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I. INTRODUCTION

The presence of longitudinal pressure waves in guns can influence
overall system safety in a variety of manners. As pointed out by Budka
and Knapton in their survey on pressure waves in gunsl, " . researchers
have revealed one common characteristic associated with the occurrence
of unexpected high pressure excursions - namely, the existence of strong
pressure waves in the gun system.'" Such unintended overpressures can
damage gun and ammunition components, leading to breechblows, prematures,
increased dud rates, and other forms of performance degradation. However,
even without increases in maximum chamber pressure, nonuniform ignition
and pressurization in the gun chamber can cause very high local
pressurization rates and solid-phase (propellant and packaging components)
transient lgads on the projectile base that can lead to projectile or
fuze damagez’s. An even further concern with pressure waves exists in
terms of their effect on ballistic reproducibility, as variation in the
magnitude of pressure waves is often accompanied by a variation in other
performance parameters?.

Yet many weapons with excellent safety, reliability, and performance
records exhibit pressure waves, some at substantial levels. Techniques
for distinguishing between acceptable and unacceptable levels of pressure
waves are based on philosophies that range all the way from '"she ain't
blown yet, so why worry now" to "all pressure waves are unacceptable'!
While both views may be considered impractical, the more conservative
approach finds its origin in the costly experiences of numerous catastrophic
gun malfunctions, for which strong pressure waves served as precursors
te the overpressure or premature functioning of the payload. Further
motivation arises from our lack of understanding of the detailed
phenomenology of such failures, as articulated nearly three decades ago

14.9. Budka and J.D.‘Knapton, "Pregsure Wave Generation in Gun Systems:
A Survey," BRL MK 2567, USA Ballistic Reseairch Laboratories, Aberdeen
Proving Ground, MD, Desember 1975. (AD #B008893L)

ZD.W. Culbertson, M.C. Shamblen, and J.5. O'Brasky, '"Investigation of

5"/38 Gun In~Bore Ammunition Malfunctions,'" NWL-TR-2624, Naval Weapons
Laboratory, Dahlgren, VA, December 1971.

°L. Kell, "The S-Inch Illuminating Projectile Dud Investigation,' NSWL/DL-

TR-3792, Naval Surface Weapons Center, Dahlgren Laboratory, Dahlgren,
VA, January 1979.

4E.V. Clarke, Jr. and I.W. May, "Subtle Effects of Low-Amplitude

Pressure Wave Dynamics on the Ballistic Performance of Gune,' 11th
JANNAF Combustion Meeting, CPIA Publication 261, Vol. 1, pp. 141-1556,
December 1974.




by the British interior ballistician Lockettsz

"It might be pertinent to point out...that there is always some
uncertainty in the interpretation of what might be dismissed as minor
irregularities in the pressure-time curve. We have by bitter experience
learned to regard such irregularities with a degree of suspicion...because
of the apparent ease with which such minor flaws can turn over to major
irregularities by some mechanism not yci understood."

The problem of pressure waves has been of most concern to the U.S.
Army with respect to the design of high-performance artillery bag charges.
A typical layout for such a charge is presented schematically in Figure
1. Principal components of the charge include a basepad igniter (usually
containing black powder or CBI*), a centercore igniter tube (containing
additiocnal igniter material), and a main charge (typically multi-perforated,
triple-base, granular propellant). A cloth bag is employed to contain
the charge, and other components such as a flash inhibitor or wear-reducing
additive may be present. We postulate functioning of the charge to be
described by the following sequence of events: the basepad igniter is
initiated by the impingement of hot combustion products from a percussion
primer. The basepad then ignites the centercore charge, and together
they ignite nearby propellant grains. Combined igniter and propellant
gases penetrate the propellant bed, convectively heating the grains and
resulting in flamespread. During this process, the pressure gradient
and interphase drag forces accelerate the propellant grains, largely
in the forward direction, thrusting them and any intervening elements
against the projectile base, Upon stagnation, a reflected compression
wave in the gas phase is formed, its magnitude being subject to increase
by the combined effects of reduction in free volume (due to bed compact-
ion) and combustion in this low-porosity region.

GRANULAR CENTERCORE
SPITHOLE PROPE LLANT IGNITER PROJECTILE

f
@;/c? B
P?IMER

SPINDLE '\

BASEPAD PROPELLING CHARGE GUN TUBE

Figure 1. Bag Charge/Gun Chamber Interface

oN. Lockett, "British Work on Solid Propellant Ignition,' Bulletin of
the First Symposium on Solid Propellant Ignitiom," Solid Propellent
Information Agency, Silver Spring, MD, October 1856.

