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Optimal Outlier Tests For A Weibull Model -
To Identify Process Changes Or To Predict

Failure Times*

Nancy R. Mann

Department of Biomathematics 1 : S e om

UCLA o
Los Angeles, CA 90024 {- i
; {
Abstract

In this paper, Weibull outlier tests based on three different statistics
are investigated with respect to their power optimality under various alter-
native models. Two of the statistics are new in the context of outlier
statistics; and one of these is shown to provide a more powerful test in cer-
tain situations than other more classical outlier test statistics. Critical
values of the three statistics were computer-generated and are tabulated.

The tabulated values allow one to identify "treatment effects" resulting

from unsuspected modifications to a process or to predict failure times in

a life test. Numerical examples are given,

*The rescarch documented herein was supported by the U.S. Office of Haval

Research under Contract Nos. N00014-76-C-0723 and NO0O014-80-C-0684.
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1. Introduction
The results described in this paper pertain to the detection of Weibull

outliers and to the prediction of a future ordered «bservation in an ongoing

life test. The motivation for the research descriped herein, however, is the
need for a method of determining whether or not, in a retrospective study,
inordinately long times to failure are statistically significant and thus

possible results of "treatment" effects caused by unsuspected modifications to

a process.
Detection of outliers (spurious observations) is a problem that has long
concerned experimenters and data analysts. An historical survey dealing with

outliers was given as early as 1891 by Czuber [4]. A more up-to-date expository

review of methods for detection of spurious observations was presented by
Grubbs [10]. The latter paper is a modification of one "prepared primarily for
the American Society for Testing Materials and represents a rather extensive
revision of an earlier Tentative Recommended Practice ... ."

Grubbs points out that "almost all criteria for outliers are based on an
assumed underlying normal (Gaussian) population" and Anscombe [1] in an exten-
sive 1960 survey of the subject of outliers makes an initial assumption of
normality for the data. (Discussion of the Anscombe paper and a paper by
Cuthbect Daniel [5], dealing with outliers in factorial experiments, is given
by William Kruskal, Thomas S. Ferguson, John Tukey, and E.G. Gumbel [15] and
stresses the importance of the outlier problem.)

Most types of lifc¢ daia are such that a transformation cannot be made to
impose normality on the underlying distribution. Thus, the traditional tests
for and methods of treatment of outliers are inappropriate for most data arising
from life tests. A statistic for testing for outliers in general location-

scale families was recently proposed by Tiku [31] and shown to be more powerful
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than various oather statistics under Tiku's [32]. p. 1418, outlier models
("1abelled slippage" models of Barnett [2] and Bariett and Lewis [3]),
although slightly less powerful under Dixon's [6] contamination models; see
3 Tiku [31, 32], Hawkins [14] and Tiku [33], p. 139). The null distrikution

of Tiku's statistic is exactly Beta for the uniform and exponential popula-

tions and approximately Beta for the normal population (Tiku, [31, 32]):
the percentage points are not available for any other distribution.

In the study described in the sequel, critical values were generated and
have been tabulated for a variation of Tiku's statistic for a type-I extreme-
value model (one in which the observations are logarithms of two-parameter
Weibull variates). Critical values of two other statistics, shown under
certain alternatives to be superior or essentially equivalent in terms of

power, are also given. Analysis of optimality of power of tests 1S given in

Section 3.3, and numerical examples are provided in Section 4.

2. Motivation

Often, during a life test, an experimenter has a need for an upper confi-
dence bound (a prediction interval) for the time of the last (nth) failure in
a size-n sample pf test items. If the experimenter's data are two-parameter
Weibull, Table 1 can be used to provide such a prediction interval for sample
size n = 5(1)25, provided the first n-1, n-2, or n-3 failure times are known.
On the basis of the first k failure times, with n-k=1, 2, 3, one can also use
Table 1 to obtain an upper confidence bound for the time of the (k+1)st failure.
By use of an approximation described in Section 3.2, it is also possible to
obtain upper prediction bounds for the (j+1)st failure based on the first j
failure times, with n-j=2, 3,..., n-2. This approximation can be applied for
sample sizes ranging from 3 to as large as required.

