bt e BT T S T

RADC-TR-81-143
Final Techrical Report
June 1981

COMPUTER PROGRAMMING MANUAL
FOR THE JOVIAL (J73) LANGUAGE

AMAL10706 7

Softech, inec.

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLlMITED]

IME RLE copy

ROME AIR DEVELOPMENT CENTER
Air Force Systems Command
Gritfiss Air Force Base, New York 1344|

DTIC

; ELLECTE
! s JUuL 6 1981

D

P N

-

This repcxt has been reviewed by the RADC Public Affairs Office (PA) and
1s releasable to the National Technical Information Service (NTIS). At NTIS
it will be releasable to the general public, including foreign nations.

RADC-TR-81-143 has been reviewed and is approved for publication.

APPROVED: M £ Srrerde

DONALD L. MARK
Project Engineer

APPROVED:

JOHN J. MARCINIAK, Col, USAE
Chief, Information Sciences Division

[

L FOR THE comNDEWﬁ 1z ,

: JOHN P. HUSS
Acting Chief, Plans Office

‘If your address has changed or if you wish to be removed from the RADC

mailing list, or if the addressee is né longer employed by your organizationm,

please notify RADC.(1sI9 Griffisze AFB NY 13441. This will assist us in

‘maintaining 4 currant mailing list. : oo

Do jnot return this copy. Retain or destroy.

nat typae by onid i e . e

O I L -

+ i et gk et S v e —rtin s L S e o e dantp p e v —

WSS T S MG,

LR e S - T =X

UNCLASSIFIED
SECURITY CINSSIFICATION OF THIS PAGE (When Data Enterad).
READ INSTRUCTIONS

K) REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

. R UMBER 2, GOVT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER

e
i

.' RADGYTR-81-143 | | AD -4 104

‘ TITLE {and Subtitle) ' 'ry,e RI 4 BERLOD. GOVLRED
) GOMPUTER ZROGRAMMING _yANUAL FOR THE JOVIAL Fina% :;echnical)(epmt . 5
e e

(J73) ‘AANGUAGE ‘ - 3 PERFORMING 010 REA€RT TWBER

e e e s . 4o b e A% W

o

18, DISTRIBUTION STATEMENT (of this Report) Aau.uun Tor

WIS GRAMT x
Approved for public release; distribution unlimited.| pTic Tas (]
3

Unannounced .
Justificationeee !

17. DISTRIBUTION STATEMENT (of the abatract entared in Block 20, i dilterent from Report) B

Y.
Same Distridbution/

Avuuabilitv Codeg
Avail and/or

18, SUPPLEMENTARY NOTES Dist SD.ui.l

RADC Project Engineer: Donald L. Mark (ISIS)

19. KEY WORDS (Continue on reverae side if receaanry and {dentify by block number)

JOVIAL (J73)
MIL~STD~1589A

Programming Manual
yigher Order Language

AUSTRACT (Gontlnus on reverse alde if necessary snd ldentily by block number)

This manual is a combined tutorial and reference manual for the JOVIAL
(J73) language as defined in MIL-STD-1589A dated 15 March 1979. The
main body of the manual describes the entire language, giving motiva~
tion and examples for each feature. This manual is intended for a
reader who has had previous experience with assembly language or some
higher order language, It does not teach the fundamentals of program-

ming. On the other hand, the presentation is informal and non- N

SECURITY CLAJSIFICATION OF THIS PAGE (When

DD " 5°™, 1473 eniTioN OF 1 NOV €515 OBSOLETE UNCLASSTFIED ; 1
DatefEntered)

Ling sy 3o

o — [P S

) T A A IS L T e eyt et

\. b BRI R RUTIPR ATV B ——- 1

L Yaes

e

7 AUTHQR(#®) """"i& 8. CONTRACT OR GRANT NUMBER(s)
(_ || #30602-78-c-0188 /
§. PERFORMING ORGANIZATION NAME AND ADDRESS . 10, ::giR.Awoﬁ KE N MOBJE!RC + TASK
Softech, Inc. . 63728F
460 Totten Pond Road 4_ (J
Waltham MA 02154 (/= Y1 25320203
11, CONTMOLLING OFFICE NAME AND ADDRESS N 18 REPORT oATi .
Rome Air Development Center (ISIS) .y p
Griffiss AFB NY 13441 (/7 "5‘93""“”' FAGES - (a /
. MONITORING AGENCY NAME A ADDRL.SS(If ditferen! ftom Conteolling Otfice) 18. SECURITY CLASS, (aof lj’rlpcrq, 1
Same UNCLASSIFIED
5a, ggﬁééj‘s-lzllCATloN/DOWNG!ADING
N/A

ORI GRS b

E A
e = -

T

T = - T
R T T

3l SE1

v ERET L

- —— Y

-y

UNCLASSIFIED

NECUmITY

CLASSIFICATION OF THIS P AGE(When Data Entered)

mthemtical. o

w

sty o e ————— et © i i mewR e L

UNCLASSIFIED

SECURITY CLABSIFICATION oF Tuir PAGE(When Dala Eritered)

b 4

2

Fi

g T "!_-"',-_h'-""_i" cpan -

i A

PTC
[ﬂ § .""»«..,}'

« CONTENTS

‘ Preface

INTRODUCTION L N I I R R I B A A I S S BN IR S A S B 'Y
The Principal Features of JOVIAL .seisaesen

CHAPTER

1l
2
Values @A & 88 8 2 s e s A E S EEIL I SN B BN 2
StOLBYE vt eieetsetiatsarsrrassrsassacenr 3
Calculations .ievveeciiesesesnssansessess 6
Operators 56 608 000808 s B ELEIIAYIOEELEEI OSSR 7
Built-In FUnctions ssevevrsseessonsccncss 9
Flow Of CONtrol «.icisennvesssenessonnass 1O
Subroutines ..c.icosessnnssrssurorrssasne 12
Pl‘ogramﬁ ® & 8 5 ¢ 8 5 8 P A SN B LS BN RO Y B OE N 14
Compiler DirectiveB s.ceviecreranesnesnes 17
[Compller Maoro8 ..sssvesssassanssssarnes 18
1 Advanced FeatuUres .:viceicecssssssaassses 18
Implementation Dependent Characteristics . 19
Outline of this Manual .sesvecessesesocsses 19
Suggestions to the Reader .i:iesvevsneeras 21

e ® ® & s - ® o e =

= OO !MbWwh M

BN P

CHAPTER PROGRAM ELEMENTS 't ittt asssnnnnssasnssvionsses 23
characters L2 IR T T TR T L Y Y TNY B N B DNN BN BN R BRI I B Y IR BN U B B N A) 24

1 Letters ... tovienctsenrsssnsosnsncsrsseses 24

2 Digits cviveievsnnians ceees 24 :

3 Marka 4 4 8 85 3 4 30 0 00 8 s “ s &8 25 ."‘

4 Special Characters . veews 25

¢ 8 6 8 0 25

* e 0 26 4

veees 27 E

veeas 27 k

..:l.lll 27

S}’mbols & 4 8 6 % 6 0 8 6+ 3 0 h b B A s s d sy
Names «oioeevsveasones
Reserved Words 'sveesssaness
Operators tseeecesans
Separators seessssses
Literals «ivieessonss

[IR

Integer Literals .

e s

Real Literals

Il L]
-2 [I B I 3
.3 Bit Literals «...ieioveses veeee 29 b
.4 Boolean Literals ..c¢iev0se .
.5 ®
.6 .

Character Literals «.cceviovvses

Pointer Literals:00444
Comments s:vsevasassssncnsosna
Other SymboOlBE +sscevetrocssns

Program FOormat ..esessscassssne

LN A]

DR A A 32
D R A A A Y 32
¢ s st 32
teveseesss 33
veasesesss 33 '
terersense 34

.1 Space Characters .«icveissssns
. 2 New Lines +evvvertvsacronnsne
03 Formatting Conventions

R e gy

CHAPTER 3 pRoGRAM STRUCTURE 2 4 8 & 85 % 0 3 8 B ACED PSP EE NS 35 i

3 . l The program 9 8 3 5 8 A% 8 BB 6 0] 00 O 0 SN Sy e o 35)

3 . 2 Moduls ® & 5 3 5 4 4 ¢ B B & B P L L S LG e e 35 L

3.2.1 The Main Program Module ..ciovvrcrvsesss 37 ol

ey T

111

R s el T T L R e e R w—“-—— e

y . s ey e 2 i i

——— T

CHAPTER 4 DECLARATIONS AND SCOPES :seseesescsssssecees 39
4,1 Declarations ..viesecessrseceososnsnsnsasees 39
4.1.1 The Classification of Declarations 4¢
40102 The Null-Declaration AR EEEEEE RN N 42
4.1.3 The Compound-Declarationveccesevse. 42
4.2 scope S & 0 @ 0 & 0 P S E PO SR TSI LS EANS S s 42
4.2.1 The Scope of a Declarationcees0ee. 47
4.2.2 Restrictions on Declarations¢vceeo.. 49
CHAPTER 5 DATA DECLARATIONS .+ oveecoossossnsasannssarsss Bl
5.1 The Classification of Data Declarations .. 52
5.2 Variables and Constants .i.ccceisesererses 52
5.2.1 Variable, Data ObJeCtB .svevseesssarsosrss 52
5.2.2 Constant, Data Objectsocvuesecveenes. 53
5.3 Storage Allocation c.esvsenveccansnrsersss 53
5.3.1 Automatic Allocation ..eveivscversniarses 54
5.3.2 Static Bllucation .evvivvvenneniarieness 54
/
CHAPTER ITEM DECLARATIONS LI I I I RN T Y T ST Y SR I O I S B Y IO B W) 55
.1 Item Declarations iiieesessrsvncctnssrosess 55
.2 Constant Item Declarations sciiesescvscses 56
'3 DataTypes S 8 5 6 0 8 06 0 0 0 T T PP E AN YN e 57
. 3.1 Integer Type-Descriptionsccivvvevsv. 58
.3.2 Floating Type-Descriptions ...cvctvesess 59
l3l3 Fixed Type-DeBcriptions TR EERR] e s s 08 4 61 .
+3.4 Bit Type-Descriptions ...:vviessenneses, 63
«3.5 Character Type-Descriptiongvvev0.. 64
.3.6 Status Type-Descriptions ...iievecieasss 65
. 3.7 Pointer Type-Descriptionscevvevea. 67
04 Item"PreetB L I I I R I I R T S S Y S T R S SR Y W) 68
4.1 The Round-or-Truncate Attribute 69
CHAPTER TABLE DECLARATIONS 4 .vvverinssennnosonnsssss 71 ‘

Table"Attributes 8 & 5 5 5 2 45 6% 08 8 0 8PP s sa 8N 72
Allocation Permanence «.cesesessossossce 72
Table DimenBions +eevecrececcessssescses 72
Bounds ...coceverrorronrosenssssacssnee 73
’rab]e Size % 4 % &2 8 % 5 2 A BB s e E S e b s 75
Maximum Table SizZe ...ivsivaornreesnss 76
Table-Preset S 5 & 5 8 88 N BB P SN 0NN BN 76
Entry"DescriptiQn % & 8 0 8 8 5 0 08 5 208 A a0 s Ve NG 76
Unnamed Entry-Descriptions ...¢seesuva.. 78 :
CQnﬁtant Table Declaratiorlﬂ EEEEEEEEEREEX] 79 ’
Table Initialization ¢cveevenveocnannnnees 79
Table-Presets with Item-Declarations80 |
Table-Presets in the Table-Attributes .. 80 A
values 4 0 8 90 B 5 0 % 4 s 04 4 A BB NA s AN 81 i

