THE SHOCK AND VIBRATION DIGEST

Volume 13, No. 6
June 1981

STAFF

SHOCK AND VIBRATION INFORMATION CENTER
EDITORIAL ADVISOR: Henry C. Pusey

VIBRATION INSTITUTE
TECHNICAL EDITOR: Ronald L. Eshleman
EDITOR: Judith Nagle-Eshleman
RESEARCH EDITOR: Mildred Z. Tamulonis
PRODUCTION: Deborah K. Howard

Gwen Wesslek
Esther Holle

BOARD OF EDITORS

R.L. Bort
J.D.C. Crisp
D.J. Johns
G.H. Klein
K.E. McKee
C.T. Morrow
E. Sevin
J.G. Showalter
R.A. Skop
R.H. Vollin

The Shock and Vibration Digest is a monthly publication of the Shock and Vibration Information Center. The goal of the Digest is to provide efficient transfer of sound, shock, and vibration technology among researchers and practicing engineers. Subjective and objective analyses of the literature are provided along with news and editorial material. News items and articles to be considered for publication should be submitted to:

Dr. R.L. Eshleman
Vibration Institute
Suite 206
101 West 55th Street
Clarendon Hills, Illinois 60514

Copies of articles abstracted are not available from the Shock and Vibration Information Center (except for those generated by SVIC). Inquiries should be directed to library resources, authors, or the original publishers.

This periodical is for sale on subscription at an annual rate of $100.00. For foreign subscribers, there is an additional 25 percent charge for overseas delivery on both regular subscriptions and back issues. Subscriptions are accepted for the calendar year, beginning with the January issue. Back issues are available. Volumes 1 through 12 are sold for $15.00. Orders may be forwarded at any time to SVIC, Code 5804, Naval Research Laboratory, Washington, D.C. 20375. Issuance of this periodical is approved in accordance with the Department of the Navy Publications and Printing Regulations, NAVEXOS P-35.
The introduction of the mini-computer into the dynamics test laboratory has made it possible to use several forms of multi-frequency excitation to speed up and simplify modal testing. These techniques have been described in the recent literature which has revealed that some of these forms of excitation are now used routinely in modal tests. A few of the earlier classical modal testing techniques have been upgraded and they are still in use. Therefore the test engineer has a wider choice of testing techniques and this could lead to difficulties in selecting the proper test method if several methods appear to be suitable. Thus published guidance for selecting proper modal test methods is needed.

This information need might be met in any of the following ways. Modal testing techniques have matured to the point where a review of all of the available methods might be published. It should include, but not be limited to, a description of the various methods, their advantages and limitations and their suitability for modal tests of various types of hardware. More published comparisons of the results of modal tests, using a number of different test methods, would be useful, in addition to the obvious comparison of the modal parameters and the ability to isolate all significant modes, other comparisons should be made.

These should include the ease of performing the test, the overall cost of testing, instrumentation requirements and the complexity of the data processing requirements. In 1976 a survey of modal testing practices was conducted. A number of factors were examined, such as the type of excitation, instrumentation, test article boundary and support conditions and many more. It is time to undertake a similar survey to see what changes in modal testing practices have occurred.

Any or all of the above steps would be helpful in defining the state of the art of modal testing, but more importantly, they would provide guidance for selecting a testing technique, or techniques, that would be the most suitable for the job. This is important because use of the wrong test method could lead to confusing and/or meaningless results.

R.H.V.
The decline in the development of approximate analytical techniques for solving engineering problems has been virtually unnoticed in this era of computers. Prior to the widespread availability of computers and programmable calculators, engineers depended on ingenious mathematical expressions, identities, series, and asymptotic expansions to solve many vibration problems. The need for answers to design problems was an important factor in the evolution of these techniques. Today no matter how large or small the problem the standard procedure is to "put it on the computer."

The extensive use of the computer has stymied the development and use not only of approximate methods but also of unique models of problems. No longer are such interesting and valuable contributions as the phase plane method and Duffing’s method being made for specific classes of problems. These methods provided not only approximate solutions to problems but also insight into physical phenomena. The loss of insight as a result of the popularity of computer solutions is my greatest criticism of the current use of the computer.

Approximate analytical solutions to mathematically modeled problems provided both immediate solutions and the basis for many of the numerical techniques now used routinely on the computer. It is for this reason that I believe there will be a resurgence of activity in developing approximate methods. Of course, numerical techniques have their limitations and can be pressed only so far before problems in round off error and instabilities arise. But when better solutions are required at low cost, numerical methods will again be recognized as the important analytical tools they are.

R.L.E.
DYNAMIC RESPONSE OF FLUID-FILLED SHELLS - AN UPDATE

F.L. DiMaggio*

Abstract. This article reviews papers concerned with the dynamic response of shells containing fluid that were published during the past three or four years. Papers concerned only with effects of gravity (sloshing) or fluid flow are not included.

This paper is a continuation of two earlier reviews [1, 2]. With one exception the investigations discussed were published during the past three or four years. As in the past, papers dealing solely with sloshing or flow-induced vibrations are not considered.

STRUCTURES OF ARBITRARY GEOMETRY

Several general presentations of methods for determining the natural frequencies of coupled vibrations of an arbitrary elastic structure containing inviscid fluid have appeared [3-5]. Finite element methods and their variational origins are the basis of some work [3, 4]. Closed structures filled with a compressible fluid have been considered [3]. Displacements were used in the fluid and structure as nodal variables to obtain symmetric, banded matrices that permit the use of classical eigenvalue solution methods. Spurious circulation modes, usually obtained when a purely displacement formulation is used, were suppressed by imposing irrotationality via a penalty function. Numerical results were presented for two-dimensional motion with rigid rectangular and circular cavities and for a rectangular cavity with three rigid walls and one simply supported elastic plate.

Both closed, filled structures and open, partially filled ones have been accounted for in other work [4]. The basic variables were taken to be displacements of the structure and pressures and displacement potential for the compressible fluid. Only hydroelastic modes, as opposed to sloshing modes in a rigid tank, were considered, but extension to include these appeared to be relatively straightforward. A direct finite element method was first presented using these mixed nodal variables. Despite assertions to the contrary [3], a symmetric formulation was obtained. The substructuring scheme used as components – e.g., for the partially filled open shell – the hydroelastic modes with an incompressible liquid and the acoustic modes of a compressible fluid in a rigid tank, Numerical results for a filled, bowl-shaped tank with three clamped flanges demonstrated that the substructure technique is much more efficient than the direct method.

An integral equation method was used to study the free two-dimensional vibrations of an elastic beam cantilevered from the inside of a rigid cavity filled with incompressible liquid [5]. Expressions for beam displacements and the fluid velocity potential were obtained, and several properties of the solution were presented. No numerical example is given. Although the author states that extension to the three-dimensional case of an elastic container with arbitrary internal elastic structures is possible, it appears doubtful that an efficient numerical algorithm would result.

CYLINDRICAL SHELLS

Finite single shells. Interest in the determination of the response of liquid storage tanks to earthquake excitation has led to several recent investigations of free and forced vibrations of circular cylindrical elastic tanks of finite height filled or partially filled with a fluid [6-9].

An open circular cylindrical shell with a fixed base and longitudinally varying thickness, partially filled with an inviscid, compressible liquid, has been as-

*Professor, Dept. of Civil Engineering and Engineering Mechanics, Columbia University, New York, New York
assumed to undergo harmonic motion [6]. Membrane shell theory was used to obtain frequency-dependent virtual masses for each circumferential mode \(n \) for assumed longitudinal variations of shell displacements. For the beam mode \(n = 1 \), overturning moment and longitudinal and circumferential stress were also obtained. Results compared favorably with experimental results obtained earlier by others.

A combined experimental and analytical study of an aluminum open tank with rigid bottom partially filled with water has been presented [7]. Experimental studies involved shell and liquid responses to horizontal and vertical excitations of the bottom; both sinusoidal and scaled seismic time histories were taken. On the basis of these tests an approximate procedure was developed for predicting maximum circumferential and longitudinal stress in the tank wall during earthquakes. When only the \(n = 0 \) (breathing) and \(n = 1 \) modes were assumed to contribute, good comparison with experiments was obtained for the circumferential stress, but predictions of longitudinal stress were overly conservative.

Sensitivity of lateral flexural wall motion to vertical excitation has been reported [7]. This has also been attributed to out-of-roundness of the shell [8]. Donnel's equations for a simply supported shell and a compressible fluid subjected to a vertical excitation at the base were used to obtain approximate expressions for lateral wall displacements for small distortions. The author claims reasonable agreement with experimental results obtained earlier by others. It should be noted that the boundary condition at the tank base, which states that the pressure is a Dirac delta in space (implying zero pressure over the fluid surface except at the origin), does not appear to be realistic.

Natural frequencies of the modes of combined axisymmetric motion of a liquid-filled tank with rigid sides, an elastic bottom, and an elastic floating roof have been obtained [9]. Numerical examples were used to illustrate the coupling.

Coaxial shells. A series of papers [10-14] involving coaxial shells with fluid between them have apparently been motivated by nuclear reactor components. Two coaxial circular cylindrical shells with open tops, elastic walls, and rigid bottoms have been considered [10]. Both the inside of the inner tank and the space between tanks were partially filled with a compressible, inviscid fluid. A Rayleigh-Ritz method and finite differences were used to obtain expressions for both axisymmetric (\(n = 0 \)) and nonaxisymmetric (\(n > 1 \)) modes of coupled free vibration. A few numerical results for non-sloshing modes were presented. The authors stated that, for the case \(n = 0 \), results are essentially the same as those obtained in an earlier study assuming the fluid incompressible.

In an extension of a previous investigation [15] exact and approximate equations for the natural frequencies and damping ratios of the beam modes (\(n = 1 \)) of coupled motion of coaxial elastic tubes with incompressible, viscous fluid between them have been obtained. Extensive numerical results were presented for a series of simply supported tubes.

Finite elements have been used to obtain the added mass and damping coefficients of an incompressible viscous fluid between a circular cylindrical rod vibrating in a prescribed manner and a circular cylindrical enclosure [11]. Numerical results presented for a single rigid rod in a rigid enclosure agree with the known exact solution; numerical results were also given for two identical rigid rods vibrating in opposite directions. A similar procedure for hexagonal rods inside circular cylinders has been presented [12].

The beam response (\(n = 1 \)) of two elastic coaxial cylinders with fixed or free bases and tops and filled with incompressible, inviscid liquid between them has been considered [13]. The cylinders were modeled by a vertical array of springs and lumped masses to which were added virtual masses to account for the fluid. Displacement response to base excitations were obtained using standard modal superposition. Four examples were considered, each with two base inputs. In each example four masses were used to model each cylinder.

The transient response of two infinite circular cylindrical elastic shells coupled by an inviscid, compressible fluid to a plane pressure pulse has been investigated [16]. Laplace transforms were used to obtain exact integral expressions for the solution. Numerical results presented for steel shells in water demonstrated that, for the material and geometrical parameters considered, the outer shell was very transparent to the incident wave.
Infinite single shells. The problem of blood flow has been addressed \[17-19\]. Dispersion relations for axisymmetric flexural (Young) wave propagation through fluid-filled, circular cylindrical, flexible tubes of infinite extent were studied.

In an excellent early paper \[17\] waves in an incompressible viscous fluid inside an elastic or viscoelastic membrane were investigated. Approximate closed form expressions for phase velocity and damping factor were obtained for various limiting cases.

Dispersion in an inviscid, incompressible fluid inside an elastic thin-walled tube has been treated approximately \[18\]. The author's references are not current and do not include any important recent papers on this subject.

New developments regarding this problem have been reported \[19\]. The theory of small deformations superimposed on finite deformations was used to include the effects of initial longitudinal pretension and circumferential muscle tension. In this study the arteries (shell) were assumed to be incompressible nonlinear orthotropically elastic membranes. Blood was considered an incompressible viscous fluid.

SPHERICAL SHELLS

The procedure used for cylindrical shells \[16\] was used to solve the problem of two fluid-coupled concentric spherical shells subjected to an incident plane wave \[20\]. The same conclusion is reached, i.e., for thin steel shells containing water the exterior shell is essentially transparent to the incident pulse.

Modes and frequencies for open hemispherical elastic shells partially filled with a liquid have been obtained experimentally with the upper rim both free and fixed \[21\]. In the tests performed the effect of the fluid on shell vibrations was considerable for the clamped top but negligible for the free edge. Comparison of experimental results with a finite element analysis indicated good agreement.

MISCELLANEOUS

Investigations of head injury commonly involve the study of fluid-filled shells \[1\]. A thick prolate spheroidal viscoelastic shell was used to model the scalp and a viscoelastic fluid approximated the brain \[22\]. Finite differences were used to obtain the response to simulated head impacts with various time histories. The boundary conditions used on the inner surface of the shell, however, were incorrect. Thus, because the problem appears not to be well posed, the results obtained are suspect.

It appears that two very similar models have been used \[22, 23\]. Finite elements were used to study both cavitation and shear damage due to impact \[1\]. It was concluded that the addition of fluid viscosity has little effect and that occipital head shocks produce higher stresses than frontal impacts.

A combined analytical and experimental approach to the study of vibrations of partially filled hox-like fuel tanks has been vaguely discussed \[24\].

REFERENCES

LITERATURE REVIEW: survey and analysis of the Shock and Vibration literature

The monthly Literature Review, a subjective critique and summary of the literature, consists of two to four review articles each month, 3,000 to 4,000 words in length. The purpose of this section is to present a "digest" of literature over a period of three years. Planned by the Technical Editor, this section provides the DIGEST reader with up-to-date insights into current technology in more than 150 topic areas. Review articles include technical information from articles, reports, and unpublished proceedings. Each article also contains a minor tutorial of the technical area under discussion, a survey and evaluation of the new literature, and recommendations. Review articles are written by experts in the shock and vibration field.

This issue of the DIGEST contains an article about vibrations of conical shells. Professor C.H. Chang of the University of Alabama has written a literature review of the vibrations of conical shells. The various formulations and solutions of free and forced vibrations of axisymmetric and asymmetric modes of isotropic and anisotropic conical shells are summarized. Computer programs available for computation of the frequencies and mode shapes of vibrations of conical shells of any configuration are discussed.
VIBRATIONS OF CONICAL SHELLS

C.H. Chang*

Abstract. A literature review of the vibrations of conical shells is presented. The various formulations and solutions of free and forced vibrations of axisymmetric and asymmetric modes of isotropic and anisotropic conical shells are summarized. Computer programs available for computation of the frequencies and mode shapes of vibrations of conical shells of any configuration are discussed.

Early interest in vibration of conical shells involved determination of the frequencies and mode shapes of vibration of loudspeakers [1-6]. Few research reports were available before the coming of the space era. At that time demand for knowledge about the strength and other dynamic characteristics of conical shells increased because conical shells were widely used in various parts of space vehicles. Extensive literature reviews are available [7-10], including an excellent comprehensive review by Leissa [11].

The majority of research on the vibrations of conical shells has been devoted to the basic problem of linear free vibration. Thus, except at the end of this review where subjects other than free vibration are briefly discussed, this paper focuses on the free vibration of isotropic and elastic cones.

FORMULATIONS

On the basis of Love's assumptions of first approximation [12, 13], the equations of motion of vibration for a shell element were derived either by using Newton's second law of motion by applying d'Alembert's principle to the equations of equilibrium [14-16], or by applying the Hamilton principle through the variational method [17, 18]. The last approach provides a set of geometric as well as natural boundary conditions.

Improved theories based on Love's are available [11, 12]. A numerical comparison between Love's theory and an improved Naghdi's theory [19] for free axisymmetric vibration of cones has been made [20]. The improved theory yielded lower frequencies; the difference, however, was insignificant. The Love theory has been used by the majority of the researchers.

The basic equations have been presented in general curvilinear coordinates for the middle surface of a shell [14-17]. These equations are first converted to a shell of revolution and then to a conical shell. The circumferential coordinate \(\theta \), meridional distance \(s \) (measured from the apex of a cone along a generator), and normal coordinate \(z \) (from the middle surface) are usually used for conical shells having the half vertex angle \(\alpha \) as a parameter.

Hu [21] included the effects of the transverse shear deformation and rotatory inertia in the meridional direction; he presented a set of working formulations for the linear theory: three equations of motion, two equations of rotatory motion, and eight constitutive equations. These 13 equations are for the following 13 unknowns: three stress resultants, \(N_s, N_\theta, N_\phi \); two transverse shearing forces, \(Q_\theta, Q_\phi \); three moments, \(M_s, M_\theta, M_\phi \); two rotatory angles \(\beta_\theta, \beta_\phi \) and three displacements, \(u, v, w \) in the directions of \(\theta, s, \) and \(z \), respectively.

A cone frustum has two ends: the small end (S) is located at \(s=s_1 \); the large end (L) is at \(s=s_2 \). When \(s_1=0 \), the structure is known as a complete cone. Each end has five homogeneous boundary conditions [21].

When the effects of transverse shear deformation and rotatory inertia are neglected, \(\beta_\theta \) and \(\beta_\phi \) are no longer independent functions; rather, they are functions of a normal derivative of \(w \), and 11 equations exist.

*Professor of Engineering Mechanics, The University of Alabama, University, Alabama
for 11 unknowns [11]. Four homogeneous boundary conditions are at each end. With this approach the transverse shear forces are combined with twisting moments M_α to form Kirchhoff' effective shearing forces [22]. This is known as the classic bending theory.

For very thin shells, the bending effect can be neglected. In this simplified case, both the moments and the transverse shear forces vanish. There are three equations of motion and three constitutive equations for three membrane stresses N_y, N_x, and three displacements U, V, W [23]. The system can be reduced to three equations of motion in terms of three displacements for both the membrane and bending theories [10, 11, 14].

When the inertia terms and the transverse shear forces in the equations of motion in the θ and s directions are neglected, the two equations are reduced to equilibrium equations. They can be identically satisfied by introducing the Airy stress function ϕ for the stress. A compatibility equation and the equation of motion in the θ direction form the two coupled Donnell-type equations for the two unknown functions ϕ and w [24]. A set of nonlinear Donnell-type equations has also been derived [18].

First order equations for both axisymmetric [25] and asymmetric [26] modes are available for numerical iteration methods. Hul [21] has derived a set of 13 first-order equations containing 13 unknowns but having only ten first-order derivatives - thus only ten boundary conditions are needed. The effects of shear deformation and rotatory inertia are included.

SOLUTIONS FOR FREE VIBRATION

The three variables θ, s, and time t are separable in the system of partial differential equations. The equations have variable coefficients and are very difficult to solve for exact solutions. With the exception of solutions for a couple of very special cases of membrane vibration, all available solutions have been obtained by approximate numerical methods, e.g., the Rayleigh-Ritz method [28-37], Galerkin procedure [9, 10, 21, 38-42], finite difference [43-47], iteration method [21, 25-27], asymptotic technique [48], and the finite element method [49-52].

Neglecting the effects of shear deformation and rotating inertia solution for the three displacements of the three equations of motion can be given in the following forms:

$$u = \sum_n u_n(s) \sin n\theta e^{iqt}$$

$$v = \sum_n v_n(s) \cos n\theta e^{iqt}$$

$$w = \sum_n w_n(s) \cos n\theta e^{iqt}$$

in which $i = (-1)^{1/2}$, q is the circular frequency, n is an integer, the circumferential wave number, and u_n, v_n, and w_n are functions of normal modes to be determined.

AXISYMMETRIC VIBRATIONS

For the simpler axisymmetric case, $n=0$ in the solutions of equations (1). Thus the circumferential displacement u can be separated from the other two. The three displacement equations reduce to one equation for u and two coupled equations for v and w [53].

Torsional vibration. The single equation for u is due to the tangential inertia force, which causes torsional vibration. This equation is a second order Sturm-Liouville equation, and the exact solution has been obtained [53]. For conical shells, the solutions are in Bessel functions [53, 54]. Frequency spectra for various end conditions have been obtained [54]. The eigenfrequency f was given in the form

$$f = \frac{q}{\pi} \sqrt{\frac{\rho G}{p}}$$

in which $\rho = \rho_2 - \rho_1$; ρ is the mass density, and G is the shear modulus [43, 53, 54]. The f value approached asymptotically the frequencies of the torsional vibration of a prismatic bar with proper end conditions [55].

Transverse vibration. The power series method has been used [56] to solve the two coupled equations for v and w. Because of the question of convergence the solutions were classified as approximate [32].
Solutions based on the first order equations have been obtained [25-27] with agreeable numerical examples.

Dreher and Leissa [57, 58] used the power series method for Donnell-type equations. Frequencies of a wide range parameter were presented.

The lowest frequency for cones and ojival shells was determined by a combination of a membrane theory with the longitudinal inertia neglected and a boundary layer theory for the bending [48]. This asymptotic approach has also been used for shells of revolution [59]. However, it has been noted [60] that some results [48] are only for limited special cases.

Meridional vibration. Membrane vibration due to meridional or longitudinal inertia force has been studied by various approaches [23, 61, 62]. A set of exact solutions of asymmetric vibration has been obtained [23]. For cones with a boundary condition \(N_{\theta \phi} = 0 \) the frequencies obtained [23] were identical to those of axisymmetric cones [61]. These frequencies can be combined into one diagram as shown in the figure, \(R_1 \) and \(R_2 \) are radii at \(s = s_1 \) and \(s_2 \), respectively. The eigenfrequency was given as

\[
f = \frac{8\sqrt{\pi}}{p/E} \tag{3}\]

This \(f \) value approached the frequencies of the longitudinal vibration of bars as the limits [55].

Effects of shear deformation and rotatory inertia. Effects of shear deformation and rotatory inertia have been studied [20, 63] only for axisymmetric modes. The shear deformation lowered the frequencies; this effect was greater for thicker, shorter, and smaller apex angle cones for transverse vibrations. The effect of rotatory inertia due to axisymmetric modes was insignificant. The effects of shear deformation and rotatory inertia on axisymmetric torsional frequencies were also insignificant [63].

ASYMMETRIC VIBRATIONS

Asymmetric free vibrations have been studied by the inextensional theory [1]. In some cases both extenional and inextensional effects are included [31], in other cases the two effects are treated separately [35]. A mathematically comprehensive investigation has been made [8], as have many other studies [9, 10, 46, 64].

Most of the numerical results compared well with experiments. The following observations were made from these investigations [8-10, 35, 46, 64].

- the lowest frequency of an axisymmetric mode of a cone did not represent the lowest or fundamental one. The lowest frequency depended, in addition to the geometric properties and boundary conditions, also on the number of circumferential modes \(n \).
- the frequencies of the extensional or membrane vibration decreased as \(n \) increased, that of the inextensional or bending vibration increased monotonically as \(n \) increased.
- for small values of \(n \) the membrane effect on frequencies was significant. As \(n \) increased this effect diminished and the bending action dominated.
if the two effects, membrane and bending, were calculated separately for simplicity, the resultant frequencies could be computed by the following equation [8, 35]:

\[f^2 = f_E^2 + f_I^2 \]

Equation (4)

\[\text{in which } f_E \text{ and } f_I \text{ are frequencies of extensional and inextensional vibrations, respectively. The minimum frequency for a fixed mode in the } s \text{-direction could be located where } f_E = f_I. \]

- the \(n \) number of the minimum frequency of a mode in the \(s \)-direction increased as the number of modes in the \(s \)-direction increased
- the maximum displacement or the antinode of a mode shape in the meridional direction shifted toward the larger end of a cone as \(n \) increased

An investigation of the frequencies of different modes in the \(s \)-direction and the \(n \) values for free-free cones has been made [37]. Examples of vibrations of conical shells connected to cylindrical or spherical shells have been given [27]. As mentioned earlier, exact solutions of axisymmetric membrane meridional vibrations have been obtained [23], but no numerical examples were given for the asymmetric case.

Ueda [65] studied the nonlinear free vibration of a simply supported conical shell by the finite element displacement method. He found that the nonlinear effect softened the shell and that the frequencies decreased as amplitudes increased. However, for cones simply supported and completely restrained at both ends, Sun [66] found that the nonlinear effect made a cone behave as a hard spring.

ANISOTROPIC AND ORTHOTROPIC CONES

Free vibration of anisotropic conical shells has been investigated [67]. Bert and Rag [68] presented the two lowest frequencies of unsymmetric modes of free-free orthotropic sandwich conical shells. Based on a first order equation [27], Cohen [47] presented an iteration method for studying the asymmetric vibration of ring-stiffened shells of revolution. Other work has been reported [69-75].

FORCED VIBRATION AND DYNAMIC STABILITY

Transient response and forced vibrations of cones have been investigated for a constant velocity pressure [76, 77] and for a moving pressure [78]. Vibration of cones subjected to sudden pressure has also been studied [79]. The behavior of the linear and nonlinear stability of cones due to sinusoidal change and due to a ramp-type change of temperature has been reported [66, 80].

Donnell-type equations were used to conduct several studies on the dynamic stability of conical shells. The Galerkin procedure was used under periodic axial load [81] and under periodic external pressure [82] for four sets of cones of different boundary conditions. Finite difference was used for a cone with both ends clamped under step axial pressure [83].

Dynamic stability has also been investigated for cones under pulsating pressure [84], under longitudinal forces and a uniform external pressure [85] and under transversal and longitudinal forces with nonlinear material damping [86]. The elastic response of a cone to an oblique impact has been studied using a finite difference method [87]. Vibration and flutter tests of a pressurized nose cone at Mach number 3 have been reported [88], as have other studies concerning forced vibration and flutter [89-93].

COMPUTER PROGRAMS

A computer program based on the finite element method for vibration modes and frequencies of orthotropic thin shells of revolution having general meridional curvature has been reported [50]. Two examples of conical shells were used. Another computer program known as ASBRIL [94] has been used to analyze axisymmetric vibrations of conical shells. The influence of length, thickness, apex angle, and boundary conditions was examined by 3000 different configurations [49]. Finally, a general and comprehensive computer program designated BOSOR4 for stress, buckling, and vibration of complex shells of revolution is available [95]. This program can be used for linear or nonlinear analysis of shells of revolution, it can also be used for axisymmetric or
asymmetric loading and isotropic or anisotropic materials.

SUMMARY

The survey was made from the literature in English. The available reports covered most aspects of the subject area except two: vibrations with time-dependent boundary conditions and the effect of interactions between the shell and the surrounding media on vibrations of conical shells.

Numerous reports are available, but the problem is far from completely solved. For instance, a number of different expressions are used for the parametric frequency of transverse vibration; the expressions differ in characteristic length and in material constants [11]. Equations (2) and (3) might suggest that slant length would be a better choice for length. These two equations also indicate that the frequencies of torsional, meridional, and hence transverse vibrations are functions of different material and geometric constants; their unification in coupled vibrations needs further analytic investigation.

REFERENCES

This book describes work on condensed explosives and solutions to differential equations for reactive flow in one- and two-spatial dimensions using finite-difference computer codes. The work was done by the author and his colleagues at Los Alamos Scientific Laboratory over the last two decades.

Mader presents the results of computations of detonations in liquid explosives, nitromethane, and liquid TNT, with resolved steady reaction zones. An Arrhenius rate law and the HOM equation of state for the unreacted explosive, detonation products, and their mixtures were used. Structure of the reaction zone depends strongly on the properties of the mixture equation of state. Furthermore, the detonations are not steady in time. The pressure amplitude and reaction zone length oscillate. The detonation must be overdriven by the piston at the rear boundary in order to approach a steady state. Steady state is achieved only after the detonation wave travels many reaction zone lengths. The oscillations are believed to be inherent in the differential equations describing the flow and not in numerical artifacts.

The second chapter deals with equations of state for the detonation products. The author proposes use of the Becker-Kistiakowsky-Wilson (BKW) equation of state in the context of the Chapman-Jouquet (CJ) model of detonation for purposes of engineering calculation. He emphasizes the importance of a high particle density – i.e., high intermolecular potential energy density – for obtaining the most work from an explosive. Nonideal explosives, that is, those whose measured detonation parameters are significantly below values from equilibrium thermodynamic calculations, are seen in terms of incomplete reaction in these mixtures near the wave front. This effect can be due to the formation of products with the effect of lowering the effective CJ temperature, hence inhibiting reaction. Mader treats buildup of detonation, i.e., the concept that effective CJ pressure increases as the wave runs at nearly constant velocity. The model and the experimental evidence on which it is based are still controversial. The questions are how unsteady is the detonation and how best to treat the unsteady character.

Initiation of detonation by thermal or shock stimuli is the subject of the next chapter. Mader has had some success in computing shock initiation in homogeneous explosives and demonstrating the efficacy of voids and high-density inclusions in forming hot spots. The model known as Forest Fire, for shock initiation in heterogeneous explosives, is described. It is based on the concept of single-curve buildup in conjunction with experimental data on distance of run to detonation as a function of input pressure - to obtain a pressure-dependent decomposition rate function. Application of this model to problems in propagation and failure of detonation in several geometries has led to the conclusion that failure in heterogeneous explosives is dominated by the same hot-spot decomposition mechanism as is shock initiation. Burning to detonation is also treated.

Finally Mader compares computational results with experimental results for a number of geometries of detonating explosive interacting with inert materials. Comparison shows the importance of including metal properties such as strength, viscosity, and spall criteria in calculations. Two-dimensional Eulerian calculations of plate dent and plate push experiments are discussed, as are detonations underwater.

The book concludes with extensive appendices that provide details concerning differencing the flow equations in one and two dimensions in both Lagrangian and Eulerian coordinates. Equation-of-state forms for HOM, BKW, LJ8, ideal gas, and Debye-solid models are given.
The book contains many tables of material properties for explosives and the inerts with which they interact. C-J thermodynamic values and product compositions are given, as are release isentropes and ideal gas thermodynamic properties of detonation products for a great number of gases. A minor criticism is that units for the material property numbers are not given in several of the tables. At times the text is more terse than one would like. On occasions the word isentrope is used where adiabat is meant. The book should be very useful to persons computing reactive flow problems. There is a wealth of information that anyone working in detonation research and development might wish to consult.

J.J. Dick
University of California
Los Alamos Scientific Lab.
Los Alamos, California 87545

STRUCTURAL MECHANICS SOFTWARE SERIES, VOLUME III

N. Perrone and W. Pilkey, Editors
University Press of Virginia, Charlottesville, VA
1980, 344 pages, $25.00

This is the third volume of this review-and-assessment series. The three parts of this volume cover 11 structural analysis subjects and provide information on sources of engineering literature and computer programs.

The first part of the book briefly restates the availability and range of applicability of the 13 programs reviewed in the first two volumes: SAP V (general three-dimensional linear structural analysis), UCIN (crash analysis), WHAMS (nonlinear transient structural analysis), DISK (analysis of thick elastic disks, cylinders, and spheres), TWIST (analysis of torsional systems), GRILL (grillage analysis), TABS 77 (elastic analysis of frame and shear wall buildings), BOSOR (analysis of shells of revolution), GIFTS (finite element analysis with interactive graphics), PREM-SAP (interactive preprocessor for SAP), BEAM (flexural analysis of beams), BEAMSTRESS (computation of beam section properties), and SHAFT (computation of flexural response and critical speed of rotating shafts). It also describes new developments for SAP, GIFTS, and BOSOR and presents two potentially useful lists: 10 computerized data bases of engineering abstracts and 22 computer program users’ groups and software dissemination services.

The second part of the book contains reviews and summaries of programs in eight subject areas: multi-point boundary value problems, pile foundation analysis and design systems, general purpose nonlinear finite element programs, rotor dynamics, stiff differential equation systems, ship hull vibration analysis and design, piping engineering, and fracture mechanics. In each section the authors first discuss various aspects of the subject area and, in some cases present typical solution techniques, and then describe the applicable programs.

The final part of the book presents in-depth discussions of three technological areas. The first area, finite element mesh optimization and enrichment techniques, is concerned with optimally arranging a given number of finite elements or optimally refining a finite element mesh. The second area, mixed methods analysis, is concerned with formulations of structural problems in which the fundamental unknowns include both stress and kinematic variables. The final section discusses various damping models.

The book is generally well written and can be a valuable reference not only for those whose interests lie in the subject areas of the second and third parts but also for those searching for sources of engineering abstracts and programs.

