MONOLITHIC GAAS DUAL-GATE FET PHASE SHIFTER, (U)

MAY 81 N. KUMAR, S. N. SUBBARAO, R. MENNA

UNCLASSIFIED

PRRL-81-CR-13
MONOLITHIC GaAs DUAL-GATE FET PHASE SHIFTER

RCA Laboratories
Princeton, New Jersey 08540

MAY 1981

TRI-ANNUAL REPORT NO. 2
for the period 1 January 1981 to 30 April 1981

Approved for public release; distribution unlimited.
Reproduction, in whole or in part, is permitted
for any purpose of the U.S. Government.

Prepared for
Department of the Navy
Office of Naval Research
Arlington, Virginia 22217
Contract No. N00014-79-C-0568

81 7 21 021
Phase Shifter Monolithic Microwave Integrated Circuits

The photomask of a 0 to 90° monolithic GaAs dual-gate FET phase shifter was designed and ordered from Photronics Labs, Inc. in Connecticut. The estimated delivery date is late June 1981.

A technique for fabricating "via" holes using laser drilling was developed. This technique can drill a 1-mil-diameter via hole.
through a 4-mil-thick GaAs substrate without much undercut and without an infrared microscope for backside alignment.

(3) A four-way, in-phase combiner on \(\text{Al}_2\text{O}_3 \) substrate has been developed with good performance. The same design is being modified for fabrication on GaAs semi-insulating substrates. This four-way, in-phase combiner is needed for the 0 to 360° phase shifter that will be developed in the next phase.

Technical Problems

There was no major problem during this period.
PREFACE

This Tri-annual Report describes the work performed under Contract No. N00014-79-C-0568, 1 January 1981 to 30 April 1981, in the Microwave Technology Center, F. Sterzer, Director, H. C. Huang is the project supervisor, and M. Kumar is the project scientist.
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. OBJECTIVE</td>
<td>1</td>
</tr>
<tr>
<td>II. PROGRESS</td>
<td>1</td>
</tr>
<tr>
<td>A. Development of Monolithic 90° Phase Shifter</td>
<td>1</td>
</tr>
<tr>
<td>B. "Via" Hole Technique</td>
<td>2</td>
</tr>
<tr>
<td>C. Four-Way, In-Phase Power Divider/Combiner</td>
<td>4</td>
</tr>
</tbody>
</table>
LIST OF ILLUSTRATIONS

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Chemical etch. Diameter of the original hole pattern is 25 µm. 500X</td>
<td>2</td>
</tr>
<tr>
<td>2.</td>
<td>Laser drill without photoresist. 500X</td>
<td>3</td>
</tr>
<tr>
<td>3.</td>
<td>Laser drill. Diameter of the original hole pattern is 25 µm. 500X</td>
<td>4</td>
</tr>
<tr>
<td>4.</td>
<td>Schematic of a planar four-way power divider/combiner</td>
<td>5</td>
</tr>
<tr>
<td>5.</td>
<td>Variation of coupling with frequency</td>
<td>5</td>
</tr>
<tr>
<td>6.</td>
<td>Variation of isolation between ports with frequency</td>
<td>6</td>
</tr>
<tr>
<td>7.</td>
<td>Variation of insertion loss with frequency</td>
<td>6</td>
</tr>
<tr>
<td>8.</td>
<td>Variation of return loss with frequency</td>
<td>7</td>
</tr>
</tbody>
</table>
I. Objective

The objective of this four-year program (Sept. 1, 1979 to Aug. 31, 1983) is to develop a monolithic GaAs dual-gate FET phase shifter, operating over the 4- to 8-GHz frequency band and capable of a continuous programmable phase shift from 0° through N times 360° where N is an integer. The phase shift is to be controllable to within +3°. This phase shifter will be capable of delivering an output power up to 0 dBm with an input and output VSWR of less than 1.5:1.

II. Progress

In the last tri-annual report, for the period 1 September 1980 to 31 December 1980, we reported the development of a 360° GaAs dual-gate FET phase shifter using discrete components. The 360° phase shifter consists of two 90° phase shifters, a 180° hybrid, and a in-phase power combiner. The development of a truly monolithic 360° phase shifter will require all the components to be monolithically integrated on a single GaAs substrate. To achieve a 360° phase shifter, we are developing the individual components in this phase and will integrate the above-mentioned components on GaAs substrates in the next phase (1982). The development of a 360° phase shifter will require the following:

1. 90° monolithic dual-gate GaAs phase shifters
2. monolithic 180° hybrid
3. monolithic in-phase combiner

We have already demonstrated a 180° hybrid on an Al₂O₃ substrate (Bimonthly Report No. 6) and a monolithic dual-gate FET amplifier (Bimonthly Report No. 3).