*Clean-Burning Igniter, a nitrocellulose-base ignition material
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If the charge functions as intended, smooth pressure-versus-time
curves as shown in Rigure 2 are obtained. A pressure-difference-versus-
time history, formed by subtracting the pressure measured by a gage in
the chamber wall near the initial position of the projectile base
from the breech pressure as a function of time, reveals only the normal
forward-facing gradient associated with motion of the projectile down
the tube. On occasion, however, pressure-time histories as shown in
Figure 3 are obtained. Strong longitudinal pressure waves are clearly
manifested in the pressure-difference plot. Such phenomena have been
traditionally associated with localized ignition of the propellant bed
and thus may imply non-functioning or at least late functioning of the
centercore charge. Whether this wave dissipates or grows is dependent
on a complex interpiay of events controlled by gas production rates,
ullage, bed permeability and projectile motion. Thus, other factors in
addition to proper functioning of the ignition train may be of importance.
Finally, increases in maximum chamber pressure may or may not accompany
such increases in pressure-wave dynamics, with extreme amplitudes result-
ing in breechblows (see Figure 4.)

In a recent study6, we addressed the validity of the assumption that
a unique relationship existed between the initial reverse pressure
difference (-AP;j), as indicated on Figure 3, and the maximum chamber
pressure (Ppax) for a given charge/weapon combination. The quantity
-AP; can be interpreted as a measure of the severity of the flow stagna-
tion event at the conclusion of flamespread, and as such serves as a
measure of '"badness" of the ignition event. This assumption of unique-
ness between -AP; and Ppayx is fundamental to the breechblow safety
assessment procedure currently employed by the U.S. Army. It was
concluded that while initial charge temperature significantly impacts
this relationship, an essentially unique sensitivity relationship between
-AP; and P,y can be assumed for any given temperature to facilitate a
quantitative assessment of the probability of breechblow for a given
charge/weapon combination.

In this study, however, we probe the adequacy of -AP; formulism as
an indicator of the magnitude of pressure waves and evaluate the use of

several alternative parameters in terms of physical motivation, ease of
measurement, and impact on established safety-assessment procedures.

I1. TECHNICAL DISCUSSION

A. Current Procedure

As one facet of the overall safety-assessment procedure for new
propelling charges for artillery, the Ballistic Research Laboratory is

GC.R. Ruth and A.W. Horst, "Experimental Validation for the Uniqueness

of the Differential Pressure-Maximum Pressure Sensitivity Curves Used
for Charge Safety Assessment", Ballistic Research Laboratory, USA
ARRADCOM, Aberdeen Proving Ground, MD, (report in preparation).

9
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often asked to comment on safety of the charge, particularly with respect
to any deleterious effects of pressure waves. While problems arising
from transient loads on the projectile bases (both gas- and solid-phase)
associated with the presence of pressure waves are not amenable to so
direct a treatment, the influence of pressure waves on maximum chamber
pressure can be assessed in the following manner:

(1) Sensitivity firings are conducted to determine the relationship
between -AP; and maximum chamber pressur¢ for that charge/weapon combina-
tion. Intentionally-defeated centercore igniters may be included in
this series to assure that data from a localized-ignition/high-pressure-
wave firing can be obtained with a reasonable number of tests, More
recent assessments of base ignited charges have included sensitivity
testing with special charges in which faster-burning igniter materials
have besn substituted for the stendard material.

(2) A failure criterion is identified, usually in terms of some
maximum chamber pressure, dictated most often by breech or payload
failure.

(3) This failure level is reinterpreted in terms of a -4P; level,
determined from the sensitivity curve developed in Step (1).

(4) A sample of firing data is then obtained which is believed
to be representative of ''real-world" propelling charges, typical of thos=2
to be fielded ror use. One or more statistical distributions are fit to
these data.

(5) The probability of failure as defined in Step (3) can then be
statistically determined with respect to the distribution of -AP; values
from Step (4).

