AD-A100 865

UNCLASSIFIED

KANSAS STATE UNIV MANHATTAN DEPT OF COMPUTER SCIENCE F/6 é/z

PORTABILITY OF OPERATING SYSTEM SOFTWARE, (U}
JUN 81 V E WALLENTINE

TR=-81-05 ARO~16160+7=~A~EL

DAAG29=78-6-0200
NL

. [EVEL,, CARO 16160, 7- R-EC

' PORTABILITY OF OPERATING SYSTEM SOFTWARE. @

i)
e AL TECHICL REPORT. =
-
o V. E. WALLENTINE
=t
£
<t) "‘.-ﬂ
A ¢.’.‘.‘;"~)
June 1, 1981 ST R %5
/’ ":‘: e “Ar\ \q%\
. /;,r // 4o k*;/ . ";“’r‘:'-’) S‘)\\(S
U, S. ARMY RESEARCH OFFICE v
/- |
- DAAG 28-78-6-0200
KANSAS STATE UNIVERSITY
e
Q.
S
- APPROVED FOR PURLIC RELEASE:
g DISTRIBUTION UNLIMITED
=
E :’.‘/, ’/ Z f /‘
=

—my

—UNCLASSIFIED
SECUKITY CLASUFICATION OF THI% PAGE (Whan [Inte Prtered)
READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE pEri AL INSTRUCTIONS
1. REPORY MUMUER 2. GOVT ACCESSION KO 3. RECIPICNH r_'s/cu'u.o(. NUMBLR
.] -

A | - <

Al /LA S¢ 5
4. YITLE (and Subtitle) 3. TYPE OF REPORT & PERIOD COVERED

' Final Technical Report
Portability of Operating System Software Sept. 1979-March 1981

6. PCRFORMING ORG. HEPORT NUMBER

TR-81-05
?. AUTHOR(e) 8. CONTRACY OR GRANY NUMBER(e)
V. E. Wallentine DAAG 29-78-G-0200 -
9. PERFORMING ORGANIZATION NAME AND ADORESS 10, PROGRAM ELEMENT, PROJECT, TASK !

. AREA & WORK UNIT NUMBERS
Department of Computer Science

Kansas State University
Manbattan, KS 66506

1), CONTROLLING OFFICE NAME AND ADDRESS _+ {12, REPORT DATE
U. 8. Army Recearch Office - June z, 1981
Post Office Box 12211 V3. NUMBER OF PAGES
Research Triancle Park. NC 27709 40
14, MONITORING AGENCY NAME & ADORESS/ i dittarant (rom Controlling Otlice) 15. SECURITY CLASS. (of thfs report)
Army Institute for Research in Management
Information Systems and Computer Sgience Unclassified
Georgia Institute of Technology * I15a. DECLASSIFICATION/ OOWNGRADING
Atlanta, Georgia seneouLE

16. DISTRIBUTION STATEMENT (of thle Report)

Approved for public release; distribution unlimited.

17. DISTRIDUTION STATEMENT (of the sdsiract entered in Block 20, 1l diiferent trocn Report)

NA

18. SUPPLEMENTARY NOTES
The view, opinions, and/or findings contained in this report are those of the

authOf(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation,

19. KEY WORDS (Continue on reverse side if necessary and (dentity Oy O10CKk nusnder)

Portable, Adaptable, Network Operating System, Software Configura-
tion.

210 ABSTRACLT (Tantinue en reverse side i/ neceesary aod tdensify by block number)

In this document we summarize the results of a study into the adapt-
ability of system software to a computer network. We first discuss

the structure of a Network Adaptable Executive - (NADEX) written in

concurrent Pascal. We then discuss the performance of NADEX and the
impact of concurrent Pascal on the performance of NADEX.

(034 .S::"" 1473 €oimios oF * nOV 63 15 0OSOLETE

UNCLASSIFIED

PP iimevor it 00P I FIF aPimal M Wite P ams sBm .. Poie Toseasdt

’

e -

FLilAL TECHHIICAL REPORT:

PORTABILITY OF OPERATING SYSTEMS SOFTWARE®

V. E. Vailentire
Principal Investigator

TR-81-05

Computer Science Department
Xansas State University
May 1, 1981

Tris research was supported in part by the Army Institute for 3X=2cear:n
in ilanagement, Information, ana Computer Jystens und
DAAG 29-72-3-02C0 from “he Army Resear~h Cfice.

1.0

2.0

6.0

7.0

Table of Contents

Pagze
Research Objectivescieven. “eevesessecsassoserassrecenanen 1
Research ReSults .tieeieieconnvcnsesnocsnens Ceseassnsanas cseeee 4
2.1 Introductory NADEX ConNncCeptS seeseeccessccsascccncconcaces 4
2.2 Adaptability of HADEX Layers Cereteeceesesaanons 10
2.3 Performance O NADEX (viiiiianeorsosanscasesnasacacsonss 15
FULUPE WOPK tveviiaeeonocnarseesassasocesesssssssosnssanananss 19
Annotated Summary of Papers and REPOrt3 .eeececsscccacnancscne 22
4.1 Papers Published Outside KSU Ceseeavascansannes 22
4.2 KSU Technical Papers te.eeeeeseececssescanssasasencacans 25
References vesesaan Ceeesesecaannns seseareraenanan . 34
Prototype lodule Sizes (.i.ivciene Ceceseseseteirreresesnans .o 35
Participating Scientific Personneliieienincanens reeeenes 36

autuindl,

vayn;

e |

1.0 Research Qbjectives

The objective of this research was to investigate the portability
of operating system (0S) software. True porctability is interpreted as
the ability to run a program unchanged on multiple heterogeneous host
machines. The basic heterogeneity of such host computers means that any
0S must be charged to accommodate low-level architectural features.
Therefore, we chose to study the structure of an adaptable 0S which «an
execute on various machine, operating system, and computer network
architectures. This research effort has produced the following results:

1. an adaptable core operating system written in Concurrent
Pascal,

2. a network adaptable executive (operating system) which
supports distributed programming,

3. a distributed program construction and control system, and

4, performance comparisons of high-level language based
operating systems under structural variations.

During this study, we produced three published papers (and one still in
preparation), eleven technical reports, and 30,000 lines of Pascal and
Concurrent Pascal [5.1] code which constitute a Network ADaptable
EXecutive (NADEX) and its program development subsystems.

In this document we will describe our approacn to porting the
various layers of an operating system, the basic services and structure
of the NADEX systems, and their performance. We will also relate each
element of the system to our reports and papers whose abstracts appear
in Section 4. In order to distinguish <hese ©papers from aother
references, the other references are in Section 3.

