of return-from so that they will be
passed back properly.

default -definition - from rouiine-name
If this declaration is given, there should be no "body" for the routine. The definition,
instead of being created, will be gotten from the definition of routine-name, which
musi be defined. It is imperative that the prototype call and declarations for this
routine reflect those with which routine-nane was defined, as they will be used to
produce declarations for the new name. This option should not be used lightly; it is
designed primarily to save away the definition of an existing routine so that that
routine may be redefined.

redefinition
This exists to tell LISB that the routine is a redefinition of some existing routine. LSB
will try to keep the Lisp and compiler from complaining about the redefinition. Other
than that, you redefine things at your own risk.

primarily -applicable -routine

applicable- routine -only
This declaration tells I.SB that the routine is used primarily to be funcalled or
applyed, so there is no point in doing sophisticated call processing on it. Appropriate
declarations will still be produced, however. It is illegal to have quoted arguments
fir a routine with this declaration, applicable-routine-only is the old name for this
declaration: it should not be used in new programs, as it will be recycled to
additionally inhibit diversion of declarations.

slow-and-hairy
This tells LSB that the routine is complex enough that time should be discounted
when a space/time tradeoff is made for deciding what (if any) calling sequence
optimizations should be performed.

perform -calling -sequence- optimizations
Tells LSII to perform calling sequence optimizations. Useful only if LSB's default
action is inappropriate.

inhibit- calling -sequence- optimizations
inhibit-calling-sequence-optimizations is exactly the opposite of perform-calling-
sequence- optimizations.

implement-as how byl
This requests I.SB to use a specific implementation for the routine being defined, and
supplies it. how should be one of the tokens expr, lexpr, or fexpr, and is used to
make the appropriate functional declaration for the routine. Information as to number
of' arguments and the argument types still comes from the prototype call, however no
automatic aigument type checking or number-of-argumcut checking will be performed.
Thc bound variable list fbr the function definition will be bv/, and any items after bvl
in this declration form will be prepended to the body of the definition.

assembly - language -definition
If this is present. then the body of the definition is assumed to consist of assembly
Iaugi age code in ILisp Cirmat appropriate to the implementation) rather than ILIsp
code. I S11 will proside the appiopriate header and args information to be output,
and Will dt1uioa;iially dCr,'ult the declarations %hich %ould otherwise have to be

Mil :1 SIll)C:I)FI.LIN 181 ?9-JliN-8I

Open Coding 32 LSB Manual

supplied by such clauses as implement-as and inhibit-calling-sequence-operations.
Use of assembly code in this fashion keeps it in textual proximity to the "definition
form", and also allows LSB to continue to automatically produce declarations.
Additionally, any pre- and post-definition forms implicitly generated by such clauses as
redefinition will be properly placed around the actual definition. For an example, see
page 42. This is only supported in PDP-10 Maclisp at present.

5.4 Open Coding

deftne-publlc-open-codable-routine (= defpubopen) SpecialForm
deflne-system-open-codable-routine(= defsysopen) SpecialForm
deflne-prlveto-open-codable-routine (B detprtvopen) SpecialForm

These define routines just like define- visclass -routine, and in addition tell LSB that
compiled calls to such a routine should be open-coded.

open coding means that when a call to a routine is compiled, the body of the routine will be
compiled in place of a call to it. That is, if we have

(define-public-open-codable-routine (cube (number n))
(expt n 3))

then the expression
(plus (f x) (cube (g x)))

will be compiled as if it were
(plus (f x) ((lambda (n) (expt n 3)) (g x)))

The routine cube will be defined just as if it were an ordinary routine, except that no calling
sequence optimizations will be performed, since they are obviated by the open-coding.

Defining something as an open-codable routine has some advantages over defining it as a
macro. First and firemost is the clarity of the definition. Also, the routine definition typically
uses less space in the nitime environment than a corresponding macro definition would. An
open-codable-routine, because it is a routine, may be funcalled or applyed if there are no
quoted arguments specified in the prototype call. Iastly, the use of an open-codable-routine
makes the visible semantics of a call to that routine obvious: if we have

(define-public-open-codable-routine (foo a b)
(bar b a))

then a caller of foo does not have to worry that foo will evaluate its arguments repeatedly or out
of order.

Obviously, there will he cases where it is not necessary to bind the formal parameters of an

open-codable-routine around the body of the code. This is the case in the cube example. Rather
than pioduLiing (for compilation) an expansion like

((lambda (n) (expt n 3)) (f x))

for (cube (I x)). it is obvious that
(expt (f x) 3)

would suffice, for any function (or special-form or macro) 1. [SB has two mechanisms to handle
this.

The fir. w,Iol /,I tvlIul.h is Itibda (pumU'ui u i t,:',scntially, the code exp,md d to he used

in place of' the original call is re-examined. arod wherever possible. lambda-bindings are
climinated. I his succeeds in making suich transtonnations as the one shown ahoe fur cube. I SiI
ktiu ks not to optimife out the binding% of special v .riilcs.

\lm :1 SI)tW',I)II.)N 181 29-JUIN-81

LSI Manual 33 Defining Macros

The second is to explicitly tell LSB that the arguments to the routine may be safely textually
substituted into the body of the routine. This is done by means of the use-sublis-for-open-
coding declaration. For example, cube could havc been defined as

(define-public-open-codable-routine (cube (number n))
(dcls (use-subli s-for-open-coding))
(expt n 3))

Obviously this is unsafe and not recommended if the routine references the variables out of order
or anything but excactly once, as that destroys the implied semantics of function calling. And,
since sublis is actually used, there should be no name conflicts. The use of sublis does not mean
that the body of the routine may be a pattern to be substituted into; it must still be viable as an
ordinary routine. LISB reserves the right to not actually use sublis if it can preserve the
substitution semantics and produce better code in some other manner.

Open-codable-routines may be defined with optional, any-number-of, and quoted
arguments. The checking for optional arguments will be performed at compile time, and the
argument or default value form inserted into the code as appropriate, any-number-of arguments
work, but they can only be implemented as heap-consed lists, so are not recommended; often in
this case a macro is called for, or perhaps an ordinary routine.

Occasionally a situation arises where one desires to have a routine open-coded only in certain
Lisp implementations. For this, one may give an ordinary routine definition the open-code
declaration, which may be placed inside of a conditional inclusion:

(define-public-routine (cube (number n))
{Lispm (dcls (open-code)))
(expt n 3))

which causes cube to be open-coded only if is being compiled for a Lisp Machine.

A note is in order with respect to the setf special form: since an open-codable-routine is not
a macro, setf cannot determine what a call to it will expand to, so if one is being used to create
a synonym for some sort of structure reference and is meant to be invertable with setf, either
setf must be informed how to make its transformation, or the routine should be defined as a

* macro. The same is true for the locf special form in Lisp Machine Lisp.

5.5 Defining Macros

define-publlc-macro (- defpubmac) Special Form
define-system-macro (- defsysmac) Special Form
define-private-macro (= defprtvmac) SpecialForm

Macro definition format in LSI is similar to routine definition format. The same call
mapping keywords (e.g. optional, any-number-of) may be used, but typed and implicitly
quoted arguments may not be. If any type of rest parameter is used, no implementation
type should be specified for it, as the variable will be bound to a sublist of the original

- call.

!lhus.
(define-public-macro (frob-name frob)

' (caddr ,frob))
cilfctivclv define, frob-name to be a ssnonvm of caddr. 'Ihis particular example is defined as a
m11,0" rmther than as an opcn -codable--routine so th;it the self special form can invert it:

MNI: Sll()0t 1)1 [IN 181 29-J 1 J N -81

Defining Macros 34 LSB Manual

(setf (frob-name x) 'new-name)
==> (rplaca (cddr x) 'new-name)

The flag variable which may be specified to flag whether an optional argument is supplied may
be useful with macros as well as with routines:

(define-public-macro (frob-name
frob (optional val nil val?))

(cond ((null val?) '(caddr ,frob))
(t '(rplaca (cddr ,frob) ,val))))

And, of course, macros are the best way to write code which changes environments or control
flow:

(define-public-macro (if predicate consequent
(any-number-of else-forms))

(cond ((null else-forms)
'(and ,predicate ,consequent))

(t '(cond (,predicate ,consequent)
(t . else-forms)))))

(define-public-macro (using-decimal-radix (body body))
'((lambda (base *nopoint) ,@body) 10. t))

5.5.1 Unneeded Macros

Quite often one needs macros around in the runtime environment for running interpreted code
(which may or may not be in the same module a macro is defined in) but it is undesirable for
them to be present in an environment where all of the code is compiled. This is often necessary
in small address-space lisps, and is often not unreasonable in even large address-space Lisps
which do not have packages, such as Multics Maclisp, to avoid cluttering up the runtime
environment with definitions which are only needed for running code interpreted, or for
debugging.

deflne-publlc-xmacro (- defpubxmac) SpecialFonn
define-system-xmacro (- defsysxmac) Speciallorin
deflne-private-xmacro (= defprlvxmac) Special Form

The only difference between this and normal macro definition (define-visclass-macro) is
thait the (compiled) macro definition will be sent to the macros diversion stream rather

*than output into the compilation output file. The utility of this is that the macros
delinitions (which are nonnalh riot needed it' all callers arc compiled) will not be present
in the compilation output file. but will be in the file written as the macros diversion
stream, so may be loaded when needed. This type of macro definition is common in
s\.,tcms 'Ahich define many (or Iarge) macros AhiCh alC not nonrull), used, such as pretty-
printers. Note that the semantics of this depends on how the macros diversion stream
behaves-see page 54.

1 1,111))(l(': I.UN 181 29-JUN-81

-'-7 . 7_ -

LSB Manual 35 Compiler Macros

5.6 Compiler Macros

Sometimes one wishes to define something as a routine (for efficiency or argument checking
when it is called from interpreted code, or for its ability to be funcalled), but desires special
handling of a call to it when it is compiled, that only a macro can provide. Another scenario is
where one is defining a special forim (section 5.7, page 35), and it is imperative to have special
handling of the form when it is being compiled. LISB allows one to define macros which only are
used for the expansion of code being compiled.

deflne-public-complle-tlme-macro Special Form
deflne-system-complle-tlme-macro SpecialForm
define-private-compile-tline-macro SpecialForm

These have syntax identical to that of define-visclass-macro, but the definition is only
used for expanding code being compiled.

The definition of cube as an open-codable-routine
(define-public-open-codable-routine (cube (number n))

(dcls (use-subi is-for-open-coding))
(expt n 3))

is performed by I.SB just as if the user had done
(define-public-routine (cube (number n))

(dcls (inhibit-calling-sequence-optimizations))
(expt n 3))

(define-public-compile-time-macro (cube n)
(sublis (list (cons 'n n)) '(expt n 3)))

More examples are given with the descriptions of definition constructs which may also require the
use of compile-time-macros.

Note that use of this facility may compete with automatically generated code for calling
sequence optimization or open coding; if this is suspected, one should explicitly disable calling
sequence optimization as in the above example, by use of the inhibit-calling-sequence-
optimization declaration.

5.7 Special Forms

special fotins are constructs which do strange non-functional things with their arguments, like
eval them. cond is a special form, as are do. prog, and go. In most cases it is best to define
special constructs like this as macros, so that only one definition is needed, and so that code
analyzers (and the like) need not understand the form specially. 'llius. if can be defined as a
macro as it is on page 34. There may be situations where there are overriding reasons for using a
special form instead, ccn considering the extra effort of defining a compile-time-macro so that
such a form can he properly compiled. One possible scenario (in fact, the one which led to the
implementation of special form definition in I.SII) is a system (especially in a limited address
space lisp) wherc there are many special constructs defined, and they get much u:,e. The
ocmrhead of expmnding and remembering all of those macros, combined with the ot:casional
tendency of inl,iCi(s d'linitimis to take up more space than tle corresponding routine definitions,
nflay he sIM toon lalge plIice to pay.

N l I 1SII)()':l)l]I IN 181 29-JLIN-81

Optimization and Transformation 36 LSB Manual

define-public-special-form (- defpubspec) SpecialForm
Only public special form definition is provided for. Automatic type checking is not
handled here. Use of the quoted keyword to specify implicit quoting of arguments is an
error; all arguments are implicitly quoted. (This is a special form, after all.)

As an example, we can define if as a special form:
(define-public-special-form (if predicate consequent

(any-number-of else-forms))

(cond ((eval predicate) (eval consequent))
((null else-forms) nil)
(t (do ((I else-forms (cdr 1)))

((null (cdr 1)) (eval (car 1)))
(eval (car 1))))))

To be properly compiled, if would also need to be defined as a compile-time-macro, in the same
way it is defined as a macro on page 34: that is, simply defined with define-public-compile-
time-macro instead of define- public-macro.

5.8 Optimization and Transformation

define-public-optimizer (- defpubopt) SpecialForm
define-system-optimizer (- defsysopt) SpecialForm
define-private-optimizer (= defprlvopt) SpecialForm

An optimizer is similar to a compile-time-macro (section 5.6, page 35), and additionally
has the option of deciding not to expand the call. Although the specific mechanism used
to signify that the optimizer "did nothing" differs in differing Lisp implementations, LSB
optimizers should indicate this by returning nil; if nil is desired as the actual value,
(quote nil) should be returned, as it is entirely equivalent in any context the optimization
will be performed in.

When the compiler compiles a call, it will try the optimizers for that call before it tries a
macro definition (if any). Additionally, I.S11 arranges for coinpile-time-macros (and thus I.SB
generated calling sequence optimization code) to come last, if it could conflict with any user-
defined optimizers (since compile-time-macros and calling sequence optimization may use the
optimizer mechanism to do their work). User optimizers will get tried in the order they are
defined in.

When an 1SB routine or macro is defined, code is generated (as part of the declaration
in foinnition) to flush any existing optimi/ers and compile-tilte-macros. Thus. optimi/er definitions
should come after the routine or macro definition they are for, and they should appear in the
s,iie file. It does not work to mix visibility classes either: that is, if' the routine is public, it
does not necessarily work for an optimizer to he private or system.

Since a given name can have multiple optimi/ers associated with it, it is helpful for
redefinition purposes to associate some kind (it identifier Mth each particular one. This should be

,,pccified in the identifier (ahhreviatcd id) declaration clause:
(define-public-optimizer (foo argl arg2)

(dcls (id number.())

(and (numberp argl) (nnmberp arg2)

'(super-foo ,(plus argl arg?))))
Ihis identifier shotild be a ,yrnhol. and need oml. he unique Aith respect to the operation name

MI :1 SIll)X(K)IILN 181 29-.,N-81

I.SB Manual 37 Rest Parameter Inplemcntation

the optimizer iindles. It is highly recommended that the identifier clause be used. If it is not
used. in environments such as L.isp Machine Lisp, incremental recompilation of an optimizer will
not properly redefine the old one.

Optimizers do not work in Multics Maclisp.)o not try to use them.