M.M. Hurwitz
Numerical Structural Mechanics Br.
Comput n, Mathematics, and Logistics Dept.
David Taylor Naval Ship and Dev. Center
Bethesda, Maryland 20084

FLOW INDUCED VIBRATIONS

S.S. Chen and M.D. Bernstein, Editors
ASME, New York, New York, 1979, 152 pages

The book is a collection of 17 papers presented at the Third National Congress on Pressure Vessel and
Piping Technology held in San Francisco, June 25-29, 1979. The topics covered are: vortex-excited vibrations of single and multiple tubes due to cross flow; wake-induced flutter; fluid damping; dynamics and analysis of tubes conveying fluids; nuclear fuel-rod vibrations; self-excited vibrations on gates, valves, and seals; and acoustic vibrations.

The most common problem in flow-induced vibrations, namely vortex-excited cross-flow vibrations, is discussed in the first six papers. O.M. Griffin's article, "Vortex-Excited Cross Flow Vibrations of a Single Cylindrical Tube" describes experimentally obtained response behavior of elastically supported circular cylinders in cross flow and cites fluid forces either measured or deduced from experiments in addition to a proposed mathematical model well supported by a wide range of independent experimental investigations. The effect of damping on vortex-induced vibrations of simply-supported horizontal tubes partially filled with water is reported by D.J. Johns and G. Skordilis in "Vortex Excitation by Transverse Flow of Simply-Supported Tubes Containing Fluid." A different type of fluid damping - external fluid dynamic dissipation damping - and its effect on the whirling instability of tube arrays in cross flow is addressed by R.D. Blevins in "Fluid Damping and the Whirling Instability of Tube Arrays." The problem of aeroelastic stability of two cylinders in tandem is discussed by Y.T. Tsui and C.C. Tsui in "On Wake Induced Flutter of a Circular Conductor in the Wake of Another." It is refreshing to see the problem of flow-induced vibrations on heat exchangers addressed from an external flow field point of view, as was carried out by M.M. Zdravkovich and J.E. Namork in "Structure of Interstitial Flow between Closely Spaced Tubes in Staggered Array." A very useful problems-solutions oriented contribution by F.L. Eisinger entitled "Prevention and Cure of Flow-Induced Vibrations Problems in Tubular Heat Exchangers" discusses various methods for predicting and solving tube and acoustic vibration problems.

The topic of flow-induced vibrations of tubes conveying fluids is discussed in two articles. The contribution by E.C. Ting and J.L. Kanning, "Dynamics of Flow-Conveying Pipe Structures," presents novel numerical techniques for the solution of the dynamic analysis of fluid-conveying pipe structures. A mathematical model capable of describing the nonlinear behavior of fluid-conveying tubes is discussed by E. Ch'ng and E.H. Dowell in "A Theoretical Analysis of Nonlinear Effects on the Flutter and Divergence of a Tube Conveying Fluid."

Two contributions deal directly with vibrations of reactor core assemblies. C.D. Henry et al. in their article "Flow-Induced Vibrations in GCFR Core Components" review several methods for predicting flow-induced vibrations on rods and ducts of the GCFR core and suggest an experimental plan to study such vibrations. A stochastic analysis technique for interpreting and analyzing experimental vibration test results on pressurized water reactor nuclear fuel assemblies is developed by W.J. Bryan in "Digital Analysis Techniques Used in Nuclear Fuel Vibration Analysis."

Flow-induced vibrations on valves and gates are discussed in two papers. The article, "Failure of Safety Valves due to Flow-Induced Vibration" by J.T. Coffman and M.D. Bernstein addresses a specific sonic vibration problem that occurred on reheat safety valves of a gas-fired steam generator. A general theoretical model for the prediction and study of self-excited vibrations of valves subject to jet flow instability is presented by D.S. Weaver and S. Ziada in "A Theoretical Model for Self-Excited Vibrations in Hydraulic Gates, Valves and Seals." This paper also presents results of a parametric study in which the dependence of vibrational amplitude and discharge characteristics on structural stiffness, fluid inertia, discharge coefficient, and other variables is shown. Some experimental results in support of Weaver's model are given.

Vibrations induced by condensation occurring in nuclear power plants is the subject of two contributions. R.S. Samra in "Feedwater System Transient Analysis for a PWR" discusses an analytical method for analyzing water hammer that occurs in feedwater systems due to condensation. Short duration pressure pulses with peak values of 22 MPa can occur in the system. The article, "The Distribution of Pressure Amplitudes during Chugging," by G.B. Andeen and J.S. Marks addresses the phenomenon of bubble growth and the subsequent rapid collapse (called chugging) that occurs when steam is injected into subcooled water.

C.I. Yang and T.J. Moran present a method for calculating the hydrodynamic reactions of harmonically
oscillating arrays of hexagonal cylinders in “Calculations of Added Mass and Damping Coefficients for Hexagonal Cylinders in a Confined Viscous Fluid.” Finite element analysis is used by A.N. Nahavandi and R. Falsafi-Haghighi in “Interaction between Structures and Fluids” to develop a numerical model for solid-fluid interaction; the model is applied to two-dimensional channel flow with elastic walls and is compared to a previous study based on the finite element discretization of the two-dimensional wave equation.

In summary, the book Flow Induced Vibrations is a good state-of-the-art account of important research and development activities in the field.

D.W. Sallet
Department of Mechanical Engineering
The University of Maryland
College Park, Maryland 20742
JUNE

COMPUTER-AIDED DESIGN OF DYNAMIC SYSTEMS
Dates: June 15-19, 1981
Place: East Lansing, Michigan
Objective: This course presents a structured approach to model building, formulation of state equations, and computer-aided analysis of the models. Applications are drawn from mechanical, electrical, hydraulic, thermal, and mixed-energy systems.

Contact: Dr. Ronald C. Rosenberg, Program Director of the A.H. Case Center for Computer-Aided Design, College of Engineering, Michigan State University, East Lansing, Michigan 48824 - (517) 355-8296.

COMPUTER-AIDED METHODS FOR MODAL ANALYSIS
Dates: June 22-26, 1981
Place: East Lansing, Michigan
Objective: This course introduces both finite elements and modal testing, emphasizing this common theory and pointing out the particular advantages of each method. Hardware includes the GenRad 2507, the Hewlett Packard 5423, and the PRIME 750. Software includes ANSYS, MODAL PLUS, and SUPERTAB.

Contact: Dr. James E. Bernard, Director for the Case Center for Computer-Aided Design, College of Engineering, Michigan State University, East Lansing, Michigan 48824 - (517) 355-6453.

MECHANICS OF HEAVY-DUTY TRUCKS AND TRUCK COMBINATIONS
Dates: June 22-26, 1981
Place: Ann Arbor, Michigan
Objective: The heavy truck or truck combination is a complex pneumatic-tired system. This course presents analysis programs, parameter measurement methods and test procedures useful in understanding and designing a vehicle. The course describes the physics of heavy-truck components that determine the braking, steering and riding performance of the total system.

Contact: University of Michigan, College of Engineering, Continuing Engineering Education, 300 Chrysler Center, North Campus, Ann Arbor, Michigan 48109 - (313) 764-8490.

FUNDAMENTALS OF NOISE AND VIBRATION CONTROL
Dates: June 22-26, 1981
Place: Cambridge, Massachusetts
Objective: This one week program is designed to provide a background in those aspects of sound and vibration that are important to noise control engineering. The general approach will be based on engineering concepts rather than theoretical analysis. The program is designed for the working engineer who has become involved in noise problems and seeks to deepen his/her understanding of the subject.

Contact: Director of Summer Session, Room E19-356, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.

OPERATIONAL AVAILABILITY AND MAINTAINABILITY ENGINEERING
Dates: June 22-26, 1981
Place: University of California - Los Angeles
Objective: To cover the following subjects: The equipment reliability, maintainability and availability interrelationships. The design of equipment to maximize their accessibility and minimize their downtime. Determination of equipment downtime, time-to-restore distribution, and mean maintenance man-hours per operating hour; spare parts requirements at a desired confidence level and spares optimization. Preventive maintenance policies and the quantification of the resulting increase in the reliability of maintained equipment. Determination of
the optimum preventive maintenance schedule of equipment to minimize their total corrective and preventive maintenance cost. Quantification of reliability and availability of maintained equipment considering their failure and repair rates. Determination of the various steady state availabilities of equipment and systems. The planning, execution, data acquisition, and data analysis of equipment maintainability demonstration tests.

Contact: Mr. Robert Rector, Assistant Director - Short Courses, UCLA, 6266 Boelter Hall, Los Angeles, CA 90024 - (213) 825-3496/1295/3344.

JULY

12TH ANNUAL INDUSTRIAL PRODUCT NOISE CONTROL INSTITUTE

Dates: July 6-10, 1981
Place: Schenectady, New York
Objective: For engineers, designers, environmental health specialists and managers concerned with noise and vibration control. This course will provide information on the theory, measurement and economics of noise reduction. It will cover the latest information on the nature of sound and noise control, including noise criteria, airborne sound distribution, vibration control, and noise signature analysis. Other topics include how noise is produced by different types of engineering equipment such as compressors, electric motors, fans, valves, and transformers.

Contact: Union College, Graduate Studies and Continuing Education, Wells House - 1 Union Ave., Schenectady, New York 12308 - (518) 370-6288.

6TH ANNUAL APPLIED INSTRUMENTATION AND MEASUREMENTS ENGINEERING

Dates: July 6-10, 1981
Place: Schenectady, New York
Objective: Designed for technicians, engineers and managers involved in the field of instrumentation and measurements. It will present a comprehensive view of the instrumentation system from transducer to readout, including a major emphasis on computer interfacing techniques. Principal topics will include: philosophy of measurements, transducer operating principles and selection criteria, static and dynamic data acquisition systems, occurrence and prevention of noise in measurement systems, data reduction methods, digital techniques, and statistical treatment of data. "Hands-on" lab experience will be offered.

Contact: Union College, Graduate Studies and Continuing Education, Wells House - 1 Union Ave., Schenectady, New York 12308 - (518) 370-6288.

COMPUTER-AIDED DESIGN OF CONTROL SYSTEMS

Dates: July 6-10, 1981
Place: East Lansing, Michigan
Objective: This course presents an introduction to time and frequency domain techniques for the computer-aided design of control systems. Both classical (transfer function) and modern (state variable) methods will be developed and applied, thus bringing participants up to current best practice.

Contact: Dr. Ronald C. Rosenberg, Program Director of the A.H. Case Center for Computer-Aided Design, College of Engineering, Michigan State University, East Lansing, Michigan 48824 - (517) 355-8296.

INSURANCE INDUSTRY SEMINAR

Dates: July 7-9, 1981
Place: Carson City, Nevada
Objective: This course is designed for personnel from the insurance industry or self-insured companies who are responsible for inspection of plants that use large, high-speed rotating machinery. Features in the seminar include: discussion of the economics of machine monitoring and predictive maintenance, presentation of machine types that should be considered, and minimum standards necessary for effective machine protection diagnosis, information and the presentation of catastrophic failure by use of proper maintenance methods and malfunction diagnosis techniques, and a survey of state-of-the-art methodology.

Contact: Kathy Fredekind, Bently-Nevada Corporation, P.O. Box 157, Minden, Nevada 89423 - (702) 782-3611, Ext. 224.
RELIABILITY ENGINEERING
Dates: July 13-17, 1981
Place: University of Chicago
Chicago, Illinois
Objective: After completing this course, participants should be able to calculate the failure rates of components and products; construct their Reliability "Bathtub" curves; determine the early, chance, and wearout reliability of components; and determine from data the parameters of the times-to-failure distributions of components and products analytically and by probability paper plotting for the exponential and Weibull cases. They should also be able to determine equipment time-to-restore distributions, along with the reliability of systems of any complexity, including series, parallel, standby, load-sharing, multimode function and switching, and using Bayesian prediction, the confidence limits on the reliability for the exponential, Weibull, and binomial cases. Finally, participants will be able to determine the maintainability of equipment and the reliability and availability of maintained components, equipment, and systems of many levels of complexity.

12TH ANNUAL CONFERENCE ON FRACTURE MECHANICS I AND ITS APPLICATION TO FRAC-TURE CONTROL
Dates: July 20-24, 1981
Place: Schenectady, New York
Objective: Material covered will benefit anyone in an engineering related position who is concerned with the application of fracture mechanics to the prevention of brittle fracture such as pressure vessels for power generation, malleable iron castings, structural steel fabricated frameworks and ASME Pressure Vessel code applications. Included are: engineering approach to component failure, failure analysis of pressure vessels, fracture mechanics based toughness criteria in ASME Pressure Vessel code, examples and case histories of code fracture mechanics applications, elasto-plastic analysis, computer aids for calculating remaining cyclic life, crack initiation and propagation, life prediction, and nondestructive testing methods and capabilities.

Contact: Union College, Graduate Studies and Continuing Education, Wells House - 1 Union Ave., Schenectady, New York 12308 - (518) 370-6288.

PLANNING A DIGITAL DATA ACQUISITION AND CONTROL COMPUTER SYSTEM
Dates: July 20-23, 1981
Place: Schenectady, New York
Objective: The course covers the interconnection of a multitude of devices from sensors to final control elements with ultimate output of system conditions on the man-machine interface devices; the sensing of temperature, pressure, level, flow, speed, weight, torque, vibration and electrical parameters such as volts, amps, watts, vars, power factor, frequency and motor load. The flexibility and utilization of data presentation via dynamic, colored graphic and tabular CRT displays, is presented as an optimum man-machine interface. System components/hardware and their interconnection are discussed in depth. Staging, on-site testing and as-built documentation are the final steps in the planning of a digital acquisition and control computer system.

Contact: Union College, Graduate Studies and Continuing Education, Wells House - 1 Union Ave., Schenectady, New York 12308 - (518) 370-6288.

RELIABILITY TESTING
Dates: July 20-24, 1981
Place: University of Chicago
Chicago, Illinois
Objective: This course has been designed to enable participants to calculate the failure rates of components and products; determine the early, chance, and wearout reliability of components and products; and determine the parameters of distributions involved in the time-to-failure data of components and products analytically and by probability paper plotting. Conduct Chi-Squared and Kolmogorov-Smirnov goodness-of-fit tests to determine the most appropriate distribution to use; learn to determine the confidence limits on the reliability for the exponential, normal, lognormal, Weibull, and binomial cases; determine the operating characteristic curves of components and products; plan, conduct, and analyze the results of sudden death, suspended-items, percent survival, success run, C-rank, and nonparametric
tests; and plan, conduct and analyze the results of sequential, Bayesian, and accelerated tests.

COMPUTATIONAL WORKSHOP IN LINEAR AND NONLINEAR STRUCTURAL AND SOLID MECHANICS
Place: Schenectady, New York
Objective: For those interested in applications to current technological problems such as earthquake analysis, pipe whip dynamics and fluid-solid interaction, as well as other areas. The following will be covered: structural dynamics techniques for both linear and nonlinear many-degree-of-freedom systems, incremental loading into the plastic range and finite element methods in fracture mechanics; random vibration methods; response spectrum methods for many-degree-of-freedom systems, A nonlinear dynamics computer program as well as eigenvalue and sinusoidal analysis programs will be available for workshop use. Relative merits of ANSYS, SAP, ADINA, etc., programs will be discussed. Computer graphics for input generation and output presentation will be available.

Contact: Union College, Graduate Studies and Continuing Education, Wells House - 1 Union Ave., Schenectady, New York 12308 - (518) 370-6288.

COMPUTER WORKSHOP IN FINITE ELEMENT METHODS OF ANALYSIS FOR STRESS AND OTHER FIELD PROBLEMS
Place: Schenectady, New York
Objective: For those interested in applications to current technological problems such as thermal and stress analysis of nuclear vessel nozzle, 3D pipe intersection, turbine blade application, water mass of nuclear fuel channels, as well as other areas. The following will be covered: finite element techniques for 2D and 3D structural analysis and dynamics, both 2D and 3D programs, including listings, generalization of finite element methods to heat transfer and fluid flow with programs in each discipline; incremental loading into the plastic range and finite element methods in fracture mechanics; relative merits of ANSYS, SAP, ADINA, etc., programs. Computer graphics for input generation and output presentation will be available.

Contact: Union College, Graduate Studies and Continuing Education, Wells House - 1 Union Ave., Schenectady, New York 12308 - (518) 370-6288.

AUGUST

MACHINERY DATA ACQUISITION
Dates: August 3-7, 1981
September 28 - October 2, 1981
December 7-11, 1981
Place: Carson City, Nevada
Objective: This seminar is designed for people whose function is to acquire machinery data for dynamic analysis, using specialized instrumentation, and/or that person responsible for interpreting and analyzing the data for the purpose of corrective action on machines. Topics include measurement and analysis parameters, basic instrumentation review, data collection and reduction techniques, fundamental rotor behavior, explanation and symptoms of common machinery malfunctions, including demonstrations and case histories. The week also includes a lab workshop day with hands-on operation of the instrumentation and demonstration units by the participants.

Contact: Kathy Fredekind, Bently-Nevada Corporation, P.O. Box 157, Minden, Nevada 89423 - (702) 782-3611, Ext. 224.

RELIABILITY AND LIFE TESTING
Dates: August 10-14, 1981
Place: University of California - Los Angeles
Objective: To cover the following subjects. Methodologies to improve the reliability of components, equipment and systems, follow their reliability growth, identify the distributions of their times-to-failure, determine their mean life, their reliability, and their failure rate, with their confidence limits at specified confidence levels, various new small-sample-size, short-duration reliability and life tests non-
parametric reliability and life tests; sequential tests for the exponential and binomial cases; tests of comparison for the exponential, Weibull and binomial cases, accelerated life testing; Bayesian life and reliability testing; identification of the appropriate times-to-failure distributions to use and the application of goodness-of-fit tests to distributions fitted to data; probability plotting techniques to find the parameters of the appropriate distributions to use.

Contact: Mr. Robert Rector, Assistant Director - Short Courses, UCLA, 6266 Boelter Hall, Los Angeles, CA 90024 - (213) 825-3496/1295/3344.

FOUNDATIONS OF ENGINEERING ACOUSTICS
Dates: August 10-21, 1981
Place: Cambridge, Massachusetts
Objective: This summer program is a specially developed course of study which is based on two regular MIT subjects (one graduate level and one undergraduate level) on vibration and sound in the Mechanical Engineering Department. The program emphasizes those parts of acoustics - the vibration of resonators, properties of waves in structures and air - the generation of sound and its propagation that are important in a variety of fields of application. The mathematical procedures that have been found useful in developing the desired equations and their solutions, and the processing of data are also studied. These include complex notation, fourier analysis, separation of variables, the use of special functions, and spectral and correlation analysis.

Contact: Director of Summer Session, Room E19-366, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.

PYROTECHNICS AND EXPLOSIVES
Dates: August 17-21, 1981
Place: Philadelphia, Pennsylvania
Objective: The seminar combines the highlights of Pyrotechnics and Solid State Chemistry, given the last twelve summers, and Explosives and Explosive Devices that made its successful appearance ten years ago. Similar to previous courses, the seminar will be practical so as to serve those working in the field. Presentation of the theory is restricted to that necessary for an understanding of basic principles and successful application to the field. Coverage empha-
sizes recent effort, student problems, new techniques, and applications.

Contact: Mr. E.E. Hannum, Registrar, The Franklin Research Center, Philadelphia, Pennsylvania 19103 - (215) 448-1236/1395.

VIBRATION AND SHOCK SURVIVABILITY, TESTING, MEASUREMENT, ANALYSIS, AND CALIBRATION
Dates: August 24-28, 1981
Place: Santa Barbara, California
Dates: October 5-9, 1981
Place: Bournemouth, England
Objective: Topics to be covered are resonance and fragility phenomena, and environmental vibration and shock measurement and analysis; also vibration and shock environmental testing to prove survivability. This course will concentrate upon equipments and techniques, rather than upon mathematics and theory.

Contact: Wayne Tustin, 22 East Los Olivos St., Santa Barbara, CA 93105 - (815) 682-7171.

MECHANICAL ENGINEERING
Dates: August 31 - September 4, 1981
Place: Carson City, Nevada
Objective: This course is designed for the mechanical or maintenance engineer who has responsibility for the proper operation and analysis of rotating machinery. Working knowledge of transducers, data acquisition instrumentation and fundamental rotor behavior is a prerequisite. The course includes: a guest speaker in the field of machinery malfunctions; descriptions and demonstrations of machinery malfunctions; discussions of the classification, identification, and correction of various machine malfunctions; a one day rotor dynamics lab with individual instruction and operation of demonstration units; and emphasis on the practical solution of machinery problems rather than rotor dynamic theory.

Contact: Kathy Fredekind, Bently-Nevada Corporation, P.O. Box 157, Minden, Nevada 89423 - (702) 782-3611, Ext. 224.
10TH ADVANCED NOISE AND VIBRATION COURSE

Dates: September 14-18, 1981
Place: Southampton, England

Objective: The course is aimed at researchers and development engineers in industry and research establishments, and people in other spheres who are associated with noise and vibration problems. The course, which is designed to refresh and cover the latest theories and techniques, initially deals with fundamentals and common ground and then offers a choice of specialist topics. The course comprises over thirty lectures, including the basic subjects of acoustics, random processes, vibration theory, subjective response and aerodynamic noise, which form the central core of the course. In addition, several specialist applied topics are offered, including aircraft noise, road traffic noise, industrial machinery noise, diesel engine noise, process plant noise and environmental noise and planning.

Contact: Mrs. O.G. Hyde, ISVR Conference Secretary, The University, Southampton S09 5NH, England - (0703) 559122 X 2310/752, Telex 47661.

BASIC INSTRUMENTATION SEMINAR

Dates: September 15-17, 1981
Place: New Orleans, Louisiana

Dates: October 20-22, 1981
Place: Houston, Texas

Dates: October 27-29, 1981
Place: Pittsburgh, Pennsylvania

Objective: This course is designed for maintenance technicians, instrument engineers, and operations personnel - those individuals responsible for installation and proper operation of continuous monitoring systems. An in-depth examination of probe installation techniques and monitoring systems including types, functions, and calibration procedures is provided. Also presented is an overview of some of the instrumentation used to acquire data for vibration analysis, including oscilloscopes, cameras, and specialized filter instruments.

Contact: Kathy Fredekind, Bently-Nevada Corporation, P.O. Box 157, Minden, Nevada 89423 - (702) 782-3611, Ext. 224.

OCTOBER

DESIGN OF FIXED OFFSHORE PLATFORMS

Dates: October 5-16, 1981
Place: Austin, Texas

Objective: This course is dedicated to the professional development of those engineers, scientists, and technologists who are and will be designing fixed offshore platforms to function in the ocean environment from the present into the twenty-first century. The overall objective is to provide participants with an understanding of the design and construction of fixed platforms, specifically the theory and processes of such design and the use of current, applicable engineering methods.

Contact: Continuing Engineering Studies, College of Engineering, Ernest Cockrell Hall 2.102, The University of Texas at Austin, Austin, Texas 78712 - (512) 471-3506.

VIBRATION CONTROL

Dates: October 12-16, 1981
Place: University Park, Pennsylvania

Objective: The seminar emphasizes principles, general approaches and new developments, with the aim of providing participants with efficient tools for dealing with their own practical vibration problems.

Contact: Debra A. Noyes, 410 Keller Conference Center, University Park, Pennsylvania 16802 - (814) 865-8820, TWX No: 510-670-3532.
The 1981 SAE Aerospace Congress and Exposition will be held October 5-8, 1981 at the Anaheim Convention Center, Anaheim, California.

The following is the preliminary program for session titled "Advances in Dynamic Testing and Analysis" to be presented by SAE Technical Committee G-5 on Monday, October 5, 1981:

Chairman: Dr. Robert Coppolino, The Aerospace Corporation
Asst. Chairman: Rush E. Allen, National Technical Services

- **Finite Element Acoustic/Structural Dynamic Analysis of Complex Systems**
 Dr. Robert Coppolino and Judy Peach, The Aerospace Corporation

- **Methods of Reducing Fuel Slosh in Rectangular Tanks (Analysis and Experimental Correlation)**
 Bruce A. Rommel, Douglas Aircraft, McDonnell Douglas

- **Structural Dynamic Modifications - An Extension to Modal Analysis**
 Dave Formenti and Sri Welaratna, Structural Measurement Systems

- **Structural Mode Sensitivity to Local Modifications**
 Dr. Robert Coppolino, The Aerospace Corporation

- **Wave Force Identification for Offshore Structures**
 Stepan Simonian and David Rozelle, J.H. Wiggins Co.

Chairman: John R. Fowler, Hughes Aircraft Co.
Asst. Chairman: Dr. Robert E. Holman, Hughes Aircraft Co.

- **Single Point Excitation for Determination of Modal Characteristics of Shuttle Panels**
 Ralph Brillhart, Structural Dynamics Research Corp.

- **Modal Parameter Estimation by a Simultaneous Ensemble Frequency Domain Method**
 Dr. Robert Coppolino, The Aerospace Corporation

- **Robotics in Space**
 Dr. C. Thomas Savell, Structural Dynamics Research Corp.

- **Analytical/Experimental Research for Active Control of Space Structures**
 Dr. Richard Stroud, Synergistic Technology, Inc.

- **Structural Uncertainty in Dynamic Analysis**
 Dr. T.K. Hasselman, J.H. Wiggins Co.

- **System Identification of Large-Scale Structures**
 Dr. Michael Dobbs, William Gundy and Kenneth D. Blakely, ANCO Engineers, Inc.

For further information, please contact: Roy W. Mustain, Rockwell Space Systems Group, AB 97, 12214 S. Lakewood Blvd., Downey, CA 90241.
The Metals and Ceramics Information Center (MCIC) is the continuation of an uninterrupted program that started as the Titanium Metallurgy Laboratory in 1955 and evolved into the Defense Metals Information Center (DMIC). In 1971, DMIC and the Defense Ceramics Information Center (DCIC) were combined to form MCIC – the largest of the Department of Defense (DoD) Information Analysis Centers. Utilizing the research staff of Battelle’s Columbus Laboratories, MCIC is able to provide a wide and in-depth range of technical products and services to all sectors of the DoD, other government agencies, their contractors, and the general industrial and academic communities in this country.

MCIC’s objective is the collection, evaluation, and dissemination of timely information on the characteristics and utilization of advanced metals and ceramics of primary interest to DoD missions. MCIC’s scope essentially covers the following:

METALS
- Titanium
- Aluminum and magnesium
- Beryllium
- Refractory metals
- High-strength steels
- Superalloys

CERAMICS
- Borides
- Carbides
- Carbon/graphite
- Nitrides
- Oxides
- Sulfides and silicides
- Selected glasses and glass-ceramics

PROCESSES
- Basic materials production
- Primary fabrication (forging, casting, rolling, extrusion, etc.)
- Secondary fabrication (metal removal, forming, etc.)
- Joining
- Powder processes
- Surface treatment
- Quality control and inspection

PROPERTIES, APPLICATIONS, TESTING
- Environmental effects/corrosion
- Mechanical and physical properties
- Materials applications
- Test methods
- Sources/suppliers
- Specifications
- Design characteristics

The current MCIC database of over 130,000 indexed and abstracted technical documents is maintained by the addition of new information from the continual scanning of government reports and the worldwide open technical literature. The knowledge of scientists and engineers throughout the Battelle staff is also utilized to assure a timely and authoritative technical information base from which MCIC’s services and products can be derived. Since 1975, abstracted information has been entered on the Defense Technical Information Center’s Defense RDT&E On-Line System (DROLS). The approximately 60,000 MCIC references in this system are now available to anyone having a DROLS terminal.

Using this database and Battelle support, the Center is able to provide the following principal services:

- Technical advice and assistance
- Summaries of important developments in materials technology
- State-of-the-art reports and handbooks
- Access to over 130,000 analyzed and indexed reference sources

Inquiries, such as requests for literature searches or a request for particular information on a specific
materials problem, are handled by MCIC staff in a timely manner. Responses can vary from a direct answer (over the telephone or by correspondence) to an annotated bibliography or plant visit by a Battelle technical staff member.

In certain highly specialized cases, the information and resources of MCIC are utilized to provide timely responses to unique needs of our users. Among the special studies undertaken are:

- In-depth review and analysis of technical literature in highly specified areas
- Comparisons of foreign and domestic technologies
- Technical assistance in materials applications
- Review of materials standards/specifications
- Development of computer-based information systems and data banks
- Technical conference/symposia organization, administration, and publication of proceedings

Two specific examples of current special studies that should be noted are:

- Operation of the Carbon-Carbon Data Base. This limited-access data base provides up-to-date information on the use and performance of carbon-carbon composites in various rocket and space application.
- Publication of the U.S. Army ManTech Journal. This quarterly publication is an important part of technology transfer. The Journal provides a rapid review of the latest Army-sponsored manufacturing technology developments in many areas of technology.

A Current Awareness Bulletin (CAB) is issued monthly to summarize significant developments in technology related to:

- Light Metals
- High-Strength Steels
- Superalloys
- Refractory Metals
- Ceramics
- Selected Glasses and Glass Ceramics
- Carbon/Graphite
- Coatings
- Processing
- Fabrication
- Properties (physical/mechanical)
- Environmental Effects
- Test Methods

The emphasis in the technical section of the CAB is placed on DoD-related technical developments. In addition, pertinent new items are included covering technical meetings, R&D contract awards, and new technical literature.

Each year MCIC publishes a variety of engineering handbooks, databooks, and state-of-the-art reports on topics of important concern in the utilization of advanced metals and ceramics. Authors are selected from the Battelle staff, industry, and government to provide the latest and most authoritative engineering information on a variety of technical topics.

It is a DoD requirement that a fee be paid for MCIC products and services. In cases where this is required, fees are quoted in advance and are based on incurred costs only.

Further information regarding the products and services of MCIC can be obtained by contacting:

Mr. Harold Mindlin, Program Manager
Metals and Ceramics Information Center
Battelle's Columbus Laboratories
505 King Avenue
Columbus, Ohio 43201

General Inquiries: 614-424-5000
Technical Inquiries: 614-424-6376
ABSTRACT CATEGORIES

MECHANICAL SYSTEMS
- Rotating Machines
- Reciprocating Machines
- Power Transmission Systems
- Metal Working and Forming
- Isolation and Absorption
- Electromechanical Systems
- Optical Systems
- Materials Handling Equipment

MECHANICAL COMPONENTS
- Blades
- Bearings
- Belts
- Gears
- Clutches
- Couplings
- Fasteners
- Linkages
- Valves
- Seals
- Cams

Vibration Excitation
Thermal Excitation

MECHANICAL PROPERTIES
- Damping
- Fatigue
- Elasticity and Plasticity

STRUCTURAL SYSTEMS
- Bridges
- Buildings
- Towers
- Foundations
- Underground Structures
- Harbors and Dams
- Roads and Tracks
- Construction Equipment
- Pressure Vessels
- Power Plants
- Off-shore Structures

STRUCTURAL COMPONENTS
- Strings and Ropes
- Cables
- Bars and Rods
- Beams
- Cylinders
- Columns
- Frames and Arches
- Membranes, Films, and Webs
- Panels
- Plates
- Shells
- Rings
- Pipes and Tubes
- Ducts
- Building Components

EXPERIMENTATION
- Measurement and Analysis
- Dynamic Tests
- Scaling and Modeling
- Diagnostics
- Balancing
- Monitoring

ANALYSIS AND DESIGN
- Analogs and Analog Computation
- Analytical Methods
- Modeling Techniques
- Nonlinear Analysis
- Numerical Methods
- Statistical Methods
- Parameter Identification
- Mobility/Impedance Methods
- Optimization Techniques
- Design Techniques
- Computer Programs

ELECTRIC COMPONENTS
- Controls (Switches, Circuit Breakers)
- Motors
- Generators
- Transformers
- Relays
- Electronic Components

GENERAL TOPICS
- Conference Proceedings
- Tutorials and Reviews
- Criteria, Standards, and Specifications
- Bibliographies
- Useful Applications

VEHICLE SYSTEMS
- Ground Vehicles
- Ships
- Aircraft
- Missiles and Spacecraft

BILOGICAL SYSTEMS
- Human
- Animal

MECHANICAL COMPONENTS
- Absorbers and Isolators
- Springs
- Tires and Wheels

DYNAMIC ENVIRONMENT
- Acoustic Excitation
- Shock Excitation
ABSTRACTS FROM THE CURRENT LITERATURE

Copies of articles abstracted in the DIGEST are not available from the SVIC or the Vibration Institute (except those generated by either organization). Inquiries should be directed to library resources. Government reports can be obtained from the National Technical Information Service, Springfield, VA 22151, by citing the AD-, PB-, or N- number. Doctoral dissertations are available from University Microfilms (UM), 313 N. Fir St., Ann Arbor, MI, U.S. Patents from the Commissioner of Patents, Washington, D.C. 20231. Addresses following the authors’ names in the citation refer only to the first author. The list of periodicals scanned by this journal is printed in issues 1, 6, and 12.