A Development of a 90° Monolithic GaAs Dual-Gate FET Phase Shifter

The goals for the second phase of this program are to develop and demonstrate a 0 to 90° monolithic phase shifter. During this tri-annual report period 1 January 1981 to 30 April 1981, we have completed the design of a monolithic GaAs dual-gate FET phase shifter. The drawings have been sent to Photronic Labs, Inc. (Danbury, CT) which will prepare the photomasks. The 90° monolithic phase shifter includes, on the same GaAs substrate, the following components: dual-gate FETs, matching circuits, interdigitated 90° hybrid, in-phase power combiner, airbridges, thin film resistor, MIM capacitors for
bypassing the shunt-matching elements and injecting the bias to the dual-gate FET, and "via" holes for low inductance ground connection of FET sources and capacitors. The masks are expected to be delivered in June 1981.

We are in the process of fabricating the 90°, interdigitated hybrids on 100-μm-thick GaAs substrates.

B. "Via" Hole Technique

A truly monolithic microwave integrated circuit requires the grounding of source pads, shunt capacitors, etc., through "via" holes at their appropriate locations on the GaAs chip. We have developed a technique of fabricating "vias" by front-side alignment. Chemically etched "vias" have been used and reported in literature for monolithic integrated circuits. There are distinct disadvantages and difficulties with this technique:

1. The backside alignment is difficult and requires the use of expensive equipment such as an infrared aligner.
2. Chemical etching produces considerable undercutting making the holes much larger than those defined by the hole pattern (Fig. 1). Furthermore, not all the holes are etched at the same rate.
3. Laser drilling of the holes directly on the surface of GaAs produces extensive damage on the surface (Fig. 2).

Figure 1. Chemical etch. Diameter of the original hole pattern is 25 μm. 500X.
We have developed a technique which avoids the difficult backside alignment and nonuniform chemical etch. Although a laser is used to drill the holes, our technique involves the use of a photoresist protective layer to minimize surface damage.

The following is the step-by-step procedure.

1. The device with the circuits is fabricated on the front side of the GaAs wafer which is 10 mil thick. It is much easier to process a 10-mil-thick wafer than, say, a 4-mil wafer.

2. After the front-side-device process is completed, the wafer is thinned down to the desired thickness (about 4 mil) from the back side by suitable mechanical and chemical means.

3. The front surface is coated with 1- to 2-μm-thick photoresist and the hole pattern is defined. This minimizes the surface damage by laser.

4. Holes are drilled using a laser. A power setting of 25 to 30 kW is found to be adequate to drill 1-mil-diameter holes in a 4-mil (100 μm) thick GaAs wafer.
Figure 3 shows the front view of the hole after removing the photoresist. It can be seen that the diameter of the hole is about 35 to 40 \(\mu\text{m} \). (The original hole pattern was 25 \(\mu\text{m} \) in diameter.)

Cr (\(\sim 500 \text{ \AA} \)) and Au (\(\sim 3000 \text{ \AA} \)) are evaporated on the backside of the wafer. Electrical plating up through the holes is carried out.

Figure 3. Laser drill. Diameter of the original hole pattern is 25 \(\mu\text{m} \). 500X.

C. Development of a Four-Way, In-Phase Power Divider/Combiner

We have developed a planar, four-way, in-phase power divider/combiner. This four-way, in-phase combiner is required for combining four outputs of the dual-gate FET amplifiers in a 360° phase shifter (Tri-annual Report No. 1). The divider/combiner reported here was fabricated on alumina substrate and is compatible for monolithic integration on GaAs substrates with other passive and active components.

Figure 4 shows the schematic of a planar, four-way, in-phase power divider/combiner on Al\(_2\)O\(_3\) substrate. The input is split into four outputs through four \(\lambda/4 \) sections of the transmission lines. The impedance of each \(\lambda/4 \) section of line is 100 \(\Omega \) and the value of the isolation resistance is 70.7 \(\Omega \). The input
Figure 4. Schematic of a planar four-way power divider/combiner.

and output impedances are 50 Ω each. The performance of the divider/combiner
is shown in Figs. 5 through 8. Figure 5 shows the variation of coupling at
four output ports with frequency. Figure 6 presents the isolation vs frequency
between any two ports. The isolation is better than 13 dB over the band. The
insertion loss and return loss of the divider/combiner are presented in Figs. 7
and 8. The overall phase variation between the ports is $+6^\circ$.

