AD=A100 951  CLARENMONT MEN'S COLL CA INST OF DECISION SCIENCE F/8 12/1
MAXIMUM LIKELIHOOD ESTIMATION FOR TWO PARAMETER DECREASING FAIL=~ETC(U)
JUN B1 J M MYHRE, S C SAUNDERS NOOO14=78=C~D213

UNCLASSIFIED 81-% NL




o

)

——

) ) q / |
S el

/“’ @
e ‘

INSTITUTE OF DECISION SCIENCE

FOR BUSINESS & PUBLIC POLICY

MAXIMUM LIKELIHOOD ESTIMATION FOR TWO PARAMETER
DECREASING FAILURE RATE DISTRIBUTIONS
USING CENSORED DATA

BY

Sam C. Saunders*
Washington State University
Puliman, Washington

ADA1VO0951

AND

Janet M. Myhre**
Claremont Men's College
Claremont, California

Report # 81 - 6(
June 1981

DTIC

ELECTER
JUN 24 1981 _

* Research, in part, support by
Office of Naval Research Contract
N00014-79-C-0755

Research, in part, supported by . . .

Office of Naval Research Contract

N000-78-C-0213 a

' DISTAIRGT 10 CrailMITT
Claremont Men’s College DITRATEIN cTATMITT A
Claremont, California

*»
*

DTIC FILE copy

Approved for public release;
Dlsmbutlon Unllmned

81 6 24 074




) SECURITY CLASSIFICATION QF THIS PAGE (When Date Zatered)

> . REPORT DOCUMENTATION PAGE BEFORE Conpr oINS Ry
l. REPCRT NUMBER 2. GOVYT ACCESSION NOJ 3. RECIPIENT'S CATALOG NUMBER i
| é.
81 -4 - 00 291
o4 TITLE (end Subdila) e e S. TYPE OF REPORT & PERIOO COVERED
( a‘M.aximum Jikelihood gstlmation for two parameter . -
N gecreasing failure rate distributions using |' Techniecal NV '~
censored data . - §. PERFORNING y?:‘nspon HUNBER
A | o1 - §
//~yh AUTHOA(Y) 8. CONTRACY GR GRANT NUMBEA(e)
(4 |/ Janet M./Myhre ' 4 7 |} Neeo1s-78-c-0213.
i A_ |i sam C./Saunders | . e NOQI P Is 5
— - : [, —_
$. PERFORMING ORGANIZATION NAME AND ADORESS 18, PROGRAM ELEMENT, PROJECT, TASK :
) AREA & WOAK UNIT NUMBERS :
Institute of Decision Science :
Claremont Men's College Reliability 1
Claremont, California 91711 o : ' ;
' 11. CONTROLLING GF FICE NAME AND ADDRESS 7 INEwEroRTORTE
Office of Naval Research /1) Juneme9sy / ]
800 N. Quincy . 4 “~——1 3. NUMBEROF PAGES .. [ 7
Arlington, VA 22217 - 41 pages T i
14, MONITORING AGENCY MAME & ADDRESS(I! dlll-nnl tram Caniroiling Otfics) 15, SECURITY CLASS. (of thie repent)
’ Unclassified
15a. DECLASSIFICATION/DOWNGRADING - ;
SCHEDULE !

6. OISTRIBUTION STATEMENT (of this Report) a i
ecession ror .

,' APPROVED FOR PUBLIC RELEASE: DISTRIBUTICN UNLIMITED. ;gg Tﬁ?u

Unannounced a !
Justification __

17. DISTRIBUTION STATEMENT (of the adstrect entered in Block 20, If diiferen! from Report) By
_Distribution/
N/A B Availability Codes
] — ———

lAvail anifor .
Dist Special

8. SUPPLEMENTARY NOTES H

' -
13. XEY WORDS (Caulnuo. an reverse oide if necsssary and identity by block mumber)
Reliability Decreas ing Failure Rate
. Censored Sample - Maximum Likelihood Estimation
] . Mixed Exponential Burn-in

d
ARSTRACT (Conttnue en reverss side If neceseary and Identlly by block munbder)

Problems of maximum likelihood estimation, for shape and scale parameters from
certain decreasing hazard rate distributions which are typically mixed-exponen-
tial or work-hardened, are discussed. : Sufficient conditions on the mixing

’ distribution are given that guarantee regular behavior of the hazard rate; this
ensures, even with highly censored data, that the MLE's exist whenever the
sample .satisfies a certain condition quite likely in samples from DHR distribu-
tion; otherwise a constant hazard rate is assumed., Some computational methods
are discussed and applications made. :

[ DD 3™, 1473 eoitmon or 1novesis oascuz&\
148 T3 Unclassified

CLF-014- : :
$/N 0102 LF-014- 6601 L SECURITY CLASSIFICATION OF THIS PAGE (When Dura Rntered) '
J "/

.. . ' e \55




Maximum Likelihood Estimation for Two Parameter
Decreasing Failure Rate Distribution
Using Censored Data

by S. C. Saunders and J. M. Myhre
- TECHNICAL SUMMARY

Let A be the measure of the Tack of resistance to sh-ck for a component,
the 1ife of which, say XA’ will be exponential. If the variability of manu-

' facture determines the frequency of the different A-values, described by a
r.v., Y~ G, then T = XY is the life length of a component selected at random.

It will have a survival distribution

R(t) = E,P Xy > t|Y] = ‘j' e'Ath(A) for t > 0.
: 0

This is a mixed-exponential distribution with hazard Q = -1nR. If G is the

T'(a,B) distribution we find the hazard to be Q(t) = aln(l + tg), which is a
Pareto type II law, known from applications in economics.

In general if q = Q' is any mixed-exponential hazard rate then for t > 0
fome'*tde(x)
jr e Mag(x)

0

and all such hazard rates are known to be decreasing.

q(t)

Let 2 be a given class of decreasing hazard rate functions with the
following properties: q € 2 1is twice differentiable, standardized, i.e.,
q(0) = 1, and it and the induced functionsy and g, where

p(x) = xq(x) and z{x) =1 + xq'(x)/q(x)

satisfy
¥ 1s increasing,

2° q 1is log-convex,

3% ¢ has a limit at » and 0 < z(=) < 1,
alternatively, sometimes the strdnger condition is assumed, viz.,

3' ¢ 1is decreasing.

The unknown parameters of the life distribution under study are introduced
in a manner consistent with the gamma mixed exponential; viz.,

R(t) = e'aQ(tB)

where a #s the shape parameter and 8 the scale parameter, both pdsitive.
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Each element of this class 2 will generate a two parameter family,
which is a subset of the DFR distributions.

Are there any distributions with hazard rates which satisfy these
conditions? Yes, the exponential and the gamma-mixed-expcnential do. Are
there other DFR distributions which are not mixed-exponential which do?
Yes, the failure rate of the I'(v,1) distribution does, when 0 < v < 1
although it is not easy to show.

Are there any closure properties to this class? VYes, if q is a
decreasing standardized hazard rate satisfying 10, 29, 30 (or 3') then
qY for any 0 < y <1 (called an Afanasev generalization) does. Is

n closed under mixtures of distributions with hazard rates in 2 ?
Not always. If G is a distribution with support at only two points, the
G-mixed exponential will, if the probability of the higher failure rate
is not too large relative to the lower.

We now ask what are sufficient conditions on the mixing distribution so
that assumptions 1°, 29, and 3% will be satisfied.

