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Optimal Outlier Tests For A Wei bull Model - 

To Identify Process Changes Or To Predict 

Failure Times* 

by 

Nancy R. Mann 

Department of Biomathematics 

UCLA 

Los Angeles, CA 90024 

/f- 
Abstract 

JET 
Ll 

In this paper, Weibull outlier tests based on three different statistics 

are investigated with respect to their power optimality under various alter- 

native models. Two of the statistics are new in the context of outlier 

statistics; and one of these is shown to provide a more powerful test in cer- 

tain situations than other more classical outlier test statistics. Critical 

values of the three statistics were computer-generated and are tabulated. 

The tabulated values allow one to identify "treatment effects" resulting 

from unsuspected modifications to a process or to predict failure times in 

a life test. Numerical examples are given. 

*The research documented herein was supported by the U.S. Office of Naval 

Research under Contract Nos. N000H-76-C-0723 and N00014-80-C-0684. 
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1. Introduction 

The results described in this paper pertain to the detection of Weibull 

outliers and to the prediction of a future ordered observation in an ongoing 

life test. The motivation for the research described herein, however, is the 

need for a method of determining whether or not, in a retrospective study, 

inordinately long times to failure are statistically significant and thus 

possible results of "treatment" effects caused by unsuspected modifications to 

a process. 

Detection of outliers (spurious observations) is a problem that has long 

concerned experimenters and data analysts. An historical survey dealing with 

outliers was given as early as 1891 by Czuber [4], A more up-to-date expository 

review of methods for detection of spurious observations was presented by 

Grubbs [10]. The latter paper is a modification of one "prepared primarily for 

the American Society for Testing Materials and represents a rather extensive 

revision of an earlier Tentative Recommended Practice ... ." 

Grubbs points out that "almost all criteria for outliers are based on an 

assumed underlying normal (Gaussian) population" and Anscombe [1] in an exten- 

sive 1960 survey of the subject of outliers makes an initial assumption of 

normality for the data. (Discussion of the Anscombe paper and a paper by 

Cuthbe.t Daniel [5], dealing with outliers in factorial experiments, is given 

by William Kruskal, Thomas S. Ferguson, John Tukey, and E.G. Gumbel [15] and 

stresses the importance of the outlier problem.) 

Most types of life data  are such that a transformation cannot be made to 

impose normality on the underlying distribution. Thus, the traditional tests 

for and methods of treatment of outliers are inappropriate for most data arising 

from life tests. A statistic for testing for outliers in general location- 

scale families was recently proposed by Tiku [31] and shown to be more powerful 
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than various other statistics under Tiku's [32]. p. 1418, outlier models 

("labelled slippage" models of Barnett [2] and Ban.ett and Lewis [3]), 

although slightly less powerful under Dixon's [6] contamination models; see 

Tiku [31, 32], Hawkins [14] and Tiku [33], p. 139).    The null distribution 

of Tiku's statistic is exactly Beta for the uniform and exponential  popula- 

tions and approximately Beta for the normal  population (Tiku, [31, 32]); 

the percentage points are not available for any other distribution. 

In the study described in the sequel, critical  values were generated and 

have been tabulated for a variation of Tiku's statistic for a type-I extreme- 

value model  (one in which the observations are logarithms of two-parameter 

Weibull variates).    Critical values of two other statistics, shown under 

certain alternatives to be superior or essentially equivalent in terms of 

power, are also given.    Analysis of optimality of power of tests is given in 

Section 3.3, and numerical  examples are provided in Section 4. 

2.    Motivation 

Often, during a life test, an experimenter has a need for an upper confi- 

+ h 
dence bound (a prediction interval) for the time of the last (n ) failure in 

a size-n sample of test items. If the experimenter's data are two-parameter 

Weibull, Table I can be used to provide such a prediction interval for sample 

size n = 5(1)25, provided the first n-1, n-2, or n-3 failure times are known. 

On the basis of the first k failure times, with n-k^l. 2, 3, one can also use 

Table 1 to obtain an upper confidence bound for the time of the (k+l)st failure. 