An alternate form of this procedure is possible if the firing data
described in Step (4) are available prior to sensitivity testing. Based
on these data, the -AP; value to be associated with the highest, accept-
able probability for failure can be statistically projected, and
sensitivity testing to determine the corresponding chamber pressure need
not be continued beyond that point. In this fashion, while we do not
necessarily determine the -AP; value corresponding tc the maximum-pressure
failure criterion, we do ensure that this pressure limit is not exceeded
at that -AP; level projected to occur at a frequency equal to the highest
allowable probability for failure. This alternate plan, in some cases,
may significantly reduce the risk of catastrophic overpressure during
sensitivity testing,

Application of the basic procedure can be demonstrated with respect
to a data base available for the 175-mm, M107 Gun. The relationship
between -AP; and maximum chamber pressure for M86A2 (Zone 3) Charges
fired in the M107 Gun, based on sensitivity firings, is presented in
Figure 5. A -AP; failure criterion can also be identified on this curve,

13
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corresponding to a known breech pressure failure level. Figure 6 then
presents the cumulative distribution of -AP. values for a data base
considered to represent a typical population of 'real-world!" charges.
The probability of achieving the -AP; failure criterion, as determined
using Kolmogorov-Smirnov statistics and two different population
distribution functions, is presented in Figure 7. The prediction of

one failure in about half a million firings compares quite favorably
with empirical data of half a dozen breechblows in some two and one-half
million firings to date. This agreement, although satisfying, must be
considered somewhat fortuitious.
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B. Inadequacies Of The Current Procedure

A3 mentioned earlier, the subject of the uniqueness of the -AP;
versus Ppay relationship which constitutes the sensitivity curve has
heen discussed elsewherv®. In this report, we confine our discussion
to prohlems arising from use of -AP; as the specific indicator of the
severity of longitudinal pressure waves present in the gun chamber.
Certainly, many studies, both theoretical and experimental, of the interior
ballistic environment over the past decade have employed quite effectively
this parameter in particular and the entire pressure-difference-versus-
time profile in general to characterize the pressure waves in guns. A
partial listing of such work has buen provided recently by May and Horst”.
Moreover, our current understanding of such pressure waves as a consequence
of an axjally-localized ignition stimulus applied to an often nonuniform
distribution of propellant in the gun chamber tends to provide a clear
physical basis for some type of cuantifier which reflects the axiai
nonuniformity of chamber pressure immediately following the ignition
event. Again, the initial reverse pressure difference, -AP;, appears
to be a proper choice. Use of this parameter has provided the propelling
charge modeler, designer, and diagnostician alike with a valuable measure
of ballistic acceptability facilitating significant advances in our
understanding of interior ballistics phenomenology. Nevertheless, it
is to problems associated with use of this parameter that we address
ourselves in the remainder of this report.

Let us proceed by considering the four interior ballistic environments
as depicted by a series of pressure-difference-versus-time profiles, all
based on experimental data and reproduced on the same scale in Figure 8.
Few observers would not agree that this figure depicts a sequence of
environments characterized by ever-increasing pressure waves. Consider
first Curves (a) and (b). While the former exhibits virtually no hint
of pressure waves, the latter reveals clearly defined modulation
associated with the presence of longitudinal pressure waves traveling
between projectile base and the breech end ¢f the chamber. However, by
established procedures, a -AP; value of zero would be arbitrarily assigned
to both curves. This result is both physically and procedurally undesir-
able.

The undesirability of this situation with respect to providing a
quantitative physical description of pressure waves is obvious; its
effects on the procedural analysis of the safety implications of pressure-
waves, however, requires some explanation. Recalling our description of
the current safety-assessment procedure with respect to pressure waves,
we note the necessity of providing a statistical description of a sample

‘I.¥. May and A.W. Horst, "Charge Design Congiderations and Their Effect
cn Presgure Waves in Guns," Interior Ballistices of Gung, H. Krier and
M. Summerfield, Editore, Progress in Astronautice and Aeronautics, Vol.
66, AIAA, New York, NY, 1979, pp. 187-227.
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population of -APj values determined experimentally. An artificial
preponderance of zeros can strongly bias the fit at the low and of the
spectrum of -AP; values and seriously degrade our confidence in the fit
at the high end, rendering extrapolations to some even higher failure
level of questionable worth. This problem is depicted in Figure 9, which
displays the result of an attempt to fit several statistical distributions
to a body of -AP; data for 155-mm, M203 Propelling Charges which included
numerous zeros. The assurance level at which this best-fit distribution
would have met the null hypothesis using a Kolmogorov-Smirnov test was
only 0.11. The deletion of zeros from these data significantly improved
the fit, but the data base was then no longer a complete representation
of the experimental results of interest.