ABSTRACT CONTENTS

MECHANICAL SYSTEMS 33
- Rotating Machines 33
- Reciprocating Machines . 36
- Power Transmission Systems 36
- Metal Working and Forming 36
- Electromechanical Systems 36

MECHANICAL COMPONENTS 48
- Absorbers and Isolators 48
- Tires and Wheels 49
- Blades 49
- Bearings 49
- Gears 50
- Couplings 50
- Fasteners 51

MECHANICAL PROPERTIES 71
- Damping 71
- Fatigue 73
- Elasticity and Plasticity 74

STRUCTURAL SYSTEMS 36
- Bridges 36
- Buildings 38
- Towers 39
- Foundations 39
- Harbors and Dams 40
- Power Plants 40

STRUCTURAL COMPONENTS 51
- Cables 51
- Bars and Rods 51
- Beams 51
- Cylinders 53
- Panels 53
- Plates 54
- Shells 58
- Pipes and Tubes 60
- Ducts 61
- Building Components 63

VEHICLE SYSTEMS 41
- Ground Vehicles 41
- Ships 43
- Aircraft 43
- Missiles and Spacecraft 47

ELECTRIC COMPONENTS 63
- Controls (Switches, Circuit Breakers) 63
- Motors 64

DYNAMIC ENVIRONMENT 64
- Acoustic Excitation 64
- Shock Excitation 67
- Vibration Excitation 69

EXPERIMENTATION 75
- Measurement and Analysis 75
- Dynamic Tests 76
- Diagnostics 77
- Balancing 78
- Monitoring 79

ANALYSIS AND DESIGN 80
- Analogs and Analog Computation 80
- Analytical Methods 80
- Modeling Techniques 82
- Nonlinear Analysis 82
- Numerical Methods 82
- Optimization Techniques 83
- Computer Programs 83

GENERAL TOPICS 85
- Conference Proceedings 85
- Tutorials and Reviews 85
- Criteria, Standards, and Specifications 86
- Bibliographies 86
MECHANICAL SYSTEMS

ROTATING MACHINES
(Also see Nos. 1225, 1247, 1258, 1354, 1361, 1365, 1366, 1367, 1369, 1370, 1394, 1400, 1401, 1402)

81-1168
Coupled Torsional-Flexural Vibration of a Shaft in a Geared System of Rotors (1st Report)
H. Iida, A. Tamura, K. Kikuch, and H. Agata
Tokyo Inst. of Tech., Ookayama, Meguro-ku, Tokyo, Japan, Bull. JSME, 23 (186), pp 2111-2117 (Dec 1980) 12 figs, 6 refs

Key Words: Shafts (machine elements), Rotors, Gear couplings, Spur gears, Coupled response, Torsional vibration, Flexural vibration

Coupled torsional-flexural vibrations of a shaft in a spur geared system are investigated. Equations of motion which contain the terms of geometrical eccentricity of gears and mass unbalance are introduced. The coupling between torsional and flexural displacements is considered in the equations which assume that surfaces of tooth of meshed gears are always in contact during the rotation. By solving the equations, it is possible to get natural frequencies, mode shapes, and frequency response of the system. Comparing the results with uncoupled theory reveals some new phenomena. They are: shifts of the critical speeds, transformations of the mode shapes, and a forced vibration which is caused by geometrical eccentricity of a gear.

81-1169
Stress Concentration in a Torsionally Loaded Shaft with a Suddenly Varying Boundary
R. Brepta
Faculty of Technical and Nuclear Physics, Czech Technical Univ., Prague, Czechoslovakia, Strojničky Časopis, 31 (6), pp 695-706 (1980) 10 figs, 10 refs (In Czech)

Key Words: Shafts (machine elements), Torsional excitation

This paper deals with the analytical solution of dynamical stress concentration in the vicinity of a sudden change of the shaft boundary which is loaded by a non-stationary torsional stress wave. The conditions for the existence of stress concentration and the type of stress singularity are developed. The applied method of solution allows the study of the stress concentration in rotating bodies with a sudden change of boundaries in cases of dynamic torsional loading.

81-1170
Problem of Rotor Passing through Critical Speed with Gyroscopic Effect (3rd Report, Case of Rotating Shaft on Flexible Supports)
K. Nonami and M. Miyashita
Faculty of Engg., Tokyo Metropolitan Univ., Setagayaku, Tokyo, Japan, Bull. JSME, 23 (186), pp 2104-2110 (Dec 1980) 12 figs, 10 refs

Key Words: Rotors, Critical speeds, Flexible rotors, Shafts (machine elements)

This paper reports the nonstationary vibration of a rotating shaft on flexible supports passing through critical speed. In particular the interaction or the coupling effect caused near critical speeds in continuous passing through 1st and 2nd critical speeds has been studied. For the case of a rotor system on damped flexible supports, its approximate equation in transition through the critical speed has been derived by an asymptotic method. Moreover, observing nonstationary maximum amplitudes, the analytical results have been considered. The experiments support the analysis.

81-1171
Heat Propagation Due to Torsional Vibration of Shafts
S. Panteliou and A. Dimarogonas

Key Words: Shafts (machine elements), Torsional vibration, Material damping, Heat generation

Torsional vibration of rotating shafts can yield substantial temperatures in the shaft due to heat generated from material damping. It has been recently observed that such a situation in electric generators can lead to insulation failures and machine outages. In the study reported here forced torsional vibration is assumed, and both lumped mass and continuous systems are considered. The hysteretic model for material damping is used to yield the heat generation in the elastic deformation range and an elastoplastic material is assumed in the plastic range. The heat conduction equation is solved for a cylindrical shaft with surface cooling.
Closed form solutions and expressions for the maximum temperatures and the maximum surface temperatures are obtained and tabulated for design purposes. It is shown that substantial temperatures can develop in shafts undergoing torsional vibration.

81-1172
Determination of the Limit of Initiation of Self-Excited Vibration of Rotors
A. Tondl

Key Words: Rotors, Self-excited vibration

A method is described of determining the limit frequencies of initiation of self-excited vibration of rotor systems for every vibration mode, or the limit frequencies of rotor rotation corresponding to a particular amplitude for single-frequency vibration of different modes, as a function of a specified system parameter. The method enables the optimum value of this parameter to be determined directly.

81-1173
Regions of Instability of Motion of a Disc Supported by an Asymmetric Flexible Shaft in Asymmetric Bearings
T. Kotera
Kobe Univ., Rokko-dai 1, Nada-ku, Kobe 657, Japan, Strojnícky Časopis, 31 (5), pp 553-665 (1980) 6 figs, 4 refs

Key Words: Discs, Shafts (machine elements), Flexible rotors, Rotors, Variable material properties, Asymmetry

In the present paper a method for determining regions of instability of a system with periodically variable coefficients almost exactly is presented. A disc supported by an asymmetric flexible shaft in asymmetric bearings is considered.

81-1174
Reduction of Centrifugal Fan Noise by Use of Resonators
W. Neise and G.H. Koopmann

Deutsch Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e.V., Institut fur Turbulenzforschung, Berlin, Germany, J. Sound Vib., 23 (2), pp 297-308 (Nov 22, 1980) 8 figs, 1 table, 23 refs

Key Words: Turbomachinery noise, Fans, Blowers, Compressors, Noise reduction, Acoustic resonators

A method by which an acoustic resonator can be used to reduce at source the aerodynamic noise generated by turbomachinery has been investigated experimentally. The casing of a small centrifugal blower was modified by replacing the cut-off of the scroll with the mouth of a quarter-wavelength resonator. The mouth of the resonator was constructed from a series of perforated plates with the same curvature as the cut-off to preserve the original geometry of the casing. Tuning of the resonator was achieved by changing the length through a moveable end plug. The noise measurements were made in an anechoically terminated outlet duct at nearly a free delivery operating condition of the blower. With appropriate tuning of the resonator, reductions in the blade passing frequency tones of up to 29 dB were observed with corresponding overall sound pressure level reductions of up to 7dB(A). Parameters which influenced the bandwidth of the resonator response were the porosity and hole size of the resonator mouth and the flow velocity near the cut-off region. Throughout the tests, the aerodynamic performance of the blower was unaffected by the addition of the resonator to the casing.
Key Words: Roto'«, Helicopter«, Wind tunnel tests, Vortex-induced vibration

Calculated and measured values of helicopter rotor flapping angles in forward flight are compared for a model rotor in a wind tunnel and an autogiro in gliding flight. The lateral flapping angles can be accurately predicted when a calculation of the nonuniform wake-induced velocity is used. At low advance ratios, it is also necessary to use a free wake geometry calculation. For the cases considered, the tip vortices in the rotor wake remain very close to the tip-path plane, so the calculated values of the flapping motion are sensitive to the fine details of the wake structure, specifically the viscous core radius of the tip vortices.

Key Words: Disks (shapes), Thermal excitation, Variable cross section, Natural frequencies, Flexural vibration

Details and results are presented of an experimental analysis of the natural frequencies of free transverse vibration of two annular discs subjected to the combined action of centrifugal and thermal stressing. One disc is of constant thickness form, whilst the other is of linearly varying thickness form. The results obtained experimentally are subsequently compared with those as predicted by a finite element technique previously described by the first two authors. In general the comparisons are found to be favorable, when account is taken of the sources of error in the experimental analysis.

Key Words: Helicopter«, Rotors, Mountings

A helicopter rotor head mounting assembly includes a rotor drive shaft and a rotor hub splined to the shaft for rotation therewith. The rotor hub includes a central bore having an internal tapered portion which is forced downwardly upon a mating tapered portion of the rotor drive shaft. An annular split cone is mounted between the rotor shaft and the hub at a bottom portion of the hub bore and the split cone is forced upwardly into firm engagement with the hub and drive shaft by means of a plurality of individual loading means which are carried by an annular plate affixed to the bottom of the hub. The loading means are individually adjustable and apply loading force directly onto the split cone to thereby assure a secure, non-vibrational rotation of the hub with the rotor shaft.

Key Words: Rotors, Foundations, Unbalanced mass response, Probability theory

This dissertation considers the problem of the foundation force of an unbalanced rotating machine from both deterministic and probabilistic viewpoints.
HOW TO DESIGN QUIET TRANSMISSIONS
R.J. Drago

Key Words: Power transmission systems, Gears, Shafts (machine elements), Bearings, Housings, Noise control, Design techniques

Although silencing measures can be applied to a transmission after it is designed and built, the initial engineering of a product should include as many noise-reduction measures as possible. Gears, shafts, bearings, and housings all have an important effect on acoustical output, and their noise characteristics can be largely controlled at the drawing board.
J.H. Daniels, T.A. Fisher, F.P. Bathe, and J.K. Maurer
Fritz Engrg. Lab., Lehigh Univ., Bethlehem, PA,
Rept. No. FEL-398.7, FHWA-RD-79-137, 86 pp
(Aug 1979)
P881-116923

Key Words: Bridges, Steel, Girders, Plate girders, Box girders, Fatigue tests

This report presents the results of the ultimate strength tests of one curved non-composite plate girder assembly, two curved composite plate girder assemblies and two curved composite box girders. The primary objectives of the research reported herein are: to determine the load-deflection behavior of large size curved plate girder assemblies and curved box girders which are loaded to ultimate strength, and to compare the experimental behavior with analytic predictions. This study is of very limited scope and is intended only as a pilot study of the ultimate strength of curved plate and box girders.

81-1186
Fatigue of Curved Steel Bridge Elements: Design Recommendations for Fatigue of Curved Plate Girder and Box Girder Bridges
Fritz Engrg. Lab., Lehigh Univ., Bethlehem, PA,
Rept. No. FEL-398.8, FHWA/RD-79-138, 64 pp
(Apr 1980)
P881-115115

Key Words: Bridges, Steel, Girders, Plate girders, Box girders, Fatigue life, Specifications

Research on the fatigue behavior of horizontally curved, steel bridge elements was conducted. The multi-phase investigation spanning nearly five years was performed in five tasks: analysis and design of five large scale horizontally curved steel twin plate girder assemblies and three large scale horizontally curved steel box girders, primarily for fatigue testing; special analytical studies of the influences on fatigue of stress range gradient, heat curving, oil canning of webs and the spacing of internal diaphragms in curved box girders; fatigue tests, to 2,000,000 cycles, of each of the above eight curved test girders; ultimate strength tests of three of the curved plate girders assemblies and two of the curved box girders following the fatigue tests (composite reinforced concrete slabs were added to two of the three curved plate girder assemblies and to both curved box girders; and development of design recommendations suitable for inclusion in the AASHTO bridge design Specifications.

81-1187
Fatigue of Curved Steel Bridge Elements - Effect of Internal Diaphragms on Fatigue Strength of Curved Box Girders
J.H. Daniels, D. Abraham, and B.T. Yen
Fritz Engrg. Lab., Lehigh Univ., Bethlehem, PA,
Rept. No. FEL-398.6, FHWA-RD-79-136, 60 pp
(Aug 1979)
P881-116915

Key Words: Bridges, Steel, Girders, Diaphragm couplings, Box girders, Fatigue life

The investigation is centered on the effect of welded details on curved girder fatigue strength. Fatigue tests of five full-scale curved plate girder assemblies and three full-scale curved plate girder assemblies and three full-scale curved box girders are part of the investigation. This report examines analytically the effects of spacing of rigid interior diaphragms on the stresses and deflections of curved box girders. Available computer programs are employed and existing results are utilized with little emphasis on the procedure of computation. The objective is to assess the qualitative relationship between stresses and the coupling influence of diaphragm spacing and curvature, so as to gain insight to the fatigue behavior of box girders.

81-1188
Fatigue of Curved Steel Bridge Elements - Effect of Heat Curving on the Fatigue Strength of Plate Girders
J.H. Daniels and R.P. Batcheler
Fritz Engrg. Lab., Lehigh Univ., Bethlehem, PA,
Rept. No. FEL-398.5, FHWA-RD-79-135, 69 pp
(Aug 1979)
P881-116907

Key Words: Bridges, Steel, Plate girders, Thermal effects, Fatigue life

This multiphase investigation involves the performance of five tasks: analysis and design of large scale test assemblies; special studies of selected topics; fatigue tests and ultimate load tests of test assemblies; and development of design recommendations. This report presents the results of a special study of the effects of heat curving on the fatigue strength of plate girders.

81-1189
Fatigue of Curved Steel Bridge Elements - Analysis and Design of Plate Girder and Box Girder Test Assemblies
This multi-phase investigation involves the performance of five tasks: analysis and design of large scale plate girder and box girder test assemblies; special studies of selected topics; fatigue tests of the curved plate girder and box girder test assemblies; ultimate load tests of the test assemblies; and development of design recommendations suitable for inclusion in the AASHTO design specifications. The first task, analysis and design of horizontally curved plate girder and box girder test assemblies, is contained herein. The research effort centered on fatigue crack propagation at welded details.

Key Words: Bridges, Steel, Girders, Plate girders, Box girders, Fatigue tests

81-1190
Dynamic Analysis of Bridge Tower-Pier Systems by Substructure Method
T. Balendra

Key Words: Bridges, Towers, Piers, Substructuring methods, Time domain method

A tower-pier system is analyzed in the time domain by reducing the governing equations to two coupled integro-differential equations in terms of the interaction displacements. The formulation facilitates to discard the insignificant modes of the tower.

81-1191
Along-Wind Response of Suspension Bridges with Special Reference to Stiffening by Horizontal Cables
R. Sigbjørnsson and E. Hjorth-Hansen

Key Words: Bridges, Suspension bridges, Cable stiffened structures, Wind-induced excitation

This paper outlines the application of the theory of stochastic dynamics to evaluate the forced response of suspension bridges subjected to gusty winds. The main emphasis is placed on the analysis of the along-wind response and complete formulae for the root-mean-square response are worked out. The concept of gust response factors is also discussed. The effects of lateral cables as a means to reduce the along-wind response are considered. Numerical results of four suspension bridges with center spans in the range 525-1250 m are presented, including a discussion of the general trend of the along-wind response.

BUILDINGS
(Also see Nos. 1255, 1318, 1398, 1399)

81-1192
Overall Safety Assessment of Multistory Steel Buildings Subjected to Earthquake Loads. Evaluation of Seismic Safety of Buildings
S.P. Lai
PBB1-111718

Key Words: Buildings, Steel, Earthquake damage

A set of 140 earthquake records were used to assess the uncertainties involved in ground motion representation. In particular, seismic input was characterized in terms of the Kanai-Tajimi power spectral density function and the strong-motion duration. Based on the method of spectral moments, key Kanai-Tajimi parameters were determined for the set of records. The statistics and interdependencies of these parameters were evaluated. The correlation between these K-T parameters, strong-motion duration, peak ground acceleration, epicentral distance and local magnitude was investigated. Based on an extensive simulation study, semi-empirical modifications were made to an existing random vibration solution for single-degree-of-freedom elasto-plastic systems. Similar modifications were incorporated in an approximate multi-degree-of-freedom elasto-plastic random vibration methodology for shear-beam systems, and its validity was assessed by a series of compatibility studies. By using the random vibration methodology, the overall inelastic seismic safety analysis of buildings was formulated.
Dynamic Behavior of LLNL Buildings During After-shocks of the January 24, 1980 Greenville Earthquake
Lawrence Livermore Lab., California Univ., Livermore, CA, 18 pp (Apr 1980)
UCRL-52969

Key Words: Computer programs, Buildings, Seismic response, Mode shapes, Natural frequencies, Damping coefficients

Computer programs developed at the Lawrence Livermore National Laboratory (LLNL) were used to extract information about the dynamic behavior of several LLNL structures from velocity time-history signals recorded during two earthquake aftershocks. The most complete analysis was performed on Building 111. This analysis is presented as a case study to show the power of the LLNL computer codes in identifying the principal vibratory modes of a structure and the frequencies and damping values of these modes. The importance of this technique for monitoring changes in the seismic integrity of critical structures is discussed.

Study of X-Braced Steel Frame Structures under Earthquake Simulation
Y. Ghanaat
UM 8029401

Key Words: Buildings, Framed structures, Braces, Steel, Earthquake simulation

Analytical techniques employing three different hysteresis models to represent the three types of bracing systems are shown to predict the response of braced frames with excellent accuracy. The mathematical model of the rod braces simulated both tension yielding and elastic buckling with tension rod rupture mechanism included; pipe and double angle braces including both tension yielding and post-buckling behavior; residual elongation and reduction of compressive capacity with the number of cycles was considered in the double angle model. Analytical response predictions for the unbraced frame, employing concentrated bilinear plastic hinges for all members including joint connections, also are shown to be very accurate for the levels of nonlinearity encountered. The results of this study indicate that diagonal bracing systems such as pipe and double angle braces are very effective in reducing lateral displacements of buildings for moderate earthquakes and that their energy dissipation will be significant if their compressive capacity is not less than 50 percent of their tension capacity.

The Structural Fuse: An Inelastic Approach to Seismic Design of Buildings
M. Fintel and S.K. Ghosh

Key Words: Buildings, Seismic design, Energy dissipation, Concrete construction, Steel

A new approach to earthquake-resistant building design depends on making some structural members weaker to dissipate earthquake energy, protecting more crucial members – in effect, the weaker members serve as “structural fuses.” The technique is applicable to concrete and steel design and is now being implemented in structures in the U.S. and Canada.

Evaluation of Noise from Air-Conditioning Systems – A Draft Proposal
M. Filippi and R. Pompoli
Istituto di Fisica Tecnica e Impianti Nucleari, Politecnico, Corso Duca degli Abruzzi No. 24, Turin, Italy, Appl. Acoust., 13 (6), pp 433-440 (Nov/Dec 1980) 6 figs, 1 table, 3 refs

Key Words: Buildings, Air conditioning equipment, Noise generation, Sound pressure levels

This paper discusses the practical evaluation of noise levels generated by air-conditioning and ventilating systems inside buildings. The results of this work are incorporated in a Draft Italian Standard. The criterion for evaluation is based on the difference between the total sound pressure level in the room when the noise source is working, and the background noise level. The allowable difference must decrease with the value of the background noise level. The measured sound pressure level is corrected according to the type of noise and to the acoustical characteristics of the room; impulsive noises should not be present in the system.

TOWERS
(See No. 1190)

FOUNDATIONS
(Also see Nos. 1180, 1246)

Influence of Shear and Compression Interaction on the Response of Sand to Dynamic Loading

81-1197
An experimental research program based on laboratory test studies and scaled slope model tests was conducted with specimens of Monterey No. 0 sand. The principal objective of the research was to study the effects of interactive coupling during combined compression (normal) and shear loading on the response of sands to dynamic loading. The research program included the following experimental studies: resonant column tests on cylindrically shaped specimens using longitudinal and torsional excitation, both separately and in combination; thin-walled hollow cylinder tests using longitudinal and torsional cyclic excitation, both separately and in combination; and large scale shaking table tests on slope models, using horizontal and vertical cyclic excitation, both separately and in combination.

Key Words: Sand, Dynamic tests, Resonant column tests, Hollow cylinder tests, Shakers

81-1199
Nonlinear Analysis of Light Water Reactor (LWR) Components: Areas of Investigation/Benefits/Recommendations
S.J. Brown
ALO-76/1

Key Words: Nuclear reactor components, Nonlinear theories, Design techniques, Testing techniques

The purpose of this study is to identify specific topics of investigation into design procedures, design concepts, methods of analysis, testing practices, and standards which are characterized by nonlinear behavior (both geometric and material) and which are considered to offer some economic and/or technical benefits to the LWR industry (excluding piping). In this study these topics were collected, compiled, and subjectively evaluated as to their potential benefit. The topics considered to have the greatest benefit/impact potential are discussed.

81-1200
Flow-Induced Vibration Analysis of Nuclear Components
M.J. Pettigrew
AECL-6219

Key Words: Nuclear reactor components, Fluid-induced excitation, Fatigue life, Wind-induced excitation, Damping

Excessive flow-induced vibration may lead to fretting-wear or fatigue problems in nuclear components. Some recent vibration problems and their solution are reviewed. The analytical and experimental techniques used to solve or preferably avoid flow-induced vibration problems are emphasized in this paper. Vibration excitation mechanisms in parallel and cross-flow and in both liquid and two-phase steam-water flow will be discussed. These vibration excitation mechanisms and the structural dynamics of nuclear components are formulated in analytical models. This is illustrated by the application of a computer model to analyze steam generator designs. Current studies related to flow-induced vibration are reviewed. Among these are: the reactor vibration behavior of nuclear fuel elements; the prediction of vibration-fretting damage for heat exchanger tube materials; and the damping of wind-induced vibration of heavy water plant structures.
An Exploration of the Design for a PCCV Head Slab with Very Large Penetrations Using a Dynamic Relaxation Computer Program

C.C. Fleischer, P.L.T. Morgan, and B.R. Waine

A prestressed concrete containment vessel for a Liquid Metal Fast Breeder Reactor has been developed. The current design for the head slab for this vessel differs geometrically from previous head slabs for other reactors. This head slab has a single very large central penetration which is surrounded by an annulus in which there are a number of large and small penetrations. The total area taken by penetrations is in excess of 50% of the total pressurized plan area. This paper describes a computer analysis carried out using a dynamic relaxation code to assess the structural behavior of the head slab. The effects of variations in the geometry and boundary conditions have been examined. The mathematical models considered were based on one of a series of small scale physical models intended to validate the design of the containment structure. Comparison between the experimental model results and those of the theoretical analyses indicate general agreement in crack patterns and failure modes. However, there are some discrepancies in actual failure pressures.

KEY WORDS: Nuclear reactor containment, Prestressed concrete, Dynamic relaxation, Computer programs

Measurements of the noise from a General Electric C36-7 diesel electric locomotive were performed with the locomotive stationary and attached to a load cell during powered and unpowered pass-by tests.

Analysis and Measurement of Locomotive Dynamic Characteristics

P. Tong, R. Brantman, and R. Greif
Transportation Systems Ctr., Cambridge, MA, ASME Paper No. 79-WA/RT-10

In June of 1977, comparative tests of the E-8 and SDP-40F locomotives were conducted on Chessie System track with the goal of comparing dynamic performance of these locomotives and identifying key track, vehicle, and operational parameters affecting safety. Based on the test results, it was possible to establish that significant differences existed in the response of these two locomotives when operating in curves above the balance speed. The test data also enabled quantification of the influence of variations in truck vertical damping, lateral axle clearance, and wheel diameter mismatch.

Motorcycle Acceleration Noise in the Urban Setting

G.W. Kamperman
S/V, Sound Vib., 14 (12), pp 6-7 (Dec 1980) 5 figs, 2 tables

Motorcycle acceleration noise tests were conducted at seven different test sites. For this study the concept of the 0 to 100 ft, 5 second acceleration test was adopted. Maximum noise level measurements were made off to the side of the vehicle path at distances of 15 ft, 25 ft and 50 ft. All motorcycle noise testing was conducted on large flat asphalt surfaces with the microphones positioned 4 ft above the asphalt surface. It was found that contemporary motorcycles and passenger cars accelerating at the same rate produce the same maximum noise level.

The Influence of Structural Flexibilities on the Straight-running Stability of Motorcycles

R.S. Sharp and C.J. Alstead

VEHICLE SYSTEMS

GROUND VEHICLES

(Also see Nos. 1232, 1233, 1249, 1251, 1278, 1313, 1314, 1355)

Measurement and Diagnosis of the Noise from a General Electric C36-7 Diesel Electric Locomotive

N.R. Dixon
PBB11-129114

KEY WORDS: Locomotives, Interaction: rail-wheel, Noise generation, Noise measurement
A new tire model for studies of motorcycle lateral dynamics, and three new motorcycle models, each incorporating a different form of structural compliance, are developed. The tire model is based on "taut string" ideas, and includes consideration of tread width and longitudinal tread rubber distortion and tread mass effects, and normal load variation. Parameter values appropriate to a typical motorcycle tire are employed. The motorcycle models are for small lateral perturbations from straight running at constant speed, and include lateral compliance of the front wheel in the front forks, torsional compliance of the front forks, and torsional compliance in the rear frame at the steering head about an axis perpendicular to the steering axis. Results in the form of eigenvalues, indicating modal damping properties and natural frequencies are presented for each model. The properties of four large production machines for a range of forward speeds, and the practicable range of stiffnesses are calculated, and the implications are discussed.

81-1206
A Computer Model to Predict Traffic Noise in Urban Situations under Free Flow and Traffic Light Conditions

Key Words: Mathematical models, Traffic noise, Noise prediction, Urban noise

A computer model is presented for predicting traffic noise indices in built-in situations for free flow traffic conditions and for a flow interrupted by a traffic light. The stream of vehicles is simulated by a given time headway distribution, and a transfer function obtained from a 1:100 scale model is used to simulate the specific built-up situation.

81-1207
Noise Reduction Retrofit for a 'New Look' Flexible Transit Bus: Service Bulletin
M.C. Kaye

81-1208
Computer-Aided Evaluation of Dynamic Loads on Ground Vehicles -- Using Drive Elements of a Tractor as an Example (Rechnergestützte Auswertung dynamischer Belastungsverläufe an Fahrzeugen -- am Beispiel der Antriebelemente eines Ackerschleppers)
(In German)

Key Words: Ground vehicles, Tractors, Dynamic excitation, Computer-aided techniques

A procedure for sizing structural elements based on operational loads is presented. The operational loads are presented as a plot of the log of relative cumulative frequency against the load cycle. Using the results from an actual experiment, a classification program is presented which allows simultaneous evaluation of forces on a computer.
In recent years the modal analysis became a useful tool in vehicle development with regard to vibration analysis. The application of modal analysis, the test equipment and the test procedure in vehicle development at Ford-Köln are described. Practical examples are given and the mode shapes are shown.

SHIPS

81-1210
Potential Hydroelastic Instability of Profiled Underwater Structures
L.E. Ericsson and J.P. Reding

Key Words: Underwater structures, Cantilever beams, Hydrodynamic excitation, Self-excited vibrations

Appendages on underwater vehicles are often given a cross-sectional profile that will produce low drag. The potential danger is that if the profile shape is not selected carefully, the structural integrity of the appendage may be endangered by hydroelastic instability. While static divergence is usually investigated, the potential for divergent oscillations leading to destructive amplitudes is not recognized as readily. Structural damping, which often is a saving feature for wind-induced loads, plays a completely insignificant role in a high-density fluid such as water. The unsteady hydrodynamic characteristics leading to self-excited oscillations are derived analytically and the means by which the dynamic instability can be minimized or eliminated are described.

AIRCRAFT

(Also see Nos. 1176, 1177, 1348, 1369, 1370, 1371, 1388, 1389, 1390, 1392)

81-1211
Diagnostic Evaluation of Jet Noise Suppression Mechanisms
P.R. Giesebe
General Electric Co., Cincinnati, OH, J. Aircraft, 17 (12), pp 837-842 (Dec 1980) 14 figs, 10 refs

Key Words: Aircraft noise, Jet noise, Noise reduction

A unified aeroacoustic jet noise prediction method has been developed based on the modeling of principal noise generation and emission mechanisms from first principles. It is demonstrated herein that this jet noise prediction method is a useful diagnostic tool for assessing the relative importance of the various mechanisms for a given nozzle type. The relative contributions of turbulent mixing noise suppression, shock-cell broadband noise suppression, convective amplification suppression, and fluid shielding attenuation have been evaluated for a high element number multichute suppressor to arrive at a plausible explanation for how multi-element suppressors suppress jet noise. This explanation, an alternative view to historical conceptions of jet noise suppression, suggests an approach to designing low noise suppressor nozzles.
81-1214
Study of Lateral Excess Sound Attenuation as Determined from Far Part 36 Aircraft Noise Certification Measurements
D.E. Bishop and J.M. Beckman
AD-A088 285/2

Key Words: Aircraft noise, Noise measurement, Sound attenuation

This report presents information on the variation of the lateral excess attenuation as a function of elevation angle. Lateral excess attenuation represents the differences between the noise levels measured directly underneath the aircraft and to the side of the aircraft, after adjustment for differences in distance and air absorption. The study shows that useful excess attenuation information can be developed from aircraft certification data provided steps are taken to locate sideline positions so that measurements adequately cover the range of low elevation angles. The measured excess attenuation values show trends with frequency that are consistent with measurements observed in recent Air Force tests in the frequency range up to about 400 Hz.

81-1215
Washington National Airport Flight Extension Test: Noise Monitoring Data Report
J.R. Hare, Jr., and D.W. Ford
AD-A069 111/9

Key Words: Aircraft noise, Noise measurement

This report summarizes noise measurements obtained during the Washington National Airport Flight Extension Test conducted during the summer of 1979. During this test, south departing turbojet aircraft were directed to fly over the Potomac River corridor an additional five miles prior to being directed toward their destinations. Monitoring sites were set up in the affected areas to determine the effect of the change in operations on the ambient noise levels. Equivalent noise levels (Leq) were obtained on an hourly basis and averaged for each site. The results show no statistically significant change in averaged equivalent noise levels at three sites. Significant decreases in Leq were recorded at four sites and five of the twelve sites observed some statistically significant increase in equivalent sound levels. Maximum levels (dBA) were also recorded for single aircraft events.

81-1216
Experiments on the Validity of Ground Effect Predictions for Static Noise Testing of Propeller Aircraft
G.J.J. Ruijgrok

Key Words: Aircraft noise, Noise prediction

The practical importance of an advanced ground effect theory for the prediction of free field noise spectra from static field measurements above grassland is investigated. Empirical noise data from a ground-based light propeller aircraft are compared with predictions. The results show that short range propagation of low frequency noise is adequately described by theory. It is also shown, however, that at intermediate and high frequencies detailed experiments on ground interference effects remain required to determine the characteristics of the noise source.