Figure 5. Variation of coupling with frequency.
Figure 6. Variation of isolation between ports with frequency.

Figure 7. Variation of insertion loss with frequency.
Figure 8. Variation of return loss with frequency.
DISTRIBUTION LIST
Contract NO0014-79-C-0568

Code 427
Office of Naval Research
Arlington, VA 22217

Naval Research Laboratory
4555 Overlook Avenue, S.W.
Washington, DC 20375
Code 6611 1
6580 1

Defence Documentation Center 12
Building 5, Cameron Station
Alexandria, VA 22314

Dr. Y.S. Park 1
AFWAL/DHR
Building 450
Wright-Patterson AFB
Ohio, 45433

ERADCOM 1
DELET-M
Fort Monmouth, NJ 07703

Texas Instruments 1
Central Research Lab
M.S. 134
13500 North Central Expressway
Dallas, TX 75265
Attn: Dr. W. Wisseman

Dr. R. M. Malbon/M.S. 1C 1
Avantek, Inc.
3175 Bowers Avenue
Santa Clara, CA 94304

Mr. R. Bierig 1
Raytheon Company
28 Seyon Street
Natick, MA 02154

Dr. R. Bell, K-101 1
Varian Associates, Inc.
611 Hansen Way
Palo Alto, CA 94304

Dr. H. C. Nathanson 1
Westinghouse Research and Development Center
Beulah Road
Pitsburgh, PA 15235

Dr. Daniel Chen 1
Rockwell International Science Center
P.O. Box 1085
Thousand Oaks, CA 91360

Dr. C. Krumm 1
Hughes Research Laboratory
3011 Malibu Canyon Road
Malibu, CA 90265

Mr. Lothar Wandinger 1
ECOM/AMSEL/TL/IJ
Fort Monmouth, NJ 07003

Dr. Harry Wieder 1
Naval Ocean Systems Center
Code 922
271 Catalina Blvd.
San Diego, CA 92152

Dr. William Lindley 1
MIT
Lincoln Laboratory
F124 A, P.O. Box 73
Lexington, MA 02173

Commander 1
U.S. Army Electronics Command
V. Gelovatch
(DRSEL-TL-IC)
Fort Monmouth, NJ 07703

RCA 1
Microwave Technology Center
Dr. F. Sterzer
Princeton, NJ 08540
Hewlett-Packard Corporation
Dr. Robert Archer
1501 Page Road
Palo Alto, CA 94306

Watkins-Johnson Company
E.J. Crescenzi, Jr./K. Niclas
3333 Hillview Avenue
Stanford Industrial Park
Palo Alto, CA 94304

Commandant
Marine Corps
Scientific Advisor (Code AX)
Washington, DC 20330

Communications Transistor Corp.
Dr. W. Neisenberger
301 Industrial Way
San Carlos, CA 94070

Microwave Associates
Northwest Industrial Park
Drs. F.A. Brand/J. Saloom
Burlington, MA 01803

Commander, AFAL
AFWAL/AADM
Dr. Don Rees
Wright-Patterson AFB
Ohio 45433

Professor Walter Ku
Phillips Hall
Cornell University
Ithaca, NY 14853

Commander
Harry Diamond Laboratories
Mr. Horst W. A. Gerlach
2800 Powder Mill Road
Adelphia, MD 20783

Advisory Group on Electron Devices
201 Varick Street
9th Floor
New York, NY 10014

D. Claxton
MS/1414
TRW Systems
One Space Park
Redondo Beach, CA 90278

Professor L. Eastman
Phillips Hall
Cornell University
Ithaca, NY 14853

AIL TECH
612 N. Mary Avenue
Sunnyvale, CA 94086
Attn: G. D. Vendelin

Professor Hauser and Littlejohn
Department of Electrical Engr.
North Carolina State University
Raleigh, NC 27607

Professor J. Beyer
Dept. of Electrical and Computer Engineering
University of Wisconsin
Madison, WI 53706

Professor Rosenbaum & Wolfe
Semiconductor Research Laboratory
Washington University
St. Louis, MO 63130

W. H. Perkins
Electronics Lab 3-115/B4
General Electric Company
P.O. Box 4840
Syracuse, NY 13221