5.9 Rest Parameter Implementation

One of the most obvious points of incompatibility between various lisp dialects is the
implementation of rest parameters. LSB attempts to compensate for this by providing a consistent
and safe default, and by allowing explicit specification of how the data object the formal
parameter is bound to is to be implemented.

'l1le default implementation of a rest paraneter is as a heap-consed list: a list is a simple data
representation guaranteed to be common to all Lisp implementations. It is heap-consed to prevent
obscure and erratic behaviour when a pointer to it is passed up outside the dynamic scope of the
function call.

The single commonality between lisp dialects is that such an object is a kind of sequence.
This means that (in theory at least) one should be able to access components of the object by
some sort of indexing routine. One may thus declare in the prototype call that the variable is to
be implemented as a sequence:

(define-pub) ic-routine (print-items
(sequence (any-number-of items n)))

(terpri)
(do ((i 0 (1+ i))) ((= i n))

(princ (elt items i))))

where elt is the generic sequence accessor (defined in NIL, but not in Lisp Machine lisp, nor by
default in Maclisp). lhis particular implementation is still heap-consed, however; it could lead to

* the production of quantities of garbage free storage. Since most of the time one uses a rest
parameter one is un/i going to use it within the dynamic scope of the routine it is a parameter of,
it is wasteful tor the storage used to hold this sequence to not be temporary. Thus, 1 SB provides
the concept of the argument-sequence sequence type and rest parameter implementation.

The argument-sequence (abbreviated argseq) rest parameter implementation causes the rest
parameter to be implenicntcd as the best method which does not consume free storage provided
by the I.isp implementation. There are mechanisms defined for manipulating them, which map
directly into the methods actually used in the lisp implementation. What happens is that in Lisp
Machine lisp, specifying argument-sequence is like specifying pdl-list: in NiL, it is like
specifying pil-vector, and in PI)P-10 Maclisp, the variable is bound to a fixnum which
incorporates the information which is implicitly present in the call to a lexpr, and also acts as a
fixnum declaration.

argrof argsq index
I hII le.lmcs the indl tIh elCimlent of the argunen.-sequcnce argseq. Ihn'x is /ero-urigined.
In I'IP-1(0 Maclislp this is imi,ost the same ias a call to the arg Fiunction: ill I isp
M.1chmc' I Il,p. ii,, Ihs sanme is a imilar call to nth. and in Nil . it turns into I vref.
In all imnplcmentation,. this will he inlme-coded when compiled.

Ml :1 Sll)O1(:l l--- N 181 29-JUN-81

Rest Parameter Implementation 38 L.SI Manual

argast argseq index vat
Thiis clobbers the ipzdexth clement of thc argumcent-scqucce argseq to be vat. In all
implementations, this will be inlinc-coded when compiled.

arg39q-length argseq
This returns the length of the argument-sequence argseq. Note that this is often not
necessary, as one can get a variable bound to tie length of the argument sequence in the
prototype call. T[his will be inline-coded in all implcmentations.

argseq-llst argseq
Returns the elements of argseq. in a list. Thiis routine is noi inline-coded, and its use is
discouraged. It is provided so that onie can get the elements out of an argument-sequence,
as a list, this is primarily for debugging, and primarily for PI)P-1O Maclisp, where an

argumenIt-sequecnce is implemented as a data-type which does not print out its components.
It is reasonable to declare a variable which is not a rest parameter to be an argument -sequence.
Consider the following:

(define-public-routine (print-items (argseq (any-number-of items)))
(terpri)
(print-items-aux items))

(define-public-routine (prinl-items (argseq (any-number-of items)))
(print-items-aux items))

(define-private-routine (print-items-aux (argseq items))
(do ((i 0 (1+ i)) (n (argseq-length items)))

((= i n))
(print (argref items I))
pr inc " ")))

For use with the loop iteration macro 11001)], I.SB defines the argseq-elements (aka argseq-
element) sequence iteration path, so that one may iterate over the elements of anl argument
sequence (or somne subset of them):

(define-private-routine (print-items-aux (argseq items))
- (loop for x being the argseq-elements of items

do (prini x) (princ "4"
In I isp implementations where an argumenC~t-sequece1C is a kind of list (Lisp Miachine Lisp and
%iultics N1aclisp), the argseq -elements iteration path is guaranteed to produce just a simple

iteration oxer the list in simple cases like the above: that is. in these cases the list will not be
repeatedly indexed into.

For those who know what theyr are doing, tie following data-type keywords are recognized as
specifying rest parameiter implementations:

argseqi
argument -sequence

PhIN is its describcd above.

list A heaip-consed oidinary list. In the I isp Machine implementation. this list will be
miade % ith all tlic ck'rnients cdr -next except For the last, which will he cdr-normal
r,,ilir in cdr -nil- ilis is pi estiiied to be at reasonable compromise.

vector A Iic.ip-L insvd ctlor. Ibis exist, iniiaril~k fo r Nil..

seqUence
A hecap-onsed sequenice of' 11he t(pe itlproptimae lor the implementation: cilileilt to

%1I - I sIll)('.)1 Ij N 191 29-JUN-81

- ." I 1 i - I I I

LSB Manual 39 Macro Memoization

list in Maclisp or lisp Machine Lisp, vector in NIL.
The following additional implementations exist, but are less general, and primarily exist for one to
take advantage of particular Lisp implementation features.

pdl-list
temporary- list

Ibis says to implement the rest parameter as a stack-allocated list. This is only truly
possible on the lisp Machine: in PDP-1O Maclisp, it causes explicit reclamation of
the list on normal exit of the routine, and elsewhere is equivalent to list.

pdl- vector
temporary - vector

The rest parameter is to be implemented as a stack-allocated vector. This is only
possible in Nil.. Elsewhere it may attempt to coerce the argument sequence into a
heap-consed vector, but that of course will not work unless there is vector support.

Of course, if one is very concerned with efficiency and needs to take advantage of particular
implementation features, one can always specify an implementation-dependent implement-as
clause, such as the following (for the Lisp Machine):

(define-public-routine (print-items (any-number-of items))
(dcls (implement-as expr (&rest items)))
(do ((1 items (cddr 1))) ((null 1))

(print (car 1)) (print (cadr 1))))

5.10 Macro Memoization

It is normally the case that any particular call to a macro will expand into the same code. It
is thus a significant inefficiency for interpreted macro calls to be repeatedly expanded every time
they are evaluated. The term macro Pnemoizafion refers to the process of somehow remembering
the expansion of a particular macro call so that it does not need to be repeatedly expanded.

There are various mechanisms for accomplishing this. The easiest and most efficient is to
simply clobber the calling form with the expansion, by use of rplaca and rplacd. Another way is
to clobber the form with another macro call which encodes both the original form and the
expansion: this intermediate macro form can then be recognized specially by pretty-printers, which
can choose to show either the original form or the expansion. If additional information like a
definition count is encoded, then the clobbered expansion can be checked for validity and re-
expanded when the macro is redefined. Yet another way to perform macro memoization is to
store the expansion in a hash table; this has the advantage of not modifying the call at all, and
also not showing the expansion in the code. The data stored in the hash table can also encode
information like a definition count, so that the form can be re-expanded if the macro definition
has changed.

I.SII supplies three methods for macro niemoization. They differ in the code which will be
produced in the macro body: any particular option could additionally be under runtime control.
1he method chosen may be specified with the do-macro-memoizing clause, either in a system
definition. module specification, or in the declarations of the macro itself.

nWH, If the ",argimcnt" gi'en to do -macro-memoizing is nil, then no macro mnmoi/ation
code is poduced. IFvcry time a call to such a macro is encountered, the expansion will
be re-computed.

MI :1 SII X)C(j)I IUN 11 2-JUIN-9l

W-7A X32EL Anf"wm
-'- -,'r, , , l: 1 1- I I ' [-" - 1 1060&".Z. " ,1 - , , ,- "

Forward References 40 L.SB Manual

the inplementation default
This is the default used by LSB. The actual method used varies according to the Lisp
implementation, the intent is for the code generated in the macro definition to be
runnable in a default environment of that Lisp implementation.

In Multics Maclisp, code is generated to clobber the original form with the expansion by
use of rplaca and rplacd. In Lisp Machine Lisp, the displace function is called (q.v.).
The PI)P-l0 and Nil. implementations produce slightly more complicated code, calling
functions which allow virtually all of the macro memoizing possibilities described above,
under runtime control.

displace
This may be specified by use of the keyword displace as the "argument" to do-macro-
memoizing. The code generated for the macro definition will call the displace function.
Note that this is equivalent to the (current!) default action for Lisp Machine Lisp. If
one uses this in Multics Maclisp, one should be sure that a displace function will be
available at runtime. Again, the precise runtime semantics of this depend on exactly
what displace does.

It is anticipated that a mechanism similar (if not identical) to that used in PDP-IO Maclisp
and Nil, will be implemented for Multics Maclisp and lisp Machine Lisp. Even if not supported
by the L.isp systems themselves, it would be usable in environments where it could be ensured
that the necessary runtime support was loaded, and may aid in problems evident in those Lisp
implementations due to redefinition of macros not affecting already-expanded calls to those macros.

5.11 Forward Rererences

declare-routine Special Form
(declare-routine prototype-call

- d l-clause- I
dcl-clause-2

produces all of the information needed to compile a call to the specified routine, in the
current compilation environment, without defining the routine. This is not needed if one
is using de I.SB compiler interface (described in section 10.1, page 59) which makes a
pass over the file extracting all infornation needed for compilation. It may be needed,
however, if one is using [SB on Multics (which does not currently support the I.SB
compiler interface), or if one has specifically disabled this interface in the PI)P-10
imiplcmentation.

Consider two routines which call each other:
(define-public-routine (foo a (optional b 0))

(cond ((zerop b) a)
(t (bar (times a b) (subl b)))))

(define-public-routine (bar x (optional y 0))
(cond ((zerop y) x)

(t (foo (plus x y) (subl y)))))
It the dclitil'n o1 bar has not hcci pioCcssed 'Ahen foo g'ts conpiled, tie compiler %ill make
dcldilil a'',isiipdiolns abotl bar hcn it compiles the call to it. These assumptions, if incorrect.
LU ld make the call less ellicient; they might cven make the compiler error out, or generate

\I 1 SiO)O(:1)llHN 181 29-JUN-81

1.SB Manual 41 Definitionless Routine Definitions

incorrect code.

The fix for this example is to put
(declare-routine (bar x (optional y 0)))

before the definition for foo. LSB will extract from this the very same declaration information
which it extracts from the definition of bar, including any code needed to perform calling
sequence optimizations.

A declare-routine form should be constructed from the same prototype call and declaration
clauses which are used in defining the routine, with the exception of any declaration clauses
pertinent only to real definitions. The clauses which may be used are implement-as, value-type,
primarily- applicable-routine, slow-and-hairy, called -as-lexpr, and perform -calling-
sequence- optimizations.

5.12 Definitionless Routine Definitions

Sometimes one would like to use I.SB to propagate declaration information about a routine,
but either the routine is defined elsewhere (possibly without LSB) or it is not defined in Lisp.
For this, one can simply omit the body of the definition. It is the responsibility of the user to
ensure that the calling sequence LSB determines for the routine to in fact be identical to what it
actually is, by use of the appropriate declarations. For example, the following defines for the
PDP-10 a flonum-only + finction which checks for overflow:

(define-public-routine (f+ (flonum x) (flonum y))
(dcls (value-type flonum) (implement-as expr))
)

(lap-a-list
'((lap f+ subr)

(args f+ (nil . 2))
(push p (% 0 0 floati))
(move tt 0 a)
(jrst 2 @ (% 0 0 foo))

foo (fadr tt 0 b)

(jsp f (*))
(tlnn f 40000) ; this is octal
(popj p)

(lerr 0 (% sixbit IFLOATING-POINT OVERFLOWIl))
nil))

Actually, this example is simple enough that it would be best written with the assembly-
language-definition clause, as follows:

k, *l .I I 11 V'.I i1 *1.1 IN Ikil 29JLIN-81

Defining Functional Properties 42 LSB Manual

(define-public-routine (f+ (flonum x) (flonum y))
(dcls (value-type flonum) (assembly-language-definition))

(push p (% 0 0 floatl))
(move tt 0 a)
(jrst 2 @ (% 0 0 foo))

foo (fadr tt 0 b)
(Usp f (. 1))
(tlnn f 40000) ; this is octal
(popj p)

(lerr 0 (% sixbit IFLOATING-POINT OVERFLOWtI)))
"S,- Of course, not all such cases are this simple, and it may not be possible to share code between

various routines when the assembly code for them is in separate LSB definition forms.

5.13 Defining Functional Properties

Very often it is necessary to put a "function" on some property of a symbol. Lisp has the
syntax

(defun (foo propname) (this that) ...
such that one may do

(funcall (get 'foe 'propname) this that)
in order to invoke this function. LSB supports a similar syntactic construct.

For routines, one may simply use a list of the symbol and the property in place of the name
of the routine, as in

(define-public-routine ((foa propname) this that) ...)
which is the LS13 way of doing the previous example. Although it may seem that there is no call
for a visibility class in such a definition, there is: such a definition might need to be
documented, and a visibility class is needed to determine where the docunentation may need to
he sent to. "'lhere is unfortunately no mechanism for remembering this information at this time,
however, so one should not attempt to use document-routine (page 55) on such a thing.

For such a definition, LSB automatically inhibits declaration production and calling-sequence
optimizations.

In PDP-10 Maclisp, one may also use the "three-list" format:
(define-public-routine ((fo hackexpr hacksubr) a b) ...

being essentially the same as
(defun (foe hackexpr hacksubr) (a b) ...)

%%hich puts the interpreted definition on the hackexpr property, but the compiled subr pointer on
the hacksubr property.

If one considers macros to be simply a way to perform a mapping from one call-like form to
some other firin. then this extension is applicable to them also.

(define-public-macro ((fo frobnicate) x y)
(list 'cons x y))

puts a function on the frobnicate property of foo such that
(funcall (get 'foo 'frobnicate) '(foo 1 2))

=> (cons 1 2)
Malcro memoi/ation (section 5.10. page 39) is turned off by default for this type ot construct.