81-1217
Airframe Noise Reduction Studies and Clean Airframe Noise Investigation (Final Report)
M.R. Fink and D.A. Bailey
N80-33175

Key Words: Airframes, Noise reduction, Aircraft wings, Wind tunnel tests, Geometric effects

Acoustic wind tunnel tests were conducted on a wing model with modified leading edge slot and trailing edge flap. The modifications were intended to reduce the surface pressure response to convected turbulence and thereby reduce the airframe noise without changing the lift at constant incidence.

81-1218
Response of Nonlinear Panels to Random Loads
C. Mei
N80-32766
Lightweight aircraft structures exposed to a high intensity noise environment can fatigue prematurely if adequate consideration is not given to the problem. Design methods and design criteria for sonic fatigue prevention were developed based on analytical and experimental techniques. Most of the analytical work was based upon small deflection or linear structural theory which did not agree with the experimental results. A large deflection geometrical nonlinearity was incorporated into the analysis methods for determining the structural response to high intensity noise. Comparisons with experimental results are presented.

Prediction of Structural Fatigue Response under Aircraft Loads from Material Stress-Strain Behavior
A. Berkovits
Dept. of Aeronautical Engrg., Technion - Israel Inst. of Tech., Haifa, Israel, Israel J. Tech., 17 (5/6), pp 347-353 (1979) 8 figs, 15 refs

Key Words: Aircraft, Fatigue life, Crack propagation, Finite element technique

A finite element program was developed for estimating fatigue behavior of notched structures based on properties of unnotched material. Fatigue crack initiation life, crack propagation rate, and fatigue failure were determined in terms of applied load spectrum. Fatigue response can be predicted for load spectra typical of aircraft.

A Method for Calculating the Aerodynamic Forces and Moments on External Stores of Aircraft
T. Ronen and M. Hanin
Dept. of Aeronautical Engrg., Technion - Israel Inst. of Tech., Haifa, Israel, Israel J. Tech., 17 (5/6), pp 295-301 (1979) 10 figs, 11 refs

Key Words: Aircraft, Wing stores, Aerodynamic loads

This paper presents a method for predicting the aerodynamic forces and moments on external stores near aircraft, assuming potential incompressible flow. The flow due to angle of attack is calculated using slender wing and body assumptions: the bodies are represented by doublets and the wings by a set of vortex panels, each panel having constant vorticity per unit length. Thickness effects of the bodies and the wings are represented by source distributions. The mutual interference between the bodies is accounted for by use of images, and the flow tangency conditions on the planar surfaces are then satisfied at several control points on the wings and fins. Corrections for aspect ratio and wing-tail interference were applied. The predictions were found to agree well with other analytical solutions and with wind tunnel results.

Relationship of Unsteadiness in Downwash to the Quality of Parameter Estimates
W.R. Wells and D.A. Keskar
Wright State Univ., Dayton, OH, J. Aircraft, 17 (12), pp 905-908 (Dec 1980) 5 figs, 4 tables, 9 refs

Key Words: Aircraft, Aerodynamic characteristics, Parameter identification technique

This paper investigates the relative importance of including unsteady effects in the lift and downwash in the longitudinal dynamics and parameter extraction algorithm. A simple vortex system has been used to model unsteady incompressible aerodynamic effects into the longitudinal equations of motion of an aircraft. Computer-generated data and flight data were used to demonstrate that inclusion of unsteady aerodynamics in the parameter-extraction algorithm produced aerodynamic parameters that were different from those extracted when unsteady aerodynamics were left out of the algorithm. The differences between derivatives associated with the two extraction algorithms (with and without unsteady aerodynamics) were related to acceleration derivatives which usually cannot be extracted individually.
Environment and Human Tolerance; Volume III - Aircraft Structural Crashworthiness; Volume IV - Aircraft Seats, Restraints, Litters, and Padding; Volume V - Aircraft Post-crash Survival. This volume (Volume IV) contains information on aircraft seats, litters, personnel restraint systems, and hazards in the occupant's immediate environment. Requirements for design of seats, litters, and restraint systems are discussed, as well as design principles for meeting these requirements and testing for verification that the systems perform as desired. Energy-absorbing devices for use in seat are described, as are various types of cushions. Delethalization of cockpit and cabin interiors is discussed, including the use of protective padding and the design of controls for prevention of injury. Finally, computerized methods of analysis for evaluation of seats, restraints, and the occupant's immediate environment are presented.

81-1223
Aircraft Crash Survival Design Guide. Volume III. Aircraft Structural Crashworthiness
AD-A089 104/4

Key Words: Crash research (aircraft), Crashworthiness

This five-volume document has been assembled to assist design engineers in understanding the problems associated with the development of crashworthy U.S. Army aircraft. It includes not only a collection of available information and data pertinent to aircraft crashworthiness but suggested design conditions and criteria as well. Volume III contains information on the design of aircraft structures and structural elements for improved crash survivability. Current requirements for structural design of U.S. Army aircraft pertaining to crashworthiness are discussed. Principles for crashworthy design are presented in detail for the landing gear and fuselage subject to a range of crash conditions, including impacts that are primarily longitudinal, vertical, or lateral in nature and those that involve more complicated dynamic conditions, such as rollover. Analytical methods for evaluating structural crashworthiness are described.

81-1224
Digital Computer Simulation of Aircraft Hydraulic Systems
R.J. Levek
McDonnell Aircraft Co., McDonnell Douglas Corp.,
St. Louis, MO, SAE Paper No. 801193, 16 pp, 16 figs, 11 refs

Key Words: Aircraft, Hydraulic equipment, Computer programs, Dynamic structural analysis

Four complementary digital computer programs have been developed, verified, and documented for the design and dynamic analysis of aircraft hydraulic systems. These programs model typical hydraulic system components and use a building block technique to permit modeling of systems or subsystems with varying degrees of complexity. This paper briefly describes the four computer programs and presents case histories of specific computer program applications.

81-1225
Transonic Rotor Noise - Theoretical and Experimental Comparisons
F.H. Schmitz and Y.H. Yu
AD-A090 806/1

Key Words: Helicopters, Rotors, Noise generation

Two complementary methods of describing the high-speed rotor noise problem are discussed. Good agreement between theoretical and experimental waveforms is shown for transonic hover tip Mach numbers.

81-1226
A Comprehensive Analytical Model of Rotorcraft Aerodynamics and Dynamics. Part 1. Analysis Development
W. Johnson
AD-A090 513/3

Key Words: Helicopters, Rotors, Aerodynamic loads, Helicopter noise, Helicopter vibration, Wind-induced excitation, Mathematical models

The development of a comprehensive analytical model of rotorcraft aerodynamics and dynamics is presented. This analysis is designed to calculate rotor performance, loads, and noise; helicopter vibration and gust response; flight...
dynamics and handling qualities; and system aeroelastic stability. The analysis is a combination of structural, inertial, and aerodynamic models that is applicable to a wide range of problems and a wide class of vehicles. The analysis is intended for use in the design, testing, and evaluation of rotors and rotorcraft, and to be a basis for further development of rotary wing theories. The analysis is implemented in a digital computer program.

81-1227
Landing Gear In-Flight Vibration Dampener
R.D. Leoni
Dept. of the Army, Washington, D.C., PAT-APPL-869 090, 4 pp (Oct 30, 1979)
PATENT-4 172 570

Key Words: Helicopters, Landing gear, Tuning

During flight, helicopter landing gears are suspended by a tuning spring from the helicopter airframe to provide limited relative movement between the landing gear masses and the airframe. As the aircraft vibrates due to vertical or in-plane forces at the rotor head, the landing gear masses react oppositely there to, thus generating balancing forces which are applied to the airframe to balance the rotor excitations.

81-1228
An Evaluation of a Computer Code Based on Linear Acoustic Theory for Predicting Helicopter Main Rotor Noise
S.J. Davis and T.A. Egolf
N80-34217

Key Words: Computer programs, Helicopter noise, Helicopters, Rotors, Time domain method, Noise prediction

Acoustic characteristics predicted using a recently developed computer code were correlated with measured acoustic data for two helicopter rotors. The analysis is based on a solution of the Ffowcs-Williams-Hawkins (FW-H) equation and includes terms accounting for both the thickness and loading components of the rotational noise. Computations are carried out in the time domain and assume free field conditions.

MISSILES AND SPACECRAFT
(Also see Nos. 1400, 1401, 1402)

81-1230
Mated Vertical Ground Vibration Test
E.W. Ivey
N80-32425

Key Words: Space shuttles, Vibration tests

The Mated Vertical Ground Vibration Test (MVGVT) was considered to provide an experimental base in the form of structural dynamic characteristics for the shuttle vehicle. This data base was used in developing high confidence analytical models for the prediction and design of loads, pogo controls, and flutter criteria under various payloads and operational missions. The MVGVT boost and launch program evolution, test configurations, and their suspensions are described. Test results are compared with predicted analytical results.
BIOLOGICAL SYSTEMS

HUMAN

(Also see Nos. 1183, 1267)

81-1231

A Modified PNdB for Assessment of Low Frequency Noise

N. Broner and H.G. Leventhall

Key Words: Human response, Noise tolerance, Low frequencies

As part of an investigation into the prediction of annoyance due to high level low frequency noise, the use of the Perceived Noise Level (PNL) in PNdB was considered. It was found that the PNL extended to include lower frequencies down to the 25 Hz\(\frac{1}{2}\) octave band was superior to the standard PNL.

81-1232

Relationship between Truck Ride Quality and Safety of Operations: Methodology Development

R.H. Klein, R.W. Allen, and J.C. Miller

PB80-224108

Key Words: Trucks, Vibration tolerance, Human response

This report presents an overall program plan, including sample experimental design, which can be used to determine the effects of vehicle vibration upon driver performance. The recommended solution is to combine a fixed-base driving simulator facility with a high-frequency motion base 'ride quality' facility. The result is an interactive 'ride simulator' that allows line drivers to perform real-world tasks while under very tightly controlled traffic and vibration scenarios.

81-1233

Community Noise Levels in Patras, Greece

T.C. Stathis

Lab. of Appl. Thermodynamics, School of Engrg., Univ. of Patras, Patras, Greece, J. Acoust. Soc. Amer., 69 (2), pp 468-477 (Feb 1981) 6 figs, 7 tables, 16 refs

Key Words: Urban noise, Traffic noise, Human response, Noise tolerance

In the city of Patras (Greece), noise measurements were made for the purposes of determining the present noise-pollution levels and the reaction of the people to them. For the latter purpose, a social survey was conducted with the use of a relevant questionnaire which was applied to 500 citizens. Its results show that noise pollution is ranked second in order after air pollution, and that traffic was the principal noise pollutant.

MECHANICAL COMPONENTS

ABSORBERS AND ISOLATORS

(Also see No. 1183)

81-1234

Decoupling Approach to Modeling Perforated Tube Muffler Components

K. Jayaraman and K. Yam

Key Words: Mufflers, Tubes, Hole containing media, Ducts, Resonant frequencies

A transformation is derived to decouple the two differential equations describing one-dimensional acoustic wave propagation in the presence of mean flow, in mufflers with partitioned, perforated tubes. The following analysis leads to compact and exact expressions for the matrix parameters of crossflow elements without any concern for convergence of infinite series or segmental analysis employed in earlier studies. The present analysis is based on assumptions of a uniform perforate impedance on the tube, and of equal mean flow in the two ducts. The predicted transmission loss curves agree very well with published data.
This contribution deals with some problems of the thermal dependence of the dynamic properties of a vibrating system with a rubber spring. Some results are presented that have been measured at diverse levels of harmonic load.

Key Words: Springs (elastic), Thermal excitation, Vibration response

The applicability of the Frahm dynamic vibration absorber is generally restricted to the case of constant forcing frequency; it may happen, however, that this condition is fulfilled only after a certain instant, prior to which the frequency is increasing, e.g. linearly. The analysis of the transient behavior shows that in such a situation the main mass can undergo oscillations much broader than those predictable by the constant frequency scheme.

81-1239
The Measurement of the Radial Stiffness of Rolling Element Bearings under Oscillating Conditions
T.L.H. Walford and B.J. Stone

Key Words: Bearings, Roller bearings, Ball bearings, Stiffness coefficients

There is very little information available on the characteristics of rolling element bearings under oscillating conditions. This is because of the difficulty that has been experienced in measuring the relevant characteristics. A rig is described
which is very simple in principle and allows the measurement of the radial stiffness of a pair of bearings. For the angular contact bearings tested the levels of damping obtained are larger than previously expected.

GEARS
(Also see No. 1168)

81-1240
Parametrically Excited Gear Vibrations (Parametererregte Getriebenschwingungen)
H. Peeken, C. Troeder, and G. Diekhans

Key Words: Gears, Parametric excitation, Helical gears, Clearance effects, Error analysis

The vibration of a single step gear is investigated taking into account parametric excitation of straight and helical gears, axial and flexural degrees of freedom, gear clearance, and gear errors. The results are obtained numerically by means of a mathematical model. The load increment function and the resonance amplitudes can be described by means of generally valid characteristic factors, so that these results can be applied also to other drives.

81-1241
Load Transmission and Power Branching in Spur Gear Systems with Positive Drive (Die Kraftübertragung und der Leistungsfloss in zwangläufigen gleichförmig übersetzenden Getrieben)
K.H. Vatterott
Philips GmbH Apparatefabrik Wetzlar, Germany, Forsch. Ingenieurwesen, 46 (5), pp 167-171 (1980) 8 figs, 15 refs
(In German)

Key Words: Gears, Spur gears

Power branching in gearwheel drives may be effective for constructive and/or economical reasons. It is also possible in power branching networks of general dimensions with positive drive. The degree of freedom equation is an aid for the analysis and synthesis of the various structures. A limitation of the geometric parameters results from the static conditions with respect to the load equalization of the power branches. The basis of the calculations is formed by the laws of statics. With the aid of possible speed and acceleration parameters the dynamic additional forces can be worked out as in the example. Furthermore the influencing factors of the static and dynamic additional forces are characterized by the load equalization.

81-1242
Contribution to Optimizing the 2 x OHC TATRA 613 Type Gear Mechanism
S. Ziaran
(In Slovak)

Key Words: Gears, Noise reduction, Optimization

The theoretical substantiation is given in the paper of the increased noise of a gear mechanism with its cam shaft revolving in the negative sense as against a gear mechanism whose cam shaft revolves in the positive sense. Such parameters are sought which lead to lowering its noise. A power analysis is made on a balance beam. This analysis is the starting point in setting up the object function. By optimizing the gear with the negative sense of revolution the transverse force producing transverse vibration and thus increasing noise, has been reduced by 34 per cent, thus making the gear more stable.

COUPLINGS
(Also see No. 1168)

81-1243
Improve Coupling Selection through Torsional Vibration Modeling
H. Schwerdlin and R. Eshleman
Lovejoy, Inc., Downers Grove, IL, Power Transmission Design, 23 (2), pp 56-59 (Feb 1981) 2 tables

Key Words: Couplings, Vibration analysis

For a proper selection of couplings, in addition to strength and misalignment tolerance data, torsional natural frequencies of the physical system are required. Ten simple formulas for the calculation of these frequencies are given, requiring two major physical quantities: stiffness and polar moment of inertia. Both can be obtained from vendor data, measurement, or calculation.
81-1244
The Application of the Cross Spring Joint for Improvement of Smooth Running in the Construction of Processing Machinery (Untersuchung des Kreuzfedergleitens im Hinblick auf seine Einsatzmöglichkeiten im Verarbeitungsmaschinenbau zur Laufruheverbesserung)
F. Köhler and K. Butter
VEB Textilforschung Malino Karl-Marx-Stadt, Maschinenbautechnik, 29 (10), pp 445-448 (Oct 1980) 12 figs, 2 tables, 4 refs
(In German)

Key Words: Joints (junctions), Noise reduction, Machinery noise, Design techniques

Approximation formulas for calculation of torsional rigidity, internal forces or flexural moments as well as the displacement of rotation axis of the cross spring joint are given. The dependence of these characteristics upon the geometry of the cross spring joint is theoretically studied by means of diagrams. The structural solution for the use of cross spring joints instead of needle bearings is shown at a textile machine.

81-1245
On Non-linear Free Vibrations of an Elastic Cable
P. Hagedorn and B. Schäfer

Key Words: Cables (ropes), Free vibration, Ritz-Galerkin method, Transmission lines, Galloping

The effect of non-linear terms in the equations of motion on the first normal modes of the oscillations of an elastic flexible cable under the action of gravity is studied. The non-linear equations are derived and approximate solutions are found by the Ritz-Galerkin method. A numerical example is given and the significance of the results is discussed with regard to the galloping oscillations of overhead transmission lines.

81-1247
The Normal Modes of Beam-Like Structures by a Lanczos-Stodola Method
T. Niblett

Key Words: Beams, Rotors, Flexural vibration, Torsional vibration, Mode shapes

A method of finding the flexural and torsional normal modes of structures which have straight stiffness axes and which are
mounted as cantilevers is given. The Lanczos method of minimized iterations is used to obtain intermediate modes using the integrodifferential equations and the mass and stiffness distributions. The dominant eigenvalues and vectors of the inertia matrix give good approximations to the graver normal modes. Results of test calculations using a computer program which also allows for the presence of discrete masses are given.

81-1248
On the Derivation of Equations of Motion for a Vibrating Timoshenko Column
A.N. Kounadis
National Technical Univ., Athens, Greece, J. Sound Vib., 73 (2), pp 177-184 (Nov 22, 1980) 2 figs, 17 refs

Key Words: Beams, Timoshenko theory, Equations of motion, Principle of virtual work, Hamiltonian principle

A pair of coupled differential equations is established governing the motion of an elastically restrained Timoshenko beam carrying a concentrated mass and subjected to a compressive follower load at its end and to a uniformly distributed compressive follower load, by using the principle of virtual work and Hamilton's principle for non-conservative systems. Moreover, a different set of equations of motion is obtained on the basis of the free body diagram of a Timoshenko beam element with sides not perpendicular to the deflected axis of the beam.

81-1249
Natural Frequencies of Bernoulli-Euler Beams Resting on Two Elastic Supports: Application to Railway Vehicles
J. Richard
Laboratoire de Mécanique et Technologie, Université P.M. Curie (Paris VII) - Enset, 61, Avenue du Président Wilson, 94230 Cachan, France, Vehicle Syst. Dyn., 9 (6), pp 309-326 (Dec 1980) 5 figs, 2 tables, 8 refs

Key Words: Beams, Elastic foundations, Bernoulli-Euler method, Natural frequencies, Flexural vibrations, Railroad cars

The purpose of the present study is to investigate the effect of the different parameters of the elastic supports upon which a deformable beam lies, upon the natural frequencies of the system. The influence of support parameters is obtained by exploiting characteristic transcendental equations. The natural flexural vibrations of the beam are only affected by the stiffness of the supports over a very restricted range; outside this range the frequencies are those of a completely free beam or of a beam supported by two simple rigid supports (infinite stiffness).

81-1250
Forced Vibrations of Layered Beam
O. Simkova and S. Markus
Inst. of Machine Mechanics, Slovak Academy of Sciences, Bratislava, Czechoslovakia, Strojnicky Casopis, 31 (6), pp 681-693 (1980) 4 figs, 2 tables, 3 refs
(In Slovak)

Key Words: Beams, Layered materials, Flexural vibration

In the contribution the dynamic response of three-layered, simply supported beam is analyzed. Flexural vibrations are created by an external excitation. Flexural and shear deformations in all three layers of the beam are taken into account. Equations of motion of damped vibrations of the system are derived by aid of Hamilton's principle. The influence of distribution of the excitation upon the resonant response of the system is treated from the point of view of its minimalization.

81-1251
Static and Dynamic Tests of Full Scale Double-Tee Girders for Dade County Rapid Transit System
T.C. Hsu
Dade County Office of Transportation Admin., Miami, FL, Rept. No. UMTA-FL-06-0017-80-1, 164 pp (Oct 1979) PB81-115388

Key Words: Girders, Rapid transit railways, Dynamic tests

Aerial structures to be used for guideways, prestressed concrete double-tee girders, were tested. These tests were to serve three purposes: to prove the adequacy of all design methods; to check some of the construction and reinforcement details; and to verify the dynamic performance of the girders. Demonstration tests were carried out on three full-size 80 feet long by 5 feet deep by 12 feet wide precast prestressed double-tee girders proposed for the aerial guideways.
ONE OF THE PRIMARY CONCEPTS PROPOSED FOR BASING ADVANCED BALLISTIC MISSILE SYSTEMS IS TO EMPHASE THE MISSLE IN A BURIED VERTICAL CYLINDRICAL SHELTER. SINCE LITTLE DATA WERE AVAILABLE ON THE RESPONSE OF VERTICALLY ORIENTED CYLINDERS THAT COULD BE USED TO ASSESS THE HARDNESS OF MISSILE S ITLOS, A FIELD TEST PROGRAM WAS CONDUCTED BY THE STRUCTURES LABORATORY OF THE U.S. ARMY ENGINEER WATERWAYS EXPERIMENT STATION (WES) TO DETERMINE THE RESPONSE TO FAILURE OF GENERIC VERTICAL SHELTERS HAVING DIFFERENT WALL CONSTRUCTION DESIGNS AND SUBJECTED TO EFFECTS OF SIMULATED NUCLEAR SURFACE OVPRESSURE LOADINGS. RESULTS OBTAINED FROM THE SIMULATION PROGRAM WERE TO PROVIDE INFORMATION TO SUPPORT SELECTION AND DESIGN OF PROTOTYPE VERTICAL SHELTERS. THE SPECIFIC OBJECTIVE OF THE FIELD TEST PROGRAM WAS TO OBTAIN INFORMATION WHEREBY CYLINDER WALL CONSTRUCTION DESIGNS COULD BE RANKED AS TO THEIR SURVIVABILITY/VULNERABILITY. THIS, WITH SUCH INFORMATION, THE COST PERFORMANCE OF THE VARIOUS DESIGNS COULD BE DETERMINED WITH STRUCTURAL HARDNESS A MAJOR CONSIDERATION.

BOUNDARY-VALUE PROBLEMS ASSOCIATED WITH THE DEFORMATION OF AN INFINITE CYLINDER IN A FREE SURFACE ARE FORMULATED. THESE PROBLEMS INCLUDE VIBRATION IN STILL WATER AND DEFORMATION DUE TO WAVE-INDUCED FORCES. THE AMPLITUDE OF DEFORMATION IS ASSUMED TO BE SMALL ENOUGH FOR LINEAR THEORY TO BE APPLICABLE. THE DEFORMATION ITSELF IS ASSUMED TO VARY SINUSOIDALLY ALONG THE LENGTH OF CYLINDER AND ARBITRARILY Girthwise. WITH THE APPLICATION OF GREEN'S THEOREM FOR AN UNBOUNDED FLUID, EACH BOUNDARY-VALUE PROBLEM RESULTS IN A FREDHOLM INTEGRAL EQUATION OF THE SECOND KIND. THE INTEGRAL EQUATION CAN BE SOLVED NUMERICALLY USING A DISTRIBUTION OF OSCILLATORY-SOURCE GREEN FUNCTIONS ON THE PERIPHERY OF THE SUBMERGED SURFACE. IN THIS TECHNIQUE, FRANK'S CLOSE-FIT METHOD IS EXTENDED TO TREAT NON-RIGID BODY DEFORMATIONS. HYDRODYNAMIC PRESSURE DISTRIBUTIONS CREATED BY THE ARBITRARY DEFORMATION OF A CYLINDER HAVE BEEN CALCULATED. THE RESULTS SHOW THAT THESE HYDRODYNAMIC PRESSES ARE QUITE DEPENDENT ON THE SHAPE OF THE DEFORMATION PATTERN AND ARE ALSO QUITE SENSITVE TO THE LONGITUDINAL PERIODICITY. IN ADDITION, WAVE-POWER ABSORPTION IN OBLIQUE WAVES IS EVALUATED. THE COMPUTER PROGRAM DEVELOPED FOR A DEFORMABLE BODY CAN TREAT TWO-DIMENSIONAL, RIGID-SECTION MOTIONS AND ALSO MOTIONS WITH AN ARBITRARY AMPLITUDE DISTRIBUTION AROUND THE CROSS-SECTION.

LARGE PANEL STRUCTURES ARE INCREASINGLY BEING BUILT THROUGHOUT THE WORLD, YET LITTLE IS KNOWN ABOUT THEIR PERFORMANCE UNDER EARTHQUAKE MOTIONS, PARTICULARLY THEIR ABILITY TO SURVIVE VERY STRONG SHAKE. LARGE PANEL STRUCTURES BEHAVE DIFFERENTLY.
from frame and monolithic wall structures, because of the
distinct planes of weakness in the horizontal and vertical
joints between panels. These joints may slide and open during
shaking, producing large localized changes in the bending
and shear stiffnesses. A mathematical model for inelastic
seismic analysis of two-dimensional large panel structures is
developed. The wall panels are idealized either as elastic
beams or by two-dimensional finite elements. The joints
are idealized by nonlinear spring elements with a variety
of force-deformation relationships. Several panel and joint
elements have been developed, and incorporated into the
computer program DRAIN2D. A parameter study has been
carried out on a multi-story, single bay, large panel wall,
to determine the influence of design and analysis assumptions
on the computed nonlinear response, considering both slip
and opening at the joints. The results show that nonlinear
joint behavior has a large effect on the computed response,
and that the response depends greatly on the modeling
assumptions.

PLATES
(Also see Nos. 1173, 1178)

81-1256
Diffraction of a Spherical Wave by a Thin Infinite
Plate
H. Saadat and P. Filippi
Djondichapour Univ., Faculty of Sciences, Kouye
Golestan Ahvaz, Iran. J. Acoust. Soc. Amer., 69 (2),
pp 397-403 (Feb 1981) 13 refs

Key Words: Plates, Wave diffraction, Harmonic excitation

A thin elastic plate extending to infinity is immersed in a
perfect gas. The response of this system to a spherical har-
monic sound source is studied, and an exact representation of
the solution is developed. From this result, a series representa-
tion useful to calculate the farfield is established; expres-
sions for the various mean powers are given.

81-1257
Free Vibration of Curved-Plate Assemblies with
Diaphragm Ends
I.R. Morris and D.J. Dawe
Dept. of Civil Engr., Univ. of Birmingham, Birming-
ham B15 2TT UK. J. Sound Vib., 73 (1), pp 1-17
(Nov 8, 1980) 6 figs, 3 tables, 9 refs

Key Words: Plates, Curved plates, Strips, Finite strip method,
Natural frequencies

The finite strip method is applied to the prediction of the
natural frequencies of vibration of longitudinally invariant,
rigidly connected assemblages of circularly curved and flat
(zero curvature) strips having diaphragm end supports. Two
related types of refined, transversely curved finite strip are
described. Both are based on quintic polynomial interpola-
tion across the strip of the radial and tangential components
of displacement, whilst the axial component is interpolated
in cubic fashion for one type of strip and in quintic fashion
for the other. Results are presented for a limited range of
problems, including the circular cylinder, and these demon-
strate the high accuracy that can be achieved with the use of
very few strips.

81-1258
Active Control of Vibration in Rotating Circular
Discs
C.J. Radcliffe
Ph.D. Thesis, Univ. of California, Berkeley, 128 pp
(1980)
UM 8029549

Key Words: Disks (shapes), Vibration control, Active control,
Flexural vibration, Circular saws

A new method of using external forces to control the trans-
verse vibration of centrally-clamped rotating circular discs is
presented. Centrally-clamped discs are the basic element of
steam and gas turbines, grinding wheels, circular saws and
computer disc memories. Large amplitude transverse vibra-
tion can cause failure of turbine wheels due to wheel-to-case
contact, cutting inaccuracy in grinding wheels and circular
saws, and head tracking errors in computer disc memories.
This investigation of transverse vibration control was stimu-
lated by the need to operate thin but stable saws in the wood
processing industry. Although focused on circular saws, this
work has application in all the above systems.

81-1259
Flexural Vibrations of Free Circular Plates Elastically
Constrained Along Parts of the Edge
Y. Narita and A.W. Leissa
Dept. of Engng. Mechanics, Ohio State Univ., Colum-
bus, OH 43210, Intl. J. Solids Struct., 17 (1), pp 83-
92 (1981) 5 figs, 2 tables, 21 refs

Key Words: Plates, Circular plates, Flexural vibrations,
Free vibration, Elastic foundations

The present paper deals with the free transverse vibration of
a circular plate elastically constrained along parts of its
edge and free on the remainder. The elastic constraints considered permit both translational and/or rotational springs of space-varying stiffness. The analytical method utilized depends upon expanding both piecewise constant spring stiffnesses in the present problem into their Fourier components around the circumference of the plate. Numerical results are presented which demonstrate the effectiveness of the method and show interesting variations of the frequencies and nodal patterns over a range of constraint parameters. As special cases, numerical results are also given for the problem of the plate which is partially free and partially simply supported, as well as for the clamped-free boundary.

81-1260
Axysymmetric Free Vibration of Thick Annular Plates
K.T.S.R. Lyengar and P.V. Raman
Dept. of Civil Engrg., Indian Inst. of Science, Bangalore 560012, India, J. Acoust. Soc. Amer., 68 (6), pp 1748-1749 (Dec 1980) 1 fig, 2 tables, 6 refs

Key Words: Plates, Annular plates, Free vibration, Method of initial functions

Free vibration of annular plates has been studied using the method of initial functions. Numerical results of the natural frequencies are obtained for two typical support conditions. The present results depart from the classical plate theory for higher modes as well as for thicker plates, but is in good agreement with Mindlin's improved plate theory.

81-1261
Vibration and Stability of a Non-Uniform Annular Plate Subjected to a Follower Force
T. Irie, G. Yamada, and Y. Kaneko

Key Words: Plates, Annular plates, Variable cross section, Follower forces, Transfer matrix method, Flexural vibration, Natural frequencies

This paper presents a study on the vibration and dynamic stability of a non-uniform annular plate subjected to a follower force radially distributed at the outer edge, in which the transfer matrix method is used. The equations of flexural vibration of the plate are written in a coupled set of first-order differential equations by using the transfer matrix of the plate. Once the matrix has been determined by numerical integration of the equations, the natural frequencies and the critical flutter loads are calculated numerically in terms of the elements of the matrix for a given set of boundary conditions at the edges of the plate. This method is applied to annular plates of linearly, parabolically or exponentially varying thickness, and the effects of the varying thickness, inner/outer radii ratio and edge conditions are studied.

81-1262
Natural Frequencies of Stepped Thickness Rectangular Plates
T. Irie, G. Yamada, and H. Ikari

Key Words: Plates, Rectangular plates, Variable cross section, Natural frequencies, Mode shapes

This paper presents the natural frequencies of stepped thickness square and rectangular plates together with the mode shapes of vibration. The transverse deflection of a stepped thickness plate is written in a series of the products of the deflection functions of beams parallel to the edges satisfying the boundary conditions, and the frequency equation of the plate is derived by the energy method. By use of the frequency equation, the natural frequencies (the eigenvalues of vibration) and the mode shapes are calculated numerically in good accuracy for square and rectangular plates with edges simply supported or elastically restrained against rotation, having square, circular or elliptical stepped thickness, from which the effects of the stepped thickness on the vibration are studied.

81-1263
Upper and Lower Bounds for the Frequencies of Clamped Orthotropic Plates
J.R. Kuttler and V.G. Sigillito

Key Words: Rectangular plates, Plates, Orthotropism, Lower frequencies

Upper and lower bounds are given for the three lowest frequencies of vibration of clamped rectangular orthotropic plates. The bounds were obtained by using a recently devel-
opad method which gives estimates for the vibrational frequencies in terms of easily evaluated integrals of trial functions. Important features of the method are that rigorous, improvable upper and lower bounds on the frequencies are obtained and that the trial functions need not satisfy any boundary conditions.