By use of an approximation described in Section 3.2, it is also possible to 

obtain upper prediction bounds for the (j+l)st failure based on the first j 

failure times, with n-j-2, 3,..., n-2. This approximation can be applied for 

sample sizes ranging from 3 to as large as required. 

Notwithstanding the usefulness of the results herein for obtaining certain 

prediction intervals, the primary motivation for the research described in the 

following was precipitated by analysis of data resulting from a large scale 

.jss-riteva&gsa^^ -trifrt MiiiiMiaWiMMiriiijM^^ 



retrospective longitudinal study of times of individuals relaprinj to undesirable 

habitual behavior. Results of Mann and Rothberg [26] and Mann [21, 22] appear 

to indicate that either a two-parameter Wei bull model or a mixture of two- 

parameter Weibulls is appropriate for "time-to-failure" or return to addictive 

or other undesirable habitual behavior for longitudinal studies made on individ- 

uals. Here, it is convenient to conceptualize independent intentions to abstain 

from the behavior that wear out or otherwise fail in time. (Time-to-first 

failure in a cohort has been studied in the case of prison recidivism by Harris 

and Kaylan [13], who found that a mixture of two exponentials provided a good 

fit for the data.) 

What one is attempting to determine in applying an outlier test to retro- 

spective longitudinal time-to-failure data is whether or not "treatment effects" 

may have resulted in specified instances. If the Weilull outlier test indicates 

that a number of seemingly inordinately long times to failure are significantly 

different from other failure times of an individual, then one can attempt to 

correlate the instances involving suspected treatment effects with various 

potential causal factors. 

Such an outlier test can le used, as well, to identify treatment effects in 

hardware on the basis of life-test data. In such situations, identification 

of an outlier will potentially allow one to discover inadvertent and/or unsus- 

pected modifications that may have been made to a manufacturing process. Note 

that the immediate goal is not parameter estimation, as in many situations, and 

also that rather large numbers of outliers are a definite possibility. 

3. Determination of Appropriate Test 

3•^ Earlier Results 

Tiku [31] defined a  to be the (size-n) maximum-likolihooJ estimator of 

the scale parameter of a location-scale-parameter distribution (i.o., a 

ggjgjjg^H^ 



distribution Fx(x) that is of the form G[(x-y)/a] for some G). He defined a 

to be the maximum-likelihood estimator of a, or an estimator with the 

asymptotic properties of the maximum likelihood estimator of o, calculated 

from all the k<n ordered observations felt not to be outliers (considered 

together as a censored size-n sample); i.e., a is consistent, asymptoti- 

cally unbiased and efficient and asymptotically normal for the cases he 

considered and for the case considered here. 

Tiku then proposed 

T = h(oc/a) (3.1.1) 

(where h is a suitable constant) as a statistic for testing the hypothesis 

that the sample contains no outliers versus the hypothesis that the suspect 

observations are all outliers.    He demonstrated empirically, for 1, 2 and 4 

outliers, n=10, 20 and 40, that the statistic T has higher power than 

certain other well  known statistics (see Grubbs [10], Tietjen and Moore [37], 

Shapiro and Wilk [30] and Ferguson [9]) under Tiku's [31, 32] labelled slippage 

models (Models A and B of Section 3.3).    Note that Tiku's statistic is versatile; 

(i) it can be used to test any specified number of outliers on either side 

of an ordered sample, and (ii) it can be used to test whether the sample 

contains outliers, irrespective of how many [32]. p. 1420.    A multivariate 

generalization of Tiku's statistic is also available (Tiku and Singh, [35]). 

Outliers on the left are not generally of Interest in our analyses. 

They often arise because inspections of hardware or tests for abstinence 

(such as urinalyses to test for opiates and other drugs) are made at 

discrete time intervals, perhaps weekly.    Thus, small values are relatively 

more displaced than larger values.    Because of the logarithmic transformation, 

any displacement of small  values is magnified as well. 