. o o
W =

WNNNND-

.
(o

Preset Positionerc.eiiiviiviusnnes 82
- Repetition“‘counte L N N N N Y] 84

NN NNNSS NN NN NSNS N [y W e W e WA T W e I W oLl e N L 2 W e NG

DO ADDADMRWNER S

1
2
3
4 omitted Values 4 8 5 % 8 ¢ & 8 & 005 9SS B s DN DD 82
5
6

CHAPTER

CHAPTER

CHAPTER

CHAPTER

8 BLOCK DECLARATIONS ..¢tecioasnssosscsssaa-ss B7

8.1 Block-Declaration ...ceseeesenssosvecenscas 87

8.1.1 Nested BlOCKS +vuvvevensvoas s .ornaaass 89

8.1.2 Allocation PEIrmManence «s:v sssevenssssse OF

8.1.2 Initial Values .c.eievisennas- 1rssss-00s 90

9 TYPE DECLAMTIONS ® & & 8 & 0 6 4 0 6 0 F S A PE LS e s 93

gol Type'-DEClaratiOn R R Y 93

9.2 Item Type-Declaration ...veeceenesocecass. 95

9.2.1 Allocation and Initial Values :esesseees 95

9.3 Table Type Declarations8 .:ieiososesesssaee 96

2.3.1 Dimension and Structure ..vcecessveroveee &7

9.3.2 Allocation and Initial Values 98

90303 Like"option LRI R N I N N RN N N R N N R N B S SN S S S 99

9.3.3.1 Dimensions and Like-Options ..:ia.vse.. 100
9.4 Block Type Declarations .iieveesnersseaacs 101
90401 Initial Values e 8 ¢ 8 8 5 29 &5 6 b4 O &8 OB OGS D 102
9.4.1.1 omittedvalues ® % 0 ¢ 2 6 % 4 8 e & 88 8 s 0B s 162
lg DATAREFERENCES 4 8 ¢ & & 4 0 5 5 S 0 SN SN s o lm3
1.1 Simple References .cieeeseassesensesasnsss 103
10.2 Subscripted Data Referencesc:e:+.. 104
13.3 Qualified Data Referencescciaveassss 105
10.3.1 Pointer-Qualified References ...seecesss 105
19.3.1.1 Pointers and Ambiguous Names 106
1@.3.1‘2 Examples llll.l...ll.!l!l.‘.I......llll 1”8
11 FORMULAS l.:.l......‘lll!.ll.l...l‘..l..lll 111
11.1 Formula Structure ..sieieesesssecsessseass 111
11.1.1 Operators and Operator Precedence 112
11I1l2 operands 0 0 0 6 5 0 6 0 P 2 BT O E B E L E LSS lls
11.1.3 Formula Types & 8 5 & 4 4 8 % 8B A S BB G SO SPPE Q O 115
11.2 Integer FOrmulas .civivesvasrssrcsconseess 116
11.2,1 Integer Addition and Subtraction 116
11.2.2 Integer Multiplication and Division ... 117
1102'3 Integer Modulus LI I I B 4 & &k 8B A B s SN H e 117
11.2.4 Integer Exponentiation i.ievsvevsveares 117
11.2.5 Examples 8 8 4 8 4 8 8 05 6 40P 4B S8 S P B S8 e 118
11.3 Float FOrmulas ssssssosasscasssnsssssssss 118
11.3.1 Float Addition and Subtraction 119
11.3.2 Float Multiplication and Division 119
11.3.3 Float Exponentiation ..¢ivesreesseseces 120
1103.4 Examplea 4 & & & A 8 5 F 5 5 385 4 SN S B BB BB 4 126
11.4 Fized FOrmulas «.sesoovovvsraaorssonsesss 121
11.4.1 Addition and Subtraction ..cveverssesees 122
11.4.2 Multiplication veecessesevessnenanessns 122
11.4'3 DiViBion e & 6 8 % 4 0 4 O P B S S 40 NS W EE S E P 122
11.4.4 ' EXaAMPleB «tvesonronssorsarsssnssnssenss 123
11.5 Bit FOrmulas .eovevecssstosrosonensasenss 124
11.5.1 Logical Operators sesvsesecoscsnsneacnanss 124
11.5.1.1 Short Circuiting «iesveivsvnrsannasss 125
11.5.2 EXAMPLleB +seevesvesasoreasnssasacnsnsss 125

v
— T AR TR A\ e bty i A

. - T et s R, -

— 3

!

t
\
-
1,
‘-./I.

PRI

CHAPTER

11.5.3
11.5.4
11.6
11.7
11.8
11.9
11.10

Relational OperatOrs ...¢v eeceuenvsens

Examples

® 6 5 5 060 88 A e e e s e tes s s

Character FOrmulas scccsssovesoencancsons
Status FOrmulas ..seicsssnresscsncanansas
Pointer FOrmulas ..ciecceersoconononasonss

Table Formulas

L R R R S N A N A B R AT A S A IR B I)

Compile-Time-FOrmulas ...sossss0s0ncanns

12 BUILT"INFUNCTIONS R EEEEEE R N N I I A N I
The LOC FUnction sveisveiccocsossosonssans
FPunction POXM cueevecsccananesotonsiona

12.1
12.1.1
12.1.2
12.2
12.2.1
12.2.2
12.2.3
12.3
12.3.1
12.3.2
12.3.3
12.3.4
12.4
12.4.1
12.4.2
12.4.3
12.4.4
12.5
12.5.1
12.5.2
12.6
12.6.1
12.6.2
12.7
12.7.1
12.7.2
12.7.3
12.7.4
12.7.5
12.7.6
12.7.7
12.8
12.8.1
12.8.2
12.8.3
12.9
12.9.1
12.9.2
12.14
12.10.1
12.10.2

Examples ...

6 68 0 00900 s aEuE B Bae bt

TheNExT Function LT TS IR I Y B BN O R TN BN BN TR TR SN RN RN R R)
Function POXM cveevsroseonccsanssesonas
Status Value Arguients .c.cescossascens
Pointer Value Arguments ...eicesssonses

The BIT FUNCLiON (i vietvsveanessnannsesse
Function FOIXM ceeevverssrsssntccsonnnsces

Examples ...

L I e R N I I B N IR B R RN IR B I S A N

Pseudo-variable Form L I R A A A R R A A A A N]

Examples ...

L I I I N A N A R A A A

The BYTEFUNCTIO&:.l‘l.l.l.l.l".'."‘f..
Fui‘lcticn Form 5 % 04 8 Es 0B BN E "I B LSRN G

Examples ...

LR I R A R R I N B R R S R Y A R R)

Pseudo-Variable FOXm .seeesessossussaas

Examples ...

¢ 2 0 8 8 24808 e TIPSO een

Shift Functions (eeiverervssrnssososseses
FPUnction FOXIN ceevisssarsosssnnssssvsnss

Examples ...
Sign Functions

LI I I R N K U I N A B RN B A I R N |

@ ¢ 8 5 8 5 % a8 st EBDbe s s

Function FOYM .evessvesorsconossrsonasas

Examples ...
Size Functiens

4 48 8 85 8 5 8 838 s et aAEE PN

LI R I I N A S B R AT R S B I R R A R)

Punction FOIM tcececesessesrssssstosonse

Numeric Data

TYPES cevseccssasenansonrss

Bit and Character Types .i:eiesasassass

Status Types

4 8 5 8 4 8 VU RS E e Vs SN

pointerTypes ® 8 8 2 8 8 0 8 8 38 NS A N 8o

Table Types
Blocks .4

L L I R I I O O B A N S B Y 2 I Y)

LI I S N N R R R A L RN R SR I S B Y N Y

Bounds Punctions «iicecesensrorsosssanass
Function FOXMB s cesenesanavaresnoernsas

Examples ...

LI I R S O R A O A R L I Y S I B R B Y

Asterisk Dimensions (.ciceisereistrnrianns
The NWDSEN Function ® % 0 6 3 3 5 4 8 9 P BB Nt PY O OEDS
PUNCtion FOXM cccvestvesvotassronssssonsa

Examples ...

L I I BT I R I I S I I O I A A A)

Inverse Functions .ceevetiscscssnsncssanss
FUnction FPOYM «vceoesetversssatonssosss

Examples ..

vi

LI S I R R R I R R N A I A A A A A A A)

WA e i A g e e BT AR

126
126
127
127
128
128
128

131
132
133
133
134
134
135
135
136
136
137
138
13g
138
138
139
144
140
140
141
141
142
142
143
143
144
145
146
146
147
147
148
149
149
150
150
151
151
152
152
152
153

EEOSTY

o -

CHAPTER

CHAPTER

13 CONVERSION

13.1
13.2
13.3
13.3.1
13.3.2
13.3.3
13.4

13.4.8.2

Conversions

Contexts for Conversion
Compatible Data TYPEE ssesvecesasosssssns
Convertible Data TYPe8 icevvnsetsnacnaca

% e 60 0 e 0 00

Type Descriptions ...ceeveesessocnssons
Type'lndicators LR R N I R N I R R B A A A)
UBerType-Names D I A N A I R N B A B A A A A A A N]

LI R R R R A I A R N B TR B BT Y B I N B NI I)

Conversion to an Integer TYpe +.ceeesse
Compatible TYDPEE saesesesssssncansos
Convertible TYpPes .ctstesssocanssaers

Conversion to a Floating Type ..evssses
Compatible TYDPES .sesscsasnosasrsanse
Convertible TYPES8 +cviesersiosacasrans

Conversion to a Fixed Type ..osccrscnns
Compatible TYPE8 ceirssvvnsorsvsnnanss
Convertible TYPEB «covvterierasensoss

Conversion to a Bit TYpe t.ceveeinnsens
Compatible TYPEB «svesssoscassnensans
Convertible Types R
User-8pecified Bit Conversion

REP Conversions

Compatible Types

Conversion to a Table Type ...

Conversion to a Character Typeevn.
Compatible TYpPeB ..sovsressostsannssoe
Convertible Typea D I A S A AN R

Conversion to a STATUS Type sevessassen
Compatible Typeﬁ R T
Convertible Types ... ciinonensonsses

Conversion to a Pointer Type ...eiesses

L I I O A A JC R R N Y B I Y I I]

Convertible TYPES ¢ivevsrtvvnsaananss

¢t o e byes

Compatible TYPEB «eissescnsvssssasess
Convertible TYPe8 .o i vvvrnssssnsonns

14 STATEMENTS L R R R I I A S I I I S Y I B I I A A A N

14.1

14.1.1
14.1.2
14.1.3
14.1.4
14.2

14.2,1
14.2.2
14.3

14.3.1
14.3.2
14.3.3
14.3. 4

If-ftatements

Statement Btructure ...tV iiivrrnnssoancas

Simple"'statements L I I N N N N S R I SRR

Compound-Statements

48 8 ¢ 8B P4 BIE 0

Labels DR I R R R N R A N N R N R R A R R
Null-statement. ® 5 5 8 0 8 80P EEE AN

hAssigmment Statementsccvsesnnssasns

Simple Aﬂﬂigm’ﬂent-statements RRe e s s e
Multiple Assignment-Statements .:.ie04.

L I R I L I A B B R RN B R B N B BN IR I

Compound AlternativeB ..icessrsersavacns
Nested If-StatementB LR I SR SRS BN N RS S N
The Dangling ELSE . ctsvvsrnsscesensnnan
Comp‘l.le—'rime-conﬂtant Te!t’ LRI R BN AR S Y

vii

Povy

155
155
156
156
156
187
158
158
158
159
159
161
161
162
162
163
162
164
164
164
164
166
le6
168
167
168
168
169

17¢
171
171

172

173
173
173
174
175
176
176
176
177
178
179
180
181
182

R T T e e s

f 14.4

Case~-Statementsivetveeeiaosesaraaasaea 183
f 14.4.1 Bound Pairs ...eoevessassssassncsscseses 185
i 14.4.2 The FALLTHRU Clause ..¢essescnasosescss 185
: % 14.4.3 Compile-Time-Constant Conditions 186 ‘
: i 3 1405 LOOp-Statements L R T R O I N S S N A BN I N R AT) 187
- | i 14.5.1 While-LOOPS essesasesrssssesesassarsssss 187
l 14.5-2 FOI‘-LOOpS L O R R N O R T R A I N R R I SN SN S N) 188
: 140502-1 InCIemented FOI‘-LOOPE R N R RN A IR S P 189
% 14.5.2.2 Repeated Assigment LOOPS ¢eesesosssss 191
. 14-5.3 Loop-control [I N R I R A R R O O N I I RN I B RS B R) 192
; 14.5.4 Labels within For-LoOpP8 .ievesseacsasss 193
. 14.6 Exit-StatementB ® 8 45 60 ¢ A S B BB E RN eI IR 193
¢ . 14.7 GOtO-StatementB R R R I A I A] 195
& 140 B Procedure-Ca ll-StatementS oo LR I R I N S N R W Y 196
'; ' 1409 Return"statements “ s PP B eI e RO BLE LI OPLEESEan 196
14.10 Abort-Statements ..cicesscesssssrsaneass 197
! 14.11 Stop-Statements ...cciivrinnererssnsscse 197
, CHAPTER 15 SUBROUTINES . .ccevcesncssraosstsssossossessss 199
I, 15.1 Procedures ..sevvsnssscosrnnosnasssssasss 199
' . 15.101 Procedure-DEfinitiona 8 66 2000008058 199
: ‘ 15.1.2 Simple Procedure~Bodies ...vcceesrsnsee 207
u l ' 15.1.3 Compound Procedure~Bodies s.iceieveesess 201
; 15.1.3.1 Formal Parameters ..sseeseseevasacses 202
; 15,1.4 = Procedure=Calls (.corvsvevnscsonosnsssses 202
: 15-1-4-1 Actual Parameters svssesesseresnsanios 2“3
. 15.2 FUNCLtiOoNs sevisvevorscsacrosssnsnsansnsces 204
' 15.,2.1 Furiction Definitions svsveviivicveenvias 204
! 15'2l2 Function-calls ® 5 4 & 6 & 0 8 2 B s s e e e Y NS 2@5 L}
15.3 Parameters c.vsovesiestsosertsssssnsersnans 206
: 15.3.1 Input and Output Parameters ssivsseeees 2086
! s 1503.2 Parameter Binding S B e Es NP ILIIEEELELEDNS 2“7
) 3 15.3.2.1 Value Binding 4 4
15-3.202 Value-Result Binding " s a0 s 0P r st sae 2”8 ’
. 15.3.2.3 Reference Binding +scvvevecsnrvnnes.ea 209
F 15.3.3 Parameter Data TYpes8 ..civvavssesrsvear 211
15.3.4 Parameter Declarations ...-.vssvevase.e 211
15.3.4.1 Data Name Declarations ...seveceecaas 212
15.3.4.2 Statement Name Declarations 213
15.3.4.3 Subroutine -Declarations «iseeseseseess 214
1504 The UBe-Attribute LR I I R N N B S RS R S S N Y B Y S B) 215
15.4.1 Recursive and Reentrant Subroutines ... 216
15.5 Subroutine Termination (vecveviaranines 217
15-5'1 Return"statement‘ LR R R I N N A S N I N R A B S) 218
15.5.2 Abort-statementa ¢ 8 & U B A S B e P et P I A SN 218
15u503 GOtO-StatementB DR R B B N NN R R U B B R R A A] 22“
15-5-4 Stop"statement' DR I BN R S N I A R N Y SRR N I N O] 22@
, 15.6 Machine Specific Subroutinescc.00.s 220
!\ 15-7 The Inline“DeCI.ﬂration TR R R N B A S BN S B A A I A] 22‘1
viil i
p g
! i
- \ S _ L L T AT R My] SN : i o P g v
[T 4 p—— e ool

v e . T

T

CHAFTER 16 EXTEDNNALS AND MODULES e esoveceoecs
16.1 External Declarations:eocvas

223
223

.
.
.
.
.
.
.
.