Notwithstanding the usefulness of the results herein for obtaining certain
prediction intervals, the primary motivation for the research described in the

following was precipitated by analysis of data resulting from a large scale




retrosnective Tongitudinal study of times of individuals relapring to undesirahle
habitual behavior. Results of Mann and Rothberg [26] and Mann [21, 22] appear

to indicate that either a two-parameter Weibull model or a mixture of two-
parameter Weibulls is appropriate for "time-to-failure" or return to addictive

or other undesirable habitual behavior for Tongitudinal studies made on individ-
uals. Here, it is convenient to conceptualize independent intentions to abstain
from the behavior that wear out or otherwise fail in time. (Time-to-first
failure in a cohort has been studied in the case of prison recidivism by Harris
and Kaylan [13], who found that a mixture of two exponentials provided a good

fit for the data.)

What one is attempting to determine in applying an outlier test to retro-
spective longitudinal time-to-failure data is whether or not “"treatment effects"
may have resulted in specified instances. If the Weitull outlier test indicates
that a number of seeminglv inordinately long times to failure are significantly
different from other failure times of an individual, then one can attempt to
correlate the instances involving suspected treatment effects with various
potential causal factors.

Such an outlier test can “e used, as well, to identify treatment effects in
hardware on the basis of Tife-test data. In such situations, identification
of an outlier will potentially allow one to discover inadvertent and/or unsus-
pected modifications that may have been made to a manufacturing process. HNote
that the immediate goa) is not parameter estimaiion, as in many situations, and

also that rather large numbers of outliers are a definite possibility.

3. Determination of Appropriate Test

3.1 Earlier Results

Tiku [31] defined o to be the (size-n) maximum-1ikelihood estimater of

the scale parameter of a location-scale-parameter distribution (i.e., a




distribution FX(x) that is of the form G[(x-u)/c] for some G). He defined o Eg

to be the maximum-likelihood estimator of o, or an estimator with the

asymptotic properties of the maximum likelihood estimator of o, calculated
from all the k<n ordered observations felt not to be outliers (considered

together as a censored size-n sample); i.e., ¢ is consistent, asymptoti-

o
cally unbiased and efficient and asymptotically normal for the cases he
considered and for the case considered here.

i; Tiku then proposed

T = h(o,/5) (3.1.1)

H
i
i
1
]
1

(where h is a suitable constant) as a statistic for testing the hypothesis

that the sample contains no outliers versus the hypothesis that the suspect
observations are all outliers. He demonstrated empirically, for 1. 2 and 4
outliers, n=10, 20 and 40, that the statistic T has higher power than

certain other well known statistics (see Grubbs [10], Tietjen and Mocre [37],
Shapiro and Wilk [30] and Ferguson [9]) under Tiku's [31, 32] labelled slippage

models (Models A and B of Section 3.3). Note that Tiku's statistic is versatile;

(i) it can be used to test any specified number of outliers on either side

of an ordered sample, and (ii) it can be used to test whether the sample

contains outliers, irrespective of how many [32]. p. 1420. A multivariate

generalization of Tiku's statistic is also available (Tiku and Singh, [35]).
Outliers on the left are not generally of interest in our analyses.

They often arise because inspections of hardware or tests for abstinence

(such as urinalyses to test for opiates and other drugs) are made at

discrete time intervals, perhaps weekly. Thus, small values are relatively

more displaced than larger values. Because of the logarithmic transformation,

any displacement of small values is magnified as well.

Now, consider a sample with a single large suspected vuilier from a

one-parameter exponential distribution with parameter o. Here ue and o




are equal to Sn_]/(n-l) and Sn/n, respectively, where 5

J 5
S, = Xooy + (n-3)X., !
2 R (n-3)X; |

with X(i) the ith exponential order statistic. Thus, for this distribution
(in which ¢ is both a location and scale parameter), the statistic T is
proportional to (n-1)o /(ns) = S_ /S , which is equal to

Spo1/[Spq + Ky - x(n_]))]. If Uy is defined to be (X(\y-Xy)/S,,

then (n-])oc/(na) = (1 + Un_])'1 in this single outlier case.

Lawless [16] proposed the use of Uk for obtaining a prediction interval

on X(n),the nth ordered observation, from the first k observations in a
life test in which the data are exponential with parameter o; and he demon-
strated that for (one-parameter) exponential data, (n-1) Un-l is distributed
as Snedecor's F with 2 and 2n-2 degrees of freedom.

