STABILITY CONSIDERATIONS FOR LIGHT-ION BEAM TRANSPORT IN Z-DISC--ETC(U)

JUL 81 P F OTTINGER, D MOSHER, S A GOLDSTEIN

UNCLASSIFIED

NRL-MR-4548

END
Title: Stability Considerations for Light-Ion Beam Transport in Z-Discharge Channels

Authors: P.F. Ottinger, D. Mosher, N.A. Goldstein

Performing Organization: Naval Research Laboratory
Address: Washington, D.C. 20375

Controlling Office: Department of Energy
Address: Washington, D.C. 20545

Report Date: July 8, 1981

Distribution Statement: Approved for public release; distribution unlimited.

Abstract:
Light-ion beams, appropriate for use as inertial-confinement fusion drivers, can be transported in z-discharge channels over distances of several meters. Here stability considerations for light-ion beam transport in such channels are reviewed. Many aspects of the important velocity-space instabilities are considered and the resulting conditions for good transport are discussed. The results will be presented in a general form so that they may be applied to beams of various species (e.g., H+, D+, C+, etc.) propagating in channel plasmas of different composition (e.g., hydrogen, argon, air, etc.).
CONTENTS

1. INTRODUCTION ... 1

2. BEAM-PLASMA SYSTEM IN THE TRANSPORT CHANNEL 2

3. LINEAR STABILITY ANALYSIS 3
 3.1. ES Modes ... 4
 3.1a. e-b Two Stream Mode 4
 3.1b. e-i Two Stream Mode 5
 3.1c. Ion-Acoustic Mode 5
 3.1d. ES Stability Conditions 6
 3.2. EM Modes ... 6
 3.2a. Beam-Whistler Mode 6
 3.2b. Beam-Weibel Mode 7
 3.2c. Plasma-Electron Mode 7
 3.2d. EM Stability Conditions 8

4. CONCLUSIONS .. 9

5. REFERENCES .. 10
STABILITY CONSIDERATIONS FOR LIGHT-ION BEAM TRANSPORT IN Z-DISCHARGE CHANNELS

1. INTRODUCTION

The development of terawatt-level ion beams has generated a great deal of interest in using light-ion beams to drive thermonuclear pellets. Target design studies for light-ion beams indicate that \(\sim 2 \) MJ of ions must be delivered in \(\sim 10 \) nsec to an \(\sim 1 \) cm diameter pellet in order to achieve high-gain thermonuclear ignition. Since present technology can provide up to 5 TW single-generator modules from which up to 200 kJ of ions can be extracted in \(\sim 50 \) nsec, a multimodule system is required. In addition, a transport scheme and a method for beam pulse compression are needed.

One possible transport scheme involves the use of a z-discharge channel for transporting a prefocused ion beam (Fig. 1). Focusing is achieved by a combination of geometric and magnetic-field focusing prior to injection into the channel. Beam pulse compression results from ramping the diode voltage such that the tail of the beam catches up to the front of the beam. The ideal diode voltage waveform is \(\phi(t) = \phi_0(1-t/t_a)^{-2} \) for \(0 \leq t \leq T_B < t_a \) where \(T_B \) is the beam pulse duration and \(t_a \) is the beam arrival time at the target.

Assuming that the z-discharge channel is produced in a MHD stable configuration, the question of the effects that the passage of the beam will have on the equilibrium and stability of the beam-plasma system is an important one. The MHD response of the plasma has been treated elsewhere and will only be briefly reviewed here. Analysis of stable beam propagation in straight and tapered channels, as well as in bumpy channels (subject to sausage instability) has also been done previously. This work shows that, in the absence of microinstabilities driven by the beam, good beam transport and bunching is possible under the conditions set by MHD considerations (which will be outlined in Sec. 2). However, in the presence of microinstabilities, beam transport and bunching can be seriously affected.

Analysis of electrostatic (ES) and electromagnetic (EM) velocity-space instabilities, which can grow on a time scale much faster than the beam pulse duration, will be reviewed in this report. The problem will be considered with the goal of identifying the conditions for good transport and bunching. The results will be presented in a general form so that they may be applied to beams of various low atomic number species propagating in channel plasmas of different compositions.

Manuscript submitted on May 13, 1981.
2. BEAM-PLASMA SYSTEM IN THE TRANSPORT CHANNEL

The beam-plasma system consists of a focused ion beam propagating down the axis of an externally-driven z-discharge plasma channel. The ion beam is focused at the entrance to the plasma channel (see Figs. 1 and 2) with velocity components transverse to z given by $V_x/V_z = \tan \alpha \ll 1$. The current being driven in the preformed z-discharge channel provides the radial confinement of the beam. Because of the small perpendicular beam energy, the channel current can be much less than the beam current. A high plasma density in the channel insures good beam charge neutralization. Good beam current neutralization in the interior of the beam also occurs, so that the total magnetic field is comparable to that associated with the preformed channel established before beam injection. Because $J_p = J_{ch} - J_b - J_b$, the electron drift velocity is approximated by $V_e = n_b Z_b V_b/Z_p n_p$, where n_b and n_p are the beam and plasma ion densities, Z_b and Z_p are the beam and plasma ion charge states, and J_p, J_b and J_{ch} are the plasma, beam and preformed channel current densities, respectively. Note that the electron density is $Z_p n_p$.