Theorem 1: If the mixing distribution G is such that the function

K(x,y) = G(y/x) for x,y > 0

is totally positive of order 2, then 10 is satisfied, i.e., Vg
is increasing.

We now give some conditions that a mixed hazard rate be log-convex on
(0,=).

Theorem 2: If for a distribution G on (0,=) we define the convolution

G(Z) = G * G and the related function

S s
Gz(s) = jf (t - u)2 dG(t) dG{u) for s >0
u=0 t=0

then the failure rate of the G-mixed exponential distribution 1is
log-convex if and only if for every exponential ramdom variable Z

we have
E ZAG(Z) g_EZAG'(Z),

where

y
Agly) = f 5G,(y -s) dG(z)(S). (1)
0
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> | Corollary 1: If the mixing distribution G is such that the induced function
i Ags defined in (1) ' 1is concave increasing then

| 2ha(x) > xAg'(x)  for all x > 0
g and failure rate dg is 1og-convex and 2° is satisfied.

: Corollary 2: If the mixing distribution G has a density g = G' and the ratio
. x 98 (x)/g,(x)  for all x > 0

is monotone decreasing, where 95 and g(z) are the corresponding

§ derivatives of the functions defined in theorem 2, then the failure
‘ rate 9 is log-convex.

P ——
e

Remark: If G is aT(«,1)distribution then one verifies directly that

X 9(2)(X)7= 20 + 1

e = Cfor x >0
"2

which decreases.

. .,.
O P

We do not consider as reasonable (for our application) mixing distributions

which are of infinite order, such as G(x) = e for x >0, at the origin. We

admit for consideration only distributions which are either

— A L .

(i) discrete in some neighborhood of zero or

(ii) of finite order at the origin, viz., there exists
< > 0 such that x* G(x) +¢c > 0 as x + 0.
Theorem 3: For any G-mixed exponential distribution the induced function
% has the properties that cG(O) = 1, is initially decreasing, bounded
above by unity, and the limit cG(m) exists with

CG(N) 1, if G is of type (i) and

cG(m) = 0, if G is of type (ii), moreover
Zg > 0 if and only if bg is increasing. \
We now consider conditions on the mixing distribution which will insure
that 1 - ¢ is either monotone increasing or unimodal. Such behavior can
often be easily checked in specific instances, but we have a sufficient
condition in 4 . j

Theorem 4: If the associated function AG’ as determined from the mixing
distribution G in (1), is such that the kernel

- K(x,y) = AG(y/x) for x,y > 0
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Theorem 5: When the shape parameter o is presumed known and a sample vector t

is totally positive of order 2, then the function 1 - 4N

induced by the failure rate of the G-mixed exponential

distribution wi'l have at most one mode in [0,=].

It is assumed that we are given a sample vector t = (tl, cees by e, tn)
where tl’ cees tk are ordered observations of times of failure while
tk+1’ cees tn are the ordered observed alive-times (censored tives).

The two empirical distributions of the times of failure and of the
sample will be denoted by :

) =L oft, cyfori=1, ..,k

and similarly for Fn' We make the notational convention, to be used sub-

subsequently for any function g, that its transform by an empirical
distribution, is

500 = [ atetiar (1), 00 = [ alxt)eF ().
0 0

Thus the 1ikelihood can be written

Ll 8[t) = tna + g + dna(8) - 5 Te).

Pa~enthetically, for given B > 0 the 1ikelihood L(-|B, t) is concave on T
(0,=) and the MLE of o exists uniquely and can always be obtained from the
equation L'(a|B-t) = 0. This tranforms all observations to an exponential
with unknown failure rate a and so the MLE is given by

& = k/nQ(8). (2)

We examine the case for unknown 8 in

and q € 2 are given, there exists an MLE of 8, denoted by 8, and defined” .

implicitly as the smallest positive ront of the equation
T(x) - 3 ¥x) =0 (3)

only when ;
inf oo y) < SRR |
y>0 ;

A simpler situation exists in the following case.

Theorem 6: If q € 2 1is an Afanas'ev generalization of a G-mixed exponential,

when G is of type (i1) and 0 < y < 1, with & known then for a given sample
the MLE of 8 exists if and only if

- 1_Y<%n_<l. L




Corollary 3: Under the hypothesis of theorem 6, if CG is monotone then so is g,

the corresponding function for the Afanasev generalization,and the MLE of 8 j
exists. uniquely, i.e., there is at most only one solution to the equation (3). !

We now turn to the estimation problem when both o and B8 are unknown.

Theorem 7: For a given sample t, with q € D specified and «,8 both unknown.
a MLE of 8, say 8, exists as the smallest positive root of the equation

Z(x) - o(x) = for x > 0
where ¢ = 9/Q, if and‘only if the sample satisfies the inequality
2Tt <-t7. (4)

When 8 has been determined, the MLE of &, say is then given by an
analogue of equation (2), namely,

= k/n Q(8) .
Our computational procedure based on the censored sample t and the

assumption q €2 is as follows:

—

Algorithm:
2

(a) Compute the sample moments t, T, t°.

(b) If inequality (4) is not satisfied the observations are
from an exponential distribution with failure rate i and
thenestimate it by

Pe X
t

(¢) 1If inequality (4) is satisfied then use the sample functions
explicitly given by

n n ~ k
o(x) = x £ tiq(xt;)/ T Qxt;) zlx) =1+ % L [t;q'(xt;)/a(xt;)].
1 1 1
We guess BO’ then iterate using the inductive step; q

given B;» compute Q(Bi) and calculate Bisl such that

| U8,y = 008,
We find 8 = lim By and compute
n
& =k/ £ Q(t,B)." "
1
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The nature of the intersection guarantees that within the region when
% and g both decrease the iteration will rapidly converge, with a reasonable
first guess. When the functions q and Q are simple a small programmable
electronic calculator, such as the HP-67, can be used to obtain these estimates.

We now present some data sets from two different lots of flight control
electronic packages. Each package has recorded, in minutes, either a failure
time or an alive time, the latter is denoted by an affix +.

First Data Set

1, 8, 10, 59+, 72+, 76+, 113+, 117+, 124+, 145+, 149+, 153+, 182+, 320+.

Second Data Set

37, 53, 60+, 64+, 66+, 70+, 72+, 96+, 123+.

One checks that both data sets satisfy condition (4) so that both para-
meters can be estimated in a gamma-mixed-exponential model. Then using the
estimation techniques derived previously we obtain:

Date Set 1 Data Set 2
& = .0453,8 = 1.03 & = .420,8 = .01

A statistical test to determine whether the data require a constant or
decreasing failure rate was run on the data from sets 1 and 2. For data set
1 we reject constant failure rate (in favor of decreasing failure rate) at
the .10 level. Far data set2wecannot reject the constant failure rate assumption
at that level. In thiscase however, the constant failure rate estimates for
reliability and the mixed exponential estimates for reliability are close.
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0 Abstract

In this paper some of the problems of parametric estimation for
two important types of decreasing failure rate (DFR) distributions are

discussed. The first type of distribution represents the life of

mixed exponential populations; the second type of distribution
represents the life of mechanisms which 'work harden' as they age, ; '

i.e., old components are better than new.

A representation for the second type of distribution is g;Qen S0
that, when satisfied, certain functional properties of the failure rate
of mixed exponential distributions are guaranteed. Conditions are
then imposed on the mixing distributions that will insure that the

failure rate of each type of distribution satisfy these conditions.