The approach we nave taken 1s to study the functionaliity and
.ayering of a distributable operating system, define the portability

groperties of each layer, implement the system [incliuding i¢s program

POV UTTPIE, .- S

PPN

2
development subsystems), and then test its performance. The result is
NADEX. It has two layers--a distributed programming environment and =z
core operating system. The core operating system is ported relatively
easily due to its implementation in a strongly typed concurrent
language-=Concurrent Pascal. It provides a message-passing core on
which all of the NADEX distributed programming enviromment is
implemented. The portability of the programming environmment is based on
this ability to pass messages between programs in what we call a
software configuration.

These configurations are general graphs of communicating programs
(sequential or concurrent) which can be distributed across a computer
network. The NADEX distributed programming environment is a software
configuration itself; and therefore it is adaptable to other
message-based core operating systems (UNIX [5.7], for example) and is
distributable across a network. This configuration, in turn, supports
the creation, distribution, initiation, synchronization, and termination
of distributable user software configurations.

NADEX has been implemented and is running as a prototype on a
Perkin-Elmer (Interdata) 8/32. It 1is ready to be tested in 2 network
environment. In addition, the feasibility of porting it to other core
operating systems such as UNIX, UCSL Pascal system, and Perkin-Elmer's
0S-32/MT has been studied. All seem to be feasible under varying
degrees cof effort., UNIX seems to be a willing host while the latter twc
will involve mcre effort,

We have also tested the rerformance of -he UACEX core operating
system under various structural changes. FPerfcrmance exreriments were

S

carried out which isolated (1) the impact of a centralized buffer systen

PRy 93

P

PR S S- S

ctadhng

3
versus a de-centralized one as the central element of the NADEX core CS,
(2) the impact of a high-level language versus an assembler language
kernel, and (3) the impact of a multi-level concurrent program
(hierarchical virtual Concurrent Pascal machine) kernel.

In Section 2, we overview the layering of the NADEX systems, their
relationship to other core operating systems, and the distributed
programming tools which have been developed. We also present the

results of the performance experiments.

2.0 Besults
2.1 Introductory NADEX Concepts

The results of this research are the NADEX core operating systen,
the NADEX distributed programming envirorment, and the performance and
portability properties of each. This section contains a discussion of
the functicn and layering of tne NADEX systems and the impact on the
adaptability of this layering. This section concludes with a discussion
of NADEX performance measures.

NADEX is a distributed programming environment and a core operating
system whose objective is to support modular programming. This concept
of "programming in the small" which has been so successful in UNIX
[(5.7]~-in the form « cf pipelines of communicating sequential
processes--is extended to support general graphs of communicating
programs under NADEX. These general graphs are called sof'tware
configurations and consist of nodes which communicate via Data Transfer
Streams (DTSs). These DTSs are full-duplex in nature and, therefore,
support bi-directional ccmnmunication between any two nodes which they
connect. Nodes access DTSs via gores. These ports are
distribution-independent and, therefore, permit nodes of a configuration
to be distributed across a computer rnetwork without reprogramming.

NADEX supports three programmer views--the single node programming
view, the data flcw abstracticn, and <he overall software :onfiguraticn
structure. It c¢rovides the compilers and PREFIX for sequentizl and
loncurrent gprogramns, the 275 cLerations, and the configuration
deserigtor for a distrisutable onriguration, restectively, or these
crogrammer views. It 3l30 fermits exgreszicn 3 these views in 2 user

tailcred svstem. Command crocessors, Jtility subsystems sunh as Tile

H Ve 9

ntnd it

—_

1=
-

systems), and configuration description languages can be specified by
the user. These systems can be constructed upon HADEX which provides
only the essential elements of an operating sSystem=~interprccess
communication, a representation for distributable, communicating
processes (software configurations), and resource allocation. It is the
DTS concept which permits software configurations to be distributed
across a computer network controlled by NADEX.

NADEX supports a concept we call a software configuration--rerferred
to as merely a configuration throughout this document. A configuration
consists of a collection of nodes connected by data transfer streams

(DTS*'s). Nodes can be user programs (both sequential and concurrent

[

languages such as Sequential Pascal and Concurrent Pascal), file access

nodes (for accessing files within the NADEX file system), I/C device

-

access nodes (for accessing I/0 devices not supported by the NADEX file
system), or external configurations such as subsystems.

Nodes within the configuration are connected by DTS's which are
also called connections. Each connection consists of two bi-directional
components-~data and parameter. The data ccmponent transfers data in
page-sized blocks (a page is 512 bytes) and interfaces to the user
program at the page, logical record, or character level. The parameter
component transfers small parameter blocks typically used for control
information. The data and parameter ccmponents zre totally incependent.

The two directions of each component are independent in the sense <ha:

each direction nas its own queue, 2ut the user protocc. restirictions zre
defined in termns of %he bi-directional compcnents.

For purposes of these discussions, we will 3ceak 3f 2 ncie issuing
reads and writes to a DTS. These should be assumed tc e read-rage and

—

(5

write-page requests for the data component, and read-parm and write-parm
requests for the parameter component. The blocking of character and
logical record data into pages is handled by a PREFIX of the nodes ana
Wwill not be discussed here. Unless ctherwise specilied, all discussions
apply equally to data and parameters, and no distinction will be made.

There are no structural restrictions on the graph formed oy the »

nodes and connections (DTS's). In particular, it need not be linear !

[t
n

3
.

in UNIX {5.7]) or hierarchical. It rneed not even be z2cyeliz o
connected. Nodes are not precluded from- having connections %o H
themselves. Thus, the configuration is described by a ({(lapeled)
undirected graph. The labeling occurs where each connection enters <the
two (not necessarily distinct) nodes it connects.

The user programs (as well as <the various system routines which P

. 4
implement the other nodes)} address the «connections emanating from e2ach

n
daatt.

node by DTS identifiers local to the node. These local DTS identifier
are also called port numbers. The meaning of the data stream associated

with each port is defined by the program. Port numbers are generall

<l

assigned by the programmer starting with one. These port numbers are
the labels on the configuration graph.