Hydrodynamic modeling of the background plasma shows that a uniform net-current model is appropriate for the early times associated with passage of the beam front. This is because the low-temperature channel is established microseconds before beam injection so that complete magnetic diffusion occurs. Later in the ion pulse, $J_p \times B$ expansion of the beam-heated high-temperature plasma reduces the magnetic field strength in the interior of the channel. The built-up field in the expanding cylindrical shock wave is also enhanced by significant current non-neutralization in the cool plasma surrounding the beam-heated channel. The maximum field strength just outside the ion-beam radius can exceed that established by the preformed z-discharge current by a large factor. Thus, at late times during beam passage, the magnetic field distribution can be approximated by a surface-current model. Although the induced $V_e \times B$ electric field is important when considering beam energy losses during transport, at no time does the electric field become large enough to significantly affect the stability analysis.

The linearized stability analysis presented here strictly applies only when the mode under consideration grows on a time scale faster than any changes in the beam-plasma system (i.e., $\gamma > \tau_b^{-1}$). For growth on a time scale slower than the beam pulse duration, the perturbation analysis breaks down since small perturbations will be washed out by the zero-order changes in the system before growth can occur. Thus for those modes which are shown to e-fold less than once during the passage of the beam, the results should be interpreted as showing that significant growth does not occur.

The distribution of particles in axial velocity is illustrated in Fig. 3. The plasma ions form a stationary background while the drift of the plasma electrons provides for beam current neutralization. Because of the high plasma density, this drift velocity, V_e, does not exceed the electron thermal velocity even before the beam heats the plasma. As the beam passes through a given point, the plasma is heated and the conductivity increases. The electron-ion collision frequency, v_{ei}, decreases but the electrons generally remain collisional ($v_{ei} > \omega_{ce}$) at all times during the pulse for purposes of the stability analysis. Since the electron-ion equilibration time is on the order of the beam pulse duration the electron temperature will not exceed the ion temperature by more than a factor of ten.
The ion beam density is typically much less than the plasma density and, beams of interest are nonrelativistic. The spread in axial velocities, designated by V_T in Fig. 3, is on the order of $V_B \alpha_m^2/2$ before beam bunching occurs. Here V_B is the beam velocity and α_m is the maximum ion injection angle into the channel. For $\alpha_m = 0.1-0.2 \text{ rad}$, V_T/V_B is relatively small. As the beam bunches, V_T/V_B can increase by an order of magnitude as the faster ions generated later in the pulse catch up to slower ions at the front of the beam. The beam pulse duration, T_B, decreases and the beam density, n_B, increases as the beam bunches. The dependence of the beam parameters on axial position due to bunching will be expressed explicitly as $V_T(z)$, $T_B(z)$, etc.

Since the ES stability analysis depends strongly on the shape of the beam distribution function, it is important to use a theoretical model which contains the appropriate physics. For a distribution in v_z which has a large slope on the low velocity side such as illustrated in Fig. 4a, a resistive instability persists in spite of the thermal spread in v_z and the high frequency of collisions between the plasma electrons and ions. However, if the slope of the distribution function is not as sharp, such as for the Gaussian distribution shown in Fig. 4b, electron-ion collision are damping if the thermal spread in v_z is sufficiently large. The slope of the distribution function on the high velocity side does not affect the stability analysis.

Before the beam bunches, the distribution in v_z is determined by the injection condition. Since the ions are injected into the channel nearly uniformly over a range of angles predominately in the r-z plane and since the time-averaged axial velocity for an ion injected at a given α varies like $V_L(1-\alpha^2/2)$, the distribution in v_z rises slowly as indicated in Fig. 4c. Additional smoothing out of the distribution in v_z will result from beam energy spreading due to radial variations in the diode voltage. The stability properties of this distribution closely resemble those of the Gaussian distribution. The beam ion distribution after bunching is also similar in shape to Fig. 4c. Since the ion diodes which are used in the experiments have a constant impedance behavior during the duration of the ion pulse, more ions (higher currents) are generated at higher energies as the diode voltage ramps upward. Thus in the bunched state there are more ions at higher velocities than at lower velocities and the spread in axial velocities is on the order of $(2Z_d e/m_i)^2(\phi_f-\phi_o)^2$. Here Z_d is the charge state of the beam ions in the diode and ϕ_o and ϕ_f are the initial and final diode voltages. This spread can be considerably larger than the initial spread before bunching ($V_T \sim V_B \alpha_m^2/2$).