Shape and scale parameters for any standardized DFR family of this
type are to be estimated from the type of data which is available in
practice, namely, severly censored samples with only a few faiiure
observed, all ;f which occur earl}.

Conditions are obtained that maximum (rather than minimum) l1ikelihood
estimates (MLE'S) exist; the condition is phrased in terms of censored
samples, namely if tl, e e tk are observed failure times, while
fk+1’ « <+, t forl<kc<n, are censored life observations from

this class of DFR distributions then the MLE's of shape and scale

parameters exist if the following inequality is satisfied:




2.0

"Practical methods for the computation of the MLE's are given.
Actual data obtained from testing of integrated circuit electronic
packages illustrate the applicability and utility of the techniques and

the results’ described.

Key Words

Reliability

Decreasing Failure Rate

Mixed Exponential

Censored Sample

Maximum Likelihood Estimaticn
Burn-in
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1. Introduction

Because of the demand for high reliability in electronic
manufacturing, increasingly,integrated circuit modules are being used.
As a consequence, modular testing now frequently encounters two
conditions: the first is, the life distribution seems to exhibit a
decreasing failure rate and the second is, samples are virtually always

censored.

Of course these events are not unrelated, the first implies the
r second. The expense of testing will, when coupled with a decreasing
percentage of failures over time in the surviving population, nearly

always result in life length observations being censored in practice.

Several censored life data, with a paucity of failures, does not

allow the usual statistical methods such as employing the Kaplan-Meier

(1958) estimate of the survival function and plotting the negative of
its logarithms to see if its concave or convex. In many engineering

applications the monotone behavior of the hazard rate function can be

N
3

}

b

!

F

deduced from the physical-chemical nature of failure. In such cases,
only parameters need be estimated. There is a lack of estimation pro- -
cedures which can utilize highly censored data and which avoid the

potential for bias inherent in Bayesian priors.

Y

In this paper the maximum likelihood estimates (MLE's) are obtained

.. - 4"—-

for both the shape and scale parameters of a class of two parameter
families of decreasing failure rate (DFR) distributions and-conditions
‘ are given for their existence along with practical methods of com~
putation. These estimates are derived for censored data, which contains

only a few failure observations, and a fortiori for complete samples.




The conditicns for The existence of the MIE's apply to the case
when the mean and variarce of the DFR distributicns do not exist., It

is thought important to have estimation procedures for such distributiors.

2. DECREASTNG FAILURE RATE MODELS

We now discuss the physical prccesses which determine the length
of life urder consideration. Firstly let us suppose the quality of
construction of a2 corperent determires the level of resistance to stress
whicn it can tolerate. Secondly, suppose the service envirorment provides
shocks of varying magnitude to the component ard failure takes place

when, for the first time, the stress from an envircrmentally Induce

0,

- shock exceeds the strength of the component.

If the time between shocks exceeding any specified magnitucde is
exponentiaily distributed, with a mean dependirg uron that magnitude,
then the life length of each compeornent will be expcenentially distributed
with a failure rate which is determined by the quality of assembly. It
follews that each component in service will have a constant failure rate
but that the variaticn in manufacturing and inspection procedures will
cause the pcopulaticn to exhibit a decreasing failure rate. Instances of
such natural mixing of exponential distributicns were first discussed by
Proschan (1963). Subsequently other distributions with decreasing failure
rates of practical interest were discussed by Cozzolino (1968). But
parametric families of mlzed exporential and DFR distributions have

received 1little attention compared with t%eir IFR counterparts.

Altermatively, let us consider structures subjected to dynamic stresses

of such a nature that the first stresses to which they are subjected, if rot

severe encugh to initiate failure, only caused localized yielding and

o o e g~ v e




deformation, thus effecting local stress relief and reinforcement. Such
behavior increases their ability to withstard future stresses and could be
thought of as "work hardening". In such cases older structures in service
actually have greater resistance to fatal shocks than younger ones; i.e.,

each component in service has a decreasing failure rate. (An.analcgous
behavior exists for increased strength or immunity in biolegical systems.)
This may be thought of as "the older the better" (at least for certain periéds
and purpcoses). Usually the failure mechanism, ard its interpretation in

these DFR cases, is quite different frcm that of a mixed exponential mecdel.

Let X\ be the measure of the lack of resistance to shock for a
ccmponent, the life of which, say XX’ will be exponential. If the vari-
ability of manufacture determines the frequency of the differsnt A-values,
wnich we describe by a r.v., say 4, with distribution G, then T=XA is the
life length 5f a component selected at rardom frcm those manufactured; it
will have a survival distribution R which can be written as the cenditional

expectation

o]

R(t) = E,P[X, > £|A] - f e tac(n) .
0

This is a mixed-exponential (swrvival) distribution. It is also a LaPlace
transform. '

One important mixed-exponential model is baséd on the gamma density:

If for some a, B8 > 0 we take the density

-1 e-X/B
G'(\) = ————— for A >0 (2.0)
r(x) 8%
then the hazard function Q = - gn R is

Q(t) = aln(l + tB) for t >0
.and the density f = Q'e'Q is given by

. 8 ]
f(r) = —2 — “for t > 0.
1+ )t




6 .
This two-parameter family seems to have been intrcduced in this country

| by Lomax (1954) who regarded it as a generalizaticn of the Pareto distritution.

It was called the Pareto Type IIL, and it has proved to be useful in busiress

T

analysis.

L o 2

| The estimaticn problems for this distribution have been treated in a
series of papers by Kulldorff and Varmman (1973) and Vinrman (1876) but

| ! without the physical interpretation made here,

Other investigators have made use of the gamma density, as we have, to
model variability among manufactured components, each cre of which hzs a
constant failure rate while in service, see the papers of Harris and

Singrurwalla (1968), (1963).

In certain instances, such as in medical studies of the etiology
of a disease,when the hazard rate is assumed to be either increasing or
decreasing a generalization of the Pareto law, exhibiting both types
of behavior depending upon its parameters, has been applied by David
and Feldstein (1979). They obtained the maximum likelihood estimates
implicitly for two of three parameters, neither one being a scale para-

meter, in the case of progressively censored data.

The question we address is how should one proceed when from
physical circumstances the hazard rate is known to be mixed but by an

unknown distribution?

We study the consequences of a general mixing distribution. Let q be

any mixed exponential hazard rate, then for any t > 0

fxe‘“dc(x)
alt) = % | (2.1

[ e*as)
0
where, without lcss of generality, the scale of X has been chosen so that

q is standarndized, 1i.e., q(o) = j'AdG(A)J= 1.
_ 0
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The unkncwn parameters of the life distribution under study are intro-
duced in a manner consistent with the gamma-mixed exponential; viz., iy

R(t) = e “QUE) (2.2)
where @ 1is the shape parameter and 8 the scale parameter, both positive.

We now introduce a medel for work-hardered DFR life distributicns, called

PRI

an Afanasev generalization, by postulating a hazard function (for unknown

a, 8 >0 but known Y with 0 < v < 1) of the form

t8 E

o f [a(x)1"dx
0
where q is defined as in (2.1) as a mixed-exponential.

It is clear that for Y < 1 we have a decreasing failure rate distributici
which is not mixed exponential. In practice the value of y is often determired
by the material properties of the component in service and is not estimated by

statistical techniques, see Weibull (1961).