Nll : SIll X)C:l)ll LIN 181 29-JLUN-81

LSB Manual 43 Prototype Call Summary

The syntax for this is both cumbersome and moderately unaesthetic. It is expected, however,
that such constructs will rarely be written out, but rather constructed by macros which can hide
the property-list implementation:

(define-system-macro (define-frobnicator name bvl (body forms))
'(define-private-routine ((,name frobnicator) ,@bvl)

(dcls (also-needed-for putlic-compilation))
,@forms))

5.14 Prototype Call Summary

A variable specification in a prototype call has the full form shown below.

varspec = simple-varspec I optional-varspec I rest-varspec

simple- varspec ::= tjped- variable (quoted typed- variable)
J (unused typed-variable) I (unused (quoted typed-variable))
i (quoted (unused typed-variable))

The quoted option may only be used with routines, and is described on page 30. The
unused is applicable to any type of I.SB operation definition, and is described on page 27. If
a simple-varspec appears in a prototype call to the right of an optional-varspec, it is interpreted
as if it were (optional simple-varspec).

tjped-variable : := variable-name I (data-type-kwd variable-name)
All pre-defined data type keywords are enumerated in chapter 7, page 47.

optional-varspec : : =
simple-optional- varspec I (data-type-kwd simple-optional-varspec)

simple-oplional-varspec : :=
(opt iona l simple-variable)

S(opt i on a 1 simple- variable default- value-form)
[(opti onal simple-value defhult-value-form variable-name)

lhe uses of defizult-value-form and variable-name are explained in section 5.1, page 26.

rest- varspec =

simple- rest- varspec I (rest- variable- implementation-type simple-rest- varspec)

simple- rest- varspec :
(rest- varspec- k wd simple- variable)

I (rest- varspec-kwd simple-variable variable-name)

The specifics of the optional variable-name are discussed in section 5.1, page 26.

rc%1-varspec-kwd : a rest-implementation keyword
Ilhse are fill diisciised in section 5.9. page 37.

NIl :1 %111 X)(':l)l II IN 181 29-JUN-81

Prototype Call Summary 44 LS13 Manual

resl-variable-iimplemenialion-ype
any-number-of I one-or-more-of I two-or-more-of I body I rest

The specific keyword used implies the minimum and maximum number of arguments which
are to be mapped into the particular rest-variable. There are none currently defined which
specify a maximum. one-or-more-of and two-or-more-of specify one or two arguments as
a minimum; any-number-of, body, and rest have no restriction.

4

t

Ni :1 'All)C:I)IL'IN 181 29-JLIN-81

LSB Manual 45 Defining Variables

6. Defining Variables
An LSB variable definition allows for all declaration and initialization information normally

needed. The definition form thus provides a distinct locus in the source text for that information
and the documentation.)cfining a variable constitutes declaring it to be special; the specification
of type information for variables which are not special (i.e., local or lexical variables) is handled
by the constructs with which the binding is specified, as discussed in the previous chapter, and
chapter 13.

define-public-variable (- defpubvar) SpecialForm
deftne-system-vartable (- defsysvar) SpecialForm
deflne-prlvate-varlable (- defprivar) SpecialForm

These are the special forms with which one defines variables. As with all LSB definition
forms, they should only appear "at top level" in a module, to be processed by the
compiler or interpreter.

The general format of variable definition forms is
(d ef ine-visclass-variable variable-name

clause- I
clause-2

as in
(define-public-variable *maximum-line-length

(value-type fixnum)
(default-init 78))

which declares 'maximum-line-length to be special, says its value is always fixnum. and will
initialize it to 78 if it is does not already have a value.

The clauses which mb. be supplied in addition to the common definition clauses (section 2.6,
page 8) are:

value-type t'pe-name
data-type type-name

Asserts that the value of the variable is always of this type. Appropriate type
declarations may be produced if warranted in the Lisp implementation.

initialization initialization-form

init initializaion-forn
When the module is loaded, the variable will be unconditionally initialized to the
value of initialization-form.

default- initialization initialization-form
default - init initialization-form

like the initialization clause, but only sets the variable if it is not already valued.

divert -reinitialization -to ,tivsirrain-I divstream-2 ...
divert -reinit -to iiv.w'am- I divstream-2...

1is clmse causcs a setq forin of the variable to its initialiiation to be output to each
of the ihned dik erion streams. It thus may only he specified if either the
inilializatioi or (elault-initialization clames are given. Note that the reiniali/,tion is
aI%,i,, unconmditional. Ihis can he u,,cd to prtOd'ce a file whirh %hen loaded will

t.
Ni :l.SIIX')t':l)l[VAH 26 2T).11 1N-81

Defining Variables 46 LSB Manual

reset a collection of variables to their initial states.

also -divert - reinitialization -to divstream-I ...
also-divert-reinit-to divstream-1 ...

Although this probably is not needed because there are no default reinitializalion
diversions, it is included for uniformity. It could conceivably be of use if one had a
macro which produced an LSB variable definition which provided for reinitialization
diversion and also passed a!ong declaration clauses.

The LSB variable definition facility may also be used purely for declaration purposes. This is
useful in cases where either forward references occur (but see section 10.1, page 59), or where the
variable is not really a part of the module but still needs to be declared for some reason.

declare-variable Special Form
This is a variant of the variable definition special forms which can be used for
implementation-independent declaration purposes. It only accepts the value-type
declaration clause, as none of the others are applicable.

Example:
(declare-variable *count*

(value-type fixnum))

2

\fl :1 SitI))(':l)lT VAR \: i 2, l (9-.ILI N-Xl

LSB Manual 47 l)ata rypes

7. Data Types
LSB provides a scheme whereby one may symbolically specify the data type of something.

This data type is used to provide variable and function value declarations (when appropriate to
the Lisp implementation) and also to default the initial values of bound variables and unspecified
optional arguments. It is also used to provide automated type checking for arguments.

Here are the data type keywords which LSB defines initially.

notype
This essentially means "untyped". This is what you get when no data type keyword is
specified, and there is. no default for the particular context.

fixnum A limited-precision integer.

integer
Any size integer.

number
Any number.

flonum
A flonum. This in general corresponds to the Lisp object with typep of flonum.

small-flonum
Similar to flonum. This exists only in Lisp implementations which have such a data-
type, such as Lisp Machine Lisp.

character-code
In practice, this is equivalent to fixnum. In theory, it might cause special storage
strategies to be used because of the limited range.

truthvalue
In practice, this is the same as notype. In theory, it might be used to optimize
returned-values of conditionals (and the like). It essentially states that only the t-or-
nil-ness of the value is of interest.

argseq
argument- sequence
list
temporary- list

a, pdl-list
vector
temporary - vector
pdl-vector
sequence

These data type keywords are all specially recogni/ed as specifying the implementation
. of rest paramnct'rs. This is fully discussed in section 5.9, page 37.

it.
N II.:I SIIIXXC:I)I YI'I-20 29-J1N-81

-, •-UI (-" t '- - ' - -

Defining Data Types 48 LSB Manual

7.1 Defining Data Types

One may define a data-type keyword to LSB in terms of an already defined type it is a
specialization of.

define-public-data-type Special Form
define -system-data- type Special Form
def ine-private-data-type SpecialForm

def ine-public-data-type dt- ta-typSeilrword
clause- I
clause-2

defines data-type-keyword to LSB. The information is declared in the current environment,
in the compiled output file, and in the declaration file appropriate for the visibility class.
All the normal definition keywords may be used in the clauses. One may additionally use
the following clauses:

continue-with data-type-keyword
Tlhis says we should get other information from the data-type-keywoad data-
type. This defaults to notype.

predicate routine-name
This says that routine-name is a predicate of one argument which defines this
data-type.

initial-value initial-value
Specifies the default initial value to be used for this data-type.

For example, the Brand-X system defines the following data-types:
(define-public-data-type Brand-X-object

(predicate Brand-X-objectp))
(define-public-data-type triple

* (predicate triplep)
(continue-with Brand-X-object))

Each data-type 'shich has a predicate associated \sith it can also have automatic argument type
checking performed for an argument of that type. When one defines a data-type, the code to do
this is automatically generated. The way in which this is done arics in different Lisp
Implement.1tions: in Maclisp, the (output from) define- viscass -data-type is needed fbr this
aigument checking to he performed, but on the I isp Machine it is not (although the predicate is
if it ill not he open-coded). For exmple. Blrand-X gets automatic type checking for the
argument ricn to the ilk routine. \Nhith is defined:

(define public routine (ilk (triple x))

(dcls (check-args))

M 1I11 Sill t)(W:1)I P 21) 29-,j IN.8

1.SB Manual 49 Diversion Streams

8. Diversion Streams
Diversion streams are used by [SB to implement derivability (section 2.1). They can be

loosely divided into two categories, depending on the kinds of objects and operations they handle:
form diversion streams, which are used generally for Lisp code or forms, and textual diversion
streams, which handle text. Within each of these broad divisions there are various additional
types which determine how the diversions are to take place, and the transformations to be made
on the objects diverted. For example, a declaration diversion stream is intended to divert
declarations-hat is, forms to be executed and operations to be defined, to tell the compiler how
to compile things. The forms diverted to a declaration diversion stream will be compiled into a
file. A fonn diversion stream is similar, but does not imply that the contents are for the use of
only the compiler. A textual diversion stream is one which accepts text-it is copied directly to a
file. A documenation diversion stream is similar, but additionally implies that the text is some
form of documentation, and transformations may be made on it in the diversion process. There
are also types of form diversion streams which cause the diverted forms to appear "at top level",
as if they had not been diverted (since all form diversions can only occur by means of toplevel
special forms), and those which cause the diverted forms to be immediately evaluated.

The definition or redefinition of diversion streams, if it becomes necessary, may be done by
using the diversion -stream clause in the system definition. This clause has the format

(diversion-stream name clause-! clause-2 ...
as in

(diversion-stream interpreter

(type toplevel)
(predicate (Isb:not-compiling?)))

(diversion-stream toplevel
(type toplevel)
(predicate t))

which are the default definitions used for by [SB for the interpreter and toplevel diversion
streams. In general, every diversion stream has a type, which determines how it handles data
sent to it (and the restrictions on that data, i.e. forms versus text), and a predicate which is
evaluated every time an attempt is made to divert something to that diversion stream, to see if
the diversion should be performed. The type toplevel handles only forms, and says that they
should be treated as if they were "seen at toplevel" in the module.

The types of diversion streams are:
~toplevel t v This handles forms only, and makes them "appear at toplevel".

form A diversion stream of this type saves the forms in a file. This is done by compiling
them.

declaration
Currently the same as form. This is for saving information needed for compilation of
things (like declarations and macros).

text landles text. The text is copied to a file.

documentation
I ike text, but additionally implies thai the text is dlocumentation: tiisformations may
be made on it when it is diverted. Svc section 8.2.1. page 53.

MIA' Sill)c:I)IVI)l.163 29-JUN-81

- ra r-':, W -- J I

Diversion Streams 50 LSB Manual

eval Forms diverted to such a diversion stream are immediately evaled.

non- existent
Attempting to divert anything to a diversion stream of type non-existent is an error.
Attempting to "load" one, if for example the pubdcl diversion stream of some
module is of this type, does nothing. This is used by some LSB systems which are
not actually implemented with LSB.

The other clauses of a diversion stream definition are only pertinent to diversion streams
which produce files: these are the same clauses which may be specified for a module: host,
device, directory, and pathname. When I.S13 constructs the pathname for a diversion file,
missing components default to the corresponding components of the pathname of the module (as
I.SB calculates it to be from the system definition), except for the file-type and the version. The
version defauhs to the version of the module being read or compiled. The file-type defaults to
the name of the diversion stream, with some exceptions dependent on the host file system:

Diversion Stream LispM NIL Three-character
pubdcl pubdql pubdvl pdc
sysdcl sysdql sysdvl sdc
moddcl moddql sysdvl mdc
pubdoc pubdoq pubdov pdo
sysdoc sysdoq sysdov sdo
moddoc moddoq moddov mdo
macros maqros mavros mac

These exceptions exist either (as in the case of TOPS-1O) to compactify the name into 3
characters, or (more commonly) because corresponding diversion files for different lisp
implementations will be kept on the same file system. If for sonic reason these name defaults
need to be hacked, see lsb:'diversion-fn2s, page 67.

There are additional system definition (and module specification) keywords which define
diversion streams, and additionally default the type and predicate of it:

textual-diversion-stream
text -diversion -stream
text -divstream

This defatlts the diversion stream to be of type text. The predicate defaults to
(isb:compiling -to-file?)- the text will only be diverted if a module is being fully
compiled.

documentation -diversion -stream
doc -divstream

[his dcfaults the diversion stream to be of type documentation. [he predicate defaults
t (Isb:divert documentation?).

form -diversion -stream
form-divstream

The di\cision stream will he hy default of type form. Forms (lisp code) diverted to it

will be compiled into a file. Ihe predicate defaults to (sb:compiling -to-file?).

declaration -diversion --stream
dcl divstroam

Ilhc dimcrshun stream %%ill he by delitll of i)1p declaration. Iorms di\crled to it "ill

he, u(nnlpilhel into a file: the predicate miscd b, deliult is (lsb:divert - declarations?).
lhis I\ p c of diversion ,trcema is distinct friom form iccat, is it nmui do iddiuional

\- l I sill .-)\l) -. 3 -9-. N 81

LSII Manual 51 Form D~iversion Streams

processing or setup on the forms, such as implicitly diverting some kinds of setup forms

first, this is not done yet however.

Here are some predefined predicatcs for use with diversion stream definitions.

lab :compiling?
I'lis returns t if esraluated during a compilation, nil otherwise. Ic will return nil if called
during thle loading of a filec (by lsb-load only, sorry), even if during a compilation.

lab: not-compiling?
Equivalent to (not (lsb:compiling?)).

lab compiling-to-file?
This returns t if evaluated during the compilation of a file to a file, nil otherwise (and
during loading of a file). This is the default for randomly defined diversion streams.

lab: ivert-documentation?
This returns t if lsb:compiling -to -file? would, and if the inhibit -documentation -
production flag was not set by specification of that clause in the system definition or
module specification. 'I'is is the defaiult diversion stream predicate for all diversion
streams defined with thle textual -diversion -stream clause. Note that if one uses the
diversion -stream clause but specifies a type of text or documentation (as explained
below), the defautlt predicate is still (lsb:compifing -to -file?).

lsb divert-declarations?
This is the default predicate used for declaration diversion streams. It is currently
equivalent to lsb:compiling -to -file? (q.v.), but may become more complex as facilities
become better adapted to the use of a Lisp environment with a resident compiler, such as
Lisp Machine ILisp.

8.1 Form Diversion Streams

When an I Sil definition is processed, the information from it is partitioned up on the basis
of %4hat needs to he knov~n where, and the forms generated are "sent" to various form diversion
strearns. An example odf this is given in section 2.5, page 7:

V (define-public-routine (square$ (flonum n))
(dcls (value-type flonum))

($n n))
[his says that square$ is a routine of one argument (Pi, a fionum) which always returns a flonum
result. What is actually produced from this definition is something more on the order of

(divert-forms-to (pubdcl compilation-environment)
dec/aratin /rsquure$)

(de fii square$ (n)
hoo l-dclIar, itions if liceufcc

($it n))
lhm, is, 111C dcefinition of1' square$ is sent toi the toplevel diversion strealm, which is like has %ing it

Spcihdid At top)ICs l in) thle sOIciu file. 'hei declimat ions for sqtuare$, howes er. tic sent it) the
pubdcl and complation environment di ci sii n streams,: the fomris a dcch(a'/inIUt divvMUJU
stm c fin Ir public 111; ,itI is ald thle IdUCittri vIS 1t 11rrsu n Werillzj which has ipredicate si ich

Textual Diversion Streams 52 LISB Manual

that the forms will be evaluated immediately. but only during compilation.

divert-forms-to Special Forn
(divert-forms - to diversion-stream-names

form-! fornm-2 ...)
This is the primitive macro for initiating forn diversions. It is only valid as a "toplevel
form" in a module (similar to defun and eval-when). One may not nest this construct,
and the behaviour of eval-when and declare inside of it is not defined. What is usually
more convenient to use than this is forms-needed-for:

forms-needed-for Special l'onn
(forms-needed-for needed-for-keyword-lis

form-1 form-2 ...)