1601.1 DEF—SPeCifiCations 2 5 8 5 806 8 0 0 8 BB e e 224
l16.1.1.1 Simple DEF-Specifications ...vonieeve 224
16.1.1.2 ' Compound DEF-Specifications «....s... 225
16.1.1.3 Allocation eseivicinosssssasssonnsreses 225
l16.1.2 REF-Specifications .cevieeenrsecessnses 226
16.1.3 Constant Data «.eveerssresessssanssnsse 228
1602 Mcdules O & & P 2 8 4 0 4 0 AN S b s 228
16.2.1 Main Program Moduleceiceussansnsss 229
160202 Compool—MOdules R EE R I N N I N B R S) 231
16-2-3 Procedure-Modules @ % 6.8 06 5 0 2 s s 6B IS B 237
16.3 Module Communication eceececsvscscaaassses 239
16.3.1 Direct Communication srvsviesenessrseesr 240
cliAPTER 1’/ DIRECTIVES A 0 5 B 48 % & 0 4 8 S QAPPSO EY TN E P 243
17.1 Compool-Directives +svsevsrissasiscanareass 244
17.1.1 Names 8 & 8 8 2 8 4 B A St S AN et 245
17.1.2 Additional Declarations .:.evevecesesse 246
17.1.3 Placement .s.oceviosencrcarsessveasssassses 246
171114 Examples I N T ST SN TR ST IR Y NN BN TR Y Y S RSN AT I IR Y I IR N B RN R 247
17.2 TeXt-Directives cvcivecsersoensssanarenes 247
17.251 copy—DireCtiVe ® % 0 & 8 & 0 2 B s B e e 248
17-2-1-1 Placement T T R R R R R R 248
17.2.1.2 EXample . ovceivrnscasertasrascesnsses 248
17.2.2 Conditional-Compilation~Directives 249
17.2.2.1 Placement seisssnsssnnnssrsssscansress 249
l7.2l2l2 Examples [N R T A N N R I I B Y Y S R R SO L R R T R 249
17.3 Listing-Directivesvevsecaescaansess 255
.L7A.?lol Placement L I I R . R R T T TR T S S S S TS S I S T SN S SN N ?55
17.4 Initialization-Directive ceeieveviireeess 256
17I4l1 placement S 8 5 0 8 6 5 & 2 8 & ¢ 0 0 0 F A 256
1704.2 Example A ¢ 0 0 b & 6 5 0 ¢ 0 & ¥ & 8 N0 a2t Y ER S 256
17.5 Allocation-Order-Directive c.vveveiecrnas 256
17.5.1 Placement sesssevesssnasesssssssssssanss 257
17.5.2 EXAMPle severstsensnsassssasacssenssrans 257
17.6 Evaluation-Order-Directives .+:ivvvsssesr 258
17.6.1 Placement «eovvecosorensorssnssasnscessesrs 258
17.6.2 EXAmMPle ciecierteonsencsanasssasssaenaas 259
17.7 Intevference-Directive ...icivcevvviianas 259
17.7.1 Placement tesveeoresccsonscrscsnsccsnsee 260
17.7.2 Example (oot iiortseenccasasstsssseresss 260
1708 Reaucible“Directive EEEEEEE R e 26(’1
17.8.1 Placement «ceesistorssassnsssssnssessess 261
17!802 Example ¢ & & 8 0 5 L 2 D 4 ¢ 0 s & V4B 261
1709 Register-DirectiVes @ 6 2 0 6 4 8 4 3 B H e O L e 261
17.9.1 Placement seesessrsorassnaasnannss craees 262
17.19 Linkage-Directive ...vivivrivieriisvianse 262
17.19.1 Placement «c.eveseevesncnsssssosssnsanse 262
17.,18.2 Example t.ecirviiiitoagrosonnrassanssans 262
17.11 Trace-Directives it virinsnrstssssaanss 263
17.11.1 Placement e.esveitrsevecavecnsssnaresnsss 263
1x

CHAPTER 18

CHAPTER

18.1
18.2

DEFINE CAPABILITY
Define-Declaration
Define-Calls

Placement

* e 0 v s 8 0 s

LR A A]

L R S Y

L R R A I I A B B I B B I I B A Y Y)

L I I I A B R I B I R N I N BN N IR BRI S)

The Define-string LR A B B AN S IR R I B B I BN Y

Define~Calls in Define-Strings

Comments in Define-Declarations
Define Parameters

Define-Actuals

Missing Define~Actuals
Gerierated Names

Context

Define~Calls in Define-Actual
The List Option «.icevieenrven

19 ADVANCED TOPICS

19.1
19.2
19.2.1

2
l2h1
19.2.2,2
19.2.2.3
12.2.2.4
19.2.3

19!

19,

19.

S e AT LI QL

L R R A IR I R Y B

JOVIAL (J73) Tables «iveunnas

Ordinary Tables

Packing

s 6 8 8 0 0 8 s

S8 60 0 80
" e e .

e W s o o

»
.

LI A A A)
.

Structure

L A N R I I I A I R B I

Serial Structure
Parallel Structure

Serial vs.

s 6 00000

o s 00 00

s s 008 00 00

LU IR B I]

LR I S N

.
.

a0 8 8 40 00
LR I A R)
.

LRI B B)
*® v e s
00 a.
" e 0
LA BN

* s 0.

® 0 5 40 0

LR RN S I I

Parallel Structure
Tight Structure ..c.vvsecnens

LR I]

Conversion and Packed Items ..
Specified Tables «ositivoviainns

Specified Table Type Declarations .
Tables with Fixed-Length Entries ..
The * Character
Overlays
Presets

Spacers

Nested Overlays .
Storage Sharing
Allocating Absclute Data
Allocation Order ...

LI

¢ o 4 e e v

LRI S I S I)

Entry—SiZe P I TN T SR T R TR S B N S IR B I I R)
Tables with Variable-Length Entries
The OVERLAY Declaration

Data Names

¢ 3 B s 8 SV 8 0 s s

L R I I I I A R I O I R I)

" e 4 s

60 s »

L I R R SRR Y I R I)

.

.

.

D R A
.

.

.
.
.
.
.
.
¢ o v o
.
.
.
LI I R Y
.

.

Overlay-Declarations and Blocks ...,

Specified STATUS ListS .vivsvovens

DEF-Block-Instantiations

Ce ¥

LN R S

265
265
266
268
268
268
270
279
271
271
272
273
2723
274

278
275
275
276
281
282
282
283
284
287
287

289
289
290
290
291
293
296
297
298
299
299
299
3o
ng
301
302

W < L vl Spsedy vy e e e e e
piallihs.Fh P T RPN

e —————]

PREERE R ONUNEE

YrogpdiataniBRE e o

L e

.

APPENDIX

PIEDPP PP

APPENDIX

wWww

Index

A

B

Il T e

1
2
3

.

DWW e

LANGUAGE SUMMARY ...vcevronees seceesara et

A-1
Introduction ...ciivecerannnse tevesrrne A-1
Syntax Notation seeieeesesses sessesses A-l
o1 Concatenation ..cecvvvennir. sresenavss A=2
.2 OMigBsion (ivevirvioroecsatccasensnnons A=2
.3 Disjunction «..sciessacocccsaronsaasss A=3 i
.4 Replication ceseserbenssssasasssssesns A=3
Identical DEfinitions ® 8 s PV e PR E PR NSRS A-S
NOEES sttt sssiossssnosossissncnssccsresrsas A=5
Syntax Index L A O I I I I B A R R R A N BN BRI A) A-S
SynﬁaCtic Summary vresrsersecatsersssancsse A-6
Syntax Index L R B R R RY B I BN IR I S B B I I I I I) A"46
IMPLEME'TATION PARAMETERS L R R R S R B S N S A I) B—l
Integer Implementation Parameters B-2
Floating Implementation Parameters B=4
Fixed Implementation Parametersses. B=5

x1

B s L LU R R PTRRRY

Chapter 1

‘ INTRODUCTION

JOVIAL (J73) is a higher-order programming language. It is being
implemented on many computer systems and used in many

applications areas. Typical applications areas are avionics,
command and control, and missile flight control.

Sufficient capability has been provided to permit programming of
most command and control applications in JOVIAL (J73). It is
intended that assembly language programs be combined with
programs written in JOVIAL (J72) to form a total application
software package. The assembly language programs can provide
certain utility operations as well as all hardware-dependent
activities such as input, output, and interrupt services.

s

The language independently processes procedures and functions of
the units of an application. Standard subroutine linkage and
argument transmission with a powerful compool file ¢an be used to
effectively modularize programs and contreol interfaces.

Permissable data structures are simple items, structured tables

of simple items, and composite data blocke containing simple
items and tables.

=y

Types of data in data structures can be eigned or unsigned
integers; enumeration values, floating point numbers, fixed point
(fractional) numbers, character strings, bits strings (logical),
and pointers (address of data objects).

A full complement of language constructs permits looping,
branching, conditional execution, procedure or function calls,
and assignment of values to datz elements.

-1 - 1l: Introduction

,1_ RIS A i S e e A

1.1 THE PRINCIPAL FEATURES OF JOVIAL

The following paragraphs provide an introduction to the principal

features of JOVIAL. They discuss values, storage, calculations, Lo
operators, built-in functions, flow of control, subroutines, . ,
programs, compiler directives, compiler macros, and, finally, the |
advanced features of the language.

l.1.1 Values ﬁ

The kinds of values provided by JOVIAL reflect the applications
of the language; they are oriented toward engineering and control
programming rather than, for example, commercial and business
programming. The JOVIAL values are:

1, 1Integer values, which are signed or unsigned whole
numbers, They are used for counting. For example, an
integer can be used to count the number of times a loop
is repeated or the number of checks perfermed on a
process.

2. Floating values, which are numbers with "floating" scale
factors. They are used for physical guantities,
especially when the range of measurement cannot be
accurately predicted. For example, floating values are
frequently used to represent distance, speed,
temperature, time, and so on.

4
-

3. Fixed values, which are numbers with constant gcale
factors. They are sometimes used for physical
quantities (primarily to save time and/or storage) when
the range of the value is narrow and predictable. For
example, fixed values might be used in a computation
that had to run on a computer for which floacing-point
hardware was not available or was too slow.

4. Bit-string values, which are sequences of binary digits
(bits). They are used for communication with "on-off"
devices or to control parts of the program itself. For f
example, a bit-string could be used to represent '
settings of switches on a control console. f X

5. Character-string values, which are sequences of
characters. They are used for communication with people.

For example, a character-string could be sent to an @ﬁ\ !
operator terminal to report failure of a portion of the ‘ !
system.
|
l: Introduction -2 -

[rS—

6. Status values, which are special words. They are used
to describe the status of the system, or a particular
part of the system, at any given time. For example,
status values of "V(OK)", "V(WEAF)", or "V(BAD)" can be
used to indicate the condition of a power cell.

ok

7. Pointer values, which are data addresses, meaningful
only within the program. They are used to locate data
indirectly. For example, a list of items can use
p?inters to connect each item to the next item in the
list.