Monte Carlo results exhibited in Table 3 demonstrate similarly that for

L data from an extreme-value distribution (data that are ordered logarithms

| (X(1)<'°'<X(n)) of sample observations from a two-parameter Weibull distribution),

the power of a test based on T is equivalent to the power based on the

ratio of (X(n) - X(n_])) and an estimate equivalent to the maximum likeli-
hood estimate of the extreme-value scale parameter (the Weibull shape

parameter) obtained from the first n-1 observations.

For more than a single large outlier, the statistic T defined above involves
observations that are not available in the prediction interval situation. Hence,
for any distribution, using a statistic similar to Uk’ i.e., proportional
to Q4 = (X(z) - X(k))/oC »k <2 <n, for testing for n-k outliers would
seem to be inefficient for n>k+1. It will be shown in Section 3.3 that this

is not necessarily so.




3.2 Test Statistics for Weibull Data

We consider now the variate X, the logarithm of a Weibull variate with

Folx) = J‘l - exp[-expl{x-u)/c}], x>0
lO , otherwise; >0 .

The parameter u is‘a location parameter, the mode of the distribution
of X (the first asvmptotic distribution of the smallest extreme) and is
the logarithm of the Weibull scale parameter. The parameter o, which
determines the shape of the Weibull distribution, is a scale parameter of
the distribution of X, with n1202/6 the variance of X.

Since X has a location-scale parameter distribution, it is to be
expected that for the labelled slippage model of Tiku (see Section 3.3),
an efficient test statistic for testing for large outliers can be pro-
vided by T = h(ocla). One might also consider statistics proportional
to Q,_y» k<g<n.

Results of Lawless [16]. Thoman, Bain and Antle [36], and Mann and
Fertig [23], show that for Weibull data, maximum-1ikelihood and best linear
invariant estimators yield very nearly equal numerical results and their
small- and large-sample properties (bias, mean squared error, etc.) are
very nearly equivalent. Thus, for testing that the largest n-k of n
sample observations are outliers, using T is essentially equivalent to
using as a test statistic ak,nlan,n’ the ratio of the best linear invari-
ant estimators of ¢ based on the smallest k and on all n sample observa-
tions, respectively. The power is obviously unchanged if one uses

/o*

nan the ratio of the best linear unbiased estimators of o based

*
%,n
on the smallest k and on all n sample observations respectively. This
is true since best linear invariant and best linear unbiased estimatcrs

of o differ only by a constant factor. See, for example, Mann [19].
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In this study we considered specifically

v

i

-1 _ ~
n'k hT - 3 |

Qi = (x(n) B X(k))/ok,n,
and

Mook = Qien)-k " ey = ¥ )%k

Note that Qn-k and wn_k yield gap tests somewhat similar to some suaaested i
by Dixon [6]. Critical values of these statistics for testing for large
outliers, or predicting later failure times, at 0.20, 0.10, 0.05 and 0.01
significance levels for n = 5(1)25, n-k = 1, 2, 3, are displayed in Table 1,
and an example of their use is given in Section 4.

The values shown for Vn-k and On—k were generated simultaneously by

means of 20,000 Monte Carlo simulations. The exhibited values of W, were
generated by making use of the fact that, for k < n - 2 (the restriction
having been discovered in this research),

P = [0 = X)) /EK () = X)) V/og o/ B0y )
has approximately a classical F distribution. This is discussed in Mann,
Schafer, Singpurwalla [27], pp. 255-256.

In order to generate the tabulated values of Nn—k‘ using the F approxi-
mation, it was necessary to use stored values of the expectations of the
reduced order statistic ¥, = (X(i) - wifu , i=k, k#1, and of Chon®

* k) e ? . [ "
where o/(1 + ck,n) is expectation of - and Ck,n° is the variance of

2

. .
opn = (4 G plog oo

the best linear unbiased estimator of a, based on the smallest k observations

of X. Thus,
Fe = (Kary = X VEEM gy ) = B Ve 0 g DT

The degrees of freedom for the approximate variate are ba.ed on ' :

result of Patnaik [24], which specifies for ¢, with E{(¢) = m, var(s) = v,

_ - gﬁ
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and m? proportional to v, that 2m¢/v is approximately a chi-squared variate
with 2m2/v degrees of freedom. Thus, we have for Fk,
v, =2 var[(Yk+] n Vi n)/E(Yk+1 Yk n)] ~2and v, = 2/C,  degrees of

freedom. Values of var(Y - Y, ), n-k = 2,3; n = 5(1)25, were calculated

k+1,n k,n
from stored values, along with the other constants needed for the compu-
tations. (See below for the origin of these constants.)