Let us find the standardized hazard rate, say q,, for the Afanasev

generalization of the gamma mixture. We have

qu(t) = (1 + £)Y fort >0 (2.3)

from which we find the corresponding hazard function to be

1+l Y-1)/0-yy foro<y<

Q0. = (2-4)

In(1 + t) forY =1

For v = 1 this is equivalent with a Weibull distribution with a locaticn

parameter of minus one and a shape parameter of less than unity. In the

Soviet Union this model was introduced by Afanasev (1940) as a distribution

for fatigue life in metals.
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We now examine the distribution which results from the mixing of two

exponential distributions. It is presumed that owing to occasional laxity
in quality control there is a low probability p < 1/2 of passing a component
conéaining a defect which can cause a high fallure rate X\ > 1. But there is
a high probability of passing a component having the noeminal (low) failure
rate, which without lcss of generality we take to be unity.

The reliability of this Bernoulli-mixed exponential population is

—-AX

R(x) = pe + (1-p)e~® for x > O.

Whence, we find the standardized hazard to be, for x > 0

Q(x) = -2np + %%-- (1 + eV . 2.5)

One verifies easily that qB(O) = (pA + q)/u =1 with

Aii >0, p=p+r1). (2.6)

We shall write, respectively,

T ~ J'A(a,B;Y) or T~ JB(a,B:p,X)

whenever the staridardized hazard QA , 1s defined in (2.4) or QB as defined
in (2.5). Also without further mention we shall use the same subscript to

denote other functions associated with these cases.

It is possible to introduce an alternative parameterization to (2.2),

namely

- 5 Q (tB)
R(t) = e for t > 0; a,8 >0, (2.7)

where Q 1is a knovm cumulative hazard. The advantage of this form is

that with standardized q we see from L'Hospital's rule that 8 -+ 0 implies
R(t) » %%, Thus the limiting case is an exponentizl distribution. In
either formulation one sees that 8 measures the réte of depéé%ure from a

constant failure rate in terms of Q and hence determines the rate of

decrease in the failure rate with use. The disadvantage of (2.7) is that
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B 1s no longer a scale parameter and the likelihood equations are scrmewhat
more complicated. However, the transformation (a,8) - (a/8,8) is a 1-1

mapping of the positive quadrant into itself so that ary maximum likelinced
estimates for one parameterization could be immediately transformed < the

other.

3. A CLASS OF TWO PARAMETER FAMILIES CF DECREASING
o FATLURE RATE DISTRIBUTIOMS

We shall postulate a class D of concave hazard functicns which nas

special properties encompassing both mixed exponential and “work hardened"

life distributions.

Each element of this class will—generate a two parameter family, which
is a subset of the DFR distrivutions. Reliability will be of the form,

where @ € 0 is a given hazard function,

R(t) = e—aQ(tB) £t >.0; a8 >0,

Here q =Q' 1s a decreasing hazard rate which is twice differentiable,

standardized, i.e., q(0) = 1, and it and the induced functions ¢ ard ¥, where

Id

$ix)

xq(x) and z(x) =1 + xq'(x)/q(x) (3.1}
satisfy

1° y 1is increasing

2° q 1is log-convex

3° z has a limit at » and 0 < g(®) <1,
alternatively, sometimes the stronger condition is assumed, viz.,

3' g is decreasing.
The question arises, '"Where did such assumptions come from and what dis-

tributions, if any, satisfy them?" One sees immediately that if q decreases then

. qy decreases for any vy € (0,1) so that 9 is closed under fractional powers C




of the hazard rate. The Afanasev generalization of the Lomax distribution %

has hazard rate a, given by (2.3). Cne sees that q 1s decreasing
and anA is convex. Moreover, cne checks easily that WA is increasirg and

in this case
ZA(t) = [1 + (1~+)t]1/(14t) ) (3.2)

is decreasing with %y (») = 1-y. So in this archtypical exarple assumptions

1°, 2°, and 3’ are met.

In the Bermoulli mixture of the two exponentials we find frem (2.5)

2. _~vX
ag(x) = 2 - — 2, qu(x) = I (3.3)
(e-\lx+r) (e-Vx+r)2 i

ard since r > 1,

qg(x) = v3r-e-vx(r-e_vx)/(e_“x+r‘)3 > 0, : (3.4)
thus

2 -vx -
zB(x) =1 - Xrv e WL

(e 4r) (e7V%4r)

SO we see that ZB(w) =1 and that 3° is satisfied.

We next show that wB is an increasing function. To see this we note

that wé(x) 2 0 for all x > 0 if, after simplification,

xe VX + pPeVX > vlrux - r(1 + \), for ail x> 0.

v X

Let y = e then the inequality above becomes clearly true for 1 =y S

where ¢n Vg, = (1 +2)/C X\~ 1), Let y=y,t. for t > 1, then the inequality to

be proved becomes




But the right hand side 1s maximized at t = e, so it is sufficient to have
Yo 2 vw/re, which 1s implied by

A=
p L : (3.5) |

1+ (w1)e/ (1) A+ 1)

4

(The approximation is always less than the bound.)

We now must show that ¢ng is convex. To prove this it is sufficien.
to show that qsqg 2 (qé)2. But substitution and simplification frem (3.3)
and (3.4) into the equation above shows (we spare the reader these details)

that this irequality is true for all x > 0 iff r = VX , if and only if
-1 . . .
p<(+vd) (3.6) §

We claim that (3.5) and (3.6) would be virtually always true in practi
since if, for example, A should be as high as 10, then the probability of
passing such a bad ccmporent, with a failure rate ten times the ncminal
design rate, must not exceed .082. This would seem to be a reaéonable j
assumption, at least for firms that intend to remain in business. Furthermor
this demonstration shows that not all mixed exponential (and hence not all u

DFR) distributions satisfly our three assumptions and that there are DFR

distributions, which are not mixed exponential, which do.

Let us consider the failure rate g of the gamma distribution itself, G

assuming a shape parameter 0 < v < 1 and unit scale parameter. For x > 0,

the failure rate satisies the relation

1/9(%) = / (1 + %)v-le'tdt = X / (1 +y)"‘le'y dy
0 0 ‘
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From the first equality we see 1/q is increasing for any 0 < v < 1. From
the second we see [xq(x)]—'l is decreasing for this DFR distribution; thus
1° is satisfied. Again using the first equality in (3.7) we find that

Z(x) 1s non-negative, does not exceed unity and approaches one as x -+ = ,

Hence 3° is satisfied.

To check that 2° is satisfied also is more difficult; we examine
o
enq(x) = (v-1)fn x - x —Zn[%g tv'le'tdt].

It is thus sufficient to show that

(eng)"(x) =-15" + q'(x) =0 for all x> 0. ~  (3.8)
X

From (3.7) we have, after differentiation,

2]

e R e I T
2 2 X ‘
q°(x) X 0

Thus to prove (3.5) it is sufficient to show that 1 - v 2 x2q'(x),

which 1s the same as ‘
{_( (1+ %)v-l e'tdt] 2 > j:, (1+ ;)V-Z te” tdt.

Making the substitution y = t/x, then writing the squared term as the product

of two integrals, one in u and the other in v, the inequality becomes

4§ a -+ u)\)'1 e du ‘é'(l + v)\)'1 e'vxdvlijr 1+ y)V-2 ye Y Xdy.
0 .

