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1. INTRODUCTION. The estimation of a regression function

which 1s defined on an interval of the real line and is
nondecreasing (nonincreasing) but is not assumed to be of
a particular functional form has been considered in the
literature. Typlcally, an estimate is chosen which minimizes
a particular objective function subject to the appropriate
montonicity constraints. Brunk (1958, 1970) considered the
weighted least squares (22) estimate and, in the later
reference, demonstrated 1ts consistency and obtained its
asymptotic distribution. The large sample distribution results
have been extended by Leurgans (1979) and Wright (1981). Rates
of convergence for this estimator have been studied by Makowski
(1973) and Hanson, Pledger and Wright (1973).

The least absolute deviations (21) estimate was intro-
duced by Robertson and Waltman (1968). Cryer, et al. (1972)
also conslidered this estimator, showling its consistency, studyiﬂg
1ts rate of convergence and comparing 1t to the £2 estimator
by Monte Carlo technigues. Casady and Cryer (1976) have shown
that based on r observations, the almost sure rate of convergence

1/4

for the El estimator is of order no larger than r , assuming
the underlying regression function satisfies a first order
Lipschitz condition. (Thils is the same rate obtained by
Makowski (1973) for the 22 estimator.) 1In thils paper, the
asymptotlic distribution of the £1 estimator is obtained and
assuming the regression function has a positive slope at a point,
the rate of convergence at that point is seen to be of order

r-l/3. The techniques presented here also apply to the weighted
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continuous, bounded and bounded away from zero. As was

estimate provided the welghting function is positive, ,

seen in the least squares case (cf. Wright (1981)), such

welghts do not affect the limiting distribution and so we

only consider the case of equal weights. (For a description

of the weighted estimate see Robertson and Wright (1975).)

D ¢

Leurgans (1979) has obtalned the asymptotic distribution

of another estimator which might be appropriate 1f the errors

B6

i £

have heavier tails than the normal distribution. The estimate
she has considered is defined to be the slope of the greatest

convex minorant of a process determined by smoothly weighted

ol T J
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linear combinations of order statistics. For Leurgans'
estimator, the Zl estimator and the £2 estimator the order of

! the rate of convergence 1s the same and so the large sample

i; relative efficiencies are determined by the multiplicative

»1 constants. These comparisons are not discussed here since they
are the same as those for the ordinary one sample location

problem.
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2. ASYMPTOTIC DISTRIBUTION OF THE Ll ESTIMATOR. Let p € (0,1)

and for each x € I, an interval of real numbers, let D(x) be
a probability distribution with pth quantile 6(x). For each

positive integer r, 1let Xy < Xno < ... < Xnp be points in I

Y

and let Y ,Yrr be independent random varlables with

rl* pr2*"*"

Yrk distributed as D(xrk)' The xrk are observation points and

the Yrk are observations. (For the results given here the
number of distinct observations must grow at least like some
positive constant times r. If the number of dlistinct observation
points is bounded, the work of Robertson and Waltman (1968)

gives the asymptotic distribution.) The estimator proposed

by Robertson and Waltman 1is defined at the observation points

and any monotone extenslon to I might be appropriate. One

such estimator 1s gilven by

(1) 8 (x) = max min Q ([x__,x_,1)
r xrsix x_<_xr,t r rs’rt

where Qr(A) is the pth sample quantile, that is the [rp]lth order
statlstlic, of the sample comprised of theose Yrk for which

X € A. This cholice of er is constant on (xrj-l’xrj) for

rk
J=2,...,r, however, examining the proofs we see that the
large sample results given here are valld for any nondecreasing
estimator which colncides with er at the observation points.

If p = 1/2 the monotone 21 estimator is obtained.
The result that follows gives the asymptotic distribution

of er(xo) with x. in the interior of I. As 1n the £2 case,

0
the rate of convergence of the estimator, er(xo), depends on
the rate of growth of the regression function at Xge We assume

that for some a and 8, both positive,
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(2) le(x) - e(xo)l = glx - xola(l +0(1)) as x + x4.