The values obtained from the F approximation were compared with trial
simulations having a Monte Carlo sample size of 20,000 to ensure that the
tabulated values are sufficiently precise. The agreement increases as
significance level o decreases. That is, higher percentile values are more
precise. Also, precision increases as sample size n incrzases and as k
decreases. Examples of comparison with Monte Carlo values are shown in
Table 4.

The method used for obtaining the F values with noninteger degrees of

freedom is described in Mann, Schafer, Singpurwalla [27], pp. 172, 173.

This method, alony with values of

E(Yk+1,n - Yk,n)’ k =2, n-l,
tabulated in Mann, et al. [27] pp. 342-347 for n = 3(1)16, and Mann, Schzuer
and Fertig [28], for n = 3(1)25, and values of Ck n? which can be obtained

from values appearing in Mann, et al. [27], pp. 194-207, for n = 2(1)13
and in Mann [19], for n = 21125, can be used to estimate the critical
values of W _, for n-k>3. In these cases, one can use vy = 2 along with

v, = Z/Ck . for the degrees of freedom or can calculate v, more precisely

1

using values of the variances and the covariance of Yk+l,n and Yk,n

available in Mann [20].

o

For samples larger than 25 and n-k>1, one can use the approximation
with asymptotic expressions for expectations, variances and covariances of
the order statistics available in Mann et al. [27], p. 218, and an

asymptotic exprec-ion for Ck n available in Harter and Moore [12].




As noted earlier, maximum-likelihood estimates can be substituted for

Sk n and for Gn n’ and the values in Table 1 can be used dircctly with these

]

estimates without any modification required. One can also use 0; n and

0: n,best linear unbiased estimates (see Mann [19]) or simplified linear

estimates (see Mann, et al. [27], pp. 210-212, Mann and Fertig [24] or
Engelthardt and Bain [7,8]), in place of the best linear invariant estimates.
In this case, the modified statistics Qn-k and wn_k need to be multiplied

by the factor CQW = (1 + €, )} and the modification of Vn-k needs to be

ksn
multiplied by CV = (1 + Cy n)/(1 +C, n) before comparison with critical

v * * - ,
values. in other words, S . and %n.n need to be divided by (1 + Cy n)
and (1 + cn,n) respectively, to convert them to O .n and % n" Values

of the ronstants CQW and CV appear in Table 2 for n = 5(1)25, n-k = 1, 2, 3,
Approximations to Qn-k and Vn-k can be calculated by using probahility
plots such as those shown in Figures 1 and 2. Here, the inverse of the
slope of the line plotted on the basis of the smallest k observations gives
an approximation to oz,n; and the inverses of the slopes of the line formed

k- and kth puints and by the line formea by the (k+1)st and kth

by the n
points give approximations to (X(n) - xk)/E(Yn,n - Ve p)» and
(X(ka1y = XIEW 4y o = Yy, p)s respectively.

If the inverse of the slope in the probability plots is used, then

the constant factor

cQp E(Yn,n - Yk,n)(] + ck,n) or

must be used to multiply the value obtained to convert it to one that can
be compared with the critical factors for Qn-k or wn-k' respectively. Values

of CQP and CWP are given in Table 2 for n = 5(1)25;: n-k = 1, 2, 3.
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Special probability papers, each onc applicable to a specified sample

size, have been designed (see [18]), so that individuals without technical

training can plot failure times of interest. Without making such plots,

one will usually find it very difficult to have much feeling for what
might be moderately large values for time-to-failure when the data are
Weibull. Using the plots with some minimal instruction, a nontechnical
person should be able to determine slopes of lines formed by X1 enaXp and

by Xy and Xp or X, and Xy This assists a spouse, a "significant other"

+°
or a counsellor of a subject engaging in undesirable habhitoral behavior
to gain insight into what might be, for this subject, motivation for long-

term abstinence,

3.3 Optimality of Power Under the Two Alternatives

For a Weibull model, the hypothesis Ho to be tested is:

X(1),...,X(n) are order statistics from

fy(x) = L gl(x-u)/0) (3.3.1)

where fx(x) is the density function corresponding to the distribution

function (3.2.1). iodel A and Modcl B are given, respectively by

A: X(1),...,X(k) are the smallest k order statistics from (3.3.1) and
x(k+1),...,x(n) are the largest n-k order statistics from

fx(x) = % f{lx - (u + 80)]/0)
and

B: X(]),...,X(k) are the smallest k order statistics from (3.3.1) and

x(k+,),...,x(n) are the largest n-k order statistics from

felx) =L gl(x - w)o) .