The structure of a configuration is derined bty an interactive (PCD)

]

construction program which builds a file called a Partial Configurzticn
Descriptor {PCD). The PCD derines the structure of %he zonfigurzticon
and the type (user program, file access, etc.) of each node. P2CD files
can be hierarchizal 30 that they can be zonstiructed Iin 3 modular zanrner
38 3 ~ompesition c¢f other PCDs. When the wuser requests <ha:t =2
configuraticon o2 run, via 3 terminal o2cmmand language, -he 2CD 3 used

aiong with information frem the command to 2onstruct a 2onfiguraticn

b 4

e e ER e S

desceriptor (CD). The configuration descriptor includes all of the
_nrformation about the configuration including, for examcle, the nazes of
the files to be accessed by the file access nodes. The configuraticn

descriptor contains e2nough information for the system <o =2llccas

@

[}

resources across the network. This set of distributed programming toocl

\
h

NADEX is &

Pr

1y

lustratec in Figure 1. In addi<icn

[

wnich are available under

ot

o the PCD construction <ools, <the structure of the PCD 2an be szcwn

1)

graphically as well as <textually as seen in Figure i. Thus, zhe 2CC

C

Workbernch provides the user with the ability to specify general grapns

of programs in a terminal cocmpmand language

-
0
o]
o]
7]
ot
3
=
[¢]
ct
<t
Iy
0]
£3
b
3
w

nierarchical manner and automatically Zenerate grapnic and text outpus.
The set of programs and tools of
4.2.4 through 4.2.38. If the NADEX oprogramming system is used on 2
single machine, <the configuration is subnitted <o <he HALEY core
operating system for execution.

The PCD Werkbencn programs permit “he user to specify the marnner in

which the ccnfiguration 15 to be distributed 2cross 2 computer network.

Thus, the CD contains infeormation abtout the residence of Zacta and
orograms wWithin the network. Given this Network Configuration
Descriptor {(NCD), the NADEX distributed grogramming envircnment can

distribute the configuration across the network; and i% czan initiate,
synchronize, and termirate the individual carts of the configurztion.

The manner in which this is accomplished is illustrated in Figure

be run on the 3separate nachines. The LI035 zare sent 0 2 neiwork
configuration zonorol “HCC) frogram on each macnine. Tae HCC oreograms
across the nretwork thus <ooperate tc 3ynenrcnize <the initiztion,

Tommands sucn
in UNIK
ANSWERS QUESTICNS Shell or
SoLd 20
; PCD ;
‘ Construction "
Program ;
i
: Graphic ;
é Display
Program ‘
{
4 1
1
Z °Co Comrmand :
De-comziier Srocesser A
. l Resoived | ?CT '
Configuration Uy
* Descriptor o
. . Srogram
Language Form E
{text, of PCD . .
Coniguration
Jescriotor

Jata flow

= = = 2lanned but not yet implemented

Tigura L, ne 20T dnrégenan

AL g

ooy ety

Termination

Status
%*—iﬁx‘_——

Local
Configuration

Cescrintor
L oot

>

NCC on
Machine
M1

Local configuration
Executing

on
M1

Network

Confiquration
Descriptor

T

Netwaork
Configuration
Control
(MCe)
4
LCO2 e e .4 LCDn
5 4
i :
Il 1]
NCC on e e NCC 2n
M2 Mn

i Activaticn of local configuration on locai NACDEX

Well-known inter-%CC oorts
Oynamic conrecticn of ports via network

™ +
@ ua ua -

tructure

tr]

TGURE 2

DISTRIBUTION JF SCFTWARE CONFIGURATIINS

ACROSS A (ZM

PC

PUTER METWORK

o or

1C
execution, and termination of distributed configurations. The execution
of an LCD is carried out by a local NADEX or other core operating. The
implementation of the data exchange between nodes (DTSs}) 1is via a
network inter-process communication system called MIMICSE. More detail

cn the components of each element of MNADEX is presented in the next

section.

2.2 Adaptability of HADEX [Layers

Figure 3 contains an illustration of the implementation structurs
of the NADEX distributed programming environment and its relationship %o
the NADEX core operating system anc the UNIX core operating system. in
the remainder of this section, the functions of the components of this
system will be discussed. The porting properties of NADEX will alsc be
discussed and these will be illustrated in Figure 4.

The NADEX core operating system is responsible for exscution of
local configuration descriptors. The properties of this core operating
system are described in reports 4.2.1 through 4.2.2. Given that UNIX
supports message~passing between processes, it could be used as the core
operating system. However, as described in report 4.2.10 UNIX needs
additional facilities to support mnmulti-user subsystems. The PORTS
facility of Sunshine [5.6] and Zucker ([5.8] make it suitable as a 2cre
operating system onto which the NADEX distributed programming
environment (DPE) can be adapted.

The command processors {(MIRC, UNIX, and 20), the nierarcnical f{ile
subsystem (HFS3), the link oprogram (LINK), the network file subsystenm

fNF3S), the SUBMIT node, the network configuration controi NCC), and

YIQVYR JOo ®20] penqiuaqeyq oyl °f eun?ry

~e00uonm~ac«uoq Il

Joﬁmauaaaao«n>nm.uncu

fO4NYI0BITYOI® SO FuthAyJopun 9ATIBUIRITY ~—m
‘uUOyIoQULO) meAJIS JeJeuURL] TIR(~—————:DUOFOT

- Em e tewm e e Ee eme SR e W emn e v e map e fme e e g W e emw e

i l i

i l H
Quiyo el eUTYO R eujyoey QUTYORK

I | " .
[h] 1ouaay — 0d —— 1ouasy

SLi¥04d jeoseqs Siy 1edcey)

enyyq H | sntd n
4§qa 50 3400 ¥0 SO ®J0d i

XN XINN

o i 13QVN ! " X3IAYN

0Jn31003Tyouy s fujkiaepug

n«llllll“ — .-Illll\i“
1OSXIKDY |} tosxInna)
R | e
1] n
LIWdns LIKANS | liHans 1IKANS

7T U ! el 7 _,
, | p
y; unoancqnhTOsnlnltu-U{unonn:auh
l

7/
N ZIN
ZIN TN SN N | AN N S
|
N ! \
i ;
SSaH ANIT l ANIT ssad
\H/ N _/
l
JUIH IUTH |
l |
 { {)
[rutReIl Jacg {euiaual Joe(|
— —
- — -——— —— -— - — -— — - -~y -— —— - — — — L o -— — ~—— - ——
Z INIHOVH t AXKIHIOVKH

12

PORTABLE
CODE
(PROGRAMS)

PROGRAM
INTERCONNECTICN AND
RESOURCE MANACGEMENT

DATA FLOW
CONTROL

N

MACHINE
ARCHITECTURE

NETHORK
Mt U SAGE
SUBSYSTEM

INTER- CONF TGURAT 10
CONNECT ION

/! CONFIGURATION
/L [NITIATION. QUIESCING.