(Some implications of this assumption are discussed in

Wright (1981).) Since the observation points may be the

realization of a sequence of random variables each of which
has support in I, we state the conditlions on them 1n terms of
thelir empirical distribution function,

F.(x) = card{k: x, < x}/r.
We assume that there 1s a distribution function F, which is
continuously differentiable in a neighborhood of Xq with
F'(xo) > 0, for which

(3) supxlFr(x) - F(x)| = o(r'l/(2“+1)).

To apply the usual techniques for sample quantiles we make

the following uniformity assumption:
(1) sup{IP{Yrk-e(xrk)ix}-p-nxl: 1<k<r, r=1,2,...,|x|<p}=0(p) as p+0.

Of course, (4) 1s satisfied if the Yrk - e(xrk) have a common

distribution function G, with pth quantile 0 and G'(0) = n.
THEOREM. Suppose that 6 1is nondecreasing and satisfies (2);

that the observation points satisfy (3); and that the observations,

{Yrk}’ are independent for each r and satisfy (4). Then

(5)  {(a+1) (rF' (xIn?(p(1-p))"1)%/8}1/ (2% ) (5 (5 )-0(x,))

converges 1in distributlion to the slope at zero of the greatest
convex minorant of W(s) + |s|°+1, where W 1s the two-sided

Wiener-Levy process with variance one per unit time.

Proof. The proof 1s simlilar to those given by Prakasa Rao
(1969) and Brunk (1970) except that we must approximate the

sample quantiles by averages before their techniques can be applled.




As in the 22 case, we show that gr(xo) is asymptotically
equivalent to an estimitor based on observations with
observation points in a sequence of intervals which converges
to Xqe We make use of the modification of the arguments due
to Prakasa Rao (1969) and Brunk (1970) given in Wright (1981).
For an arbitrary c¢c and r sufficiently large choose
az(r), au(r), Bp(r) and B (r) so that
-1/(2a+1)

F(xo)-F(xO—al(r)) F(x0+uu(r))-F(x0) = 2¢r

and
~-1/(2a+1)

F(xq)=F(x(=By(r)) = F(x+8,(r))-F(x,) = cr

Set

6; = max C(x _al(r) X ]min rte[xo’xo+au(r))Qr([xrssxrt]).

The first step in the proof is to show that er(xo) and 0;

are asymptotically equivalent by showing
* =
(6) 1im 1im supr*wP{er(xo)#er}

croo
Since the pth sample quantile is a Cauchy mean value function
(cf. Robertson and Wright (1975)), it satisfles the averaging
property used in the proof of the lemma in Wright (1981).
That proof can be modified to obtain (6), but the following

should be noted: with v (A) = card{k: x € A}, I the

rk
indicator of the event A and Z(r) the sum over those k for

which x € A,

rk

{miny>x0 Q. ((x5-B,(r),y]) < 8(x,-8,(r)}C

. -1
ngo{Avr((xo-Bl(r),y])gp-(vr((xo-sz(r),x0])

(r)
- z(x —Rl(r),y] rk/\) {(x Bt(r),y])}
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' = t(r)
where Avr(A) = EA (1

-u_.)/v_(A) and
(¥, <8(xy-8,(r))} Mri’ Vr
My = PLY, <6(x,-8,(r))}. Furthermore, if x, > X,
M < LY, ~6(x )<8(x=8,(r))-8(x)}, which using (4),

can be bounded by p + n(e(xO-Bl(r))-e(xO ))(1+0(1)) where
0(1l) represents quantity that does not depend on k and
converges to zero as r + », If Xk < xo, then

My PN (8 (x =B ,/7) ) =B(x ;. ))+(8(x,=B,(r))=8(x))o(1)

and so Zé;)

(=B (r) ,y T Ve (Xg=8p (£),3)) <o+ (0 (x4-B, (1)) -0 (xg) Jo(1)+

L6 () 1 (O X8 (2)=0 a9, (28 () 0D

Next we approximate the pth quantiles by averages. Then,
since the max-min operation on averages 1s the same as the
slogcom (slope of the greatest convex minorant) of a cumulative sum
process, we only need to make slight modifications on the arguments
in the literature for such slogcom's. For arbitrary € with
0 < e <c, let Yl(r) and yu(r) be defined by Yu(r) =

—l/(2cx+1)}_xo

min{x : F(x, )-F(x,) > er and v,(r) = x,

PF(xp)-F(x, ) > er~1/(22+1)y ' note that

- max{xrk.