Now, consider a sample with a single large suspected oullier from a 

one-parametor exponential distribution with parameter o.    Here a   and o 

imii mi  ii iiiiiMiiilllillliM 



are equal to Si/(n-l) and S /n, respectively, where 

Sj =   l^ X(i) + (n-j)^. 

with X/.v the i      exponential order statistic.    Thus, for this distribution 

(in which a is both a location and scale parameter), the statistic T is 

proportional to (n-l)ö /(no) = s
n_-|/sn» which is equal to 

Sn-l/[Sn-l + (X(n) " x(n-l))^    If Uk is defined to be ^X(n)-X(k)^Sk' 

then (n-l)ac/(n0) = (1 + U   -j)-1 in this single outlier case. 

Lawless [16] proposed the use of U.  for obtaining a prediction interval 

on X/  x,the n     ordered observation, from the first k observations in a 

life test in which the data are exponential with parameter a; and he demon- 

strated that for (one-parameter) exponential data, (n-1) U    ,  is distributed 

as Snedecor's F with 2 and Zn-Z degrees of freedom. 

Monte Carlo results exhibited in Table 3 demonstrate similarly that for 

data from an extreme-value distribution (data that are ordered logarithms 

(X/, v<«**<X/  v) of sample observations from a two-parameter Weibull distribution) 

the power of a test based on T is equivalent to the power based on the 

ratio of (X#  x - X»    -.O and an estimate equivalent to the maximum likeli- (n)       (n-l) 

hood estimate of the extreme-value scale parameter (the Weibull shape 

parameter) obtained from the first n-1 observations. 

For more than a single large outlier, the statistic T defined above involves 

observations that are not available in the prediction interval situation.    Hence, 

for any distribution, using a statistic similar to U. , i.e., proportional 

t0 ^a-k = ^li) ' X(k)^öc *^   < ^ 1 n » ^or testing for n-k outliers would 

seem to be inefficient for n>k+l.    It will  be shown in Section 3.3 that this 

is not necessarily so. 
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3.2 Test Statistics for Wei bull Data 

We consider now the variate X, the logarithm of a Wei bull variate with 

F M = / 1 " exp[-exp((x-p)/o}], x>0 

0     , otherwise;       o>0 . 

The parameter p is a location parameter, the mode of the distribution 

of X (the first asymptotic distribution of the smallest extreme) and is 

the logarithm of the Weibull scale parameter.    Ths parameter a, which 

determines the shape of the Weibull distribution, is a scale parameter of 

the distribution of X, with n2o2/6 the variance of X. 

Since X has a location-scale parameter distribution, it is to be 

expected that for the labelled slippage model of Tiku (see Section 3.3), 

an efficient test statistic for testing for large outliers can be pro- 

vided by T = h(a /a).    One might also consider statistics proportional 

to QJt_k, k<jL<n. 

Results of Lawless [16]. Thoman, Bain and Antle [36], and Mann and 

Fertig [23], show that for Weibull data, maximum-likelihood and best linear 

invariant estimators yield very nearly equal  numerical results and their 

small- and large-sample properties (bias, mean squared error, etc.) are 

very nearly equivalent.    Thus, for testing that the largest n-k of n 

sample observations are outliers, using T Is essentially equivalent to 

using as a test statistic o,, „/o„    . the ratio of the best linear invari- 
K »n n ,n 

ant estimators of o based on the smallest k and on all n sample observa- 

tions, respectively. The power is obviously unchanged If one uses 

ot J0t  « » the ratio of the best linear unbiased estimators of o based ic,n n»n 

on the smallest k and on all n sample observations respectively. This 

is true since best linear Invariant and best linear unbiased estimators 

of o differ only by a constant factor. See, for example, Mann [19]. 