Malding the change of variable u + v =y on the left, the inequality

becomes

'o[ {v (- u vy vu e e My > 'Of (1 + 9V ye Vg,
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Thus, it is sufficient to show that the integral on the left exceeds that
on the right, i.e.,
y

2qv-1
f[1+_u%] duil_%_y forall 0 <u<y<o,
0

which is clearly true .[[

Of course not all DFR distributions can be obtained by an exponential
mixture such as given in (2.0). For an exact description of the extreme
points of the class of DFR distributions, see Langberg et al [9]. Moreover,
only particular mixing distributions, thought to be of practical interest,
will concern us here, along with their corresponding Afanasev generalizations.

Thus we will examine only a subclass of the DFR distributions.

In a recent paper, McNolty, Doyle and Hansen (1980) have dealt with
the mixing problem by examining some mathematical methods for inverting a
general mixed-exponential reliability to obtain the mixing density. They
have also discussed some of the physical interpretations of the relationship

involved. We attack a related problem.

We now ask what are sufficient conditions on the mixing distribution so
that assumptions lo, 2° and 3° will be satisfied for any Afanasev general-
izations of mixed-exponential? In the following discussion we always omit

the limits of integration when they extend from 0 to =,

Theorem 1: If the mixing distribution G is such that the function
K(x,y) = G(y/x) for x,y >0 .

is totally positive of order 2, then 10 is satisfied, i;e., WG

is increasing.
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Proof: Making a change of variable in the definition we see

¢(t) = ‘ere-de(y/t) ///'/;_de(y/t).

Upon integrating numerator and dencminator by parts, we obtain

| f G(y/t)ye Yay
v(t) +1 = .

G(y/t)eYay

Let t, > t,, we must show w(tl) 2 W(tz). This is true iff

jG(y/tl)ye'ydy, fG(y/tl)e'de

jﬁ(y/tz)ye’ydy, ‘/E(y/tz)e‘ydy

By applying the basic composition formula of Karlin, see e.g., p. 100,

Barlow and Proschan (1975), to the right-hand side above, it becomes equal to

Gly,/t), GO/t | [ ye?h, el
f f ¥ y o dy1 dyz.
Glyy/t,), G(y,/ty) 2 2
4!

y,e '4, e
<y2

Clearly the second determinant 1s negative and that the first is negative,

by definition of TP-2, can be seen by setting X, = t2, X, = tl. ]]

The hypothesis of this theorem has a relation with Pelya-Frequency |

functions of order 2, if it were expressed as the difference of the logarithms

rather than as a ratio.
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As we have previously seen for a binomial mixture of exponentials, scme
restricticns were necessary, namely p < (1 + Vi)_l, to insure that &nq was

convex everywhere. We now give some conditions that a mixed failure rate

be log-convex on (0, =).

Theorem 2: If for a distribution G on (0,») we define the convolution

G(2)=G % G and the related function
A A
Gy(2) = f [ (t- )? da(t) de(u) for.s >0  (3.9)
u=0 t=0

then the failure rate of the G-mixed exponential distribution is

log-convex iff for every exponential random variable Z we have

-~ /
E 20,(2) 2 EZ4, (),
where

Y (2)
AG(y) =f 4 Gz(y-é) d g (s) . . (3.10)

0 .
Proof: Trom equation (2.1) we find for fixed t > O that

(u1u0)2(8nq)” Ky Mg (uou3-u1u2) - (uzuo-ui) (u2uo+u§)

where ® ’
s J( My G(\) for 1 = 0,1, ,
0

1}

Thus we may write

%%ﬂﬂzi/QJHmu)/QWMW)—fx%q%ﬂm-/Wﬁ%mw.

Setting, for notational simplicity,

d H(x,y) = e_(X+y)th(x)dG(y) ,

we find it can be written

= /f x2(x_y) d H(x,y) + f/ x2(x—y) d H(x,y).

x>y ) <y
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and by making an interchange of variables in the second integral, obtain

Bokz = By = jf (x+y)(x—y)2dH('x,y)-
=y

By a similar argument we obtain

o Ko = ﬁ (x)2 @H(xy).
=y

From arguments of symmetry we see that

ey = jf x dH(x,y) =ff y dH(x,y)
2 = 2 _ 2
i tey = (x"+xy) dH(x,y) = (v™+xy) dH(x,y).

Hence we see that for ¢ = 2(u1uo)2, with the obvious change of variable

c(eng)” =[[ (utv) dH(u,v) f[ Dy(x+y)(x—y)2 dH(J{,Y)
—ff (utv)? dH(u,v) jf (x—y)2 H(x,y).

Now let w = utv , and simplify ¢o find that
2¢(¢nq) = f ( [ (xy)° (xty-w) dH(x,7)] w e_tde(z)(w).
/0
The quantity in square brackets above can be written

(.. .]= [ lX—y)z(x+y—W)e't(x+y)dc(y)dG(x).
x=0 "y=0

and so

Letting x + y = 4 we obtaln, in the case the density G’=g exists,

. ..] =f [ (A—2y)2(4—w)e'ug(4—y) gly)dyds.
0

y=0
For this case we set

0
g,(8) = [ (s-2y)°g(s-y) gly) ay for >0,
0
5

and verify that G'2 =g In the general case the quantity becomes

.. 0= [ (A—w)e—tAdGz(A)
0
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Hence for some cl > 0 we have

e, (enq)” = f f w(s—w) eF(8¥) dG,(4) @ ), (3.11)
0 0
Assuming, only for notational convenience, that both g5 and g(Z) exist
we have
'cl(znq)” = f e-tx f (x=4)(2 8=%) gz(é) g(z)(x—é) ds dx.
0 0
Let us set
fla,x) = 4 gz(x-é) 8(2)(6) for 0 = 4 = x, (3.12)

then we can rewrite the quantity in braces above, after breaking the'integral_

into two parts and changing variables in the second, as

I S

x/2
...} =J[ (X—Zé)[f(é,x)—?(x—A,X)Jdé = 2AG(X) - xAé(x).
0

The second equality is obtained by integrating each term of the difference

by parts and simplifying the resulting expressions where

rr (2)
AG(y) = J[ J[ Ag2(x—4)g (8) dsdx.
0”0

By utlilizing the Liebniz rule for change of the order of integration
this can be seen to be equal to the expression for AG given in the hypothesis:

The proof of the theorem is completed upon noting that

cq(eng)~ =/ e'txtzAG(x)-xAé (x)]dx . ] (3.13)

0
We ncw give scme sufficient conditions that ¢rng is convex.
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Corcllary 1: If the mixing distribution G is such that the induced functicn

AG’ defined in (3.10) is concave increasing then

2AG(X) > xAé(x) for all x = 0

and the failure rate g is log-convex.

The proof is obvious since Aé is positive, decreasing.

Corollary 2: If the mixing distribution G has a density g = G’ and the ratio

&«

X g(g)(x)/gz(x) for x > 0
(2)

is monotone decreasing, where & and g are the corresponding
derivatives of the functions defined in theorem 2, then the failure

rate A is log-convex.

Proof': It is sufficient to note that
£(s,x) =z £{x-5,x) 0< s < x/2,

whers f was defined in (3,12). Thus we must show

3
bg(2)(/5) gz(x~4) 2,(x—5)g2(,5) g(g’(x—é) 0 <8< ¥/2,
which upon division is seen to be guaranteed by the monotone behavicr of the

ratio assumed in the hypothesis . []

Remurk: If G is a T'(a, 1) distribution then one verifies directly that

2
—5—55-3£§l - 2ot ] for x > 0
g5 (x) X
which decreases. . g
By Corollary 2 we are asswred that the gamma mixture of exponentials

will have a failure rate which is leg-convex: A fact which can be verified
directly from (1.4).
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We now examine the behavior of the induced function ¥ where Q ¢ Q.

