PHYSICAL CHEMISTRY OF HIGH POLYMERS - SURFACE
PROPERTIES OF INTERPENETRATING POLYMER NETWORKS.

FINAL REPORT

H. L. Frisch
June 1, 1981

U. S. Army Research Office
Grant DAAG 29-77-G - 0213
September 1, 1977 to February 1, 1981

RESEARCH FOUNDATION
State University of New York
P.O. Box 9
Albany, N.Y. 12222

Approved for Public Release; Distribution Unlimited

The view, opinions, and/or findings contained in this report are those of the author
and should not be construed as an official department of the Army position, policy,
or decision, unless so designated by other documentation.
Physical Chemistry of High Polymers - Surface Properties of Interpenetrating Polymer Networks

5. TYPE OF REPORT & PERIOD COVERED
Final - 9/1/77-2/1/81

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(s)
H.L. FRISCH

8. CONTRACT OR GRANT NUMBER(s)
Grant No. DAAG 29 77 G 0213

9. PERFORMING ORGANIZATION NAME AND ADDRESS
Research Foundation, State University of NY
P. O. Box 9
Albany, N.Y. 12222

10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS

11. CONTROLLING OFFICE NAME AND ADDRESS
U. S. Army Research Office
Post Office Box 12211
Research Triangle Park, NC 27709

12. REPORT DATE
June 1, 1981

13. NUMBER OF PAGES
5

14. MONITORING AGENCY NAME & ADDRESS (if different from Controlling Office)
Department of the Army
U.S. Army Research Office
P.O. Box 12211
Research Triangle Park, NC 27709

15. SECURITY CLASS. (of this report)
Unclassified

15a. SECURITY CLASS. (of this page) Unclassified

15b. DECLASSIFICATION/DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)
Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)
NA

18. SUPPLEMENTARY NOTES
The view, opinions, and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation.

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
Interpenetrating Polymer Networks, Adhesion, Surface Chemistry of Polymers, Diffusion in Polymers, Computer Simulation of Polymers, Glass fibers.

20. ABSTRACT (Continue on reverse side if necessary and identify by block number)
We have investigated the surface chemistry of interpenetrating polymer networks (IPN) as they relate to the development of a new class of improved, thermally stable adhesives with unusual surface and adhesive properties. We have carried out mechanical, thermal, wetting, permeability and electron microscopic investigations of polyurethane epoxy and polyacrylate IPN's. We have studied the minimum critical surface tension as a function of network composition, as-
observed in polyurethane-epoxy IPN's and transport properties in such homogeneous and partially inhomogeneous polymers.

Summary of Results:

We have synthesized novel classes of polyurethane-epoxy 1,2 (PU-EP) and polyurethane-acrylate 3 (PU-AC) interpenetrating polymer networks (IPN) and compared their thermal and morphological characteristics with a newly synthesized IPN composed of polystyrene and poly (2,6 - dimethyl - 1,4 phenylene oxide)(PS-PPO 2,4). The last is an ideally IPN since the component polymers form miscible blends. The domain sizes of the PU-EP IPN were not much larger than that of the PS-PPO IPN while the PU-AC showed larger domains and exhibited two inwardly shifted glass transition temperatures. The PU-EP IPN's had outstanding adhesive properties while the PU-AC IPN's are promising candidates for coatings, etc.

We have measured the advancing contact angles of drops of water methanol and methanol-ethylene glycol mixtures on films of polyurethane-epoxy interpenetrating polymer networks. The extrapolated critical surface tensions were in excellent agreement with each other. A sharp minimum is observed in the critical surface tension at network compositions where we have found maxima in ultimate mechanical properties. We advance a physical explanation based on unrelieved surface strain. We have also measured the toluene vapor transmission (permeability, diffusion and sorption coefficients) in these films. These results, together with the water vapor permeabilities, are in complete accord with the expected morphologies of these networks. A fuller discussion of how the morphological aspects and the minimum critical surface tension can be employed in adhesive technology is given in reference 5. The extent to which these characteristics are shared by IPN's made of polymers which form compatible polymer blends is reviewed extensively in reference 3. Recently our group has been joined by Dr. H. S. Xiao of the Organic Chemistry Institute of the Chinese People's Republic who has informed us of the application of PU-EP, similar to the ones prepared by us, for an optimal anti-cavitation turbine propeller coating.

Extensive theoretical investigations have been carried out on diffusional processes which underlie some of these experimental investigations. Specifically we studied the theory of diffusion in glassy and inhomogeneous (phase separated) systems. Jointly with Prof. S. A. Stern we have prepared a review of selective permeation of gases through polymers. We have shown how 0.0, staining, used in our morphological investigations, affects the gas permeability of polymer films.

We have begun the process of computer modelling on a molecular scale of bulk polymeric systems. The preliminary results can be found in reference 12 and are in substantial agreement with predictions of polymer scaling theories. Ultimately we hope to study in this fashion the surfaces of idealized bulk polymers.

We have also investigated the basic physical processes which relate the adhesion of polymer coatings in strengthening glass fibers for optical communication.
References


6. H. L. Frisch, Polymer Engineering & Science 20, #1, 2-13 (1980).


List of Publications and Technical Reports under Sponsorship of this Grant:

A. Technical Reports:

Progress Reports: 9/1/77 to 2/1/78; 2/1/78 to 9/1/78; 9/1/78 to 6/30/79;
7/1/79 to 1/31/80; 2/1/80 to 6/30/80.

B. Publications:


11. Poly (2,6-Dimethyl - 1,4-Phenylene Oxide) - Polystyrene Interpenetrating Polymer Networks, Frisch, Klempner, Yoon and Frisch, Macromolecules 13, 1016 (1980).


List of Participating Personnel:
H. L. Frisch, (P.I.)
H. Yoon, (Ph.D.)
S. Trohalaki (M.S. candidate)
R. Krolikowski (Graduate student)
R. Schwartz (B.S., M.S. in preparation)
M. Bishop (Research Associate)
R. Foreman (B.S.)

Unpaid Collaborators: