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INTRODUCTION

In this report aerosol characterization measurements are analyzed for predic-
tion of countermeasure aerosol effects on high-energy laser (HEL) beams.
Although the general principles are applicable for various beam parameters,
our calculations will be oriented toward those of a pulsed CO_ taser (10.6um
wavelength) with a pulse length of about 3us and a total beam energy of about
200 J. The focus of this effort will be the effuct due to evaporative clear-
ing. The basis for thermal blooming! (atmospheric lensing due to thermally
created density gradients in the beam), the other major nonlinear effect, will
be ec<tablished by describing heating of the amhient gases and particles.
Threshold calculations show that the 3us pulse of these tests is short for
strong blooming effects.

These measurements were performed in conjunction with a test of an HEL having
the parameters described above. The beam traversed a trench approximately
100 m long. The trench was covered with polyethylene forming a relatively
closed environment in which the smoke was dispersed and then measured as a
function of settling time. Most of the characterization was performed at the
midportions of the trench and assumed to approximate a spatial average since
the smoke mixing, diffusing, and settling times were long at 1 to 2 h.

MEASUREMENT SYSTEMS

Table 1 jists the instrumentation used for the characterization.

TABLE 1. WP CHARACTERIZATION INSTR!MENTATION

R iy I

Measurement Systen Manufacturer
Extinction absorp- C0z laser Ati:ospheric Sciences

tion, coefficients
at 10.6um

spectrophone

Laboratory (ASL)

Particlie counting

Active cavity, light

Particle Measurement
systems (Model

and sizing scattering particle
spectrometer, HeNe ASASP-X)
White 1ight volume Nephelometer Metaorological

scattering coeffi-
cients

Research Instruments
(Model 20508)

Relative humidity and
partial pressure ofr
water vapor

Cew-point hygrometer,
thermometer

Edgerton-Gernehausen
and Grier (Model
880)

¢, G. Gebhardt, 1976, "High power laser propagation,” ppl Opt, 15(6):1479
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The tollowing paragraphs describe instrumenis and discuss the need for each
type of information obtained.

0f the absorbing gasecus constituents at 10.6um, water vapor is expected to be
by far the strongest. The very high temperatures and dew points prcduced in
the trench by the greenhouse effects resulted in relatively high partial
aressures arnd thus high absorption coefficients. The Edgerton-Germehausen and
Grier (EG&G) condensation plate dew-point hygrometer was used to obtain the
water vapor partial pressures from which the water vapor absorption coeffi-
cients were computed. Relative humidity values obtained from the dew point
and temperature data were used to compute fractional water contant of the very
hygroscopic smoke of burning phosphorus. This computation, in turn, was used
to determine the appropriate complex refractive index and other physical
properties of the smoke. Although site-peculiar gases are possible contribu-
tors, contributions to the net 10.6um absorption coefficient due to other
ambient gases can be reasonably estimated.

The distribution of particles with respect to size is important since the
calculations of the nonlinear effects are also generally size dependent. The
instrument used (ASASP-X) had been subjected to laboratory tests, first with
particles of known sizes to determine accuracy in sizing and then with the
smoke of phosphorus to determine response to high densities. Calibrations
with respect to absolute density for each increment of particle radius are
difficult to perform with accuracy and have not been accomplished for this
instrument. As stated then, the form of the particle size distribution was
the object of this measurement. The absolute magnitude of the absorption was
obt2ained by using another technique--the spectrophone.

Before the measurements involving the spectrophone are discussed, an optical
nephelometer measurement of aggregate particle scattering from within a given
volume into a fixed soiid angie wiil be introdiuced since it might be related
to the net absorption. The nephelometur averages over a volume as does the
spectrophane; but, like the particle measurement systems (PMS) instrument, it
measures scattering. The calibration and use of a meteorological research
instrument (MRI) typc 2050B unit will be discussed later in this report.

The authors' application of spectrophones to atmospheric gases and particu-
lates is documented in the literature.?2 Ir a more recent publicatior,3 the
authors discuss their spectrophone research on the smuke of white phosphorus
(wWP). Spectrophone theory has been documented,* > and a variety of ASL

2C. W. Bruce and R. G. Pinnick, 1977, "In-situ measurements of aerosol
absorption with a reconant CW laser spectrophone," Appl Opt, 16:1762

3C. W. Bruce and Y. P, Yee, 1980, "In-situ measurement of the ratio of aercsol
absorption to extinction ccefficient," Appl Opt, 19:1893

“E. L. Kerr and . G. Attwood, 1968, "The Tas : {lluminated absorptivity
spectrophone: A method for measurement of weak absorptivity in gases at laser
wavelengths,” App) Opt, 7:915

SL. B. Kreutzer, 1971, “Ultralow gas concentration infrared absorption
spectroscopy,” Appl Phys, 42:2934

e ——— s




Wu—n—-——._.f ——e .

applications {s described in an ERADCOM report.6 The particular system used
for these measurements was designed for field use and 1is tunable and
stabilized for several 10um laser lines. Figure 1 shows a schematic cross
section of this system, and figures 2 through 6 show on-site photographs of
the inscrumentation. The instrumentation was first mounted within the trench,
but for the later data, the instrumentation was located outside and adjacent
to the polyethylene cover, sampling within the trench through tubes.

MMBIEMT ACSORPTION

The ambient gas and particulate absorption coefficients were measured before
the tests. The particulate absorption was obtained indirectly by using parti-
cle counting results. Lorenz-Mie calculations were based on these data and
complex refractive indices for sofil-based (clay) dust. Though not really
precise, this technique usually 1is accurate within a factor of three. The
ambient level of particulate absorption (coefficient) was found to be approxi-
mately 1073 km~!. The total (gaseous and particulate) absorption coefficient
as measured by the spectrophone was, as expected, much higher. Conditions
within the trench were relatively repeatable from day to day. Typical param-
eters for calculations and calculated values are shown in table 2.

TABLE 2. CALCULATED RANGE OF GASEOUS ABSORPTION COEFFICIENTS,
a, IN TRENCH (PRE-SMOKE TEST VALUES)

a
Dew-Point Partial % 0 OlCO2 Total
Date/  Temperature Pressure H,0 2 @330 ppm (minus trace gases)
Time (°C) (torr) (km™1)  (km™1) (km™1)
28-29 Jul
4-5 pm 80 26,2 0.66 0.08 0.74
30 Ju)
5 pm 89.0 35.0 1.11 0.08 1.19
3 Aug
11 am £8.8 34.8 1.09 0.08 1.17

6Y. P. Yee, C. W. Bruce, and R. J. Brewer, 1980, Gaseous/Particulate Absorp-

tion Studies at WSMR Using Laser Sourced Spectrophones, ASC-TR-0085, US Army
KEtmospheric Sciences Laboratory, White Sanés Hissile Range, NM
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Figure 2.

Spectrophone and nephelometer (right) on tripod.
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Spectrophone side of tripod mount.

Figure
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The partial water pressure was based on extrapolations from the data of Yin ot
al,” and the results were based on data of Shumate et al,? about 11 percent
Tower for these partial pressurez. One tunnel section (within 4 m of the
measurements) was removed for the 28-29 August, 4 to 5 pm times. The section
cover was reinstalled before the aerosol tests, and the data here for 30 July
and 3 August are for completely covered trenches.

The measured gaseous absorption coefficient corresponding to the first exampl:
(data of 28-29 July 1980) was 1.1 kw~™!, Probable error figures on this mea-
surement are not precise but are estimated to be 0.2, largely because of
temporal variations due to unknown source(s). Higher than predicted values of
the absorption coefficient frequently occur in ASL field measurements of
ambient absorption at 10um wavelengths.

Absorption due to trace constituents could elevate the value considerably. A
rough rule of thumb is that trace gas absor?tion (within an absorption band
region} often reaches or =xceeds 1 (ppm-km)~" and, of course, 1 ppm is not a
high concentration.

During the measurement program, test project personnel frequently mentioned
the desire to obtain total absorption values lower than those measured or
predicted (minus trace gas contributions). Another reason for interest in the
ambient gaseous absorption is that the smoke aerosol level approached these
levels near the end of each test.

AEROSOL CHARACTERIZATION FOR TESTS

Aerosol characterization for two test situations will be discussed. The dates
and approximate starting times are listed as the latter two exampies in tabie
2 (information for 30 July 1980 and 3 August 1980). The most notabie dif-
ference in the conduct of these two tests is the time of day. Aerosnl char-
acteristics were similar, in th: mean.

The procedure was to ignite phosphorous smoke grenades in the trench at about
the one-quarter and three-quarter length positions. The smoke dispersed
roughly over a 2-h period during which aerosol measurements were made. The
data and analyses will be presented as functions of the evolving aerosol
system and implications for nonlinear effects will be discussed.

Particle size distribution evolved generally as expected from prior laboratory
measurements on the same aerosol; that is, the mean densities decreased and
the peak moved to progressively smaller sizes. Figure 7 shows a composite
graph of the distribution pattern for the first test. These data represent
roughly 1l-min averages (data were not always continuously available in
time). Circulation under the loosely fit trench cover (and pumping action by

7P, K. L. Yin and R. K. Long, 1968, "Atmospheric absorption at the line center
of P(20) Co, Taser radiation," Appl Opt 7:1551

8. S. Shumate et al, 1976, "Water vapor absorption of carbon dioxide laser
radiation," Appl Opt 15:2480
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fluctuations in air pressure on top of the plastic cover) was sufficient that
any type of settling calculations to determine decreasing densities would be
questionable.

| The differential absorption coefficients (absorption per micrometer particle
‘ radius) were calculacted by using 'orenz-Mie theory with optical constants
appropriate to the composition of the smoke. To accumplish this calculaticn,
the relative humidity for the test was computed from the measurements of
figure 8. The relative humidity was used in turn to calculate the percent of
water for the hygroscopic smoke on the basis of measurements made in our
laboratory and also predicted by the theory of Hanel and Bullirich.d The
relationship is plotted in figure 9. Finally, the complex indices were
obtained from a work by Querry and Tyler,!0 but neir data pcsed a problem;
two sets of complex indices were obtained from _.is scurce (figure 10). We
4 have discussed the strange appearing results with .the authors who maintain
: that both sets are correct. We have simply used them (no measurements fell in
\ the disjointed data gap).

. Figure 11 represents a plot of the differential absorption based on the data
g of figure 7. The absorption peak occurs at a radius of about 1.2um soon after
’ the smoke is dispersed and decreases relatively smoothly to about O0.4um in

‘T roughly 2 h; in the same time the peak absorption level has dropped roughly

b two orders of magnitude. At the midpoint in this 2-h evolution, 80 percent of 1
| the absorption occurs within a radius span of approximately 0.30um.

F; The background particulate absorption is represented by the lowest curve

| labeled 1641, that is, before the smoke was released. The contribution here
(at about 1073km™!) is well below the ambient gaseous absorption.

The total absorption coefficient as calculated from the particle size and

density information is plotted as a function of time in figure 12. For this

presentation, i-min averages obtained at approximately 10-min intervals are ;
connected by straight-line segments. These values are much lower than those i
of the spectrophone measurements. The spectrophone yielded absorption and !
extinction coefficient neak values (in separate measurements) of about 200 and i
220 km~!, while the parcicle counter result was about 10 km™!. This differ-
‘ ence is believed to be due primariily to low counting efficiencies and sampling
] errors ir unknown proportions. As the purpose of sizing and counting for
| these tests was to obtain measurements of the form of the size distribution as
| a function of time rather than absolute values, this difference is not a prob-
lem. Prior calibration of the counter using monodisperse aerosols precludes :
sizing as a prime source of error. Likewise, the optical constants and calcu-

lational scheme introduce uncertainties that are very small compared with the i
difference. i

Al i b

9G. Manel and K. Bullrich, 1978, “Physico-chemical property models of
tropospheric aerosol particles," Beitrage Zur Physik der Atmosphare, 51:129

UM, R. Querry and I. L. Tyler, 1978, "Complex refractive indices in the
infrared for HaPOQ in water," J Opt Soc Am, 68:1404
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A comparison of figqures 7 and 11 shows that the largest size particles are
most important in the caiculation of the total absorption because of the rapid
increase with particle radius of the Lorenz-Mie efficiency factor for the
absorption cross section. Therefore, the apparent increase with time in the
densities of the relatively small particles (whose signals are probably masked
in the counter by those from the larger particles) is not of concern here. A
design2d-in characteristic of the counter is also partly at fault in this
misrepresentation which causes a "tailing-off" effect in the signals repre-
senting progressively smiller sizes.

Calculations to fullow are based on the peak absorption values which aqree
well with the author's predictions based on the laboratory measurements of
reference 3 (within 15 percent).