81-1264
Note on the Stability of Vibrations of Rectangular Plates with Initial Imperfections
V. Birman
Dept. of Aeronautical Engrg., Technion - Israel Inst. of Tech., Haifa, Israel, Israel J. Tech., 17 (5/6), pp 354-359 (1979) 7 figs, 11 refs

Key Words: Plates, Rectangular plates, Initial deformation effects, Flexural vibration

In this paper the influence of the nonlinear transverse vibration on the stability of statically compressed plates with initial imperfections is investigated. The dynamic variant of Karmen's equations for an imperfect plate is used in studying the stability of forced vibration. It is shown numerically that the vibration of an imperfect statically compressed plate in the presence of compressive forces below the critical level may be unstable.

81-1265
Transient Response of Undamped Laminated Plates
A.S. Grover and A.D. Kapur

Key Words: Plates, Layered materials, Elastic core-containing media, Transient response

Transient response of a three-layer simply supported laminated plate with elastic core subjected to half-sine pulse acceleration has been analyzed using a variational method. The effect of transverse inertia only has been considered. Values of the transverse displacement response have been plotted to study the dynamic behavior of the laminated plate when different system parameters are varied.

81-1266
Thermally Induced Vibrations of a Viscoelastic Plate
J. Mazumdar, D. Hill, and D.L. Clements

Key Words: Plates, Viscoelastic properties, Thermal excitation

A method for the study of thermally induced vibrations of a viscoelastic plate of arbitrary shape is proposed. The method is based upon the concept of iso-amplitude contour lines on the surface of the plate. It is shown that the time behavior can be found by assuming a normal mode expansion in terms of the eigenfunctions for the associated elastic plate problem, and the deflection is obtained by using the elastic-viscoelastic analogy. As an illustration of the technique, the vibration of a viscoelastic circular plate under a thermal shock at its center is discussed, all details of which are illustrated by graphs.

81-1267
Study of the Transient Motion in the Cochlea
M.H. Holmes

Key Words: Ears, Plates, Fluid-induced excitation, Transient response

The transient problem obtained from a three-dimensional hydroelastic model of the cochlea is studied. In the model, the fluid motion is described by the linearized Navier-Stokes equations, and the basilar membrane is modeled as an elastic plate. The resulting problem is first reduced through the use of a slender body approximation which, in turn, simplified by introducing expansions in terms of the reciprocal of the Reynolds number. With this, the wave-like nature of the solution is analyzed, comparing it with the long-time solution, as well as with experiment.

81-1268
Vibrations of Mindlin's Circular Plates with Thickness Varied along Radius
S. Takahashi, K. Suzuki, and T. Yamaguchi
Faculty of Engrg., Yamagata Univ., Yonezawa, Japan, Bull. JSME, 24 (187), pp 229-235 (Jan 1981) 1 fig, 3 tables, 15 refs

Key Words: Plates, Circular plates, Variable cross section, Mindlin theory, Flexural vibration
The vibrations of circular plates with variable thickness are studied by the method of Mindlin's thick plate theory. The vibration problems of circular plates with two or more nodal diameters are solved in the case that the thickness is varied exponentially, the effects of some parameters on frequencies are discussed and some frequencies are compared with those from the classical theory.

81-1269
Finite Element Analysis of a Dynamically Loaded Flat Laminated Plate
A.R. Zak and D.W. Pillassch
Dept. of Aeronautical and Astronautical Engrg.,
Illinois Univ. of Urbana-Champaign, IL,
Res. No.,
ARBRL CR-00433, AD-L430, 124 pp (July 1980)
AD-A089 985/6

Key Words: Plates, Layered materials, Finite element technique

A finite element structural model has been developed for the dynamic analysis of laminated, thick plates. The model uses quadrilateral elements to represent the shape of the plate and the elements are stacked in the thickness direction to represent various material layers. This analysis allows for orthotropic, elastic-plastic or elastic-viscoplastic material properties. Non-linear strain displacement relations are used to represent large transverse plate deflections. A finite difference technique is used to perform the numerical time integration. The results from the analytical model are compared with experimental results. A good agreement is found between the calculated and measured values of the transverse plate deflections.

81-1270
Dynamic Shear Response of Rectangular Plates with Initial Imperfections
H. Pasic and G. Herrmann
Div. of Applied Mechanics, Dept. of Mech. Engrg.,
Trans. ASME, 102 (4), pp 769-775 (Oct 1980) 4 figs,
1 table, 9 refs

Key Words: Plates, Rectangular plates, Initial deformation effects, Shear waves, Pulse excitation

The paper presents an analysis of the elastic response of a simply supported, imperfect, rectangular plate subjected to an in-plane supercritical shear force, suddenly applied at one of the edges in the form of a square pulse. The influence of the initial plate irregularities on the overall response during both loading and postloading period is investigated. The averaged in-plane inertia forces are taken into account. The analysis is an extension of the studies of the response to in-plane normal forces of plates of infinite width and finite length given in, and of a finite plate given in. The results indicate that the frequency spectra of free vibrations during the post-loading regime are controlled by the initial irregularities distribution, plate geometry and the load levels.

81-1271
Near Field Measurement of the Complex Radiation Impedance Presented to a Vibrating Plate in a Reverberant Room Containing a Rotating Diffuser
C.H. Hansen and D.A. Bins
Dept. of Mech. Engrg., Univ. of Adelaide, Adelaide,
South Australia 5000, Australia, J. Sound Vib.,
73 (1), pp 79-101 (Nov 8, 1980) 12 figs, 1 table, 29 refs

Key Words: Plates, Vibrating structures, Mechanical impedance, Testing techniques, Measurement techniques

The radiation impedance presented by the field of a reverberant room to a rectangular plate mounted in a large baffle and vibrating in its fundamental simply supported edge mode is experimentally investigated. It is shown that a large diffuser rotating at 30 rpm causes large variations in both the real and imaginary parts of the radiation impedance but the average values agree very well with values obtained in the free field of an anechoic room. The real part of the radiation impedance is in good agreement with theoretical prediction. The experimental method makes use of a time average hologram of the mode stored in computer memory, a single point acceleration measurement on the plate, and a surface pressure scan. The method allows investigation of side band frequencies generated by the plate in the presence of the rotating diffuser. It is shown that these side band frequencies contain negligible energy and that they are the result of the cyclic amplitude modulation of the power radiated by the plate.

81-1272
Nonlinear Third Harmonic Resonance of Flexural Waves on a Waveguide of Thin Elastic Plate
N. Sugimoto and Y. Majima
Dept. of Mech. Engrg., Faculty of Engrg. Science,
Osaka Univ., Toyonaka, Osaka 560 Japan, J. Acoust.
Soc. Amer., 69 (2), pp 410-415 (Feb 1981) 1 fig,
13 refs
The nonlinear third harmonic resonance of flexural waves on a waveguide of a thin elastic plate of infinite length is investigated based on a theory of large deflection of a plate. Two types of waveguide are treated, one having both side edges supported simply and the other having both side edges fixed. Since the nonlinearity in flexural motions of a thin plate is cubic in a deflection, a quasimonochromatic flexural wave and its third harmonic wave can interact resonantly due to the nonlinearity at such a frequency that both waves can propagate simultaneously. The stationary solutions of the resonance equations show that two wave amplitudes vary periodically to exchange their energy, including solitary waves as limiting cases. Under a special condition, an "algebraic solitary wave" is also possible.

This report provides an evaluation of dynamic sloshing loads in slack LNG cargo tanks. A comprehensive review of worldwide scale model sloshing data is presented. The data are reduced to a common format for the purposes of defining design load coefficients. LNG tank structural details are reviewed with emphasis placed on defining unique design features which must be considered in designing LNG tanks to withstand dynamic sloshing loads. Analytical studies are undertaken to provide techniques for determining wall structural response to dynamic slosh loads. Finally, design methodology is presented for membrane and semi-membrane tanks, gravity tanks, and pressure tanks whereby the design procedures sequences from comparing resonant sloshing periods to ship periods, defining the design loads, and designing the tank structures affected by dynamic slosh loads by delineated procedures which vary with tank type.

Laser Speckle Method for the Analysis of Steady State Vibration of Plates
C.J. Lin and F.P. Chiang

Key Words: Plates, Vibration measurement, Measurement techniques

A laser speckle method is described whereby time-average slope contours are obtained from vibrating plates. It has an advantage over deflection contouring methods in that only first-order differentiation of experimental data is needed for stress calculations.

Axially Symmetric Free Vibration Analysis of a Circular Cylindrical Tank
H. Kondo
Ishikawajima-Harima Heavy Industries Co., Ltd., Tokyo, Japan, Bull. JSME, 24 (187), pp 215-221 (Jan 1981) 4 figs, 3 tables, 14 refs

Key Words: Tanks (containers), Cylindrical shells, Fluid filled containers, Sloshing, Fluid-induced excitation

Coupled oscillations of a liquid and a structure of a circular cylindrical tank are studied for small motions. The liquid is assumed as a perfect fluid, the side wall of the tank is treated as an elastic circular cylindrical shell, and the tank bottom is assumed rigid. Velocity potential is introduced to express liquid motions in series expansions of an orthogonal system. Frequency equations are obtained from a kinematical condition along the side wall and numerically solved to illustrate the effect of coupling, showing that at lower eigenfrequencies the motions are mainly due to liquid surface sloshing, and that at higher eigenfrequencies emerge so-called bulging modes consisting mainly of sinusoidal motions of the side wall.

Evaluation of Liquid Dynamic Loads in Slack LNG Cargo Tanks
P.A. Cox, E.B. Bowles, and R.L. Bass

Key Words: Tanks (containers), Cargo transportation, Sloshing

Point Admittance of Cylindrical Shells with and without Ring-Stiffening
E.C. Eichelberger

Key Words: Shells, Cylindrical shells, Stiffened shells, Rings, Mechanical admittance
The dynamical response of two cylindrical shells, one with and one without ring-stiffening, was investigated. Particular attention was placed on the use of ring-stiffening to provide velocity insertion loss at the point of excitation. The driving-point admittance was measured and compared with predictions using the Mean-Value Admittance Method. This method predicts the geometric-mean of the response of a vibrator with respect to frequency, and is valid as low as well as high frequencies.

81-1277
Finite Element Analysis of Earthquake-Induced Sloshing in Axisymmetric Tanks
M. Aslam

Key Words: Tanks (containers), Fluid-filled containers, Sloshing, Earthquake response, Finite element technique

A finite element analysis to predict the sloshing displacements and hydrodynamic pressures in liquid-filled tanks subjected to earthquake ground motions is presented. Finite element equations were derived using the Galerkin formulation, and the predicted results were checked against the test data, showing a good agreement between the test and finite element results.

81-1278
Dynamic Behaviour of an Elastic Separating Wall in Vehicle Containers: Part I
H.F. Bauer
Fachbereich Luft- und Raumfahrttechnik, Hochschule der Bundeswehr, Munich, W. Germany, Intl. J. Vehicle Des., 2 (1), pp 44-77 (Feb 1981) 19 figs, 8 refs

Key Words: Semitrailers, Tanks (containers), Fluid-filled containers, Natural frequencies, Sloshing

The motion of liquids carried in semitrailer tank systems is a very frequent cause of road accidents. Even in completely filled containers with flexible separating cross-walls, the dynamics of the elastic structure and liquid interaction may result in vehicle handling difficulties. For this reason emphasis is put on cylindrical and rectangular containers, for which the basic equations are presented. In this first part of a two-part paper, a short review of liquid motions in various containers with free liquid surfaces is presented, where the natural frequencies of new tank forms are shown. In addition, the procedure whereby these natural frequencies are determined, is presented for the circular cylinder completely filled with two liquids of different densities and having a separating cross-wall which may be treated as a flexible membrane or an elastic thin plate.

81-1279
Sloshing of Liquids in Rigid Annular Cylindrical and Torus Tanks Due to Seismic Ground Motions
M. Aslam, W.G. Godden, and D.T. Scalise

Key Words: Tanks (containers), Fluid-filled containers, Sloshing, Seismic excitation, Finite element techniques

Sloshing response and impulsive hydrodynamic pressures in rigid axisymmetric tanks due to horizontal ground motions are predicted by theoretical solutions based on series and finite element analysis. Results are compared with experimental data from model tests conducted on a 20 ft x 20 ft earthquake simulator.

81-1280
Dynamic Instability of Suddenly Heated Cylindrical Shells
H. Ray and E.G. Lovell

Key Words: Shells, Cylindrical shells, Thermal excitation

The stability of the motion of thin elastic isotropic circular cylindrical shells subjected to suddenly developed temperatures is investigated. The excitation of particular unstable modes is identified from an evaluation of parameters in the equations of motion representing short term response. These are functions of the geometry of shell, the properties of material and temperature. The long term nonlinear analysis shows that the initially unstable circumferential flexural modes exchange energy with the circular mode in a cyclic manner. This response generally gives rise to displacements and stresses that are much larger than those associated with the basic linear motion of the shell.
81-1281
A Consistent Set of Trial Functions for Conical Shells
M. El-Raheb and P. Wagner
Jet Propulsion Lab., California Inst. of Tech., Pasadena, CA 91103, J. Sound Vib., 73 (1), pp 103-112 (Nov 8, 1980) 1 fig, 1 table, 10 refs

Key Words: Shells, Conical shells, Shells of revolution, Non-linear theories

A consistent approach is developed for the determination of trial functions for a class of shells of revolution. The trial functions satisfy the in-plane and out-of-plane boundary conditions at the shell ends and include the effects of tangential inertia. The resulting expressions converge rapidly for the problem of linear free vibration.

81-1282
Nonlinear Vibration of Circular Cylindrical Shells
(Die Nichtlineare Schwingung von Kreiszylinder- schalen)
N.X. Hung
(In German)

Key Words: Shells, Cylindrical shells, Large amplitudes

Forced vibrations of circular cylindrical shells with large amplitudes under simultaneous static and dynamic loads are investigated.

81-1283
A Double Summation Procedure for the Combination of Seismic Responses of Multiply-Excited Piping Systems
C. Sundararajan
EDS Nuclear, Inc., San Francisco, CA, ASME Paper No, 80-WA/PVP-1

Key Words: Piping systems, Seismic analysis, Response spectra, Double summation procedure

In this paper a double summation procedure for the multiple response spectrum method of seismic analysis is derived. The theoretical basis and approximations involved are discussed.

81-1284
Further Numerical Studies on Dynamic Circumferential Crack Propagation in a Large Pipe
Univ. of Washington, Seattle, WA, ASME Paper No, 80-WA/PVP-8

Key Words: Pipes (tubes), Crack propagation

The results of this paper and the results of previous dynamic ductile circumferential crack propagation in the 18-in.-dia 316 stainless steel pipe suggest that crack propagation in the presence of large-scale yielding is controlled mainly by the rotary inertia of the two fracturing pipe segments.

81-1285
Dynamic Crack Propagation in Very Ductile Materials – The Influence of Inertia
Univ. of Washington, Seattle, WA, ASME Paper No, 80-WA/PVP-8

Key Words: Pipes (tubes), Crack propagation

The comparison of recent calculations for the propagation of axial cracks in pressurized pipes with experimental data suggest that the crack growth is governed by the inertia of the separating parts. In order to study the validity of this conclusion for other configurations, the basic problem of a tensile plate was analyzed and the results reported.
Turbulent flow through a long pipe terminated by an axisymmetric cavity can give rise to self-sustained oscillations exhibiting a very strong coherence, as evidenced by the narrowband character of corresponding amplitude spectra. These oscillations, associated with the turbulent axisymmetric jet passing through the cavity, are discussed.

81-1287
Calculate Natural Frequency of Internal Lined Pipe
K.T. Truong and P.T. Tran
SNC/FW Ltd., Montreal, Québec, Canada, Hydrocarbon Processing, 59 (12) pp 94-96 (Dec 1980) 2 figs, 2 tables, 4 refs

Key Words: Natural frequencies, Pipes (tubes), Linings, Fossil power plants

Natural frequency calculations of internal lined pipe are needed to minimize vibration problems in units where erosion is a problem. The method presented will also be very useful for minimizing these problems in future coal processing plants.

81-1288
Row Depth Effects on Turbulence Spectra and Acoustic Vibrations in Tube Banks
J.A. Fitzpatrick and I.S. Donaldson

Key Words: Tubes, Multi beam systems, Ducts, Heat exchangers, Fluid-induced excitation

The effect of row depth on Strouhal numbers derived from peaks in the turbulence spectra measured in an in-line tube bank and on the excitation of acoustic standing waves in the duct containing the bank has been investigated. The results indicate significant variations with bank depth and location in the bank although common features are evident.

81-1289
Modelling of Coulomb Damping and Wear of Vibrating Systems
G. Levy
CEGB Berkeley Nuclear Labs., Berkeley, Glos, UK, Wear, 64 (1), pp 57-82 (Oct 1980) 15 figs, 9 refs

Key Words: Tubes, Nuclear reactors, Coulomb damping

Coulomb damping, often relied upon to control the response of nuclear boiler tube banks acted upon by fluctuating eddy forces from turbulent coolant flow, is modeled. The required energy dissipation is affected by relative sliding movements between the clamped joints of the tube and support structure. These movements are in general related to the center span deflection which is coupled to the exciting forces by coupling coefficients. Specific models of the damping are developed for direct Coulomb damping and second-order damping under conditions where a constant friction force, i.e., static loading, is assumed to act. The effects of partial slip across the joint are examined, and this gives rise to a damping contribution at amplitudes that lie below the threshold for gross slip at the joint.

81-1300
Vibration and Heat Transfer from a Circular Duct
E. Janottkova and V. Ennenkl

Key Words: Ducts, Vibration excitation, Heat generation

The paper deals with the results of the experimental investigation of the forced convection heat transfer from a horizontal cylindrical duct with smooth and rough surfaces, subjected to vibration. Analysis of data proved that vibration caused the convective heat transfer to increase and that the vibration effect is directly comparable for smooth and rough duct surfaces.

81-1291
Application of the Equivalent Surface Source Method to the Acoustics of Duct Systems with Non-Uniform Wall Impedance
M. Namba and K. Fukushige
Dept. of Aeronautical Engrg., Kyushu Univ., Hakozaki, Higashi-ku, Fukuoka 812, Japan, J. Sound Vib., 73 (1), pp 125-146 (Nov 8, 1980) 17 figs, 6 refs
Key Words: Ducts, Acoustic linings, Turbofan engines, Equivalent surface source method

The paper outlines the application of the equivalent surface source method to the analysis of the acoustic field in a partially lined duct with arbitrarily non-uniform wall impedance. Lined sections of the duct wall are represented by unsteady mass source singularities, the strengths of which are determined by solving integral equations. The method is applicable to lined walls of impedance which is non-uniform in the streamwise and/or circumferential direction. Numerical examples are given to show the effects of various design parameters on sound attenuation. Some advantageous features of circumferentially non-uniform wall impedance are demonstrated.

81-1292

Time-Dependent Difference Theory for Noise Propagation in a Two-Dimensional Duct
K.J. Baumeister
NASA Lewis Res. Ctr., Cleveland, OH, AIAA J., 18(12), pp 1470-1476 (Dec 1980) 5 figs, 1 table, 36 refs

Key Words: Ducts, Sound transmission, Sound attenuation, Time-dependent parameters

A time-dependent numerical formulation is derived for sound propagation in a two-dimensional, straight, soft-walled duct in the absence of mean flow. The time-dependent governing acoustic-difference equations and boundary conditions are developed along with the maximum stable time increment. Example calculations are presented for sound attenuation in hard- and soft-wall ducts. The time-dependent analysis has been found to be superior to the conventional steady numerical analysis because of much shorter solution times and the elimination of matrix storage requirements.

81-1293

A Feasibility Study of a 3-D Finite Element Solution Scheme for Aeroengine Duct Acoustics
A.L. Abrahamson

Key Words: Ducts, Finite element technique, Acoustic linings, Aircraft engines, Acoustic response

The advantage from development of a 3-D model of aeroengine duct acoustics is the ability to analyze axial and circumferential liner segmentation simultaneously. The feasibility of a 3-D duct acoustics model was investigated using Galerkin or least squares element formulations combined with Gaussian elimination, successive over-relaxation, or conjugate gradient solution algorithms on conventional scalar computers and on a vector machine. A least squares element formulation combined with a conjugate gradient solver on a CDC Star s vector computer initially appeared to have great promise, but severe difficulties were encountered with matrix ill-conditioning. These difficulties in conditioning rendered this technique impractical for realistic problems.

81-1294

Acoustic Plane Waves Incident on an Oblique Clamped Panel in a Rectangular Duct
H. Unz and J. Roskam

Key Words: Ducts, Rectangular bodies, Elastic waves, Panels, Plates, Sound transmission loss, Noise transmission

The theory of acoustic plane waves incident on an oblique clamped panel in a rectangular duct was developed from basic theoretical concepts. The coupling theory between the elastic vibrations of the panel (plate) and the oblique incident acoustic plane wave in infinite space was considered in detail, and was used for the oblique clamped panel in the rectangular duct. The partial differential equation which governs the vibrations of the clamped panel (plate) was modified by adding to it stiffness (spring) forces and damping forces. The Transmission Loss coefficient and the Noise Reduction coefficient for oblique incidence were defined and derived in detail. The resonance frequencies excited by the free vibrations of the oblique finite clamped panel (plate) were derived and calculated in detail for the present case.
tally by a schlieren optical system and static pressure measurements. A self-excited oscillation of flow with a shock wave has been observed at the downstream duct at a particular range of supply pressures in which range the outflowing jet is underexpanded at the sudden enlargement and furthermore the jet does not reattach in the downstream duct.

BUILDING COMPONENTS

81-1296
R. Müller
Wolfsburg, Germany, VDI-Z., 122 (18), pp 761-768, (Sept 1980) 6 figs, 3 tables, 15 refs
(In German)

Key Words: Vibration response, Structural elements

The vibratory loads acting on structural elements are a multiparametric and nonlinear complex quantity and so far inadequately determined. The author describes several mathematical aids to analysis and explains them by means of examples.

81-1297
R. Müller
Wolfsburg, Germany, VDI-Z., 122 (19), pp 841-847, (Oct 1980) 2 figs, 9 tables, 3 refs
(In German)

Key Words: Vibration response, Structural elements

The vibratory resistance of a structure is known when the parameters of its Wöhler field are known. In this paper the instructions for measurement and evaluation of results are illustrated by means of an example. The results obtained by means of a pocket calculator are sufficient as it is shown by a comparison with results obtained by computer analysis.

ELECTRIC COMPONENTS

81-1298
Fatigue and the Effect of Size in Building Components (Ermudungsverhalten und Großeineinfluss von Bauteilen)
W. Späth
Speyer, VDI-Z., 122 (21), pp 935-938 (Nov 1980) 3 figs, 7 refs
(In German)

Key Words: Structural members, Fatigue life, Size effects, Testing techniques

Fatigue strength characteristics, obtained on some test samples, not always are transferrable to actual size building components. A substitution method is proposed and tested to clarify the effect of size in these problems. Then the prediction of fatigue strength on small test samples is compared with the fatigue of actual size building components. Various techniques for testing fatigue of test samples are also described.

CONTROLS
(SWITCHES, CIRCUIT BREAKERS)

81-1299
The Static and Dynamic Characteristics of LADD Actuators
S.-T.K. T/eng
UM 8100979

Key Words: Actuators, Mathematical models, Random excitation, Natural frequencies, Mode shapes, Frequency response, System identification techniques

The major contribution of this work is the development of the mathematical model of the LADD for the study of its static and dynamic characteristics and the techniques developed for the experimental testing of this type of actuators. The central contribution of this work is a study of the static and dynamic characteristics of LADD actuators. A mathematical model is developed suitable for predicting the behavior of various LADD configurations including a motor-coupled actuator. Basic conclusions regarding the effects of static and dynamic characteristics on the design of LADD actuated systems are drawn.
ACOUSTIC EXCITATION
(Also see Nos. 1184, 1196, 1225, 1231, 1391)

81-1300
Scattering Theory Approach to the Identification of the Helmholtz Equation: A Nearfield Solution
A.B. Weglein and M.T. Silvia

Key Words: System identification techniques, Elastic waves, Wave scattering

Expressing the Helmholtz equation as a Schrodinger-type equation with a frequency-dependent potential allows one to use the techniques of inverse scattering to determine the potential from farfield scattering information. These techniques were designed to accommodate farfield experimental data which was generated by a plane-wave probe. The problems of finding the potential when scattering information is restricted to the nearfield and when incident probes are assumed to be arbitrary, unknown, and not necessarily reproducible from experiment to experiment are considered. In this paper, a direct approach to the nearfield inverse scattering problem is presented.

81-1301
Method for Obtaining a Nearfield Inverse Scattering Solution to the Acoustic Wave Equation
M.T. Silvia and A.B. Weglein

Key Words: Elastic waves, Wave scattering

Since the classic paper by Gelfand and Levitan in 1955, much has been published on the inverse scattering problem. Assuming no bound states, there are several well-known solutions that reconstruct one-dimensional or spherically symmetric potentials from farfield scattering information. In this paper, work is extended to provide a nearfield inverse scattering solution to the acoustic wave equation. In particular, a procedure is described for obtaining a nearfield inverse scattering solution when the incident probes are arbitrary, unknown, and not necessarily reproducible.

81-1302
Variational Principles for Dynamic Problems for Inhomogeneous Elastic Media
J.R. Willis
School of Mathematics, Univ. of Bath, Bath BA2 7AY, UK, Wave Motion, _3_ (1), pp 1-11 (Jan 1981) 16 refs

Key Words: Elastic media, Composite materials, Wave propagation, Variational methods

Some new variational principles for elastodynamic problems, which reduce to the Hashin-Shtrikman principle in the static limit, are presented. They are deduced from dynamical analogues of the classical energy principles of elastostatics by performing appropriate rearrangements and then neglecting certain terms that are quadratic in a measure of the error associated with the approximating trial fields. One of the new principles is then employed to develop equations that provide an approximate description of waves in a random composite.

81-1303
Reflection and Transmission of Elastic Waves by the Spatially Periodic Interface between Two Solids (Numerical Results for the Sinusoidal Interface)
J.T. Fokkema
Delft Univ. of Tech., Delft, The Netherlands, Wave Motion, _3_ (1), pp 33-48 (Jan 1981) 17 figs, 5 tables, 10 refs

Key Words: Elastic waves, Wave reflection, Wave transmission, Interface: solid-solid

The integral-equation method for calculating the reflection and transmission of elastic waves by the spatially periodic interface between two solids, developed in a previous paper, is applied to a sinusoidal interface, and numerical results are presented. The computations have been carried out for four different heights of the profile (the plane interface included), a single frequency of operation, two combinations of elastic solids, and the four types of excitation. The interface be-
between granites and slates, the interface between copper and flint glass, and P- as well as SV-wave incidence in either of the media have been considered.

81-1304
Calculation of the Scattering of Elastic Waves from a Penny-Shaped Crack by the Method of Optimal Truncation
W.M. Visscher
Theoretical Div., Los Alamos Scientific Lab., Los Alamos, NM 87545, Wave Motion, 3 (1), pp 49-69 (Jan 1981) 15 figs, 16 refs

Key Words: Elastic waves, Wave diffraction, Cracked media, Nondestructive tests

The method of optimal truncation (MOOT), a least-squares boundary-residual method for solving scattering problems, is applied to the plane circular crack. An equatorially cloven spherical inclusion is used to model the crack. Numerical advantages of this model are discussed and demonstrated. Results are given for cross sections for longitudinal waves incident on the crack at arbitrary angles. Both clear cracks and fluid-filled cracks are considered. A refinement of the method which would allow accurate calculation of dynamic stress-intensity factors is developed.

81-1305
Elastic Wave Propagation through Multilayered Media
D.E. Chimenti and R.L. Crane

Key Words: Wave propagation, Layered materials, Elastic waves

This report presents a review of the theory of elastic wave propagation in any number of fluid or solid layered media. Suitable wave equations are derived, and boundary conditions determined by the nature of the media and the character of the interfaces are applied, yielding a formal solution for the transmitted and reflected, longitudinal and transverse wave potentials. Computer-generated graphs are presented which illustrate properties of the solutions in materials of interest in nondestructive evaluation. A tabulation of acoustic-velocity data for media commonly encountered in ultrasonic work is also included.

81-1306
Analysis of the Influence of Measuring Point Network on the Estimation Accuracy of a Source Acoustic Power
V. Batko and J. Giergiel

Key Words: Noise source identification, Point source excitation

The paper presents an analysis of the effect of measuring point dislocation around a machine on the accuracy assessment of its acoustic power. The investigation is based on the analysis of an isotropic random field formed from the measuring results. For such a model a theorem is cited which possibilitates a selection of an optimum sampling point network. The theoretical considerations are illustrated by results gained under free and diffuse field conditions for a network of rectangles, squares and triangles with equal sides.

81-1307
A Fundamental Study on Frictional Noise (2nd Report, The Generating Mechanism of Squeal Noise of Higher Modes)
M. Yokoi and M. Nakai
Junior College, Osaka Industrial Univ., Osaka, Japan, Bull. JSME, 23 (186), pp 2118-2124 (Dec 1980) 12 figs, 2 tables, 3 refs

Key Words: Noise generation, Friction excitation

In this paper, a frictional noise, produced when a long steel cantilever was pressed in the radial direction on a rotating thick disk is investigated. The results obtained are summarized.

81-1308
Diffraction of Sound Around Barriers: Use of the Boundary Elements Technique
R. Sernek
Key Words: Noise barriers, Sound waves, Wave diffraction, Geometric effects

The use of the boundary elements technique permits precise evaluation of the acoustic pressure field diffracted by barriers of different shapes on a flat ground. Absorption conditions on the ground and the barrier may be included easily. Different examples are investigated and excess attenuations obtained by shape changes are compared.

81-1309
Monotonic Curvature of Low Frequency Decay Records in Reverberation Chambers
K. Bodlund

Key Words: Reverberation chambers, Sound measurement, Low frequencies, Decay laws, Normal modes, Damping

In the papers by Larsen and Briiel, two interesting problems connected with reverberation room measurements are pointed out and discussed. The first problem is that the ensemble averaged decay curve reveals a monotonic curvature at low frequencies. The second phenomenon is that often systematically larger sound power output values are reported at low frequencies according to the free field method than according to the reverberation room method. In searching for an explanation of these anomalies some measurements and a classical normal mode theory analysis have been made.

81-1310
Phenomenology of Sound Propagation through a Green Belt
R. Makarewicz
Inst. of Acoustics, A. Mickiewicz Univ., 60-796, Poznan, Poland, J. Sound Vib., 72 (4), pp 481-489 (Oct 22, 1980) 6 figs, 2 tables, 6 refs

Key Words: Layered materials, Sound propagation

A phenomenological description of wave propagation in some layered media is given. The results have been obtained under the assumption that the wave direction is perpendicular to the layers. Noise propagation over a flat ground surface with a uniform cover of vegetation has been taken as the starting point for further generalizations. The description presented seems to be useful for the other noise control problems relating to the question of the application of "noise screens" composed of homogeneous layers.

81-1311
Estimation of the Mean Power Content of Summed Sinusoids and an Application to Acoustic Noise Measurement in Shallow Water
A.W. Walker
Admiralty Marine Tech. Establishment, Teddington TW11 0LN, UK, J. Sound Vib., 73 (1), pp 41-59 (Nov 8, 1980) 7 figs, 3 tables, 27 refs

Key Words: Underwater sound, Sound measurement

Measurements of physical quantities such as pressure or velocity commonly display significant variations in both space and time. The variation in a single spatial or temporal co-ordinate may often be described by the sum of a finite number of sinusoids of differing wavenumber or frequency, whichever is appropriate. The power average of a small number of random samples is presented as a suitable estimate of the mean power content of such a sum of sinusoids of evenly distributed random argument. Confidence levels which apply to these estimates have been derived by a direct Monte Carlo simulation for three separate cases in which the sinusoids are assumed to have constant equal amplitudes, constant amplitudes which are sample values of an evenly distributed random variable, or constant amplitudes which are sample values of a Gaussian distributed random variable of zero mean and unit variance. Independent checks on the accuracy of the data have been provided by numerical integration in a few special cases. Use of the confidence levels is illustrated by their application to measurements of acoustic source noise taken in shallow water by the appropriate use of vertical arrays of randomly spaced transducers.