This is similar to divert-forms-to, but accepts needed-for keywords, as described in
section 2.6, page 8. If a keyword implicitly needs a visibility class, private is assumed;
hence, in this context, the compilation keyword is equivalent to private-compilation.

8.2 Textual Diversion Streams
V

textual diversion streams are diversion streams whose primary operation is manipulation of
text, rather than forms. Tiere are two types of diversion streams defined which handle text:
text. which transcribes the diverted text literally, and documentation, which may perform some
transformations in the process.

Text diversion is effected by an extension of the read-time conditional inclusion mechanism:
de exclusion of text by the { reader macro allows its inclusion test to specify what diversion
streams the excluded text should be diverted to. There is additionally provision for actions to be
taken before, after, and during the exclusion process.

divert-to Inclusion Tester
(divert-to diistream-l dinstream-2 ...) is the simplest inclusion test for diverting text. It is
only for use in read-time conditional inclusions, as there is no other conditional inclusion
mechanism which can provide a source of "text". Thus.

((divert-to pubdoc)
This is some documentation.

di\ crts all of the text from the first ")" to the last ")" to the pubdoc diversion stream.

There are several other inclusion tests for use with diverting documentation in . more
cmplic.iicd %a., riher than just a loerud transcripion as divert-to does. It is thcrefore posoh11le
for tranfilmtinms on the di erted text to occur both as a result of the \kav the dth\ersion stream
handles the di er,,itn operation, and as a result of the \ka. the text is sent tc the di\ersion
S,1,ime't. I lose comiiplications arc described in chapter 9), page 55. Many of them only function on
documentation di ersion strcams. , the\ implicitly perlorm higher-level fornatting operations
%hich onl, dtUlxuentation di',rsion -Itrcals can supply.

\11 :1 Sill)O('1)I\)l-61 29-JtN-,

LSB Manual 53 Pre-Defined Diversion Streams

8.2.1 Documentation Diversion Streams

)ocumentation diversion streams differ from plain text diversion streams mainly by extension.
A documentation diversion stream has a documentation-type, which may be specified with the
documentation-type clause in the diversion stream definition, and it may be defaulted for all
documentation diversion streams by being used as a system definition or module specification
clause. There are two documentation types currently defined: bolio, the default, and tex. This
nonnally only manifest themselves when the more complicated documentation diversion inclusion
tests are used; these are documented fully in chapter 9.

(define-system hairily-documented
(built-on this that the-other-thing)
(documentation-type tex)
(documentation-diversion-stream extra-doc

(documentation-type R))
(modules foo

(bar (documentation-type bolio))
(baz (documentation-diversion-stream pubdoc

(documentation-type bolio)))))
The hairily-documented system has a default documentation-type of tex; this is implied by the
(documentation-type tex) at top level in the system definition. All documentation diversion
streams which are not otherwise specified will default this way. For the bar module, however,
the default documentation type is bolio. Note that the type of defaulting going on here does not
affect the extra-doc diversion stream, since the documentation type for that never gets defaulted;
for all modules, it will be of documentation type R. Likewise, for the baz module, all the
documentation diversion streams will have documentation type tex except for extra-doc and
pubdoc, which will be R and bolio. Note that there is no R documentation type presently.

8.3 Pre-Defined Diversion Streams

Here are the diversion streams initially defined in an LSB environment.

pubdoc
A documentation diversion stream, intended for public documentation. Its predicate
causes diversion to occur only when the containing module is being compiled and
documentation diversion is enabled: it uses the Isb:divert-documentation? predicate.

sysdoc
Similar to pubdoc, but for system documentation.

moddoc
A documentation diversion stream, intended for private documentation. By default this
diversion stream has a predicate of nil, so text sent to it goes nowhere: that predicate
may ho ever be modified in the system definition.

into Like pubdoc. This is provided somewhat spuriously. It could be used for suci things
as online documentation.

pubdcl
'lhis is a declaration dixersion sream, for public declarations. Its pedicate causes
dirion to (kL0 or 011 %khcn the imodule is heing compiled.

sysdcl
I ike pubdcl. fOr system declarations.

NIl I 111)t)(1)1\ 1)1 6 291JUN-81

X Y I ' - I' " I 1 ', " "'- T . .] ..i ;' = ':- " "7: ..

Pre-Defined Diversion Streams 54 LSB Manual

moddcl
For private declarations. This normally has predicate of nil, causing no diversions. That
may be changed by the user if it is found to be needed for some obscure forward-
reference problem.

compilation -environment
An eval diversion stream, with a predicate that causes the diversion (and hence
evaluation) to occur only in the compiler.

readtime -environment

In a compilation environment, this is defined as an eval diversion stream, causing the
forms diverted to be immediately evaluated: otherwise, it is a toplevel diversion stream,
thus being equivalent to interpreter. The result of this is that the "diversion" occurs in
the processing environment, so may be used to modify the LSB environment, or the
reading environment. This may be renamed to processing-environment.

interpreter
This is a diversion stream of type toplevel, defined with a predicate which causes no
diversion when being processed by the compiler: thus,

(divert-forms-to (interpreter) .

acts like
(eval-when (eval) ...

compiler -toplevel
A toplevel diversion stream with a predicate complementary to that of the interpreter
diversion stream.

toplevel
A toplevel diversion stream with a predicate of t. This is useful if the forms to be
diverted not only should be processed "at top level" in the module, but also sent
somewhere else (e.g., to the pubdcl diversion stream).

macros
This diversion stream is used primarily for macro definitions which are not needed in a
totally compiled system (see section 5.5.1, page 34). In Maclisp, it is by default a form
diversion stream which will compile its forms into a file, when used in the compiler,
and do nothing in the interpreter (like pubdcl). 1In Lisp Machine Lisp and NIL, it will
by default be a toplevel diversion stream, so that the forms in it are put in the
compiled output file.

Nil :1 SIlX)C:l)IV)I'F63 29-J1N-81

LSB Manual 55 Documentation Diversion

9. Documentation Diversion
Section 8.2 described textual diversion streams, and how text may be sent to them. This

chapter discusses more advanced facilities for diverting text and producing documentation.

pub I ic-documentat ion Inclusion Tester
sys ter- docume n tat Io nclusion Tester
private-documentation Inclusion Tester
online-documentation Inclusion Tester

These routines are for use as inclusion tests. They are equivalent to (divert-
documentation-to divstream) for the appropriate diversion stream: pubdoc, sysdoc.
moddoc, or info.

divert-documentation-to Inclusion Tester
(divert-documentation-to divsirearn-l divstream-2 ...) is an inclusion test which always
fails, and causes the text within curly-brackets to be interpreted as documentation and sent
to the specified diversion streams. Example:

{(divert-documentation-to pubdoc)

.chapter "Hacking Around"
This is a test of the emergency broadcast system.

It is only a test. Had it been a real emergency you

would have run out of list storage.

I
This inclusion test is not equivalent to divert-to (page 52). The enclosed text is output
within a "documentation block", which means that it will be preceded by a blank line;
this is irrespective of whether a newline immediately follows the inclusion test, as such a
newline is ignored.

When LISB defines operations or variables, it records various attributes of them in the
environment (either compiler or interpreter). This information is then used by the following
routines to supplement user-supplied documentation. For operations (routines, macros, and
special-forms. but not compile-time-macros), this information includes such things as the type of
definition, information about the prototype call, and the value-type. For both, most importantly,
it includes the diversion stream(s) to which documentation about the object defined is to be sent
to. The following inclusion tests utilize this information in order to figure out where to send the
excluded text.

document- routine Inclusion Tester
document-routines Inclusion Tester

These two inclusion tests are identical: both names are provided for cuphony.
(document-routine) as an inclusion test will document the most recently defined routine;
(document-routine a) will document a, and (document-routines a b c) Nill document
a, b, and c as a group, for an effect similar to that in this text here. For exampilc, one
might do

NW(.: S(I)OC-:l()CI)1V43 2)-JlN81

Documentation Diversion 56 LSB Manual

(define-public-open-codable-routine (square (number n))
(dcls (value-type number))
(times n n))

((document-routine)
e3squarec* returns the square of its argument.

I
(define-public-open-codable-routine (squares (flonum n))

(dcls (value-type flonum))
(*$ n n))

(define-public-open-codable-routine (square& (fixnum n))
(dcls (value-type fixnum))
(* n n))

((document-routines squares square&)
E3squareSe* and c3square&r, are the flonum-only
and fixnum-only versions of E3squaree..
}

What happens is the diverted text is output bctween stuff computed from the dcfinition
information, to produce a special text-justifier construct for the particular type of
definition. What is actually produced depends on the documentation-type of the
diversion stream(s); this is described later in this chapter.

document-variable [nclusion Tester
document-variab les Inclusion Tester

°lliese is similar in form and function to document-routine.
(defi ne-system-variable *frobozz*

(default-init (create-a-crock)))
((document-variable)

This is a disgusting crock.
}

When one is utilizing the same source text in different Lisp implementations, it is often
unnecessary to redundantly produce documentation from both. The default predicate used by
documentation diversion streams (Isb:divert-documentation?, page 51) checks the flag set by
inhibit -documentation -production system definition option, which says that documentation
should not be diverted. For example. the pretty-print-definition system is defined:

(define-system pretty-print-definition
(directory format)
(built-on loop sharpsign backquote (PDP-lO user-hunk})
(users-implicitly-need write)
{(except-for PDP 20) (inhibit-documentation-production))
(modules ppdef ppdesc)

When address space is a consideration and the above operation and variable doctmenution
factlitics ale not being used. one shotuld also use the inhibit -documentation -production option.
hecmsc in addition to inhihiling the diversio n of documentation, it tell% I.S I not to record

in i imIti(n ,bout Ihc definitions.

%If :J .Nll)OCt:lI) CI)IV43 29-JI.JN-81

LSII Manual 57 'I'hec Bolio Documentation Type

9.1 The Bolio Documentation Type

Bulio is a text justifier written in PDP-10 Maclisp. It comes with predefined operators and
conventions for documenting Lisp programs; because of this, it is the default documentation type.
Bolio was used to produce the Lisp Machine Manual, and this document.

T[he output produced for Bolio by
(defi ne-publi c-open-codabl 6-routine (square (number n))

(dcls (value-type number))
(times n n))

((document-routine)
i3squaree* returns the square of its argument.

looks like
.defun square e1(numbere.Vne1)t*
f3squaree* returns the square of its argument.
.end defun

All of that randomness after square on the .defun line is font switching and spacing so that
Bolio does not need to do any parsing of the argument descriptions. The output produced by

(define-public-open-codable-routine (square$ (flonum n))
(dcls (value-type flonum))

($n n))
(define-pubi ic-open-codable-routine (square& (fixnum n))

(dcls (value-type fixnum))
(* n n))

* - ((document-routines square$ square&)
f3square$c* and c3square&fs are the flonum-only
and fixnum-only versions of E3squaree*.

iooks like
- .defun square$ EI(flonumE*Vntl)E*

.defunl square& e 1(fixnumE*VnEl)e*
a3squareSL* and E3square&t. are the flonum-only
and fixnum-only versions of t3squarec*.
end-defun

D~ifferent types of definitions produce different documentation operators, in a similar format,
differing only in the tcxt-justificr commands used and the argument descriptions: only routine
definitions, producing defun. output any argument descriptions. Variable definitions use .defvar,
.defvarl. and end defvar, macro definitions use .defmac. .detmacl, and .end defmac, and
special forms (or routines or macros which have the document- as -special -form option specified
in their declarations) uisc defspec, .defspeci, and end_defspec.

- lFxcept on Miiltics (which does not do case-conversion on input), variable, argument, data
type. and operationi naines are converted to lower case when otapit. Call mapping keywords.
suich a% optional. are (apitali/ed. In l isp implementations with packages, some liristics are
tiled to altvnipt to (eiernuic how thc defined object's namec shouild he printed. For routines, the
namnes of' the miguilent will always be output without any package in formnation.

Nil :1 SbIl)0Ot:lX)CI)IV 43 211-JUN-81

'Ihe "EX Documentation Type 58 L.SB Manual

9.2 The TEX Documentation Type

The output produced by the tex documentation type for the square example of the previous
section looks like

\defun SQUARE \argtype{number}(n}.
user-lext

Note that no indication of the end of the text is given, although there will be a blank line there.
The tex fonat in general produces calls like argtype above rather than pre-formatting the type
and call-mapping keyword information: e.g., the routine

(define-public-routine (foo (quoted a) (optional (flonum b)))

would produce the \defun header
\defun FOO \quoted{quoted}(a}

\optional{optional){\argtype{flonum}{b)}.
except that it would all be on one line. The reason quoted and optional appear to be duplicated
above is that the name in braces is the actual keyword used in the definition, which may be
different from the macro name. Currently, the routine, macro, or variable name is not lower-
casified. although the variable names and keywords are. Like bolio, the tex documentation type
can produce multiple \defuns in a block, by using \defunl. It will also produce calls to
\defvar, \defmac. and \defspec, and \defvarl etc. Unlike bolio, all of the operation
documenting macro calls produced will contain the argument information from the prototype call.

The full list of argument descriptor macros used is:

\optional (k wd {innards}
\rest{ k wvd} (innards)

where kwd is the actual call-mapping keyword used. and innards is the remainder of
the argument description.

\quoted (k wd} (innards)
Similar to the above.

\argtype{ k'dl (variable)
The \argtype will be the most deeply nested macro call if it is present, so its second
arguinet" can only be the variable name.

Ihus the otutput produced for the variable args in the prototype call (foo (any-number-of
(quoted (fixnum args))) looks like

\rest(any-number-of}{\quotedfquoted}{\argtype{fixnum}{args))}

There is no existing package of TtX macros to do anything with this output, yet.

\11 .1 s10 0)',lX)(l)lV43 29-J 1,N-81

ILSB Manual 59 Getting LSB

10. Getting LSB

10.1 The LSB Compiler

LSB provides its own standard compiler interface. It is very similar to whatever standard
compiler interface is normally provided, but offers one option (as a default) which none do: it
reads and macro-processes the input file fully before it begins compilation. That is, it
incrementally reads in the file, expanding toplevel macros, LSB definitions and diversions,
declares. eval-whens, and includes, but instead of immediately outputting or compiling the
resultant forms as an ordinary compiler would, they are buffered up. Only when all of the input
has been processed are de forms compiled.