TERMINATIOH

e —_——

13
the transport level (XMS-message system) are all programs in
network-wide software configuration. The command processors, NCC and
LINK programs have already been discussed, and the HFSS is a prototype
UNIX file system. The SUBMIT node submits a 1local configuration

descriptor to the local core operating system and returns its completion ;

code to NCC. The NFSSs communicate across the network to control files
across the network. Finally, the transport service (MIMICS) moves data
between ports on separate machines.

In Figure 4 there is a view of the implementation structure of the
NADEX core operating system. We will refer to this figure in describin
the adaptability properties of NADEX. The outer ring (1) of the onion
consists of configurations. The NADEX DPE resides at this level.
Therefore, both the NADEX core operating system and UNIX with PCRTS will
support the NADEX DPE. As shown in Figure 3, a small map between Zata
transfer streams and pipes in UNIX must be added to SUBMIT to adapt the
NADEX DPE to UNIX. (This map has been programmed but not debugged due
to lack of a good UNIX system available.)

The closer one gets to the center of the onion, the more machine
and/or operating system dependent an adaptatioh of NADEX DPE becomes.
Since all of NADEX DPE was written in Sequential Pascal, it adapts to
nessage~-based core operating systems very well. Only a Pascal compiler
and a SUBMIT map are needed. This level of effort is on the corder of
cne man-month. Furthermore, the NADEX core operating system (rings 2
and 3) are written in Concurrent Pascal and, therefore, port Iirectiy <o
any system which supports hierarchical Concurrent Pascal programs. A.ng

4 i3 the Concurrent ?Pascal «xernel. It is written in Sequential Pagzal

and ports nicely <o P-code type machines sucn as the Western Digitil

Pascal Microengine.

Four feasibility studies were ~arried out wunder =<his researcn
effort to ascertain the effort necessary %o adapt zhe NAJEX DPE tc
several machine and operating system environments. It is currently
running on a Perkin-Elmer (Interdata) 8/32. The rirst experiment was to
host it on a UNIX system. It took about one month's =2ffors 2o coce.

The second experiment involved studying <the Concurrent Pascal compiler

to ascertain <the effort to generate P-code for the Western Digital.

L]
ot

This took about feour (4) months effort in its preliminary work.
would take another two months to complete the -azk--total cf six months
effort. This study is documented in report 4.2.1°7.

The objective of the third and fourth feasidility studies was to
assess the difficulty of integrating the facilities of :zhe NADEX core OS
into existing core operating systems. The operating systems chosen were
Perkin-Elmer's 0S=32/MT and the UCSD Pascal P-system. The agproach waz
to use the «xernel facilities (ring &4) of eacn ZC =2.d then integrate
rings 2 and 3 code of NADEX into these operating systems. We programmed
ring 3 for both mmachires--in assembly lianguasge for the Perkin-Elner
operating system and in UCSD Pascal for the other. In both cases, it
took two mwmonth's effort each. Ring 3 seems to be about twice as

complax. Therefore, assuming that memory zand other resources are enoughn

D

to hold NADEX, six months! ffort 153 31 good =2stimate of the Io%al

(&)
r

porting effort per system. 2ourse, the rate of generaticn and

coce i3 2xtremely sengltilve o the

",

understanding of this level ¢

juality of the progranmmer.

o i -

P

2.3 Performance of NADEX

The study of the performance of NADEX was carried out in two
phases. The first phase was to instrument NADEX and record the
percentage of run-time that NADEX spent in each ring. The second phase
involved recoding rings 3 and 4 and comparing the performance of the new
and old versions. Table I contains the percentage of time in each ring
for a three-node configuration where the nodes only pass messages
between each other and do no real computation. The objective is to
isolate the elements of the core 0S which can be improved in speed and

get the most improvement in overall performance of NADEX.

4 time spent

RING 4 29.75
RING 3 15.00
RING 2 40.00
RING 1 15.25
Table I

t is zlear frcm Table I that the critical factors to performarce
are the xernel and the centralized buffer {data flow) manager. In the
original form of NADEX, the data (pipeline) buffer manager (called the
PBM) was written as a decentralized manager so that contention for
buffers would not te a bottleneck 1if the core CS were to be run con a
aultiprocessor with shared memory. In order %0 test “he overhead of
this structure, we recoded ~he PBM into 3 2entralized version and tected
~he performarce of bdoih against <he cerformance of an issembler Huffar
manrager in 35-22, MT-=3 representative >f
Table II gives <he -ime %0 “ransfer >ne message he“ween "Wo noces .sing

ii. wnree acdules,

16
Thus, it is clear that the centralized PBM is superior to both other
methods and drastically improves the performance of NADEX; and it is

also written in a high-level language.

Transfer Time

Decentralized 10.0 milliseconds

Centralized 2.3 milliseconds

Assembler 4,0 milliseconds
Table II

PBM Performance

The next most critical element of performance was the kernel of
Concurrent Pascal--ring 1. The only degradation in performance that we
envisioned was the difference in performance of Pascal vs. assembler
language. We chose to c¢ode it in assembler as well. The assembler
kernel ran only 5 percent faster than the kernel written in Pascal.
This was a surprise. We expected an improvement of at least 25 percent.
However, it does give an indication that a portable kerrel writt-n in
Pascal does not incur a substantial performance penalty.

It is interesting to note that the code size of the assembler
kernel was 33 percent smaller than the size of the Pascal kernel. Thus,
recoding in assembler saves considerable space but does rot improve
performance substantially. The size of code of each module in NADEX is
presented in Section 6.

During *the course of this research effort, we developed the ccncept
of a Concurrent Prefix. This is similar to Per 3rinch Hansen's Prerfix
{5.1] for Sequential Pascal except that it cermits Ccncurrent 2s weil as

Sequential Pazcal programs to be executed and have services to the Lower

J—-—-—_-—_.———-N

il e 3 AR

ctnibece,

17
level Concurrent Pascal program--the O0S. In this case, it is NADEX.
This provides a true hierarchy of virtual Concurrent Pascal machines.
This is illustrated in Figure 5, This virtual machine facility adds
significant levels of complexity to the Concurrent Pascal kernel. Ve
measured the performance of both versions of the kernel. We found that
the virtual CPascal machine kernel ran U2 percent slower than the
non=-virtual machine kernel. Thus, the kernel overhead to maintain the
hierarchy of virtual machines is a signficant performance factor; and

only some microcode or hardware assist will improve the performance.