81-1312
Display of the Underwater Sound Wavefront Using the Theory of Holographic Interference
W. Wu

Key Words: Underwater sound, Holographic techniques

Using the theory of holographic interference and the variable properties of the refractive index of water that has been disturbed by wave motion, a method has been developed where two holograms of the underwater acoustic field are photographed successively on one film plate, before and after the introduction of a wave, which could range in frequency from subsonic to supersonic. A He-Ne laser beam is used to illuminate the film plate, and the image of the
wavefront is reconstructed. This new method helps to remove the difficulty underwater acoustic engineers have frequently encountered when observing the scene of an underwater wave.

SHOCK EXCITATION
(Also see Nos. 1252, 1356, 1373)

81-1313
Crash Tests of Construction Zone Traffic Barriers
K.C. Hahn and J.E. Bryden
PB80-213721

Key Words: Guard rails, Dynamic tests, Collision research (automotive)
Three temporary construction zone traffic barriers were crash-tested to determine their performance. A 12-in. timber curb, with steel splice plates connecting adjoining sections and steel pins driven into a gravel subbase, was used.

81-1314
Crash Tests of Small-Angle Sign Supports
K.C. Hahn
PBB0-213713

Key Words: Traffic sign structures, Dynamic tests, Collision research (automotive)

New York's small sign supports were crash tested to determine compliance with AASHTO criteria for basebending sign supports.

81-1315
The Optimal Mode in the Mode Approximation Technique
P.S. Symonds

Key Words: Mode approximation technique, Pulse excitation

The paper proposes an addendum to a simple technique for obtaining approximate magnitudes of maximum permanent deflections and response times, in a structure subjected to pulse loading. This technique obtains an approximate solution in terms of mode form (separated variable) full solutions of the field equations, with initial amplitude of the velocity field chosen so as to minimize the initial value of a functional ∆ of the actual response velocity and the approximating mode solution, ∆_min representing the greatest difference between the two fields in a squared-integrated sense. Apart from other advantages, the least value of ∆_min was suggested as a means of identifying the particular mode, from a family of available mode solutions, which would provide the best approximation. The present note shows by a simple lumped-mass model that this criterion fails if unstable as well as stable modes are considered. A better criterion is here proposed, namely that the largest value of a lower bound on the root mean-square final deflection identifies the mode giving the best approximation. This lower bound is derived and illustrated together with other possible criteria.

81-1316
Nuclear Hardness Assurance for Aeronautical Systems
R.P. Patrick and J.M. Ferry
Strategic Air Command, U.S. Air Force, SAE Paper No. 801227, 20 pp, 7 figs, 16 refs

Key Words: Hardened installations, Nuclear weapons effects

This paper addresses nuclear hardness assurance as it relates to system acquisition, prerequisite efforts necessary for an affordable hardness assurance program, and the key aspects of the management of the program.

81-1317
Calculation of Ground Shock Motion Produced by Near Surface Airburst Explosions Using Cagniard Elastic Propagation Theory
J.R. Britt
Army Engineer Waterways, Experiment Station, Vicksburg, MS, 13 pp (June 1980)
AD-A090 367/4

Key Words: Air blast, Ground motion, Ground shock, Shock wave propagation
The exact closed form integral solutions of Cagniard for the reflection and refraction of spherical waves in elastic solids were adapted and extended to model the ground shock propagation in a layered earth. In this formulation the particle motion is obtained as a sum of components propagated along rays or paths associated with distinct P and S wave arrivals. Calculations using the Cagniard procedure were used previously successfully by the author to predict the reflection of underwater explosion shock waves from the ocean bottom. The theoretical analysis and computer code development for the ground shock calculations were extensions of the bottom reflection study.

81-1318
Applications of Risk Analysis in Earthquake-Resistant Design
J. Lee
UM 8029472

Key Words: Seismic design, Earthquake prediction, Ground motion, Optimum design

This dissertation proposes and develops a methodology for formulating and solving a class of problems in optimal earthquake-resistant design of structures. In particular, it deals with: uncertainty in the occurrence of destructive earthquakes in space and time; uncertainty in the characteristics of ground motion at a site; and uncertainty in statistical models, structural parameters and material strength.

81-1319
Earthquake Waves in a Random Medium
L. Chu, A. Askar, and A.S. Cakmak

Key Words: Earthquakes, Seismic waves, Elastic media, Viscoelastic media, Damping

Measurements are conducted with small samples in the laboratory and thus for all practical purposes the medium is macroscopically homogeneous. On the other hand, the uncertainties and the irregular changes in situ are macroscopic inhomogeneities. This work is an attempt to account for these stochastic changes in the elastic properties and density in a rational manner.

81-1320
Optimal Design of Localized Nonlinear Systems with Dual Performance Criteria under Earthquake Excitations
M.A. Bhatti
UM 8029330

Key Words: Nonlinear systems, Seismic design, Minimax technique, Optimum design

This report presents a formulation for earthquake-resistant design of localized nonlinear systems. Based upon the current design criteria, two levels of performance constraints are imposed as follows. For small earthquakes which occur frequently, the structure is constrained to remain elastic with no structural damage.

81-1321
Fracture Effects in the Propagation of a Shock Wave through a Bulk Solid
W. Kosinski
Warsaw, Poland, Arch. Mechanics, 32 (3), pp 421-430 (1980) 18 refs

Key Words: Shock wave propagation, Cracked media, Discontinuity-containing media

The approach of nonlinear continuum mechanics is used in formulating three-dimensional stress-strain and internal state variable constitutive equations for a class of bulk solids. The internal state variable influences the generalized elastic modulus and describes the sensitivity of the rheological material to changes of the specific volume. A plane shock wave propagating through the material medium is analyzed. An effect of fracture characterized by the blow-up of the amplitude of the wave in finite time, is discussed. The conditions for such a behavior of the wave are formulated.

81-1322
Molecular Dynamic Shock Wave Studies in Solids - Fracture and Crack Propagation
A. Paskin
Queens College, Flushing, NY, Rept. No. ARO-14444.2-E, 4 pp (June 31, 1980)
AD-A088 335/5

Key Words: Shock wave propagation, Crack propagation

The earlier computer simulations of shock waves in solids was completed. An equation of state for shock waves in
simplification was developed and found to be an accurate description of shock wave properties. Computer simulation techniques were also used to study fracture and crack propagation in solids. The basic assumptions made in the usual continuum mechanics calculations were examined and found to be at best approximate.

81-1323
Transonic Shock Interaction with a Turbulent Boundary Layer on a Curved Wall
G.R. Inger and H. Sobieczky
Virginia Polytechnic Inst. and State Univ., Blacksburg, VA, ASME Paper No. 79-WA/FE-13

Key Words: Shock wave propagation, Boundary layer damping, Walls

This work presents exact normal mode solutions for the forced vibrational response of the rectangular parallelepiped with three sets of boundary conditions: completely rigid-lubricated boundaries; two stress-free and four rigid-lubricated boundaries; and two elastically restrained and four rigid-lubricated boundaries. Both analytical and numerical verifications of these solutions are provided. Applications are discussed in the fields of acoustic emission non-destructive testing and the calibration of piezoelectric transducers.

81-1324
Elastic, Finite Deflection and Strain Rate Effects in a Mode Approximation Technique for Plastic Deformation of Pulse Loaded Structures
P.S. Symonds

Key Words: Pulse excitation, Mode approximation technique, Explosion effects, Beams

A general scheme is proposed for including effects of elastic deformation, finite geometry changes, and strain rate sensitivity in a simple approximate scheme for estimating maximum transient and permanent deformations in structures subjected to load pulses of high intensity. The method is applied here to fully clamped beams of mild steel subjected to explosive loading. Comparisons are made between estimates from the present method and test results, as well as with estimates by various rigid-plastic methods and (to a limited extent) with results from numerical methods.
Key Words: Self-excited vibrations, Vortex-induced excitation

Classically, investigations of self-sustaining oscillations of impinging flows have focused on the fundamental frequency; this experimental investigation of incompressible flow past a cavity reveals organized low frequency components having substantial amplitudes relative to that of the fundamental. These low frequency components are shown to be associated with the interaction of successive shear layer vortices with the downstream cavity corner. Vortices approach the corner at varying transverse locations resulting in varying degrees of severing of incident vortical structures. Organized patterns in the degree of severing of successive vortices are associated with low frequency components of the pressure fluctuation at impingement. This unsteady field at impingement modulates the upstream region of the shear layer near separation; in turn, the resultant velocity fluctuations are amplified in the free shear layer.

81-1328

Bifurcation of Periodic Motions in Two Weakly Coupled Van der Pol Oscillators
R.H. Rand and P.J. Holmes

Key Words: Periodic response, Van der Pol oscillators, Perturbation theory

A pair of weakly coupled van der Pol oscillators are studied and the bifurcations of phase-locked periodic motions which occur as the coupling coefficients are varied are investigated. Perturbation methods are used and their relation to the topological structure of solutions in the four dimensional phase space is discussed. While the problem is formulated for general linear coupling, the case of detuning plus diffusive coupling via displacement and velocity is discussed in more detail. It is shown that up to four phase-locked periodic motions can exist in this case.

81-1329

Quenching in a System of Coupled Van der Pol Oscillators
Y.P. Singh

81-1330

Non-Linear Vibrations of General Structures
J. Padovan

Key Words: Nonlinear vibration, Finite element technique, Perturbation theory

Based on the finite element and perturbation procedures, an analytical-numerical approach to non-linear vibrations is developed. In particular, the overall solution employs the finite element method to handle spatial dependencies while the constrained version of the perturbation procedure is used to treat the temporal behavior. Due to the generality of the method developed, any combination of structure and boundary restraints can be treated as well as the possibility of conservative and non-conservative situations wherein the system can have any number of frequency branches. Furthermore, the procedure is not restricted to excitations in the neighborhood of specific frequencies, but rather applies to the full range. To demonstrate the capabilities of the solution approach, the results of several numerical studies are included along with experimental verification.

81-1331

The Resonant Vibration of Homogeneous Non-Linear Systems
W. Szmplinska-Stupnicka
The paper presents some results on the resonant response of a two-degree-of-freedom non-linear, "homogeneous" system of the order \(k = 3 \), subject to harmonic excitation. It has been shown that the resonant response is very close to the normal mode vibration, being a harmonic function of time in a relatively wide region of the frequency of excitation. The new type of jump phenomenon - the jump from one resonant state to the other - involving a sudden change of the amplitude and the mode shape of vibration were predicted theoretically and confirmed by the aid of an analog-computer.

Key Words: Nonlinear systems, Resonant response, Harmonic excitation

81-1332

Dynamic Modal Estimation Using Instrumental Variables

H. Salzwedel

Key Words: Mode shapes, Aircraft, Spacecraft, Off-shore structures

A method to determine the modes of dynamical systems is described. The inputs and outputs of a system are Fourier transformed and averaged to reduce the error level. An instrumental variable method that estimates modal parameters from multiple correlations between responses of single input, multiple output systems is applied to estimate aircraft, spacecraft, and off-shore platform modal parameters.

A theoretical and experimental investigation of the processes by which thin layers of gas trapped between surfaces of a structure may contribute to damping of structural vibrations is described. Effects of gas compressibility, inertia and thermal conductivity are allowed for in the theory. Particular attention is given to the variation of damping with gas pressure and layer thickness. The aim of the investigation was to provide results of use in the design of vibration absorbers for use in pressurized gas environments, as well as to contribute to a better understanding of the behavior of pre-existing gas layers in structures.

Key Words: Vibration damping, Gases, Vibration absorbers (equipment)

MECHANICAL PROPERTIES

81-1335

The Damping of Structural Vibration by Thin Gas Films

M.J.H. Fox and P.N. Whitton
Central Electricity Generating Board, Berkeley Nuclear Labs., Berkeley, Gloucestershire GL13 9BP, UK, J. Sound Vib., 73 (2), pp 279-295 (Nov 22, 1980) 5 figs, 1 table, 12 refs

A theoretical and experimental investigation of the processes by which thin layers of gas trapped between surfaces of a structure may contribute to damping of structural vibrations is described. Effects of gas compressibility, inertia and thermal conductivity are allowed for in the theory. Particular attention is given to the variation of damping with gas pressure and layer thickness. The aim of the investigation was to provide results of use in the design of vibration absorbers for use in pressurized gas environments, as well as to contribute to a better understanding of the behavior of pre-existing gas layers in structures.

Key Words: Vibration damping, Gases, Vibration absorbers (equipment)
81-1336
The Analysis and Design of Constrained Layer Damping Treatments
P.J. Torvik
Air Force Inst. of Tech., Wright-Patterson AFB, OH,
Rept. No. AFIT-TR-80-4, 65 pp (July 1980)
AD-A088 200/1

Key Words: Vibration damping, Resonant response, Vibration control

Electronic damping was applied to two orthogonal bending modes in a cylindrical mast. The behavior of the experimental setup agrees remarkably well with the theoretical predictions of a mathematical model developed by C.J. Swigert in an accompanying paper.

81-1337
Electronic Damping of Orthogonal Bending Modes in a Cylindrical Mast - Theory
C.J. Swigert and R.L. Forward
Hughes Aircraft Co., Culver City, CA, J. Spacecraft Rockets, 18 (1), pp 5-10 (Jan/Feb 1981) 13 figs, 2 refs

A theoretical model that describes the effect of electronic damping applied to the first two orthogonal bending modes of a cylindrical mast is presented. Computer predictions of the amplitude and phase response of the mast to excitation frequencies around the two closely spaced resonant modes for different levels of feedback damping are obtained. The analytical model predicts that, with only one damping circuit active and low levels of feedback, both modes are weakly damped. The theoretical predictions of the model agree in detail with the experimental results obtained in the previous paper.

81-1338
Electronic Damping of Orthogonal Bending Modes in a Cylindrical Mast - Experiment
R.L. Forward
Hughes Res. Labs., Malibu, CA, J. Spacecraft Rockets, 18 (1), pp 11-17 (Jan/Feb 1981) 12 figs, 4 refs

Key Words: Vibration damping, Flexural vibration, Beams, Cylindrical beams

81-1339
Porcelain Enamel Material Testing Procedures to Determine the Damping Properties and the Results of Selected Materials
D.M. Hopkins and M.L. Drake

Key Words: Testing techniques, Material damping, Damping coefficients, Ceramics

This report contains a detailed discussion of methods and procedures used to define the vibration damping properties of high temperature (260°C to 780°C) damping materials. The work was done by the University of Dayton Research Institute, Dayton, Ohio in partial fulfillment of Air Force Contract Number F33615-76-C-5137 for the Materials Laboratory, Wright-Patterson Air Force Base, Ohio. The work described was conducted during the period January 1976 through December 1979.

81-1340
Polymeric Material Testing Procedures to Determine Damping Properties and the Results of Selected Commercial Material
M.L. Drake and G.E. Terborg

Key Words: Testing techniques, Material damping, Damping characteristics, Polymers

This report contains a detailed discussion of the methods and procedures used to determine the damping properties of commercially available polymeric materials. The work was done by the University of Dayton Research Institute, Dayton, Ohio, in partial fulfillment of Air Force Contract Number F33615-76-C-5137 for the Materials Laboratory, Wright-Patterson Air Force Base, Ohio.
81-1341
Effect of Load History on Fatigue Life
J.T. Ryder
AD-A088 439/5
Key Words: Fatigue life, Layered materials

The primary objectives of this program are to: study in detail how mechanical loading parameters affect the fatigue life of graphite/epoxy laminates; determine the effects of environmental and geometrical perturbations on the effects studied in objective 1; and analyze the results in a manner such that an expanded foundation is laid for formulating fatigue life models based on knowledge of failure mechanisms. This report describes the analytical and experimental work undertaken in Task I.

81-1342
A Comparison of Fatigue Damage Detection in Carbon and Glass Fibre/Epoxy Composite Materials by Acoustic Emission
J. Holt and P.J. Worthington
Int. J. Fatigue, 3 (1), pp 31-35 (Jan 1981) 10 figs, 5 refs

Key Words: Fiber composites, Composite materials, Fatigue life, Acoustic emission

Ring specimens of four fiber composite materials, two containing carbon fibers and two containing glass fibers have been monitored for acoustic emission during tension/tension fatigue cycling. It is shown that in the tests reported, the progressively increasing component of the activity can be related to the fatigue life. The distribution of events over the load cycle shows that a dominant part of this progressively increasing activity is associated with some stress independent process. Use of the appropriate part of the load cycle also offers the possibility of focusing on the events associated with the damage that leads to final failure.

81-1343
Environmental Dynamic Fatigue Crack Propagation in High Density Polyethylene: An Empirical Modelling Approach

81-1344
Experimental Random Fatigue in Elastic-Plastic Range - Models of Significant Variables
T.C. Huang and V.K. Nagpal
Dept. of Engrg. Mechanics, Wisconsin Univ., Madison, WI, Rept. No. UW/RF-6, 28 pp (Sept 1979)
AD-A090 495/3

Key Words: Fatigue tests, Random excitation, Elastic-plastic properties, Variance analysis

In the previous study of first order models with 11 variables to predict fatigue life of materials in elastic-plastic range under random vibrations, 5 variables showed significant effects. In this report both first and second order models based on 5 significant variables have been developed. The tables of analysis of variance, and of the predicted lives together with residuals and 95% confidence intervals, are constructed for each model. These results contrast with those which are obtained by the principle of linear damage accumulation and cycle counting and involve several hundred percent error as a rule.

81-1345
Experimental Random Fatigue in Elastic Range - Models of Significant Variables
T.C. Huang and V.K. Nagpal
Dept. of Engrg. Mechanics, Wisconsin Univ., Madison,
In the previous study of first order models with 8 response variables to predict fatigue life in elastic range under random vibrations, 4 variables showed significant effects. In this part of the research both first and second order models of these 4 significant variables based on 10, 18, and 24 tests are developed. The tables of analysis of variance, and of predicted lives together with their residuals and 95% confidence intervals are constructed for each of the first and second order models.

81-1346
Experimental Random Fatigue in Elastic-Plastic Range - First Order Models
T.C. Huang and V.K. Nagpal
AD-A090 694/1

Key Words: Fatigue tests, Random excitation, Elastic-plastic properties, Regression analysis

An experimental program, based on 11 probabilistic parameters and 3 experiment designs was conducted for 24 specimens for fatigue life of materials in an elastic-plastic range under random vibrations. The magnitude levels of all probabilistic parameters for the response of each specimen were computed from its spectral moments and were coded. By regressing the log of fatigue life on coded probabilistic parameters the first order models to predict fatigue life were obtained.

81-1348
Ultrasonic and Acoustic Emission Detection of Fatigue Damage
S.R. Buxbaum, C.L. Friant, S.E. Fick, and R.E. Green, Jr.
AD-A090 799/8

Key Words: Fatigue life, Acoustic emission, Nondestructive tests, Aircraft

The primary purpose of the research was to optimize existing ultrasonic and acoustic emission techniques and to investigate new ones for early detection of fatigue damage in aluminum alloys used in aircraft construction. Ultrasonic attenuation measurements made simultaneously with fatigue tests on aluminum alloy bar, and sheet specimens gave warning of crack formation and imminent fracture much earlier than conventional ultrasonic methods. An ultrasonic pulse-echo system was used during fatigue cycling to record conventional A-scan waveforms as well as to monitor ultrasonic attenuation. In addition, acoustic emission signals were recorded simultaneously with the ultrasonic measurements on each test specimen using two different acoustic emission systems. The correlation of evidence of cumulative fatigue damage and acoustic emission data was approached by the use of long term true-rms averaging of the system output and frequency domain analysis of acoustic emission signals recorded at selected intervals throughout the test. The integrity of the data was verified by independent electronic testing of the instrumentation. Visual and in situ eddy current inspection, and optical and scanning electron microscopy were used to correlate acoustic emission and ultrasonic attenuation data to the physically deformed microstructure.

ELASTICITY AND PLASTICITY

81-1349
On the Dynamic Shakedown Stability
F. Auconi
EXPERIMENTATION

MEASUREMENT AND ANALYSIS (Also see Nos. 1273, 1332)

81-1350
An Introduction to Dynamic Photoelasticity
J.W. Dally

Key Words: Photoelastic analysis, Wave propagation, Vibration response, Crack propagation, Impact response (mechanical)

The general area of elastodynamics is divided into four more limited topics including stress-wave propagation, vibration and impact, fracture propagation and quasi-static transients. The application of dynamic photoelasticity to each topic is discussed. Recording methods used in dynamic photoelasticity which are reviewed include the high-speed framing camera, the Cranz-Schardin system, Q-switched ruby lasers, and a stop-action strobe system. Advantages and disadvantages of each method of recording are covered. Analysis procedures used in interpreting the dynamic isochromatic-fringe patterns are described. Examples are illustrated where separation of the principal stresses is possible and a calibration method for determining the dynamic material-fringe value is reviewed. Finally, four applications of dynamic photoelasticity to problems arising in geophysics, fracture mechanics, flaw detection and mining are briefly reviewed to show the versatility of the dynamic photoelastic method.

81-1351
A Simple Method for Converting Frequency Domain Aerodynamics to the Time Domain
E.H. Dowell
N80-33358/6

Key Words: Aerodynamic characteristics, Frequency domain method, Time domain method

A simple, direct procedure was developed for converting frequency domain aerodynamics into indicial aerodynamics. The data required for aerodynamic forces in the frequency domain may be obtained from any available (linear) theory. The method retains flexibility for the analyst and is based upon the particular character of the frequency domain results. An evaluation of the method was made for incompressible, subsonic, and transonic two dimensional flows.

81-1352
Measurement of Impulsive Noise with a Data Logging System
J. Jakobsen

Key Words: Noise measurement, Measuring instruments, Traffic noise

A data logging system used for long-term noise measurements is described. The system's ability to measure impulsive noise correctly is analyzed and compared with that of other systems. It is concluded that the systems considered in the investigation are able to measure impulsive noise with an error not exceeding 1 dB, provided the crest factor of the noise is less than 30 dB.

81-1353
Measurement of Tube/Tube Support Clearance via Induced Vibration Analysis
D.C. Barrett, T.D. Scharton, and C.C. Kidd
ANCO Engineers, Inc., SAE Paper No. 801127, 16 pp, 4 figs, 1 ref

Key Words: Vibration probes, Nuclear reactor components, Nuclear power plants, Boilers
A number of nuclear power plant steam generators have been troubled with corrosion buildup between the tubes and supporting plates. A vibration type probe which traverses the interior of the tubes during plant shutdown has been developed to inspect the tube and support crevices. The probe incorporates a miniature electric vibrator and accelerometers to induce and measure tube motion at the support plate junctions. Laboratory investigation indicates that clearance gaps ranging from 1 to 30 mils can be accurately and rapidly measured even in the presence of tube misalignment and varied tube support conditions. The probe system is also suited to in-situ measurements of heat exchanger tube vibration characteristics.

81-1354

Pump Vibration Analysis by Telephone
K.W. Templin

Key Words: Vibration analysis, Measuring instruments, Pumps

A vibration analysis system is described to which an FM converter was added giving the capability of recording field vibration data on a cassette tape with a small and easily portable music tape recorder. Since the signal constitutes frequency modulation rather than amplitude it is possible to transmit the signal by telephone. The frequency signal received is correct and precise, and transmission distance is no problem. A couple examples of pump motor vibration analyses are described.

81-1355

Plate Instrumented Wheelsets for the Measurement of Wheel/Rail Forces
W.I. Thompson, III
PB81-116113

Key Words: Interaction: rail-wheel, Measuring instruments, Wheelsets

Strain gauge instrumented wheelsets are an important research tool in experimental rail vehicle testing. This report expounds the principle of operation of the instrumented plate type of wheelset which is constructed by the scientifically exact application of strain gauges on the plate region of railroad wheels so that the wheelset is transformed into a sophisticated force transducer. An example of the application of the principles expounded is presented for a locomotive wheelset having wheels with S-shaped plate regions and 40-in. (1016-mm) diameters. The corresponding measurement system that utilizes such instrumented wheelsets is synopsisized. This information is useful to railroads and other research groups interested in measuring wheel/rail forces.

81-1356

Dynamic Airblast Simulator (DABS) Instrumentation Development, Phase II
W.R. Edgel and N.P. Baum
AD-A090 531/5

Key Words: Nuclear explosives, Simulation, Measuring instrumentation

Development of explosives-driven nuclear blast simulators requires instrumentation for measurements to characterize blast flow. In a series of field tests with a large shock-tube-like dynamic air-blast simulator (DABS) blast flow characterization is attempted through measurements of parameters related to dynamic pressure, Doppler radar and infrared thermometry techniques are described toward determination of detonation product interface velocity. Blunt face drag body and acoustic techniques are implemented toward determination of flow Mach number. Other measurements include high stress and particle velocity in the walls of the explosives driver chamber using manganin sensors, conductivity pins, and a mutual inductance particle velocimeter. Results of the measurement implementations indicate the soundness of the technical approaches for measurement techniques in the extremely hostile blast flow environment.
Key Words: Electronic instrumentation, Instrumentation response, Testing techniques, Random excitation

Electronic equipment frequently must be subjected to vibration tests so that unreliable assemblies can be detected. Sweat-frequency tests, commonly applied to electronic gear, have proved to be somewhat unreliable. Experience has revealed that flawed products are detected more reliably by random-frequency tests.

81-1358

Acceleration/Vibration Combined Environment Activities, Interim Report
R.L. Shuman
SAND-80-1433C

Key Words: Vibrators (machinery), Test equipment and instrumentation

The combining of two environments, i.e., linear acceleration and vibration, for use in laboratory testing to determine the damage to some mechanical devices when simultaneously subjected to these two environments, is discussed. The use of a Genisco centrifuge with an Unholtz-Dickie vibration machine mounted on it is described. Initial efforts at operating a shaker on the centrifuge have not been completely successful, so modifications to the system are being made.

81-1359

Nonlinear Soil-Structure Interaction Calculations Simulating the SIMQUAKE Experiment Using STEALTH 2D
H.T. Tang, R. Hofmann, G. Yee, and D.K. Vaughan
N80-32760

Key Words: Interaction: soil-structures, Simulation, Computer programs

Transient, nonlinear soil-structure interaction simulations of an Electric Power Research Institute, SIMQUAKE experiment were performed using the large strain, time domain STEALTH 2D code and a cyclic, kinematically hardening cap soil model. Results from the STEALTH simulations were compared to identical simulations performed with the TRANAL code and indicate relatively good agreement between all the STEALTH and TRANAL calculations. The differences that are seen can probably be attributed to large (STEALTH) vs. small (TRANAL) strain formulation and/or grid discretization differences.

81-1360

Diagnosing Induction Motor Vibration
J.H. Maxwell
Union Carbide Corp., Taft, LA, Hydrocarbon Processing, 60 (1), pp 117-120 (Jan 1981) 10 figs, 1 table

Key Words: Diagnostic techniques, Motors, Induction motors

Motor vibration problems are unique because of the influences of magnetic fields. The phenomena required for understanding and diagnosing vibration problems magnetic and mechanically induced are described. Several examples are given.

81-1361

Microprocessors and Remote Machinery Evaluation
J.D. Halloran and O.K. Mruk

Key Words: Diagnostic techniques, Rotors, Machinery, Automated testing

The possibilities of remote and automatic evaluation of rotating machinery are illustrated by a description of an existing basic system. The major components of this remote evaluation system used to periodically pull data from four channels of vibration as measured by proximity probes are described and their operation is explained.

81-1362

A New Damage Detecting Method by Mechanical Impedance Measurements
K. Nezu and H. Kidoguchi
A new nondestructive test method using the mechanical impedance was developed for nondestructively detecting damages, such as a crack, flaw, etc., in the structural member. This method consists of comparing mechanical impedance measurements of a sound structure before use with those of the same structure in service. In order to verify the utility of the method, bending vibration tests were carried out on a clamped rectangular steel plate model with two parallel stiffeners, measuring its mechanical impedance in the course of cutting away one of the stiffeners gradually, which meant to simulate the growth of a crack in the root of the stiffener. Basic knowledge for judging the existence, size and location of a damage could be obtained from the model tests and the hardware as well as the software for a damage detecting equipment could be designed, based on the experience of the tests.

81-1363
Dynamic Testing and Acoustic Analysis of Concrete Dams
M.W. Dobbs, R.S. Keowen, R.E. Cooper, Jr., K.D. Blakely, and P.A. Martinez
ANCO Engineers, Inc., Santa Monica, CA, SAE Paper No. 801128, 16 pp, 11 figs, 2 tables, 13 refs

Key Words: Dams, Concretes, Diagnostic techniques, Acoustic emission

Forced vibration tests of Pacoima Dam were performed as part of a continuing research effort for dam integrity monitoring. The results of these tests are presented including measured resonant frequencies and response shapes, estimated model damping ratios, and measured acoustic emission properties. The goal of this research is to develop a field portable test method for damage and integrity assessment of concrete dams. In this method, the dynamic properties and the acoustic emission properties of dams are monitored to detect and locate arch and foundation defects. Comparison of the dynamic properties obtained in the present tests to dynamic properties obtained in tests performed shortly after the 1971 San Fernando earthquake tentatively confirm that gross structural changes can be detected.

81-1364
Maximum Entropy Method Spectral Estimation Applied to Power Cable Diagnostics via Cepstrum Processing

L.E. Roemer and C.S. Chen

Key Words: Diagnostic techniques, Cables (ropes), Cepstrum analysis, Fast fourier transform, Maximum entropy method

The Cepstrum processing method has been used on power cables for determining regions of damage. The method consists of: observing the spectrum of an original broad band signal source, introducing the signal into the cable, computing the change in the observed spectrum (as a result of echoes from regions of cable non-uniformity) when the signal is injected into the cable, and finally computing the power-spectrum of the change in observed spectrum. A limitation of this technique is the use of band-limiting spectrum analyzers. Their limited bandwidth reduces range resolution estimation when used with the Fast Fourier Transform (FFT) technique. The maximum entropy method (MEM) is a more useful spectral estimator for this measurement technique. Examples are presented which show a comparison of the FFT and MEM techniques applied to practical cables.

81-1365
The Balancing of Flexible Rotor (Theoretical Relation of Each Balancing Method and Accuracies)
T. Iwatsubo
The Faculty of Engrg., Kobe Univ., Nada, Kobe, Japan, Bull. JSME, 23 (186), pp 2096-2103 (Dec 1980) 10 figs, 1 table, 11 refs

Key Words: Rotors, Flexible rotors, Balancing techniques, Modal balancing technique, Influence coefficient method, Least squares method

In this paper a balancing method for flexible rotors is systematically defined and the relation between a modal balance and an influence coefficient method is described. Then the least square method, a kind of the influence coefficient method is discussed in detail, that is, on the balancing quality, performance index, weighting function and the relation between the weighting function and measuring errors of the influence coefficients.

81-1366
A Unified Approach to the Mass Balancing of Rotating Flexible Shafts
M.S. Darlow
Key Words: Balancing techniques, Flexible rotors, Rotors (machine elements), Shafts (machine elements)

Flexible rotor balancing is essential for the safe operation of many types of rotating machines. The existing flexible rotor balancing procedures may be divided into the classifications of modal and influence coefficient balancing, none of which have gained broad acceptance due to the inherent disadvantages of each method. In this study, a new flexible rotor balancing procedure which incorporates the advantages (and objectives) and eliminates the disadvantages of modal and influence coefficient balancing has been developed, implemented and verified. The analytical background for, and a discussion of the literature of, rotor balancing is presented to provide a basis for this study.

81-1367
A Better Way to Balance Turbomachinery
L. Fielding and R.E. Mondy
Ingersoll-Rand Co., Phillipsburg, NJ, Hydrocarbon Processing, 60 (1), pp 97-104 (Jan 1981) 10 figs, 6 tables, 7 refs

Key Words: Balancing techniques, Turbomachinery

A four-plane, two-speed single balance correction program is presented which can be used on a programmable calculator to predict balance corrections from field trial data. It can be used in field balancing.

MONITORING

81-1368
Frequency Dependence of Acoustic Resonance on Blockage Position in a Fast Reactor Subassembly Wrapper
M. Antonopoulos-Domis

Key Words: Monitoring techniques, Nuclear reactors, Resonant frequencies

Monitoring changes of the acoustic resonance frequencies in the subassemblies of sodium cooled fast reactors is a potential method for blockage detection. The dependence of the resonance frequencies on blockage position along the subassembly has been investigated experimentally and the results compared with model predictions.