This is a very useful action, due to the way LSB works. Because all of the declarative
information about defined objects in LSB is derived from the definition form, one does not
declare everything that needs declaring at the front of the file; thus, this first pass allows LSB to
extract all of the declarations (and macro definitions) which will be needed for the compilation
before the compilation starts. Note that the reading of the file is done incrementally with this
form processing: one may, in something like an eval-when or in a toplevel macro call (which
the module form at the front of the file is) modify reader attributes, such as syntax and input
radix. This also obviates the need for declare-routine (page 40) and declare-variable (page 46)
in many cases.

Having the file processed in this manner does not solve all forward-reference problems; only
those "one level deep", if that much. LSB makes use of some declaration information when it
expands out definitions, and information it needs should be around before one of its forms is to
be processed. Thus, if one does something like

(define-public-routine (ilk (triple x))
(dcls (type-check-argument x))

(define-public-data-type triple
(predicate triplep)
(continue-with brand-x-object))

the ilk routine will not have type checking performed for it, because at the time LSB creates
type-checking code the triple data-type (and the associated mechanism for doing argument type
checking for that type) has not been defined. The same could be true for top-level calls to
macros which arc defined later in the file:

(define-a-frob foobar)
(define-public-macro (define-a-frob name)

Whether or not the ordering matters in this last case depends on what (define-a-frob foobar)

expands into: for safety, constructions like this should be ordered properly. Note also that this
ordering constraint is in fact that which would be necessary to load the code interpreted anyway,
since there is no pre-pass made when a source file is loaded into a lisp.

il.

MI I.SIII)OC:C()MI' R 25 29-JUN-81

The LSB Compiler 60 LSB Manual

10.1.1 The Maclisp Compiler

The PDP-10 LSB compiler is a normal PDP-10 compiler with LSB in it. running the LSB
compiler interface. The command interface to it is the same as the ordinary PDP-10 Lisp
compiler, although it will run the L.SB file-processing interface as described above. If for some
reason this LSB interface is undesirable, say the file is particularly large and does not fit into the
compiler, then one can disable this mode by negating the "L" compiler switch: for example, to
the compiler's command-processing loop, saying:

myfile (t-l)
On the ITS operating system, the LSB compiler may be invoked with the :ISBCL command.
"There is currently no LSB compiler available on non-ITS operating systems.

In Multics Maclisp, there is also currently no saved I.SB compiler available. The special LSB
file-processing interface is not available either. One may, however, bootstrap up an LSB in an
ordinary compiler by placing the following form at the front of the source file, before the module
form:

(eval-when (compile)
(or (status feature LSB)

(load ">udd>Mathlab>LSB>compilation-environment.lisp")))
This form will thus work both in a compiler without L.SB, and in a saved I.SB compiler if and
when one becomes available. One must use a compiler/lisp which understands the eval-when
special form; LSB depends on it. If the source file is also to be used in Lisp implementations
other than Multics, the Multics feature should be checked for too:

(eval-when (compile)
(and (status feature Multics)

(not (status feature LSB))
(load ">udd>Mathlab>LS6>compilation-environment.lisp")))

10.1.2 On the Lisp Machine

At some future time, I.SB should exist saved on a disk band. Currently. one may cause I.SB
to bc loaded by doing

(load "MC:LSB;LISP;4 LOAD")
which loads cver)thing, and is thus a bit time consuming.

Io compile an ISil module, do not use qc-file:

]sbcom mfilc &optional outfih, la'kagc-spec
Ibhis is similar to qc-file, but runs the I.SB compiler interface. "lle arguments Isbcom
Ltkcs ,rc interpreted the sameic way qc-file interprets them (q.v.).

I

Ml. I sl1I)O()(MII R 25 29-JLIN-81

I.SB Manual 61 Interpretcd LSB

10.1.3 On the VAX

To be written when developed. It is suspected that it may not be possible to compile ISB on
the /0 for the VAX because of address-space limitations. LSB use on the VAX will probably not
differ drasticall) fi'om that on the PDP- 10.

10.2 Interpreted LSB

On ITS, .LSB is available as a dumped environment under the name LSB. This environment
contains some things which are not strictly a part of LSB but which are commonly used by most
current I.SB users. If demand indicates, this can be cleaned up.

)umped subsystems on ITS very often will need I.SB in them if any code is going to be run
interpreted in them, but for production purposes this may be undesirable. It is possible to create
versions of dtrnped subsystems which do and do not contain LSB, and which share the portion
of the subsystem not containing LSB. This is, in fact, a general feature of Maclisp on ITS, and
has nothing to do with LSB; it is documented elsewhere. Ie file LSB FILES on the I.SB
directory will, when loaded, load in those parts of LSB normally needed for running interpreted
code, and set up autoload properties for some others which are only rarely used. All LSB
autoload properties in PI)P-10 Maclisp are of the form ((Isb) ...), so on a non-ITS system the
atom Isb may be given a ppn property if needed. Much LISB code automatically defaults the Isb
ppn property to that for lisp.

On Multics, the file)udd>Mathlab>LSB>Isb-loader.Iisp is equivalent to the LSB FILES file
of PI)P-10 Maclisp--it loads only those parts of I.SB normally needed for interpretation.

The Lisp Machine programming environment is such that getting LSB for interpretation is the
same as getting it for compilation.

Nil :1 ,ltI)((" I R 25 29-IUN-81

Coming Attractions 62 LISB Manual

11. Coming Attractions
These are random notes on things which are either under development or are being

considered.

In PI)P-10 Maclisp, it is possible for the file property list to be parscd and used in a
I.FI)IT/FMACS combination, to allow the proper binding environment to be established when
code is transferred from the EMACS to the LISP. This can use the ILSB option of the file
property list. An experimental version of this has been tried, but the minimal hooks necessary do
not yet exist with the system-supplied DI.DIH'

One problem with using LSB is that things which are logically built-on it arc then required
to use I.SB if they are to properly have their compilation (for example) environment established.
In most cases, however, loading the various pubdcl files of the system(s) involved will suffice. A
relatively small amount of code would be needed to support the loading of these files into a bare
compiler. This is mainly applicable to Lisp environments like Maclisp where the compilation
environment is distinct from the runtime environment. For the Lisp Machine, the potential exists
for either causing the contents of the declaration diversion files to be "expanded out" so that they
do not utilize 1.SI. or again, to simply have some special code to allow them to be loaded. The
latter would require there to be an LSB package. Yet another alternative for the Lisp Machine
(or similar) implementation is to cause all of the declaration infornation to be output into the
compilation output file- this differs from splitting it into multiple (e.g.. qiasl, pubdcl, sysdcl)
files in that there would be no duplication of code. Again, this might possibly be done either by
having some bootstrap I.SB code around at load time. or by convincing ILSB to "open-code" the
declaration info it outputs, this last is only moderately space-consuming, as much of the stuff
output involves declaration info which is redundant with the runtime environment, and error
checking.

it is possible to compile portions of an L.S3 module "out of context". All that needs to be
done is to run the I.SB pre-processing step (section 10.1, page 59) over the original file to extract
.1ll private declarations, and then compile the file as if it were that module itself. Appropriate
fudging of the diversion streams is necessary to ensure that erroneous di~ersions are not created
for that module, but is not difficult. An experimental version of this has been tried, and all that
is nces',ary is to put i patch-module form at the front of the file. instead of using module.

ihs tcilit) is not available by default yet, but probahl\ will be soon.

t

.. ", - r '., ..-- I, l..r. -T-

LSB Manual 63 Extending LSB

12. Extending LSB

This chapter describes various methods and conventions which may be used to extend or
customize I.SB in some way. 'l'le contents are somewhat haphazardly organized, and in many
cases there is missing description of how to do things, but it is suitable as a reference for
relatively stable but internal facilities of I.SB. Nothing in this chapter should be used frivolously:
it is primarily compensation for lack of better "public" facilities. Also, any changes to the
contents of this chapter would warrant a warning to the INFO-I.SB mailing list, so it is safer to
use what is listed here than just anything you might find in the source code.

If you use any facilities documented here, it is recommended that the system using them be
built-on the lsb system. Although use of some things here does not require this, not all macro
definitions and declarations may be pre-loaded in all Lisp implementations.

12.1 LSB Keyword Comparison

Here are the various routines for comparing symbols for LSB keyword or token equality.
Note that in all cases the "keywords" being compared are expected to be interned symbols: this
may matter in some lisp implementations.

lsb:token-equal tokenl token2
implements token equality testing.

lsb:token-member token list
lsb:token-assoc token a-list
lsb:token-lookup token a-list

are analogous to member and assoc. Isb:token--lookup is like using the Lisp Machine
function memass: it returns the sublist whose car is what would be returned by
Isb:token-assoc. That is,

(defun lsb:token-assoc (token a-list)
(car (Isb:token-lookup token a-list)))

lsb:kwd-equal tokenl token2
lsb:kwd-member token list
Isb:kwd-assoc token a-list
lsb:kwd-lookup token a-list

!q;, The versions of the above predicates which check using keyword equality.

lsb:kwd-bassoc token a-list
This is like Isb:kwd-assoc but bubbles an entry found forward in a-list. This should
only be used for things which may be safely modified.

Many I.SII "tables" are implemented as association lists. Since the keys of the entries cannot
neccssarily be compared with eq or equal, the following macros may be used to push new entries
on.

Nl I ,S)OC:Xl:NI) 37 29-JUN-81

Defining System)efinition Options 64 I.SB Manual

lsb;push-par Macro
(Isb:push-pair (displace . lsb:displace-macmem)

lsb:,macro-memoizers)
pushes the entry (displace .lsb:displace-macmem) onto the list Isb:rnacro-memoizers.
If the variable is not bound, it will be set to nil first. If there is already an entry for
displace there, it will be removed.

This macro is defined such that its expansion can be run in a lisp without I.SI3 present.
Therefore it does not actually use kerword equality, but cheats and only uses token
equality. For that reason, it is imperative that only the "canonical" form of a keyword be
used in this manner. Note that if the compiler puts the call to Isb:push-pair rather than
its expansion in the compiled output file, then I.SB will need to be around when the file
is loaded. The PDP-10 Maclisp compiler normally will completely macro-expand forms
before stuffing them into its output file.

lsb:push-sym Macro
This is just like Isb:push-pair, only it does use eq for comparing "keys". It may thus be
used for adding entries to association lists of (say) variable names. Qualifications for
lsb:push-pair about runtime support apply here also.

12.2 Defining System Definition Options

This section documents some facilities which may be used for defining LSB options, which are
specifiable in system and module definitions. It may be safely skipped by those who are not
interested in defining their own. 'llhe facilities here should not be used frivolously; they are
intended to be used by the maintainers of systems which need to provide special processing
environments for their users.

An 1.S11 option is essentially a state which can be encoded in some variable(s). It has a
routine to determiine the value(s) implied by the option clause, and each variable has a default
value which is used in the absence of a specification.

deflne-lsb-option Macro
(dtfine- lsb-opt ion oplion-keYword interpretation-fn

varspec-I varspce-2 ...
defines / ntu-kcVK',rl to be an option for inclusion in a system definition or module
spccification.I mtcrIpr'tl-orn .1 is a fulnction of onc argument, the clause, which should
return an issociation list of the variahles to he modificd and their values. Fach of the
var%'c-i .Jes1ribcs the variables which may be modified (and thus may need to be bound
to ,ct iij, an I Sit environment): it mnsa be either just the variable, in \khich case nil is
tsed as the dcflault value, or a list of the variable and a form to be evaluated to get the

altjc. I.*qr example,

(detun hack-input-radix (clause)
(list (cons 'ibase (cadr clause))))

(define-lsb-option input-radix hack-input-radix
(ibase 10.))

N, :1 I ilt))C:lI X II N1) 3 7 29-.11N-814Yi

" ,4t - : , , r , - , _ , --, -,. , ..,... _

I SB Manual 65 Defining New Rcadtables

define-lsb-flag-option Alacro
'I'his is really at special case of define- lsb -option. 'lhe variable(s) will take on only t or
nil as values. For example.

(define-i sb-fl ag-option do-argument-type-checking
1 sb:*type-check?)

defines do -argument -type -checking such that either of the clauses
(do-argumient-type-Checking)
(do-argument-type-checking t)

turns On type checking (by setting lsb:*type-check? to t), and
(do-argument-type-Checking nil)

tunsof type checking. '[esna odfn-s-flag-option is the same as that to

define- Isb -option, minus the ftinction.

Note that if one desires an option defined with define-lIsb-option or dlefine-lsb -flag -option
to take effect in the compilation environment, one must explicitly use a forms- needed- for form,
like

(forms-needed-for (running public-compilation)
(defun hack-input-radix ...)
(define-lsb-option input-radix ...)

unless the module is needed -for- user -compilation and the option is not used by the systcm
which defines it.

By special dispensation, in Mlaclisp it is possible to load compiled calls to define -Isb -option
and define-lsb-flag -option into a Lisp which does not have I.SB1 present. If l.SB is loaded in
at a latter time, these options will be in effect (unless otherwise redefined).

12.3 IDctinig New Reaidtables

lsb:0eadtables Variable
'This is an association list of keywords and the readtables they represent. Fach "readtable"
itself is allowed (and in fact recommended) ito be a symbol whose value is the readtable
to be used. TIhe initial value of this variable is

((standard . lsb:*standard-readtable))

1s0:0standapd-roadtable Variable

'The value of' this is used as the "standard" and defaiult readtable by LI3. It is initialized
V to the readtable current when LSB is loaded in; it will typically be the one and only

readtahle in the L isp environment.

'Pius. one might define at new readtahle to LSB by doing
(lsb:push-pair (readtable . Brand-X-Readtable)

Isb:*readtables)
iII somel appropriate place.

N11 -1I OCll X.'Il [NI) 37 2II JN-81

Playing with the System Definition 66 LSB Manual

12.4 Playing with the System Definition

lsb:establsh-sysdet system-spec
systein-spec is exactly what might be specified inside of (say) a built-on clause, as
described on page 12; either the name of a system, or a list of the name of a system,
and a pathname suggesting where to find the system definition. This performs all the
actions associated with searching for a system definition (if it is not already known!)
described early in this manual. It returns a list, the car of which is the canonical name
for the system, and the cdr of which is the system definition body.

lsb:sysdefs Variable
An a-list of all known system definitions. The car of each entry is the name of the
system (which should be compared using LSB token equality), and the cdr is, if non-
atomic, the definition. If the cdr is atomic, then it is the name of another system whose
definition should be used instead ("indirected to").

lsb:*syslocs Variable
An a-list of system names and locations. The location here is exactly that supplied with
define- system -location.

1sb:dotermlno-module-flte-group module-spec sysiem-def
system-def is a system definition, of the form returned by Isb:establish-sysdef. module-
spec is the entry for the appropriate module out of the modules clause of the system
definition. This returns a representation for the pathname of the module which does not
include a file-type or version' this is used for such things as finding either the source or
compiled output file, or for defaulting the pathname for a diversion stream associated with
that module.