The measurement of extinction cnefficient derived from power 1css in the
spectrophone is satisfactory 4t high values {(early in the test) but is not
useful below 10 km™! due to the question of power meter drift. Figure 13
shows the extinction coefficient for the test of figure 12. The slope of the
decreasing extinction cuefficient with time, however, agrees well with that
found by using the PMS particle counter data. An electronic problem, presumed
to be overheating of system electronics prevents complete comparison of spec-
trophione adsorption data for this test.

Time variations culled from the extinction, the density distribution, and the
absorption measurements at the location of the apparatus were greater than a
factor of five for integration times less than 3 s and about a factor 2 to 3
for integration times of 10 s. However, a spatial density average over as
much as 10 percent or greater volume of the trench probably varies less than
20 percent.

The temperature time series for the second test is given by figure 14.

Temperatures in the trench were somewhat lower than the temperatures in the
first test even Lhough the second tests were durinc midday (the 30 July test
was later in the afternoon). Particle size distributions and their evolution
in time were similar in form though the corrosive action of the smoke caused a
reduction in particie counter laser power for this test. The spectrophone
measured peak absorption and extinction values were virtually the same at
200 km™!. Absorpticn coefficient as a function of time for this test is shown
in figure 15. For a resolution time of about 2 s, the magnitude fluctuates by
more than an order of magnitude (figure 16). The same data, when averaged
over about a minute for each of tne sampling periods, yield a much more steady
decrease. This decrease has nearly the same mean slope as that calculated
from the particle counter data though the magnitudes are very different.

In contrast to the spectrophone, the nephelometer measurement yields primarily
particle scattering information (molecular scattering is generally much
lower). Due to their high sensitivity, data were obtained only at the very
end of these tests--when the ends of the trench were opened near test comple-
tion. The nephelometer output (scattering c. *fficient at visible wavelengths)
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was rejated in a laboratory calibration to extinction and absorption coeffi-
. cients at a wavelength of 10.6um (figure 17). Since there was no evidence of
! nonlinearity, a single constant serves to relate the volume scattering coeffi-

km~ !

cient to extinction, that is, %
Sc. Coef.

] and another to relate the scat-

-1
tering coefficient to absorption [é.96 X %- ——55—————] for the smoke of WP.
Sc. Coef.

- = e L

Figure 18 shows how the particulate concentration can fali at the center
position when the wind is allowed to flush the trench. A nephelometer near
the target end of the trench (about 6 m from the end), though, recorded that
the fluctuat1ng smoke attenuation decreased in that region rapidly to below
_ 2 km™! at about 1218, wh11e near the center, the absorption coefficient Tevel
ri was still near 10 km . For about 1 min Auring which laser pulse 7718 was
) flred through the trench (1214 to 12z..), this nephelometer measured
B = 1,51 t 0.C6 km~!

——

< The smoke of WP is hygroscopic, quickly drawing water from the vapor state.
- The reduction of the r2lative humidity resulting from the introduction of the ]
fi smoke into the tunnel was calculated on the basis of prior 1aboratony measure- .
[ ments, that is, a smoke production efficiency ‘actor of kg 0.35 m2/gm and a

1 fractional growth in particle radius of r/ro 1.21 for an initial relative

k! humidity of 35 percent.® By using the initial value of absorption to calcu-

i: iate the mass density of the smoke (p = 0.16 gm/m3) and assuming a dew-point i
1

temperatur"a of 84°F to obtain the 1n1t1a1 partial pressure of water (29.8 !
torr), a partial pressure change of less than 0.1 torr was obtained. This :
change is negligible for effects of interest here.

A EFFECT OF EVAPORATIVE CLEARING ON HIGH POWER BEAMS

- The tendency to punch-through the abscrbing countermeasure aerosol WP is of
L prime interest here, and parameters from the two similar tests will be used as
a basis. The thermodynamic and optical bases for the calculations will be
applied by using laser beam parameters relevant to a system whose beam param-
eters are to be described (US Army Missile Command [MICOM] S3 system).

3G. Hanel and k. Bullrich, 1978, "Physico-chemical property models of
tropospheric aerosol particles," Beitrage Zur Physik der Atmosphare, 51:129
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' The thermodynamical calculations for the clearing effect beqin with the dic-
L tionary of terms listed in table 3. Glickler!! and Suttonl? used elaborate
(but still inexact) integral solutions to describe ciearing by fog.

1 TABLE 3. DEFIKITION OF SYMBOLS FOR EVAPORATIVE CLEARIKG

P Q - heat (joules)

Rp - radius of particle (micrometers, centimeters)

Rg - radius of beam (centimeters)

r - variable representing radius

P - instantaneous power (watts)

E - beam energy (joules)

om - bulk density of particulate material (grams/cubic centimeters)

c - specific heat of particulate material (joules/grams degrees
Kelvin)

H - latent heat of vaporization (joules/grams)

Qa - Qe - Lorgnz-ﬂie efficiency factors for absorption and
extinction

- mean temperature of particle (degrees Kelvin)

t - time (seconds)

Note that op, c, TBci1’ H, and the complex refractive indices leading to Qa
and Qe are functions of the relative humidity. The values are listed in
appendix A.

115, L. Glicker, 1971, "Propagation of a 10.6um laser through a cloud includ-
ing droplet vaporization," Appl Opt, 10:544

126, W. Sutton, 1978, "Fog hole horing with pulsed high energy lasers: An
exact solution including scattering and absorption,” Appl Opt, 17:3424
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a CALCULATIONS, PART I: EVAPORATION OF SINGLE PARTICLES

Particles are first heated to boiling T, assuming spatially uniform heating of
the particle, and then energy is added to evaporate them.

é'! To reach boiling temperature, the rate of heating,

Q = an ZQcl [( a 2) ~ beam power density.]
I
B

B
required to boil the particle.

R \?2 t
then is integrated, Q =(R'B> Qa/ Pdt, and equated with the energy
0

i e o . s b s AT i ™ i il

tl
Now -/F Pdt is just the energy, E, which has passed the plane of the

0
particle considered (to time t'). Solving for this energy, one obtains

p.. R R 2¢c
Es“'(4n) mpB 7
G

, 3 E

p.

s @ ;

’ To add the heat of vaporization, j

4 3 (4“) Eﬂ_fﬂfgw. H
i LHY 3 q :
a
The sum of these two processes represents the total beam energy which bhas b

passed the plane of a particle of radius R, at the time of evaporation, that

is, P

E. (R =E +E

cum: p~ B(R

(R

p) LHV p)

An examination of the S3 laser pulse intensity profiles led to the suggestion
that the pulse be modeled as triangular in time.* Samples puise shapes are
shown in appendix B. Figure 19 shows sample real and approximate pulse forms.