Thus a Gaussian distribution can be used to properly model the ion beam distribution function both before and after bunching when considering ES modes. When the analysis is not sensitive to the detailed shape of the distribution function (e.g. for analyzing the stability of EM modes), simpler models may be used.

3. LINEAR STABILITY ANALYSIS

The results of linear stability analyses reported previously are presented here in a more general form so that they may be applied to beams of various species. The composition of the channel plasma is also unspecified. Growth rates will vary as the beam heats the channel plasma and as the channel expands. The changes in the hydrodynamic structures of
the channel occur gradually over the pulse duration of the beam. Growth rate expressions appropriate near both the front and the tail of the beam are presented in order to determine how hydrodynamic changes alter the results. Most notably these changes include (1) a reduction in the e-i collision frequency at the tail of the beam where the plasma is heated, and (2) a reduction in the magnetic field in the interior of the channel at late times in the pulse as the now highly conducting heated plasma expands due to $J \times B$ forces. Near the front of the beam, the beam ions follow betatron-like orbits while at the tail of the beam, the beam ions move in more straight line-like orbits with reflections off of the magnetic field piled up at the edge of the channel.

3.1. ES Modes

The ES modes are the fastest growing modes when driven unstable. Unstable growth will generally reach nonlinear saturation on a time scale much faster than the beam pulse duration. These modes involve either charge bunching (e-b and e-i modes) or density bunching (ion-acoustic mode) and generally exhibit their largest growth for $k = k_8z$, which is a result of the small thermal spread in the axial direction before axial beam compression occurs.

3.1a. e-b Two Stream Mode

The e-b two stream instability is driven by the relative streaming between the beam ions and plasma electrons. In general the beam can be considered warm because $V_\parallel(z)/V_b > 2 \left(m_e Z n_p(z)/m_b Z n_p \right)^{1/3}$ even before beam bunching occurs. Here m_b is the beam ion mass. Near the front of the beam the betatron motion of the ions can reduce the growth rate of the mode which is given by

$$\gamma_1 = -\frac{\omega_{ei}}{2} + 0.76 \frac{\omega_{pb}^2(z)}{\omega_{pe}} \left(\frac{V_b}{V_t(z)} \right)^2 R$$

where $\omega_{pb}^2 = 4\pi e^2 Z n_p(z)/m_b$ and $\omega_{pe}^2 = 4\pi e^2 Z n_p/m_e$ are the beam and electron plasma frequencies respectively. The electron-ion collision frequency is given by $\omega_{ei} = 1.45 \times 10^{-6} Z^2 n_p^{1/2} e^2 / m_e T_e^{3/2}$, where T_e is in eV and λ_{ei} is the Coulomb logarithm. The reduction factor, R, equals the fraction of beam ions which can effectively participate in the wave growth. If $\gamma_1 > 2\omega_b$, which is the usual case, all ions can participate and $R = 1$. Here $\omega_b = (V_b \omega_{cb}/r_c)^{1/2}$ is the ion betatron frequency and ω_{cb} is the beam cyclotron frequency. If $\gamma_1 < 2\omega_b$, only those ions with $\Delta z < 1/k$ can participate, where Δz is the amplitude of the betatron oscillations about $z = v_{zt}$ (see Fig. 5). The amplitude, Δz, depends on the ion injection conditions, $r(z=0)$ and $a(z=0)$. If this amplitude is large, the ion moves across many wave fronts before the instability e-folds even once, and thus cannot effectively participate in wave growth. The value of R must be calculated from the actual distribution function. For a Gaussian distribution $R \sim 8\omega_b V_t / k V_b^2$ for $k > 8\omega_b V_b / V_t$ and $R = 1$ for $k < 8\omega_b V_b / V_t$. At the tail of the beam, betatron effects are less important, so that $R = 1$ in Eq. (1).
Beam heating of the plasma can considerably reduce the damping term in Eq. (1) as e-i collisions become less frequent. Beam bunching, on the other hand, reduces the driving term in Eq. (1) as \(V_t \) increases dramatically. Thus the potentially most dangerous position for wave growth lies at the tail of the beam (\(R = 1 \)) at the beginning of the transport channel before significant beam bunching occurs.

3.1b. e-i Two Stream Mode

The e-i two stream mode is driven by the relative streaming between the background electrons and ions. The electrons drift with an average velocity \(V_e - n_e Z_b V_b / Z_p n_p \) relative to the stationary ions and in general \(V_e < u_e \). Here \(u_e \) is the thermal velocity of the electrons. The expression for the growth (damping) rate is

\[
\gamma = -\nu_{ei} - \frac{k c_s}{(1 + k^2 \lambda_D^2)^{3/2}} \left[Z_p (T_e / T_i)^{3/2} \exp \left(-\frac{T_e}{2 T_i (1 - k^2 \lambda_D^2)} \right) \right]
\]

\[
+ \frac{m_e}{m_i} \left(1 - \frac{V_e}{c_s} \left[1 + k^2 \lambda_D^2 \right]^{1/2} \right) \right) \right)
\]