At the other end of the spectrum, let us nrow consider Curves (c)
and (d) of Figure 8. Not only are the levels of -AP; greater in these
views, but the overall levels of pressurization in the gun chamber, not
shown in the figure, at the time of -AP; have significantly increased.
If we assume the presence of a linear calibration error somewhere in one
of the instrumentation data channels (forward and rear pressure versus
time), not only will the absolute error in -4P4 similarly suffer a linear
increase, this discrepancy will reflect the percentage error of the mea-
sured chamber pressures themselves, not just of the difference in forward
and rear pressures. Figure 10 demonstrates that gage calibration errors
of 10% can impact the value for -AP; in the experimentally based curve
depicted in Figure 8(c) by as much as 50%. Depending on the magnitude of
the chamber pressure at the time of -AP;, even greater errors are possible,
influencing not only the goodness-of-fit problem discussed in reference
to Curves 8(a) and (b), but also impacting the generation of the -APy
versus P, . curve itself, the most fundamental aspect of the existing pro-
cedure for assessment of the influence of pressure waves on safety.

C. Consideration Of Other Indicators

Since recording pressure-difference-versus-time data is an established
procedure and a great quantity of such data is already in existence, we
felt it reasonable to consider first the use of alternative indicators for
the magnitude of pressure waves that might be extracted from this profile.
Such quantities as peak-to-peak (or inflection-to-inflection for low-
magnitude waves) wave amplitude and the ratio of successive peak-to-peak
amplitudes to indicate growth or damping factors are obvious choices.,

Application of this approach has been evaluated in reference to a
large body of experimentally measured pressure-difference-versus-time
profiles discussed in detail in a previous work®. The following quantities,
defined in Figure 11, were considered: -AP; (equivalent to -AP; except
that positive values rather than zeros are assigned when this minimum
falls above the baseline); (+4P;»-AP;); (-AP}++AP,); (+4P2>-AP3);
(-APy++AP3); (-APy++AP,)/(+AP,>-AP,); and (+AP,»-AP,)/(-APop++AP3). Since

18
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these data had been generated using propelling charges intentionally
altered in a variety of different ways to promote the formation of pres-
sure waves, a good statistical fit with the various probability distribu-
tion functions was not to be expected. However, the relationship of each
of this parameters to maximum chamber pressure for the subject body of data
can be examined in Figuve 12,

The relationship which is best approximated by a quadratic fit using
the method of least squares is that of (-AP;++AP,) versus P ax- The
amplitude factor (-4P;++AP5) may be physically related to tﬁe driving
amplitude of the longitudinal pressure wave over its first transit of
the chamber after conclusion of the ignition/flamespread event. While
-AP; (or -4P; as termed earlier) is really the first ind’-ator of this
driving pressure gradient, its shortcomings have already veen noted; use
of -AP, alone is even more susceptible to large measurement errors which

20
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may be related linearly to the chamber pressure, typically much greater
by the time of the occurrence of -AP,. On the other hand, the value for
+AP) appears to reflect the combined effect of local combustion at the
base of the charge (basepad and perhaps first propellant combustion) and
the availability of local free volume. While very large values of +AP;
were usually followed by large pressure-wave amplitudes, large pressure-
wave amplitudes were not always preceded by a large value of +AP;. Ap-
parently, its failure to reflect the interaction of gas production rates
with overall bed permeability render it inadequate as an indicator of
subsequent wave growth. The indicators based on the ratio of subsequent
amplitudes apparently fail because of the occasional presence of undamped,
low-amplitude pressure waves which have no effect on chamber pressure,
while a similar persistence of high-amplitude waves almost always leads
to increases in maximum chamber pressure.

Returning to the most successful of the above indicators, (-AP;++AP,),
we find that while it should remove the problem associated with non-
physical zeros experienced with -AP;, the location and magnitude of the
+AP, inflection required to assign a value to (-AP;»+AP;) is not always
unambiguous, particularly for low-amplitude pressure waves. Thus, the
new measure suffers a similar failure to that which it is proposed to
replace, Further, the level of the +AP, inflection is subject to the
same calibration error, increasing with overall chamber pressure, as
discussed previously. While some improvement is apparently offered by
this indicator, clearly a better approach is needed.