I sb :de te rmi no- dl ves sI on- f len ame divstream-clause module-spec sysent-def version?
This determines the actual pathname for the diversion stream specified by divstream-clause,
with respect to module-spec and svstem-def, using a version of version?. module-spec and
systemn'def are the same as for lsb:determine-module-file-group. divstreamn-clause is the
clause defining a diversion stream. version?, if not nil, should be the version to be used
in the generated filename.

When I.SB itself calls this to determine the output pathnamc for a diversion stream,
version? is the version of the module source file. module-spec is the module-spec of the
module being compiled. and ssiem-dcef is the svstcm definition of the system the module
is a part of. dev'arcapn-clause Is whatever lsb:find--divdef would return for module-spec
and system-def.

When I.Sl1 calls this to determine the input pathname for a diversion stream (say a
. pubdcl dixersion stream to be loaded). version? is nil. In theory, either it could be the

actual version of the "installed" source for the module in question, or some symbolic
indicator that that is what should be used. [or input it is assumed that an unspecified
version doe% something reasonable (typically, retrieving the "most recent" one).

NIl :1 SIIIX)('I:\ l I.NI)37 29-JLIN-81

LSB Manual 67 Inclusion Tests

1sb: fnd-dtvdef divstream-name module-spec system-def
This looks up the diversion stream definition for divstream-name for module module-spec in
system-def. If there is a diversion-stream defining clause for divstream-name in module-
spec, that is returned: otherwise, if there is one in system-def, that is returned:
otherwise, if there is an LSB default for divstream-name, that is returned, otherwise nil.

lsb:*diverston-fn2s Variable
This is an association list of diversion stream names and their default file-types. It may
need to be hacked if cross-compilation is being done. Its value on the Lisp Machine, for
example, is:

((pubdoc . pubdoq) (sysdoc sysdoq) (moddoc moddoq)
(pubdcl . pubdql) (sysdcl sysdql) (moddcl moddql)
(macros . maqros))

The diversion stream names are looked up, as always, using LSB keyword equality.

12.5 Inclusion Tests

A non-atomic inclusion test has a routine associated with it. When the inclusion test is
performed, this routine should return nil if the text enclosed in curly-brackets is to be skipped
over, non-nil if it is not.

12.5.1 Simple Inclusion Tests

ihe variables, routines, and macros described here should be sufficient to define simple
inclusion test routines, such as only-for, except-for, only-on, and except-on.

lsb:*implementation-features Variable
This variable is normally nil. If it is set non-nil, then it is used as the set of "destination
features" used by the only-for and except-for inclusion tests, instead of the result of
(status features). Note that the only-on and except-on inclusion tests always use
(status features).

lsb: perform- tmpl ementation-feature- tests implementation-feature-tests

relurn-first-null-result? return-first- non- null- result? features-to-consider?
This is the routine used to parse implementation feature tests, like those given to the
only-for inclusion test. If frwures-to-consider? is nil, then Isb: *implementation -features
is used if that is not nil, otherwise (status features). See define-inclusion-test, below.

define- Inclus ion- test Macro

(define-inclusion-test name bvl
finn-I finrm-2 . ..)

At this time, the function defined for an inclusion test gets exactly one argument, the cdr
of the inclusion test. At some future date it is anticipated that bvl will be treated in some
other manner so that there can be automatic number-of-argument checking. Fhe only-for
inchisi'on test is defined as:

(define--inclusion-test only-for (tests)
(lsb: peiform,- imp lementation-feature-tests

tests) t ()))

MI.:I Slll)OC::XINI)37 29.JUN-81

Inclusion Tests 68 LSB Manual

12.5.2 Environment Modifying Inclusion Tests

L.SB keeps a stack of data which is used around succeeding conditional inclusions. This is
used both for recording the location of the initiating left-curly-bracket, and for possibly
performing some specific cleanup action when the right-curly-bracket is encountered.

lab: tnput-ftie-status
Returns some information about the name and position of the current input file.
Normally this will be a list of the name of the file, and the current file position.

I sb: iasynchronous-env i ronment- stack Variable
This is the stack of information on how to deal with all currently unmatched left-curly-
brackets. Fach entry on the stack is a cons of a description of the left-curly-bracket, and
how to undo it. The latter if not nil, is a cons of a function to apply to do the cleanup
action, and the arguments to apply it to. The default action performed for a succeeding
conditional inclusion is

(push (list (list* (lsb:input-file-status)
"conditional inclusion test"
the-inclusion-lest))

lsb:.asynchronous-environment-stack)
If an inclusion test desires to manipulate lsb:*asynchronous-environment-stack, it may
do as as shown below, and instead of returning just any non-nil value, it should return
the atom lsb:*asynchronous-environment-stack to tell the caller that it has already
performed that action. For example, the following defines the gross-hack inclusion test
(which for simplicity ignores its arguments) to make the variable *gross-hack* t for the
duration of the curly-brackets:

(define-inclusion-test gross-hack (ignore)
(push (list (list (lsb:input-file-status) "Gross Hack")

#'(lambda (val) (setq ,gross-hack* val))
gross-hack)

lsb:,asynchronous-environment-stack)
(setq *gross-hack* t)
'lsb:*asynchronous-environment-stack)

12.5.3 Text Diverting Inclusion Tests

Text diserting inclusion tests are inclusion tests which always fail, and which also manage to
state where the excluded text should be diverted to. The simplest way for this to be done is with
the following routines:

1 Sb: divert - to- 1 lisI-J dive,3i(,l-sr(',fl-n(Ies
Tlhis should only be called from within an inclusion test which is going to return nil.
lsb:divert-to-1 itself returns nil so that it may be used as the last form of an inclusion
test routine. It causes the excluded text to be transcribed verbatim to the named diversion
streams. Multiple calls may be made to Isb:divert-to-1 if necessary; specifying a
dpsersin stream multiple times will have no eflct. For example,

(define-inclusion-test divert-my-text (ignore)
(lsb:divert-to-l '(m,'c)))

defincs the inclusion tcsl routine diver sc-text huch that (divert-my-text) is equivalent
to (divert -to mydoc).

NI1 :1 SIll)C:I:\ I [Nf) 37 29-JUIN-81

LSB Manual 69 Inclusion 'rests

1 sb: divert - doc -1 list-of diversion-stream-names
This is just like Isb:divert-to-1, but additionally defaults Isb:*diversion-routine (see
below) to a routine which (1) starts the diversion output on a fresh line while (2) flushing
the initial newline (if any) at the start of the diverted text. Thus, the public-
documentation inclusion test could have been defined by

(define-inclusion-test public-documentation (ignore)
(lsb:divert-doc-1 '(pubdoc)))

Note: the "-" suffix on the preceding two routines is vestigial, and is expected to disappear,
someday.

If one is doing complicated textual diversions, such as those done by document-routine, the
following variables may be hacked by the inclusion test routine:

lsb:*diversion-blndlngs Variable
This is an a-list of variables and values they should be bound to. These bindings are
established around the diversion of the text.

I sb: *diversion- setup-forms Variable
A list of forims to be evaled before the diversion starts. This is done inside the binding
environment specified by Isb:*diversion-bindings.

lsb:*diversion-cleanup-forms Variable
A list of forms to be evaled after the diversion finishes. This also is done inside the
binding environment specified by Isb: *diversion -bindings.

lsb: *diversion- routine Variable
If this is not nil, it is a function to be called with no arguments. It has sole
responsibility for reading and diverting the text between matching curly-brackets.

lsb:dtverslon-tyo character-code
Diverts character-code to all of the diversion streams currently being diverted to. This is a
special case of. and is slightly faster than doing (Isb:diversion-operation ':tyo character
code).

lsb:dlverslon-operatlon operation (Any-number-ofargs)
Scnds the operation message to all of the diversion streams currently being diverted to.
The operations which may be of interest inside a textual diversion are:

:tyo character-code
Outputs the single character.

:princ object
Does the obvious.

:prinl object
'ibis too.

terpri
[his too.

:fresh- line
I)crficws ia :fresh-line operation on the stream: if the stream is not at the start
of a lImc, then a ncwline is output.

Ml :1 SIll)O(':I X I[NI) 37 29-JLIN-81

NNW,.-

Defining Documentation Types 70 LSB Manual

Other special-purpose operations may be defined for documentation purposes, such as
:start-operation-documentatlon; see the discussion on documentation types, below.

12.6 Defining Documentation Types

The squeamish and those prone to heart attacks read this section at their own risk.

Internally, diversion streams use a relatively simple message-passing mechanism. A
documentation type has associated with it a function which can field some subset of the messages
which get sent to documentation diversion streams- if it does not support some message, the
default behaviour (that provided by simple text diversion streams) will be obtained. The function
gets a first argument of the operation name, a second argument of the output stream, and
remaining arguments which depend on the operation. It should thus be prepared to accept any
number of arguments. Note that this calling convention is that produced by a function defined
with the l.isp Machine defselect macro.

Here are some of the messages a documentation-type handler should support:

:which - operations
The handler should return a list of the operations it supports. That list need not
include :which-operations, but :which-operations must be handled. The result of
this is cached by the diversion stream for efficiency, so it cannot dynamically change.
This operation is special in that the handler may be called on it before the stream has
been created, in which case the stream argument will be nil.

:start- operation -documentation daia-list
We are starting to produce some operation documentation, as gotten from document-
routine, data-list is a list of datastructures which contain the information for each of
the operations being documented; see <not-yet-written> for using these datastructures.
The handler should output whatever is necessary to start the documentation; for Bolio,
this is the .defun and defuni lines.

:end - operation -documentation data-list
data-list is the same as for :start-operation-documentation. The handler should
"finish up" the documentation block,

:start - variable - documentation data-list
Like :start-operation-documentation, but for variables. The elements of data-list
are in .i different format: see <not-yet-written).

:end variable documentation lata-list
Analogous to :end operation -documentation.

More operations like the aboue nwu be added in the fiture.

[he messages listed above are exactly those supported by the bolio and tex documentation
types. It is possible, however. for the documenation type handler to have much finer control
o<cr the outpul which is produced. For this. it needs to field most if not all messages which are
passed on to diversion streamni. These are:

:tyo (t aratirr-'o d("

[he character shouald he output to the stream. 1he infIormation on whether the
docunientation type handler fields this mcssige is cached specially for efficiency.

NIt :1 SIll)(.':[\ I [NI)37 29-JUN-81

LSB Manual 71 Macro Memoization

:princ object
The object should be princed to the stream.

:prinl object
The object should be prinled to the stream.

:terpri A newline should be output to the stream. Note that newlines in text being diverted
do not get converted to terpri operations, but are left as whatever character(s) they
were read in as. The documentation producing routines, however, should not
generate newline character sequences, but rather use the :terpri operation.

:fresh-line
A newline should be output to the stream iff it is not at the beginning of a line.

:tab-to destination (Optional increment)
see documentation on the -T operator of format

:close The stream should be "closed". 'Ihis operation is only used for successful completion.

:kill The stream should be "closed", and aborted. What normally happens here is the
stream is closed and the partially written file deleted.

:open pathname
The handler can support this if it desires to produce a non-standard 1/O stream:
normally, open would be called. Note that if the :open message is passed to the
handler, no stream has yet been created, so the stream argument to the handler will
be nil. The handler should return an output stream; this will be cached by the
diversion stream mechanism, and passed in to the handler for all subsequent
operations.

If the handler is going to field character-level stuff, i.e. the :tyo operation, it must also handle
any of the other operations which may produce output (such as :princ and terpri); the default
action in these cases does not involve breaking the high-level operation into its components and
passing them back to the handler. In Lisp implementations where general I/O streams are
available, it is probably better for the handler to field the :open message and return an 1/O
stream which will then handle the output operations appropriately.

Finally, if one is willing to wade through all of this and needs to associate a function with a
documentation type name:

lsb:*documentation-types Variable
The value of this is an association list of documentation type names and their handler
functions. The documentation type names are compared using I.SR keyword equality.

12.7 Macro Memoization

Isb: *macro-memoizers Variable
Ihis is an a-list of keywords acceptable to the do-macro-memoizing system definition
(111d m,1cro dcclattion) clause. 'I he cdr of each entry is a function whk h will he called
to produce the mcro Uniemoi/aiion code. and any setupl code which must come before the
defiuni11on. 'Ihei 11uol.t111J1 arc ihe iicro name, the name (i'olie variable which will have
as its %alc ihe Cial cl6l I1m. and the Iuml which m ill need to be evaluated to
produkc the cxlmsioln. 'lhe Junctioni should return a list of fIrns. The first fiorm "ill be
used as the hod% of the macro, and I Sil will arrange for the remaining forms to precede

Nil :I.SIIX)(':I:X I lNI) 37 29-A IN-81

Macro Memoizadon 72 LSB Manual

the macro definition itself. The original value of lsb: macro- memoizers looks like
((t . lsb:standard-macmem) (displace . lsb:displace-macmem))

and the displace method of macro memoization is defined by
(defun lsb:displace-macmem (macro-name

original-form-var
new-form-form)

macro-name : maybe unused
'((displace ,original-form-form ,new-form-form)
((only-for (or PDP-1O NIL))

This is so that any previous form of
macro-memoization will revert so we can undo it.

(flush-macromemos ',macro-name ()

t

M\I '1 SIlIX)C;[!XII :Ni) .37 29-J1JN-81I

I.SB Manual 73 Variable Binding- LBIND

13. Variable Binding - LBIND
The LBIND module, although not a part of the default LSB environment, is closely related

to it, and quite useful with LSB, both to supplant the use of the bindq and auxiliary-bindings
forms in operation definitions, and in places where those forms are not valid. It also is extremely
useful for writing implementation independent code, as the data types of the variables may be
specified using the standard I.SB data type keywords; no implementation dependent declarations
are needed. If it is used, the Ibind system should be noted in the built-on clause of the system
definition.

Ibind Macro
Ibind provides let-like syntax for binding variables. The syntax provides for the
specification of data types rather than destructuring. The general syntax is

(ibind (bind-spec-i bind-spec-2 ...
form-i
form-2

A bind-spec is one of the following:

variable
The variable will be bound to nil, and declared to be of type notype.

(variable value-form)
The variable will be bound to the value of value-form, which is evaluated
outside the binding environment of the variables, It is declared to be of type
notype.

((data-type variable) value-form)
The variable will be bound to thc ,alue of value-form, and declared to be of
type data-type.

(variable)
((data-type variable))
((data-type variable) nil)

An unspecified value-form is seen simply as being a value-form of nil, which
causes Ibind to determine the initial value from data-type. Thus,

(Ibind (((fixnum foo) nil)) fot)
=> 0

because foo gets bound to 0 rather than nil.
It should be noted that a bind-spee for Ibind has identical syntax to that of the auxiliary-
bindings form recognized in operation definition bodies (section 5.2.1, page 28). Thus,
the form

(lbind (((fixnum foo) (mumble)) ((flonum bar)) baz)

((lambda (foo bar baz) ...)
(mumble) 0.0 nil)

along wilh local declarations for the typed variables appropriate to the lisp
implementation.