LeveL O ProcEesses |

S -

|
LevlieLr 1 SEQUENTIAL
PIRoc e sisEs PascaL
PROGRAM
10 (DEV, ;
t PARM) L ﬁ
LeveL 1 CPascaL ProGgraM
MONITORS, ETC.
CONCURRENT SEQUENTIAL
PREFIX PREFIX
\v4 }
) LeveL 0 05 (NADEX) -
: Mon1TORS, MANAGERS, AND CLASSES
I
KerRNEL

FIGURE 5

VieTuaL CPascal MacHIME

19

3.0 Future Work
Under this research support, a Network ADaptable SXecutive (MNADEX:
has been developed which provides a distributed programming envirorment.
This executive 1is implemented in Concurrent Pascal; the results or
performance testing on NADEX established the wviapility of a aighly
structured concurrent language for implementing operating systeos. The
strong typing of Concurrent Pascal provides the relative portability.
Extensions to this work fall in two areas: work to improve the wutility
of the NADEX systems and research into distributed computing for which
NADEX is an excellent testbed. 1In the area of extending the utility or
NADEX, a modified version should be developed for personal computers.
NADEX should also be recoded into the ADA programming language to

improve 1ts portability. In the second area, new distributed

3

programming tools need to be developed. NADEX will serve as ar

S

excellent development environment and a good performance test load.

In order for an operating system and its support sof:ware :to De

truly portable, it mwmust be written in a language which nzs wide

b2

acceptance as a standard; and it must have the support of industiry,
academia, and the federal government to previde compilers Tor many
machines. ADA is such a language. The NADEX distributed programming
environment and the NADEX core operating system would be even mcre
portable if written in ADA. This task is relatively straightforward
because of the closeness ia philosoohy and typing of ADA and Corncurrent
Pascai, The NADEX ZJistributed gzreogramming e=nvironment Zould be hosted
on any machire fcr whizh <here i3 an ATA zfompiler. The YNAZEY :cre
operating system could De used %o suprort thisz envircrment on oare

machines which permit access -0 lzw=lavel Zevices rom ADA. Ferdsrmance

{
‘l
5

aace

20
of these ADA-based systems could then be measured on both high-level
language machines (such as the INTEL 432 (ADA) machine and the Western
Digital ADA microengine) and on general register machines (such as the
DEC VAX-11/780, the Perkin-Elmer 3200 series, and the IBM 370
architectures) for which compilers are now being constructed.

In order for NADEX to be portable to smaller systems (perscnal
computers), a version of NADEX should be implemented for a Limited
Capability Host. In this system the small system (LCH) snhould be ablis
to run local configurations as well submit configurations to a
supporting host to distribute across a NADEX-controlled network. This
system would provide the personal computer user access to the resources
of the network. Small machines such as those rurning UCSD Pascal or
TSI-ADA are great program development tools but sometimes need access to
larger machine resources.

Further work needs to be done in the area of run-time specification
and validation of inter-program communications protocols. Programs
(sequential or concurrent) in software configurations communicate via
ports which nhave low-level properties such as number of buffers. The
NADEX core operating system validates only the number of buffers used
between programs. However, at the programmer level these ports are data
streams. Any protocol between programs exists c¢nly in the programmer's

mind. A syntax to describe these inter-program protocols is needed

n

]

that {1) the programmer can describe <them 3in a Jescriptive manner, . 2)

[4]

the system can compile these dJdescripticn and [3) when these programs

are ccombined together into a3 3cftware cenfiguraticn, -he crdering an

[¢}

typing of messages aexchanged Detwesn Irograms 2an Se shenked Sar

validivsy.

—-m"

P T e =~ S,

The syntax suggested Dby our research is protocol expressicns as

documented in our techrical report [2.2.4], Zxtensions *to incluce

is

predicates ia protocol expressions should also be investigated. The
basic research to be undertaken would &te the syntax, semantics and
implementation of a Configuration Cescription Language wnich

incorporates these inter-program protoccl expressiors. Properties cf

this language should include hierarchical encapsulation (packaging, and
documentation control. The obvicus implementation ¢f this proposed

system is via a preprocessor sSo that it could 2e modified %o 2dapt to
other programming languages such as ADA.

The NADEX distributed grogramming =snvironment 2urrently neecs
explicit commands frcom the wuser in order to distribute s3oftware
configurations iCcross a network. This infermaticn {rescurce
avallability, data grograrm placement, and freqguency of grogramsista use
2% =2ach site] can automatically be collectel during exscution of the
HADEX environment. Zxtensions %o germit YADEX to 2cllexs and use thiz

irformation would support resezarch

(@
4]
fled
1]
s
(@]
(P}
9
1]
3
(ad
jub
03
g8
w
~
1
U
3
b
3
[
03
v
fu
ot
b
)
o3
+
b
r
3

automatic network-wide resource allocation.

Firaily, NAPEX performance iIs 3treongly 2afscted oy <ne Iransporet

[

level 'message system) software complexity. 133 feformance needs yesl %O

ce tested on a high-3speed local network. It is hygpcthesizced <nat =he

o
N

4.0 Apnotated List of Papers and Reports
4.1 Papers Published Qutside XSU

4.1.1 V. E. Wallentine, "Experience with Concurrent P?rascal a3 an
Implementation Language," Prcceedings of itne Conference foded

Microprocessors in DOD, Pingree Park Conference Center, Colorado,
August 1979.

Per Brinch Harnsen designed and implemented the programming lzanguage
Concurrent Pascal [5.71] on a PDP 11/45 at the Zalifornia Institute of
Technology. 1In this caper, we present tne basic congcepts in Concurrent
Pascal and its relaticnship to Sequential Pasczl. Concurrent Pascal has

been used at KSU to implement several large systems including =z

multi-user operating system. we discuss the extensions to the lznguage

¢ r
o
1]
e}
4
o]
(9]
=
[43]
&1
w

necessary “o inmplement these systems. Finally, we discuss
involved in adapting Concurrent Pascal to severzal machire envircnmernts

including microrrocessors with small acddress spaces.