We note that always, since g = 0 and ¥* 2 0, that |

3 14 »
¥ 151+ -X = 7z = v

zZ qQ q ~ !

Vv
(@]

If ¥ 1is a given function bounded between zero and one, differentiable at
zero with ¥(0) = 1 and £°(0) = 0, having a 1limit at = and for which the

ratio ¥-1 is increasing for t > 0 then by regarding the expressicn
t

(3.1.B) as a differential equation in the wnknown function q the solution

T
— !
q(t) = exp{-f l—i\ﬁ dx}  fort >0
0
defines a decreasing failure rate, which is log-convex, standardized and
for which t q(t) 1s increasing, i.e., it satisfies the assurptions
‘ lo, 2° and 3°. We note that Z{t) = 1=y + {1 + t)_l generates the
B~ Afanasev generalization of the gamma-mixed exporiential model. We now study
the behavior of the inducel! ¥ in the case of a general mived expenentizl,

in particular its asymptotic behavior as determined by the behavior of

the appropriate mixing distributicn G near O.

We do not consider as reascrable (for owr application) mixing

; distributicns which are of infinite order at the origin, such as

x—2

G(x) = e for x > 0. ‘"le admit for consideration only distributions which
{ are either

(1) discrete in some neighborhood of zero or

i e e

(11) of finite order at the origin, viz., there exists
¢ >0 such that xXG(x) - ¢c>0as x -0
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Theorem 3: For any G-mixed exponential distribution the induced function
g has the properties that zG(O) = 1, is initially decreasing, bounded

ébove by unity, and the limit gG(m) exists with

¥4(=) = 1, if G is of type (i) and
zG(m) = 0, if G is of type (ii), moreover

%5 2 0 iff ¢G is increasing.

Proof: Considering equation (2.1), we can write for any t > 0,

1 - K(t) - —tq((t) = tje'Xtd GZ(X) ] ' . (3.1 A
) -
: [yeacBm :

using the methods and notation of theorem 3.

Thus we see from (3.14) that ¥ (o) = 1, and since the right hand side
is positive,that 1 = %(t). We see ¥ initially decreases linearly with slope

g’ (o) since

x(0) = lim _%(x)-1

=q’ \
x+¥o X q’ (o).

Making use of classical Tauberian theorems on LaPlace transforms,

e.g., Widder (1946) p. 181, we obtain the limiting behavior of Zq at =,

The last claim follows from the identity £, = wé/qG - [

We now consider conditions on the mixing distribution which will Insure
that 1 - ¥ is either morotone increasing or unimodal. Such behavior can

often be easily checked in each specific instance but we have a sufficient

condition in




Theorem 4: If the associated function A., as determined from the mixing

G
distribution G in (3.10), is such that the kernel

K(x,y) = AG(y/x) for x,y > 0 J
is totally positive of order 2, then the function 1 - CG

induced by the failure rate of the G-mixed exponential

:
distribution will have at most one mode in [0, ]

= Proof: By taking the derivative of equation (3.14) and considering only

ﬁumerator we find, utilizing notation fraom the hypéthesis of theorem 2, that
—{x+
muml ¢4 ()] = f f [ty(ey) +y] & 363 ) a6 ().

By comparing the first term above with equation (3.11) and using the
representation in (3.13), as well as making a change of variable in the secord

term to obtain a convolution, we find after simplification

= [(5/—2)e'y Ag(y/t) dy.

We note the function (y-2)e™ for ¥y 0 changes sign exactly once,
and so by applying the variation dimihishing properties of Polya frequency
functions, see e.g., p. 93, Barlow and Proschan, we conclude that —Zé (t)

changes sign at most once. Therefore, 1 - ZG Possesses at most one mode. []

In any life length model one is interested in the distribution resulting
when independent components, from the same family, are connected in a series
system. From the concavity of the hazard Q €9 foll.ws the
Remark: If corponents with independent life lengths.Ta;JQ (ai,Bi) fori=1,...,n,
for some Q ¢ 9, are in series then the life of the system T will satisfy the
stochastic  inequality

T = min Tz JQ (Zai, ZaiBi/Zai)

with equality when Bi = B.
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¢ Another property one would ask of any model in which the faillure rate is

} initially decreasing is what improvement can be made by '"burning-in" a component
3

having such a 1ife? In practice it 1is often assumed that as a result of a burmn-in
period, surviving components are exponentially lived. In fact, burn-in tests are
often required in electronic component procurement with a statement of the

i ultimate failure rate so obtained. ¢

Of course, not all decreasing fallure rate distributions do become constant
after scme finite initial period, but that is an assumption which is often
' thought to be appropriate. This indicates the importance of the second model
introduced and of its utility in a determination of the economic value of the

stochastically extended life.

The residual life TT of a component with new life length T and a burn-in
of duration T > 0 1s the conditional life remaining after time v given that

it is alive then; i.e., T_ =[T—|T > <].

The residual life of any G-mixed exporential is again a mixed exponential
but with a different mixing distribution. The residual 1ife will have density

f{ly) = ce‘Tde(Y), where ¢ is the normalizing constant.

But is the class 2 closed under burn-in? A burn-1in of dwration 1 for a

' component with hazard Q ¢ 2 will yield a residual life Tr with hazard rate
q(t) =q (¢ +1) fort >0,

) Clearly q, is not standardized but one sees, after brief reflection, that WT
is increasing, 9. is log-convex, KT approaches a limit in [0,1], if ¥ does,

and lastly, £, 1is decreasing 1if ¥ 1s. Thus the answer is affirmative, except

) for standardization.

It 1s easily seen that T 1s stochastically larger than T for all < >0

but usually the burn-in time T is increased until any incremental decrease in the
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residual failure rate is not worth the incremental cost of testing. This point
will necessarily be somewhat different for each particular Q. : ]
Remark: A burn-in of 7 units of time on a component with a new life T ~ JA(c,B) 1

will yield a residual 1life

T~ T la(l + )Y, 8/(1 + 18)].
IrT~ JB(a,B:p,R) then a burm-in length ¢ will only alter the proportion of high
failure rates, viz.,

T, " Jg(e,8:0%,%)

where the altered proportion is given

p* = pe'XTB /(pe~ TR +(l—p)e-TB).

4, ESTIMATION OF PARAMETERS USING INCOMPLETE SAMPLES

The samples, that are obtained when components having a DFR life
distribution are tested, are virtually always incomplete 1n the sense that
testing is stoppe& before all components have failed. A datum on a component
that "faillure has not yet occurred after a specified life" is called in practice

an alive time or a run-out. Samples containing such observations are said to

be cersored. Samples in which life tests are truncated at some preassigned ordered
observation occur infrequently, in our experience, when electronic components are

tested.

It 1s assumed throughout this section that we are given a sample vector
t = (tl, ceey tk, eees tn) where tl, cees tk are ordered observations of times

of failure while tk+l’ o o ey tn are the ordered observed alive-times, with




1 =k =n. All cbservations are presumed to have been chtalned by testing

components having a JQ(G,B) distribution with unknown parameters a and B, but

with Q € 9 and y specified.