8. Table values, which are collections of valuee gathered
: together to form a single data object. They are used

for the constructs called "arrays" and "structures" in :
other languages. For example, a table can be used to !
store temperature readings taken every 10 seconds during ;
a given test period.

9. Block values, which are collections of values gathered , 1

into one region of memory. They are used to support

4 memory management. For example, certain data that must .

ld be paged in and out of memory together can be placed in
a block.

1.1.2 BStorage

When a JOVIAL program is executed, each value it operates on is
stored in an item. The item has a name, which is declared and
then used in the program when the value of the item is fetched or
modified.

P |

An item is declared by a JOVIAL statement called a declaration
statement. The declaration provides the compiler with the
Information it needs to allocate and access the storage for the
item. Here is a statement that declares an integer item:

ITEM COUNT U 1@ I

This declaration says that the value of COUNT is an integer that
is stored without a sign in ten or more bits. The notation is
compact: "U" means it is an unsigned integer, "19" means it
requires at least 1@ bits. We say "at least" ten bits because

. the JOVIAL compiler may allocate more than ten bits. (That

(alloction wastes a little data space, but can result in faster,
more compact code.)

-3 - 1: Introduction

{

TV R A ~ TR TV, YT e RLT

[l

JOVIAL does not require that you give the number of bits in the
declaration of an integer item. If you omit it, JOVIAL supplies
a default value that depends on which implementation of JOVIAL
you are using., An example is:,

ITEM TIME S:

This statement declares TIME to be the name of an integer
variable item that is signed and has the default number of bits.
On one implementation of JOVIAL, this would be equivalent to the
declaration:

v

ITEM TIME 8 15;

The item TIME occupies 16 bits (including the sign). On another
implementation, it would be equivalent to:

ITEM TIME § 31:

This and other defaults are defined in the user's manual for the
implomentation of JOVIAL you are using.

In this brief introduction, we cannot consider each kind of item
in detail (as we just did for integer items). Instead, a list of
examples follow, one declaration for each kind of value.

ITEM SIGNAL S 2@ A signed integer item, which occupies
at least three bits and accomodstes
valueg from ~3 to +3.

"ITEM SPEED F 30: A floating item, whose value is stored
as a variable coefficient (mantissa)
and variable scale factor (exponent).
The "3¢" Bpecifies thirty bits for the
mantissa and thus determines the
accuracy of the value. The number of
bits in the exponent is specified by
the implementation, not the program.
It is always sufficient to accommodate
a wide range of numbers.

ITEM ANGLE A 2,13; A fixed item, whose value is stored
with fixed scaling, namely two bits to
the left of the binary point and
thirteen fractional bits. Thus it
accomodates a value in the range -4 <
value < +4 to a precisimn of
1/(2%*14),

l: Introduction -4 -

—— i

—c——

ITEM CONTROLS B 10; A bit-string item, whose value is a
sequence of ten bits. Thus it can
accommodate, for example, the settings

of ten on/off console switches.

ITEM MESSAGE C 84; A character-string item, whose value
is a sequence of eighty characters.
Thue it can accommodate, for example,
the message "WARNING: Cooling system
failure" (with plenty of character

positions left oyer).

(V(RED) ,V{YELLOW) ,V(GREEN)) ;

A status item, whose value can be
thought of as "V(RED)", "V(YELLOW)",
or "V(GREEN)" but which is, in fact,
compactly stored as an integer. Thus
a programmer can assign "V(RED)" to a
variable to indicate cooling system
failure instead of using a ?presumably
non-mnemonic) integer.

ITEM INDICATOR STATUS

ITEM HEAD P DATA: A pointer item, whose value 1ls the

address of a data object of type DATA.

Items are 3just the scalar (single-value) data of JOVIAL. JOVIAL
also has tables and blocks, which provide for arrays and other
data structures.

An example of a table declaration is:

TABLE GRID (l:1M,
BEGIN
ITEM XCOORD U:
ITEM YCOORD U;
END

1:10@);

The table GRID has two dimensions. Each dimension contains ten
entries. Each entry consists of two items, XCOORD and YCOORD.

An example of a block declaration is:

BLOCK GROUP;
BEGIN
ITEM FLAG B;
TABLE DATA(100);
ITEM POINT U;
END

The block GROUP contains the item FLAG and the table DATA.

-5 - 1:

Introduction

Items, tables, and blocks can also be declared using type-names.
A type-name is defined in a type declaration. An example of a
typre declaration is:

TYPE COUNTER U 10;

The type-name COUNTER can be used to declare ten-bit integers.
For example:

ITEM CLOCK COUNTER:

l1.1.3 Calculations

In the eimplest case, calculation is performed by an asgignment
statement. An example is:

AVERAGE = (X1 + X2)/2;

The right-hand~side of this assignment is a formula; it forms the
sum of X1 and X2 and divides it by 2. The details of the
operation depend on how X1 and X2 are declared. 1If X1 and X2 are
declared float, the calculation is very likely to produce the
expected result. In contrast, if the X1 and X2 are declared
fixed, the mcaling must be worked out by the programmer to make
sure the calculation will succeed. And if X1 and X2 are declared
character-string, the compiler will reject it because JOVIAL does
not automatically convert values into the types reguired by
operators.

In the example just given, the parentheses show that the addition
is performed before the division. When parentheses are not
given, JOVIAL recognizes the usual order of evaluation. Here is
an example:

POLY = BETA*X1%¥%2 - GAMMA*X2 + DELTA;

JOVIAL applies its "rules of precedence" to the formula in this
assignment and thus interprets it as:

POLY = (((BETA*(X1*'2)) - (GAMMA*X2)) + DELTA);:.

The complete precedenée rules are given in Chapter 1l1l.

l: Introduction -6 -

P —

The examples just given illustrate the use of formulas on the
right-hand side of an assignment statement. A formula can also
appear ag part of the left-hand side of an assignment statement;
for example, as the subscript of an array. In addition to their
important role in assignment statements, formulas can appear in
many other places in the language: as actual parameters of
functions and procedures, ae the condition in an if-statement,
and sc on.

Since JOVIAL has quite a few kinds of values, it muset have many

ways of converting one kind of value into another kind. 1In most

gaaes, you must explicitly indicate the conversion. An example
B3

ITEM MARK U 14;
ITEM TIME F;

MARK = (* U 19 *) (TIME):

The value of the floating item TIME is converted to a ten-bit
integer value before it is assigned to the ten-bit integer item
MARK. If you leave the conversion operator out of thie
assignment, the compiler will report an error. The compiler
catches situations in which one type of value is unintentionally
assigned to or combined with a different type of variable.

1.1.4 Operators

The operations provided in JOVIAL reflect the applications of the
language: they determine what the language can and cannot do.
Thus JOVIAL is strong in numerical calculation and control logic,
put has minimal operations for text processing.

JOVIAL does not have any operations for input-output or file
maintenance because it is assumed that a JOVIAL program rune in a
relatively specialized environment that provides subroutines for
those operations.

Some of the operations of JOVIAL are represented by operators,
others by built-in functions.

- 7 - l: int. oduction

PR S 2 S ST e e W ek et e 2+

The JOVIAL operators are summarized in the following table:

Type Operators Operation ‘

: '

; Arithmetic + - prefix sgigns - 5
. * % exponentiate o
, * / MOD multiply, divide, and modulus -
+ - infix add and subtract b

h

' Relational < > = less than, greater than, equal ﬁ
X <m = <> less than or equal, g
{ greater or equal, not equal [
| b
Logical NOT (prefix) "not" !

AND OR "and", "“or" !

XOR EQV "exclusive or", "equivalent" .

LY

An arithmetic operator takes integer, float, or fixed values as
its operands and produces an integer, float, fixed value as its
regult. Type classes cannot be mixed. For example, a fixed
value cannot be added to a float value unless one is explicitly
converted to the type of the other.

LN)

Frere g -

% A relational operator compares any two values of the same type 3

and produces a Hoolean value as its result. A logical operator
takes bit-string values and also produces a Boolean result. (A
Boolean value is a one-bit bit-string, representing "true" or
"falee", depending on whether it is one or zero.)

P S 35 s

The JOVIAL operators are described in detail in Chapter 11, f}
where, for example, you will find the rules for operations on L
fixed values and for the comparison of such objects as

- character-strings and pointers.

1l: Introduction - 8 -

 ——

_~

1.1.5 Built-In Functions

The JOVIAL built-in functions provide advanced, specialized
operations that are not covered by the JOVIAL operators. They
are summarized in the following table:

Function
LoC(x)
NEXT(p, i)
NEXT (s, 1)
BIT(b,i,n)
BYTE(c,i,n)
SHIFTL(D,n)
SHIFTR(b,n)

ABS(x)
BGN(x)

BITSIZE(x)
BYTESIZE(x)
WORDSIZE(x)

LBOUND(t,qd)
UBOUND(t,d)

NWSDEN(+t)

FIRST(s)
LAST(s)

Result
A pointer to the object referenced by r

A pointer to the 1'th data object after
the one selected by p
The i'th status value after status value s

A string of n bite starting at the i'th bit
of the bit string b '

A string of n characters starting at the i'th
character of the character string c

Bit string b shifted left by n bits
Bit string b shifted right by n bits

Absolute value of x
+l1, B, or -1 for x>@, x=0, x<@

Logical size of x in bits
Logical size of x in bytes
Logical size of x in words

Lower bound of d'th dimension of the table t
Upper bound of d'th dimension of the table t

Number of bytes allocated to each entry of
the table t

First status value in status list for s
Last status value in status list for s

An example of the uge of a built-in function is:

C = BYTE("ABCDEF",2,3);

The built-in function extracts "BCD" from the string "ABCDEF".

-9 - 1: Introduction

XL 0 A 5 YL A e TR e s an S

~ &i;ﬂw:ﬂ;;aa— P

— e ———— et

r
Foi

Two of the built-in functions, BIT and BYTE, can be used as
pseudo-variables. 1In that form, they appear as the target of an
assignment, and are interpreted "backwards". An exawmple is:

C = “ABCDEF";
BYTE(C,2,3) = "Xyz";

This assignment changes the second, third, and fourth characters
of C to "XYZ". The value of C after the assigment is therefore
“AXYZEF",

1.1.6 Flow of Control

For structured flow of control, JOVIAL has an if-statement, a
case-statement, and a loop~-statement with an optional exit-
statement. Examples of these statements follow.

Here is an example of an if-statement:

IF SPEED < LIMIT:
FLAG = TRUE:;
ELSE
BEGIN
FLAG = FALSE;
VIOLATION = VIOLATION+1;
END

If SPEED is less than LIMIT, this statement sets FLAG to TRUE and
does nothing else. .If SPEED is not less than LIMIT, the
statement gets FLAG to FALSE and increments VIOLATION., The last
four lines of the example are a compound statement; the BEGIN~END
pair groups the assighments to FLAG and VIOLATIONM into a single
compound statement controlled by the ELSE clause.

The ELSE clause of an if-statement is optional; when it is
omitted, no action is taken when the condition is false.
Furthermore, if-gtatements can be nested, so complicted control
structures can be built up. When if-statements get large and
complicated, however, you can sometimes use a case-gtatement to
clear things up. -

1: Introduction -19 -

e s

[P |

P

.‘. - N

PRI IR TRL VY VAPV PR Ly PPN SIR

Here is an example of a case-statement:

CASE NUM: , - g
BEGIN :
(DEFAULT) 1, TYPE=V (OUT'OF'RANGE) ;
(1,3,5,7,11,13,17,19): TYPE=V (PRIME);
é264,6,a:10,12,14216,18,2a): TYPE=V (NONPRIME)
N

This case statement sets TYPE to one of three status values,
depending on the value of the integer item NUM., If NUM is
ovtside of the range from 1 to 2, the status value i=s
"V(OUT'OF'RANGE)". If NUM is in the range and is prime, the
status value is "V(PRIME)". If NUM is in the range but not
prime, the status value is "V(NONPRIME)". BEach time the
statement is executed, the value of NUM isg compared to the list
of values in parentheses., If it matches one of them, then the
?tateme?t on that line is executed. The notation "8:18" means
'Blgllg L

Ll

The case-selector (NUM in the example just given) can be an
integer, bit, character, or status formula. It is not unusual for
a routine to be dominated by a single case~statement, and case~
statements are often nested within larger case-statements.

LOOp-staﬁements are used to repeat a sequence of statements.
Here is an example of a loop-statement:

FOR I:@ BY 1 WHILE 1<le0a;
BEGIN
VAL = INPUT:
IF VAL < @#;
EXIT:
GIVEN(I) = VAL:
END

This statement vses the function INPUT to get an input value and
assigns that value to VAL. It assigne input values to GIVEN(1l),
GIVEN(2), GIVEN(3), and so on until either GIVEN(999) has been
assigned or a negative input is encountered. The examples uses
an EXIT statement, which causes immediate exit from the enclosing
loop.

