(N4I)-VISE AND JOINT INDEPENDENCE AND NORMALITY OF RANDOM \(\mu \)

SEP 80 V. J. BUEKLER, K. J. NIESCHE
ON \((n-1)\)-WISE AND JOINT INDEPENDENCE AND NORMALITY OF \(n\) RANDOM VARIABLES: AN EXAMPLE.

by

Wolfgang J. Buhler and Klaus J. Miescke
Mainz University

Department of Statistics
Division of Mathematical Sciences
Mimeograph Series 80-27
September 1980

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION UNLIMITED

This research was supported by the Office of Naval Research under Contract N00014-75-C-0455 at Purdue University. Reproduction in whole or in part is permitted for any purpose of the United States Government.
ON (n-1)-WISE AND JOINT INDEPENDENCE AND NORMALITY OF n RANDOM VARIABLES: AN EXAMPLE

Wolfgang J. Bühler and Klaus J. Miescke
Mainz University

ABSTRACT

An example is given of a vector of n random variables such that any (n-1)-dimensional subvector consists of n-1 independent standard normal variables. The whole vector however is neither independent nor normal.

1. INTRODUCTION

When discussing stochastic independence in a course on probability theory, it is customary to give an example of three identically distributed random variables X, Y and Z which are pairwise independent but not mutually independent. As Driscoll (1978) has pointed out, the standard examples (Feller (1957); Gnedenko (1963); DeGroot (1975); Hogg and Craig (1970)) can be reduced to consideration of a random triple (X, Y, Z) which takes the values (0,0,0), (0,1,1), (1,0,1) and (1,1,0) each with probability one-fourth.

Driscoll gave a more interesting example: \(\tilde{X}, \tilde{Y} \) independent each with the rectangular distribution on the unit interval and
\[Z = X + \tilde{Y} \mod 1. \] This example also yielded a characterization of the rectangular distribution.

Our example shares with Driscoll's the fact of being more interesting than the standard ones and at the same time illustrates a point concerning the multi-dimensional normal distribution.

It is well known that the whole distribution of an n-dimensional normal vector \((X_1, X_2, \ldots, X_n)\) is determined if the distribution of each pair \((X_i, X_j)\) is known. In a different context one of the authors (KJM) raised the question whether \((X_1, X_2, \ldots, X_n)\) is necessarily normal if all the pairs \((X_i, X_j)\) are two-dimensional normal vectors. The following example shows that even joint normality of all \((n-1)\)-tuples does not suffice.

2. THE EXAMPLE

Let \(n \geq 3 \) and let \((Y_1, Y_2, \ldots, Y_n)\) be a random vector of signs, i.e. with components +1 or -1 such that any particular sign vector \((y_1, y_2, \ldots, y_n)\) is taken with probability \(a \) if \(\prod_{i=1}^{n} y_i = +1 \) and with probability \(b = 2^{-(n-1)} - a \) if \(\prod_{i=1}^{n} y_i = -1 \). Here \(0 \leq a \leq 2^{-(n-1)} \).

Proposition: The random variables \(Y_1, Y_2, \ldots, Y_n \) are \((n-1)\)-wise independent. If \(a \neq 2^{-n} \) they are not mutually independent.

Proof: Let \(1 \leq k \leq n-1 \). Any vector \((y_{i_1}, y_{i_2}, \ldots, y_{i_k})\) can then be extended in \(2^{n-k-1} \) ways to a vector \((y_1, y_2, \ldots, y_n)\) with \(\prod_{i=1}^{n} y_i = +1 \) and in as many ways to one for which the product of its components is -1. Thus \(P(Y_{i_1} = y_{i_1}, Y_{i_2} = y_{i_2}, \ldots, Y_{i_k} = y_{i_k}) = 2^{n-k-1} a + 2^{n-k-1} b = 2^{-k} \) for all \(k \leq n-1 \). This is the \((n-1)\)-wise independence. However the relation \(P(Y_1 = +1, Y_2 = +1, \ldots, Y_n = +1) = a \) contradicts the total independence unless \(a = 2^{-n} \).

Now let \(Z_1, Z_2, \ldots, Z_n \) be standard normal variables mutually independent and independent of the random vector \((Y_1, Y_2, \ldots, Y_n)\)
and define \(X_i = Y_i |Z_i|, i = 1, \ldots, n \). Then clearly the \(X_i \) are again standard normal. Also the independence of the \(Z_i \) together with the proposition imply that \(X_1, X_2, \ldots, X_n \) are \((n-1)\)-wise independent. Thus any \((n-1)\)-tuple out of \(X_1, X_2, \ldots, X_n \) is also \((n-1)\)-dimensional normal. However \(P(X_1 > 0, X_2 > 0, \ldots, X_n > 0) = P(Y_1 = Y_2 = \ldots = Y_n = +1) = a \) which, if \(a \neq 2^{-n} \), contradicts the mutual independence of \(X_1, X_2, \ldots, X_n \) and thus also their joint normality, where mutual independence would be equivalent to all covariances being zero.