where \(c_s = (T_e / m_i)^{1/2} \) is the ion sound speed, \(\lambda_D = (T_e / 4 \pi e^2 Z_p n_p)^{1/2} \) is the electron Debye length and where a simple Krook model was used for the collision term. In deriving Eq. (2), it was assumed that \(v_{ei} < k c_s / (1 + k^2 \lambda_D^2)^{1/2} \). When \(T_e \sim T_i \) this reduces to

\[
\gamma_2 = -\nu_{ei} + \frac{k c_s}{(1 + k^2 \lambda_D^2)^{3/2}} \left[\frac{V_e}{u_e} \exp \left(-\frac{1}{2 (1 + k^2 \lambda_D^2)} \right) \right.
\]

\[
+ \frac{m_e}{m_i} \left(1 - \frac{V_e}{c_s} \left[1 + k^2 \lambda_D^2 \right]^{1/2} \right) \right)
\]

(3)

Since \(V_e \) is usually less than \(u_e \), the mode is typically stable.

3.1c. Ion-Acoustic Mode

If \(T_e >> T_i \), then the drifting electrons can drive an ion-acoustic instability. In this case Eq. (2) reduces to

\[
\gamma_3 = -\nu_{ei} + \frac{\nu_{ei}}{c_s} \left[\frac{\nu_{ei}}{c_s} \left[1 - \frac{m_e}{m_i} \right] \right. \left(1 + k^2 \lambda_D^2 \right)^{1/2} \left[\frac{V_e}{c_s} \exp \left(-\frac{1}{2 (1 + k^2 \lambda_D^2)} \right) \right]
\]

\[
+ \frac{m_e}{m_i} \left(1 - \frac{V_e}{c_s} \left[1 + k^2 \lambda_D^2 \right]^{1/2} \right) \right)
\]

(4)

This predicts instability \((\gamma > 0) \), if \(V_e / c_s > (1 + k^2 \lambda_D^2)^{-1/2} \) and if \(v_{ei} \) is sufficiently small. However, the severity of the condition on \(T_e / T_i \) is often overlooked. For \(V_e / c_s \) as large as 5, \(T_e / T_i \) must be greater than 12 for instability even for \(k \lambda_D << 1 \). Figure 6 shows the critical values of \(T_e / T_i \) for instability versus \(k \) for various values of \(V_e / c_s \) (assuming \(v_{ei} = 0 \)). Since \(T_e / T_i \) is not expected to reach such high levels, in general ion-acoustic turbulence is not expected.
3.1d. ES Stability Conditions

Since the e-b mode is the only ES instability which could be generated, it is important to state under which conditions it may be avoided. For stability ($\gamma_1 \leq 0$) Eq. (1) states that

$$\frac{Z^{3/2} n^{3/2}}{P} \frac{\lambda_{ei}}{T_e^{3/2}} \geq 3.2 \times 10^7 \frac{Z^2 n_p (z)V_b^2}{\mu_b t(z)}$$ \hspace{1cm} (5)

is required. Here $\mu_b = m_b/m_e$, T_e is measured in eV and all other variables are in Gaussian units. This condition used in conjunction with the condition

$$n_p = 1.4 \times 10^{12} \frac{I_{ch}^{-2} (I_b(z) T_b(z)/S)^{1/2}}{ch ch}$$ \hspace{1cm} (6)

derived from MHD considerations15, set constraints on n_p and T_e for good transport. Here I_{ch} and I_b are measured in amps and S is the beam stopping power of the plasma measured in erg.cm-2/g. Eq. (6) gives the ion density in the channel required for minimum beam energy loss in the channel during transport. Given this required ion density, Eq. (5) sets an upper limit on T_e, beyond which electrostatic turbulence will set in. For good transport both of these conditions must be satisfied. Generally the stability criterion in Eq. (5), is most severely tested at the tail of the beam where T_e is largest and at the beginning of the transport channel before significant bunching occurs where $V_t(z)$ is smallest ($V_t(z)/V_b \approx c^2/2$).

3.2 EM Modes

The EM modes are slower growing modes than the ES modes, so that even if the mode is unstable, growth may not have sufficient time to reach non-linear saturation during the pulse duration of the beam. The modes are nearly purely growing (i.e. do not convect with the beam) and involve current bunching or filamentation of the beam and/or plasma channel. The wave vector, k, is oriented perpendicular to the direction of beam propagation with $k = k_r r$ for the Weibel mode (radial current bunching) and $k = k_\theta$ for the whistler mode (azimuthal current bunching). In addition, the cylindrical geometry dictates that $k_r \geq 2\pi/r_b$ and $k_\theta \geq \ell/r_b$ where ℓ is an integer.