D. A New Approach: Removal Of The Classical Gradient

General. One approach to this problem involves removal, by some
means yet undefined, of what may be thought of as the classical pressure
gradient of Lagrange8 from the pressure-difference-versus-time profile,
leaving only that part of the signal which results from the presence of
longitudinal pressure waves. Such a procedure may be though of as being
somewhat analogous to the detection of an intelligent audio frequency
signal from a radio frequency carrier, though in our case the intelligence
we are interested in is higher in frequency than its Lagrangian carrier.

For our purposes, such a technique offers several obvious advantages.
Consider the schematic offered in Figure 13. Upon removal of that part
of the pressure-difference signal associated simply with motion of the
projectile down the tube, the remaining signal should reflect only
perturbations to the classical pressure gradient, now displayed as
variations about the zero baseline. Hence, the new -AP; will be zero
only if there is truly no pressure-wave content in the recorded pressure-
difference signal. Moreover, the impact of linear calibration errors

8J. Corner, Theory of the Interior Ballistics of Gunas, John Wiley & Sons,
Inc., New York, NY, 1950, pp 339-342.
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will be limited to that percentage error of the magnitude of the pressure
difference rather than of the possibly much greater chamber pressure.
This second improvement should allow use of indicators based on events
occuring later in the interior ballistic cycle, such as second and

third maxima and minima or perhaps ratios of these quantities, should
they be motivated by other considerations. To proceed further, however,
we must address techniques for extraction of the desired signal from
commonly recorded multiple-station pressure-time data.

Simulated Pressure-Difference Profiles. The first attempt made to
perform this extraction involved the generation of approximate, ideal
pressure-difference-versus-time curves through the use of a classical,
lumped-parameter, interior ballistics code. Such codes calculate an
interior ballistic trajectory under the assumption of a ''well-stirred"
gun chamber characterized by uniform thermodynamic parameters at any
instant in time. An idealized pressure gradient, such as the Lagrangian
(based on a uniform density and a linear velocity profile for the zas),

is superimposed on the solution only to provide a more accurate description

of the force profile acting on the base of the projectile. One such
computerized model, based on the earlier work of Baer and Frankleg, was
modified to monitor and display pressure differences as a function of
time for any two arbitrary axial locations in the gun chamber/bore.
Resulting (AP,t) pairs were then supplied as input to a prograg which

fit the data to a variety of simple functions, such as AP = at et via
the method of least squares. The functional description so obtained
facilitated removal of the idealized, classical gradient from the
measured pressure-difference-versus-time profile. Unfortunately, because
of the simplifying assumptions of uniform ignition of the propellant bed
and the accompanying absence of any pressure gradient until the projectile
starts to move, satisfactory synthetic representations of the classical
pressure gradient which closely approximated experimental data for
wnperturbed environments, particularly for the early portion of the
cycle, could not be obtained.

Approximation Using Cubic Splines. A second and simjlarly
unsuccessful attempt to generate a useful, synthetic pressure gradient
involved the approximation of experimental pressure-difference-versus-
time profiles with a standard cubic spline curve defined by up to 26
user-selectable points. By following this procedure, one could easily
approximate a desired profile. The problem, however, was then one of
determining just what was the desired curve, Several reasonable schemes
were applied to typical problems of interest, but the sensitivity of
results to arbitrarily-imposed, systematic differences in procedure was
discouraging (see Figure 14). Further, lack of across-the-board success

QP.G. Baer and J.M. Frankle, "The Simulation of Interior Ballistic

Performance of Guns by Digital Computer Program." BRL R 1183, Ballistic
Research Laboratories, Aberdeen Proving Ground, MD, December 1962.
(AD #299980)
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for even a small sampling of typical problems with any one procedurél

scheme for creating the appropriate curve led to abandonment of the technique.

Fourier-Analysis/Digital-Filtering Techniques. As the presence of
a longitudinal pressure wave traveling between the breech closure and
projectile base is indeed a periodic physical phenomenon (albeit that
the period of transit changes with the position of the projectile and
thermodynamic and physical states of the propellant/gas mixture),
analysis of the pressure-difference signal into component signal frequencies
appeared to offer promise. In particular, application of the fast
Fourier transform for examination of various features of interest
followed by the application of various digital filters for isolation of
particular component events was beginning to yield useful results in
related ballistic problemslo.