- 11 -~ 1: Introduction

b RN o

¥ "ii'l‘”f"'Iuj"=.-?r.:'wquu,;,awmw;..,mn.....u:-.\..v..r [T - EE I O PRTR VAT TH PO

JOVIAL als» has a form of loop that has just the WHILE clause; it
can be used when the loop does not require an index. Many
calculations can be written as a while loop {(which keeps going
until some end condition is met) that encloses a case-statement
(which selects the proper action for each time through the loop).

JOVIAL has GO TO statements and optional statement labels to go
with them. Many psogrammers avold using GO TO statements and
labels, in accordance with current programming style; but they
are there when needed.

Finally, JOVIAL has a STOP statement. Its meaning depends on the
particular implementation; but its purpose is to provide a
controlled return to the program environment.

1.1.7 Subroutines'

A JOVIAL program is a collection of subroutines that are grouped
together in a way described later in this introduction. Ideally,
these subroutines are small. When a2 given subroutine gets too
big, part of it is pulled out and made into a separate
subroutine. In this way, each subroutine is small enough to be
understood, improved, tested, and, later in the life of the
program, modified.

A subroutine can be either a procedure, which is called in a
procedure~call-statement, or a function, which returns a value
and is uged in a formula.

Here is an example of a procedure:

PROC RETRIEVE {CODE:VALUE);
BEGIN
1ITEM CODE U:
ITEM VALUE F;
VALUE = -99999,;
FOR I:@ BRY 1 WHILE 1<1000;
IF CODE = TABCODE(I):

BEGIN
VALUE = TABVALUE(I):
EXIT:
END
END
1y Introduction - - 12 -

51 T - e e eaa - “ . -

S —— e Ao e

The procedure RETRIEVE has one input parameter CODE and one
output parameter VALUE. If the value of CODE is found in the
global table to which the entry TABCODE belongs, the associated
value TABLVALIUE is returned. If the value of CODE is not found,
the value -99999, is returned.

\\

This procedure could 68 written as a function, as follows:

' PROC FIND(CODE) F; '
BEGIN
; ITEM GODE U;
| FIND = -99999,:
\ FOR I:0 BY 1 WHILE I<10¢0:
} IF CODE = TABCODE(I);

BEGIN
FIND = TABVALUE(I);
EXIT;
END
END
(The function FIND has an input parameter CODE and a return value,
which is designated within the function by the function-name

FIND.

The following assignment statement has the samc result as a
procedure-call-statement on RETRIEVE.

VALUE = FIND(CODE); j

(The function FIND returns either the value associated with the '

value of CODE in the table or the value -+29999, indicating that '
the value of CODE was not found.

- 13 - 1l: Introduction ik

KR R TR T T F e T T e T B el MRS RNl R T A
(IO IR WHLLITE - RNV S —‘M% A i Sl , §

', [RESTRA e g o e e . s e e

In these examples, the search took place in a global table with
1922 entries. The subroutines can be written to accept a table
of any length as a parameter. Here is the function FIND
zewritten to search a table provided as a parameter:

PROC FIND(CODE, TAB);
BEGIN
ITEM CODE U:
TABLE TAB(*);
BEGIN
ITEM ‘PARCODE U;
ITEM TABVALUE F;
END
FIND = -~99999,:;
FOR I:@ BY 1 WHILE I<UBOUND(TAB,?);
IF CODE = TABCODE(I):
BEGIN
FIND = TABVALUE(I);
EXIT:
END
END

This function accepts the table to be searched as an actual
parameter. The declaration of the table formal parameter uses
the * character to indicate that the bounds are tu be taken from
the bounds of the table given as the actual parameter. The
built-in function UBOUND, then, is used in the loop-statement to
control the number of times the loop iy executad.

|

Subroutines can also be recursive or reentrant. A recursive
subroutine must have the attribute REC in its declaration and a
reentrant subroutine mus: have the attribute RENT in its i
declaration.

1.1.8 Programs

A program is made up of modules. A module is a separately
compilable porticn of a program. A program must have one, and
only one, main program module. It can have any nunber of
procedure and compool modules.

The main program moduie contains the actions tc be performed in
the program. Execution of the program starts at che first :
statement in the main program module and continues until either a

stop-statement or the last statement in the main program module ;',

is reached.

1: Introduction - 14 -

o y—— R R AR e R e e

it end

;M;wwhn, (aketiitad 1w b i A b

A procedure module containe procedures that are to be shared.
Consider the following procedure module, which contains an
external declaration for the subroutine FIND:

START
{COMPOOL 'DATA';
DEF PROC FIND(CODE,TAB);
BEGIN
ITEM CODE U;
TABLE TAB(*):
BEGIN
ITEM TABCODE U;
ITEM TABVALUE F;
END '
FIND = =99999,;
FOR I:9 BY 1 WHILE I<UBOUND(TAB,®);
IF CODE = TABCODE({I):
BEGIN
FIND = TABVALUE(I):
EXIT:
END
END
TERM

The procedure module begins with the reserved word START and ends
with the reserved word TERM. It contains a compuol-directive
that provides a link with the compool module DATA and an external
subroutine definition (indicated by the reserved word DEF).

The reserved word DEF indicates that a data declaration or
subroutine definition is external and can, therefore, be used in
other modules. The reserved word REF indicates that a data
declaration or subroutine definition is an external whose
corresponding DEF specification is given in another module.

- 15 - l: Introduction

PPy

A compool module contains information that is to be shared:

START COMPOOL DATA;
DEF TABLE PRIVILEGE(1@@);
BEGIN
ITEM NUMBER U;
ITEM RATING F:
END
DEF TABLE ASSIGNMENT(999);
BEGIN
ITEM KEY U:
ITEM COORDINATE F;
END
DEF ITEM LIMIT U;
REF PROC FIND(CODE,TAB) F;
BEGIN
ITEM CODE U:
TABLE TAB(*):
BEGIN
ITEM TABCODE U:
ITEM TABVALUE F;

END
TERM

The compool DATA contains three external data declarations (DEF
specifications) and an external subroutine reference (REF
specification).

An example of a main program module using these procedure and
compool modules is:

START 1COMPOOL ('PATA');
PROGRAM MAIN;
BEGIN
FOR I:0 BY 1 WHILE I < UBOUND(PRIVILEGE,?):
IF FIND(I,PRIVILEGE) = FIND(I**2,ASSIGNMENT);
STOP 21;

STOP 22;

END
TERM

This main program module uses the tables declared in the compool
module and the function FIND defined in the procedure module and
referenced in the compocol module. The prugram consists of the
main program module, the compool module DATA and the procedure
module.

l: Introduction - 16 -

END .'\

e e .

,‘I;‘

1,1.9 Compiler Directives

Compiler directives give information to the compiler about how to
interpret and process the program. The previous section
introduced the compool-~directive, which provides for sharing data
between modules. Other directives supply information to the
compiler about optimization, register control, listing format,

conditional compilation, tracing, and the like.

o For Module Linkage:

1COMPOOL 'Cl' (AA,BB);
ILINKAGE FORTRAN;

o For Optimization:

ILEFTRIGHT;

| REARRANGE ;

|ORDER;
|INTERFERENCE XX:YY;
IREDUCIBLE;

o For Register Control:

|BASE X'ITEM 2;
|ISBASE X'ITEM 2;
IDROP 2

o For Listing Options:
ILIST:
INOLIS'T;
{INJECT;
o PFor Conditional Compilation:
|BEGIN Ay

LEND;
| 8KIP A:

o0 Miscellaneous:
{COPY 'INSERT';

ITRACE XX:
|INITIALIZE;

Introduction

R

T

i Wi

{.1.1@ Compiler Macros

The define capability of JOVIAL (J73) alleows the definition and
use of macros. Here is an example of a simple macro:

DEFINE REDALERT "CONDITION=V(RED) AND STATIONS=V(CALLED)":

The define-name REDALERT is associated with the define-~string
shown above in double quotes. When a define-name is given in the
text of a program, the compiler substitutes the associated
define-gtring. For example, coneider the following statement:

IF REDALERT;
BATTLEPLAN(1);

The compiller substitutes the define-string for the define-name
REDALERT to get the following statement:

IF CONDITION=V(RED) AND STATIONS=V(CALLED);
BATTLEPLAN(1);

Macros are convenient because they permit a succint
representations that can be easily modified. They are powerful
because they can e used in a structured way to develop a
specialized language.

The define capability of JOVIAL (J73) also permits the use of
parameters in macros. In addition, list controls can be
gpecified in the define-declaration that determine whether the
macro is to be shown in its macro form, ites expanded form, or
both.

1.1.11 Advanced Features

The advanced features of JOVIAL (J73) allow the programmer to
exercise control over the way in which data is represented and
allocated. If the programmer does not specify positioning and
allocation, the compiler performe these tasks. In some cases,
however, the positioning must be nonstandard to allow for

communication with a device that requires a particular format.

1: Introduction - 18 -

C i

L ks 1 e i W POV

P

(. -

Data positioning is accomplished by specified tables and
allocation by the overlay-declaration. A gpecified table is a
table in which the programmer supplies the starting bit and
starting word of each item. The overlay-declaration lets the
programmer specify the allocation crder of data, the machine

address at which to allocate the data, or a physical overlay of
data.

1
\
i

1.2 IMPLEMENTATION DEPENDENT CHARACTERISTICS

Each implementation of JOVIAL(J73) has special characteristics.
The implementation parameters of JOVIAL help the programmer to
write programs that can be machine independent. For example, the
implementation parameter BITSINWORD gives the number of bits in a
word for a given implementation. The information that pertains '
to a particular implementation of JOVIAL (J73), such as the

values of the implementation parameters and the character set, is
given in the user's guide for that implementation.

1.3 OUTLINE OF THIS MANUAL

The first four chapters of this manual provide a general view of
the structure of a program. These chapters are:

1. Introduction

2. Program Elements

3. Program Structure

4, Declarations and Scopes

The chapter on "Program Elements" describes the characters and
symbols from which a JOVIAL (J73) program is constructed: thus it
is concerned with the smallest units of mtructure. In contrast,
the chapter on "Program Structure" describes the largest units of
structure, the program itself and the modules that make up the
program. Finally, the chapter on "Declarations and Scopes"
describes a different kind of structure, namely the assignment of
meanings to names through declarations.

- 19 - 1t Introduction

sty shiune s ot a0 e GR i li ias

—————— i

B

The next' five chapters of the manual are concerned with the
declaration of data. These chapters are:

5. Data Declaretions
6. Item Declarations
7. Table Declarations
8. . Block Declarations
9. Type Declarations

The chapter on "Data Declarations" discusses the data objects of
JOVIAL (73) in a general way. The next three chapters describe

- ppecific kinds of data. The chapter on "Type Declarations"
desaribes a way to give a name to a data type description and
then use that name in the declaration of data. Type declarations
support the use of pointers.

The next three chapters describe the calculation of values.
These chapters are:

12. Data References
11, Formulas

12, Built-ln Functions
13, Conversion

The chapter on "Formulas" describes formulas in general, dealing
with operands, operators, and operator precedence. Then it
describes the formulas for integer, float, fixed, Pbit, character,
status, pointer, and table values. Finally, it describes
formulas that can be calculated at compile time. ‘The chapter on
"Built-In Functions" gives, for each built-in function, the form
of the function call and examples of itm use, The chapter on
"Conversion" describes the conversion operators and the contexts
in whi¢h conversilon can ococur. The next chapter describes all
the executable statements of JOVIAL (J73). It is:

14, Statements

This chapter begins with the assignment statement and continues
with eontrol statements. The latter include statements for
conditional branching, two forms of iteration, unconditional
transfer, procedure invocation, and varioug forms of exit.

The next chuapter describes the definition and call of procedures
and functions. It is:

15, Subroutines
Thie chapter also describes the inline-declaration, which directs

the compiler to replace a subroutine call by the body of the
subroutine itself rather than by a jump to the subroutine.

ls Introduction - 20 -

The next two chapters describe the way modules are put together
to make a program. These chapters are:

16, Modules and Externals
17. Directives

The chapter on "Modules and Externals" describes the three
different kinds of modules and the use of external names for
communication between modules. The chapter on "Directives"
describes a facility for including instructions to the JOVIAL
(773) compiler within a program.

The next two chapters describe special features of JOVIAL (J73).
These chapters are:

18, Define Capability
19. Advanced Topics

The chapter on the "Define Capability" describes the macro
facility of JOVIAL (J73). 'The chapter on "Advanced Topics"
describes the layout of tables in storage, the overlay 1
declaration, specified status ligts, and DEF-block ;
instantiations. |

The appendixes to this manual provide reference information.'!
They are: i

A. Language Summary
B. Implementation Parameters

The "Language Summary" contains a complete syntax of JOVIAL (73).
The appendix on "implementation Parameters" describes the
parameters which specialize a program for a particular computer,
and which can be changed when the program is moved.