*8i11 Jones, MICOM, private communication
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Sample (and typical) parameters are

E(total) Joules
Poax = 125 m

The objective here is to determine the time to evaporate particles and then to
calculate the energy remaining for each power Tobe oFf the far field pattern.

t‘
Ecum= f Pdt .
0
Then using a linear form
t'
Eeun = .}F (me + Pmax)dt
0
- m vy2 ' - Pmax
= 5 ()2 + P t' wherem = - —=
tpulse
29
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Solving this for t', the cumulative pulse time,

E
t' = - 2-2°“"‘)t .
tpulse v/ tpulse ( pmax ( pulse)

Here it is assumed that the particle is vaporized and vaporous at time t'.
The first simplifying assumption is justified since clearing is effective when
particle diameters are reduced in boiling by considerably less than an order
of magnitude (see figure 11). The second assumpticn follows from kinetic
calculations showing that dispersal velocities are sufficient to form an
effective vapor state within an interval very short compared with the pulse

duration.

Figure 20 shows the problem schematically.

I — ENERGY REMAINING
TO PUNCH - THRU
(CUR INTEREST HERE)

T

T
TIME TO REACH-X \—ADDING LHV

FOILING TEMP.
t —

Figure 20. Expenditure of energy.

Now the energy (or power) density distribution in the beam must be determined.
The job is simplified since the laser outpu. is a line-square, that is, two

pairs of parallel slits in orthogonal direccions (figure 21). A sample burn
pattern (quite overburned) is shown in appeidix C.

7

!
- ]

Figure 21. Near, ncar field pattern.
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The power densities in the near, near field are therefore those of orthogonal
pairs of finite slits and, in the far field, are the combined diffraction
patterns of these slits. Actual burn patterns (sample in appendix D) look
quite 1ike the sketch of figure 22.

(There will be some energy
in each quadrant, but the
amount will be relatively
small compared with the
identified energy "lobes.")

Figure 22. Far field pattern.

The approach is to estimate the distribution of energy in this pattern or that
in the area under the twin slit intensity profile.

‘2
I ~<sm B)x (cos? a) ,

82

that is, the single slit pattern (first term) modulated by that of the twin
slits. Beta and alpha contain the viewing angle and dimensional parameters of
the calculation.

Figure 23 shows a perspective sketch of the far field beam profile.

Figure 23. Sketch of the double, double slit pattern
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where I; are the relative intensities and the K is found from the total energy
and the pulse shape.

Appendix E contains the details of the calculation of the distribution of
energy in the laser beam to which this formula is applied.

The distribution of energy in the lobes as calculated in appendix E is given
in table 4.

TABLE 4. DISTRIBUTION OF ENERGY IN FAR FIELD BEAM LOBES FOR S3 LASER

Percent E per Lobe Energy Density per Lobe

Lobe* Percent E Lobe Area for Epoar = 200 J
Number per Lobe {cm™2) (JjEmZ)

0 18.7 7.19 14.4

1 8.5 4.47 8.94

2 6.3 3.32 6.64

3 3.7 1.95 3.90

4 1.5 0.79 1.58

5 0.3 0.16 0.32

*Increasing away from center

The total area involved at the target distance is approximately 40.6 cm2.

The clearing time and then the fractional energy remaining to be transmitted
after clearing will be calculated. The clearing time and fractional energy

will then be obtained for the entire beam.

The clearing process effectively reduced the absorption to gaseous levels
which are much Tower, that is, to near normal atmospheric levels. The scat-
tering is, of course, also greatly reduced; however, for the smoke of WP, the
fraction of CC, laser beam energy scattered to that absorbed is less than 10
percent. The atmospheric propagation is therefore related to the punch-
through effect in a form illustrated in figure 24.
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Tables 5 and 6 show rapid and effective clearing as a function of smoke parti-
cle size for a relative humidity of 35 percent. Earlier data show that ver
few particies are larger than Rp Z 4um and that the clearing efficiency
almost independent of size to that point because of the increase in Lorenz-Mie
efficiency with radius {up to Rp = 4um) in spite of the growing mass to be
evaporated. Coincidentally, this convenient independence disappears for the
larger particles. The last column represents the efficiency of punch-through
or, in other words the percentage of energy in the cleared field. The trans-
mission is not unity at that point (as was mentioned) but reverts nearly to
the pretest levels.
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TABLE 5. PARAMETERS OF SINGLE PARTICLE CLEARING AS FUNCTIONS OF PARTICLE
SIZE AND BEAM LOBE MUMBER FOR Eyqre = 200 J AND Tpy g = 3.2us.

i Center Lobe (0)
Energy = 40.0 J

Time to Fraction of Energy
i R Q Evaporate in Remaining
| (uﬁ) o (us) Portion of Pulse
i 0.01 0.00202 1.68 x 1071 0.90
0.05 0.0101 1.68 x 1071 0.90
| 0.10 0.0203 1.67 x 1071 0.90
' 0.15 0.0305 1.67 x 1071 0.90
i 0.20 0.0511 1.32 x 1071 0.92
; 0.40  0.0828 1.64 x 1071 0.90
| 0.60  0.127 1.60 x 1071 0.90 £
? 1.0 0.222 1.52 x 1071 0.91 §
: 2.0 0.490 1.38 x 1071 0.92 5
. 4.0 0.904 1.50 x 1071 0.91 ?
1 8.0 1.217 2.25 x 1071 0.87 :
L 10.0 1.265 2.72 x 1071 0.84 ;
l' 1.0 1.2600 4.20 x 1071 0.76 ;
20.0 1.2123 6.00 x 1071 0.66
25.0 1.1663 8.0 x 1071 0.56 &
30.0 1.1663 1.01 0.47 }
46.0 1.1663 1.47 0.29 |
50.0 1.1663 2.11 0.12
60.0 1.1663 53.2 0.00 '
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TABLE 5. (Cont)