To this end, a computer program was written to process digitized
records of experimental pressure-versus-time and pressure-difference-
versus-time data using established decomposition and filtering routines
in either an interactively-guided or automatic manner. The program is
in reality the synthesis of two previous works, coupled and controlled
v}? executive and file-manipulation software. Drawn from IMSL Library
3** is a subroutine known as FFTR, which computes the fast Fourier
transform of a real data sequence - in this case, the digitally-recorded,
experimental pressure-difference-versus-time signal. Based on a physical
understanding of the problem, the user may then wish to select a frequency
domain of interest for further study. McClellan, Parks, and Rabiner
had previously written a computer program to establish optimal design
parameters for digital filter circuitsl2, Their work was modified by
Walbert™ ™ and a subroutine was added for interactive filter design.
Additional algorithms for the application of digital filters to time

loA.A. Juhasz, I.W. May, W.P. Aungst, and F.R. Lynn, Combustion

Diagnostics of Very High Burning Rate Propellants," 17th JANNAF
Combustion Meeting, CPIA Publication 329, Vol. 2, pp. 208-240,
November 1980.

Mngybroutine FFTR, Library 3," International Mathematical and
Statistical Libraries, Inc., Sixth Edition, Houston, TX, July 1877.

12J.H. MceClellon, T.W. Parks, and L.R. Rabiner, "A Computer Program for

Designing Optimum FIR Linear Phase Digital Filters," IEEE Trans. on
Audio and Electroacoustics, AU-21 (6), 1973, pp 6506-526.

13J.N. Walbert, "Computer Algorithme for the Design and Implementation
of Linear Phase Finite Impulse Response Digital Filters," Ballistic
Research Laboratory, USA ARRADCOM, Aberdeen Proving Ground, MD,
(report in preparation).
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series were developed14 to allow isolation of various frequency components
for further analysis. In the problem of interest to us in this study, the
selection may be based either on a quanuititive analysis to determine
pressure-wave transit frequencies from physical dimensions and wave pro-
pagation velocities or on a visual inspection of the frequency power
spectrum to identify the frequency domain of interest.

A conceptualized application of this approach is provided in Figure
15. In actuality, there exist a number of potential schemes to conduct
the desired filtering, scme of which are depicted in Figure 16. The
proper selection for a given application will depend on a number of factors,
such as data density, number of points in the filter, and frequency
domain of the desired portion of the signal. Idealiy one wants a narrow
transition bandwidth at the cutoff frequencies but a very flat passband
(i.e. low ripple), as shown in Figure 17. A thorough analysis cf the
influence of all available data-digitization and filter-design parameters
has not yet been perfermed. Rather, we have limited ourselves to a
feasibility study, the purpose of which has been to determine the
applicability of this technique to the problem of pressure-wave analysis.
To facilitate accomplishment of this goal, we selected, after only
cursory examination of several alternatives, a scheme involving multiple
application of a bandpass filter. This choice rendered trivial the
selection of cutoff frequencies, and, more importantly, significantly
reduced the szffective transition bandwidth (see Figure 18),

The next task was to determine the applicability of this
technique to a broad class of ballistic environments with respect to
pressure waves. Shown in Figures 19 through 25 are the results cof double
application of a common bandpass filter to seven different experimental
pressure-difference-versus-time profiles, all obtained from firings in
a 155-mm howitzer but exhibiting a wide range of pressure-wave amplitudes.
Power-spectral-density profiles for each of the unfiltered signals
reveal significant high-amplitude content in the 200-600-Hz range. Further,
for the portion of the ballistic cycle of interest, the physical parameters
(e.g., breech to projectile base distance, ~ 90-120 cm; and gas temperatures,
" 2500-3000 K) suggest pressure-wave transit times with corresvonding
frequencies within this same range (v 400-500 Hz). Actual filter-design
parameters were selected to provide a flat passband over this range of
frequencies within the limits imposed by the available software and
digitized data records. No significant problems such as baseline shifts
resulting from the low-frequency component of tie main pressure-time
event are seen tc persist after the second application of the bandpass
filter. That such a successful filter can be so easily designed for all

14J.N. Walbert, "Application of Digital Filters and tne Fourizar Transform
to the Analysis of Ballistic Data, "Ballistic Research Labcratory,
USA ARRADCOM, APG, MD (report in preparation).
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Figure 16. Alternative Schemes for Application of Digital Filters
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ballistic environments is, of course, unproven by this example, though
rno fundamental problems are seen to exist.