(7) max yQ9p (DX, g5%, 1) <0

xrse(xo-al(r),xo-yl(r)]minxrte[xo,xo+au(r)

<max min

xrse(xo-az(r),xo] xrte[x0+yu(r),x0+au(r))Qr([xrs’xrt])'

The large sample distribution for the lower and upper bounds in

(7) depend on ¢ and as € + 0 they approach the same limit.




The discussion for the upper and lower bounds are similar and

so we only give the former. Denote the upper bound in (7) by

e;. To approximate the quantiles by averages, we show that

a/(2a+l)
r maxxrse(xo—al(r),xol,xrte[xoﬂu(r),x0+au(r))I

n p
n(Q(lx, >x,, 1)=8(x4)) - Avi(lx, ,x D} > 0,

r

" = -
where Avr(A) ZA(p I{Yrk<6(x0)})/vr(A)' We appeal to the
following lemma which is a generalizatlon of a result given

in Ghosh (1971):

Lemma. Consider arrays of random variables {Agk: J=1,2,00.,
n

Jn,k=1,2,...,Kn,n=l,2,...} and {BJ

Wf 312,00 sk=1,2, 0,

K ,n=1,2,...}. If maxjk{A?kl is tight and for each & > 0 and
real x
(8) P{A?kgx and B?k3x+6 for some J and k} » 0
and
(9) P{A?k3x+6 and B?kix for some J and k} + 0
n ,n, D
as n + =, then maxjklAJk-BJkl + 0.

Proof. Because of the tightness assumption it suffices to

consider for arbitrary, positive 1 and M

n n
P{IAJk-BjkI > 21 and -M < Asy < M for some J and k}
L n n
iz£=1p{'M+(£'1)T<Ajki'M+£T’Bjki-M+(£+l)T for some J and k!
n

+ZI£=1P{-M+(2-1)T<l§ki—M+lT,B <-M+(£-2)1 for some J and k}

Jk=

where L = [2M/t] + 1. The above sums can be made as small as

desired for fixed M and =t.
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Set nlr =V (("°° X _al(r)]) n2r ((‘”,XOJ)’n3 =

r r |
v ((==,x ¥y (r))) and ny = v ((-=,x5+a (r))). f
We apply the lemma with n = r, E
K. = Nyp = Pgps Jp = Pop = Nips A?k - r“/(2“+l)Av;([xr,nzr_3+l,
xr,n3 1 J) and Bjk = nra/(2a+l)(Qr([x n,. —3+1°%p, n3r+k])—e(xo)).

The proofs that (8) and (9) hold in this case are similar

and we only give the latter. Fix x and note that {BJk < x}

is contained in

{zfx

r,n2r

—j+1’xr,n3r+k] {Yr£<6(x )+x/(nra/(2“+1))}

> [(J+ktng,mn, )p]) §

r r =
and {Bjk < x and Ay 2 x+6} is contained in I

r -a/(2a+l) |
(20) {2[xr,nzr-d+l,xr,n3r+k]Ur£ 2 (x+6)(J+k+n3r-n2r)r -1}
where U_, = I -I . For the |
vt {leie(Xo)+xr_a/(2a+l)/ﬂ} RMVALICING

values of the index £ in the last sum 6(x,-0,(r))<6(x ,)<6(x,t+a (r))

and applying (2), both B(xo)-e(xo-at(r)) and 6(x0+au(r))—9(x0)

can be written as B(2c/F'(xo))ar'a/(2°+1)(1+o(1)).