NI.:I.SHII)OC:I IIINI) 13 29-JUN-81

Variable Binding - LBIND 74 LSB Manual

In many cases, one would like to compute a variable's value as some function of other
variables' value. For this, there is the Ibind * macro:

lblld* Macro
Ibind * has syntax identical to Ibind. The bindings are nested, however. That is,

(ibind (((fixnum foo) (mumble)) ((flonum bar)) baz)

((lambda (foo)
((lambda (bar)

((lambda (baz) ...

nil))
0.0))

(mumble))

%1I .1 S~i)()C: I111N 1) 13 29-JN-81

LSB Manual 75 Useful I.SB Systems

14. Useful LSB Systems
There are a number of pre-defined systems in LSB which may be of general interest. Many

of these are not written using [SB (in fact, [SB may require them to be bootstrapped), but some
have LSB-style definition extensions.

14.1 Pre-Defined Systems

Here are some of the systems which are pre-defined (either with define-system or define-
system-location) to LSB. This list is incomplete, the full list is in the file ML:LSB;LSBSYS >.

format The Maclisp implementation of the format function is written using LSB. This same
source will be used to bring up format in NIL. The Lisp Machine format is a totally
different implementation, although the major public definition of it is compatible.
format is documented in the Lisp Machine Manual [LMMan], and documentation of
the Maclisp version is in preparation.

Brand-X-Triple
Brand X is a low-level extension to Lisp for use in building knowledge bases
[BrandX]. It is written using [SB, and runs in PDP-10 Maclisp and Lisp Machine
Lisp.

defstruct
defstruct is a structure defining facility which operates compatibly in Maclisp and Lisp
Machine Lisp (NIL?). There are iSB definition extensions to defstruct, described
later in this chapter.

loop loop is a hairy iteration macro already mentioned [LOOPI. It, like defstruct, has LSB
definition extensions which are described later. loop is not written using LSB; being
(built-on loop), however, enables a system to not only use loop whether or not loop
is accessible by default in the given Lisp implementation, but also gives the system
access to the LSB definition extensions.

backquote
sharpsign

These are for the backquote (') and sharpsign (#) reader macros. These exist as
systems solely for the Multics implementation of LSB: they are available in PDP-10
Maclisp, Lisp Machine Lisp, and NIL by default, in which case being built-on either
of them is a fast no-op.

Mathlab-Macros
This, like backquote and sharpsign, exists only for the Multics implementation of
LSB. .ssentially. it comprises all of the various utility files used by the Mathlab
group on Multics. which are not covered by some other [ISB system definition (such
as backquote, sharpsign. and defstruct). It includes such macros as setf, if, push,
and pop-most of the things which are obtainable by default in PI)P-10 Maclisp, lisp
Machine Lisp, and Nil..

LSB I.SiB itself hlis a system definition so that certain internal facilities may be accessed by
users if neccssary. See chapter 12, page 63.

Mil :ISIIIX)':FX I RAS 12 29-JUN-81

Noo

LOOP 76 LSB Manual

user-hunk
A low-level PDP-10 Maclisp interface to hooks in the Lisp for treating hunks as
extended-type objects [LSBUtii].

ttyscan
Fancy parser-driven rubout processing, for PDP-10 Maclisp only. (Only runs on ITS
and TOPS-20 systems.) [LSBUtil]

write A protocol for performing text output which can be used to build such things as
pretty-printers [pp/writel.

pretty- print -definition
A layer built on write for pretty-printing Lisp objects [pp/write].

pretty- print
A layer built on pretty-print-definition for pretty-printing Lisp code [pp/write].

14.2 LOOP

I.SB defines the following extensions to the loop iteration macro, for defining iteration paths.

define-public-loop-path SpecialForm
defi no-system- loop- path Special Form
define-private-loop-path Special Form

These are all essentially equivalent to define-loop-path, but arrange for the information
to be sent to the diversion streams necessary for appropriate compilation and runtime
support.

deflne-public-loop-sequence-path SpecialForm
define-system-loop-sequence-path Special Fonn
define-private- loop- sequence-path Special Fonn

These hack define -loop -sequence- path similarly.

One might thus do the following to define a public loop iteration path:
(define-private-routine (parse-my-loop-path ...)

(dcls (also-needed-for public-compilation))

(define-public-loop-path my-loop-path parse-my-loop-path ...)

Becautsc of the ,implicity of the define-loop-path and define-loop-sequence-path foms,
if it is ncce,,saiy to divert a loop path definition somewhere else, the forms-needed-for special
trin uhdi be used

(forms-needed-for (running public-compilation hacks)
(define-loop-path ...))

t
I,

fl .1 "lt)(:.\ IR,\S I2 29-JIIN-81

LSB Manual 77 DEFSTR UCI"

14.3 DEFSTRUCT

defstruct is documented in the Lisp Machine Manual, and documentation of the Maclisp
version is in preparation. On the Ts systems there is also online documentation in the file
I.1BI)OC;S'FRUC' >.

define-publ 1c-structure SpecialForm
deflne-system-structure SpecialForm
defIne-private-structure SpecialForm

l'hese are the LSB variants of defstruct. They will cause the structure definitions to be
available at runtime, and in the compilation environment (propagated according to the
visibility class). In this respect, stncture definition is similar to macro definition.

The arguments to these forms are the same as those to defstruct, with the addition of
optional LSB declarations clauses, as in the example

(define-system-structure (matrix
(named)
(default-pointer)
(size-macro matrix-structure-size))

(dcls (reference public))
matrix-array
matrix-type
matrix-ncols
matrix-nrows)

which says that although the matrix structure has a visibility class of system, it will be needed
for public compilation. This might be because there is an open-codable-routine or a macro which
expands into a reference to the matrix structure. The declarations allowable here are those
common to all ISI definitions: the definition availability declarations (e.g., needed-for and
reference,), and other similar ones like divert-documentation-to.

deflne-publlc-xstructure SpecialForm
deftne-system-xstructure Special Form
define-private-xstructure Special Form

These are just like the corresponding define-visclass-structure forms, but divert the
structure definition the way the define- visclass-xmacro forms do (section 5.5.1, page 34).
'That is, when compiled, the definition will be sent to the macros diversion stream
instead of the compiled output file.

29-JUN-8Il

An Example System 78 LSB Manual

15. An Example System
This is an example system written using LSB. Two modules are includcd here, with some

deletions for brevity.

15.1 The System Definition

This is the contents of the system definition file for the stats system, which is in the file
NI _:SFATS:STATS SYSTEM. The file ML:STATS:STATS PKG contains the package definition
for the statistics package, which is not particularly interesting. 1 lie source code is assuming only
that it will run in Lisp Machine Lisp or Maclisp. Note that the package refname stats is
equivalent to statistics.

(define-system stats
{(only-for Lispm)

(host mc)
(device ml)
}

((except-for Maclisp)
(package statistics)
)

(directory stats)
(built-on loop)
(type-check-visibility-classes public)
(modules interpolate ttable ctable ftable normal))

15.2 The INTERPOLATE Module

* This is the coIIm.'nIs of the interpolate module, which is in the file ML:STATS;INTERP >.

{ *- Mode:Lisp; tSB:interpolatestats -*- 26-Jun-81

Copyright (c) 1981 by Grandiose System Building
and Massachusetts Institute of Technology. All rights reserved.)

(module interpolate stats)

((system dlot.ijinenitat ion)
I1,., i liiitppolate* module defines COmmOn routines to allow

trivial definition of two-parameter statistical functions.
}

v.

Nil W)(I \ 11'1 23 29-JUN81

I.SB Manual 79 The INTERPOLATE Module

(define-system-xmacro (make-stat-table dimension-list init-list)
(and (atom dimension-list)

(setq dimension-list (list dimension-list)))
(bindq (fixnum implied-size) (length init-list)

(fixnum actual-size) (apply '* dimension-list))
(and (not (= implied-size actual-size))

(error (if (< implied-size actual-size)
'llnitialization list has too few entriesi
'llnitialization list has too many entriesi)

(list 'make-stat-table dimension-list)))
{(only-for Maclisp)

'(fillarray (*array nil 'flonum . ,dimension-list) ',init-list)

{(only-for Lispm)
'(fillarray (make-array ',dimension-list ':type 'art-q)

',init-list)

I
)

((document-routine)
.lisp
(make-stat-table e2dimension-liste, E2init-listee)
.end-lisp
expands into a form which will create a table (implemented as an
array) which will contain flonum components and be initialized with
the elements from c2init-listc*. E2init--listE* is required to
contain exactly the number of elements required to fill the table.
The array will be of type E3flonume* in Maclisp, but a normal array
(F3art-qc*) on the Lisp Machine so that accessing does not do
additional number consing.

. }

(define-system-xmacro (stats:tabref table i j)
{(only-for Maclisp) '(arraycall flonum ,table ,i ,j)}
((only-for Lispm) '(aref ,table ,j j)})

-'J {(document-routine)
.lisp
(stats:tabref r2tablee, r2ic* r2je*)
.end_lisp
accesses a two-dimensional table created by r3make-stat-tableE*.

KII..SIIX)C:XAMPI 23 29.JUN-81

The TTABLE Module 80 LSB Manual

(define-system-routine (table-interpolate
(fixnum x1) (flonum v1)
(fixnum x2) (flonum v2)

(fixnum xprime))
(declarations (value-type flonum))
(+$ v1 (*$ (//$ (-S v2 v1) (float (- x2 xl)))

(float (- xprime xl)))))

((document-routine)
This calculates the value corresponding to t2xprimeco by linear

interpolation, given e2xlc' and e2vieo. and t2x2E* and e2v2e*.

(define-system-routine (table-2dim-lookup

(fixnum n) (flonum cf) cf-list basis-size
more-n-values infinity-index? table who)

(dcls (value-type flonum))

((document-routine)
This implements the basic two-parameter lookup. E2nc* is the number
eic

15.3 The TTABLE Module

{--Mode:Lisp; LSB:ttable,stats -- 9-Jun-81

Copyright (c) 1981 by Grandiose System Building
-*and Massachusetts Institute of Technology. All rights reserved.)

(module ttable stats)

%Hl I1 Sit(FO;XA N1111 23 29-JUN-81

LSB Manual 81 The Documentation Produced

(define-system-variable ,basic-T-table
(init (make-stat-table (34. 8.)

;; 60% 75% 90% 95% 97.5% 99% 99.5% 99.95%
(0.325 1.0 3.078 6.314 12.706 31.821 63.657 636.619 ;n=l

0.289 0.816 1.886 2.920 4.303 6.965 9.925 31.598 ;n-2

0.277 0.765 1.638 2.353 3.182 4.541 5.841 12.924 ;n-3
etc. etc.
0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.646 ;n=30
0.255 0.681 1.303 1.684 2.021 2.423 2.704 3.551 ;n=40
0.254 0.679 1.296 1.671 2.000 2.390 2.660 3.460 ;n=60
0.254 0.677 1.289 1.658 1.980 2.358 2.617 3.373 ;n=120
0.253 0.674 1.282 1.645 1.960 2.326 2.576 3.291 ;n-inf

(define-public-routine (stats:t-table (fixnum n) (flonum cf))

(declarations (value-type flonum))
(table-2dim-lookup

n cf '(6000. 7500. 9000. 9500. 9750. 9900. 9950. 9995.)

30. '(40. 60. 120.) 300. ,basic-T-table 'stats:t-table))

{(document-routine)
This implements a T-distribution lookup for degrees-of-freedom e2ne*
and confidence-factor E2cfE*. E2cfE* may be either a fraction or

a percentage; they can be distinguished because the former must be
less than E3 1.OE*. It may range from 60% to 99.95%.
I

15.4 The Documentation Produced

Here is what the system documentation for the interpolate module looks like when
formatted.

The interpolate module defines common routines to allow trivial definition of two-parameter
statistical functions.

make-stat-table Alacro
(make - stat - table dimension-list WN-lis)

expands into a form which will create a table (implemented as an array) which will
contain flonum components and be initialized with the elements from ini-list. init-list is
required to contain exactly the number of elements required to fill the table. The array
will be of type flonum in Maclisp, but a normal array (art-q) on the Lisp Machine so
that accessing does not do additional number consing.

stats: tabref Aicro
(stats:tabref table i.)

accescs it t -%(-illcnsionjl table clc:itCd by make-stat-table.

MI :1 SIII)O(':IXAMI'I 23 29-JLIN-81

The Documentation Produced 82 LSB Manual

table-Interpolate (flxnum xl) (flonum vl) (fixnum x2) (flonum v2) (flxnum xprime)
This calculates the value corresponding to xprine by linear interpolation, given xl and vi,
and x2 and v2.

table-2dim-lookup (Iixnum n) (fionumc/) cf-list basis-size more-n-values infinily-index? table
who

This implements the basic two-parameter lookup. n is the number of degrees of freedom
desired. cf is the confidence-factor; if it is less than 1.0 then it is assumed to be a
fraction, otherwise it is assumed to be a percentage. table should be a two-dimensional
table created by make-stat-table. The first dimension indexes different n values, and the
second different cf values. It is assumed that some low range of n values are complete,
and are in the (1 - n)th components of the table. basis-size is the greatest n for which
these contiguous entries exist. Other n values may be sparse: more-n-values is a list of the
other n values. If infinity-index? is not nil, then it should be the value of n which is
considered to approximate infinity; in this case, table should have one additional n row
(not accounted for by basis-size and more-n-values) which contains the cf values for n =
infinity. Values of n below infiniitl-index? will be linearly interpolated. who is simply used
for generating errors, and should be the name of the caller. For example: if we have
data points for n from 1-30, 40, 60, 120, and infinity, then the first dimension of table
should be of size 34. basis-size should be 30, and more-n-values should be (40 60 120).
infinity-index? should be an n value for which the data are not significantly different from
those for infinity. If this table contains data for confidence-factors of 60%, 75% 90%, 95%,
97.5%, 99%, 99.5%, and 99.95%, then cf-list should be (6000 7500 9000 9500 9750
9900 9950 9995). These parameters are in fact those used by the stats:t-table function.
q.v.

This routine always returns a flonum, obtained by linear interpolation from the points
surrounding the desired point.

,9

MI :1 S',ll)('I-\AMI'l 23 29-JLIN-81

LSB Manual 83 Table of Abbreviations

16. Table of Abbreviations
Here are all of the predefined keyword synonyms defined. Reasonable suggestions for

additions are solicited.

also -divert- reinitialization -to
also-divert-reinit-to

argument -sequence
argseq, arg-sequence, arg-seq

auxiliary-bindings
auxs, aux-bindings

built-along -side-of
built-with, built-beside

declaration -diversion -stream
dcl-divstream

declarations dcls

default- initialization
default-init

device dev

directory dir

diversion -stream
divstream

divert -documentation -to
divdoc, divert-doc-to

divert -reinitialization -to
divert-reinit-to

document- routines
document-routine

document- variables
document-variable

documentation -diversion -stream
doc-divstream

files- needed -for- compilation
additional-files-needed

form -diversion - stream
form-divstream

identifier id
initialization init
number-check-visibility -classes

number-check-visibility-class

pathname filename

private-documentation
modile-documentation

MI.:l SIII)OC:AIIRTIl. 14 29-JUN-81

Table of Abbreviations 84 LSB Man-al

quoted unquoted
referenced -at -visibility -class

reference
system intrasystem
system - compilation

intrasystemn-cornpilation
system -documentation

intrasystemn-documentation
textual -diversion -stream

text-diversion-streamn, text-divstream
type -check -arguments

type-check-argument, check-arg, check-agp

type - check - visibility - classes
type-check-visibility-class

value-type data-type

Ni -a.(',RRlB 9JN8

LSB Manual 85 References

References

[BrandX]
Szolovits, Peter, and Martin, William A., Brand X Manual, MIT Laboratory for Computer
Science Technical Memo 186 (November 1980).