First Side Lobe (1)
Energy = 18.1 J

Time to Fraction of Energy
R Evaporate in Remaining
(uﬁ) (us) Portion of Pulse
0.01 2.76 x 1071 0.83
0.05 2.76 x 1071 0.83
0.10 2,75 x 107! 0.84
0.15 2,74 x 1071 0.84
0.20 2;16 x 1071 0.87
0.40 2.69 x 1071 0.84
0.60 2.63 x 1071 0.84
1.00 2.50 x 1071 0.0
2.00 2,26 x 1071 0.0
4.00 2.46 x 1071 0.0
Second Side Lobe (?)
Energy = 13.5J
0.01 3.77 v 1071 G.78
0.05 3.77 x 1071 0.78
0.10Q 3.77 x 107t 0.78
0.15 3.77 x 1071 0.78
0.20 2.94 x 107! 0.82
0.40 3.67 x 107! 0.0
0.60 3.58 x 107! 0.0
1.00 3.41 x 1071 0.0
2.00 3.07 x 107! 0.0
4.00 3.34 x 107! 0.0
35
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y TASLE 5. (Cont)

\ Third Side Lobe (1)
Energy = 7.88 J

f‘ Time to Fraction of Enerqy
: R Evaporate in Remaining
f () (us) Portion of Pulse
: 0.01 6.75 x 10! 0.62
0.05 6.75 x 1071 0.62
0.10 6.75 x 107} 0.62
0.15 6.75 x 1071 0.62
0.20 5.20 x 107! 0.70
0.40 6.57 x 1071 0.0
0.60 6.41 x 107} 0.0
1.00 6.07 x 107! 0.0
2.00 5.44 x 1071 0.0
4.00 5.95 x 107! 0.0
Fourth Side Lobe
Energy = 3.20 J
0.01 2,37 0.69 x 1071
0.05 2.37 0.69 x 107!
0.10 2.37 0.69 x 107!
0.15 2.37 0.69 x 107!
0.20 1.55 0.26
0.40 2.04 0.91 x 107! !
0.60 2.14 0.0 "
1.00 1.95 0.0 v
2.00 1.66 0.0 ’
4.00 1.89 0.0

(Particles in the fifth side lobe require > 3.2ps)
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TABLE 6. PARAMETERS OF CLEARING FOR SPECIFIC CONDITIONS (SECOND TEST)
AND USING PARTICLE RADII OF PEAX ABSORPTION

T A

- Time: 1159
| Run Number 7716
thax = 3-0s 3
Erotal = 144.9 0 !
Rp = 1,.0um .
Q, = 0.2217
Beam Lobe Time to Boil Fraction of Energy
Number Pmax and Evaporate in Remaining
(from center) Fﬁﬁ (vs) Portion of Pulse |
{
H
0 1.81 x 107 2.12 x 107! 0.86 ’
1 8.21 x 10° 3.50 x 107! 0.78
2 6.09 x 10° 4.83 x 1071 0.70
3 3.57 x 10° 8.90 x 107! 0.49
4 1.45 x 10° >3.0 3.0
5 2.90 x 10° >3.0 0.0
Time: 1203
Run Number 7717 !
tmax = 4,1us
Evotal = 212.5 J i
Rp = 1.0um )
Q, = 0.2217 :
0 1.94 x 107 1.95 x 107! 0.91
1 8.81 x 10° 3.20 x 107} 0.85
2 6.53 x 10° 4,38 x 167! 0.80
3 3.84 x 10° 6.69 x 107! 0.65
4 1.55 x 10° 0.
5 3.11 x 10° 0.
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TABLE 6. (Cont)

Time: 1214
| Run Number 7718

tmax = 3.3us
Etota“ = 204.5 J
Ry = 0.7um
| = 0.1469
2 N
. Beam Lobe Time to Boil Fraction of Energy
4 Number Prax and Evaporate in Remaining
: (from center) (WS (us) Portion of Pulse
ri
f 0 2.32 x 107 1.73 x 1071 0.90
2
b 1 1.05 x 107  2.85 x 1071 0.84 i
g 2 7.81 x 106 3.89 x 1071 0.78
W :
> 3 4.59 x 108 6.96 x 1071 0.62
1
¥ 4 1.86 x 106 2.44 0.65 x 1071
Cy 1
\ 5 3.72 x 105 >3.3 0.0 i
N ?
|
, i
. Time: 1221 {
: Run Number 7719 ;
} tmax = 3.0us
¥ Etotal = 2004 f
& R, = 0.6ym :
g Q, = 0.1274 j
3 0 2.49 x 107 1.59 x 107! 0.90 ;
1 1.13 x 107 2.61 x 1071 0.83 ‘
i
2 8.40 x 106 3.58 x 1071 0.78 f
3 4.93 x 106 6.42 x 1071 0.62
4 2.00 x 108 2.28 0.66 x 107!

5 4.00 x 10° >3.0 0.0
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Time: 1227
Run Number 7720
thax = 3.3us
EtOtd] = 198 J
Rp = 0.45um
Q, = 0.0937
Beam Lobe Time to Boil Fraction of Energy
Number Pmax and Evaporate in Remaining
(from center) Pﬁ3 (us) Portion of Pulse
0 2.24 x 107 1.81 x 107! 0.89
1 1.02 x 107 2.96 x 107! 0.83
2 7.56 x 106 4.06 x 10”1 0.77
3 4.44 x 10° 7.30 x 107! 0.60
4 1.80 x 10° 2.73 0.34 x 107!
5 3.60 x 10° >3.3 0.0
Time: 1232
Run Number 7721
thax = 3.7us
Etota] = 193.2 J
Rp = 0.40um
Qu = (,0828
0 1.95 x 107 2.09 x 107! 0.89
1 8.88 x 10° 3.42 x 107} 0.32
2 6.58 x 106 4,70 x 10°1 0.76
3 3.86 x 108 8.48 x 107! 0.59
4 1.37 x 10° 3.53
5 3.13 x 10° >4.0
39
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CALCULATIONS, PART II: COLLECTIVE EFFECT

From these results one can calculate the net clearing effect on the beam.
This punch-through phenomenon will be illustrated in the following calcula-
tions. For this purpose the particle size corresponding to the peak absorp-
tion for selected settling times will be usad.