A very limited study was also performed to determine just how
sensitive the isolated pressure-wave signal was to the various filter
parameters and schemes. Not surprisingly, reproducibility of the final
profile was highly dependent on the passband being flat and on the cut-
off at the lower edge of the band being sharp enough to avoid low-frequency
contamination by that part of the recorded data corresponding to the over-
all pressure-time curve. As long as these requirements were met, however,
results appeared to be acceptable independent cf the filtering scheme
imposed. The results of Figure 26 demonstrate this feature, though some
differences in magnitude are evident since the overall gains of the two
filtering schemes were not normalized.

Our real interest, of course, lies more with identifying exploitable
advantages associated with any such technique designed to facilitate as-
sessment of pressure waves. It is in this light that we next attempted
to study the '"ruggedness' of this technique with respect to frequently
experienced instrumentation problems. Figures 27 and 28 summarize the
results of this study. In the former, we see the recorded pressure-
difference-versus-time profile along with companion curves reconstructed
from the recorded data by introducing 10% calibration errors in the rear
and forward pressure channels, respectively. While a 10% error is exces-
sive, a one-or two-percent error of an approximately linear nature is not
unccmmoi. Moreover, one cannot usually identify the presence of such
errors after-the-fact by inspection. Initial -AP; values for the three
curves shown range from -20 to -30 MPa, (-APj»+AP;) values (as defined
in Figure 11) from +85 to +105 MPa, and -AP, values from -8 to +40.
However, the corresponding detected profiles after double application of
the digital bandpass filter reduce these variations to 3 MPa or less for
each of the indicators noted - this for a total calibration-error range
of an unrealistically high * 10%.

The results of Figure 28, again for the same data round, are even
more encouraging. The severe drift shown (associated with the pressure-
difference~versus-time curve obtained by differencing the recorded
signals from a second set of rear and forward pressure gages for the
firing) is of a level which usually renders the data useless. Yet, -AP;,
(-AP;++AP,), and -AP; values for the doubly-filtered data vary by only
1-2 MPa from the corresponding values for all other filtered curves of
Figure 27. The high level of success for all test cases must be at-
tributed to the fact that any offset or error associated with that portion
of the recorded pressure-difference-versus-time signal outside the pass-
band is removed. Thus, the error factor is applied only in reference
to the perturbation level of the pressure wave itself.
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Finally, improvements were sought in respect to our ability to
provide a statistical description of a population of experimental
pressure-wave amplitudes in order to facilitate the projection of failure
rates, as described early in this report. We recall that the use of
-AP; as a measure of the magnitude of pressure waves had associated with
it the practice of assigning arbitrary zero values to all curves, such
as that shown in Figure 8(b), for which the initial, lower extremum
(associated with the stagnation of the ignition front at the projectile
base) fell above the baseline. Thus, in many cases a piesce of
quantitative information reflecting the physical nature of the pressure
wave associated with such rounds was forfeited, altering the apparent
population of pressure-wave amplitudes and often degrading the statistical
fit which was achievable. Again, only a limited study could be performed
to assess any improvement in this area; however, the results are encour-
aging.

Appendix A is composed of a series of pressure-difference-versus-
time profiles for 155-mm, Zone 8, Propelling Charges fired at the Ballistic
Research Laboratory's Sandy Point Piring Facility. Included for each firing
is the recorded breech-minus-forward pressure-difference-versus-time pro-
file along with the resulting profile after processing with the previously
described double application of a digital bandpass filter., Values for -AP,
and (-AP}++AP;) were measured for both sets of curves, and an attempt was
made to describe statistically the resulting sample populations with ex-
ponential or two- or three-parameter Weibull distribution functions. Since
a well defined +AP, often could not be identified on the unprocessed
curves, the diminished, available population of (-AP;++AP;) data based
on the unfiltered curves was not felt to be representative of the overall
physical body of data and was dropped from the study. Plots of the cumu-
lative distribution functions with the highest assurance level for the
remaining three sets of data are presented in Figure 29. Perhaps owing
to the fact that it was composed of firings of 155-mm, Zone 8, Propelling
Charges from a number of different production lots, our body of data was
difficult to describe with any of the available distribution functions.
However, we do observe an improvement in fit accompanying use of the
filtered data, most significantly manifested in the 2-parameter Weibull
description of the (-AP;++AP,) population,