4.1.2 V. E. Wallentine, "Programming Issues in Distributed Systems,"
Proceedings of the Network IPC ‘corkshoo, Gecrgia Institute of
Technoliogy, Atlanta, Georgia, Ncvember 1573,

I¢ we are to te successful in distributing crczrams acress nighly

distributed systems, we must provide the progrzmmer of Zdynamically

interconnected cooperating processes a job control language Usorlware

configuration control) as easy to uze as Hoare's communicating
sequential crocesses. IL seems %that %he most gromising direccion Is o

2xtend “he 2oncept of the UNIX shell o0 automaticzlly generzte <the ocre
complex protoacls awvailable e the darent Irocesses Srevicus.ly
.

deserited. It oust then alsc e extendad "o gererzte (rerresentations

\

r} 2istrizutabls z2enfigurations of communizatzing orocezses. worw .o

(]

PUSHIGE SRS

T L csdaiTm s e 20l -

develocment of a Network aAlaptable EXecutive (HADEX). The attemgt is tc
permit the user to specify data flow at the command level and have <he
command interpreter generate a distributable software configuration of
nodes connected by full duplex data transfer stream connections (DTS
connections) to form an wundirected graph. In general, a2 node may be
thought of as a process. Each of the connections consists of 4wo
independent bi-directional data transfer streams. 0One of these s:ireams
uses small parameters while the other uses a standard-sized data bulfer.
The data buffers carry along with them size and status indicators
whereas the rparameter ouffers contain only a small amount of
user-supplied data. In this paper we present a hrief overview of the

progerties of software configurations.

4,1.3 F. J. Maryanski, P. S. Fisher, and V. E. Wallentine, "Data Access
in Distributed Data Base Management Systems," Journal of
Information and Management, Vol. 2, Number 6, North-Holland Publ.
Co., December 1979.

Distributed data Dase systems have bhreen advocated as the solution
y
to a large number of data processing problems by increasing data
accessibility, security, and throughput while reducing cost and resource
requirements. Unfortunately, commercially available distributed data
base systems have not yet appeared. This paper attempts to provid the
potential user or designer of a distributed data base system with an
understanding of the basic operational characteristics of such systems.

Tre emphasis is upon the mechanism for Jata access which 15 an essential

component of any data btase system. Sur inten<tion is chat zhe reader

gain an appreciaticn of the capabilities and zcmplexitizs of distributed

o]
[¢)
o
0
4]
2]
@
o)
3
[0}
e}
o
w
a3

jata base management fron the explanation of the data a

-

PO S

ket dite s e .

= -

This paper first discusses the basic structure of distributed data
base systems by detailing the functions of the system compornents. Tren
in parts three and four, mechanisms are presented for the placement anc
access of data in a distributed data base system. The fifth part deals
with the movement of data among machines and then the sixth section
priefly discusses the concept of multiprocessor backend macnines. The
firal portion discusses data integrity considerations in distributec

data bases.

4,1.4 V., E, Wallentine and R. A. Young, "NADEX--An Eavironment for
Distributed Programming,"™ In preparation for the Journal of
Computer Networks, June 1381,

User access to resources in a computer network has typically taken
the form of communicating sequential processes. In such systems, a user
process executes an application program; and whenever it needs access to
a2 resource, it sends a message to a system (3erver) -rocess on some
machire in the network which manifests requested resource (for example,
a file or devigce). The server process then accesses the resource and
returns a message to the application. Current extant systems [5.2]

provide for the distribution of multiple servers for file or device

access to communicate to a single application process. Medusa [5.5] and

rasks on a tightly coupled set of machines can form 3 gereral grapn °f
communicating rrocesses. In this paper, we Jdiscuss 31 Ilstribdbutec
preogramming enviromment called NADEX {Network ADaptaole EXecutive) wnich
supports the distribution of sof%tware configuraticns across lceosely

coupled networks. These software configurations are gerneral Zraphs of

programs where each node communicates via ports.

of Hoare's CSP [5.3] by burferin

permitting nodes to be concurrent as

first present the concepts of software

This extends the work

cn the <connected ports and by

well as sequential programs. We

configurations and their use. We

conclude with the structure of the NADEX implementation concepts.

4,2 XSU Technical Reports

4,2.1 R. A. Young and V. E. Wallentine,
System Services, Tech. Rpt. KSU-CS-TR-79-11,
NADEX is

programming.

an operating system whose objective is %o supror:

This concept of "programming

"The NADEX Core Creratin
February 1979.

modulzr

the small" which has been

so successful in UNIX [5.7]--in the f{orm of pipelines of communicating
sequential processes--is extended to support general graphs of
commuricating sequential graphs (CSP) [5.3] under NADEX. These gzeneral

graphs are called software configurations and consist of nodes which
communicate via Data Transfer Streams (DTSs). These D7TSs are
full-=duplex in nature and, therefore, support bi-directional
communication between any two nodes which they connect. Nodes access
DTSs via ports. These ports are dJdistributicn-independent and,
therefore, pernit nodes of a configuration %o be distributed acrcss a

computer network without reprogramming.

fADEX supports three grogrammer vi

view, tne data flcw abstractior, and

structure. srovides the

[aYaaled

soncurrent crograms, <he 273

descriptor for a iistributable

orogrammer vi It 2l50 permits 2

~he

sompLlers
sperations,

cenfiguration,

Xpressicn

ews=-the single preogrammning

overall cenfiguration

and

26
tailored system. Command processors, utility subsystems (such as file
systems), and configuration description languages can be specified by
the user. These systems can be constructed upon NADEX which provides
only the essential elements of an operating system--interprocess
communication, a representation for distributable, communicating
processes (software configurations), and resource allocation.

It is the DTS concept which permits software configurations to pe
distributed across a computer network controlled by NADEX. 1In this
document, we briefly describe the structure of NADEX, the basic concepts
of software configurations, and the services supplied by the NADEX Core
Operating System (Core 08). e assume the reader has xnowledge of
Sequential and/or Concurrent Pascal [5.1] and a basic knowledge cf
conventional COS services or a set of desired 0S services. Under this
assumption, this document contains sufficient materizl to enable th

reader to program normzl user programs as well as his or her cwn command

processors and subsystems, such as a file system.

4.2.2 R. A. Young and V. E. Wallentine, "The Structure of the NALEX
Operating System,™" Tech. Rpt. KSU-CS-TR-79-12, November 1979.

NADEX 1is an acronym for Network ADaptable EXecutive. NADEX
supports the building of software configurations which consist of =
general graph of communicating nodes. These nodes may be sequential or
concurrent programs which access NADEX services through a native PREFIX.
The PREFIX concept was originally derined by Per Brinch Hansern is an

interface to the SCLO [5.1] operating system. The NADEX Native PREFIX

(S

i3 the 1interface to <ne NADEX <Zore 0S and »provides data Low

abstracticns to the program running in 3 nocde. These operations permit

27
each program (running in a node) to exchange messages with other nodes
in a software configuration via full-duplex data transfer streams.

In this document, we first present the c¢oncept of a software
configuration. We then present the general structure of NADEX.
Finally, we describe the function of each module of the NADEX Core 0S as

it is written in Concurrent Pascal [5.1].