The expenditure of energy as a function of aerosol loading can be calculated
from

E(L) =E(t=0¢tot')e™ ™ +E(t=tot

)

pulse

t' tpu]se

Z et [ P(t)dt + P(t)dt ,
V] t'

where %' is the time to evaporate and t ulse is the tetal pulse duration.
Here t' will have been increased over thag ot the single particle function as
a result of the mass loading. For particles of given size and composition, t'
is an inverse function of P, .. (L) represents the path length within the
aerosol medium. The time to evaporate at a given position in the measurement
is now dependent on that position althnugh the above ecuation is written as
though it depends only on the end point. This simpiification does not signif-
icantly alter the results here. The smoke of phosphorus clears significantly
for a fairly broad range of aerosol absorption coefficients (or alternatively
a range of aerosol mass loading values). For relatively low absorption coef-
ficiants, clearing can do littie to enhance the total energy transmitted. The
enhancement due to clearing will be determined by the above presentation and,
using this technique, can be extended to absorption coefficients of several
tens per kilometer (typical field values) for even the relatively low energy
system of these tests. Clearing continues to be significant for this (and
other volatiie) aerosols to, roughly, the loading at which beam energy is
consumed in the evaporation process. Screening of available energy f?r parti-
cles farther from the source causes an increase in t' at about 25 km™" (effec-
tively) though the increase Jepends somewhat on factors such as particle size
and relative humidity. For the calculations to follow, open air dispersal of
WP was assumed; therefore, the peak absorption is for particles of 1wm to
1.2um radius (see early-time data of figure 11). For all _asts in the trench,
particle radii became progressively smaller at similar rates; and the attenua-
tion also decreased (on the average) throughout the test. The incorporatin of
the bulk attenuation into the calculatfon of t' yields the results of figure
25. Table 5 shows that particle size and Lorenz-Mie efficiencies vary such as
to hold t', the time to evaporate the particles, nearly constant (independent
of particle size). Of course, particles with large radii require more cnergy
to evaporate. The form of the curve, that is, curving over quickly at the top
(on a semilog plot) augurs for the efficiency of the punch-through effect
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Figure 25. Time to evaporate center lobe in loaded aerosol medium.
Loading given by absorption coefficient. Eg 447 = 40.0J
(in lobe), Rp = lum, toiice = 3-2us.

since it conveys that the time to evaporate increases rapidly with the absorp-
tion coefficient only for reiatively high values of the ccefficient. The
remaining step {s to show the ielative improvement in the energy transmitted
when punch-through occurs (table 7 and figure 26). The improvement in energy
transmitted is truly significant--even though the pulsed laser on which the
calculated parameters were based on a relatively small one.

Generally, thermal blooming and evaporative clearing effects are interactive;
that is, the power density is affected by the thermal blooming which in turn
affects the evaporative ciearing. Thermal blooming depends on beam parameters
(power density, pulse length, and pulse shape) and atmospheric parameters
(gaseous and particulate absorption, crosswinds, and turbulence). Appendix F
shows that blooming effects on the test heam are not expected to be strong;
therefore, for this analysis, these effects have been ignored.
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Figure 26. Total energy transmitted in centev spot as a function of
absorption coefficient for the WP-smoke aerosol. No
gaseous absorption effects included.

CONCLUSIONS

Aerosol characterization performed on the smoke of WP was used to calculate
punch-through or evaporative clearing on a puised CO, laser beam. This effect
can be significant for HEL use. High energy pulsed CG, laser beams can effec-
tively penetrate red phosphorus (RP), WP countermeasure smoke, though the
degree of efficiency depends on beam and aerosol parameters. This effective-
ness is related to the volatility and absorbing quaiities of the smoke parti-
cles. Repetitive and/or long pulses can encounter strong thermal blooming due
to the high level of aeroso! absorption which counteracts the clearing
effect. This report discusses the development of an analytical model and its
application to aerosol parameters that derive from measurements in an extended
enclosure at the MICOM in Huntsville, AL, and then to aerosol parameters that
are more typical of atmospheric disnersion of the smoke (represented primarily
by relatively large diameter particles). The laser beam parameters in both
cases are relevani to a high energy research laser owned by MICOM and used for
prenagation studies in the above-mentioned enclosure during the in situ aero-
sol measurments presented in this report. Aerosol absorption measurements
used in situ aerosol spectro.hones developed at ASL. Thermal blooming (the
stated original objective of the MICOM exploratory measurements program) 1is
calculated in this report to be minimal for the beam parameters of the MICOM
(S3) laser as used in these tests and therefore is not axpected to signifi-
cantly affect the calculations of the clearing phenomenon.
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I TABLE 7. PARAMETERS SHOWING EFFICIENCY OF PUNCH-THROUGH FOR Eygyp = 40 J FOR CENTER LOBE.

Fi (1) (2 (3) (4) (5) (6) (7 (8)
i On-Target
' a, Energy , On-Target

) Aerosol t' Without tpulse-t t' x 40 Enerqgy

i Absorption Time to Clearing, ulse With

H Coefficient . xl — Fvaporate  E/40° Ty P (5) x 40 Clearing

{ km™*) (L = 107 'km)  Aerosol for a x L (J) (3} (6) + (7)/40

E } 0.0 0.0 1.52 x 1077 1.00 0.953 1.9 38.1 1.00

y i 0.1 0.001 1.54 x 1077 0.99 0.952 1.91 38.08 1.00

b } 0.6 0.05 1.60 ; 1077 0.95 0.950 1.9 38.00 1.00

F\i 1.0 0.10 1.68 x 1077 0.90 0.948 1.89 37.90 0.99

?% 1.5 0.15 1.78 x 1077 ' 0.86 0.944 1.91 37.80 0.99

E‘g 2.0 0.20 1.87 x 1077 0.82 0.942 1.92 37.70 0.99

~j z.5 0.25 1.97 x 1077 0.78 0.938 1.92 37.50 0.98

'i 3.0 0.30 2.08 x 1077 0.74 0.933 1.92 37.49 0.98

F 4.0 0.40 2.30 x 1077 0.6/ 0.930 1.93 37.20 0.38
5.0 0,50 2.56 x 1077 0.61 0.920 1.95 36.80 0.97
10.0 1.00 4.34 x 1077 0.37 0.864 2.01 34.60 0.92
15.0 1.59 7.56 x 1077 0.22 0.764 2.08 30.60 0.82
20.0 2.00 1.41 x 1076 0.14 0.559 2.47 22.40 0.62
21.0 2,10 1.63 x 10°° 0.12 0.491 2.45 19.60 0.55
22.0 2.20 1.92 x 1076 0.11 0.400 2.64 16.00 0.47
23.0 2.30 2.34 x 1078 0.10 0.269 2.93 10.80 0.34
23.5 2.35 2.70 x 1076 0.095 0.156 3.21 6.24 0.24
23.7 2.37 2,97 x 107® 0.093 0.072 2.45 2.88 0.16
23.8 2.38 >3.2 x 1078 0.093 - ——-- - -
24.0 2.40 »3.2 x 107° 0.091  ----- ——mmen —_—