IfI. CONCLUSIONS AND RECOMMENDATIONS

Quantitative assessment of the safety of new propelling charges
with respect to the presence of longitudinal pressure waves is essential,
The existing procedure for assessing the influence of pressure waves on
maximum chamber pressures and associating a projected catastrophic
failure (breechblow) rate with a given propelling charge/weapon combina-
tion carries with it concerns of both fundamental and practical natures.
The causal connection between pressure waves and increases in peak
pressures has been addressed in a separate study®; we have herein limited
ourselves to other aspects of the problem.
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With reference to the currently employed pressure-difference-versus-
time profile, a number of alternative indicators of the level of pressure
waves have been investigated. Use of the standard -AP; parameter was
shown to suffer from a problem of arbitrarily assigned zeros when the
-6P; minimum falls above the baseline, from a sensitivity to instrument-
ation calibration errors (i.e., error is proportional to pressure rather
than to pressure difference), and, in some cases, from a fundamental
shortcoming associated with it being a measure of the pressure gradient
supportable in the gun chamber too early in the cycle. Use of a (-uP;
+~+AP,) parameter removed the problem of zeros, but substituted another
in that the local maximum associated with +AP, was not always readily
identifiable., Further, its sensitivity to calibration problems was
increased over that of -AP.. However, this same feature of extending
further in time into the ifiterior ballistic cycle rendered (-AP;-++APj))
free from the fundamental concern mentioned for -AP.. Additional
indicators based on subsequent minima and maxima or their ratios were
similarly encumbered with problems.

Extraction of the unperturbed pressure-difference-versus-time signal,
associated only with motion of the projectile, from the recorded breech-
minus-forward pressure-difference profile was shown to remove the problem
of arbitrary zeros, reduce the sensitivity to instrumentation calibration
errors (i.e., error becomes proportional to the pressure-difference
signal, not overall pressure), and facilitate selection and measurement
of a physically well-motivated indicator of pressure-wave magnitude.

Such "detection" of a true pressure-wave signal was most easily effected
through decomposition of the digitally recorded pressure-difference-versus-
time signal into its various frequency components via Fourier analysis,
separation of the desired portion of the spectrum via digital filtering,
and reconstruction of the resulting pressure-wave profile. While
extensive study was not conducted, a doubly-applied bandpass filter was
shown to be applicable to a broad class of profiles, obtained from

firings of experimental charges designed to provide a wide range of
pressure-wave amplitudes. The passband itself was definable either from a
thermo-physical analysis of the gun/charge configuration or via visual
inspection of the power spectrum of the Fourier coefficients corresponding
to the recorded profile. Further, insensitivity of the filtered signal

to instrumentation problems (e.g., calibration errors, signal drift)

was demonstrated. Finally, use of a (-AP;++AP,) indicator measured

after application of the double bandpass filter was shown to lead to
substantial improvements in terms of ''goodness-of-fit'" for statistical
description of populations of the pressure-wave parameter,

Based on these results, it is recommended that, at the time of the
next requested propelling charge safety assessment, the Ballistic Research
Laboratory also perform a parallel assessment of the same body of data
employing, as an indicator of pressure waves, (-AP;~+AP,), subjected to
appropriate bandpass filtering. Substitution of this parameter for -AP,
would be the only substantial change; procedures for determination of
sensitivity of peak pressure to the parameter and statistical projection
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of the probability of reaching the failure level would remain unchanged.
A further recommendation for adoption of the new indicator may be made
at that time, based on the trade-off between any improvements in the
confidence of the prediction and the added burden of digital-filter pro-
cessing.

We note further that while substantial improvements may result from
adoption of the proposed scheme, a '"cookbook procedure" is not anticipated.
A responsible safety assessment will always include careful consideration
of all background and otherwise-related data. In addition, it is not
immediately obvious that the results of this study are, in all cases,
applicable to the problem of multiple-increment charges. The more com-
plex sequencing of flame propagation and increment separation may well
lead to safety problems not directly correlative to the indicators men-
tioned. We caution the reader, in particular, with respect to catastrophic
failures associated with transient, solid-phase loads on the grolectile
base, a subject which has received much study in recent years 5,16,

!
;E

190 7. Boyer, Jr., "Significant Early-Time Transient Projectile Accelera-
tion with Concomitant Minimal Pressure Waves,'" NSWC/DL-TR-3813, Navul
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16T.C. Minor, "Characterization of Ignition Systems for Bagged Artillery
Changes, " 17th JANNAF Combustion Meeting, CPIA Publication 328, Vol. 2,
pp. 45-68, November 1980.
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