*"*-""■ «aiiiiiiiMMiiiiaiiHaUililiiiiH „„gg^gmi *ii — tmBtmtlm 
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In this study we considered specifically 

vk -=hrl 
Vn/ok,n ' 

and 

Qn-k = (X{n) " X(k))/Ök,n 

Vk =Q(k+l)-k={X{k+l) " X(k))/"k,n 

Note that Q . and W . yield gap tests somewhat similar to some suqaesf.ed 

by Dixon [6]. Critical values of +hese statistics for testing for large 

outliers, or predicting later failure times, at 0,20, 0.10, 0.05 and 0.01 

significance levels for n = 5(1)25, n-k = 1, 2, 3, are displayed in Table 1, 

and an example of their use is given in Section 4. 

The values shown for V . and Q k were generated simultaneously by 

means of 20,000 Monte Carlo simulations. The exhibited values of U , were 

generated by making use of the fact that, for k ^ n - 2 (the restriction 

having been discovered in this research), 

Fk = [()((k+l) " X(k))/E(X(k+l) " X(k))]/5k,n/E(5k.n) 

has approximately a classical F distribution. This is discussed in Mann, 

Schäfer, Singpurwalla [27], pp. 255-256. 

In order to generate the tabulated values of W k, using the F approxi- 

mation, it was necessary to use stored values of the expectations of the 

reduced order statistic Y.  = (X*.\ - (i)A1 , i^k, k+1, and of C. i«n   \i) K,n 
where ü/(l + C. n)  is expectation of o.  and C. o7 is the variance of K,n K,n    K»n 

Oi  = (1 + C.  )o,  , k.n  v   k.n' k,n * 
the best linear unbiased estimator of o, based on the smallest k observations 

of X. Thus, 

fk"<X(W)-X(k))/[E(YW.n
i-E(,'k.n>^"k.n> " '■  Ck.n'l • 

The degrees of freedom for the approximate variate are ba.ed on t : 

result of Patnaik [24], which specifies for f. with E(^) • m, var(^)     v. 
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and m2 proportional  to v, that Zm^/v is approximately a chi-squared variate 

with 2ni2/v degrees of freedom.    Thus, we have for F. , 

vi = 2 vart(Yk+lsn- Yk)n)/E{Yk+1>n- Ykjn)] ~ 2 and v2 = 2/C,^ degrees of 

freedom.    Values of var(Y,+1 n " Yj, n). 
n-k = 2>3; n = 5(1)25, were calculated 

from stored values, along with the other constants needed for the compu- 

tations.    (See below for the origin of these constants.) 

The values obtained from the F approximation were compared with trial 

simulations having a Monte Carlo sample size of 20,000 to ensure that the 

tabulated values are sufficiently precise.   The agreement increases as 

significance level a decreases.   That is, higher percentile values are more 

precise.   Also, precision increases as sample size n increases and as k 

decreases.    Examples of comparison with Monte Carlo values are shown in 

Table 4. 

The method used for obtaining the F values with noninteger degrees of 

freedom is described in Mann, Schafer, Singpurwalla [27]. pp. 172, 173. 

This method, alonvj with values of 

^k+l.n" W«    k = 2. n-1, 

tabulated in Mann, et al. [27] pp. 342-347 for n = 3(1)16, and Mann, Sc'm.er 

and Fertig [28], for n = 3(1)25, and values of C.  n, which can be obtained 

from values appearing in Mann, et al. [27], pp. 194-207, for n = 2(1)13 

and in Mann [19], for n = 2(1^25, can be used to estimate the critical 

values of W   .  for n-k>3.    In these cases, one can use v1 - 2 along with 

v. = 2/C.      for the degrees of freedom or can calculate Vj more precisely 

using values of the variances and the covarlance of Y.+,     and Y. 

available in Mann [20]. 

For samples larger than 25 and n-k>l, one can use the approximation 

with asymptotic expressions for expectations, variances and covari.inces of 

the order statistics available in Mann et al. [27], p. 218, and an 

asymptotic expref-ion for C.      available in Harter and Moore [12]. 
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As noted earlier, maximum-likelihood estimates can be substituted for 

a,  and for o  , and the values in Table 1 can be used directly with these 
k.n       n,n 

estimates without any modification required. One can also use of  and 

a* ,best linear unbiased estimates (see Mann [19]) or simplified linear 

estimates (see Mann, et al. [27], pp. 210-212, Mann and Fertig [24] or 

Engelhardt and Bain [7,8]), in place of the best linear invariant estimates. 