4 |
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CONSTANTS USED IN THE CALCULATIONS OF NONLINEAR EFFECTS

= 443.7 K (boiling point temperature)

= 0.91 cm center spot
0.778 cm side Tobes

1.75 g/cc (bulk density)
0.475 (cal/gm)/ C (specific heat capacity)
266 cal/gm (1atent heat of vaporization)

323 K (ambient temperature)

APPENDIX A

(beam radius)
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' APPENDIX B

SAMPLE PULSE SHAPES

! co, Laser Pulse Width
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APPENDIX C

REAR, NEAR FIELD BURN PATTERN
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APPENDIX D

FAR FIELD PATTERN AT TARGET SITE FOR LASER CORRESPONDING

TO NEAR FIELD BURN PATTERN OF APPENDIX C




APPENDIX E

. METHOU OF ESTIMATING ENERGY DISTRIBUTION IN
' THE BEAM FOR S3 LASER BEAM

Data on hand consist of:
1.  Burn pattern reproductions in actual size for field;
¢. Near field burn pattern (not useful);
3. Some dimensions on laser,
that is, a. Unstabie resonator central reflector 7.57 cm “square";
b. no outside limit (beam overfills square so beam energy

cuts off at about 10 cm. This is not adequate. This ]
outside 1imit must be calculated); !

c. beam take off and reflector supports are = 0.3
inches wide;

d. distance from laser to target is 136 m.

Thus, the output aperture geometry is as shown in figure E-1,

(intentional
overfill) |

// YLt - reflector |
supports

Output beam /"‘\,_,eﬂa PP ~§

qa A |

H
; <;\\» 45 angle heam takeoff bar for photon
drag detector and sampling calorimeter

Figure E~1. S3 laser output geometry.
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Approximation: Use central arrays of orthogonal twin slit patterns, that is,

2
N 1 =318 (cos2 q)
o B2
B = g-b sin 6 ,

|
!
|
1

I .
a = X‘d sin 8 |

where b is the effective slit width at the output of the unstable resonator
and d is the center-to-center distance of the output beam between the parallel

sides.

First we calculate the viewing angle, 8, in terms of the displacement €rom the
center of the arrays,

sin 8 = x(cm) .
1.36 x 10%

We use the far field burn pattern* and the double-slit part of the calculation
to find the critical dimension, b.

s Lt s ke

a = %-d sin 6 ,

where d = 7.56 cm + 1.0 x (gap width in centimeters). .

The cos? <-¥ d ————3i—————> factor gives the fine grain pattern under the
\ 1.36 x 10%

single aperture intensity envelope. Maxima in the pattern are determined by

"dx )]
d[cosé; dx): . -c¢' sinc'dx = 0,

*Appendix D
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where

v Y L 0.2179 em”?

1.36 x 10"

This condition is met when

¢'dx = 0, , 2m . . ,
First, when x = 0 ;
He
second, when X = —— .
c'd

Then from the photo of the burn pattern (displacements, x, to five intensity
lobes), _

d = <9.09 cm> £ 0.07 cm (or t8 percent) .

Calculating the quite critical parameter b for the diffraction envelope

sin?s
B 4
that is, 9.09 cm (twin slit center-to-center separation)

7.56 cm (twin slit inside dimension)

b = 1.53 cm (2 x (1/2) x slit width) .

Therefore,

4.535 x 103 ;

=
o
0

=

2.694 x 10“ .

[= 8
1]

The calculations also need to be done for the maxima of the lobes. The

average separation from the determination of d could be used,

x =0, 1.6, 3.13, 4.77, 6.37 cm
1.64

1.6 1.53 1.6
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that is,
x = <1.593> t 0.040 (or t2.5 percent) .
From this,
e
sin 8 = 1.171 x 10 .

Now the relative intensities in the lobes of the far field pattern can be
calculated (table E-1).

TABLE E-1. CALCULATION OF RELATIVE INTENSITIES FOR S3 LASER BEAM LOBES

Can See? Spot No. Sin o Single Slit Double Slit I

relative
X O(ctr) 0 2.00 1.00 2.0
X 1 1.171 x 1074 0.909 0.999 9.09 x 107!
X 2 2,342 x 107 0.676 0.999 6.76 x 1071
X 3 3.513 x 1074 0.394 0.998 3.93 x 1071
X 4 4.684 x 1074 0.1604 0.997 1.60 x 1071
No 5 5.855 x 1074 0.0309 0.995 3.08 x 1072
No 6 7.026 x 10™*  1.95 x 107% 0.994 1.95 x 1074

It will be assumed that all the energy is in the center and five wing spots in
each direction (21 spots).

e ke e -




The intensity is then scaled for fraction of total power (10.675 norm).

3 Iy Iy
E'i 0(ctr) 1.87 x 107! 18.7
g 1 8.52 x 1072 8.5
r 2 6.33 x 1072 6.3
3 3.68 x 102 3.7
4 1.50 x 1072 1.5
5 2.89 x 1073 0.3

The final step here 1s to obtain the lobe associated numbers giving the
fractional power densities. To obtain these numbers divide the above values
by 1.90 for all but the center lobe. For that lobe, divide by 2.60 cm?. The
result is in the text.




APPENDIX F
HIGH-ENERGY SINGLE-PULSE PROPAGATION ESTIMATES

m High-energy laser (HEL) propagation is dependent upon a variety of atmospheric
b conditions and beam parameters. Some of the more important atmospheric
| factors involved are absorption, turbulence, and crosswinds. Thermal blooming
' and gas breakdown thresholds may be calculated from these factors.l In this
appendix the occurrence of these two effects on a CO_ HEL beam is formulated
in terms of limitations cn pulse length.? Assumiﬁg a fixed total pulse
energy, if the actual pulse length of the laser beam is too short, then the
problem of gas breakdown becomes important and is the dominant mechanism that
restricts the energy fluence. On the other hand, if the pulse length is too
long, the energy fluence on target drops significantly as a result of
transient thermal blooming. These two effects deleterious to HEL propagation
are thus minimal for a range of pulse lengths, tp, between some minimum pulse

length, t;, due to gas breakdown and less than some “"saturated" pulse length,
ts, due to transient thermal blooming effects; that is, ty < tp < tg.