1.4 SUGGESTIONS TO THE READER

Probably you have read most of the introduction. From that, you
should have an idea ¢of the scope and power of JOVIAL. If you
have worked with other high order languages, you know which

fea! ures of JOVIAL are familiar to you and which are not.

Now you probably should read through the remaining chapters of
the manual, not stopping to study, but just getting an idea of
how the information is organized. There is more than one way to
describe any language, and you need to know how this manual is
put together. |

- 21 - 1: Introduction

If you have not worked with some form of syntactic notation

before, you may find the syntex of Appendix A obscure. In that

case, let it go for a while. The complete syntax given in

Appendix A becomes more useful when you have learned some of

JOVIAL and done some programming. Then you will have specific, ‘
detailed questions about JOVIAL, and you should f£ind the Appendix P
useful. o

7Y

1: Introduction ' - 22 -

P e e R SO e TR 5 et BT €

el TR 2 o T a2 AR ROl

e m——

-

.-

e

Chapter 2
PROGRAM ELEMENTS

At the simplest level of structure, a JOVIAL (J73) module is just
a sequence of characterg. These characters are the letters,
digits, and punctuation marka that are normally used for computer
input/output.

Consider the following example, which is a.fragment of a JOVIAL
(J73) program:

SPEED3w=20;

This example is a sequence of ten characters. It beginse with the
five letters "g", "p", "E", "E", and "D". The letters are
followed by the digit "3". Next comes the mark "=", After that
is a sequence of two digits, "2" and "@"., The sequence concludes
with the mark ":".

At the next level of structure, beyond characters, a program is a

sequence of symbols. Each symbol is a sequence of one or more
characters that i1s interpreted as a pingle construct.

As an example, consider again the program fragment that was used
to illustrate charascters:

SPEED3Iw2(;

The ten characters of this example form four symbols. ' The
characters "“SPEED2" form a symhol thst is the name of a variable.
The single character "=" is a symbol that indicates assignment of
a value to a variable. The digits "2@" are the symbol for the
nunber twenty. And, finally, the character ":" is the symbol
that marks the end of this construct (which is an assigmment
statement) .

- 23 - 2: Program Elements

e . s, el W

The firet two sections of this chapter define characters and
symbols, respectively. The third section describes the use of
blanks and new lines to make a program module readable.

This chapter lays the foundation for the following chaptere. It
describes the symbols from which the larger constructs of JOVIAL
(373), such as formulas, statements, and entire modules, are
built.

2.1 CHARACTERS

A JOVIAL (J73) character is a letter, a digit, a mark, or a
special character, These characters are described in the
following paragraphs,

2.1,1 Letters

JOVIAL (J73) programe can be written entirely in upper case
letters. If lower case letters are available in a given
implementation, they can be uged. However, a lower case
character 1s considered to be identical to the corresponding
upper case character unless it appears in a character literal
(defined later in this chapter).

For example, consider the following three names:

ARC Abc abe

These names are equivalent in JOVIAL (J73). In contrast,
consider the following character literals:

'ABC' ‘'Abc' ‘abc!

These literals are not identical in JOVIAL (J73) because the
distinction between upper and lower case is retained.

2.1.2 Digits
JOVIAL (J73) uses the ten digit characters, namaly:

g 1 2 3 4 5 6 7 B 9

2: Progran Elements - 24 -~

e
8
e’

¥

TS . A vt i o 3

o~y

2.1.3 Marks

In describing JOVIAL (J73), the word "mark" is used to describe a
character that is used as an operator, delimiter, or separator.
The blank character is a mark. 1In addition, the following
characters are marks:

+ - & / < > = @ . : ' ! () ' " % ! $

In some environmentse, certain marks are not available. In each
such case, a standard alternative character is defined. A

complete list of the alternative characters is given in Appendix
A,

2.1.4 Special Characters

The set of special characters varies from one implementation of
JOVIAL (J73) to another. These characters can be used in
character literals. They have no other role in the language, but
they may have a special purpose in a particular implementation.
Part of the documentation of & particular implementation of
JOVIAL (J73) is m list of ite special characters.

2.2 SYMBOLS

The JOVIAL (J73) characters are combined to form JOVIAL (J73)
symbole. The different kinds of symbols are:

Kind of Symbol Examples
Name VERSION AZIMUTH
Reserved Word CASE IF GOTO
Operator + = ke
Literal 2 3.14159 'GREY WIRE'
Status Constant V(RED) V(CASE)
Comment % Input Preparation Routine %
Define-String "IA+1B"
Define-Call ‘ TALLY (COUNT)
Index-Letter 1 4J
Separator T
- 25 -~ 2¢ Program Elements

2.2.1 Names

A name is a smequence of letters, digits, dollar eigns, and
primes. It must begin with a letter or a dollar sign, and it
must be at least two characters long. A symbol composed of a
single character is not a name; instead, it is an "index letter"
and is used in conjunction with loop-statements.

The following are all valid JOVIAL (J73) names:
ALPHA AA $STATUS PART 'NUMBER
Q$$$ $0165 Plllil $|

POINT 'OF 'DEPARTURE 'FOR'INCOMING 'MESSAGES

A JOVIAL (J73) name can be any length, but the compiler only
looks at at the first 31 characters. Thus the first 31
characters of a name must digtinguish the name from all other
names in the same scope. YFor example, the name

POINT 'OF 'CEPARTURE 'FOR'INCOMING 'TRAINS is considered by JOVIAL to
be the same name as POINT'OF'DEPARTURE'FOR'INCOMING'MESSAGES
because the first 31 characters are the same.

In some implementations, the compiler may look at fewer than the
firgt 31 characters of an external name. (An external name is
one that is used for communication between modules or with the
environment. These nameg are described in Chapter 16 on "Modules
and Externals" .) The exact rule for recognizing external names
is documented in the user's guide for the implementation.

A dollar sign in a name is tranglated to an implementation-
dependent representation. For example, suppose a given JOVIAL
(773) system requires that each external name be prefixed by a
period. The use of the period in a JOVIAL (J73) name is not
allowed, but the dollar sign can be used for this purpose. The

given system can then translate dollar sign to period to obtain a
valid external name.

A prime (') can be used where a blank character (which is not
allowed in a name) would be used, as in the following names:

INITIAL'TIME FINAL'TIME RATE'OF'DESCENT

2: Program Elements - 26 -

et ”v-.»,; S e A et el NG

IO

it

2.2.2 Reserved Words

A reserved word is a symbol that has sgpecial meaning in the
JOVIAL (J73) language. Reserved words are used as keywords in

statcements and as built-in function names. They cannot be used
as names.

For example, the following are reserved words:

IF CASE ABS BIT ITEM

A complete list of the reserved words and their meanings is given
in Appendix A.

2.2.3 Operators

Operators are used in JOVIAL {773) formulas. The operators are:

Classification Qperators H

Arithmetic + = * / %% MOD |
Bit C NOT AND OR XOR EQV ,
Relational = <> < <= > Hm

Dereference @

Assignment =

The arithmetic, bit, and relational operators have their usual
meanings. They are described in Chapter 11 on "Formulas".

The assignment operator is used in the assignment statement, as
described in Chapter 14 on "Statements".

The dereference operator is used to obtain the object referred to
by a pointer, as described in Chapter 1% on "Data References".

2.2.4 Beparators
A separator is used between list elements or logical parts of a

statement. It is 8lso used to terminate statements, to delimit

the beginning and the end of a construct, and to mark special
constructs.

- 27 - 2: Program Elements

R

A e A by

Coawil Y b
N gt

Lt

Y i o

e

For example, the following characters are separators:
, : : () (* ™) !

Consider the following procedure-call:
COMBINATIONS (THINGS, OCCURENCES)

The comma separator ",' separates the arguments in the pzrameter
list. The parentheses delimit the parameter list.

A complete list of the JOVIAL (J72) separators and their purpose
in the language is given in Appendix A.

2.2.5 Literals

.4 literal is a data object whose value and type are inherent in

the form of its representation. JOVIAL (J3J73) has the following
kinds oF literal: e

Integer
Real

Bit
Boolean
Character
Pointer

The different kinds of literals are described in the following
paragraphs.

2,2.5.1 1Integer Literals

In integer literal is a seguence of one or more digiits. It is
interpreted as a decimal representation of an integer value., For
example, the following are all integer literals:

25 39876 77

The type of an integer literal is a signed integer type with sire
equal to the multiple of BITSINWORD -1 used to represent the
minimum number of bits necessary to represent the value of the
literal. BITSINWOKD isg the implementation parameter that gives
the number of bits in a word for a given implementation.

2: Program Llements - 28 -

+

For example, the minimum number of bits necessary to represent
the value 25 is 5. The size, n, of the integer literal 25, thus
is 15 if BITSINWORD is 16,

Note that an integer (or real) literal can be preceded by a sign,
but the sign is an operator (see Chapter 11 on "Formulas") and
not part of the literal.

2.2.5.2 Real Literals

A real literau) is one of the following:

decimal number
decimal number followed by exponent
integer number followed by exponent

A decimal number is a sequence of digits that contains a decimal
point somewhere. An inte‘er number is a seguence of digits that
does not contain a decim#l point. An exponent is the letter "E"
followed by an optionally sigred integer number. No blank
character is permitted within a real literal.

Examples of real litevals are:

67.2 7853,21E-2 25E5 1EQ JARIEAE3
A real literal can be interpreted as a floating or fixed type.
The way in which it is interpreted depends on its context. The

rules four its interpretation are given in Chapter 13 on
"Conversion”,

2.2.5.3 Bi+t Literals

A bit literal represents a bit string value. A bit literal is
composed of a string of beads. The number of bits in each bead is
given at the beginning of the bit literal as bead-size. The form
of a bit literal is:

bead-size B ' bead ... '
This form uses some special notation., The "..." after "bead"
means "a sequerice of one or more beads". Blaaks are not
permitted anywhere in a bit literal.

- 29 - 2: Program Elements

The head-size of a bit literal can be 1 through 5. Bead can be
any digit or any letter from A through V. The digits @ through 9
repregsent their actual values; the letters A through V represent
the values 1@ through 31, respectively.

The beads specified in the bit literal must be consistent with
the specified bead~size. For example, the bead A, which requires

four bits for its representation, cannot be used .in a bit literal
that has a bead-size of 3.

An example of a bit literal is:
4B'1@ACE"

Since the bead-size is 4, this bit literal is in hexadecimal
notation. It is equivalent to the following bit literal:

lB'oop1ee00101011000110"

In this representsation, the bead size is 1, so the bit literal is ?1-
in binary notation. S

- s

The size of a bit literal is the product of the bead-size and the
nunber of bits in a bead. The size of both of the the bit
literals given above is 4*%*5 = 20 bits.

£

2.2.,5.4 Buolean Literals "W
'"3 'l"...L.J» g
A Boolean literal represents a truth value. A Boolean literal can

be either TRUE or FALSE. TRUE is equivalent to the bit literal
JB'1l' and FALCE to the bit literal 1R'0'.

2.2.5.5 <(Character Literals

A cvharacter literal is a string of characters enclosed in
single-quote characters. The form is:

character ... ‘'

The sequence "..." means that one or more characters can be
given.

2t Program Elements - 3 -

e

The following are character literals:

'ABCDEFG' 'RED GREEN BLUE' ‘Greetings’ '242=4'

Each blank within the delimiting single-quotes counts as a
character of the character literal. The size of the character
literal is the number of characters within the enclosing single-

quotes. For example:

Character~Literal Size
' ABC ! 5
' ABC' 4
‘ABC' 3
1]] l

A single-gquote mark is represented in a character literal by two
single-guote marks, and this pair counts as a single character.
Two single-quote marks indicate to the compiler that the
character literal has not yet come to an end. An example is:

'Say '‘'Hello‘''’

This character literal represents the three characters "Say",
followed by a blank character, followed by just cne single-quote
character, followed by the five choracters "Hello", followed by

one single-quote character. Thus the entire literal represents a
sequence of 11 characters.

2.2.5.6 Pointer Literals

JOVIAL (J73) has just one pointer literal, namely:
NULL

Any pointer item, regardless of whether it is typed or untyped, ;
can be set to NULL. A typed pointer is one that is declared with

an associated type-name, as described in the section on "Pointer |
Type Dascriptions”" in Chapter 6.

- 31 ~ 2: Program Elements

" macros.

2.2.6 Comments

A comment is a sequence of characters enclosed in a pair of
double~-quotes or a pair of percent signse. Thus the forms are:

* character ... "

% character .. %

A double-quote cannot be used within a comment that is enclosed

in double~quotes but a percent character can appear. For
example,

"Applies in only 10% of the cases"

Similarly, a percent cannot be used within a comment that is

enclosed in percents, but a double-quote can appear. For
example;

tFor details, see standard publication "Formatting"g

2.2.7 Other Symbols

The following symbols are described later in this manual:

Symbol Reference
Define~String Chapter 18
Define-Call Chapter 18

ndex-Letter Chapter 14

The derine-string and define~call symbols are used to implement

The index-letter is used as a loop-variable in a loop-
statement.