In this case, the modified statistics Q„ ., and W , need to be multiplied n-K    n-k 

by the factor CQW = (1 + C,, _) and the modification of V . needs to be 
K,n n-K 

multipllad by CV = (1 + C. n)/(l + Cn )  before comparison with critical 

values. In other words, ab „ and a* „ need to be divided by (1 + C. J 
K »n    n »n K n 

and (1 + C^ )  respectively, to convert them to o,  and a „. Values n,n   r     J k,n    n,n 

of the constants CQW and CV appear in Table 2 for n = 5(1)25, n-k = 1 2, 3. 

Approximations to Q ^ and V k can be calculated by using probability 

plots such as those shown in Figures 1 and 2. Here, the Inverse of the 

slope of the line plotted on the basis of the smallest k observations gives 

an approximation to o.  ; and the inverses of the slopes of the line formed 

by the n  and k  points and by the line formed by the (k+l)st and kth 

points give approximations to (X,, - Xk)/E(Yn n - ^ n). and 

(X(k+l) " Xk)/E(Yk+l.n- YkJ« ^spectlvely. 

If the Inverse of the slope In the probability plots Is used, then 

the constant factor 

W '  E<Vn ■ "k.n"' + Ck.n'  °r 

^^fVl^-^.n)!' +Ck.„> • 

must be used to multiply the value obtained to convert It to one that can 

be compared with the critical factors for Qn_k or Wn_k, respectively. Values 

of CQP and CWP are given In Table 2 for n = 5(1)25; n-k = 1} 2. 3. 
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Special probability papers, each one applicable to a specified sample 

size, have been designed (see [18]), so that individuals without technical 

training can plot failure times of interest.    Without making such plots, 

one will usually find it very difficult to have much feeling for what 

might be moderately large values for time-to-failure when the data are 

Weibull.    Using the plots with some minimal  instruction, a nontechnical 

person should be able to determine slopes of lines formed by Xi,...,x.  and 

by x.  and xn or x.  and x^.   This assists a spouse, a "significant other" 

or a counsellor of a subject engaging in undesirable habitoral behavior 

to gain insight into what might be, for this subject, motivation for long- 

term abstinence. 

3.3   Optimality of Power Under the Two Alternatives 

For a Weibull model, the hypothesis H   to be tested is: 

Xz-jx X/  \ are order statistics from 

fx(x) =~g[(x-y)/0] (3.3.1) 

where Mx) is the density function corresponding to the distribution 

function (3,2.1). Model A and Modo! B are given, respectively by 

A: X/,v,...,X/.x are the smallest k order statistics from (3,3.1) and 

X/k+1x,...,X/ v are the largest n-k order statistics from 

fx{x) = I f{[x - (w + 6a)]/o) 

and 

B: x{iy»««-»x(|c) 
are the smallest k order statistics from (3.3.1) and 

X(k+l),,*',^(n) are the lar9est n'^ or(,er statistics from 

fx(x) '^ g[(x - tO/Xa] . 

These models may not correspond to the manner in which data are generated 

for the situation described. Nonetheless, a mixture of any two specified 
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Weibull distributions can be represented by a mixture of models A and 

B if the "outliers" are larger than other values and the number of 

outliers is only one or two. Models A and B can be combined also to 

approximate very well nearly any model that is a mixture of a Weibull 

sample of small values and a Weibull sample of larger values (the 

"outliers"). 