-0/(2a+1)  oe=e/(20+1)y ohg since

Hence,

applying (4), EUrt = xr

N3pn= 2r‘zt»:r'm/(?o”l)(1+o(1)) for r sufficiently large (10) is

contalned in E
r a/(2a+1) f
-EU > €6 .
{X[xr’nzr’J+l’xr’n3r+k](Urz rl) 2 € r /2}
= r -
With r fixed, define X 2 x ](Urt EUrl)’

r n21" r,n3r
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for j=1,2,...,J_,X =

= v - EU r’ k+1,1

ran-j+1 rn2r—J+1

Xy 341

U - EU for k = 1,2,...,K_ and X =0
rn3r+k rn3r+k r 13

otherwise. So for sufficiently larger r, {B§k§x and

Agkix+6 for some j and k} is contained in

: J vk a/(2a+1)
{maxlijjJr+l,1§k§Kr+125=12t=lXS,tzssr /2} and applying

Theorem 6 of Gabriel (1977) the probability of the latter |

event is bounded by

O(r—2a/(2a+l)(Jr+Kr+n n2r)max V(Urz))-

3r ptlstsn,

nq

_ - 2a/(2a+1)
However, Jr+Kr+n3r n,. Yer (1+0(1)), V(Urz) < IEUer’

and for n,, + 1 <2< N)ps EUr£ was shown to be of the form

<p-0/(20+1) O(r-a/(2“+l)), Hence, (8) holds. (The proof

of (9) is similar.) Now we must show that max k|A§k| is i

tight. Since |[EI | is uniformly bounded for
{erie(xo)}

n o, + 1< 48 < ny. and r = 1,2,..., it suffices to show that

max, . | (I -EI )/ (j4+k+n, -n, )]
3ok ZEXrnzp'j+1’xrn3r+k] (Y_p<0(x )} MY _,<0(x)] el

is tight. But this follows from an argument like the one above
which uses the result due to Gabriel (1977).

Now we consider the large sample distribution of 6; =

-1
n “max _ min Av'([x_ ,x_ .1
xrse(xO az(r),xo] X te[x0+yu(r),x0+au(r‘)) r rs’ rt

r

e

Since the proof is similar to that given in Wright (1981) we

use the same notation. Let Yp1 < Ypo < ... < yPA be the distinct

observation points in (xo—az(r), x0+au(r)); n(r,k) the number

of observations at y_ ; Y=22=1n(r,£); Yrk = Av;({yrk});




t. . =0, t_, = 20DZ%=ln(r,£)/y for k=1,2,...,A; D=2(o(xo)B)"2,

r0 rk

l/(20+1).

0(x,) = p(1-p)/n°; and B = {(a+1)(F'(x,))%/B0"%(x)}
Define a process on [0,2e¢D] by Ur(O) =0,

_ k T -
U (t ) = 2eD],_yn(r,£)X ,/y for k = 1,2,...,1,

and linear interpolation between the points t rk’ Let j(r) and
£(r) satisfy Vs (r) < xg < Ypg(r)+1 and Yre(r) = X oYy (r).

In Chapter 1 of Barlow, et al. (1972) the relationship of

the max-min operator to the left hand slope of the greatest
convex minorant of the cumulative sum process is discussed.
Using this relationshlip and denoting the slope from the left
at x of the greatest convex minorant of the graph of X(s) for
s € S by slogecom (x){(s,X(s)): s € S}, we see that

(11) n_lslogcom(trj(r)){(t,Ur(t)): 0<t<2cD}
20 s n_1slogcom(tr£(r)){('c,Ur,(t)): 0<t<2cD}. l

The argument starting on p. 446 of Wright (1981) shows that

P/ (204 1) g1 slogeom(t .,y ) (U (£)): 0 < & < 2¢D}

converges weakly to
V = slogecom(0){(s,W(s) + [s]|*"1): —cp < s < cD}.
However, 1t should be noted that since sup1<£<)‘lEI{Y <9(x Y3

-a/(2a+1))’ a/(2a+l) EU (t)

- p =~ n(8(xy) - e(xr,l))l = o(r

can be written as the sum of fr(:) and a function which
converges to zero uniformly in t € [(0,2cD] as r + =,