4,2.3 R. A, Young and V. E. Wallentine, "Implementation of the Kernel
of Concurrent Pascal/32, Tech. Rpt. KSU~CS-TR-79-13, December
1979.

Based on the structured multiprocessing concepts in CPASCAL, we
chose CPASCAL as the implementation language for a multi-user operating
system called NADEX--Network ADaptable EXecutive. In the design of
NADEX, CPASCAL concepts were kept 1in mind. The dynamic allocation of
resources (buffers and memory) required that the manager concept be
implemented as an extension to CPASCAL. In order to pass data between
processes in an efficient manner, 1t was decided to add rececrds as
system components. Thus, a reduction in the amount of data copying into
and out of data encapsuled in g¢lasses is achieved. A side benefit of
records is that user access to shared data need not be constrained to
any particular data encapsulation-entry procedure. The mechanism to
achieve the dynamic allocation of these system components to processes
is controlled pointers to system components. These pointers, to classes
and records, are destructive assignment {2ven as parameters) sc that no
new time-dependent error possibilities are intrcduced into ZPASCAL.

A second extension was tc iIntroduce nierarchical concurrent

programs. This suppeor%, in 2ontrast to the first aextension which

ﬁ_-lllIlll.ll-IIll--.IIl-lIIIlIIIIIIIIlllllllllllllllllllll:-!

23

required only compiler changes, requires extensive <ernel support. The
kernel must be aware of the multiple levels of corncurrent programs. in
this document, we discuss the support necessary for multiple levels of
processes. A third extension was facilitated Dy our implementation of
the kernel. We coded a portion of the kernel in Cequential Pascal which
permits easy modification of the functicns within the g«errel. Thus, new
entry points to the kernel could be required. To solve this prcblem, we
introduced a xernel prefix 30 that no compiler changes are nucessary

when new functions are acdded to or changed in the Xxernel.

4.2.4 K. L. Rochat and V. E. Wallentine, "4 Software 3System Structuring
Tool for Message-based JSystems, Tech. R3pt. KSU=CS=TR-£C=l4,

August 1980.
Interest in message-bzsec systems which suppor® sortware
configuraticns is increasing. A 3oftware cornfiguraticn Iis 2 network or
processes connected together by ports through which they communicate,.

Al

The 3oftware Systewms Structuring Tool (SJT, is ar attempt %o integrate

the common aspects of message-dased systems into a 30f'%ware a2ngineering
tool for the construction of software configurations.
This tool supports the typed interconnectiorn of modules which

allows the verification of the correctness arnd ~2cmpleteness of

interconnection, incremertal construction of configuraticns, and an
implementation-incerencern: structure rerresentatiin. S- - usec
independent.y compiled nodules with syced cor.c TS olonsTtruat
distrisuticn~inderendent cornfiguraticns.

The aponility ¢4“c preoviZe =2nhancea nelp infsrmation, 1.low the

specifiization of gcarameters 2y $CsS.ti0n Ar Keyweorat, anc Lermit She

r —

29
construction of software configurations usiuy named ports are features
which the user will appreciate. In addition, this tool describes the
resources needed to execute each module.

This structuring system has been implemented at KXansas State

University in conjunction with the NADEX operating system.

-

4.2.5 R. Fundis and V. E. Wallentine, "Command Processors for Dynamic
Control of Software Configurations," Tech. Rpt. XSU~CS-TR-80-32, :
August 1980. '

Command language facilities for the construction and execution of
software configurations (networks of communicating processes) are very
limited today because current operating systems do not surport this

level of complexity. The Network ADaptable EXecutive (NADEX) is an

operating system which was designed to support dynamic configurations
(those configurations which are constructed at command interpretaticn
time) of cooperating processes. These dynamic configurations include
arbitrary graphs which may contain c¢yecles. Three command processors
nave been developed to demonstrate the sufficiency of the NADEX
facilities to support dynamic cornfigurations.

NADEX facilities, an overview of the Job Control System, and the
command processor configuration environment are presented, followed by

user's guides for the command processors. Each command processor has

different responsidbilities and capabilities for nandling zonfigurations.
The NADEX static command processor executes <complately sonnected

configurations. The UNIX command processcr allcws linear 2onfigurations

“0 Se constructed dynamically, and -he MIRACLE command processcr allows

the dynamic cons<truction of arbitrary configurations. JSyntax graphs ancg

R XA

30

sample user sessions are rresented for each command processor.

4,2.6 R. L. Rochat and V. E. Wallentine, "NADEX Job Control Jystem
Implementation,™ Tech. Rpt. KSU CS-TR-80~05, July 1980.

NADEX is an operating system whose objective is to support modular
programming. This concept of "programming in the small" which nas beern
so successful in UNIX [5.7] (in the form of pipelines of communicating
sequential processes) 1s extended to support general graphs cf
communicating sequential programs under NADEX. These general gzgrachs are
called software configurations and consist of nodes which communicat‘te
via Data Transfer Streams (DTSs). These DTSs are full-duplex in na<ure
and, therefore, support bi-directional communication between any two
nodes which they connect. Nodes access DTSs via ports. These pcrts are
distribution-independent and, therefore, permit nodes of a configuration
to be distributed across a computer network without reprogramming. In
this paper the software tools which support the construction of software
configurations are described. These tools consist of an interactive
partial configuration descriptor (PCD) builder, a PCD decompiler (-ex:
formatter), and a linker of nodes (LINK program). They form the basis

for the job control system of NADEX.

4,2.7 R. L. Rochat and V. E. Wwallentine, "MNADEX Jtility Prograns,"
Tech. Rpt. KSU-CS=-TR-80-06, August 1930.

In this paper <wo utility programs are ZJescrited which add
capabilities to YADEX. These programs are 3 hierarchical Jile s7stem

(HFS program) and a program which allows a 3ingle console node %o ze

-

PERS

aata

pu -

'I..--lI-lI-IIIll-I--IIII--.I--.IIl-.lIl-..-l..-...---....--...-.-----.--------;

31
shared by several nodes of a user's configuration--a console multiplexor
(CM program). These programs were developed for use with the dynami-c
command processors [4.2.5). The reader is assumed to be acquain¢ted with
Sequential and Concurrent Pascal [5.1], the command prccessor functions

(4.2.5], and the services of NADEX [4.2.1].

£.2.8 R. Sanders, "A Graphics Support System ror Programming
Communicating Processes," Tech. R’pt. K3U-CS-TR-80-C1, August
1980.