[LMMan]
Moon, David A., and Weinreb, Daniel L., Lisp Machine Manual, MIT Artificial
Intelligence Laboratory publication, March 1981.

[LOOP]
Burke, Glenn S., and Moon, David A., LOOP Iteration Macro, MIT Laboratory for
Computer Science Technical Memo 169 (July 1980, revised January 1981.) LOOP is also
documented in the March 1981 version of the Lisp Machine Manual.

[LSBUtili
Burke, Glenn S., et al., LSB Utilities Reference, MIT Laboratory for Computer Science
Technical Memo (in preparation). Documentation on various independent facilities which
either extend or are convenient to use with LSB.

[Moonual]
Moon, David A., Maclisp Reference Manual, MIT Lab. for Comp. Sci., Cambridge,
Mass. (1974). Out of print; updated chapters may be available, revision in preparation.

[NI .Doc]
Unwritten documentation on NIL.

[pp/write]
)ocumentation on the write system, by Lowell Hawkinson, in preparation.

Documentation on the pretty-print-definition extension to the write facility, by Glenn
Burke, in preparation.

4

,o

t.MI :1 SItI)()C:NANU AI. 33 29.JI IN-81

. - + +- ,. . . . " " 'f . . _ - T i . .--- '. , .'I -' '
'

Index of Tables 86 LSB Manual

Index of Tables

Data type keywords 47

Definition Availability (needed -for) keywords 8
D~iversion Stream Definition Options 50
D~iversion Stream Types 49
Environment Options 14
Pathname Components. 10
P~athnamc Specification Options. 17
Prec-defined Diversion Streams 53
Pre-defined Keyword Synonyms 83
Processinig Support Options (system definition) 16
Prototype Call BNF...........................43
Rest-parameter Implementation Types. 38
Routine Decclarations 30
V'ariable Definition Options 45
Visibility Classes 3

29-JI N-91

LSB Manual 87 Index

Index

*lsb -verbose? Variable 22
*sourc-file -information Variable. 20
abbreviations, table of 83
additional- files- needed Systemt Definition Keyword. 16
also - divert - reinitialization - to Variable Definition Clause.46
also-needed-for Definition Clause 8
announce System Definition Keyword. 15, 20
any-number-of Prototype Call Keyword. 26,44
applicable- routine- only Routine Definition Clause 31
argref Function. 37
argseq Data Type Keyword 37,38, 47
argseq-length Function. 38
argseq-list F'unction 38
argset Function. 38
argument- seqUence Data Type Keyword 37, 38,47
auxiliary -bindings Special hack 28, 29,73
bindq Special flack 29, 73
body Prototype Call K'eyword. 26, 44
built-along-side-of S.;'stein Definition Keyword 16
built-beside .Systin lDefinition Keyword. 13, 16

built-on Systemt Definition Keyword 16, 19
call mapping.26
call mapping keywords. 26, 33
Call processing. 4, 30
character-code Data Type Keyword 47
conditional inclusions 24

data-type Routine Definition Clause30
data -type Variable lDefinition Clause 45
dcl-divstream System D~efinition Keyword 17, 50
declaration diversion stream.49, 51
declaration -diversion -stream System Definition Keyword17, 50
declaration -divstreamn Systemi Definition Keyword. 17
declarations, in routine/macro definition 4
declare -rou tine Special Formn. 40
declare- variable Special Form. 46
default - definition - huom Routine Definition Clause.31
default-init V ariable Definition Clause. 45
defliu It -in itialii/ation Variable Definition Clause. 45
define -inclusion -tlest Alacro 67
define- Ist- flag- option Afacro 65
define -Ish - option Macr I 64
definie- pri~iate -compilile -timie- maicro Special l'orin.. 35
define-pri~ate-data - tN c Special Formn.. 48
(feI*lne- pr-i% te -loop pa~ith Special Forin. 76

Index 88LSB Manual

define -private- loop -sequence - path Special Formn. 76
define- private- macro Special Form 33
dcfine -private -open -codable -routine Special Formn.. 32
define -privatc- optimizer Special Form 36
define -private- routine Special Form 29
define -private -structure Special Form. 77
define- private- variable Special Form. 45
define -private - xmacro Special Form 34
define- private- xstructure Special Form 77
define - public -compile - time- macro Special Form. 35
define -public- data-type Special Formn.. 48

7.define-public -loop -path Special Form 76
define -public -loop -sequence -path Special Form. 76
define -public -macro Special Formn. 33
define - public - open -codable - routine Special Form 32
define -public -optimizer Special Form 36
define -public -routine Special Formn.. 29
define - public - special - form Special Formn.. 36
define -public -structure Special Formn. 77
define - public - variable Special Formn. 45
deflne-public-xmacro Special Form 34
definec - public - xstructure Special Form 77
define - system -compile - time -macro Special Formn. 35
definc-system-data -type Special Form 48
define -systcmn-location Macro 11
dc finc -systcm - loop - path Special Form 76
define - systemn - loop - sequence - path Special Formn. 76
definec-system -macro Special Form 33
define - system - open - codable - routine Special Formn.. 32
definc-systemn-optimizer Special Form. 36
define - system - routine Special f'onn 29
define-system-structure Special For 77
define-systemn-v~ariahle Specialrn Fr. 45
define- s% stern - xmacro .Special Form 34
definc-systcmn-xstructure Special Form 77

.jd ~ derivahility. 3
deu ce .S s/ip en, einiwu A'e)word 17
dc% ice. in piahnames 10
directories, in jpathnarnes 10
di rcctoi Siwon~f lcfinaiion Keyword 17
di~ersion streani file-types. 50
diversioni streams 49
diversion -stream .y4won A~finifion Keyword 17, 51
di'kert -documentallonl- to lnclus ion Tester 55
dn~err - ornis-ti iNpeciaI hnn. 52
di~ert -rcinit -to li riabfe l)iiiion ~i('louse 45
kh~crti ciiuitiali,.tion- to hi rtabic lhjinition Clause. 45
dikert- to l'uluiwon levier 52
do a- rgi intenit -nunmhcr -chiecking Rouimc lw~hfinition Clause 30

do~~~~~~~~~~~~~ .o .imn . .ttne -cek. .S.w, .~fu~o Ae'r.... 15

29-J UN-B81

LSB Manual 89 Index

do -argument- type -checking Routine Definition Clause. 30
do- argument- type -checking System Definition Keyword. 15, 30
do -macro -memoizing System Definition Keyword. 15, 39, 40, 71
doc-divstream System Definition Keyword 17, 50
document- routine Inclusion Tester. 55
document- routines Inclusion Tester55
document- variable Inclusion Tester56
document- variables Inclusion Tester 56
documentation diversion stream.49
documentation-diversion -stream System Definition Keyword 17, 50
eval Jjversion stream51
except for Inclusion Tester24
except- on Inclusion Tester25
file -type, in pathnames. 10
files -needed -for -compilation Systemn Definition Keyword. 16
fixnum Data Type Keyword 37, 47
flonum Data Type Keyword 47
form diversion stream 49
form diversion streams.51
form -diversion -stream System Definition Keyword17,50
form-divstream System Definition Keyword 17, 50
tonns-needed-for Special Fon8,52
host Syrtiem Definition Key s4vrd 17
ho(st, in pathnarnes. 10
ibase Variable 14
implement-as Routine Definition Clause. 31. 39
implementation feature test. 24
implicit quoting 30
inclusion test.5, 14,24, 52
inclusion tester. 5, 24
inclusion - test - readtable System Definition Keyword. 14, 25
inhibit- calling- sequence -optimization Routine Definition Clause 35
inhibit -calling -sequence -optimizations Routine Definition Clause,. 31
inhibit- documentation -production Systein Definition Keyword. 15, 51,56
init Variable Definition Clause. 45
initializationi Vairiable Definition Clause 45

Vinput-radix S)'stemn Definition Keyword 14
integer Data Type Keyword. 47
keyword equality 2
keyword synonyms, table of 83
keywords. 2
lambda optimization. 32
Ibind M1acro,. 73
Ihind* AMacro. 74
list Data Tvpe Keyword. 38, 47
loop Mlacro 38
Isli - loadi Function. 22
Ish:* asyniclromiouis- cm~iirnmt- staick Variable 68

tIsh:*di~ersion- bindings V airiable. 69
Isb):'di~ crsioii -L Clnup- formlS Variable 69

29-i UN -81

Index 90 LSB Manual

lsb: *diversion -fn2s Variable. 67
lsb:*diversion- routine Variable. 69
lsb: *diversion - setup - forms Variable 69
lsb: docun.entation- types Variable. 71
Ish:*implcmentation- features Variable 67
lsb:*macro- mnoizers Variable. 71
Isb:*readtables Variable 65
lsb:*standard- readtable Variable 65
lsb:*sysdcfs Variable 66
lsb:*syslocs Variable 66
Isb:compiling- to - file? Function. 51
lsb:compiling? Function. 51
lsb~dctermine -diversion - filename Function. 66
Isb:dctcrmine - module - file -group Functlion. 66
lsb:diversion-operation Function 69
lsb:diversion-tyo Function 69
lsb: divert - declarations? Function 51
lsb:divert-doc-I Function 69
lsb: divert -documentation? Function 51
lsb:divcrt-to-l Function 68
lsb:establish-sysdef Function. 66
lsh:find-divdef Function 67
lsh: input- file -status Function 68
lsb:kwd-assoc Function 63

*lsb:kwd-bassoc Function. 63
!sb:k%4d-cquail Funci ion 63
I sb:kwd-loo)kup Function 63
lsb~kwd-mmbcr Function. 63
IQ): not - compiling? Function 51
1k.h: perform - implementation - feature- tests Function 67

- lh:push-pair Mfacro. 64
lsh:push-sym Mlacro. 64
lsh:token-assoc Function 63

* sh: token - qUal Funclion 63
lshtoken- lookup Function. 63
!,J) token -- member Function 63

)khcincmo j/ f................................. 60
nmicro mnioi/tion 15, 39
m~ice i tablc Mfacro. 81
1111A,11iC *I.S, III lAfinmitioll Ket'word. 16
mnodule ,pecificamtion 18

names, in paithnames 10
IL ~needed for 1)rfinition Clause 8

necded - for key words 8
Vnceded - for - uOrnpilicion .Sv'emn lkfiition AeYword. 5

needed f~ r we~r -ci npilaion Si stemrint#/~lion Aeyword. 5
f not~ pc Ai)a ljpe Aemi*vrord. 47

number P~aw T;-jc A'cmword 47
-nb; l~. -~iibl~\ clsss St'sici;; lAfiuiition Kr~word 15

2'9-liN-X

AL 7T_____

I AD-Al~i 853 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR CMUE-T / /
LSB MANUAL (U)
JUN 81 G BURKE N0O014-75-C-0661

UNCLASSIFIED MIT LCS/TM-200 NL

u nt

LSB Manual 91 Index

one-or-more-of Prototype Call Keyword 26,44
online-documentation Inclusion Tester 55
only-for Inclusion Tester ... 24
only-on Inclusion Tester ... 25
open coding ... 32
operation 26
optimizer 36
optional Prototype Call Keyword ... 26
package System Definition Keyword 14
package hacks ... 12, 14, 15. 20
packages .. 4
pathname Clause ... 18
pathname components ... 17
pathnames .. 10
pdl-list Data Type Keyword 37, 39,47
pdl- vector Data Type Keyword 37, 39,47
perform -calling-sequence-optimizations Routine Definition Clause 31
primarily-applicable-routine Routine Definition Clause 31
private- documentation Inclusion Tester 55
prototype call 4, 26
public-documentation Inclusion Tester 55
quoted Prototype Call Keyword 30, 43
readtable System Definition Keyword 14
readtable Variable ... 25
redefinition Routine Definition Clause 31
reference Definition Clause .. 9
referenced - at- visibility -class Definition Clause 9
rest Prototype Call Keyword ... 26.44
rest parameter .. 26, 37,47
returnable Routine Definition Clause 30
routine 26. 29
routine definitions ... 29
sequence Data Type Keyword 37. 38,47
si:system- version- info Function................................ ... 21
sideways system extension ... 13
slow-and-hairy Routine Definition Clause 31
small-flonum Data Type Keyword 47
special form ... 35
stats:tabref Macro ... 81
synonyms, table of ... 83
system - documentation Inclusion Tester 55
systems 1, 3
table-2dim-lookup lunction ... 82
table- interpolate Function ... 82
temporary-list Datw Type Keyword 39,47

' elenporary- vector lata 7pe Keytrd 39,47
text -divcrsion -strcam SIstem Definition Keyword 17, 50
text-div stream .System Di,'finition Koeymrd 17,50
textual diversion stream ... 19, 52, 55
textual-diversion-stream .Systern Definition Keyword. 7, 50, 51

29-JUN-81

Index 92 1.S1 Manual

token equality 2
truthvalue Data Type Keyword 47
two-or-more-of Prototype Call Keyword. 26,44
type -check -arguments Routine Definition Clause.. 30
type -check -visibility -classes System Definition Keyword. 15
unused Prototype Call Keyword.27.43
user-id Variable. 21
users- implicitly -need System Definition Keyword.13, 16
users- implicitly - need- files System Definition Keyword 16,.19
value-type Routine Definition Clause 30
value -type Variable Definition Clause. 45
variable binding.27.73
vector Data Type Keyword38,47
version, in pathnames 10
visibility class 3

29-1.)N-81I

OFFICIAL DISTRIBUTION LIST

Director 2 copies
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, Virginia 22209

Attention: Program Management

Office of Naval Research 3 copies
800 North Quincy Street
Arlington, Virginia 22217

Attention: Marvin Denicoff, Code 437

Office of Naval Research 1 copy
Resident Representative
Massachusetts Institute of Technology
Building E19-628
Cambridge, Mass. 02139

Attention: A. Forrester

Director 6 copies
Naval Research Laboratory
Washington, D.C. 20375

Attention: Code 2627

Defense Technical Information Center 12 copies
Cameron Station
Arlington, Virginia 22314

Office of Naval Research 1 copy
Branch Office/Boston
Building 114, Section D
666 Summer Street
Boston, Mass. 02210