3.2a. Beam-Whistler Mode

The beam-whistler instability is driven unstable by the relative streaming motion between the beam ions and the channel plasma. Since the wave vector is in the azimuthal direction and the beam ions execute their betatron orbits in the r-z plane, the betatron motion of the beam has little effect on the mode. However, a small spread in angular momentum, which is observed experimentally, can reduce the growth rate significantly. With no spread in angular momentum ($V_b^2/c^2 < 2v_ei\omega_0/b_p b/c\omega_p^2$) the growth rate is

$$\gamma = \omega_{pb}(z)V_b/c$$ \hspace{1cm} (7)
and with \(V_0^2/c^2 > 2v_{ei}\omega_{pb}(z)\) the peak growth rate is

\[
\gamma_u = 2v_0^2(z)\omega_{pe}^2/\epsilon_0^2 \text{pe}
\]

at \(k \sim V_0/V_b \). Here \(V_0 \) is a measure of the thermal spread in the azimuthal velocity of the beam ions. If \(kr_b < 1 \), peak growth rate is reduced to \([1-(k_r r_b)^{-2}]\gamma_u \) because of geometry constraints and if \(kr_b < 1 \), no growth is possible. The critical wavenumber \(k_\circ = \sqrt{2}\omega_{ pb}(z)V_b/cV_0 \) [See Eq. (35), Ref. 18].

If there is wave growth at a given point in \(z \), the number of e-folds that occurs is just

\[
N = \int_0^z \gamma(t)dt,
\]

where the time dependence of the plasma parameters must be considered. Most importantly \(v_{ei} \) decreases at \(T_{ei}^{-3/2}(t) \) as the plasma is heated by the passing beam. Note that beam thermal effects do not completely quench the instability because of the finite plasma resistivity. Given information from MHD considerations on the time variation of the plasma parameters due to beam passage, one can then determine from Eq. (9) whether significant azimuthal beam current bunching occurs.

3.2b. Beam-Weibel Mode

For the beam-Weibel instability the wave vector is in the radial direction. In this case the spread in perpendicular velocities associated with the betatron motion of the beam ions reduces the growth rate of the instability. A measure of the radial velocity spread is given by \(V_{0\alpha_m} \), so that the peak growth rate is given by

\[
\gamma_S = 2^{4/5}v_0^2(z)/\omega_{pe}^{8/5}
\]

at \(k \sim V_0/V_{0\alpha_m} \). Again the number of e-folds that occur at a given point in \(z \) can be determined by Eq. (9) and MHD considerations. Since the thermal spread in the radial velocity is typically comparable or larger than the thermal spread in the azimuthal velocity, the beam-Weibel instability is generally less dangerous than the beam-whistler mode. A superposition of both unstable modes, however, will lead to beam filamentation.

3.2c. Plasma-Electron Mode

If beam thermal effects or geometry constraints prevent the beam from driving strong EM wave growth, instability can still result from the electron return current established with the plasma. Because of the high collisionality \(\nu_{ei} > \omega_{pe} \) of the plasma electrons, radial \((k = k_\perp) \) and azimuthal \((k = k_\parallel) \) EM modes driven by the plasma electrons are essentially indistinguishable (aside from small geometric effects). The analysis must include electron thermal effects, as well as collisional effects since the
electron streaming velocity is subthermal even early in the pulse before beam heating occurs.

At early times in the pulse when \(\omega_{pe}u_e/cv_{ei} > 1 \), the peak growth rate is

\[
\gamma = \left(\frac{\omega_{pe}v_e}{c} \right) (2-2^{-1}) \frac{1}{p} .
\]

Later in the pulse after the beam heats the plasma if \(\omega_{pe}u_e/cv_{ei} > 1 \), then thermal effects slows the growth of the mode. The maximum growth rate is then given by

\[
\gamma = 2^{-3/2} \frac{v_e^2}{c_U} \frac{1}{pe} .
\]

At all times in the pulse geometry constraints prevent wave growth if \(k_oR_b < 1 \) where in this case \(k_o = \omega_{pe}v_e/\sqrt{2}u_ec \). Since again this mode does not convect, the number of e-folds at a given point in \(z \) can be obtained from Eqs. (11), (12) and (9) and MHD considerations.

3.2d. EM Stability Conditions

If the growth rates of the EM instabilities are slow enough such that less than one e-fold (\(N<1 \)) occurs during beam passage, wave growth will be washed out by the MHD changes in the beam-plasma system. Only wave growth with \(N>1 \) will affect beam transport. In order to prevent the beam from filamenting, the beam should then have

\[
\alpha^2 \geq \frac{v_e^2}{c^2} > 1.6 \times 10^{-9} \frac{n_b(z)}{u_b} \int_0^{\tau_b(z)} \left(\frac{z}{p_{ei}} \right) \left(T_e^{3/2} \right) dt , \tag{13}
\]

where again \(T_e \) is in eV's and \(n_b \) is measured in cm\(^{-3}\). This condition is derived from Eq. (8) for azimuthal current bunching which is typically more severe than the condition for radial current bunching since \(\alpha_m \) is usually greater than \(V_b/V_\theta \). Here it is also assumed that \(\sqrt{2}\omega_{pb}(z)R_bV_b/cV_\theta > 1 \), which is the usual case. In order to evaluate Eq. (13), a knowledge of the MHD response to beam passage is required, in particular, one must know the time history of the electron temperature.