The complexity of many sophisticated programming -asks reguires a
methodology to simpiify and iiter information to z manageable level,

The GSS (Graphics Support 3ystem) described :in this dcoumens will draw

pictures of software configurations. A configuration I3 a cdirectec
grapn contzining one to eight nodes. Zach nocde tan consist of a2 ‘
sequential or concurrent program, 5S€ hierarchizal i nature, and can

itself be a configuration.

(9]
(%]
%]
(=
[#7)
ot
0
1]
£3
1]
or
o}
o]
o}
[
4]
@
Cu
cr
(o]

The most important 2ontribution of
determine the compiex relationsnics that =2xist between <he zi2ture
components,

Arbitrary configurations can be dJdecomposed :into <nree Jistinot
types of objecta: nangers, pipes, and 2ycles. The deccmrosition i=a
accomplished by following and analyzing a’l of -he ncde 2onnectizng in:

constructing patterns of linkage. The purpese oD DUilling dhlents 13 o

jef'ire a preciaztaple, rergeatadle =zeuristi: <hat Wwill draw protures 1o
*he desired manner. The number of rncoces _noin o2t letermines ‘ne
shape of %he obiect, aAn sbiecet'z 3shage 15 ui32Q "0 38l=ct 1 “rocellnen
b
pattern which defines now the nodes Will e irawn e 3%:ve - e

32
another. Flow into and out of nodes is studied to cetermine where they
should be placed relative to the picture and relative to other nodes
within their parent object.

GSS allows the wuser to interact in the rawing portions of 2
picture or will draw the picture without user assistance. GSS does not

build configurations. It is meant as a documentation tool that

™
1]
7]
ba
tn
ot
[%)

in the understanding of a software configuration,

4.2.9 D. E. Eaton and V. E. Wallentine, "Hosting the NALDZX Znvircrment
cn the UNIX Operating System,” Tech. Rpt. “SU-C5-TR-g1-C2, May
1981.

Command language facilities for the cocnstruction and executisn of
sof'tware configura+tions ‘networks of ccrmmunica‘ting processes) are very
limited today because current operating systems do not suppert thiz
level of complexity. The Network ADaptable ZXecutive {(NALCEX, was
designed to support dynamic configurations [these configurations which

are constructed at command interpres

W
ot
b
O
3
ot
]

13
®

processes. These dynamic configurations inclule zarditrzry graphs whizon
may contain cycles. The NAZEX anvircmment rune on top of the NACEX :cre
operating system. ™ opleet of thiz wcrk 13 =c wmake <he YATEX

environment so 1t will run with the UNIX 1 <rademark of 3Bell

Laboratories) sperating 3y

0

“em a3 1%3 I0re dLerating ystem.

-

4.2.10 V. E, Wallentine, R.
"NADEX Implementation
lioverper 13680,

o

In this cdocument we Zescribe wne

We discuss tne oasic concepts o solftwWware configu

properties, subsystens,

of cenrigirutions, zata =ransfer strecn

leval

The level of

functivning or the LAlEX T
4.2

«
(e}
Q
i
]
W
1]
3
[4d
-3
3%}
ct
}e
O
)
Q)
[e]
3
'S
ba
o
3
Cs
Y

b

A. Young,

.
lioces," Tecn.

~

tonrection Lo

sre Jperating Jyster.

;ultigass Jonlwrrent faZoal
: N - P v
ce oblect zode rir i IlIlere

ey ~€

~ad ~ e o :
=LCCe. e SL AL 2PNy oL -

required ncodifizationg wou.: o

Language construnts of Conturrent

eas;Ly ma2 2nto tne mitroenglne

Trasrescoed, Tne aronls WraL o
Tn_Z reraort untalns ElLrLnt
P tne twe asunLnel an: ©
. Jolal AR CRNEY o
upLlitlIun IrTLLems iulel v

PR
P {

. -~ Y
B R R P
. ..

- ia S ia
Cra 1 e, y o~

bait

ILe K
"o -~ - M
-~
Cae LT L

e ot ™

< Yoo - A B I R
mrlepentzion lZetalls

(WY

- Del”,
c: LAlEa.
TUCETLIY
rlLunioan
Il

R U AT
MEY DU S
o Saem g
e
LAt -
P it
AN e
e
- -1 a
=N

i,

Ui
.
n

U
.
o

U
.
J

Lo
I-

Rersrences

3rinch Hansen, P. The Architecture of Concurrent Programs,
Prentice-Hall, 1979.

Forsdick, A. C., et al. Cperating Systems ror Zomputer Neitworks,
Computer, 11, 1 {Jan. 1973), pp 48-57.

Hcare, C. A. R., Ccmmunicating 3equential Processes, Comm. cf ACH,
1, 3, (August 1973), pp €EE~ETT.

Jones, A. K., et al. Star CS, a2 HMultiprocessor Cperating Zysten
for the Support of Tasxk Forces. Proc. T“tn Symp. Cperating lystenms
’rinciples, SIGCPS, 1979, oo Z'3=33C,

Ousterhout, ov. €., et al. !ledusa: An Experinment in Distributed
Cperating SyStem structure, Comm. of ACM, 23, 2 {Feb., 1538C), z:t

Sunzhine, C., Interprocess ¢C
“perating Systeu: I
R=206~/1=AF, Jure 97

ommunication Extensions for the UNIX
Jesign Corsiderat:ons, 2Rand 7 2

Thempson, X. and Ritcnhie, 3. if,, The UNIX Time-sznaring Systen,

Comm. ACM, 17, 7, (July 1374), pp 365-375.

[

nierprocess Communication Ixtensions Tor the UNHIX
perating System: II. Implementation, ranc Tech.
a2

- .

Lires or Lires of
Ylodule ?azcal Zcae ASsenbler Coie
NADEX Core C3 4633 541
Centralized PBM 3083
Ceppand Prozwssars
HIRC 3C52
UNIX 2263
le) pintadsd
wanier
LIn 1368
File Systenms
Hierarcnical File lysten 1113
Letwork File Jystenm 1662
Local File 3ysten 23
NenWwork conIrol
dletwork Configuration 17568 .
Transpor:c (MINICS) 14A2
Te+ 3 ed o
Zracnics Support 422
?CC Builder 22311
2CD leccmpiler 347
~onsc.e Subsysten ZlC
Lornel R 12238
Cpape 4020
Total 33,2732 e

|
]
}

[P I+ S R § B

o

D'i:vi ﬁ‘.'\i’17“" Spigrw‘,-if‘-‘f\ ?~r\§pnng“

g
joy

.

=

N

Lay

(v}

< <
-

ty O Uy N s

~

SR
:

~

B .:13:...:31.!.