In considering the upper bound in (1l1), we first note

_ =1/(2a+l)
that maxl<£5k(yr£-yr£-1) = o(r ) which implies that




€P2a/(2a+l)(l+o(l)).

vr((XO,X0+Yu(F)]) = Since in the

arguments above we have seen that trj(r) + ¢D, trﬁ(r) + ¢D
+ €D/2. We appeal to the same weak convergence result as before
to show that

pa/(2a+1)Bn—lslogcom(tr£(r)){(t,Ur(t)): 0 <t < 2cD}

converges weakly to

a+l>,

V(e) = slogcom(eD/2){(s,W(s)+]|s] -cD < s < ¢D},

but we must show that with probability one the convex minorant

la+l

of W(s) + |s on [eD, cD] has unique slope at eD/2.

However, if the convex minorant has different left and right

+
slopes at a fixed point t, then it agrees with W(s) + [s]® 1

at the point t. This implies that for h > 0, (W(t+h) + [t+n|*"?

- W(t) - [t]%)/h is bounded below by the right hand slope of
the convex minorant at t, but with probability one,

1im infh+0(W(t+h) - W(t))/h = -=». So with probability one
the convex minorant has unique slope at t. Again, using the
same techniques V(e, converges weakly to V as ¢ » C.

POt/(2a+1)

We now show that V= B(e;—e(xo)) converges

weakly to V. Let r be a subsequence and V' a generalized

random variable, that is one that may be infinite with positive

probability, with P{Vr <x}» {V'<x} for each real x at which
k

P{v'<x} is continuous. Since AP(E) = ra/(2a+1)

BB; 1s bounded
above and below by sequences which converge weakly, Ar(e) is
tight for each € > 0. So for each € > 0, there is a further

subsequence r with A (e) converging weakly, say, to
k(d) rk(,j)

A(e). Let x be a real number in the continuity sets of V,V',V(¢)

and Afe) for a sequence of € converging to zero. Since Ar(s)
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and Br(e) = r“/(2“+1)3(e;-e(xo)) are asymptotically equivalent

for each € > 0, for real x and £ in the sequence mentioned

above we apply (7) and (11) to obtain

P{V'<x}>1im, P{B <x} = P{A(e)<x} > P{V(e)<x}.

(1)~

Letting € » 0, we see that P{V'<x} > P{V<x} for x in a dense

J-»

set. The reverse lnequality can be obtalned by considering
similar arguments for the lower bound on Vr' So V= V' in
distribution and this part of the proof 1s completed.

The only step remaining is to show that slogcom
(0){(s,W(s)+|sla+l): -cD < s < cD} converges to slogcom
(0){(s,w(s)+isla+l): -» < § < «}, but this is established in
Wright (1981).

Casady and Cryer (1976) have shown that with probablility

one, 1im supr+m(r/loglog r)l/u(er(xo)—e(xo))i k < o provided 8

is Lipschitz of order 1. It would be interesting to determine

if the exponent could be increased to 1/3 when 6'(x0) > 0.

Of course, in this case, it can not be larger than 1/3.

¥
]
I
t




T — I Vst Lt e -~

13

REFERENCES

! Barlow, R. E., Bartholomew, D. J., Bremner, J. M. and

Brunk, H. D. (1972). Statistical Inference Under

Order Restrictions, New York: Wiley.

. .

Brunk, H. D. (1958). On the estimation of parameters

a4l .

restricted by inequalities. Ann. Math. Statist.

29, U37-454.
Brunk, H. D. (1970). Estimation of i1sotonic regression.

. .

Nonparametric Techniques in Statistical Inference.

aubinnlolibidetininsrhi

177-195, Cambridge University Press.

E Cryer, J. D., Robertson, Tim, Wright, F. T. and Casady, R. J.

it el

(1972). Monotone median regression. Ann. Math. Statist.

. 43, 1459-1469.
Casady, R. J. and Cryer, J. D. (1976). Monotone percentile

" regression. Ann. Statist. 4, 532-541.