If the beam is warm enough to prevent beam filamentation (i.e., Eq. (13) is satisfied), it is still possible for the channel to filament. Channel filamentation is avoided if

\[
\frac{J_b(z)}{n_b(z)} \left(\frac{9.4 \times 10^1}{u_p} \right) \int_0^{\tau_b(z)} (2-2^{-1}) dt + 6.9 \times 10^4 \int_0^{\tau_b(z)} \frac{dt}{t(z)p_{ei}^{3/2}T_e^{3/2}} \leq 1 . \tag{14}
\]

Here \(u_p = m_p/m_H \), \(J_b(z) = e\sigma_n (z)V_b \), and \(t_i \) is measured in sA/cm\(^2\) and \(t_i \) is defined as the time it takes for the beam to heat the plasma.
to $T_1 = 1.4 \times 10^{-4} (z_t^3 \Gamma_1 n_0^3 \lambda_e^2)^{1/2}$ in eV. If $T_e(0) > T_1$, then $t_1 = 0$ and the first term in Eq. (14) does not contribute. If $t_1 \geq T_b$, then the second term in Eq. (14) does not contribute and the limits on the integration of the first term go from 0 to $T_b(z)$. In Eq. (14) it was assumed the $\psi e r_b v_e^2/2u_e c > 1$, which is the usual case. Eq. (14) sets an upper limit on transportable beam current density above which channel filamentation will develop.

4. CONCLUSIONS

The stability conditions in Eqs. (5), (13) and (14), identify important constraints on beam propagation. Eq. (5) together with Eq. (6) states that the plasma cannot be heated above a certain critical temperature without generating electrostatic microturbulence. Such turbulence will degrade beam quality and confinement. In general the most severe constraint on T_e exists at the tail of the beam before bunching occurs where the critical temperature is defined by

$$T_e^c (eV) \equiv 10^{-6} \left(\frac{\mu_0^2 n_0^3 \lambda_e^2 \alpha_n^8}{z_b^2 n_b^2 (z=0)} \right)^{1/3}.$$

where n_0 is given in Eq. (6). By increasing n_0 the critical temperature can be raised at the expense of increasing the beam energy loss during transport. Operating at twice the density specified in Eq. (6) increases T_e^c by a factor of two but only increases the beam energy loss by 25%. The actual temperature that the electrons will reach for a given beam and background gas is not always easily estimated and must be calculated on a case to case basis and compared with the critical temperature defined in Eq. (15). Here α_m is a measure of the spread in axial velocities in the beam, which for a monoenergetic beam is given by $\Delta V_e/V_{eb} = \alpha_m^2/2$. If the beam has a spread in energy such that $\alpha_m^2 < \Delta E/E$, then α_m^2 in Eq. (15) should be replaced by $(\Delta E/E)^4$.

Growth of electromagnetic waves can be held to a tolerable level by allowing for a reasonable spread in beam perpendicular energy and limiting the beam current density. If the beam is too cold, beam filamentation can occur during beam transport. The condition for good beam transport is given in Eq. (13). If the beam does not filament but the beam current density is too high, the return current in the channel can cause channel filamentation. In order to prevent this from occurring Eq. (14) should be satisfied. The conditions given in Eqs. (13) and (14) may actually be too severe since channel hydrodynamic effects have not been included self consistently in the analysis. Channel expansion due to $J \times B$ force may tend to prevent growth of these transverse modes. These effects are presently under investigation.
5. REFERENCES

Fig. 1—Schematic of ion diode, focusing region and transport channel for light ion beam ICF module. The ideal diode voltage waveform for axial bunching is also shown where ϕ_0 in the initial diode voltage, t_a is the beam arrival time at the target and t_b is the beam pulse duration at injection.
Fig. 2—Schematic of beam propagation in a z-discharge channel. Here $\mu_b V_b = Z_d \phi$ (where Z_d is beam ion charge state in the diode and ϕ is the diode voltage), σ_m is the maximum injection angle, r_s is the beam spot size (or aperture size) and r_b is the beam radius in the channel. Also shown is the channel current required to confine the beam where Z_n is the charge state of the beam ions in the channel and $\mu_b = m_b/m_1$.

\[I_{ch} (A) = (3.2 \times 10^7 \mu_b Z_d^{-1} a_m^2 V_b/c) \]
PLASMA:

\[T_e \geq T_i \]

\[v_{ei} (T_e) > \omega_{ce} \]

\[V_e \approx Z_b n_b V_b / Z_p n_p < (T_e / m_e)^{1/2} \]

BEAM:

\[V_b / c \ll 1 \]

\[n_b \ll n_p \]

\[\frac{V_t}{V_b} \approx a_m^2 \]