These models may not correspond to the manner in which data are generated ;

for the situation described. Nonetheless, a mixture of any two specified

|
i
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Weibull distributions can be represented by a mixture of models A and
B if the "outiiers" are larger than other values and the number of
outliers is only one or two. Models A and B can be combined also to
approximate very well nearly any model that is a mixture of a Yeibull
sample of small values and a Weibull sample of larger values (the
"outliers").

Examples of Model A and Model B are shown as probability plots (on
Weibull probability paper) in Figures 1 and 2, respectively. It was the
object of the research described in this paper to determine test statistics
that are optimal, in terms of power considerations, for testing for outliers,
in general, and for testing against Model A or Model B, or a mixture of
these, in particular. To this end, the power of the various test statistics
under consideration was calculated by 2000 Monte Carlo simulations (in
addition to the 20,000 used to generate critical values for the test sta-
tistics). These power calculations were made for each ciritical value
generated for Vn-k’ Qn-k and for selected sample sizes for Nn-k for Model A:
8§ = 0.5,1, Model B: x = 2,5 and mixed models ¢ =13 » = 2,5. Illustrative
examples are exhibited in Table 3. Note that only for the test statistic
Wk (under Model A with n>10) does the power increase as n-k increases.
This is probably due to the fact that observations near to p are closer
together than ubservations near the tail. Hence, displacement of 1 o is
less critical near the tail.

On the basis of the many similations that were made, it has been well
established that when one is testing HO versus a singla outlier, a test
based on Q__, = Qn-(n-l) g w(k+1)-k = wn-(n-l) has power essentially
identical to that of one based on Vn-(n-]) hT™'. This was pointed out

in Section 3.1.
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Tiku [27] has demonstrated for Gaussian families that a test based
on the statistic T has higher power in more general situations (more than
a single outlier) than other classical outlier tests under his labelled
slippage model. As the number of outliers, n-k, increases, however, the
ratio of the power of W, relative to the power of V increases under
Mode! A (shift in location). That is to say, under Model A, a tesf based
on a measure of the gap (X(k+1) - X(k)) between the smallest suspected
outlier and the largest observation thought not to be an outlier, relative
to a measure of the dispersion (Sk n) of the observations thought not to
be outliers is more powerful than ;ne based on T (see Table 3). It is
clear from Figure 1 that for Model A, it is essentially this quantity,
i.e., the size of the gap relative to the dispersion of the smaller obser-
vations, that is the critical factor in establishing the suspicion of
outliers. Thus, it is not unlikely that a test based on a statistic, such
as W, involving X(k+]) - X(k), is optimal for alternative models resem-

bling Model A.

If it were established that Model A was precisely the alternative

(which it usually will not be), then using in the denominator of Wk

an estimator of o that involves all differences of successive order statistics

except Xk+] - Xk would be more powerful than Nn-k as it is defined. Such
a test would be equivalent in terms of power, to one having this statistic
in the denominator and én,n in the numerator and should be optimal for the
labelled slippage model with Model A as the alternative. Note that Mann
and Fertig [25] demonstrate that for a goodness-of-fit test, involving
gaps (which all estimates of o in location-scale families involve) the
important consideration in determining optimality in which qaps are in-

volved in the test and in what position, rather than how the gaps are

combined. That is . say, an optimal estimator of a based on the first

R
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k-1 gaps performs no better than one which is the sum of each of the
k-1 gaps divided by its expectation.

In this context it is notec that the statistic V* = <3k+]’n/6k’n for
k = n-2, n-3,---, has the same functional relationship with Nn-k that
vn—(n-]) has with Qn—(n—])' Therefore, the statistic wnﬁk also has
essentially the same power as V*. The inverse of V* is a special case
of Z, a statistic proposed by Tiku [34, eq. 1.4] for testing goodness
of fit when H; is exponentiality. The statistic Z is equivalent to
V* when the exponential censored sample of size n consists only of the
smallest k+1 observations. Thus, Z stresses the difference of the two
largest observed order statistics.