Gabriel, J. P. (1977). An inequality for sums of independent
random variables indexed by finite dimensional filtering ]
sets and its applications to the convergence of series.

Ann. Probability 5, 779-786. ;

L/ Ghosh, J. K. (1971). A new proof of the Bahadur representation

of quantiles and an application. Ann. Math Statist. 42,

1957-1961.
Hanson, D. L., Pledger, Gordor, and Wright, F. T. (1973).

On consistency in monotonic regression. Ann. Statist. 1,

. 4o1-421.

—— e AT TR

(




14

Leurgans, S. E. (1979). Asymptotic distribution of slope
of greatest convex minorant estimators. Technical
Report, Mathematics Research Center, University of
Wisconsin-Madison.
Makowskil, G. G. (1973). Laws of the iterated logarithm
for permuted random variables and regression applications.

Ann. Statist. 1, 872-887.

Prakasa Rao, B. L. S. (1969). Estimation of a unimodel
density. Sankhya (A) 31, 23-36.

Robertson, Tim and Waltman, Paul (1968). On estimating

monotone parameters. Ann. Math. Statist. 39, 1030-1039.

Robertson, Tim and Wright, F. T. (1975). Consistency 1n

generalized isotonic regression. Ann. Statist 3, 350-362.

Wright, F. T. (1981). The asymptotic behavior of monotone
regression estimates. Ann. Statist. 9, U443-448,

ot iod U DR e A, Sl e 2t i —




& !
k! | SECURITY CLASSIFICATION OF THiS PAGE (When Date Entered) ‘
| READ INSTRUCTIONS i

1. REPORT NUMBER 7. GOVY ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER 3

N <, :

‘ * DA/ (T re

4. TITLE (and Subtitie) §. TYPEZ OF REPONT & PERIOD COVERED
The Asymptotic Behavior of Monotone Percentile
Regression Estimates

sonion.

S. PERFORMING ORG. REPORT NUMBER

- " 1 3
i 7. AUTHOR(s) %, CONTRACYT OR GRANT NUMBER(S) | 1
5 ™ L

1 F. T. Wright N00014~-80-C0322
\q e ————————————— s e ]
9. PERFORMING OROANIZATION NAME AND ADORESS . RROCRAN ELEMENT. PROIECT T AK 3

Department of Mathematics —~
2 University of Missouri-Rolla

b Rolla, MO 65401
} 11. CONTROLLING OFFICK NAME AND ADORESS 12. REPORY DATH
i Office of Naval Research May 28, 1981 1
§ Statistics and Probability Program Code 436 3. NUMBER OF PAGES
~1 | Arlington, Virginia 22217 14
' . MOMITORING AGENCY NAME & ADDAKSS(! difforent frem Controlling Olfice) 18. SECURITY CLASS. (of thie report) 3
“. : unclassified
; The. 'ggﬂ.ﬁ:l FICATION/ DOWNGRAGING i
1‘ [76. OISTRIGUTION STATEMENT (ol this Repoet)
5 APPRQVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED.
b i
{ 17. DISTRIBUTION STATEMENT (of the sbetract enteved In Bleck 30, If ditferent frem Repert)
1
18. SUPPLEMENTARY NOTES
. {
19. KXEY WOROS (Continue on reverse side If y and identity by Meck ) ;
4 monotone regression, percentile regression, asymptotic distributionmns, i

rate of convergence 11

__..Z.A{l‘l RACT (Centinwe en reverse olide if Yy and idontily by dlech sumber)

~— The least absolute deviations estimate of a monotone regression
function was derived by Robertson and Waltman (1968). Assuming the observa-
tion points become dense in the domain of the regression function, Casady
and Cryer (1976) obtained an upper bound on the almost sure rate of conver-
gence of the estimator. The asymptotic distribution of the estimator at a
point is obtained here and a faster rate of convergence is obtained.

H 00 |roan 1473 toimon oF 1 nOV 68 18 OusOLETE

$/N 0102- LF-014- 4601 SECURITY CLASHFICATION OF THIS PAGE (When Dere Batere®

A T3