Fig. 3—Schematic of particle distribution in \(v_z \). Here \(i, e \) and \(b \) are the plasma ions, plasma electrons and beam ions, respectively, and \(V_t \) is the measure of the spread in the beam distribution. Other typical beam-plasma conditions are also listed.
Fig. 4 - Distribution of beam ions in v_z for (a) a uniform distribution, (b) a Gaussian distribution, and (c) an actual distribution.
Fig. 5—Beam ion orbits in a frame of reference moving with the phase velocity of an ES wave

\[z = \bar{v}_z t + \Delta z \sin 2\omega_P t \]
Fig. 6—Critical values of T_e/T_i for ion-acoustic instability (assuming $\nu_{ei} = 0$). Regions above the curves are unstable and below the curves are stable.
AF Weapons Laboratory, AFSC
Kirtland AFB, NM 87117

Attn: CA 1 copy
ElC 1 copy
NT 1 copy
SUL 1 copy
DTP 1 copy
J. Darrah 1 copy
W.L. Baker 1 copy

HQ USAF
Washington, DC 20334

Attn: Rako 1 copy

Letter

Attn: Staff and Planning Staff JCS
C4I/TF 1 copy

Attn: Box 113 1 copy

Letter

Attn: Box S 1 copy

Letter

Attn: Box S 1 copy

Letter

Attn: Box S 1 copy

Letter

Attn: Box 3501

Attn: G. Carwam 1 copy
T. L. Goddard 1 copy
S. L. Edschius 1 copy
R. L. Schreiber 1 copy

Argonne National Laboratory
9700 South Cass Avenue
Argonne, Illinois 60439

Attn: G. R. Pengraen 1 copy
R. J. Martin 1 copy

Brookhaven National Laboratory
Upton, NY 11973

Attn: A. F. Kraushe 1 copy

Lawrence Berkeley Laboratory
Berkeley, CA 94720

Attn: D. Keefe 1 copy

Lawrence Livermore National Laboratory
P. O. Box 808
Livermore, CA 94550

Attn: L-38 1 copy
L-153 1 copy
R. O. Bangert 1 copy
R. J. Briggs 1 copy
E. P. Lee 1 copy
J. H. Rockwell 1 copy
S. S. Yu 1 copy
Tech Info Dept. L-3 1 copy

Los Alamos National Laboratory
P. O. Box 1663
Los Alamos, NM 87545

Attn: B. L. Anderson 1 copy
R. B. Perkins 1 copy
L. E. T좀 1 copy

National Science Foundation
Mail Drop 10
Washington, DC 20550

Attn: D. Eberle 1 copy

Sandia National Laboratories
P. O. Box 5800
Albuquerque, NM 87185

Attn: J. R. Freeman 1 copy
S. Hunter 1 copy
D. J. Johnson 1 copy
G. L. Kuro 1 copy
P. S. Riley 1 copy
J. P. Vandermeer 1 copy
G. Tomas 1 copy
Doc Cnr for 3101 Sandia RM Coll 1 copy

AVCO Research and Systems Group
201 Low Street
Wilmington, MA 01887

Attn: Research Lib. AVCO 1 copy

BBB Corporation, Inc.
7th Street, Suite 100
McLean, VA 22101

Attn: Tech Lib 1 copy

Boeing Company, The
P. O. Box 207
Seattle, WA 98124

Attn: Aerospace Library 1 copy

Cornell University
Ithaca, NY 14850

Attn: D. F. Hensler 1 copy
R. N. Soden 1 copy
J. Manchen 1 copy

Ditweld Industries, Inc.
1005 Broadway Street, 5F
Albuquerque, NM 87106

Attn: T. W. Davis 1 copy

EDS, Inc.
Albuquerque Division
P. O. Box 1170
Albuquerque, NM 87114

Attn: Technical Library 1 copy
Physics International Co.
2700 Merced Street
San Leandro, CA 94577

Attn: J. Benford
B. Bernstein
R. Gizioro
E. B. Goldmar
R. Huff
A. J. Toepfer
1 copy
1 copy
1 copy
1 copy
1 copy
1 copy

Pulsar Associates, Inc.
11891 Sorrento Valley Blvd.
San Diego, CA 92121

Attn: C. H. Jones, Jr.
1 copy

Princeton Plasma Physics Laboratory
James Forrestal Campus
P.O. Box 451
Princeton, N.J. 08540