We now introduce notation for the two empirical distributions (call them

Fk ard Fn) of the times of fallure and of the sample, respectively. We set

1
Fk(y) ol {# of ti syfori=1,. .., k}

and similarly for Fn’ and we make the notational convention, to be used
subsequently for any function g, that its transform, according to the empirical

distribution, is denoted by the proper affix,

E(X)=/Og(xt)an(t), §(X)=f g(xt)dF, (t).
0

Some results will now be given on maximum likelihood estimation of the
unknown shape and scale parameters in the case of censored samples with

Qe o and y € (0,1] specified.
The sample vector
E=(tl!' . ':.tk: . . -tn) for 1< k= n

corresponds to the observed events

[Ti = tﬂ fori=1, ..., k and [Ti > ti] fori=k+1, .. ., n.

By definition the lop-likelihood, after substituting from (2.1), is given by

k

n
k ¢n{aB) + z n q(tiB) -a Z O.(tie ).
i=1 i=1

Dividing by the ccnstant Kk, we write “e resulting function of the parareters

a,8, glven the vector t, as
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L(a, B|t) = tna + n8 + fnq(s) - —%?— as), (4.1)
where we have made use of the notational convention introduced earlier.

Parenthetically, for given B > 0 the likelihood L(-IB, g) is concave i
on (0, =) and the MLE of « exists uniquely and can always be obtained from

the equation L’(e¢|B8.t) = 0,

We thus have

e, S § i

Remark: When the scale parameter 8 > 0 1is given, there exists a unique

MLE of a, say é, given explicitly by

& =%x/mnq (). - (4.2)

This result is well known. If g is known and Q given, concave or not,

then the values y; = Q(tiB) for i=1, . . ., n can be calculated. They are the

alive and dead times from an exponential distribution with unknown failure rate

a. The total life statistic divided by the number of failure yields the usual

it

maximum likelihood estimate of the mean life.

It *s also true that not any set of n positive numbers (tl, . e ey tn)
with 1 =k = n designated as failure times and the remainder as alive times can be
used. to estimate uniquely both the unknown parameters for any Q.e 5. In some sense

the sample must be close to what would be likely from such a hazard function.

We examine the case for unknown B8 in

Theorem 5: When the shape parameter a is presumed known and a sample vector
t= (tl, e ey tk’ tk+1’ R tn) and Q € Qare given, there exists an MLE
of B, denoted by é, and defined implicitly as the smallest positive root

of the equation

£ (x) - F(x) =0 (4.3)




only when

inf @iy < {—\n— <1 (4.4)
y>0

Remark: The condition (4.4) is determined principally by the behavior of %,
since V¥ is always increasing by assumption 20, mapping (0, =) into (0,= ).
For example,% may be monotone decreasing, as 1s KA with zA(w) = 1-y, while
ZB only decreases 1lnitially but 1s concave-increasing, ultimately, with

zB(a) = 1.

Proof of theorem 6: From (4.1) we see the likelihood L(8la , t) can be written,

neglecting constarts not depending upon B, as

L(ala, £) = onv(p) - & (@)

If we define A(B) = L’(8la, t), we see we must determine the roots of

AGx) = E(x) - =2 ¥ (%)

which confirms equation (4.3) as the appropriate one. To check the necessary
condition we see the likelihood increases initially as x increases since

AC0) = 2(0) = 1. But ¥ is always increasing, while ¥ is only initially

decreasing, since

1im  £7(0) = %°(0) £ < O.
x40

But, by assumption 30, the 1imit ¥ (») is in the unit interval. Thus for a

solution to the equation N

4 [(J)_l(y)] = -EE fory> 0

to exist, the range of the composed function must contain the value an/k, as

stated in the hypothesis. []




We see that the second smallest positive root of equation (4.2), ifr it
exists, will be a minimum likelihood estimate of 8. This situation can occur
frequently. If there are either more than one local maxima to L(8|a, t), i.e.,
three or more roots to (4.2), or there is no maximum in (0,=), then this would
indicate that the presupposed choice of g and/or of Q ¢ 2 shculd be reexarmined.
That is to say, elther the initial failure rate a 1s not of the right magnitude
to reflect the nurber of first failures observed or the induced function ¥ does

not decrease monotonely over a sufficiently long interval,

A simpler situation exists in the follcwing case.

Theorem 6: If Q¢ 9 1s an Afanas'sv generaliztion of a G-mixed exporential,
when G is of type (ii) and 0 < v < 1, with a known then for a given sample
the MLE of 8 exists iff

1-vy< al?<l.

Proof: We note by theorem 3, since G is of type (i1), that the range of {G’
the induced functicn for the G-mixed exponential, is [0,1]. Letting q = (qG)v
we find % = 1-y + Yzc' so that the range of % is [1-v, 1]. We find from

equation (2.1) that

v(x) = e _fG(y/x)d(ye'y)
/rEEy/x)d(e'y)

so that 1im y(x) = = , thus by equation (4.U) the result follows. []

X

-

Corollary 3: Under the hypothesis of theorem 7, If KG is monctone then so is ~

and the MLL of B exists uniquely, i.e., there is at most only one solution

to the equation (4.3).
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We now turn to the estimation problem when both @ and 8 are unknown.
Theorem 7: For a given sample t, with Q ¢ D specified and a,8 both unknown, a

MLE of B, say £, exists as the smallest positive root of the equation

Z(x) - ¢(x) = 0 for x > 0

where ¢ = ¥/Q , iff the sample satisfies the inequality

2T T < t° (4.5)

When 8 has been determined, the MLE of a, say 1is then given by an
analogue of equation (4.2), namely,

a = k/n O). (5.6)

Proof of thecrem 7: Consider the likelihood functicn L(a,B8lt), as given in

(4,1), defined over the positive quadrant. All the stationary points, which are

r
determined by t, can be found from the simultanecus sclution of %i =0, g%-= 0.

This yields the two equations in a and 8

v = gy, L= Fa
K (B) k \V(B), a k “,(L)-
Combining these into a single equation in the uninown 8, we are led to seek 2 as
a zero of the difference Ekx) - #(x) for x > 0 where ¢ = v/Q . If we maximize the

likelinood with respect to a for any value of 8 by substituting a = k/nC(8) into
(4.1) and obtain L(k/nQ(8),3] t), then reglect constants independent of 3, we obtaln

a function, call it B, which can be written, ncw using argument Xx, instead of 3, as




B(x) = 2nq(x) - &n[q(x)/x].

Interchanging the order of integration in Q(x)/x we obtain

Qx)/x = _ff:q(tx) d&lln(t) 2T . q(x)

where wn is the distribution, with density given by

WH(t) = 0 -Fn(t)]/f for t > 0.

Again neglecting constants, we have

'? “B(x) Jﬂm ang(tx) dFk(t) - lnf[ q(tx) dwn(t)]
0 . 0

L
v = 2nq(x) - &ng*(x) . (4.7)
Using a Maclaurin expansion of q we see
B(x) = x q'(0) [ - t*] +0(x%) as x - 0,

where

t =[t dFk(t) and t*=f t dNn(t) = t2/2_t_ .

Because q“(0) < 0, it follows that B is positive in a neighborhcod of zero

1]

iff T < t¥. Since B(0) = B(=) = 0, we must have B’(x) = 0 for some x > O.