2.3 PROGRAM FORMAT

Space characters and new lines can be used between symbols tc
determine the format of program listings. The compiler ignores

this format, but programmers depend on good format to help them
understand the structure of a program.

2: Program Elemenis - 32 -

i

o e—— -
! e i . o ‘
i !) ey g, AR I LA E A
L LN (hd . o i
el

o 1

{at

¢4

PIRPESE TS

b

et G enp

2.3.1 Space Characters

Lo Space characters, or blanks, can be used between the symbols of a
, JOVIAL (J73) program. Using blanks, the same statement can be
j written in several different waye. For example:

IMPACT = 2¢ % HEIGHT ;
: IMPACT = 28*HEIGHT;
IMPACT~2@*HEIGHT;
These statements are all equivalent. Under varying

circumstances, each of them might be selected as "more readable"
than the others.

A blank can appear in a character literal, a comment, a define
string, or a status-constant. A blank cannot appear in any other
symbol. For example, consider the following assigrment

statement:
t (82 = 'Press HALT';
ﬁ This statement has three blanke in 1t. The first two, before and

after '=', are between symbols and therefore only affect
readability. The third one, inside the character literal,
represents the glxth character in that literal, and is just as
significant as the surrounding letters.

: Now suppose a blank is inserted after "8" in the assignment
(statement just discugssed. It becomes:

"y 8 2 = 'Press HALT';

The insertion of a blank into the name "S2" breaks it into two
symbols, the letter "S" and the integer literal "2". That
changes the interpretation of the example and, in this case,
produces an invalid statement,

2.3.2 New Lines

A new line can be used between symbols to improve readability of
a program and, of course, to keep the lines to a manageable size.
Like the blank character, a new line can alsoc be used in a

(comment or a define string:; but, unlike the blank character, a
N new line cannot be used in a character literal.

- 33 - 2: Program Elemen*s

The way in which a new line is stored in a program file depends
on the implementation and environment of JOVIAL (J73). 1In one
implementation it may be a carriage-return and line-feed, in
another it may be an end of record.

‘ S
2.3.3 Formatting Conventions
The use of blanks and new lines together allows statements to be
formatted. For example, you can write an if-gtatement in the
following way, using blanks and new lines:
‘ IF COND = V(RED);
COUNT1 = COUNTL + 1l
ELSE
COUNT2 = COUNT2 + 1;
The formatting makes the logic of the statement clear to the
reader.
The examples given in this manual follow formatting conventions e
that have been found useful by some programmers. It is difficult
or even unwise to lay down strict conventions. Such rules are
difficult to express and sometimes interfere with legitimate
differences of style between programmers.
Some general suggestions are:
. l. If a construct occupies more than one line, indent the %

middle liner relative to the first and last lines. (Some ! ?

e

programmers indent the last line, too, leaving only the first
line unindented.)

2., Use blanks between the main conetructs of a line, and omit
them (where possible) from high priority operators. Thus,
for example, the agsignment:

ALPHA = 2%B + 1;

3. Similarly, use blank lines between the main constructs nf
the program modules.

4. Use comments, hut place them so that they do not obscure
the indentation structure of the program.

2: Program Elements - 34 ~

e D e v IS

E et

*
|

e

hf S

i

;

4

Chapter 3
PROGRAM STRUCTURE

A program has structure. Not only can it have several modules,
but each module can be divided into parts, and those parts can,
in turn, be divided into smaller parts. For example, a module
can contain a subroutine definition, which can contain a
statement, which can contain a formula. A formula can contain
yet another, smaller formula. Ultimately, each formula ie made
up of symbols, such as: names, numbers and operators.

This chapter describes the largest parte of a program. The first
section describes the construction of the program itself from
modules. The second section describes modules in general and the
"maln program module" in particular.

‘Subsequent chapters desoribe the smaller components of a program

-- the statements, declarations, and so on ~-- that are used to
build modules.

3,1 THE PROGRAM

A program is a collection of one or more modules. Each module is
created and maintained as a separate text file. The modules are
compiled separately and then linked together for execution as a
unit. The details of compilation, linking, and execution are
different for each implementation of JOVIAL (J73), and are given
in the umer's guide for each implementation.

3.2 MODULES

A module is a sequence of symbols separated, where necessary, by
blank characters and new lines.

- 35 - 3: Program Structure

K LRy TR R e S I A T R L R A T

o ———

Special censtructs, the directives, can be inserted at yarious
laces in a module. Directives are an advanced feature of JOVIAL
EJ73) that provide instructions for the compiler. They are

described in Chapter 17 on "Directives”. '

JOVIAL (J?B) has three kinds of module, as follows:

Main Program Module -- A program nmust have exactly one main
program module. Execution of the program begins with
this module.

Procedure Mcdule -- A program c¢an have any number of proce~
dure modules, or none at all. A procedure mcdule con-
tains data and subroutines that could be in the main
program module, but that are placed in a separate
module to improve organization of the program.

Compool Module -- A program can have any number of compool~
modules, or none at all. A compool module contains
declarations that are shared among other modules.

Procedure modules and compool modules help in the development of
large programs in several ways.

1. When one module is changed and the othera are not,
only the changed module and the modules it affects
need be recompiled.

Z. If the gize of the main program module exceeds the
capacity of the compiler, a portion of it can be
removed and embodied in a new procedure module,
After that, each of the resulting modules is amaller
and more likely to fit the ~ompiler.

K When a large project is organized, each program
module can be assigned to a specific programmer. Thus
program organization can parallel staff organization.

q. Certain modules can be shared among projects. Thus
general libraries can be developed for a JOVIAL (J73)
installation.

The description of procedure modules and compool modules is
easier to understand after the other features of JOVIAL (J73)
have been described. Therefore these modules are described much
later in this manual, in Chapter 16 on "Modules and Externals"

3: Program Structure - 36 -

-

Any JOVIAL (J73) program of modest size can be written as just a
main program module, without any other modules. The description :
of the main program module follows.

3.2.1 The Main Program Module

: " The main program module combines declarations of data, executable
]] statements, and subroutine definitions in a single file that can
; be compiled, linked to other modules (if necessary), and » ’
executed.

it e 1 e

The form of the main program module is:

i o

START PROGRAM name T {

BEGIN :
[declaration ...]
(statement ...

[subroutine~definition ...]

END

[subroutine-definition ...]

TERM ;
(‘ In this representation of a main program module, the "..." under :
- "declaration" means "a secuence of declarationsa”, and the

notation has a analagous meaning with “statement” und

by "gubroutine-declaration". The square brackets around the

' declarations and subroutine~definitions indicate that these
constiucts can be omitted.

i

i The symbols given in upper casz in the form are JOVIAL (J73)
; reaserved words. The words in lower case are defined as follows:

name -~ This rame (just afiwr PROGRAM) iz the nume of the

program. It ie us2d by the JOVIAI (J73) environment in
! referring to the program; specific details are imple-
mentation dependent.

PP FEPTR

£
B e

- 37 - 3: Program Structure

B tep, RN - . o PR R 1 AL P

. declaration -- The declarations after BECIN are optional.
If the body of the module does not require declarations,
| none need appear here. On the other hand, each name
used in the module and not otherwise declared must be

declared here. Declarations are described in the next oy
chapter. L

statement ~~ At least one statement is required. Otherwise,
the main program module, and the program as a whole,
would do nothing. In most cases, these statements

i exercise overall control of the program; that is, they

invoke subroutines that do most of the work. The
statements are described in Chapter 14 on "Statementsa".

subroutine-definition -- Subroutine-definitions can appear

| in two places, before and after the END. They are

l : optional in both places; if subroutines are needed,

1 then they must be included. The subroutine-definitions
before the END are called "nested", and those after END
are called "non-nested". Only non-nested subroutines

can be designated as external by the use of the reserved . } |

word DEF. External gubroutines are described in Chapter pRd 1

[16 on "Externals and Modules". Subroutine~definitions are J
ﬁ described in Chapter 15 on "Subroutines".

Execution of the entire program begine with execution of the
first statement of the main program block. Execution proceeds
from one statement to the next, except where redirected by a
subroutine-call, an if-ptatement, or some other control- .
statement. Execution of the program is complete when the last {
statement of the main program block hae been executed. (Theve

are other ways to exlt a program, but that is the only way to
complete it.)

o,
) s
L

0y

3: Program Structure - 38 ~

Chapter 4
DECLARATIONS AND SCOPES

The main program module, described in the previous chapter,
contains declarations. The other kinds of modules, the procedure
module and the compool module, alsc contain declarations. In
fuct, declarations are an important part of a JOVIAL (J73)
program.

. A declaration is a "non-executable" construct. That is, it does
not represent an action taken when the program is executed.
Instead of causing action, each declaration provides information
about a name that is used in the program. That information is
uged by the compller each time it encounters & use of the
declared name.

A declaration does not, in most cases, extend over the entire
program. Instead, it applies to a particular part of the
program, called the "scope" of the declaration. In fact, the
same name can be declared more than once in a program, and each
declaration will apply only to ite scope. Thus you do not need
to worry about conflicts of names in unrelated parts of a
program,

The first section of this chapter describves features that all
declarations have in common and then lists the different kinds of
declarations. The second section describes the scopes to which
declarations apply.

4.1 DECLARATICONS

A declaration always beygins with a reserved word that specifies
the purpose of the name being declared. For cxample, a
declaration that begins with the reserved word ITEM specifies
that the name beinyg declared designates storage for a scalar data
value (a JOVIAL item).

- 39 - 4: Declarations and Scopes

Once the purpose of the name has been established, the
declaration provides further specialized information. As an
example, consider the following declaration:

ITEM VELOCITY 5 15; h

3 -
| S

This declaraticn declares the name VELOCITY. The reserved word
ITEM means that VELOCITY is the name of storage for a scalar data
value; or, to use the technical language of JOVIAL (J73),
VELOCITY "designates a data object". This declaration also gives
some specialized information about VELOCITY. The "S" means that
it is a signed integer, and the "15" means that it ocoupiles
fifteen bits in addition to the sign.

1

As a program is compiled, the compiler refers back to the
information obtained from the declaration of the name each time-
it encounters a use of that name. For example, consider the
following assignment statement:

VELOCITY = 33 -
In order to process this statement, the compiler muset know the "
type of VELOCITY: that is, its type-class and how many bits are

allocated for its absolute value. That information must come
from a declaration of VELOCITY.

4,1.1 The Clagsification of Declarations

4

A declaration is one of the following:

P

N ¥

Data-Declaration -- This construct declares a variable or
constant name; that is, a name that designates a data

object. Data-declarations are described in the next
chapter.

Type-Declaration -- This construct declares a name that can
be used in a data-declaration or conversion operator as
an abbreviation for a data description. Type-
declarations are described in Chapter 9.

Subroutine-Declaration ==~ This construct declares the name
of a subroutine. It describes the parameters of the
subroutine and (if the subroutine is a function) the
result. It may also give certasin special attributes of
the subroutine itself. Subroutine-declarations are
described in Chapter 15. a

4: Declarztions and Scopes - 42 -

N

T A ST

hl“}_‘ul

-

LA e

Spry

Statement-Name~Declaration ~- This construct declares the
name of a statement; that is, a label. Labels are
usually defined t, the label field in a statement; this
declaration is only required for certain labels.
Statement~-name~declarations and the circumstances under
which they are required are described in Chapter 15 on
"Subroutines".

Define~Declaration =~ This construct declares a name that
can be used as an abbreviation for a string of JOVIAL
(173) text. Thus it provides a limited macro facility
for use within a program. .Define-Declarations are
described in Chapter 18.

External~Declaration -- This construct declares a name that
can be used in more than one module. By this means,
both subroutines and data can he shared among modules.
External declarations are described in Chapter 16 on
"Modules and Externals".

Overlay-Declaration -- This construct establishes a
relationship between previously declared data object
namea. It can specify names that designate the same
data object or it can give the absolute address of a
data object. Overiay-declarations are described in
Chapter 19 on "Advanced Topics".

Inline~declaration -~ This conctruct directs the compiler to
replave a subroutine call on a given subroutine by an
inline compilution of tne subroutine body instead of by
a transfer to the subroutine. Inline-declarations are
described in Chapter 15 on "Subroutines".

Readonlv~declaration ~- This construct informs the compiller
that the data within a subroutine is readonly and any
attempt to change the values of the data is an orror.

Readonly~-declarations are described in Chapter 15 on
"Subroutines".