Examples of Model A and Model B are shown as probability plots (on 

Weibull probability paper) in Figures 1 and 2, respectively. It was the 

object of the research described in this paper to determine test statistics 

that are optimal, in terms of power considerations, for testing for outliers, 

in general, and for testing against Model A or Model B, or a mixture of 

these, in particular. To this end, the power of the various test statistics 

under consideration was calculated by 2000 Monte Carlo simulations (in 

addition to the 20,000 used to generate critical values for the test sta- 

tistics). These power calculations were made for each cntical value 

generated for V ,, Q , and for selected sample sizes for W , for Model A: 3 n-k  n-l; r n-k 

6 -  0.5,1, Model B: X = 2,5 and mixed models 6 = 1; > = 2,5. Illustrative 

examples are exhibited in Table 3. Note that only for the test statistic 

W . (under Model A with n^lO) does the power increase as n-k increases. 

This is probably due to the fact that observations near to y are closer 

together than observations near the tail. Hence, displacement of 1 o is 

less critical near the tail. 

On the basis of the many similations that were made, it has been well 

established that when one is testing H versus a singla outlier, a test 

based on Qn_k ■ Q^.D = W(k+1)_k = W^^ has power essentially 

Identical to that of one based on V / i\  hT"1. This was pointed out 

in Section 3.1. 
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Tiku [27] has demonstrated for Gaussian families that a test based 

on the statistic T has higher power in more general situations (more than 

a single outlier) than other classical outlier tests under his labelled 

slippage model. As the number of outliers, n-k, increases, however, the 

ratio of the power of W . relative to the power of V . increases under 

Model A (shift in location). That is to say, under Model A, a test based 

on a measure of the gap (X/k+1\ - X/^) between the smallest suspected 

outlier and the largest observation thought not to be an outlier, relative 

to a measure of the dispersion (0., )  of the observations thought not to 
K.n 

be outliers is more powerful than one based on T (see Table 3). It is 

clear from Figure 1 that for Model A, it is essentially this quantity, 

i.e., the size of the gap relative to the dispersion of the smaller obser- 

vations, that is the critical factor in establishing the suspicion of 

outliers. Thus, it is not unlikely that a test based on a statistic, such 

as W k involving X/^-JN ■• X/kx, is optimal for alternative models resem- 

bling Model A. 

If it were established that Model A was precisely the alternative 

(which it usually will not be), then using in the denominator of W . 
n-k 

an estimator of a that involves all differences of successive order statistics 

except X.+, - X. would be more powerful than W . as it is defined. Such 

a test would be equivalent in terms of power, to one having this statistic 

in the denominator and 0   in the numerator and should be optimal for the 

labelled slippage model with Model A as the alternative. Note that Mann 

and Fertig [25] demonstrate that for a goodness-of-fit test, involving 

gaps (which all estimates of o in location-scale families involve) the 

important consideration in determining optimality in which gaps are in- 

volved in the test and in what position, rather than how the gaps are 

combined. That is v. say, an optimal estimator of 0 based on the first 
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k-1 gaps performs no better than one which is the sum of each of the 

k-1 gaps divided by its expectation. 

In this context it is noteo that the statistic V* = a.+-| Jo^  n for 

k = n-2, n-3,"', has the same functional relationship with W . that 
'   '  ' r     n-k 

Vn-(n-l) ,1as witl1 ^n-(n-l)" Therei:ore» the statistic W ., also has 

essentially the same power as V*. The inverse of V* is a special case 

of Z, a statistic proposed by Tiku [34, eq. 1.4] for testing goodness 

of fit when H0 is exponentiality. The statistic Z is equivalent to 

V* when the exponential censored sample of size n consists only of the 

smallest k+1 observations. Thus, Z stresses the difference of the two 

largest observed order statistics. 

It should also be pointed out (see [24]) that y* and u based on 

X/,\,••• ,X/. x, k<n, from an extreme-value distribution are of the 

approximate form, t,.-.  + ca.  , where c is an appropriate constant. Thus, 

a test of form {X/k+i\ - iv J/^k n i5 essentially the test W .. 

For Model B, the critical factor is the ratio of the slopes of the 

plots of the smallest k and the largest n-k+l observations. For this 

model, W . performs poorly relative to V ^ as one might suspect, but 

Q r, w'^ch is proportional to the ratio of estimates of these two slopes, 

approximates V . very well, i.e., powers of V . and Q . are very nearly 

equivalent. See Table 3. Thus statistic Q . is shown (in Table 3) to 

perform very poorly, in terms of power, under Model A, however. 