The saturation time, defined as the time at which the instantaneous peak
irradiance at the target has dropped to about 10 percent of its initial
value,’ may be written as follows:

/ 1/2
4 necC 2
= 0 0°p A¢l
tg 0.08

nc? 1/2 °
n,C, aabsfqp DEp / i

where

refractive index !

=
1]

(]

P = density

¢p = specific heat at constant pressure

ny = coefficient of index change with respect to temperature
Cg = acoustic wave velocity

1F, G. Gebhardt, 1976, "High power laser propagation," Appl Opt, 15:1479

2S. L. Glicker, 1971, "Propagation of a 10.6um laser through a cloud including
droplet vaporization," App) Opt, 10:644

3p. B. Ulrich, 1973, "Requirements for experimental verification of thermal-
btooming computer results,” J Opt Soc Am, 63:897
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®abs = absorption coefficient

f = correction factor that accounts for finite attenuation and
is a function of a,Z, the optical depth;

that 1is,
T [atZ- 1 +e'°‘tz]
(“tz)l ’
ap = total extinction coefficient
q. = correction factor that accounts for varying
P degrees of focusing;
that is,
A
4 - -
fo=X 1= 210X nere X ="K2
8Xz (X - 1)2 d
AO = 1/e beam radius
Ad = vacuum 1/e beam radius at the range Z for an infinite
Gaussian source including diffraction effects and poor
beam quality,
that is
2 72 7\2 ;
2 = .B__g_ 2 - L) :
A + (Ao L -




r
;
'
:

S e s

where the g parameter characterizes the beam quality of the source in terms of
its far-field or focused beam radius.

K =£I.I-

Y

A = wavelength of the source

Z = range

R = focal range of the beam

D =2V72 A, = aperture diameter
Ep = total pulse energy

The minimum pulse length limit, t,, on the maximum peak target irradiance as
imposed by the gas breakdown threshold is simplified as follows:

D2E  _
to= 1.6 —FP 7%,
AZZZIBD

where lgp is the gas breakdown threshold for the atmosphere depending upon
many factors such as dust aerosol density, laser wavelength, pulse length, and
focal spot size as discussed by Morgan.* For our calculations we assumed
p = 10% J/kg - K,
-ny = 1078K"1, c¢ = 340 m/s, and Igp = 107W/cm?, which is appropriate for A =
10.5um.

typical values for the atmosphere of n, = 1, p, =1 kg/m3, c

The following table is a compilation of t, values for various absorption

coefficients as the density of the WP cloud decreases with time after initial
dispersion.

“C. G. Morgan, 1875, "Laser-induced breakdown of gases," Rep Prog Phys, 38:621
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Canter lobe (0)
Energy = 40.0 J
Effective beam diameter aperture = 2.57 cm

R A R SO

aghs (km™1) f q t(s)
50 0.321 3.81 3.23 x 1078
28 0.506 3.81 3.75 x 1078
190 0.736 3.81 4,92 x 1078
5 0.852 3.81 6.46 x 1076
2.5 G.922 3.81 6.79 x 107%
1.0 0.967 3.81 13.6 x 1076
First side lobe (1)
Energy = 18.1J
Effective beam diameter aperture = 2.20 cm
aabs(km—l) f q tS(S)
50 0.321 7.36 4.16 x 1076
25 0.506 7.36 4.v9 x 1076
10 0.736 7.36 6.14 x 1076
5 0.852 7.36 8.08 x 1076
2.5 0.922 7.36 10.9 x 1076
1.0 0.967 7.36 16.9 x 107®




| Second side lobe {2)
; Energy = 13.5 J
Effective beam diameter aperture = 2.20 cm

! agps(km™t) f q tg(s)

é 50 0.321 7.36 4.82 x 1076
'! 25 0.506 7.36 5.43 x 1076

i 10 0.736 7.36 7.11 x 1076

; 5 0.852 7.36 9.35 x 1076
51. 2.5 0.922 7.36 12.7 x 1078
73 1.0 0.967 7.36 19.6 x 107® }
| |
|
H i
H
bl

.

Third side lobe (3)
Energy = 7.88 J
Effective beam diameter aperture = 2.20 cm

N it

TR

uaps (km™1) f q ty(s)
", 50 0.321 7.36 6.31 x 1076
¥ 25 0.506 7.36 7.10 x 1076
10 0.736 7.36 9.31 x 1076 ;
5 0.852 7.36 12,2 x 1076 |
2.5 0.922 7.36 16.6 x 1076 !
1.0 0.967 7.36 25.7 x 1076
?
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Fourth side lobe (4)
Energy = 3.2 J
Effective beam diameter aperture = 2.20 cm

aaps(km™1) f q tg(s)
50 0.321 7.36 9.89 x 107
25 0.506 7.36 11.1 x 107%
10 0.736 7.36 14.6 x 1076
5 0.852 7.26 19.2 x 107%
2.5 0.922 7.36 26.1 x 1076
1.0 0.967 7.36 40.3 x 107

The following table

|
|
! absorption coefficients as the density of the WP smoke cloud decreases with
: time after initial dispersion
i

is a compilation of typical

th values for various

[}

../ 'BD t
| D (m) (9) (W/cm? ) (km™1) tn(s)
§ 2.57 x 107 80 107 50 5.07 x 10~9
i
2.56 x 10-7 80 107 25 6.17 x 1078
2.57 x 1077 80 107 10 2.77 x 1077
| 2.57 x 10~7 80 107 5 4.56 x 1077
2.57 x 10~7 80 107 2.5 5.85 x 107
2.57 x 1077 80 107 1.0 6.81 x 107
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Mztching the average pulse length tp of the S° high energy C0, laser output to
the minimum pulse 1length t. requirement and to the upper 1limit on the
saturation thermal blooming pulse length t;, we find that tp is well above the
gas breakdown threshold for a variety of total extinction coefficients ay.
Also for absorption coefficients less than 50 km™t, tp is below the satv ated
pul.e length t.. For example, at the center lobe (0) with high Uspg M ap ~
50 km™!, tp ~ 3.2us meets the requirements to maximize the single pulse
fluence delivery since 0.005us < tp < 3.33wms. At relatively low total
extirction values ap ~ 1.0 km-1, tp is again well within the pulse length
limitations imposed, that is, 0.58us < ty < 13.6us in the center lobe (0).
Thus we see that thermal blooming and gas breakdown effects are not
significant factors in punch-through clearing as formulated in this article
for the S° CO, HEL.
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