It should also be pointed out (see [24]) that u* and y based on
X(]),---,X(k), k<n, from an extreme-value distribution are of the
approximate form, X(k) + c&k,n, where ¢ is an appropriate constant. Thus,
a test of form (X(k+]) - ik,n)/ak,n is essentially the test wn-k.

For Model B, the critical factor is the ratio of the sicpes of the
plots of the smallest k and the largest n-k+1 observations. For this
model, wn_k performs poorly relative to Vn-k’ as one might suspect, but
Qn-k’ which is proportional to the ratio of estimates of these two slopes,
approximates vn-k very well, i.e., powers of Vn-k and Qn-k are very nearly
equivalent. See Table 3. Thus statistic Qi is shown (in Table 3) to
perform very poorly, in terms of power, under Model A, however.

For a mixture of the models, results shown in Table 3 indicate that a
test based on Nn~k tends to be most powerful, with Qn-k performing most
poorly. Again. as with Model A, the gap X(k+1) - X(k) relative to ak,n

appears to be the most critical factor.
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It seems clear from this study that in considering whether or not to
test for outliers, one should, if possible, plot the data on probability
paper. Plotting is useful in providing perspective even though there is
a single suspected outlier. For more than a single outlier, plotting is
essential if one is to know whet:er to use wn_k (for Model A or mixed

models) or either Vook O Oy (“or Model B) or Vook (for a more general

alternative model). In this way no one can insure using a test with what
appears to be optimal power.

Clearly, the power of the outlier test is affected by the apriori
analysis, as is always the case to some extent in looking at the data
before performing an outlier test. However, in this context it is impor-
tant to identify large outliers in order to determine if treatment effects
(extending 1ife or for human subjects, extending periods of abstinence)
have resulted and what might have caused such effects. The goal is not
primarily one of estimation of parameters, but rather of exploration.
This point is discussed by Barnett and Lewis [3], pp. 5-6.

Finally, it is to be noted that the results obtained here are likely
to extend to other location-scale families. Thus, an analog of wn_k in-
volving the gap X(k+1) - X(k) will possibly tend to be more powerful for
any location-scale family (including Gaussian distributions) for testing

H0 under Model A than is the statistic T.

4. Numerical Examples
The data in the probability plots (Figures 1 and 2) are used here to pro-
vide examples of the use of the various test statistics.
First, we consider Figure 1, which exhibits two possible outliers from a
mixed model with A < 1. Here n is equal tc 9, so that tables in [22] can be
used to obtain the weights to calculate 67’9 = 0.709 and 6g_g = 0.884. Also

X(g) = X(7) = 0.872 and X(8) = X(7) = 0,693, Thus, V9_7 = ].245, q9-7 = 7.228

: o e Ep AR i o
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and w = 0.976. Comparing these values with the tabulated critical values,

9-7
one finds that if the specified significance level is 0.10, then only the
test statistic Wg_7> involving x(8) - x(7), rejects the hypothesis of no
outliers.

The plotted line drawn (by hand) in Figure 1 gives highest weight to the

, or in this case, the seventh value, as do the weights for optimal linear
estimates of ¢, such as ¢ and o*. Also note that horizontal, rather than
vertical, distances from points should be minimized. The slope of the line
is about 1.20 so that an approximation to 0§’9 is about 0.833. This gives
0.717 as an approximation to 67_9 with the use of CQW = 1.161 (found in
Table 2) as a divisor.

The plot in Figure 2 suggests 3 large outliers of the general type

specified by Model B. Thus, using tabulated values in [14], one finds

11,04 7 088226, Gyg gq = 12353, x(qq) - X(yy) 7 2,088 and x(yp) - x(yy) = 0.560

so that Vignt T 1.595, oy = 2.457 and Wiy T 0.660. In comparing
these values with the critical values of Table 1. one finds that if the
specified significance level i< 0.10, all three test statistics reject a

"no outliers" hypothesis., The statistics, V14-11 and Na.11 reject also at
the 0.05 significance level, while %1411 does not. This is to be expected
since the probability plot demonstrates that the appropriate test statistic

1S Vyg1 o7 Ggmy -

The slope of the line plotted in Figure 2 is about 1.1, giving an approxi-

mation of about 0.91/CQW = 0.91/1.076 = 0.845 for ¢
kth

14-17 = 0.842. Note that

again, the value has been weighted most heavily.
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