81-1369
TF41/A7-E Engine Monitoring System Implementation Experience
L.R. Demott
Detroit Diesel Allison, GMC, Indianapolis, IN, SAE Paper No. 801222, 20 pp, 7 figs, 12 refs

Key Words: Monitoring techniques, Diagnostic techniques, Aircraft engines, Computer-aided techniques

The concept of utilizing computers to monitor and diagnose aircraft engine operating health is relatively recent. One of the first of these systems to be developed for the military environment was the Inflight Engine Condition Monitoring System (IECMS) developed for the US Navy A7-E Attack aircraft. This system has progressed through several stages of development and is currently operational in 2 Attack Squadrons. Continued system development is planned to expand capabilities and increase overall cost effectiveness.

81-1370
TriStar Engine Monitoring in British Airways
E.R. White
Special Projects, British Airways, SAE Paper No. 801224, 28 pp, 18 figs

Key Words: Monitoring techniques, Aircraft engines, Computer-aided techniques

This paper describes the system operated to monitor the RB211 engines in their three fleets of TriStars and the philosophy which led to its design and integration with the existing maintenance structure. It is regarded as a successful, cost-effective system, having its major benefits in the maintenance area, but also of considerable use in repair-shop, logistics, and engine management fields.

81-1371
Acoustic Emission Techniques for In-Flight Structural Monitoring
B. Parrish
Faced with high replacement costs for airframes, commercial and military users are attempting to keep their high-time aircraft in service. Assistance comes from the field of acoustic emission (AE), which provides a means of monitoring structural integrity in cases where fatigue damage may jeopardize basic airworthiness. Acoustic emission are the distinctive stress waves generated in solid materials during crack growth. These stress waves can be detected by sensitive transducers coupled to the material surface. Sensing of AE signatures provides the basis for a system which can continuously monitor structural integrity during flight and warn of impending failure.
81-1375
Dynamic Analysis of Structures by the Force Method
A. Jalloh
UM 8100301

Key Words: Finite element technique, Finite displacement method

A force and formulation for the analysis of the dynamic behavior of a linearly elastic mechanical system with inertia is established. The method is developed, for the most part, in parallel with the finite element displacement method. It is shown that the displacements throughout the system are determined most appropriately from inertial considerations.

81-1376
The Nature of the Solutions of Damped Linear Dynamic Systems
D.J. Inman
UM 8101117

Key Words: Linear systems, Damped structures, Lumped parameter method, Continuous parameter method

An analysis of the qualitative nature of the solutions of viscously damped linear dynamic systems is presented. Both lumped parameter and distributed parameter systems are considered. Conditions illustrating whether or not a given system will oscillate were derived. These conditions can be checked without having to solve the governing differential equations. The conditions applied to the lumped parameter case are shown to imply certain closed form solutions for arbitrarily forced systems. Several examples are given illustrating how these conditions may be used to design a specified system so that it will either oscillate or not, as desired. The theory developed here is compared with previous results by other authors. In the case of distributed parameter theory, the results derived here are compared to specific problems from the literature. New information is provided about certain classes of damped beams and plates.

81-1377
Development of the Lyapunov Functiona Method in Non-Linear Mechanics
Y.A. Mitropoliski and A.A. Martynyuk
Inst. of Mathematics, Academy of Sciences of the

Key Words: Nonlinear systems, Lyapunov's method, Perturbation theory

We present here some results obtained when developing the method of the Lyapunov function for the problems leading to the systems which contain a small positive parameter. Stating the Lyapunov-Caplygin problem for the standard systems and the proof of its solvability in case of a simple and perturbed Lyapunov function are given here; we obtained the stability conditions of solutions of the non-linear systems with a non-asymptotically stable generating system. The problem of constructing the Lyapunov functions by means of perturbations is solved in the present paper. An equation with damping of Matè is considered here as an example illustrating the technique of construction of the Lyapunov functions.

81-1378
On the Method of Sections for Research on Certain Almost Periodic Solutions to Systems with Periodic Forces (Sur la Methode des Sections Pour la Recherche de Certaines Solutions Presque Periodiques de Systemes Forces Periodique lament)
M. Jean
(In French)

Key Words: Periodic response, Differential equations

We consider an ordinary differential equation \(x(t) = F(t, x(t)) \) where \(F \) is \(T \) periodic. The problem of finding almost periodic solutions of this equation can be viewed as the problem of finding the simple closed invariant curves by the Poincaré mapping. We deal with this last problem using a method similar to the cross section method for dynamical systems.

81-1379
Dynamic Analysis of Periodic Structures
A.Y.-T. Leung
Dept. of Civil Engrg., Univ. of Hong Kong, Hong Kong, J. Sound Vib., 72 (4), pp 451-467 (Oct 22, 1980) 6 figs, 5 tables, 22 refs
Key Words: Periodic structures, Free vibration, Difference equations

The natural vibration analysis of a periodic structure with repeated identical substructures may be simplified by using some symmetrical properties of the substructure dynamic matrices, resulting in a set of linear difference equations in the displacements. These equations are readily solved for cyclic symmetric systems, simply supported systems and infinite systems. The order of the overall frequency equations is at most equal to one half of the total number of degrees of freedom retained for a single substructure regardless of the number of substructures in the system. With these natural modes, the system with general boundary conditions at end stations is analyzed by a fast converging method.

MODELING TECHNIQUES
(Also see Nos. 1206, 1226)

81-1380
An Algorithm for Incorporating Subsystem Modes into Overall Dynamic System Models
D.L. Margolis

Key Words: Bond graph technique, Mathematical models

Bond graphs are used to construct finite mode representations of inherently distributed systems. These systems are, perhaps, only part of an overall dynamic system. The "causal" information provided by the bond graph permits the derivation of an automatable algorithm which produces the state equations as well as all output variables associated with the finite modes. The procedure requires only the a priori knowledge of modal masses, frequencies, and associated mode shapes for general boundary conditions of the distributed parts of the system. Thus, the algorithm is applicable to any multidimensional distributed system which is representable by normal modes.

81-1381
Reduction of Degrees of Freedom in Structural Dynamics Problems (Reduktion von Freiheitigrades bei Strukturtdynamik-Aufgaben)
H. Rohrle
Dornier GmbH, Friedrichshafen, Fortschritt-Berichte der VDI-Zeitschriften, Reihe 1, Nr. 72 (1980)

NONLINEAR ANALYSIS
(See Nos. 1331, 1387)

81-1382
Dynamic Crack Propagation Analysis of the SEN Specimen by a Numerical Method
M. Peri
Univ. of Washington, Seattle, WA, ASME Paper No. 80-WA/PVP-2

Key Words: Crack propagation, Numerical analysis

Crack initiation and fast crack propagation in the SEN specimen are investigated within the two-dimensional linear elastic fracture mechanics confines. The influence of the initial crack length and the initial loading (bluntness) are pursued and the phenomenon of terminal velocity is studied. The analysis is performed using the SMF2D code, which is based upon the simultaneous employment of both a stationary and a moving coordinate system, thus providing a continuous and smooth crack extension.

81-1383
Diffraction of an Antiplane Shear Wave by Two Coplanar Griffith Cracks in an Infinite Elastic Medium
S. Itou

(In German)

Key Words: Reduction methods, Component mode analysis, Condensation method, Finite element technique

Two reduction methods, the condensation technique and the component mode analysis technique, are described and their application to large structural dynamics problems using finite element technique is presented. The two methods, separately or in combination, enable to reduce the number of degrees of freedom of the system under investigation, significantly reducing the time required for the solution.
The scattering of a time-harmonic antiplane shear wave by two parallel and coplanar Griffith cracks embedded in an infinite elastic medium is considered. The input wave normally impinges on the cracks. Fourier transformations are utilized to reduce the problem to two simultaneous integral equations which can be solved by the series expansion method. The dynamic stress intensity factors are numerically computed.

OPTIMIZATION TECHNIQUES

81-1386
Investigation of Vibration Reduction through Structural Optimization
H.W. Hanson
Bell Helicopter Textron, Fort Worth, TX, Rept. No. BHT-699-099-122, USAAVRADCOM-TR-80-D-13, 96 pp (July 1980)
AD-A088 917/0

Key Words: Vibration control, Optimization, Vincent circle method, Forced response strain energy method, Stiffness coefficients

The purpose of this program was to investigate structural optimization techniques for vibration reduction. The results of a practical evaluation of two such techniques, the Vincent circle method and the forced response strain energy method, are discussed. Initial comparison studies of the two methods based on stiffness parameter variations were conducted using an elastic-line NASTRAN model of the AH-1G helicopter. The forced response strain energy method was then applied to a large complex built-up NASTRAN AH-1G model. This application provided useful comparative data identifying the structural elements considered to be the primary contributors to the response. Realistic structural stiffness changes in these elements were assessed to determine their effect on vibration reduction. The Vincent circle method was further evaluated for mass tuning, damping, and dynamic absorber parameters using the elastic-line model.

COMPUTER PROGRAMS

81-1387
User Manual for GNATS2 (A Finite Element Computer Program for the General Nonlinear Analysis of Two-Dimensional Structures)
M.L. Callabresi and M.L. Cniesa
Sandia National Labs., Albuquerque, NM, 107 pp (July 1980)
SAND-80-8225
GNATS is a system of three user-oriented finite element computer programs designed for the nonlinear analysis of axisymmetric and two-dimensional static structures. A preprocessor program, MESH2, provides the two-dimensional finite element mesh. The main program, GNATS, solves the nonlinear structural problem including the effects of large displacements, large strains, and elastic-plastic material behavior. A Lagrangian coordinate system is used in GNATS for describing the equilibrium configuration of the body. A postprocessor program, GPRINT, prints the selected values of displacements, stresses, and strains. The input data required for using MESH2, GNATS, and GPRINT for a nonlinear structural analysis is described. Dynamic dimensions are used for all arrays in these programs.

The computer program for a comprehensive analytical model of rotorcraft aerodynamics and dynamics is described. This analysis is designed to calculate rotor performance, loads, and noise; the helicopter vibration and gust response; the flight dynamics and handling qualities; and the system aeroelastic stability. The analysis is a combination of structural, inertial, and aerodynamic models, that is applicable to a wide range of problems and a wide class of vehicles. The analysis is intended for use in the design, testing, and evaluation of rotors and rotorcraft, and to be a basis for further development of rotary wing theories. This report documents the computer program that implements the analysis.

A computer program which calculates noise levels around a factory floor has been written. The collection of data for
input to the program, formulae used in the calculation of noise levels and output from the program are described. The program has been tested using data collected in a variety of workshops and factories. The results of two of these case studies are discussed, together with overall results for all cases considered, which show that the program can predict sound levels with a high degree of accuracy. An interactive version of the program which enables a user to see immediately how certain changes to the data will affect noise levels is also described.

81-1392
Computer Program to Add NOISEMAP Grids of Different Spacings
H. Seidman
AD-A088 205/0

Key Words: Computer programs, Aircraft noise, Sonic boom

Noise data for normal aircraft operations are usually calculated by the NOISEMAP computer program at grid points 1000 feet apart. Data from blast noise and supersonic aircraft are calculated at grid points several thousand feet apart. This report describes a computer program that was written to allow the two sets of data to be combined.

81-1393
On the 3-D Non-Linear Analysis of Piping
L. Lazeri, M. Scala, and M. Agrone

Key Words: Computer programs, Pipes (tubes), Pipe whip, Finite element technique

The computer program PAULA for the 3-D nonlinear analysis of piping is considered with particular reference to the finite elements library (straight pipe, elbow, T-joint, transition, restraint, non-linear superelement). The particular cases of the earthquake and pipe whip analysis are briefly discussed, in the latter case some attention is given to the relative merits of 2-D and 3-D analysis.

81-1395
Vibrations and Stability of Mechanical Systems: II
K. Huseyn

Key Words: Reviews, Linear theories, Nonlinear theories, Stability, Parametric excitation

This article describes developments in linear and nonlinear theories for studying the vibrational and stability behavior of autonomous systems under the influence of several independent parameters. Four classes of systems are identified for linear theories: conservative, pseudo-conservative, gyroscopic, and circulatory. Nonlinear theories involve both gradient and nongradient systems.
81-1396
Vibration Control with Viscoelastic Materials - II
B.C. Nakra

Key Words: Reviews, Vibration control, Viscoelastic materials, Viscoelastic damping

This paper reviews investigations dealing with vibration control using viscoelastic materials. Specific topics include analysis of configurations, properties of the materials used, and applications.

81-1397
Evaluation and Control of the Exhaust Noise of Reciprocating I.C. Engines
M.L. Munjal

Key Words: Reviews, Engine noise, Reciprocating engines, Noise reduction, Engine mufflers, Mufflers

The paper reviews recent advances in the analysis, design, and testing of exhaust mufflers for reciprocating internal combustion engines. An outline of specific areas needing further attention is given.

CRITERIA, STANDARDS, AND SPECIFICATIONS
(Also see No. 1186)

81-1398
J.R. Harris

Key Words: Regulations, Buildings, Seismic design

The Tentative Provisions for the Development of Seismic Regulations for Buildings were developed by the Applied Technology Council to present, in one comprehensive document, current state-of-knowledge pertaining to seismic engineering of buildings.

81-1399
J.H. Pielert and P.W. Cooke

Key Words: Regulations, Buildings, Seismic design

The Tentative Provisions for the Development of Seismic Regulations for Buildings were developed by the Applied Technology Council to present, in one comprehensive document, current state-of-knowledge pertaining to seismic engineering of buildings. The Tentative Provisions are in the process of being assessed by the building community. This report is one of a series of reports that documents the deliberations of a group of professionals jointly selected by the building Seismic Safety Council and the National Bureau of Standards and charged with reviewing the Tentative Provisions prior to the conduct of trial designs. The report contains the recommendations and records of the committee charged with review of the regulatory implementation and enforcement aspects of the provisions. The committee made two recommendations for revisions to the Tentative Provisions and five additional recommendations concerning subsequent activities, such as the conduct of trial designs. These recommendations were made to the parent group, the Joint Committee on Review and Refinement, and their action on these recommendations is documented in a companion report.

BIBLIOGRAPHIES

81-1400
Mechanical Impedance. January, 1974 - May, 1980
(Citations from the International Aerospace Abstracts Data Base)
W.V. Sassi
Key Words: Bibliographies, Mechanical impedance, Spacecraft, Rotors (machine elements), Machine tools

Research studies and articles cited in this bibliography discuss the measurement, theory and reduction methods of mechanical impedance. Among the mechanical systems analyzed are assembled aerospace equipment, rotors, multi-resonance systems and machine tools.

81-1401
(Citations from the NTIS Data Base)
W.V. Sassi
New England Res. Application Ctr., Storrs, CT,
PB80-858251

Key Words: Bibliographies, Mechanical impedance, Spacecraft, Rotors (machine elements), Machine tools

Research studies and articles cited in this bibliography discuss the measurement, theory and reduction methods of mechanical impedance. Among the mechanical systems analyzed are assembled aerospace equipment, rotors, multi-resonance systems and machine tools.

81-1402
(Citations from the Engineering Index Data Base)
W.V. Sassi
New England Res. Application Ctr., Storrs, CT,
Rept. No. NERACEI NT0432, 32 pp (Aug 1980)
sponsored in part by NTIS, Springfield, VA
PB80-858269

Key Words: Bibliographies, Mechanical impedance, Spacecraft, Rotors (machine elements), Machine tools

Research studies and articles cited in this bibliography discuss the measurement, theory and reduction methods of mechanical impedance. Among the mechanical systems analyzed are assembled aerospace equipment, rotors, multi-resonance systems and machine tools.
AUTHOR INDEX

Abraham, D. 1187, 1189
Abrahamson, A.L. 1293
Agata, H. 1168
Agrone, M. 1393
Albritton, G.E. 1252
Allen, R.W. 1232
Alstead, C.J. 1206
Antonopoulos-Domis, M. 1368
Ascari, A. 1236
Askar, A. 1319
Aslam, M 1277, 1279
Auconi, F 1349
Awaji, H 1284
Bailey, D.A 1217
Balendra, T 1190
Balsara, J.P 1252
Barbel, M. 1198
Barrett, D.C 1353
Bass, R.L 1274
Batcheler, R.P 1185, 1188, 1189
Batko, V 1306
Bauer, H.F 1278
Baum, N.P 1356
Baumeister, K.J 1292
Beckman, J.M 1214
Bedrosian, B 1198
Berkovits, A 1219
Bhati, M.A. 1320
Bies, D.A 1271
Billier, R.H 1208
Birman, V 1264
Bishop, D.E 1214
Blakely, K.D 1363
Bodlund, K. 1399
Bowles, E.B. 1214
Boyce, L 1190
Brantman, R 1203
Brepta, R 1169
Britt, J.R 1317
Broner, N 1231
Brown, S.J 1199
Bryden, J.E 1313
Butler, K 1244
Buxbaum, S.R 1348
Cakmak, A.S 1319
Callabresi, M.L 1387
Chen, C.S 1364
Chen, K.N 1238
Chiang, F.P 1273
Chiesa, M.L 1387
Chimenti, D.E 1305
Chmurny, R 1235
Chu, L 1319
Clements, D.L 1266
Cline, J.E 1229
Cooper, R.E., Jr 1363
Crandall, S.H 1325
Crane, R.L 1306
Culver, L.E 1343
Cutchins, M.A 1246
Dally, J.W 1350
Darlow, M.S 1366
Davall, P.W 1333
Davis, S.J 1228
Dawe, D.J 1257
Demott, L.R 1369
Degardins, S.P 1222
Diekhans, G 1240
Dimarogonas, A 1171
Dixon, N.R 1202
Dobbs, M.W 1363
Dockbacher, G 1209
Donaldson, I.S 1288
Dowell, E.H 1351
Drago, R.J 1181
Dreke, M.L 1339, 1340
Drenick, R.F 1198
Dutta, P.K 1179
Edgel, W.R 1356
Egolf, T.A 1228
Eichelberger, E.C 1276
El-Hakeem, H.M 1343
El-Rayheb, M 1281
Emery, A.F 1284, 1285
Ennenkl, V 1290
Ericsson, L.E 1210
Eshleman, R 1243
Ferry, J.M 1316
Fick, S.E 1348
Fielding, L 1367
Filippi, M 1196
Filippi, P 1256
Fink, M.R 1217
Fintel, M 1195
Fisher, J.W 1186
Fisher, T.A 1185
Fitzpatrick, J.A 1288
Fleischer, C.C 1201
Fokkema, J.T 1303
Ford, D.W 1215
Forward, R.L 1337, 1338
Fox, M.J.H 1335
Frient, C.L 1348
Fujii, K 1253
Fukushima, K 1291
Ghanat, Y 1194
Ghosh, S.K 1195
Giergiel, J 1306
Glieber, P.R 1211
Goddard, W.G 1279
Gorman, D.G 1178
Grasso, V 1182
Green, R.E., Jr 1348
Greif, R 1203
Griffin, P.M 1197
Grover, A.S 1265
Hagedorn, P 1245
Hahn, K.C 1313, 1314
Halloran, J.D 1361
Hammond, C.E 1229
Hanin, M 1220
Hansen, C.H 1271
Hanson, H.W 1386
Hare, J.R., Jr 1215
Harris, J.R 1398
Herrmann, G 1270
Hill, D 1266
Hill, E 1326
Hilzinger, J.B 1175
Hjorth-Hansen, E 1191
<table>
<thead>
<tr>
<th>Name</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Holmes, M.H.</td>
<td>1267</td>
</tr>
<tr>
<td>Holmes, P.J.</td>
<td>1328</td>
</tr>
<tr>
<td>Holt, J.</td>
<td>1342</td>
</tr>
<tr>
<td>Hopkins, D.M.</td>
<td>1339</td>
</tr>
<tr>
<td>Hsu, T.C.</td>
<td>1251</td>
</tr>
<tr>
<td>Huang, T.C.</td>
<td>1344, 1345, 1346</td>
</tr>
<tr>
<td>Huang, T.C.</td>
<td>1347</td>
</tr>
<tr>
<td>Huissoon, J.P.</td>
<td>1178</td>
</tr>
<tr>
<td>Hung, N.X.</td>
<td>1282</td>
</tr>
<tr>
<td>Huséyin, K.</td>
<td>1395</td>
</tr>
<tr>
<td>Iida, H.</td>
<td>1168</td>
</tr>
<tr>
<td>Ikari, H.</td>
<td>1262</td>
</tr>
<tr>
<td>Ikuchi, K.</td>
<td>1237</td>
</tr>
<tr>
<td>Ikui, T.</td>
<td>1295</td>
</tr>
<tr>
<td>Inger, G.R.</td>
<td>1323</td>
</tr>
<tr>
<td>Inman, D.J.</td>
<td>1376</td>
</tr>
<tr>
<td>Irie, T.</td>
<td>1261, 1262</td>
</tr>
<tr>
<td>Itou, S.</td>
<td>1383</td>
</tr>
<tr>
<td>Ivey, E.W.</td>
<td>1230</td>
</tr>
<tr>
<td>Iwatsubo, T.</td>
<td>1365</td>
</tr>
<tr>
<td>Jacobs, L.J.M.</td>
<td>1206</td>
</tr>
<tr>
<td>Jakobsen, J.</td>
<td>1352</td>
</tr>
<tr>
<td>Jakobin, A.</td>
<td>1375</td>
</tr>
<tr>
<td>Janotkova, E.</td>
<td>1290</td>
</tr>
<tr>
<td>Jayaraman, K.</td>
<td>1234</td>
</tr>
<tr>
<td>Jean, M.</td>
<td>1378</td>
</tr>
<tr>
<td>Jepson, D.</td>
<td>1175</td>
</tr>
<tr>
<td>Johnson, W.</td>
<td>1176, 1226, 1388</td>
</tr>
<tr>
<td>Kalayanasundaram, N.</td>
<td>1374</td>
</tr>
<tr>
<td>Kamperman, G.W.</td>
<td>1204</td>
</tr>
<tr>
<td>Kaneko, Y.</td>
<td>1261</td>
</tr>
<tr>
<td>Kapur, A.D.</td>
<td>1265</td>
</tr>
<tr>
<td>Kaye, M.C.</td>
<td>1207</td>
</tr>
<tr>
<td>Kennedy, W.</td>
<td>1178</td>
</tr>
<tr>
<td>Keowen, R.S.</td>
<td>1363</td>
</tr>
<tr>
<td>Keskar, D.A.</td>
<td>1221</td>
</tr>
<tr>
<td>Kidd, C.C.</td>
<td>1353</td>
</tr>
<tr>
<td>Kidoguchi, H.</td>
<td>1362</td>
</tr>
<tr>
<td>Kikuch, K.</td>
<td>1168</td>
</tr>
<tr>
<td>Kistler, B.L.</td>
<td>1284</td>
</tr>
<tr>
<td>Klein, R.H.</td>
<td>1232</td>
</tr>
<tr>
<td>Knisely, C.W.</td>
<td>1327</td>
</tr>
<tr>
<td>Kobayashi, A.S.</td>
<td>1284, 1285, 1372</td>
</tr>
<tr>
<td>Kohler, F.</td>
<td>1244</td>
</tr>
<tr>
<td>Kondo, H.</td>
<td>1275</td>
</tr>
<tr>
<td>Koopmann, G.H.</td>
<td>1174</td>
</tr>
<tr>
<td>Kosinski, W.</td>
<td>1321</td>
</tr>
<tr>
<td>Kotera, T.</td>
<td>1173</td>
</tr>
<tr>
<td>Kounadis, A.N.</td>
<td>1248</td>
</tr>
<tr>
<td>Kunzel, V.</td>
<td>1184</td>
</tr>
<tr>
<td>Kuttler, J.R.</td>
<td>1263</td>
</tr>
<tr>
<td>Klaasen, D.H.</td>
<td>1222, 1223</td>
</tr>
<tr>
<td>Laanen, S.</td>
<td>1182</td>
</tr>
<tr>
<td>Lai, S.P.</td>
<td>1192</td>
</tr>
<tr>
<td>Lazzeri, L.</td>
<td>1393</td>
</tr>
<tr>
<td>Lee, J.</td>
<td>1318</td>
</tr>
<tr>
<td>Leissa, A.W.</td>
<td>1259</td>
</tr>
<tr>
<td>Leoni, R.D.</td>
<td>1227</td>
</tr>
<tr>
<td>Leung, A.Y.T.</td>
<td>1379</td>
</tr>
<tr>
<td>Levek, R.J.</td>
<td>1224</td>
</tr>
<tr>
<td>Leventhal, H.G.</td>
<td>1231</td>
</tr>
<tr>
<td>Levy, G.</td>
<td>1289</td>
</tr>
<tr>
<td>Lin, C.J.</td>
<td>1273</td>
</tr>
<tr>
<td>Lin, C.W.</td>
<td>1384</td>
</tr>
<tr>
<td>Love, W.J.</td>
<td>1284, 1285</td>
</tr>
<tr>
<td>Lovell, E.G.</td>
<td>1280</td>
</tr>
<tr>
<td>Lyengar, K.T.S.R.</td>
<td>1260</td>
</tr>
<tr>
<td>Majima, Y.</td>
<td>1272</td>
</tr>
<tr>
<td>Makarewicz, R.</td>
<td>1310</td>
</tr>
<tr>
<td>Margolis, D.L.</td>
<td>1380</td>
</tr>
<tr>
<td>Markus, S.</td>
<td>1250</td>
</tr>
<tr>
<td>Martinez, P.A.</td>
<td>1363</td>
</tr>
<tr>
<td>Martynuk, A.A.</td>
<td>1377</td>
</tr>
<tr>
<td>Matsuo, K.</td>
<td>1296</td>
</tr>
<tr>
<td>Maurer, J.K.</td>
<td>1185</td>
</tr>
<tr>
<td>Maxwell, J.H.</td>
<td>1360</td>
</tr>
<tr>
<td>Mazundar, J.</td>
<td>1266</td>
</tr>
<tr>
<td>Mei, C.</td>
<td>1218</td>
</tr>
<tr>
<td>Miller, J.C.</td>
<td>1232</td>
</tr>
<tr>
<td>Mitropolsky, Y.A.</td>
<td>1377</td>
</tr>
<tr>
<td>Miyashita, M.</td>
<td>1170</td>
</tr>
<tr>
<td>Mochizuki, H.</td>
<td>1295</td>
</tr>
<tr>
<td>Moffitt, R.</td>
<td>1175</td>
</tr>
<tr>
<td>Mundy, R.E.</td>
<td>1367</td>
</tr>
<tr>
<td>Morgan, P.L.T.</td>
<td>1201</td>
</tr>
<tr>
<td>Morii, H.</td>
<td>1237</td>
</tr>
<tr>
<td>Morris, J.R.</td>
<td>1257</td>
</tr>
<tr>
<td>Mruk, G.K.</td>
<td>1361</td>
</tr>
<tr>
<td>Müller, R.</td>
<td>1296, 1297</td>
</tr>
<tr>
<td>Murjall, M.L.</td>
<td>1397</td>
</tr>
<tr>
<td>Nagial, V.K.</td>
<td>1344, 1345, 1346</td>
</tr>
<tr>
<td>Nakai, M.</td>
<td>1307</td>
</tr>
<tr>
<td>Nakra, B.C.</td>
<td>1396</td>
</tr>
<tr>
<td>Namba, M.</td>
<td>1291</td>
</tr>
<tr>
<td>Narita, Y.</td>
<td>1259</td>
</tr>
<tr>
<td>Neise, W.</td>
<td>1174</td>
</tr>
<tr>
<td>Nezu, K.</td>
<td>1362</td>
</tr>
<tr>
<td>Niblett, T.</td>
<td>1247</td>
</tr>
<tr>
<td>Nish, L.</td>
<td>1206</td>
</tr>
<tr>
<td>Nikiforuk, P.N.</td>
<td>1333</td>
</tr>
<tr>
<td>Nonami, K.</td>
<td>1170</td>
</tr>
<tr>
<td>Ohya, A.</td>
<td>1253</td>
</tr>
<tr>
<td>OIiferuk, W.</td>
<td>1235</td>
</tr>
<tr>
<td>Otsuki, Y.</td>
<td>1253</td>
</tr>
<tr>
<td>Padovan, J.</td>
<td>1330</td>
</tr>
<tr>
<td>Pantelis, J.</td>
<td>1171</td>
</tr>
<tr>
<td>Parrish, B.</td>
<td>1371</td>
</tr>
<tr>
<td>Pasic, H.</td>
<td>1270</td>
</tr>
<tr>
<td>Paskin, A.</td>
<td>1322</td>
</tr>
<tr>
<td>Passannanti, A.</td>
<td>1182</td>
</tr>
<tr>
<td>Patrick, R.P.</td>
<td>1316</td>
</tr>
<tr>
<td>Paul, W.</td>
<td>1208</td>
</tr>
<tr>
<td>Peekan, H.</td>
<td>1240</td>
</tr>
<tr>
<td>Peri, M.</td>
<td>1382</td>
</tr>
<tr>
<td>Peri, M.</td>
<td>1285</td>
</tr>
<tr>
<td>Pielert, J.H.</td>
<td>1399</td>
</tr>
<tr>
<td>Piersol, A.G.</td>
<td>1213</td>
</tr>
<tr>
<td>Pillasch, D.W.</td>
<td>1269</td>
</tr>
<tr>
<td>Pompoli, R.</td>
<td>1196</td>
</tr>
<tr>
<td>Radcliffe, C.J.</td>
<td>1258</td>
</tr>
<tr>
<td>Raman, P.V.</td>
<td>1260</td>
</tr>
<tr>
<td>Ramulu, M.</td>
<td>1372</td>
</tr>
<tr>
<td>Rand, R.H.</td>
<td>1328</td>
</tr>
<tr>
<td>Raney, J.P.</td>
<td>1212</td>
</tr>
<tr>
<td>Ray, H.</td>
<td>1280</td>
</tr>
<tr>
<td>Reding, J.P.</td>
<td>1210</td>
</tr>
<tr>
<td>Renger, I.</td>
<td>1209</td>
</tr>
<tr>
<td>Richard, J.</td>
<td>1249</td>
</tr>
<tr>
<td>Rockwell, D.</td>
<td>1286</td>
</tr>
<tr>
<td>Roemer, L.E.</td>
<td>1364</td>
</tr>
<tr>
<td>Rohrle, H.</td>
<td>1381</td>
</tr>
<tr>
<td>Ronen, T.</td>
<td>1220</td>
</tr>
<tr>
<td>Rooker, J.R.</td>
<td>1373</td>
</tr>
<tr>
<td>Roskam, J.</td>
<td>1294</td>
</tr>
<tr>
<td>Rougirou, G.J.J.</td>
<td>1216</td>
</tr>
<tr>
<td>Rybicki, R.C.</td>
<td>1177</td>
</tr>
<tr>
<td>Ryder, J.T.</td>
<td>1341</td>
</tr>
<tr>
<td>Saadat, H.</td>
<td>1256</td>
</tr>
<tr>
<td>Salzwedel, H.</td>
<td>1332</td>
</tr>
<tr>
<td>Sandler, B.</td>
<td>1183</td>
</tr>
<tr>
<td>Sassi, W.V.</td>
<td>1400, 1401, 1402</td>
</tr>
<tr>
<td>Scala, M.</td>
<td>1393</td>
</tr>
<tr>
<td>Scallise, D.T.</td>
<td>1279</td>
</tr>
<tr>
<td>Schachmann, A.</td>
<td>1286</td>
</tr>
<tr>
<td>Schaffer, B.</td>
<td>1245</td>
</tr>
<tr>
<td>Schartun, T.D.</td>
<td>1353</td>
</tr>
<tr>
<td>Schmidt, F.H.</td>
<td>1225</td>
</tr>
<tr>
<td>Schricker, V.</td>
<td>1295</td>
</tr>
<tr>
<td>Schwerdtlin, H.</td>
<td>1243</td>
</tr>
<tr>
<td>Seidman, H.</td>
<td>1392</td>
</tr>
<tr>
<td>Name</td>
<td>Page Numbers</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Sethna, P.R.</td>
<td>1334</td>
</tr>
<tr>
<td>Seznec, F</td>
<td>1308</td>
</tr>
<tr>
<td>Sharma, J.K.N.</td>
<td>1179</td>
</tr>
<tr>
<td>Sharp, R.S.</td>
<td>1205</td>
</tr>
<tr>
<td>Shield, B.M.</td>
<td>1391</td>
</tr>
<tr>
<td>Shivashankara, B.N.</td>
<td>1390</td>
</tr>
<tr>
<td>Shuman, R.L.</td>
<td>1358</td>
</tr>
<tr>
<td>Sigbjornsson, R.</td>
<td>1191</td>
</tr>
<tr>
<td>Sigillito, V.G.</td>
<td>1263</td>
</tr>
<tr>
<td>Silvia, M.T.,</td>
<td>1300, 1301</td>
</tr>
<tr>
<td>Simkova, O.</td>
<td>1250</td>
</tr>
<tr>
<td>Singh, Y.P.</td>
<td>1329</td>
</tr>
<tr>
<td>Singley, G.T., III</td>
<td>1223</td>
</tr>
<tr>
<td>Sitarek, I.</td>
<td>1235</td>
</tr>
<tr>
<td>Sobieczky, H.</td>
<td>1323</td>
</tr>
<tr>
<td>Spath, W.</td>
<td>1298</td>
</tr>
<tr>
<td>Stathis, T.C.</td>
<td>1233</td>
</tr>
<tr>
<td>Stone, B.J.</td>
<td>1239</td>
</tr>
<tr>
<td>Sugimoto, N.</td>
<td>1272</td>
</tr>
<tr>
<td>Sundararajan, C.</td>
<td>1283, 1305</td>
</tr>
<tr>
<td>Suzuki, K.</td>
<td>1268</td>
</tr>
<tr>
<td>Swigert, C.J.</td>
<td>1337</td>
</tr>
<tr>
<td>Symonds, P.S.</td>
<td>1315, 1324</td>
</tr>
<tr>
<td>Szemplinska-Stupnicka, W.</td>
<td>1331</td>
</tr>
<tr>
<td>Takahashi, S.</td>
<td>1268</td>
</tr>
<tr>
<td>Tamura, A.</td>
<td>1168</td>
</tr>
<tr>
<td>Tang, H.T.</td>
<td>1359</td>
</tr>
<tr>
<td>Tanner, A.E.</td>
<td>1223</td>
</tr>
<tr>
<td>Templin, K.W.</td>
<td>1354</td>
</tr>
<tr>
<td>Terborg, G.E.</td>
<td>1340</td>
</tr>
<tr>
<td>Thompson, W.I., III.</td>
<td>1355</td>
</tr>
<tr>
<td>Tirinda, P.</td>
<td>1236</td>
</tr>
<tr>
<td>Tondl, A.</td>
<td>1172</td>
</tr>
<tr>
<td>Tong, P.</td>
<td>1203</td>
</tr>
<tr>
<td>Torvik, P.</td>
<td>1336</td>
</tr>
<tr>
<td>Tran, P.T.</td>
<td>1287</td>
</tr>
<tr>
<td>Troeder, C.</td>
<td>1240</td>
</tr>
<tr>
<td>Truong, K.T.</td>
<td>1287</td>
</tr>
<tr>
<td>Tsirk, A.</td>
<td>1198</td>
</tr>
<tr>
<td>Turnbow, J.W.</td>
<td>1223</td>
</tr>
<tr>
<td>Tustin, W.</td>
<td>1357</td>
</tr>
<tr>
<td>Tzeng, S.-T.K.</td>
<td>1299</td>
</tr>
<tr>
<td>Unz, H.</td>
<td>1294</td>
</tr>
<tr>
<td>van Willigenburg, J.J.</td>
<td>1206</td>
</tr>
<tr>
<td>Vatterott, K.H.</td>
<td>1241</td>
</tr>
<tr>
<td>Vaughan, D.K.</td>
<td>1304</td>
</tr>
<tr>
<td>Visscher, W.M.</td>
<td>1281</td>
</tr>
<tr>
<td>Wagner, P.</td>
<td>1201</td>
</tr>
<tr>
<td>Walkford, T.L.H.</td>
<td>1239</td>
</tr>
<tr>
<td>Walker, A.W.</td>
<td>1311</td>
</tr>
<tr>
<td>Wang, X.</td>
<td>1238</td>
</tr>
<tr>
<td>Washizu, K.</td>
<td>1253</td>
</tr>
<tr>
<td>Weglein, A.B.</td>
<td>1300, 1301</td>
</tr>
<tr>
<td>Wells, W.R.</td>
<td>1221</td>
</tr>
<tr>
<td>White, E.R.</td>
<td>1370</td>
</tr>
<tr>
<td>Whittton, P.N.</td>
<td>1335</td>
</tr>
<tr>
<td>Wichier, J.</td>
<td>1235</td>
</tr>
<tr>
<td>Wilby, E.G.</td>
<td>1213</td>
</tr>
<tr>
<td>Wilby, J.F.</td>
<td>1213</td>
</tr>
<tr>
<td>Willis, J.R.</td>
<td>1302</td>
</tr>
<tr>
<td>Worthington, P.J.</td>
<td>1342</td>
</tr>
<tr>
<td>Wu, W.</td>
<td>1312</td>
</tr>
<tr>
<td>Yam, K.</td>
<td>1234</td>
</tr>
<tr>
<td>Yamada, G.</td>
<td>1261, 1262</td>
</tr>
<tr>
<td>Yamaguchi, T.</td>
<td>1268</td>
</tr>
<tr>
<td>Yang, G.P.</td>
<td>1238</td>
</tr>
<tr>
<td>Yang, H.H.</td>
<td>1238</td>
</tr>
<tr>
<td>Yee, G.</td>
<td>1359</td>
</tr>
<tr>
<td>Yen, B.T.</td>
<td>1186, 1187</td>
</tr>
<tr>
<td>Yokoi, M.</td>
<td>1307</td>
</tr>
<tr>
<td>Yu, B.K.</td>
<td>1254</td>
</tr>
<tr>
<td>Yu, Y.H.</td>
<td>1225</td>
</tr>
<tr>
<td>Zak, A.R.</td>
<td>1269</td>
</tr>
<tr>
<td>Zetteltemoyer, N.</td>
<td>1189</td>
</tr>
<tr>
<td>Žiaran, S.</td>
<td>1242</td>
</tr>
<tr>
<td>Publication and Address</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Springer-Verlag New York, Inc. 175 Fifth Ave. New York, NY 10010</td>
<td>FOR POWER</td>
</tr>
<tr>
<td>Acustica</td>
<td>Acoustics</td>
</tr>
<tr>
<td>5. Hirsel Verlag, Postfach 347 D-700 Stuttgart 1 W. Germany</td>
<td>RESOURCES TECHNOLOGY</td>
</tr>
<tr>
<td>Royal Aeronautical Society 4 Hamilton Place London WIV 0BQ, UK</td>
<td>DESIGN</td>
</tr>
<tr>
<td>Aeronautical Quarterly</td>
<td>Aeronaut. Quart.</td>
</tr>
<tr>
<td>Royal Aeronautical Society 4 Hamilton Place London WIV 0BQ, UK</td>
<td>VESSEL TECHNOLOGY</td>
</tr>
<tr>
<td>American Institute of Aeronautics and Astronautics 1280 Avenue of the Americas New York, NY 10019</td>
<td></td>
</tr>
<tr>
<td>American Society of Civil Engineers, Proceedings</td>
<td>ASCE J.</td>
</tr>
<tr>
<td>Journal of Engineering</td>
<td>ASCE J.</td>
</tr>
<tr>
<td>Journal of Structural Division</td>
<td>ASLE. Trans.</td>
</tr>
<tr>
<td>American Society of Lubricating Engineers, Transactions</td>
<td>J. Appl.</td>
</tr>
<tr>
<td>American Society of Mechanical Engineers, Transactions</td>
<td>J. Dyn.</td>
</tr>
<tr>
<td>Journal of Dynamic Systems, Measurement and Control</td>
<td>BROWN BOVERI REVIEW</td>
</tr>
<tr>
<td>Brown Boveri and Co., Ltd. CH-8401, Baden, Switzerland</td>
<td></td>
</tr>
<tr>
<td>Journal of Engineering for Industry</td>
<td>BULLETIN DE L'ACADÉMIE POLONAISE DES SCIENCES, SERIES DES SCIENCES TECHNIQUES</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