Null and Coumpound Declarations ~- These declarations are
special constructs that make adjusiments in the syntax

of declarations. They are described later in this
chapter,

“ 41 ~ 4: Declarations and Scopes

et =t

G TRNTG VPR SR

B

=

Y

1l

Wl

Mo s

4.1.2 The Null-Declaration

The null declaration has the form:

’ |
That is, it is just a semicolon. You need this declaration when
the syntax calls for a seguence of one or more declarations, but

you have no names to declare. This case arises in the
declaration of a subroutine that does not have parameters.

4.1.3 The Compound-Declaration

The compound-declaration has the form:

BEGIN
declaration
END
The sequence "..." indicates that one ¢r more declarations can be

given within a BEGIN-END pair.

The sequence of declarations can be empty, so that a special form
of the compound declaration is:

BEGIN
END

Compound-declarations enable a group of declarations to be
treated syntactirally as a single declaration.

4.2 SCOPE

Each declaration in a program supplies information about a
particular name. However, a given declaration of a given name
dces not necessarily apply to all cccurrences of that name. The
occurrences of a name to which a declaration does apply is the
scope of that declaration.

Scopes are established during the compilation of = module.

4: Duclacations and Scopes - 42 -

e e R i A, s T 1 B e N

k]
e

£-

PR S

L E e

Rt

PSRN N sap

ZE 2 e isdE

S,
i

X n 4
S s~y 2 >

e T e,

i
A
4
v

\

A systeri-scopn and a compool-scope enclose the module being
compiled. These scopes can be diagrammed as follows:

+gystem-scope=—==~-- e ———— e -— +
4+CcOMPO0]l~ECOpamwmr e e r e m——————— ---T
+modul e-geoper————m=—=—= e ——— + |
| I L R RV
i | |
| | |
| | | R
| | |
| | |
tommmamn ——————— e ——————————————— | |
| | |
L e T L L DL R m———————————t |
|
N L e e ——————————— e e o e e e e - e -

The compool scope and the system scope are not actually part of
the source file for the module being compiled, but they can be
thought of that way.

All names made available from referenced compool modules, as well
as the names of the compools themselves, belong to the compoo!
scope. In addition, the name of the module being compiled is
itself considered to belong to this outer compool scope.

External names and compools are described in Chapter 16 "Modules
and Externals". Mors examples of scope are also given in that
“hapter.

System-defined names, such as implementation-parameters and
maci.ine-specific subroutines belong to the system scope. Such
names can he redefined in the enclosed scopes.

The module being compiled is a mcope and has smaller scopes
within it. The module scope contains the names of any non-nested
subrouines. Within the module-scope, the niodule-body establishes
& Boecpe. It contains the names declared within the module-body.
Within the module-body, subroutine-bodies establish scopes and
within subroutine-bodies, other subroutine-bodies establish
scope, and so on. Ultimately, there are scopes that do not
themselves contain further scopes.

- 43 - 4: Declarations and Scopes

cAbin AP N RIS TETRANEL. AT A

1T

&

The scope of a module thus can be diagrammed as follows:

+ay5tem-scope—_—-————-—---_-—-———--—n - o 02 0 s 1 s s e o o

o s e e et o 0 . 10 L e Ok) o ot e

4; Declarations and Scopes

4+COMPOO)]-BCOPE- === wmm e mm ;- ————————————

e Ov S

A p—

' - s

+module-scope_____—-----—-_—---_-—-+

+module-body-8cope=—~=——==ut

R T, e,

+subr-gscope-=---=~

{ Tsubr-scopé—--~--
: | +subr-scope--+
[]
|
+

+
|
i
I
|

U

et piaZ R

o e o o e i

+ e —— e e e s

L L R P T Y

+--‘-—--"—-ﬁ--m————-----‘--+
| +BULY=DOdY == e :
+BUDIr=ECOopRm~mr—m—m——

Taubr-scope—-—~——

+
|
+ |
| |

|

L I) 'l
l

|
|
} { +aubr-ncope—-T
|

| b mmnwam g |

| dmmmmmcmmmmm——nt |

o i e v v e i i o

e e e e e e e

o e o e) e e e 0 i S 1 i e e 0 b i b b o e

- 44 -

- ,_......-.-—.—--.-»——._{,..1-\,._,?-‘-.'

L e, R 4

-

For example, consider the following main-program-modul~:

START PROGRAM TEST;

. +module-scope==~-==-~ -t e e - et o e e o e e e —————
! +modul e~body~BCcope~==mrmrmcmar o e —a————— e ——————————— +
| BEGIN :
ITEM LENGTH U;
. . PROC CALCULATE (oOPl, opz RESULT) ;
+subr-scope ----- e ——————————— e ———— +
BEGIN | |
ITEM OPl Fj |
ITEM OP2 F; |
ITEM RESULT F; |
ITEM SIZE VU; #
|
END |
b m————— e e e o e e e e
s PROC COMPUTE (QOP1l,0P2:RESULT);
(+subr-scope-recccrmnccsnccanan meee e ——-—t
"~ BEGIN |
ITEM OPl1 F:
ITEM OP2 F;
ITEM RESULT F;
ITEM 8IZE U;
I 480 l
PROC SUBTOTAL(TOTAL:RESULT); |
e +UDr-H00Pe - m e ————— +
{ | BEGIN l
\ | ITEM TOYAL U: |
} ITEM RESULT U; { |
| |
| [| |
| END l
G ——— - 1 e i -————— -
| END , | |
domm e m e ——— e 2ttt e |
I END | |
| eem——e- - - - . ——————————————————— + |
DEF PROC REPORT (IN,OUT); ;
e e 10 e e e e e ke e o B e - s ot o e o e L e e +
TERM
- 45 - 43 Decla-. +lons and Scopes

 ayweail

3 ; aat JIH-MW' A A5

C oaa .

o RCRIRIR Y MY A AL

g et gyt e a

~r el W

i
H
i
i
‘
!

In addition to the system scope and the compool scope, five
additional scopes are defined. The lines in the above program
indicate the acopes. The scope of the module TEST encloses the
scope of the program-body, which encloses the scopes of the
procedures CALCULATE and COMPUTE. The scope of the procedure
COMPUTE encloses the scope of the procedure SUBRTOTAL.

The scopes of the module TEST can be diagrammed as follows:

+sygtem-gcope_- ------ —— e .- —— B e L LT T -t - e e

+oompool=gCope===~=mmmmma——- e ————————— .=+
TEST |
+module-scope----- e ——————— |

+module~body-scope—==-~—--- +

LENGTH | |

CALCULATE
+subr-scope-y--w—=—o=t
} OPl.OPZ,RESULT.SIZE}

b mm————————————— . |
COMPUTE

+Bubr-scope~—mme————— +

|op1,0P2, RESULT, SIZE |

| SUBTOTAL |

+program-body-~—-T ;

I

|

o+

{TOTAL. RESULT

l
I
R — S — +
+

T i 500 s S D S WD G A G M e we

{1

1
|
| i
| REPORT |
| +subr-~scope-===v==cw-a- + |
} | IN, ouT | :
+ +

4: Declarations and Scopes - 46 -

;
|
|
|

o~

'\

ot

o

The item SIZE and the procedure names CALCULATE and COMPUTE are
in the scope of the procedure module. The names OPl and OP2 are
in the scope of both CALCULATE and COMPUTE. The name RESULT is
in the scope of CALCULATE, COMPUTE, and SUBTOTAL. A reference to
RESULT within SUBTOTAL refers to an output parameter of SUBTOTAL
that is an unsigned integer. A reference to RESULT within
COMPUTE refers to an ocutput parameter of COMPUTE that is a
floating object,

.
4 L]

4.2.1 The Scope of a Declaration

The scope of a declaration is the smallest scope that contains
the declaration.

Each use of a name must have a declaration. That declaration is
determined as follows:

1, If the reference to the given name dcem not lie in the
scope of any declaration of that name, then the program
is invaliad.

2. If the reference to the given name lies in the scope of
exactly one declaration of the given name, then that
declaration applies to the given use of the name.

3. If the reference to the given name lies in the scope of
several declarations of that name, then the declaration
with smallest scope applies to the gilven use of the
name.

With these definitions in mind, consider another version of the

example given earlier in this chapter. This example includes
references to names.

- 47 - 4: Declarations and Scopes

S

u*.WR‘.l"". . "."'g|",','Aﬁ,m.‘,'lkj“.rlrr}hr}!r1:l.;.M K

i T

S e el

i e m

[

¢
START PROGRAM TEST;
+module-gCcope-=———-=m-r—mmmemmcm e a———— - e ——— —mmme—t
+modul e-body=B8COpe==~==wmmecmemmaa——— PP PP !
| BEGIN , .
ITEM LENGTH U; ()
; PROC CALCULATE (OP1,OP2:RESULT);
3 +gubr-scope~=-mmmmmme e e n s e L cmu
EEGIN
ITEM OPl F;
ITEM OP2 F;
ITEM RESULT F;
| ITEM SIZE U; v
LENGTH = 21 i
END ‘
J +-_-—--—--‘-—“——-—ﬂ-ﬁ—~ﬁ--ﬁ-----ﬂﬂ—--------+ .,'I
PROC COMPUTE (OPl,OP2:RESULT):]
L +gubr-gcope=—==w- e e e e e - ——————— P
BEGIN S
ITEM OPl F; l
ITEM OP2 F;
ITEM RESULT F;
ITEM SIZE U;
PROC SUBTOTAL (TOTAL 1 RESULT); i
+BUDL-BOOpEm = i e bt
BEGIN [-
ITEM TOTAL U; | ()
L, | ITEM RESULT U; : '
3 a0
RESULT = TOTAL%*2; #
|
. END |
e - - A o o -
| END |
+- ----------- -------_*----‘---------------+
END |
e e e e e e - e e e e
DEF PROC REPORT(IN, oum)r |
et e e e e m e ——————— e ——————
TERM .
: {)
N
b - 4: Declarations and Scopes - 48 -
I
;

e e SR R RO L17. - LLAT

The reference to LENGTH lies within the rcope of exactly one
delcaration of that name. The reference to RESULT lies within
the scope of two declarations of that name. In this case, the

scope, applies.

! declaration given in the procedure SURTOTAL, which is the smaller

4K2.2 Restrictions on Declaratioas

THF following restrictiona apply to the declaration of names:

1.

2.

Two declarations of the same name must not have the same
Bcope. "

A reserved word must not be used as a name and cannhot,
therefore, be declared. The reserved words are listed
in Appendix A.

An external name must be declared by exactly one DEF

declaration in an entire program. External declarations
are described in Chapter 16.

- 49 - 4: Declarations and 3copes

VT

Chapter 5
DATA DECLARATIONS

A data-declaration declares a variable-name or a constant-name.

A variable~name designateg storage for a value that can be
changed during program execution. A constant-riame can be thought
of as designating storage for data that ie set hefore program
exacution and then does not change; in many cases, however,
actual storage is not required for the value cf a constant-name.

JOVIAL (J73) provides abstract storage. Storage is ultimately
implemented as s hardwarae memory composed of words, bytes, and
bits that have numeric addresses. However, JOVIAL (J73) can
goreen out the irrelevant hardware details and present you with a
more convenient and logical storage structure.

Although you can, when necessary, specify an absolute storage
address, the association of storage addresses is normally handled
for you by the compiler. Although you can, when necessary,
request that & variabie he a specific word of hardware memory,
you normally describe the kind of values you want to store and
let the compiler allocate the correct amount of storage at an
appropriate location. JOVIAL (J73) permits you to ignore
hardware details when they are not important but lets you specify
them in considerable detail when conslderations of efficiency and
interfacing regquire.

In order to emphasize this treatment of storage, this manual uses
the term data object to refer to the storage for a value or a
collection of values. You can talk of "fetching the value of a
data object" or "assigning a value to a data object" without any
knowledge of the implementation of the data object.

A Wl TIPS e LR T B kR M

J

G b G Tl

@1- HEGSE00 mwuw

et B R AR S]

- 51 - 5: Data Dmclarations

v e e ey

e R LU T

]

|

W tor L 2l

-y

The first section of this chapter introduces the three kinds of
data declarations. The second and third sections make
distinctions that apply to all data cbjects: the difference
between variable and constant values and between automatic and
static allocation.

5.1 THE CLASSIFICATION OF DATA DECLARATIONS

A data-declaration is one of the following:

Item~Declaration -- This construct declares the name of a
scalar data object; that is, storage for a single value,
Item-declarations are described in Chapter 6.

Table-Declaration -- This construct declares the name of a
table data object; that is, a collection of items.
Table-Declarations are described in Chapter 7.

Block-Declaration == This construct declares the name of a

block data object; that is, a collection of items and i }
tables. Blcck declarations are described in Chapter 8. :

5.2 VARIABLES AND CONSTANTS

A data object can be variable or constant. In an item=- i
declaration or table-declaration, the reserved word CONSTANT '
means that tha declared name designates a constant data object.
This reserved word may be placed at the beginning of any item=-
declaration or table~declaration, as described in the next two
chaptera. The absence of the reserved word CONSTANT means the
declared name designates a dat