Mcrecver, one verifies that xB’ = 2 - % and so the MLE can be found as the

* X

smallest pcsitive root of this difference. (The seccend smallest root, if it exists,
will be a minimum likelihood estirate.) Having determired 8 one uses the partial

“ derivative equated to zero to obtain a. []

We now discuss the situaticn when the sarple falls to satisfy the conditicn

T < t2, and MLE's do not exist uniquely. This means that the model, i.e., the

cholce of Q, may not te apercrrizte and elther a constant failuwre rate model or a
convex fallure rate model (one that {3 initially decrsasing and ultimately increasing)

may be indicated rather chan a TFF model with 2 ¢ 9. o

-
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5. THE COMFUTATION OF 8 FOR CENSORED SAMPLES

As a matter of practical calculation we are concerned with the smallest
root of the difference 2 - &, in the case when ¥ 1is monotone decreasing.
Equivalently, let us consider the composite function f(x) 52 -l[é(x)] in a
nelghborhood of zero with the location of the smallest crossing, if there is

more than one, of the 45° line.

An alternative expression for ¢ is & = xé/ﬁ; with é' a convex function
decreasing between t and £ - q(«), while the smoothed é', viz,, §7x, decreases
between the same limits at>a slower rate. It follows that Q/x = 6 > 0 so that
0 = & =1. Then % begins at unity, Initially decreases at a decelerating rate

and tends ultimately to Z(=). To see this note

’ ’ 1-v \Y
o(=) = 1im ¥ /q = h‘m_ft (xt) q(tx)c(tx)an(t)

A R COMICHEIRC

=g (=)

since by Widder loc. cit. there exists av ¢[Q1] such that x’q(x) ~a # 0, as X — =.

The ccmposite function £ = Z‘l ® behaves in a neighborhood of zero as a

contractive map, being initially greater than x, then crossing at 8 and then
being below x for a range, perhaps, thereafter.
Thus we kncw that successive iterates
Biyp = f(Bi) for 1 = 0,1,2 .
o

will converge to B8 > 0 as long as BO < B7, the next larger zero of

% -$, 1f cne exists. Otherwise the iteration will converge to zero.

Moreover for the special cases in (3.2) the inverse Zhl can be easily found.

e S nnii aEam iy B ab o
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Our computational procedure tased on the sample 1is as follows:
Algorithm: Given tl, ey tk as failure times and tk+l’ <o s By
censored live times from a DFR distribution, proceed as follows:

(i) Compute the sample moments ¢t, t, t2 .

—

(ii) If t° < 2t - t, assume the observations are from an exponential

distribution with failure rate ) and estimate it by
1= K
nt

(iii) If t2 > 2T t, assume the observations are from a DFR
distribution, with prescribed Q e 2

Using the sample functions explicitly given by

n n N k
o(x) = x % t.alxt;)/ ? Qlxt;)  z(x) = 1+§ %[tiQ'(xti)/q(xti)],

we guess BO , then iterate using the inductive step;
given B;» compute ¢(Bi) and calculate Bi 41 such
that

z(By,q) = @(8,).

i+l
we find B=1lim B;» and compute

3=k IQtd).
1

The nature of the intersection guarantees that within the region when
$ and E both decrease the iteration will rapidly converge, with a rea-
sonable first guess. When the functions q and Q are simple a small pro-

grammable electronic calculator, such as the HP-67, can be used to obtain

these estimates.
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We now present some data sets from two different lots of flight control
electronic packages. Each package has recorded, in minutes, either a failure
time or an alive time. An alive time is the time the life test was terminated
with the package still functioning and is denoted by an affix +.

First Data Set

1, 8, 10, 59+, 72+, 76+, 113+, 117+, 124+, 145+, 149+, 153+, 182+, 320+.

Second Data Set

37, 53, 60+, 64+, 66+, 70+, 72+, 96+, 123+,

One checks that both data sets satisfy condition (4.5) so that both
parameters can be estimated in a gamma mixed-exponential model. Then using
the estimation techniques derived previously in this paper we have the
following estimates:

Data Set 1 Data Set 2
& = .0453,8 = 1.03 &= .420,8 = .01

A statistical test-to determine whether the data require a constant or
decreasing failure rate was run on the data from sets 1 and 2. For data set
1 we reject constant failure rate (in favor of decreasing failure rate) at

the .10 level. For data set we cannot reject the constant failure rate

assumption. In this case, however, the constant failure rate estimates for

reliability and the mixed exponential estimates for reliability are close.




7. Conclusion

We are primarily concerned with the prob}em of estimating the hazard
rate of a component, such as an integrated circuit, assuming that it has
either a constant hazard rate.or a decreasing hazard rate of specified
functional form with shape and scale parameters unknown. The influence of
the data is different in this case than in the more usual case of hazard
rate known to be increasing.

If a component has a life distribution with an increasing failure rate,

the information necessary to estimate its parameteré must contain failure
times. In practice this means that if there are few observed failures, within
a fleet of orperational components, there is little informztion with which to
assess their reliability. If a component has a cdnstant failure rate then
both failure times and alive times contribute equally to the estimation of its

reliability. This study suggests that if a component has a life distribution

with decreasing failure rate it is the alive times within the data which con-
tribute principally to the estimation of the parameters (and thereby to the
determination of the reliability) since only one failure observation is required
even to estimate two parameters, presuming the data is ample. |

Note that for a sample of size two, both of which are failure observations,
the inequality (4.5) cannot be satisfied since tlt2 > 0 implies that
Z(E)Z > (tl2 + tzz)/Z; but if t is a failure while t, is an alive time,
for which (1 + /7)tl < t,, then the inequality is true.

To illustrate the typical behavior of the likelihood B, as given in

equation (4.7), let us assume that the sample distributions F, and wh as

k

. . . . - a ~ * 3 -
defined previously satisfy Fk > wn; this implies t > t . (Strictly speaking
this condition cannot ever be met since even if the failure times are

stochastically smaller than the sample containing failure and alive times .




-7

together, i.e. Fk Z_Fn, still we would have 0 = Fk < Wh on (0,t But

l)'
~ *
since Fk S_Wh on (tl,m) we would have t < t if and only if

- - 1/2
/ W () - F(0)] de>¢° [1-1/22m7T) .
o1
Because ty is very small in practice this is virtually always true.)

From this assumption would follow q > q* and since &n is concave, that

fn q* > (2n q)*. Hence from (4.7) one sees that

~ ~—
fnq-2ng<B<ing - (An q)*.

Now one notices that the lower bound is alwasy negative while the upper bound
is always positive. But near theorigin B is approximately equal to the upper
bound while for large values of its argument B is approximately equal to the
lower bound and for intermediate values B makes a transition between.

Thus for any sample in which the failure times are stochastically
smaller than the combined sample times and for which 2t t < ;7 we find a
maximum likelihood estiéate of B as the smallest positive root and a minimum
likelihood estimate of B as the second smallest root. In the case
Tt ;?; which could occur with complete failure data, we would have a
minimum likelihood estimate as the smallest positive root and a maximum
likelihood estimate at g ; 0. The frequéncy with which this occurred under

various mixtures was studied by Sunjata (1974). Maxima occurring at such

boundaries were also observed by Davis and Feldstein (1979) in their study. Of

course by arbitrarily grouping failures several local extrema of B can be con-
structed. This is regarded as being of little practical significance.

The usual justification for using maximum likelihood estimates is due to
their asymptotically optimal properties, and to their asymptotic normality.
The problem of obtaining the usual sampling distributions of the MLE's of the

parameters obtained for these DFR models seems to be difficult, not only

e

popyoy:
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because the estimates are only implicitly defined, but also because samples
are virtually always censored. Furthermore, the usual proofs for the
asymptotic optimality of the MLE's may not apply when censoring is of a
general type and when only sparse failure data are available. A useful

asymptotic theory must be developed for censored data sets of which the

life of electronic pacages of integrated circuits are an illustration.
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