3. REMARKS

The example does in no way characterize the normal distribution. In fact we can replace the normal distribution of the \(Z_i \) by any other distribution symmetric around zero to obtain a similar example where all subvectors of \((Z_1, \ldots, Z_n) \) except \((Z_1, \ldots, Z_n) \) itself consist of mutually independent identically distributed random variables. With \(n = 3 \) and \(a = 0 \) the vector \(2^{-1} (Y_1 + 1, Y_2 + 1, Y_3 + 1) \) is the random triple \((X, Y, Z)\) mentioned in the introduction.

ACKNOWLEDGEMENT

This research was partly supported by the Office of Naval Research Contract N00014-75-C-0455 at Purdue University.

BIBLIOGRAPHY

ON \((n-1)\)-WISE AND JOINT INDEPENDENCE AND NORMALITY OF \(n\) RANDOM VARIABLES: AN EXAMPLE

Wolfgang J. Bühler and Klaus J. Miescke

Purdue University
Department of Statistics
West Lafayette, IN 47907

Office of Naval Research
Washington, DC

An example is given of a vector of \(n\) random variables such that any \((n-1)\)-dimensional subvector consists of \(n-1\) independent standard normal variables. The whole vector however is neither independent nor normal.
MULTIPLE DECISION THEORY: ORDER STATISTICS AND RELATED PROBLEMS

DI - 069700 MATHEMATICS AND STATISTICS
117000 OPERATIONS RESEARCH

21E - MILITARY/CIVILIAN APPLICATIONS: CIVILIAN

2 - DATE OF SUMMARY: 06 JAN 81

10A1 - PRIMARY PROGRAM ELEMENT: 61153N

10A2 - PRIMARY PROJECT NUMBER: RR01405

10A2A - PRIMARY PROJECT AGENCY AND PROGRAM: RR01405

10A3 - PRIMARY TASK AREA: RR0140501

10A4 - WORK UNIT NUMBER: NR-042-243

17A1 - CONTRACT/GRANT EFFECTIVE DATE: JUL 75

17A2 - CONTRACT/GRANT EXPIRATION DATE: JAN 84

17B - CONTRACT/GRANT NUMBER: NO0014-75-C-0055

17C - CONTRACT TYPE: COST TYPE

17D2 - CONTRACT/GRANT AMOUNT: $ 53,185

17E - KIND OF AWARD: EXT

17F - CONTRACT/GRANT CUMULATIVE DOLLAR TOTAL: $ 357,193

19A - DOD ORGANIZATION: OFFICE OF NAVAL RESEARCH (436)

19B - DOD ORG. ADDRESS: ARLINGTON, VA. 22217

19C - RESPONSIBLE INDIVIDUAL: WEGMAN, E J

19D - RESPONSIBLE INDIVIDUAL PHONE: 202-596-4315

19U - DOD ORGANIZATION LOCATION CODE: 5118

19V - DOD ORGANIZATION ORG CODE: 35932

19T - DOD ORGANIZATION CODE: 265250

20A - PERFORMING ORGANIZATION: PURDUE UNIVERSITY DEPT OF STATISTICS

20B - PERFORMING ORG. ADDRESS: LAFAYETTE, IN 47907

20C - PRINCIPAL INVESTIGATOR: GUPTA, S S

20D - PRINCIPAL INVESTIGATOR PHONE: 317-494-8622

20U - PERFORMING ORGANIZATION LOCATION CODE: 1802

20N - PERFORM. ORGANIZATION TYPE CODE: 0

20S - PERFORMING ORG. SORT CODE: 39418

20T - PERFORMING ORGANIZATION CODE: 291730

22 - KEYWORDS: (U) MULTIPLE DECISION THEOREY: ORDER STATISTICS AND RELATED PROBLEMS

RANKING AND SELECTION

37 - DESCRIPTORS: (U) DECISION MAKING

DISTRIBUTION THEORY

GOVERNMENT PROCUREMENT

LOGISTICS

OPERATIONS RESEARCH

PROBABILITY

QUALITY CONTROL

RELIABILITY

SAMPLING

STANDARDS

STATISTICAL ANALYSIS

APPROVED FOR PUBLIC RELEASE
DISTRIBUTION: UNCLASSIFIED