Attn: R. Kalnabud
1 copy

Pulio Sciences, Inc.
1605 Broadway, Suite 610
Oakland, CA 94612

Attn: J. Smith
P. Spence
S. Putnam
1 copy
1 copy
1 copy

R&D Associates
P.O. Box 9093
Marina Del Ray, CA 90291

Attn: V. R. Graham, Jr.
H. Grove
C. Macdonald
E. Martinelli
1 copy
1 copy
1 copy

R&D Associates
Suite 502
1401 Wilson Blvd.
Arlington, VA 22209

Attn: P. J. Torchi
1 copy

Science Applications, Inc.
P.O. Box 2938
La Jolla, CA 92038

Attn: J. Robert Beyster
1 copy

Space Corporation
P.O. Box 17
Bedford, MA 01730

Attn: R. G. Little
1 copy

SRI International
333 Ravenswood Avenue
Menlo Park, CA 94025

Attn: Setson Sudaiki
1 copy

Stanford University
SLAC
P.O. Box 4149
Stanford, CA 94309

Attn: W. H. Harrnsfeldt
1 copy

Systems, Science and Software, Inc.
P.O. Box 1820
La Jolla, CA 92038

Attn: A. R. Wilson
1 copy

Texas Tech University
P.O. Box 5355
Hunt College Station
Lubbock, TX 79417

Attn: T. L. Simpson
1 copy

TRW Defense and Space Systems Group
One Space Park
Redondo Beach, CA 90278

Attn: Tech Info Center/9-1950
1 copy
P.E. Gubragoski
D. Cressal
1 copy

University of California
Dept. of Physics
La Jolla, CA 92037

Attn: K. Bruenn
M.E. Hansen
1 copy
1 copy

University of California
Boelter Hall 723
Los Angeles, CA 92024

Attn: F.E. Chen
1 copy

University of Illinois
Urbana, IL 61801

Attn: C. H. Miller
J. T. Verdeny
1 copy
1 copy

University of Rochester
Laboratory of Laser Electronics
Riveredge Park, Pocoma 110
Rochester, NY 14627

Attn: M-J. Lubin
1 copy

University of Scranton
Dept. of Physics
Scranton, PA 18510

Attn: F. Murray
1 copy

U.S. Department of Energy
P.O. Box 80
Oak Ridge, TN 37831

1 copy
50 copies

Vought Corporation
Michigan Division
3111 Van Buren East
Sterling Heights, MI 48314
(Formerly TV Aeronautics Corp.)

Attn: Ted Flah
1 copy

Atlantic Research & Development
Atlantic City, NJ

Attn: A. W. Martin
1 copy

United States

Attn: J. E. Martin
1 copy
Bhabha Atomic Research Centre
Bombay - 400085, India

Attn: R. K. Godwal
A. S. Patil

CEA, Centre de Etudes de Lomellin E. P. 27
94190 Villeneuve, Saint George France

Attn: A. Bernard
A. Jolas

CEA, Centre de Etudes de Valduc P. & E. 34
21120 Is-sur-Tille France

Attn: J. Barbano
C. Frumolino
C. Patan
C. Peugeot

Centro Di Frascati C.P. M. 66
00044 Frascati (Roma) Italy

Attn: U. Rejnow

Cuthbert Laboratories
GCAF
E. Basingstoke, Black France

Attn: N. J. Peacock

Ecole Polytechnique
Labo. H4
91120 Palaiseau Cedex France

Attn: J. M. Euzet
H. Bouquet

Ecole Polytechnique
Labo. H4
91120 Palaiseau Cedex France

Attn: J. M. Euzet
H. Bouquet

Institut d'Electromechanique
Université Paris XI-Map. 220
F91405 Orsay France

Attn: G. Gautherin

Institut fur Anorganische Physik
Robert Mayer Str. 2-4
D6000 Frankfurt, West Germany

Attn: R. Hutterhoff
R. Klein

Institut fur Neutronenphysik
Im Reaktorbau
D-2550 Karlsruhe 1
West Germany

Attn: H. Blium
H. U. Karow
W. Schmidt
K.W. Ziemer

Institute of Atomic Energy
Academia Sinica
P.O. Box 2125
Beijing People's Republic of China

Attn: Y. Suncharoen, Director
R. Hong

Institute of Laser Engineering
Osaka University
Yamada-cho
Suita Osaka 565, Japan

Attn: K. Inamoroki
S. Nakat

Instituto de Investigaciones Científicas Y Technicas De las Fuerzas Armadas
Av. 45 y Avenida 29
V. Martelli C.I.D.
Peis As. - R. Argentina

Attn: N. R. Caruso

Max-Planck-Institut fur Plasmaphysik
8046 Garching bei München
West Germany

Attn: R. Lengyel
I. Eichmann

Physical Research Laboratory
Navrangpura
Ahmedabad - 380001 - India

Attn: V. Rambani
P. L. Agrawal

Shivaji University
Kolhapur, India

Attn: L. R. Kotian

Tokyo Institute of Technology
The Graduate School of Agriculture
4259 Nagayama, Meguro-ku
Tokyo 152, Japan

Attn: K. Izu
E. Motoyoshi

Weizmann Institute of Science
Rehovot, Israel

Attn: A. L. Kleinfeld
Z. Kornik
Z. Prisek

Rockwell Technology, Inc.
P. O. Box 565
San Francisco, CA 94119

Attn: William O. Allred

23