91
<table>
<thead>
<tr>
<th>Publication and Address</th>
<th>Abbreviation</th>
<th>Publication and Address</th>
<th>Abbreviation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bulletin of Japan Society of Mechanical Engineers</td>
<td>Bull. JSME</td>
<td>Heating/Piping/Air Conditioning</td>
<td>Heating/ Piping/ Air Cond.</td>
</tr>
<tr>
<td>Japan Society of Mechanical Engineers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sanshin Hokusai Bldg.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H-6 Yoyogi 3-cho-me Shibuyaku</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tokyo 151, Japan</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bruce A. Bolt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Box 826</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berkeley, CA 94705</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ASCE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United Engineering Center</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>345 E. 47th St.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>New York, NY 10017</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Closed Loop</td>
<td>Closed Loop</td>
<td>Indus. Res.</td>
<td></td>
</tr>
<tr>
<td>MTS Systems Corp.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.O. Box 24015</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minneapolis, MN 55474</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>European Press Inc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maxwell House, Fairview Park</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elmsford, NY 10523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Berkshire Common</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pittsburgh, PA 15223</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cahners Publishing Co., Inc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>231 Columbus Ave.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boston, MA 02116</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diesel Engines, Inc.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.O. Box 7406</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Milwaukee, WI 53213</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC Industrial Press Ltd.</td>
<td>Des.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>38-40 Bowling Green Lane</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>London EC1R, UK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC Science and Technology Press Ltd.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westbury House</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P.O. Box 62, Burry Street</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guildford, Surrey GU2 9BH, UK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Society for Experimental Stress Analysis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>21 Bridge Sq., P.O. Box 277</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Westport, CT 06880</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Carl Hansen GmbH & Co.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-800 Munchen 86</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Postfach 840420</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fed. Rep. Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forschung im Ingenieurwesen</td>
<td>Forsch. Ingenieurwesen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Publication and Address</td>
<td>Abbreviation</td>
<td>Publication and Address</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>IPI Science and Technology Press Ltd.</td>
<td>F.O. Box 62, Westbury House, Bury Street</td>
<td>Academic Press</td>
<td>198 Ash Street Reading, MA 01867</td>
</tr>
<tr>
<td>Guildford, Surrey, England GU2 5RH</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pergamon Press Inc.</td>
<td>Institute of Environmental Sciences</td>
<td>940 E. Northwest Highway</td>
<td>Mt. Prospect, IL 60056</td>
</tr>
<tr>
<td>Maxwell House, Fairview Park</td>
<td>Elmsford, NY 10523</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pergamon Press Inc.</td>
<td>Cambridge University Press</td>
<td>32 East 57th St.</td>
<td>New York, NY 10022</td>
</tr>
<tr>
<td>Maxwell House, Fairview Park</td>
<td>Elmsford, NY 10523</td>
<td></td>
<td></td>
</tr>
<tr>
<td>John Wiley and Sons, Ltd.</td>
<td>605 Third Ave.</td>
<td>Pergamon Press Inc.</td>
<td>Maxwell House, Fairview Park</td>
</tr>
<tr>
<td>New York, NY 10016</td>
<td></td>
<td>Elmsford, NY 10523</td>
<td></td>
</tr>
<tr>
<td>John Wiley and Sons, Ltd.</td>
<td>Baffins Lane</td>
<td>American Institute of Aeronautics and Astronautics</td>
<td>1290 Avenue of the Americas</td>
</tr>
<tr>
<td>Chichester, Sussex, UK</td>
<td></td>
<td>New York, NY 10019</td>
<td></td>
</tr>
<tr>
<td>Maxwell House, Fairview Park</td>
<td>Elmsford, NY 10523</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INTERNATIONAL JOURNAL OF VEHICLE DESIGN</td>
<td>Int. J. Vehicle Des.</td>
<td>JOURNAL DE MECANIQUE</td>
<td>J. de mecanique</td>
</tr>
<tr>
<td>The International Assoc. of Vehicle Design</td>
<td>The Open University, Walton Hall</td>
<td>Gauthier-Villars</td>
<td>C.D.R. - Centrale des Revues</td>
</tr>
<tr>
<td>Milton Keynes MK7 6AA, UK</td>
<td></td>
<td>B.P. No. 119, 93104 Montreal Cedex-France</td>
<td></td>
</tr>
<tr>
<td>Weizmann Science Press of Israel</td>
<td></td>
<td>Institution of Mechanical Engineers</td>
<td>1 Birdcage Walk, Westminster</td>
</tr>
<tr>
<td>Box 801</td>
<td></td>
<td>London SW1 H8, UK</td>
<td></td>
</tr>
<tr>
<td>Jerusalem, Israel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Institute of Physics</td>
<td>335 E. 45th St.</td>
<td>Pergamon Press Inc.</td>
<td>Maxwell House, Fairview Park</td>
</tr>
<tr>
<td>New York, NY 10010</td>
<td></td>
<td>Elmsford, NY 10523</td>
<td></td>
</tr>
<tr>
<td>American Institute of Aeronautics and Astronautics</td>
<td>1290 Avenue of the Americas</td>
<td>Society of Petroleum Engineers</td>
<td>6300 N. Central Expressway</td>
</tr>
<tr>
<td>New York, NY 10019</td>
<td></td>
<td>Dallas, TX 75206</td>
<td></td>
</tr>
<tr>
<td>American Helicopter Society, Inc.</td>
<td>30 East 42nd St.</td>
<td>American Institute of Physics</td>
<td>885 East 45th St.</td>
</tr>
<tr>
<td>New York, NY 10017</td>
<td></td>
<td>New York, NY 10017</td>
<td></td>
</tr>
<tr>
<td>JOURNAL OF SOUND AND VIBRATION</td>
<td>J. Sound Vib.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Academic Press</td>
<td>111 Fifth Ave.</td>
<td></td>
<td>New York, NY 10019</td>
</tr>
<tr>
<td>PUBLICATION AND ADDRESS</td>
<td>ABBREVIATION</td>
<td>PUBLICATION AND ADDRESS</td>
<td>ABBREVIATION</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>JOURNAL OF SPACECRAFT AND ROCKETS</td>
<td>J. Spacecraft Rockets</td>
<td>NOISE AND VIBRATION CONTROL</td>
<td>Noise Vib. Control</td>
</tr>
<tr>
<td>American Institute of Aeronautics and Astronautics</td>
<td></td>
<td>Trade and Technical Press Ltd.</td>
<td></td>
</tr>
<tr>
<td>1289 Avenue of the Americas</td>
<td></td>
<td>Crown House, Morden</td>
<td></td>
</tr>
<tr>
<td>New York, NY 10019</td>
<td></td>
<td>Surrey SM4 8NW, UK</td>
<td></td>
</tr>
<tr>
<td>American Society for Testing and Materials</td>
<td></td>
<td>P.O. Box 3206, Arlington Branch</td>
<td></td>
</tr>
<tr>
<td>1916 Race St. Philadelphia, PA 19103</td>
<td></td>
<td>Poughkeepsie, NY 12603</td>
<td></td>
</tr>
<tr>
<td>Spring Verlag</td>
<td></td>
<td>Bollee Hall</td>
<td></td>
</tr>
<tr>
<td>3133 Connecticut Ave., N.W. Suite 712</td>
<td></td>
<td>Newcastle upon Tyne 1, UK</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20008</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Society of Lubrication Engineers</td>
<td></td>
<td>North Holland Publishing Co.</td>
<td></td>
</tr>
<tr>
<td>838 Buse Highway</td>
<td></td>
<td>P.O. Box 3489</td>
<td></td>
</tr>
<tr>
<td>Park Ridge, IL 60068</td>
<td></td>
<td>Amsterdam, The Netherlands</td>
<td></td>
</tr>
<tr>
<td>MACHINE DESIGN</td>
<td>Mach. Des.</td>
<td>OIL AND GAS JOURNAL</td>
<td>Oil Gas J.</td>
</tr>
<tr>
<td>Penton Bldg.</td>
<td></td>
<td>211 S. Chayenne</td>
<td></td>
</tr>
<tr>
<td>Cleveland, OH 44113</td>
<td></td>
<td>Tulsa, OK 74101</td>
<td></td>
</tr>
<tr>
<td>MASCHINENBAUTECHNIK</td>
<td>Maschinen- bautechnik</td>
<td>PACKAGE ENGINEERING</td>
<td>Package Engrg.</td>
</tr>
<tr>
<td>VEB Verlag Technik</td>
<td></td>
<td>5 S. Wabash Ave.</td>
<td></td>
</tr>
<tr>
<td>Oranienburger Str. 13/14</td>
<td></td>
<td>Chicago, IL 60603</td>
<td></td>
</tr>
<tr>
<td>102 Berlin, E. Germany</td>
<td></td>
<td>PLANT ENGINEERING</td>
<td>Plant Engrg.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1201 S. Grove Avenue</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barrington, IL 60010</td>
<td></td>
</tr>
<tr>
<td>MECCANICA</td>
<td>Meccanica</td>
<td>POWER</td>
<td>Power</td>
</tr>
<tr>
<td>Pergamon Press, Inc.</td>
<td></td>
<td>P.O. Box 521</td>
<td></td>
</tr>
<tr>
<td>Maxwell House, Fairview Park</td>
<td></td>
<td>Highstown, NJ 08520</td>
<td></td>
</tr>
<tr>
<td>Elmsford, NY 10523</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Society of Mechanical Engineers</td>
<td></td>
<td>Industrial Publishing Co.</td>
<td></td>
</tr>
<tr>
<td>345 East 45th St.</td>
<td></td>
<td>Division of Pittpway Corp.</td>
<td></td>
</tr>
<tr>
<td>New York, NY 10017</td>
<td></td>
<td>815 Huron Rd.</td>
<td></td>
</tr>
<tr>
<td>Pergamon Press Inc.</td>
<td></td>
<td>Wm. Dawson & Sons, Ltd.</td>
<td></td>
</tr>
<tr>
<td>Maxwell House, Fairview Park</td>
<td></td>
<td>Canoon House</td>
<td></td>
</tr>
<tr>
<td>Elmsford, NY 10523</td>
<td></td>
<td>Folkestone, Kent, UK</td>
<td></td>
</tr>
<tr>
<td>Pergamon Press Inc.</td>
<td></td>
<td>Editions De L'Academie</td>
<td></td>
</tr>
<tr>
<td>Maxwell House, Fairview Park</td>
<td></td>
<td>De La Republique Socialiste de Roumaine</td>
<td></td>
</tr>
<tr>
<td>Elmsford, NY 10523</td>
<td></td>
<td>3 Bis Str., Gutenberg, Bucureste, Romania</td>
<td></td>
</tr>
<tr>
<td>Kyoto University</td>
<td></td>
<td>American Institute of Physics</td>
<td></td>
</tr>
<tr>
<td>Kyoto, Japan</td>
<td></td>
<td>345 East 45th St.</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>New York, NY 10017</td>
<td></td>
</tr>
<tr>
<td>MITZ MOTORETECHNISCHE ZEITSCHRIFT</td>
<td>MTZ Motor-tech. Z.</td>
<td>SAE PREPRINTS</td>
<td>SAE Prepr.</td>
</tr>
<tr>
<td>Franziskhe Vedagshandlung</td>
<td></td>
<td>Society of Automotive Engineers</td>
<td></td>
</tr>
<tr>
<td>Pfeifferstrasse 6-7</td>
<td></td>
<td>Two Pennsylvania Plaza</td>
<td></td>
</tr>
<tr>
<td>7000 Stuttgart 1</td>
<td></td>
<td>New York, NY 10001</td>
<td></td>
</tr>
<tr>
<td>W. Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>American Society of Naval Engineers, Inc.</td>
<td></td>
<td>Society for Industrial and Applied Mathematics</td>
<td></td>
</tr>
<tr>
<td>Suite 507, Continental Bldg.</td>
<td></td>
<td>33 S. 17th St.</td>
<td></td>
</tr>
<tr>
<td>1012 - 14th St., N.W.</td>
<td></td>
<td>Philadelphia, PA 19103</td>
<td></td>
</tr>
<tr>
<td>Publication and Address</td>
<td>Abbreviation</td>
<td>Publication and Address</td>
<td>Abbreviation</td>
</tr>
<tr>
<td>-------------------------</td>
<td>--------------</td>
<td>-------------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>Society for Industrial and Applied Mathematics 22 S. 17th St. Philadelphia, PA 19103</td>
<td></td>
<td>Vestn Deutscher Ingenieur GmbH Postfach 1139, Guf-Recke Str. 84 4 Düsseldorf 1, Germany</td>
<td></td>
</tr>
<tr>
<td>STROJNICKY ČASOPIS</td>
<td>Strojnicky Casopis</td>
<td>VEHICLE SYSTEMS DYNAMICS</td>
<td>Vehicle Syst. Dyn.</td>
</tr>
<tr>
<td>Čad. Strojnicko Casopis CAV A SAV USTAV MECHANIKY STROJOV SAV Brežice-Patrnce, Dubrovnica cesta, ČSSR</td>
<td></td>
<td>Swiit and Zeitlinger N.V. 247 B. Herreweg</td>
<td>Lisse, The Netherlands</td>
</tr>
<tr>
<td>S/V. SOUND AND VIBRATION</td>
<td>S/V. Sound Vib.</td>
<td>VIBROTECHNIKA</td>
<td>Vibrotechnika</td>
</tr>
<tr>
<td>Acoustical Publications, Inc. 27101 E. Ovat Rd. Bay Village, OH 44140</td>
<td></td>
<td>Kauno Politechniko Institute</td>
<td>5 Donelaitio gvo 17 223000 Kaunas</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lithuanian SSR</td>
</tr>
<tr>
<td>TECHNISCHES MESSEN - ATM</td>
<td>Techn. Mesen-ATM</td>
<td>WAVE MOTION</td>
<td>Wave Motion</td>
</tr>
<tr>
<td>E. Oldenburg Verlag GmbH Rosenheimer Str. 146 8 München 80, W. Germany</td>
<td></td>
<td>North Holland Publishing Co. P.O. Box 211</td>
<td>1000 AE Amsterdam</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>The Netherlands</td>
</tr>
<tr>
<td>TEST</td>
<td>Test</td>
<td>WEAR</td>
<td>Wear</td>
</tr>
<tr>
<td>61 Monmouth Road Oakhurst, NJ 07756</td>
<td></td>
<td>Elsevier Sequoia S.A. P.O. Box 851</td>
<td>1001 Lausanne 1, Switzerland</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IPC Science and Technology Press Ltd. Westbury House P.O. Box 62, Bury Street Guildford, Surrey GU2 8BH, UK</td>
<td></td>
<td>Akademie Verlag GmbH Liepzig Str. 3-4</td>
<td>108 Berlin, Germany</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TURBOMACHINERY INTERNATIONAL</td>
<td>Turbomach. Inil.</td>
<td>ZEITSCHRIFT FÜR FLUGWISSENSCHAFTEN</td>
<td>Z. Flugwiss</td>
</tr>
<tr>
<td>Turbomachinery Publications, Inc. 22 South Smith St. Norwalk, CT 06856</td>
<td></td>
<td>DFW VR</td>
<td>7. Braunschweig</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flugfahrt, Postfach 3287 W. Germany</td>
</tr>
<tr>
<td>VDI ZEITSCHRIFT</td>
<td>VDI Z.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vestn Deutscher Ingenieur GmbH Postfach 1139, Guf-Recke Str. 84 4 Düsseldorf 1, Germany</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SECONDARY PUBLICATIONS SCANNED

<table>
<thead>
<tr>
<th>Government Reports Announcements & Index</th>
<th>GRA</th>
<th>Dissertation Abstracts International</th>
<th>DA</th>
</tr>
</thead>
<tbody>
<tr>
<td>NTIS U.S. Dept. of Commerce Springfield, VA 22161</td>
<td></td>
<td>University Microfilms Ann Arbor, Mi 48106</td>
<td></td>
</tr>
</tbody>
</table>

SCIENTIFIC AND TECHNICAL AEROSPACE REPORTS

ANNUAL PROCEEDINGS SCANNED

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TURBOMACHINERY SYMPOSIUM</td>
<td>Turbomach. Symp.</td>
<td>Shock and Vibration Information Center Naval Research Lab., Code 5804 Washington, D.C. 20375</td>
<td></td>
</tr>
<tr>
<td>Gas Turbine Lab Texas A&M University College Station, Texas</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CALENDAR

JUNE 1981

8-10 NOISE-CON 81 [Institute of Noise Control Engineering and the School of Engineering, North Carolina State University] Raleigh, North Carolina (Dr. Larry Rayzor, Program Chairman, Center for Acoustical Studies, Dept. of Mechanical & Aerospace Engr., North Carolina State University, Raleigh, NC 27650)

SEPTEMBER 1981

1 Joint Meeting of the British Society for Strain Measurement and the Society for Experimental Stress Analysis [B.S.S.M. and SESA] Edinburgh University, Scotland (C. McCalvey, Administration Officer, B.S.S.M., 261 Heston Road, Newcastle upon Tyne, NE5 0PA, UK)

7-11 Applied Modelling and Simulation Conference and Exhibition [I.A.S.T.E.D. and A.M.S.E.] Lyon, France (A.M.S.E., 16, Avenue de Grande Blanche, 69150 Tassin-Le-Demi-Lune, France)

20-23 Design Engineering Technical Conference [ASME] Hartford, CT (ASME Hq.)

28-30 Specialists Meeting on "Dynamic Environmental Qualification Techniques" [AGARD Structures and Materials Panel] Noordwijk, The Netherlands (Dr. James J. Oten, Structures and Dynamics Division, Air Force Wright Aeronautical Laboratories/FL, Wright Patterson Air Force Base, OH 45433)

30-Oct 2 International Congress on Recent Developments in Acoustic Intensity Measurement [CETIM] Senlis, France (Dr. M. Bockhoff, Centre Technique des Industries Mecaniques, Boite Postale 67, F-60304, Senlis, France)

OCTOBER 1981

4-7 International Lubrication Conference [ASME - ASLE] New Orleans, LA (ASME Hq.)

5-8 SAE Aerospace Congress and Exposition [SAE] Anaheim, CA (Roy W. Mustain, Rockwell Space Systems Group, AB 87, 12214 S. Lakewood Blvd., Downey, CA 90241)

11-15 Fall Meeting of the Society for Experimental Stress Analysis [SESA] Keystone Resort, Keystone CO (SESA, P.O. Box 277, Saugatuck Station, Westport, CT 06880)

19-22 Intl. Optimum Structural Design Symp. [U.S. Office of Naval Research and Univ. of Arizona] Tucson, AZ (Dr. Erdal Atrek, Dept. of Civil Engr., Bldg. No. 72, Univ. of Arizona, Tucson AZ 85721)

Eastern Design Engineering Show [ASME] New York, New York (ASME Hq.)

NOVEMBER 1981

30-Dec 4 Acoustical Society of America, Fall Meeting [ASA] Miami Beach, FL (ASA Hq.)

DECEMBER 1981

1-3 10th Turbomachinery Symposium [Texas A&M University] Houston, Texas (Peter E. Jenkins, Director, Turbomachinery Laboratories, Dept. of Mechanical Engineering, Texas A&M University, College Station, TX 77843 - (713) 845-7417)

8-10 Western Design Engineering Show [ASME] Anaheim, CA (ASME Hq.)
<table>
<thead>
<tr>
<th>ACRONYM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>AFIPS</td>
<td>American Federation of Information Processing Societies</td>
</tr>
<tr>
<td>AGMA</td>
<td>American Gear Manufacturers Association</td>
</tr>
<tr>
<td>AHS</td>
<td>American Helicopter Society</td>
</tr>
<tr>
<td>AIAA</td>
<td>American Institute of Aeronautics and Astronautics</td>
</tr>
<tr>
<td>AICHE</td>
<td>American Institute of Chemical Engineers</td>
</tr>
<tr>
<td>AREA</td>
<td>American Railway Engineering Association</td>
</tr>
<tr>
<td>ARPA</td>
<td>Advanced Research Projects Agency</td>
</tr>
<tr>
<td>ASA</td>
<td>Acoustical Society of America</td>
</tr>
<tr>
<td>ASCE</td>
<td>American Society of Civil Engineers</td>
</tr>
<tr>
<td>ASME</td>
<td>American Society of Mechanical Engineers</td>
</tr>
<tr>
<td>ASNT</td>
<td>American Society for Nondestructive Testing</td>
</tr>
<tr>
<td>ASQC</td>
<td>American Society for Quality Control</td>
</tr>
<tr>
<td>ASTM</td>
<td>American Society for Testing and Materials</td>
</tr>
<tr>
<td>CCCAM</td>
<td>Chairman, c/o Dept. ME, Univ. Toronto, Toronto 5, Ontario, Canada</td>
</tr>
<tr>
<td>ICF</td>
<td>International Congress on Fracture</td>
</tr>
<tr>
<td>IEEE</td>
<td>Institute of Electrical and Electronics Engineers</td>
</tr>
<tr>
<td>IES</td>
<td>Institute of Environmental Sciences</td>
</tr>
<tr>
<td>IFToMM</td>
<td>International Federation for Theory of Machines and Mechanisms</td>
</tr>
<tr>
<td>INCE</td>
<td>Institute of Noise Control Engineering</td>
</tr>
<tr>
<td>ISA</td>
<td>Instrument Society of America</td>
</tr>
<tr>
<td>QNR</td>
<td>Office of Naval Research</td>
</tr>
<tr>
<td>SAE</td>
<td>Society of Automotive Engineers</td>
</tr>
<tr>
<td>SEE</td>
<td>Society of Environmental Engineers</td>
</tr>
<tr>
<td>SESA</td>
<td>Society for Experimental Stress Analysis</td>
</tr>
<tr>
<td>SNAME</td>
<td>Society of Naval Architects and Marine Engineers</td>
</tr>
<tr>
<td>SPE</td>
<td>Society of Petroleum Engineers</td>
</tr>
<tr>
<td>SVIC</td>
<td>Shock and Vibration Information Center</td>
</tr>
<tr>
<td>URSI-USNC</td>
<td>International Union of Radio Science - U.S. National Committee</td>
</tr>
</tbody>
</table>

Note: The addresses listed are as of the publication date.
Unsolicited articles are accepted for publication in the Shock and Vibration Digest. Feature articles should be tutorials and/or reviews of areas of interest to shock and vibration engineers. Literature review articles should provide a subjective critique/summary of papers, patents, proceedings, and reports of a pertinent topic in the shock and vibration field. A literature review should stress important recent technology. Only pertinent literature should be cited. Illustrations are encouraged. Detailed mathematical derivations are discouraged; rather, simple formulas representing results should be used. When complex formulas cannot be avoided, a functional form should be used so that readers will understand the interaction between parameters and variables.

Manuscripts must be typed (double-spaced) and figures attached. It is strongly recommended that line figures be rendered in ink or heavy pencil and neatly labeled. Photographs must be unscreened glossy black and white prints. The format for references shown in DIGEST articles is to be followed.

Manuscripts must begin with a brief abstract, or summary. Only material referred to in the text should be included in the list of References at the end of the article. References should be cited in text by consecutive numbers in brackets, as in the example below.

Unfortunately, such information is often unreliable, particularly statistical data pertinent to a reliability assessment, as has been previously noted [1].

Critical and certain related excitations were first applied to the problem of assessing system reliability almost a decade ago [2]. Since then, the variations that have been developed and the practical applications that have been explored [3-7] indicate that…

The format and style for the list of References at the end of the article are as follows:

Articles for the DIGEST will be reviewed for technical content and edited for style and format. Before an article is submitted, the topic area should be cleared with the editors of the DIGEST. Literature review topics are assigned on a first come basis. Topics should be narrow and well-defined. Articles should be 1500 to 2500 words in length. For additional information on topics and editorial policies, please contact:

Milera Z. Tamulonis
Research Editor
Vibration Institute
101 West 65th Street, Suite 206
Clarendon Hills, Illinois 60514