For a mixture of the models, results shown In Table 3 indicate that a 

test based on W^ tends to be most powerful, with Q . performing most 

poorly. Again as with Model A, the gap X,^» - X/|« relative to ok n 

appears to be the most critical factor. 

■*m>immm. 
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It seems clear from this study that in considering whether or not to 

test for outliers, one should, if possible, plot the data on probability 

paper. Plotting is useful in providing perspective even though there is 

a single suspected outlier. For more than a single outlier, plotting is 

essential if one is to know whetier to use W . (for Model A or mixed n-k 

models) or either V    k or Q    .   (Jor Model B) or V    .   (for a more general 

alternative model).    In this way no one can insure using a test with what 

appears to be optimal  power. 

Clearly, the power of the outlier test is affected by the apriori 

analysis, as is always the case to some extent in looking at the data 

before performing an outlier test.    However, in this context it is impor- 

tant to identify large outliers in order to determine if treatment effects 

(extending life or for human subjects, extending periods of abstinence) 

have resulted and what might have caused such effects.    The goal  is not 

primarily one of estimation of parameters, but rather of exploration. 

This point is discussed by Barnett and Lewis [3], pp.  5-6. 

Finally, it is to be noted that the results obtained here are likely 

to extend to other location-scale families. Thus, an analog of W . in- 

volving the gap X/^N - X,^ will possibly tend to be more powerful for 

any location-scale family (including Gaussian distributions) for testing 

H   under Model A than is the statistic T. 

4,    Numerical Examples 

The data in the probability plots (Figures 1 and 2) are used here to pro- 

vide examples of the use of the various test statistics. 

First, we consider Figure 1, which exhibits two possible outliers from a 

mixed model with x < 1. Here n is equal tc 9, so that tables in [22] can be 

used to obtain the weights to calculate o7 g = 0.709 and Og „ = 0.884. Also 

X(9) " X(7) = 0'872 and X(8) " x(7) = 0'693'    Thus» v9_7 = 1-245, qg_7 = 1.228 

^•m^mmmmurm-f 
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i and wQ 7 = 0.976.    Comparing these values with the tabulated critical values, 
9-/ 

one finds that if the specified significance level  is 0.10, then only the 

test statistic w9_7, involving x,8v - x,^, rejects the hypothesis of no 

outliers. 

The plotted line drawn (by hand) in Figure 1  gives highest weight to the 

kth, or in this case, the seventh value, as do the weights for optimal linear 

estimates of a, such as 5 and o*.    Also note that horizontal, rather than 

vertical, distances from points should be minimized.    The slope of the line 

is about 1.20 so that an approximation to at g is about 0.833.    This gives 

0.717 as an approximation to ä7 g with the use of CQW = 1.161  (found in 

Table 2) as a divisor. 

The plot in Figure 2 suggests 3 large outliers of the general type 

specified by Model B.    Thus, using tabulated values in [14], one finds 

^11,14 = 0-84226» °14 14 == T-353» Xp4j - x^j = 2.084 and XQ2J - x^^ = 0.560 

so that v,. ,,  = 1.595, q-iA.-n  = 2.457 and w,,,,  = 0.660.    In comparing 

these values with the critical values of Table 1. one finds that if the 

specified significance level  ir 0.10, all three test statistics reject a 

"no outliers" hypothesis.    The statistics, v-^^-j and th^-j reject also at 

the 0.05 significance level, while w,. ,., does not.    This is to be expected 

since the probability plot demonstrates that the appropriate test statistic 

is v 14-11 or q14.-ll 

ma 

The slope of the line plotted in Figure 2 is about 1.1, giving an approxi- 

tion of about 0.91/CQW = 0.91/1.076 = 0.845 for o^^  = 0.842.    Note that 

.th again, the k     value has been weighted most heavily. 
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